ext4: move the abort flag from s_mount_opts to s_mount_flags
[pandora-kernel.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "ext4_extents.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static inline int ext4_begin_ordered_truncate(struct inode *inode,
51                                               loff_t new_size)
52 {
53         return jbd2_journal_begin_ordered_truncate(
54                                         EXT4_SB(inode->i_sb)->s_journal,
55                                         &EXT4_I(inode)->jinode,
56                                         new_size);
57 }
58
59 static void ext4_invalidatepage(struct page *page, unsigned long offset);
60
61 /*
62  * Test whether an inode is a fast symlink.
63  */
64 static int ext4_inode_is_fast_symlink(struct inode *inode)
65 {
66         int ea_blocks = EXT4_I(inode)->i_file_acl ?
67                 (inode->i_sb->s_blocksize >> 9) : 0;
68
69         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
70 }
71
72 /*
73  * The ext4 forget function must perform a revoke if we are freeing data
74  * which has been journaled.  Metadata (eg. indirect blocks) must be
75  * revoked in all cases.
76  *
77  * "bh" may be NULL: a metadata block may have been freed from memory
78  * but there may still be a record of it in the journal, and that record
79  * still needs to be revoked.
80  *
81  * If the handle isn't valid we're not journaling so there's nothing to do.
82  */
83 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
84                         struct buffer_head *bh, ext4_fsblk_t blocknr)
85 {
86         int err;
87
88         if (!ext4_handle_valid(handle))
89                 return 0;
90
91         might_sleep();
92
93         BUFFER_TRACE(bh, "enter");
94
95         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
96                   "data mode %x\n",
97                   bh, is_metadata, inode->i_mode,
98                   test_opt(inode->i_sb, DATA_FLAGS));
99
100         /* Never use the revoke function if we are doing full data
101          * journaling: there is no need to, and a V1 superblock won't
102          * support it.  Otherwise, only skip the revoke on un-journaled
103          * data blocks. */
104
105         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
106             (!is_metadata && !ext4_should_journal_data(inode))) {
107                 if (bh) {
108                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
109                         return ext4_journal_forget(handle, bh);
110                 }
111                 return 0;
112         }
113
114         /*
115          * data!=journal && (is_metadata || should_journal_data(inode))
116          */
117         BUFFER_TRACE(bh, "call ext4_journal_revoke");
118         err = ext4_journal_revoke(handle, blocknr, bh);
119         if (err)
120                 ext4_abort(inode->i_sb, __func__,
121                            "error %d when attempting revoke", err);
122         BUFFER_TRACE(bh, "exit");
123         return err;
124 }
125
126 /*
127  * Work out how many blocks we need to proceed with the next chunk of a
128  * truncate transaction.
129  */
130 static unsigned long blocks_for_truncate(struct inode *inode)
131 {
132         ext4_lblk_t needed;
133
134         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
135
136         /* Give ourselves just enough room to cope with inodes in which
137          * i_blocks is corrupt: we've seen disk corruptions in the past
138          * which resulted in random data in an inode which looked enough
139          * like a regular file for ext4 to try to delete it.  Things
140          * will go a bit crazy if that happens, but at least we should
141          * try not to panic the whole kernel. */
142         if (needed < 2)
143                 needed = 2;
144
145         /* But we need to bound the transaction so we don't overflow the
146          * journal. */
147         if (needed > EXT4_MAX_TRANS_DATA)
148                 needed = EXT4_MAX_TRANS_DATA;
149
150         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
151 }
152
153 /*
154  * Truncate transactions can be complex and absolutely huge.  So we need to
155  * be able to restart the transaction at a conventient checkpoint to make
156  * sure we don't overflow the journal.
157  *
158  * start_transaction gets us a new handle for a truncate transaction,
159  * and extend_transaction tries to extend the existing one a bit.  If
160  * extend fails, we need to propagate the failure up and restart the
161  * transaction in the top-level truncate loop. --sct
162  */
163 static handle_t *start_transaction(struct inode *inode)
164 {
165         handle_t *result;
166
167         result = ext4_journal_start(inode, blocks_for_truncate(inode));
168         if (!IS_ERR(result))
169                 return result;
170
171         ext4_std_error(inode->i_sb, PTR_ERR(result));
172         return result;
173 }
174
175 /*
176  * Try to extend this transaction for the purposes of truncation.
177  *
178  * Returns 0 if we managed to create more room.  If we can't create more
179  * room, and the transaction must be restarted we return 1.
180  */
181 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
182 {
183         if (!ext4_handle_valid(handle))
184                 return 0;
185         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
186                 return 0;
187         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
188                 return 0;
189         return 1;
190 }
191
192 /*
193  * Restart the transaction associated with *handle.  This does a commit,
194  * so before we call here everything must be consistently dirtied against
195  * this transaction.
196  */
197 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
198 {
199         BUG_ON(EXT4_JOURNAL(inode) == NULL);
200         jbd_debug(2, "restarting handle %p\n", handle);
201         return ext4_journal_restart(handle, blocks_for_truncate(inode));
202 }
203
204 /*
205  * Called at the last iput() if i_nlink is zero.
206  */
207 void ext4_delete_inode(struct inode *inode)
208 {
209         handle_t *handle;
210         int err;
211
212         if (ext4_should_order_data(inode))
213                 ext4_begin_ordered_truncate(inode, 0);
214         truncate_inode_pages(&inode->i_data, 0);
215
216         if (is_bad_inode(inode))
217                 goto no_delete;
218
219         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
220         if (IS_ERR(handle)) {
221                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
222                 /*
223                  * If we're going to skip the normal cleanup, we still need to
224                  * make sure that the in-core orphan linked list is properly
225                  * cleaned up.
226                  */
227                 ext4_orphan_del(NULL, inode);
228                 goto no_delete;
229         }
230
231         if (IS_SYNC(inode))
232                 ext4_handle_sync(handle);
233         inode->i_size = 0;
234         err = ext4_mark_inode_dirty(handle, inode);
235         if (err) {
236                 ext4_warning(inode->i_sb, __func__,
237                              "couldn't mark inode dirty (err %d)", err);
238                 goto stop_handle;
239         }
240         if (inode->i_blocks)
241                 ext4_truncate(inode);
242
243         /*
244          * ext4_ext_truncate() doesn't reserve any slop when it
245          * restarts journal transactions; therefore there may not be
246          * enough credits left in the handle to remove the inode from
247          * the orphan list and set the dtime field.
248          */
249         if (!ext4_handle_has_enough_credits(handle, 3)) {
250                 err = ext4_journal_extend(handle, 3);
251                 if (err > 0)
252                         err = ext4_journal_restart(handle, 3);
253                 if (err != 0) {
254                         ext4_warning(inode->i_sb, __func__,
255                                      "couldn't extend journal (err %d)", err);
256                 stop_handle:
257                         ext4_journal_stop(handle);
258                         goto no_delete;
259                 }
260         }
261
262         /*
263          * Kill off the orphan record which ext4_truncate created.
264          * AKPM: I think this can be inside the above `if'.
265          * Note that ext4_orphan_del() has to be able to cope with the
266          * deletion of a non-existent orphan - this is because we don't
267          * know if ext4_truncate() actually created an orphan record.
268          * (Well, we could do this if we need to, but heck - it works)
269          */
270         ext4_orphan_del(handle, inode);
271         EXT4_I(inode)->i_dtime  = get_seconds();
272
273         /*
274          * One subtle ordering requirement: if anything has gone wrong
275          * (transaction abort, IO errors, whatever), then we can still
276          * do these next steps (the fs will already have been marked as
277          * having errors), but we can't free the inode if the mark_dirty
278          * fails.
279          */
280         if (ext4_mark_inode_dirty(handle, inode))
281                 /* If that failed, just do the required in-core inode clear. */
282                 clear_inode(inode);
283         else
284                 ext4_free_inode(handle, inode);
285         ext4_journal_stop(handle);
286         return;
287 no_delete:
288         clear_inode(inode);     /* We must guarantee clearing of inode... */
289 }
290
291 typedef struct {
292         __le32  *p;
293         __le32  key;
294         struct buffer_head *bh;
295 } Indirect;
296
297 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
298 {
299         p->key = *(p->p = v);
300         p->bh = bh;
301 }
302
303 /**
304  *      ext4_block_to_path - parse the block number into array of offsets
305  *      @inode: inode in question (we are only interested in its superblock)
306  *      @i_block: block number to be parsed
307  *      @offsets: array to store the offsets in
308  *      @boundary: set this non-zero if the referred-to block is likely to be
309  *             followed (on disk) by an indirect block.
310  *
311  *      To store the locations of file's data ext4 uses a data structure common
312  *      for UNIX filesystems - tree of pointers anchored in the inode, with
313  *      data blocks at leaves and indirect blocks in intermediate nodes.
314  *      This function translates the block number into path in that tree -
315  *      return value is the path length and @offsets[n] is the offset of
316  *      pointer to (n+1)th node in the nth one. If @block is out of range
317  *      (negative or too large) warning is printed and zero returned.
318  *
319  *      Note: function doesn't find node addresses, so no IO is needed. All
320  *      we need to know is the capacity of indirect blocks (taken from the
321  *      inode->i_sb).
322  */
323
324 /*
325  * Portability note: the last comparison (check that we fit into triple
326  * indirect block) is spelled differently, because otherwise on an
327  * architecture with 32-bit longs and 8Kb pages we might get into trouble
328  * if our filesystem had 8Kb blocks. We might use long long, but that would
329  * kill us on x86. Oh, well, at least the sign propagation does not matter -
330  * i_block would have to be negative in the very beginning, so we would not
331  * get there at all.
332  */
333
334 static int ext4_block_to_path(struct inode *inode,
335                         ext4_lblk_t i_block,
336                         ext4_lblk_t offsets[4], int *boundary)
337 {
338         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
339         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
340         const long direct_blocks = EXT4_NDIR_BLOCKS,
341                 indirect_blocks = ptrs,
342                 double_blocks = (1 << (ptrs_bits * 2));
343         int n = 0;
344         int final = 0;
345
346         if (i_block < 0) {
347                 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
348         } else if (i_block < direct_blocks) {
349                 offsets[n++] = i_block;
350                 final = direct_blocks;
351         } else if ((i_block -= direct_blocks) < indirect_blocks) {
352                 offsets[n++] = EXT4_IND_BLOCK;
353                 offsets[n++] = i_block;
354                 final = ptrs;
355         } else if ((i_block -= indirect_blocks) < double_blocks) {
356                 offsets[n++] = EXT4_DIND_BLOCK;
357                 offsets[n++] = i_block >> ptrs_bits;
358                 offsets[n++] = i_block & (ptrs - 1);
359                 final = ptrs;
360         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
361                 offsets[n++] = EXT4_TIND_BLOCK;
362                 offsets[n++] = i_block >> (ptrs_bits * 2);
363                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
364                 offsets[n++] = i_block & (ptrs - 1);
365                 final = ptrs;
366         } else {
367                 ext4_warning(inode->i_sb, "ext4_block_to_path",
368                                 "block %lu > max in inode %lu",
369                                 i_block + direct_blocks +
370                                 indirect_blocks + double_blocks, inode->i_ino);
371         }
372         if (boundary)
373                 *boundary = final - 1 - (i_block & (ptrs - 1));
374         return n;
375 }
376
377 static int __ext4_check_blockref(const char *function, struct inode *inode,
378                                  __le32 *p, unsigned int max)
379 {
380         __le32 *bref = p;
381         unsigned int blk;
382
383         while (bref < p+max) {
384                 blk = le32_to_cpu(*bref++);
385                 if (blk && 
386                     unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb), 
387                                                     blk, 1))) {
388                         ext4_error(inode->i_sb, function,
389                                    "invalid block reference %u "
390                                    "in inode #%lu", blk, inode->i_ino);
391                         return -EIO;
392                 }
393         }
394         return 0;
395 }
396
397
398 #define ext4_check_indirect_blockref(inode, bh)                         \
399         __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
400                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
401
402 #define ext4_check_inode_blockref(inode)                                \
403         __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
404                               EXT4_NDIR_BLOCKS)
405
406 /**
407  *      ext4_get_branch - read the chain of indirect blocks leading to data
408  *      @inode: inode in question
409  *      @depth: depth of the chain (1 - direct pointer, etc.)
410  *      @offsets: offsets of pointers in inode/indirect blocks
411  *      @chain: place to store the result
412  *      @err: here we store the error value
413  *
414  *      Function fills the array of triples <key, p, bh> and returns %NULL
415  *      if everything went OK or the pointer to the last filled triple
416  *      (incomplete one) otherwise. Upon the return chain[i].key contains
417  *      the number of (i+1)-th block in the chain (as it is stored in memory,
418  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
419  *      number (it points into struct inode for i==0 and into the bh->b_data
420  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
421  *      block for i>0 and NULL for i==0. In other words, it holds the block
422  *      numbers of the chain, addresses they were taken from (and where we can
423  *      verify that chain did not change) and buffer_heads hosting these
424  *      numbers.
425  *
426  *      Function stops when it stumbles upon zero pointer (absent block)
427  *              (pointer to last triple returned, *@err == 0)
428  *      or when it gets an IO error reading an indirect block
429  *              (ditto, *@err == -EIO)
430  *      or when it reads all @depth-1 indirect blocks successfully and finds
431  *      the whole chain, all way to the data (returns %NULL, *err == 0).
432  *
433  *      Need to be called with
434  *      down_read(&EXT4_I(inode)->i_data_sem)
435  */
436 static Indirect *ext4_get_branch(struct inode *inode, int depth,
437                                  ext4_lblk_t  *offsets,
438                                  Indirect chain[4], int *err)
439 {
440         struct super_block *sb = inode->i_sb;
441         Indirect *p = chain;
442         struct buffer_head *bh;
443
444         *err = 0;
445         /* i_data is not going away, no lock needed */
446         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
447         if (!p->key)
448                 goto no_block;
449         while (--depth) {
450                 bh = sb_getblk(sb, le32_to_cpu(p->key));
451                 if (unlikely(!bh))
452                         goto failure;
453                   
454                 if (!bh_uptodate_or_lock(bh)) {
455                         if (bh_submit_read(bh) < 0) {
456                                 put_bh(bh);
457                                 goto failure;
458                         }
459                         /* validate block references */
460                         if (ext4_check_indirect_blockref(inode, bh)) {
461                                 put_bh(bh);
462                                 goto failure;
463                         }
464                 }
465                 
466                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
467                 /* Reader: end */
468                 if (!p->key)
469                         goto no_block;
470         }
471         return NULL;
472
473 failure:
474         *err = -EIO;
475 no_block:
476         return p;
477 }
478
479 /**
480  *      ext4_find_near - find a place for allocation with sufficient locality
481  *      @inode: owner
482  *      @ind: descriptor of indirect block.
483  *
484  *      This function returns the preferred place for block allocation.
485  *      It is used when heuristic for sequential allocation fails.
486  *      Rules are:
487  *        + if there is a block to the left of our position - allocate near it.
488  *        + if pointer will live in indirect block - allocate near that block.
489  *        + if pointer will live in inode - allocate in the same
490  *          cylinder group.
491  *
492  * In the latter case we colour the starting block by the callers PID to
493  * prevent it from clashing with concurrent allocations for a different inode
494  * in the same block group.   The PID is used here so that functionally related
495  * files will be close-by on-disk.
496  *
497  *      Caller must make sure that @ind is valid and will stay that way.
498  */
499 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
500 {
501         struct ext4_inode_info *ei = EXT4_I(inode);
502         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
503         __le32 *p;
504         ext4_fsblk_t bg_start;
505         ext4_fsblk_t last_block;
506         ext4_grpblk_t colour;
507         ext4_group_t block_group;
508         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
509
510         /* Try to find previous block */
511         for (p = ind->p - 1; p >= start; p--) {
512                 if (*p)
513                         return le32_to_cpu(*p);
514         }
515
516         /* No such thing, so let's try location of indirect block */
517         if (ind->bh)
518                 return ind->bh->b_blocknr;
519
520         /*
521          * It is going to be referred to from the inode itself? OK, just put it
522          * into the same cylinder group then.
523          */
524         block_group = ei->i_block_group;
525         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
526                 block_group &= ~(flex_size-1);
527                 if (S_ISREG(inode->i_mode))
528                         block_group++;
529         }
530         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
531         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
532
533         /*
534          * If we are doing delayed allocation, we don't need take
535          * colour into account.
536          */
537         if (test_opt(inode->i_sb, DELALLOC))
538                 return bg_start;
539
540         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
541                 colour = (current->pid % 16) *
542                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
543         else
544                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
545         return bg_start + colour;
546 }
547
548 /**
549  *      ext4_find_goal - find a preferred place for allocation.
550  *      @inode: owner
551  *      @block:  block we want
552  *      @partial: pointer to the last triple within a chain
553  *
554  *      Normally this function find the preferred place for block allocation,
555  *      returns it.
556  */
557 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
558                 Indirect *partial)
559 {
560         /*
561          * XXX need to get goal block from mballoc's data structures
562          */
563
564         return ext4_find_near(inode, partial);
565 }
566
567 /**
568  *      ext4_blks_to_allocate: Look up the block map and count the number
569  *      of direct blocks need to be allocated for the given branch.
570  *
571  *      @branch: chain of indirect blocks
572  *      @k: number of blocks need for indirect blocks
573  *      @blks: number of data blocks to be mapped.
574  *      @blocks_to_boundary:  the offset in the indirect block
575  *
576  *      return the total number of blocks to be allocate, including the
577  *      direct and indirect blocks.
578  */
579 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
580                 int blocks_to_boundary)
581 {
582         unsigned int count = 0;
583
584         /*
585          * Simple case, [t,d]Indirect block(s) has not allocated yet
586          * then it's clear blocks on that path have not allocated
587          */
588         if (k > 0) {
589                 /* right now we don't handle cross boundary allocation */
590                 if (blks < blocks_to_boundary + 1)
591                         count += blks;
592                 else
593                         count += blocks_to_boundary + 1;
594                 return count;
595         }
596
597         count++;
598         while (count < blks && count <= blocks_to_boundary &&
599                 le32_to_cpu(*(branch[0].p + count)) == 0) {
600                 count++;
601         }
602         return count;
603 }
604
605 /**
606  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
607  *      @indirect_blks: the number of blocks need to allocate for indirect
608  *                      blocks
609  *
610  *      @new_blocks: on return it will store the new block numbers for
611  *      the indirect blocks(if needed) and the first direct block,
612  *      @blks:  on return it will store the total number of allocated
613  *              direct blocks
614  */
615 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
616                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
617                                 int indirect_blks, int blks,
618                                 ext4_fsblk_t new_blocks[4], int *err)
619 {
620         struct ext4_allocation_request ar;
621         int target, i;
622         unsigned long count = 0, blk_allocated = 0;
623         int index = 0;
624         ext4_fsblk_t current_block = 0;
625         int ret = 0;
626
627         /*
628          * Here we try to allocate the requested multiple blocks at once,
629          * on a best-effort basis.
630          * To build a branch, we should allocate blocks for
631          * the indirect blocks(if not allocated yet), and at least
632          * the first direct block of this branch.  That's the
633          * minimum number of blocks need to allocate(required)
634          */
635         /* first we try to allocate the indirect blocks */
636         target = indirect_blks;
637         while (target > 0) {
638                 count = target;
639                 /* allocating blocks for indirect blocks and direct blocks */
640                 current_block = ext4_new_meta_blocks(handle, inode,
641                                                         goal, &count, err);
642                 if (*err)
643                         goto failed_out;
644
645                 target -= count;
646                 /* allocate blocks for indirect blocks */
647                 while (index < indirect_blks && count) {
648                         new_blocks[index++] = current_block++;
649                         count--;
650                 }
651                 if (count > 0) {
652                         /*
653                          * save the new block number
654                          * for the first direct block
655                          */
656                         new_blocks[index] = current_block;
657                         printk(KERN_INFO "%s returned more blocks than "
658                                                 "requested\n", __func__);
659                         WARN_ON(1);
660                         break;
661                 }
662         }
663
664         target = blks - count ;
665         blk_allocated = count;
666         if (!target)
667                 goto allocated;
668         /* Now allocate data blocks */
669         memset(&ar, 0, sizeof(ar));
670         ar.inode = inode;
671         ar.goal = goal;
672         ar.len = target;
673         ar.logical = iblock;
674         if (S_ISREG(inode->i_mode))
675                 /* enable in-core preallocation only for regular files */
676                 ar.flags = EXT4_MB_HINT_DATA;
677
678         current_block = ext4_mb_new_blocks(handle, &ar, err);
679
680         if (*err && (target == blks)) {
681                 /*
682                  * if the allocation failed and we didn't allocate
683                  * any blocks before
684                  */
685                 goto failed_out;
686         }
687         if (!*err) {
688                 if (target == blks) {
689                 /*
690                  * save the new block number
691                  * for the first direct block
692                  */
693                         new_blocks[index] = current_block;
694                 }
695                 blk_allocated += ar.len;
696         }
697 allocated:
698         /* total number of blocks allocated for direct blocks */
699         ret = blk_allocated;
700         *err = 0;
701         return ret;
702 failed_out:
703         for (i = 0; i < index; i++)
704                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
705         return ret;
706 }
707
708 /**
709  *      ext4_alloc_branch - allocate and set up a chain of blocks.
710  *      @inode: owner
711  *      @indirect_blks: number of allocated indirect blocks
712  *      @blks: number of allocated direct blocks
713  *      @offsets: offsets (in the blocks) to store the pointers to next.
714  *      @branch: place to store the chain in.
715  *
716  *      This function allocates blocks, zeroes out all but the last one,
717  *      links them into chain and (if we are synchronous) writes them to disk.
718  *      In other words, it prepares a branch that can be spliced onto the
719  *      inode. It stores the information about that chain in the branch[], in
720  *      the same format as ext4_get_branch() would do. We are calling it after
721  *      we had read the existing part of chain and partial points to the last
722  *      triple of that (one with zero ->key). Upon the exit we have the same
723  *      picture as after the successful ext4_get_block(), except that in one
724  *      place chain is disconnected - *branch->p is still zero (we did not
725  *      set the last link), but branch->key contains the number that should
726  *      be placed into *branch->p to fill that gap.
727  *
728  *      If allocation fails we free all blocks we've allocated (and forget
729  *      their buffer_heads) and return the error value the from failed
730  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
731  *      as described above and return 0.
732  */
733 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
734                                 ext4_lblk_t iblock, int indirect_blks,
735                                 int *blks, ext4_fsblk_t goal,
736                                 ext4_lblk_t *offsets, Indirect *branch)
737 {
738         int blocksize = inode->i_sb->s_blocksize;
739         int i, n = 0;
740         int err = 0;
741         struct buffer_head *bh;
742         int num;
743         ext4_fsblk_t new_blocks[4];
744         ext4_fsblk_t current_block;
745
746         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
747                                 *blks, new_blocks, &err);
748         if (err)
749                 return err;
750
751         branch[0].key = cpu_to_le32(new_blocks[0]);
752         /*
753          * metadata blocks and data blocks are allocated.
754          */
755         for (n = 1; n <= indirect_blks;  n++) {
756                 /*
757                  * Get buffer_head for parent block, zero it out
758                  * and set the pointer to new one, then send
759                  * parent to disk.
760                  */
761                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
762                 branch[n].bh = bh;
763                 lock_buffer(bh);
764                 BUFFER_TRACE(bh, "call get_create_access");
765                 err = ext4_journal_get_create_access(handle, bh);
766                 if (err) {
767                         unlock_buffer(bh);
768                         brelse(bh);
769                         goto failed;
770                 }
771
772                 memset(bh->b_data, 0, blocksize);
773                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
774                 branch[n].key = cpu_to_le32(new_blocks[n]);
775                 *branch[n].p = branch[n].key;
776                 if (n == indirect_blks) {
777                         current_block = new_blocks[n];
778                         /*
779                          * End of chain, update the last new metablock of
780                          * the chain to point to the new allocated
781                          * data blocks numbers
782                          */
783                         for (i=1; i < num; i++)
784                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
785                 }
786                 BUFFER_TRACE(bh, "marking uptodate");
787                 set_buffer_uptodate(bh);
788                 unlock_buffer(bh);
789
790                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
791                 err = ext4_handle_dirty_metadata(handle, inode, bh);
792                 if (err)
793                         goto failed;
794         }
795         *blks = num;
796         return err;
797 failed:
798         /* Allocation failed, free what we already allocated */
799         for (i = 1; i <= n ; i++) {
800                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
801                 ext4_journal_forget(handle, branch[i].bh);
802         }
803         for (i = 0; i < indirect_blks; i++)
804                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
805
806         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
807
808         return err;
809 }
810
811 /**
812  * ext4_splice_branch - splice the allocated branch onto inode.
813  * @inode: owner
814  * @block: (logical) number of block we are adding
815  * @chain: chain of indirect blocks (with a missing link - see
816  *      ext4_alloc_branch)
817  * @where: location of missing link
818  * @num:   number of indirect blocks we are adding
819  * @blks:  number of direct blocks we are adding
820  *
821  * This function fills the missing link and does all housekeeping needed in
822  * inode (->i_blocks, etc.). In case of success we end up with the full
823  * chain to new block and return 0.
824  */
825 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
826                         ext4_lblk_t block, Indirect *where, int num, int blks)
827 {
828         int i;
829         int err = 0;
830         ext4_fsblk_t current_block;
831
832         /*
833          * If we're splicing into a [td]indirect block (as opposed to the
834          * inode) then we need to get write access to the [td]indirect block
835          * before the splice.
836          */
837         if (where->bh) {
838                 BUFFER_TRACE(where->bh, "get_write_access");
839                 err = ext4_journal_get_write_access(handle, where->bh);
840                 if (err)
841                         goto err_out;
842         }
843         /* That's it */
844
845         *where->p = where->key;
846
847         /*
848          * Update the host buffer_head or inode to point to more just allocated
849          * direct blocks blocks
850          */
851         if (num == 0 && blks > 1) {
852                 current_block = le32_to_cpu(where->key) + 1;
853                 for (i = 1; i < blks; i++)
854                         *(where->p + i) = cpu_to_le32(current_block++);
855         }
856
857         /* We are done with atomic stuff, now do the rest of housekeeping */
858
859         inode->i_ctime = ext4_current_time(inode);
860         ext4_mark_inode_dirty(handle, inode);
861
862         /* had we spliced it onto indirect block? */
863         if (where->bh) {
864                 /*
865                  * If we spliced it onto an indirect block, we haven't
866                  * altered the inode.  Note however that if it is being spliced
867                  * onto an indirect block at the very end of the file (the
868                  * file is growing) then we *will* alter the inode to reflect
869                  * the new i_size.  But that is not done here - it is done in
870                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
871                  */
872                 jbd_debug(5, "splicing indirect only\n");
873                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
874                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
875                 if (err)
876                         goto err_out;
877         } else {
878                 /*
879                  * OK, we spliced it into the inode itself on a direct block.
880                  * Inode was dirtied above.
881                  */
882                 jbd_debug(5, "splicing direct\n");
883         }
884         return err;
885
886 err_out:
887         for (i = 1; i <= num; i++) {
888                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
889                 ext4_journal_forget(handle, where[i].bh);
890                 ext4_free_blocks(handle, inode,
891                                         le32_to_cpu(where[i-1].key), 1, 0);
892         }
893         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
894
895         return err;
896 }
897
898 /*
899  * The ext4_ind_get_blocks() function handles non-extents inodes
900  * (i.e., using the traditional indirect/double-indirect i_blocks
901  * scheme) for ext4_get_blocks().
902  *
903  * Allocation strategy is simple: if we have to allocate something, we will
904  * have to go the whole way to leaf. So let's do it before attaching anything
905  * to tree, set linkage between the newborn blocks, write them if sync is
906  * required, recheck the path, free and repeat if check fails, otherwise
907  * set the last missing link (that will protect us from any truncate-generated
908  * removals - all blocks on the path are immune now) and possibly force the
909  * write on the parent block.
910  * That has a nice additional property: no special recovery from the failed
911  * allocations is needed - we simply release blocks and do not touch anything
912  * reachable from inode.
913  *
914  * `handle' can be NULL if create == 0.
915  *
916  * return > 0, # of blocks mapped or allocated.
917  * return = 0, if plain lookup failed.
918  * return < 0, error case.
919  *
920  * The ext4_ind_get_blocks() function should be called with
921  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
922  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
923  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
924  * blocks.
925  */
926 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
927                                   ext4_lblk_t iblock, unsigned int maxblocks,
928                                   struct buffer_head *bh_result,
929                                   int flags)
930 {
931         int err = -EIO;
932         ext4_lblk_t offsets[4];
933         Indirect chain[4];
934         Indirect *partial;
935         ext4_fsblk_t goal;
936         int indirect_blks;
937         int blocks_to_boundary = 0;
938         int depth;
939         int count = 0;
940         ext4_fsblk_t first_block = 0;
941
942         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
943         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
944         depth = ext4_block_to_path(inode, iblock, offsets,
945                                         &blocks_to_boundary);
946
947         if (depth == 0)
948                 goto out;
949
950         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
951
952         /* Simplest case - block found, no allocation needed */
953         if (!partial) {
954                 first_block = le32_to_cpu(chain[depth - 1].key);
955                 clear_buffer_new(bh_result);
956                 count++;
957                 /*map more blocks*/
958                 while (count < maxblocks && count <= blocks_to_boundary) {
959                         ext4_fsblk_t blk;
960
961                         blk = le32_to_cpu(*(chain[depth-1].p + count));
962
963                         if (blk == first_block + count)
964                                 count++;
965                         else
966                                 break;
967                 }
968                 goto got_it;
969         }
970
971         /* Next simple case - plain lookup or failed read of indirect block */
972         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
973                 goto cleanup;
974
975         /*
976          * Okay, we need to do block allocation.
977         */
978         goal = ext4_find_goal(inode, iblock, partial);
979
980         /* the number of blocks need to allocate for [d,t]indirect blocks */
981         indirect_blks = (chain + depth) - partial - 1;
982
983         /*
984          * Next look up the indirect map to count the totoal number of
985          * direct blocks to allocate for this branch.
986          */
987         count = ext4_blks_to_allocate(partial, indirect_blks,
988                                         maxblocks, blocks_to_boundary);
989         /*
990          * Block out ext4_truncate while we alter the tree
991          */
992         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
993                                         &count, goal,
994                                         offsets + (partial - chain), partial);
995
996         /*
997          * The ext4_splice_branch call will free and forget any buffers
998          * on the new chain if there is a failure, but that risks using
999          * up transaction credits, especially for bitmaps where the
1000          * credits cannot be returned.  Can we handle this somehow?  We
1001          * may need to return -EAGAIN upwards in the worst case.  --sct
1002          */
1003         if (!err)
1004                 err = ext4_splice_branch(handle, inode, iblock,
1005                                         partial, indirect_blks, count);
1006         else 
1007                 goto cleanup;
1008
1009         set_buffer_new(bh_result);
1010 got_it:
1011         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1012         if (count > blocks_to_boundary)
1013                 set_buffer_boundary(bh_result);
1014         err = count;
1015         /* Clean up and exit */
1016         partial = chain + depth - 1;    /* the whole chain */
1017 cleanup:
1018         while (partial > chain) {
1019                 BUFFER_TRACE(partial->bh, "call brelse");
1020                 brelse(partial->bh);
1021                 partial--;
1022         }
1023         BUFFER_TRACE(bh_result, "returned");
1024 out:
1025         return err;
1026 }
1027
1028 qsize_t ext4_get_reserved_space(struct inode *inode)
1029 {
1030         unsigned long long total;
1031
1032         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1033         total = EXT4_I(inode)->i_reserved_data_blocks +
1034                 EXT4_I(inode)->i_reserved_meta_blocks;
1035         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1036
1037         return total;
1038 }
1039 /*
1040  * Calculate the number of metadata blocks need to reserve
1041  * to allocate @blocks for non extent file based file
1042  */
1043 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1044 {
1045         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1046         int ind_blks, dind_blks, tind_blks;
1047
1048         /* number of new indirect blocks needed */
1049         ind_blks = (blocks + icap - 1) / icap;
1050
1051         dind_blks = (ind_blks + icap - 1) / icap;
1052
1053         tind_blks = 1;
1054
1055         return ind_blks + dind_blks + tind_blks;
1056 }
1057
1058 /*
1059  * Calculate the number of metadata blocks need to reserve
1060  * to allocate given number of blocks
1061  */
1062 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1063 {
1064         if (!blocks)
1065                 return 0;
1066
1067         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1068                 return ext4_ext_calc_metadata_amount(inode, blocks);
1069
1070         return ext4_indirect_calc_metadata_amount(inode, blocks);
1071 }
1072
1073 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1074 {
1075         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1076         int total, mdb, mdb_free;
1077
1078         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1079         /* recalculate the number of metablocks still need to be reserved */
1080         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1081         mdb = ext4_calc_metadata_amount(inode, total);
1082
1083         /* figure out how many metablocks to release */
1084         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1085         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1086
1087         if (mdb_free) {
1088                 /* Account for allocated meta_blocks */
1089                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1090
1091                 /* update fs dirty blocks counter */
1092                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1093                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1094                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1095         }
1096
1097         /* update per-inode reservations */
1098         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1099         EXT4_I(inode)->i_reserved_data_blocks -= used;
1100         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1101
1102         /*
1103          * free those over-booking quota for metadata blocks
1104          */
1105         if (mdb_free)
1106                 vfs_dq_release_reservation_block(inode, mdb_free);
1107
1108         /*
1109          * If we have done all the pending block allocations and if
1110          * there aren't any writers on the inode, we can discard the
1111          * inode's preallocations.
1112          */
1113         if (!total && (atomic_read(&inode->i_writecount) == 0))
1114                 ext4_discard_preallocations(inode);
1115 }
1116
1117 static int check_block_validity(struct inode *inode, sector_t logical,
1118                                 sector_t phys, int len)
1119 {
1120         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1121                 ext4_error(inode->i_sb, "check_block_validity",
1122                            "inode #%lu logical block %llu mapped to %llu "
1123                            "(size %d)", inode->i_ino,
1124                            (unsigned long long) logical,
1125                            (unsigned long long) phys, len);
1126                 WARN_ON(1);
1127                 return -EIO;
1128         }
1129         return 0;
1130 }
1131
1132 /*
1133  * The ext4_get_blocks() function tries to look up the requested blocks,
1134  * and returns if the blocks are already mapped.
1135  *
1136  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1137  * and store the allocated blocks in the result buffer head and mark it
1138  * mapped.
1139  *
1140  * If file type is extents based, it will call ext4_ext_get_blocks(),
1141  * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1142  * based files
1143  *
1144  * On success, it returns the number of blocks being mapped or allocate.
1145  * if create==0 and the blocks are pre-allocated and uninitialized block,
1146  * the result buffer head is unmapped. If the create ==1, it will make sure
1147  * the buffer head is mapped.
1148  *
1149  * It returns 0 if plain look up failed (blocks have not been allocated), in
1150  * that casem, buffer head is unmapped
1151  *
1152  * It returns the error in case of allocation failure.
1153  */
1154 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1155                     unsigned int max_blocks, struct buffer_head *bh,
1156                     int flags)
1157 {
1158         int retval;
1159
1160         clear_buffer_mapped(bh);
1161         clear_buffer_unwritten(bh);
1162
1163         /*
1164          * Try to see if we can get the block without requesting a new
1165          * file system block.
1166          */
1167         down_read((&EXT4_I(inode)->i_data_sem));
1168         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1169                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1170                                 bh, 0);
1171         } else {
1172                 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1173                                              bh, 0);
1174         }
1175         up_read((&EXT4_I(inode)->i_data_sem));
1176
1177         if (retval > 0 && buffer_mapped(bh)) {
1178                 int ret = check_block_validity(inode, block, 
1179                                                bh->b_blocknr, retval);
1180                 if (ret != 0)
1181                         return ret;
1182         }
1183
1184         /* If it is only a block(s) look up */
1185         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1186                 return retval;
1187
1188         /*
1189          * Returns if the blocks have already allocated
1190          *
1191          * Note that if blocks have been preallocated
1192          * ext4_ext_get_block() returns th create = 0
1193          * with buffer head unmapped.
1194          */
1195         if (retval > 0 && buffer_mapped(bh))
1196                 return retval;
1197
1198         /*
1199          * When we call get_blocks without the create flag, the
1200          * BH_Unwritten flag could have gotten set if the blocks
1201          * requested were part of a uninitialized extent.  We need to
1202          * clear this flag now that we are committed to convert all or
1203          * part of the uninitialized extent to be an initialized
1204          * extent.  This is because we need to avoid the combination
1205          * of BH_Unwritten and BH_Mapped flags being simultaneously
1206          * set on the buffer_head.
1207          */
1208         clear_buffer_unwritten(bh);
1209
1210         /*
1211          * New blocks allocate and/or writing to uninitialized extent
1212          * will possibly result in updating i_data, so we take
1213          * the write lock of i_data_sem, and call get_blocks()
1214          * with create == 1 flag.
1215          */
1216         down_write((&EXT4_I(inode)->i_data_sem));
1217
1218         /*
1219          * if the caller is from delayed allocation writeout path
1220          * we have already reserved fs blocks for allocation
1221          * let the underlying get_block() function know to
1222          * avoid double accounting
1223          */
1224         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1225                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1226         /*
1227          * We need to check for EXT4 here because migrate
1228          * could have changed the inode type in between
1229          */
1230         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1231                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1232                                               bh, flags);
1233         } else {
1234                 retval = ext4_ind_get_blocks(handle, inode, block,
1235                                              max_blocks, bh, flags);
1236
1237                 if (retval > 0 && buffer_new(bh)) {
1238                         /*
1239                          * We allocated new blocks which will result in
1240                          * i_data's format changing.  Force the migrate
1241                          * to fail by clearing migrate flags
1242                          */
1243                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1244                                                         ~EXT4_EXT_MIGRATE;
1245                 }
1246         }
1247
1248         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1249                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1250
1251         /*
1252          * Update reserved blocks/metadata blocks after successful
1253          * block allocation which had been deferred till now.
1254          */
1255         if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1256                 ext4_da_update_reserve_space(inode, retval);
1257
1258         up_write((&EXT4_I(inode)->i_data_sem));
1259         if (retval > 0 && buffer_mapped(bh)) {
1260                 int ret = check_block_validity(inode, block, 
1261                                                bh->b_blocknr, retval);
1262                 if (ret != 0)
1263                         return ret;
1264         }
1265         return retval;
1266 }
1267
1268 /* Maximum number of blocks we map for direct IO at once. */
1269 #define DIO_MAX_BLOCKS 4096
1270
1271 int ext4_get_block(struct inode *inode, sector_t iblock,
1272                    struct buffer_head *bh_result, int create)
1273 {
1274         handle_t *handle = ext4_journal_current_handle();
1275         int ret = 0, started = 0;
1276         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1277         int dio_credits;
1278
1279         if (create && !handle) {
1280                 /* Direct IO write... */
1281                 if (max_blocks > DIO_MAX_BLOCKS)
1282                         max_blocks = DIO_MAX_BLOCKS;
1283                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1284                 handle = ext4_journal_start(inode, dio_credits);
1285                 if (IS_ERR(handle)) {
1286                         ret = PTR_ERR(handle);
1287                         goto out;
1288                 }
1289                 started = 1;
1290         }
1291
1292         ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1293                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1294         if (ret > 0) {
1295                 bh_result->b_size = (ret << inode->i_blkbits);
1296                 ret = 0;
1297         }
1298         if (started)
1299                 ext4_journal_stop(handle);
1300 out:
1301         return ret;
1302 }
1303
1304 /*
1305  * `handle' can be NULL if create is zero
1306  */
1307 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1308                                 ext4_lblk_t block, int create, int *errp)
1309 {
1310         struct buffer_head dummy;
1311         int fatal = 0, err;
1312         int flags = 0;
1313
1314         J_ASSERT(handle != NULL || create == 0);
1315
1316         dummy.b_state = 0;
1317         dummy.b_blocknr = -1000;
1318         buffer_trace_init(&dummy.b_history);
1319         if (create)
1320                 flags |= EXT4_GET_BLOCKS_CREATE;
1321         err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1322         /*
1323          * ext4_get_blocks() returns number of blocks mapped. 0 in
1324          * case of a HOLE.
1325          */
1326         if (err > 0) {
1327                 if (err > 1)
1328                         WARN_ON(1);
1329                 err = 0;
1330         }
1331         *errp = err;
1332         if (!err && buffer_mapped(&dummy)) {
1333                 struct buffer_head *bh;
1334                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1335                 if (!bh) {
1336                         *errp = -EIO;
1337                         goto err;
1338                 }
1339                 if (buffer_new(&dummy)) {
1340                         J_ASSERT(create != 0);
1341                         J_ASSERT(handle != NULL);
1342
1343                         /*
1344                          * Now that we do not always journal data, we should
1345                          * keep in mind whether this should always journal the
1346                          * new buffer as metadata.  For now, regular file
1347                          * writes use ext4_get_block instead, so it's not a
1348                          * problem.
1349                          */
1350                         lock_buffer(bh);
1351                         BUFFER_TRACE(bh, "call get_create_access");
1352                         fatal = ext4_journal_get_create_access(handle, bh);
1353                         if (!fatal && !buffer_uptodate(bh)) {
1354                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1355                                 set_buffer_uptodate(bh);
1356                         }
1357                         unlock_buffer(bh);
1358                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1359                         err = ext4_handle_dirty_metadata(handle, inode, bh);
1360                         if (!fatal)
1361                                 fatal = err;
1362                 } else {
1363                         BUFFER_TRACE(bh, "not a new buffer");
1364                 }
1365                 if (fatal) {
1366                         *errp = fatal;
1367                         brelse(bh);
1368                         bh = NULL;
1369                 }
1370                 return bh;
1371         }
1372 err:
1373         return NULL;
1374 }
1375
1376 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1377                                ext4_lblk_t block, int create, int *err)
1378 {
1379         struct buffer_head *bh;
1380
1381         bh = ext4_getblk(handle, inode, block, create, err);
1382         if (!bh)
1383                 return bh;
1384         if (buffer_uptodate(bh))
1385                 return bh;
1386         ll_rw_block(READ_META, 1, &bh);
1387         wait_on_buffer(bh);
1388         if (buffer_uptodate(bh))
1389                 return bh;
1390         put_bh(bh);
1391         *err = -EIO;
1392         return NULL;
1393 }
1394
1395 static int walk_page_buffers(handle_t *handle,
1396                              struct buffer_head *head,
1397                              unsigned from,
1398                              unsigned to,
1399                              int *partial,
1400                              int (*fn)(handle_t *handle,
1401                                        struct buffer_head *bh))
1402 {
1403         struct buffer_head *bh;
1404         unsigned block_start, block_end;
1405         unsigned blocksize = head->b_size;
1406         int err, ret = 0;
1407         struct buffer_head *next;
1408
1409         for (bh = head, block_start = 0;
1410              ret == 0 && (bh != head || !block_start);
1411              block_start = block_end, bh = next)
1412         {
1413                 next = bh->b_this_page;
1414                 block_end = block_start + blocksize;
1415                 if (block_end <= from || block_start >= to) {
1416                         if (partial && !buffer_uptodate(bh))
1417                                 *partial = 1;
1418                         continue;
1419                 }
1420                 err = (*fn)(handle, bh);
1421                 if (!ret)
1422                         ret = err;
1423         }
1424         return ret;
1425 }
1426
1427 /*
1428  * To preserve ordering, it is essential that the hole instantiation and
1429  * the data write be encapsulated in a single transaction.  We cannot
1430  * close off a transaction and start a new one between the ext4_get_block()
1431  * and the commit_write().  So doing the jbd2_journal_start at the start of
1432  * prepare_write() is the right place.
1433  *
1434  * Also, this function can nest inside ext4_writepage() ->
1435  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1436  * has generated enough buffer credits to do the whole page.  So we won't
1437  * block on the journal in that case, which is good, because the caller may
1438  * be PF_MEMALLOC.
1439  *
1440  * By accident, ext4 can be reentered when a transaction is open via
1441  * quota file writes.  If we were to commit the transaction while thus
1442  * reentered, there can be a deadlock - we would be holding a quota
1443  * lock, and the commit would never complete if another thread had a
1444  * transaction open and was blocking on the quota lock - a ranking
1445  * violation.
1446  *
1447  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1448  * will _not_ run commit under these circumstances because handle->h_ref
1449  * is elevated.  We'll still have enough credits for the tiny quotafile
1450  * write.
1451  */
1452 static int do_journal_get_write_access(handle_t *handle,
1453                                         struct buffer_head *bh)
1454 {
1455         if (!buffer_mapped(bh) || buffer_freed(bh))
1456                 return 0;
1457         return ext4_journal_get_write_access(handle, bh);
1458 }
1459
1460 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1461                                 loff_t pos, unsigned len, unsigned flags,
1462                                 struct page **pagep, void **fsdata)
1463 {
1464         struct inode *inode = mapping->host;
1465         int ret, needed_blocks;
1466         handle_t *handle;
1467         int retries = 0;
1468         struct page *page;
1469         pgoff_t index;
1470         unsigned from, to;
1471
1472         trace_ext4_write_begin(inode, pos, len, flags);
1473         /*
1474          * Reserve one block more for addition to orphan list in case
1475          * we allocate blocks but write fails for some reason
1476          */
1477         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1478         index = pos >> PAGE_CACHE_SHIFT;
1479         from = pos & (PAGE_CACHE_SIZE - 1);
1480         to = from + len;
1481
1482 retry:
1483         handle = ext4_journal_start(inode, needed_blocks);
1484         if (IS_ERR(handle)) {
1485                 ret = PTR_ERR(handle);
1486                 goto out;
1487         }
1488
1489         /* We cannot recurse into the filesystem as the transaction is already
1490          * started */
1491         flags |= AOP_FLAG_NOFS;
1492
1493         page = grab_cache_page_write_begin(mapping, index, flags);
1494         if (!page) {
1495                 ext4_journal_stop(handle);
1496                 ret = -ENOMEM;
1497                 goto out;
1498         }
1499         *pagep = page;
1500
1501         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1502                                 ext4_get_block);
1503
1504         if (!ret && ext4_should_journal_data(inode)) {
1505                 ret = walk_page_buffers(handle, page_buffers(page),
1506                                 from, to, NULL, do_journal_get_write_access);
1507         }
1508
1509         if (ret) {
1510                 unlock_page(page);
1511                 page_cache_release(page);
1512                 /*
1513                  * block_write_begin may have instantiated a few blocks
1514                  * outside i_size.  Trim these off again. Don't need
1515                  * i_size_read because we hold i_mutex.
1516                  *
1517                  * Add inode to orphan list in case we crash before
1518                  * truncate finishes
1519                  */
1520                 if (pos + len > inode->i_size)
1521                         ext4_orphan_add(handle, inode);
1522
1523                 ext4_journal_stop(handle);
1524                 if (pos + len > inode->i_size) {
1525                         vmtruncate(inode, inode->i_size);
1526                         /* 
1527                          * If vmtruncate failed early the inode might
1528                          * still be on the orphan list; we need to
1529                          * make sure the inode is removed from the
1530                          * orphan list in that case.
1531                          */
1532                         if (inode->i_nlink)
1533                                 ext4_orphan_del(NULL, inode);
1534                 }
1535         }
1536
1537         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1538                 goto retry;
1539 out:
1540         return ret;
1541 }
1542
1543 /* For write_end() in data=journal mode */
1544 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1545 {
1546         if (!buffer_mapped(bh) || buffer_freed(bh))
1547                 return 0;
1548         set_buffer_uptodate(bh);
1549         return ext4_handle_dirty_metadata(handle, NULL, bh);
1550 }
1551
1552 static int ext4_generic_write_end(struct file *file,
1553                                 struct address_space *mapping,
1554                                 loff_t pos, unsigned len, unsigned copied,
1555                                 struct page *page, void *fsdata)
1556 {
1557         int i_size_changed = 0;
1558         struct inode *inode = mapping->host;
1559         handle_t *handle = ext4_journal_current_handle();
1560
1561         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1562
1563         /*
1564          * No need to use i_size_read() here, the i_size
1565          * cannot change under us because we hold i_mutex.
1566          *
1567          * But it's important to update i_size while still holding page lock:
1568          * page writeout could otherwise come in and zero beyond i_size.
1569          */
1570         if (pos + copied > inode->i_size) {
1571                 i_size_write(inode, pos + copied);
1572                 i_size_changed = 1;
1573         }
1574
1575         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1576                 /* We need to mark inode dirty even if
1577                  * new_i_size is less that inode->i_size
1578                  * bu greater than i_disksize.(hint delalloc)
1579                  */
1580                 ext4_update_i_disksize(inode, (pos + copied));
1581                 i_size_changed = 1;
1582         }
1583         unlock_page(page);
1584         page_cache_release(page);
1585
1586         /*
1587          * Don't mark the inode dirty under page lock. First, it unnecessarily
1588          * makes the holding time of page lock longer. Second, it forces lock
1589          * ordering of page lock and transaction start for journaling
1590          * filesystems.
1591          */
1592         if (i_size_changed)
1593                 ext4_mark_inode_dirty(handle, inode);
1594
1595         return copied;
1596 }
1597
1598 /*
1599  * We need to pick up the new inode size which generic_commit_write gave us
1600  * `file' can be NULL - eg, when called from page_symlink().
1601  *
1602  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1603  * buffers are managed internally.
1604  */
1605 static int ext4_ordered_write_end(struct file *file,
1606                                 struct address_space *mapping,
1607                                 loff_t pos, unsigned len, unsigned copied,
1608                                 struct page *page, void *fsdata)
1609 {
1610         handle_t *handle = ext4_journal_current_handle();
1611         struct inode *inode = mapping->host;
1612         int ret = 0, ret2;
1613
1614         trace_ext4_ordered_write_end(inode, pos, len, copied);
1615         ret = ext4_jbd2_file_inode(handle, inode);
1616
1617         if (ret == 0) {
1618                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1619                                                         page, fsdata);
1620                 copied = ret2;
1621                 if (pos + len > inode->i_size)
1622                         /* if we have allocated more blocks and copied
1623                          * less. We will have blocks allocated outside
1624                          * inode->i_size. So truncate them
1625                          */
1626                         ext4_orphan_add(handle, inode);
1627                 if (ret2 < 0)
1628                         ret = ret2;
1629         }
1630         ret2 = ext4_journal_stop(handle);
1631         if (!ret)
1632                 ret = ret2;
1633
1634         if (pos + len > inode->i_size) {
1635                 vmtruncate(inode, inode->i_size);
1636                 /* 
1637                  * If vmtruncate failed early the inode might still be
1638                  * on the orphan list; we need to make sure the inode
1639                  * is removed from the orphan list in that case.
1640                  */
1641                 if (inode->i_nlink)
1642                         ext4_orphan_del(NULL, inode);
1643         }
1644
1645
1646         return ret ? ret : copied;
1647 }
1648
1649 static int ext4_writeback_write_end(struct file *file,
1650                                 struct address_space *mapping,
1651                                 loff_t pos, unsigned len, unsigned copied,
1652                                 struct page *page, void *fsdata)
1653 {
1654         handle_t *handle = ext4_journal_current_handle();
1655         struct inode *inode = mapping->host;
1656         int ret = 0, ret2;
1657
1658         trace_ext4_writeback_write_end(inode, pos, len, copied);
1659         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1660                                                         page, fsdata);
1661         copied = ret2;
1662         if (pos + len > inode->i_size)
1663                 /* if we have allocated more blocks and copied
1664                  * less. We will have blocks allocated outside
1665                  * inode->i_size. So truncate them
1666                  */
1667                 ext4_orphan_add(handle, inode);
1668
1669         if (ret2 < 0)
1670                 ret = ret2;
1671
1672         ret2 = ext4_journal_stop(handle);
1673         if (!ret)
1674                 ret = ret2;
1675
1676         if (pos + len > inode->i_size) {
1677                 vmtruncate(inode, inode->i_size);
1678                 /* 
1679                  * If vmtruncate failed early the inode might still be
1680                  * on the orphan list; we need to make sure the inode
1681                  * is removed from the orphan list in that case.
1682                  */
1683                 if (inode->i_nlink)
1684                         ext4_orphan_del(NULL, inode);
1685         }
1686
1687         return ret ? ret : copied;
1688 }
1689
1690 static int ext4_journalled_write_end(struct file *file,
1691                                 struct address_space *mapping,
1692                                 loff_t pos, unsigned len, unsigned copied,
1693                                 struct page *page, void *fsdata)
1694 {
1695         handle_t *handle = ext4_journal_current_handle();
1696         struct inode *inode = mapping->host;
1697         int ret = 0, ret2;
1698         int partial = 0;
1699         unsigned from, to;
1700         loff_t new_i_size;
1701
1702         trace_ext4_journalled_write_end(inode, pos, len, copied);
1703         from = pos & (PAGE_CACHE_SIZE - 1);
1704         to = from + len;
1705
1706         if (copied < len) {
1707                 if (!PageUptodate(page))
1708                         copied = 0;
1709                 page_zero_new_buffers(page, from+copied, to);
1710         }
1711
1712         ret = walk_page_buffers(handle, page_buffers(page), from,
1713                                 to, &partial, write_end_fn);
1714         if (!partial)
1715                 SetPageUptodate(page);
1716         new_i_size = pos + copied;
1717         if (new_i_size > inode->i_size)
1718                 i_size_write(inode, pos+copied);
1719         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1720         if (new_i_size > EXT4_I(inode)->i_disksize) {
1721                 ext4_update_i_disksize(inode, new_i_size);
1722                 ret2 = ext4_mark_inode_dirty(handle, inode);
1723                 if (!ret)
1724                         ret = ret2;
1725         }
1726
1727         unlock_page(page);
1728         page_cache_release(page);
1729         if (pos + len > inode->i_size)
1730                 /* if we have allocated more blocks and copied
1731                  * less. We will have blocks allocated outside
1732                  * inode->i_size. So truncate them
1733                  */
1734                 ext4_orphan_add(handle, inode);
1735
1736         ret2 = ext4_journal_stop(handle);
1737         if (!ret)
1738                 ret = ret2;
1739         if (pos + len > inode->i_size) {
1740                 vmtruncate(inode, inode->i_size);
1741                 /* 
1742                  * If vmtruncate failed early the inode might still be
1743                  * on the orphan list; we need to make sure the inode
1744                  * is removed from the orphan list in that case.
1745                  */
1746                 if (inode->i_nlink)
1747                         ext4_orphan_del(NULL, inode);
1748         }
1749
1750         return ret ? ret : copied;
1751 }
1752
1753 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1754 {
1755         int retries = 0;
1756         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1757         unsigned long md_needed, mdblocks, total = 0;
1758
1759         /*
1760          * recalculate the amount of metadata blocks to reserve
1761          * in order to allocate nrblocks
1762          * worse case is one extent per block
1763          */
1764 repeat:
1765         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1766         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1767         mdblocks = ext4_calc_metadata_amount(inode, total);
1768         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1769
1770         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1771         total = md_needed + nrblocks;
1772
1773         /*
1774          * Make quota reservation here to prevent quota overflow
1775          * later. Real quota accounting is done at pages writeout
1776          * time.
1777          */
1778         if (vfs_dq_reserve_block(inode, total)) {
1779                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1780                 return -EDQUOT;
1781         }
1782
1783         if (ext4_claim_free_blocks(sbi, total)) {
1784                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1785                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1786                         yield();
1787                         goto repeat;
1788                 }
1789                 vfs_dq_release_reservation_block(inode, total);
1790                 return -ENOSPC;
1791         }
1792         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1793         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1794
1795         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1796         return 0;       /* success */
1797 }
1798
1799 static void ext4_da_release_space(struct inode *inode, int to_free)
1800 {
1801         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1802         int total, mdb, mdb_free, release;
1803
1804         if (!to_free)
1805                 return;         /* Nothing to release, exit */
1806
1807         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1808
1809         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1810                 /*
1811                  * if there is no reserved blocks, but we try to free some
1812                  * then the counter is messed up somewhere.
1813                  * but since this function is called from invalidate
1814                  * page, it's harmless to return without any action
1815                  */
1816                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1817                             "blocks for inode %lu, but there is no reserved "
1818                             "data blocks\n", to_free, inode->i_ino);
1819                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1820                 return;
1821         }
1822
1823         /* recalculate the number of metablocks still need to be reserved */
1824         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1825         mdb = ext4_calc_metadata_amount(inode, total);
1826
1827         /* figure out how many metablocks to release */
1828         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1829         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1830
1831         release = to_free + mdb_free;
1832
1833         /* update fs dirty blocks counter for truncate case */
1834         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1835
1836         /* update per-inode reservations */
1837         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1838         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1839
1840         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1841         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1842         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1843
1844         vfs_dq_release_reservation_block(inode, release);
1845 }
1846
1847 static void ext4_da_page_release_reservation(struct page *page,
1848                                                 unsigned long offset)
1849 {
1850         int to_release = 0;
1851         struct buffer_head *head, *bh;
1852         unsigned int curr_off = 0;
1853
1854         head = page_buffers(page);
1855         bh = head;
1856         do {
1857                 unsigned int next_off = curr_off + bh->b_size;
1858
1859                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1860                         to_release++;
1861                         clear_buffer_delay(bh);
1862                 }
1863                 curr_off = next_off;
1864         } while ((bh = bh->b_this_page) != head);
1865         ext4_da_release_space(page->mapping->host, to_release);
1866 }
1867
1868 /*
1869  * Delayed allocation stuff
1870  */
1871
1872 struct mpage_da_data {
1873         struct inode *inode;
1874         sector_t b_blocknr;             /* start block number of extent */
1875         size_t b_size;                  /* size of extent */
1876         unsigned long b_state;          /* state of the extent */
1877         unsigned long first_page, next_page;    /* extent of pages */
1878         struct writeback_control *wbc;
1879         int io_done;
1880         int pages_written;
1881         int retval;
1882 };
1883
1884 /*
1885  * mpage_da_submit_io - walks through extent of pages and try to write
1886  * them with writepage() call back
1887  *
1888  * @mpd->inode: inode
1889  * @mpd->first_page: first page of the extent
1890  * @mpd->next_page: page after the last page of the extent
1891  *
1892  * By the time mpage_da_submit_io() is called we expect all blocks
1893  * to be allocated. this may be wrong if allocation failed.
1894  *
1895  * As pages are already locked by write_cache_pages(), we can't use it
1896  */
1897 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1898 {
1899         long pages_skipped;
1900         struct pagevec pvec;
1901         unsigned long index, end;
1902         int ret = 0, err, nr_pages, i;
1903         struct inode *inode = mpd->inode;
1904         struct address_space *mapping = inode->i_mapping;
1905
1906         BUG_ON(mpd->next_page <= mpd->first_page);
1907         /*
1908          * We need to start from the first_page to the next_page - 1
1909          * to make sure we also write the mapped dirty buffer_heads.
1910          * If we look at mpd->b_blocknr we would only be looking
1911          * at the currently mapped buffer_heads.
1912          */
1913         index = mpd->first_page;
1914         end = mpd->next_page - 1;
1915
1916         pagevec_init(&pvec, 0);
1917         while (index <= end) {
1918                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1919                 if (nr_pages == 0)
1920                         break;
1921                 for (i = 0; i < nr_pages; i++) {
1922                         struct page *page = pvec.pages[i];
1923
1924                         index = page->index;
1925                         if (index > end)
1926                                 break;
1927                         index++;
1928
1929                         BUG_ON(!PageLocked(page));
1930                         BUG_ON(PageWriteback(page));
1931
1932                         pages_skipped = mpd->wbc->pages_skipped;
1933                         err = mapping->a_ops->writepage(page, mpd->wbc);
1934                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1935                                 /*
1936                                  * have successfully written the page
1937                                  * without skipping the same
1938                                  */
1939                                 mpd->pages_written++;
1940                         /*
1941                          * In error case, we have to continue because
1942                          * remaining pages are still locked
1943                          * XXX: unlock and re-dirty them?
1944                          */
1945                         if (ret == 0)
1946                                 ret = err;
1947                 }
1948                 pagevec_release(&pvec);
1949         }
1950         return ret;
1951 }
1952
1953 /*
1954  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1955  *
1956  * @mpd->inode - inode to walk through
1957  * @exbh->b_blocknr - first block on a disk
1958  * @exbh->b_size - amount of space in bytes
1959  * @logical - first logical block to start assignment with
1960  *
1961  * the function goes through all passed space and put actual disk
1962  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1963  */
1964 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1965                                  struct buffer_head *exbh)
1966 {
1967         struct inode *inode = mpd->inode;
1968         struct address_space *mapping = inode->i_mapping;
1969         int blocks = exbh->b_size >> inode->i_blkbits;
1970         sector_t pblock = exbh->b_blocknr, cur_logical;
1971         struct buffer_head *head, *bh;
1972         pgoff_t index, end;
1973         struct pagevec pvec;
1974         int nr_pages, i;
1975
1976         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1977         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1978         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1979
1980         pagevec_init(&pvec, 0);
1981
1982         while (index <= end) {
1983                 /* XXX: optimize tail */
1984                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1985                 if (nr_pages == 0)
1986                         break;
1987                 for (i = 0; i < nr_pages; i++) {
1988                         struct page *page = pvec.pages[i];
1989
1990                         index = page->index;
1991                         if (index > end)
1992                                 break;
1993                         index++;
1994
1995                         BUG_ON(!PageLocked(page));
1996                         BUG_ON(PageWriteback(page));
1997                         BUG_ON(!page_has_buffers(page));
1998
1999                         bh = page_buffers(page);
2000                         head = bh;
2001
2002                         /* skip blocks out of the range */
2003                         do {
2004                                 if (cur_logical >= logical)
2005                                         break;
2006                                 cur_logical++;
2007                         } while ((bh = bh->b_this_page) != head);
2008
2009                         do {
2010                                 if (cur_logical >= logical + blocks)
2011                                         break;
2012
2013                                 if (buffer_delay(bh) ||
2014                                                 buffer_unwritten(bh)) {
2015
2016                                         BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2017
2018                                         if (buffer_delay(bh)) {
2019                                                 clear_buffer_delay(bh);
2020                                                 bh->b_blocknr = pblock;
2021                                         } else {
2022                                                 /*
2023                                                  * unwritten already should have
2024                                                  * blocknr assigned. Verify that
2025                                                  */
2026                                                 clear_buffer_unwritten(bh);
2027                                                 BUG_ON(bh->b_blocknr != pblock);
2028                                         }
2029
2030                                 } else if (buffer_mapped(bh))
2031                                         BUG_ON(bh->b_blocknr != pblock);
2032
2033                                 cur_logical++;
2034                                 pblock++;
2035                         } while ((bh = bh->b_this_page) != head);
2036                 }
2037                 pagevec_release(&pvec);
2038         }
2039 }
2040
2041
2042 /*
2043  * __unmap_underlying_blocks - just a helper function to unmap
2044  * set of blocks described by @bh
2045  */
2046 static inline void __unmap_underlying_blocks(struct inode *inode,
2047                                              struct buffer_head *bh)
2048 {
2049         struct block_device *bdev = inode->i_sb->s_bdev;
2050         int blocks, i;
2051
2052         blocks = bh->b_size >> inode->i_blkbits;
2053         for (i = 0; i < blocks; i++)
2054                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2055 }
2056
2057 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2058                                         sector_t logical, long blk_cnt)
2059 {
2060         int nr_pages, i;
2061         pgoff_t index, end;
2062         struct pagevec pvec;
2063         struct inode *inode = mpd->inode;
2064         struct address_space *mapping = inode->i_mapping;
2065
2066         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2067         end   = (logical + blk_cnt - 1) >>
2068                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2069         while (index <= end) {
2070                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2071                 if (nr_pages == 0)
2072                         break;
2073                 for (i = 0; i < nr_pages; i++) {
2074                         struct page *page = pvec.pages[i];
2075                         index = page->index;
2076                         if (index > end)
2077                                 break;
2078                         index++;
2079
2080                         BUG_ON(!PageLocked(page));
2081                         BUG_ON(PageWriteback(page));
2082                         block_invalidatepage(page, 0);
2083                         ClearPageUptodate(page);
2084                         unlock_page(page);
2085                 }
2086         }
2087         return;
2088 }
2089
2090 static void ext4_print_free_blocks(struct inode *inode)
2091 {
2092         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2093         printk(KERN_EMERG "Total free blocks count %lld\n",
2094                         ext4_count_free_blocks(inode->i_sb));
2095         printk(KERN_EMERG "Free/Dirty block details\n");
2096         printk(KERN_EMERG "free_blocks=%lld\n",
2097                         (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
2098         printk(KERN_EMERG "dirty_blocks=%lld\n",
2099                         (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2100         printk(KERN_EMERG "Block reservation details\n");
2101         printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
2102                         EXT4_I(inode)->i_reserved_data_blocks);
2103         printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
2104                         EXT4_I(inode)->i_reserved_meta_blocks);
2105         return;
2106 }
2107
2108 /*
2109  * mpage_da_map_blocks - go through given space
2110  *
2111  * @mpd - bh describing space
2112  *
2113  * The function skips space we know is already mapped to disk blocks.
2114  *
2115  */
2116 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2117 {
2118         int err, blks, get_blocks_flags;
2119         struct buffer_head new;
2120         sector_t next = mpd->b_blocknr;
2121         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2122         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2123         handle_t *handle = NULL;
2124
2125         /*
2126          * We consider only non-mapped and non-allocated blocks
2127          */
2128         if ((mpd->b_state  & (1 << BH_Mapped)) &&
2129                 !(mpd->b_state & (1 << BH_Delay)) &&
2130                 !(mpd->b_state & (1 << BH_Unwritten)))
2131                 return 0;
2132
2133         /*
2134          * If we didn't accumulate anything to write simply return
2135          */
2136         if (!mpd->b_size)
2137                 return 0;
2138
2139         handle = ext4_journal_current_handle();
2140         BUG_ON(!handle);
2141
2142         /*
2143          * Call ext4_get_blocks() to allocate any delayed allocation
2144          * blocks, or to convert an uninitialized extent to be
2145          * initialized (in the case where we have written into
2146          * one or more preallocated blocks).
2147          *
2148          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2149          * indicate that we are on the delayed allocation path.  This
2150          * affects functions in many different parts of the allocation
2151          * call path.  This flag exists primarily because we don't
2152          * want to change *many* call functions, so ext4_get_blocks()
2153          * will set the magic i_delalloc_reserved_flag once the
2154          * inode's allocation semaphore is taken.
2155          *
2156          * If the blocks in questions were delalloc blocks, set
2157          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2158          * variables are updated after the blocks have been allocated.
2159          */
2160         new.b_state = 0;
2161         get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2162                             EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2163         if (mpd->b_state & (1 << BH_Delay))
2164                 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2165         blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2166                                &new, get_blocks_flags);
2167         if (blks < 0) {
2168                 err = blks;
2169                 /*
2170                  * If get block returns with error we simply
2171                  * return. Later writepage will redirty the page and
2172                  * writepages will find the dirty page again
2173                  */
2174                 if (err == -EAGAIN)
2175                         return 0;
2176
2177                 if (err == -ENOSPC &&
2178                     ext4_count_free_blocks(mpd->inode->i_sb)) {
2179                         mpd->retval = err;
2180                         return 0;
2181                 }
2182
2183                 /*
2184                  * get block failure will cause us to loop in
2185                  * writepages, because a_ops->writepage won't be able
2186                  * to make progress. The page will be redirtied by
2187                  * writepage and writepages will again try to write
2188                  * the same.
2189                  */
2190                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2191                                   "at logical offset %llu with max blocks "
2192                                   "%zd with error %d\n",
2193                                   __func__, mpd->inode->i_ino,
2194                                   (unsigned long long)next,
2195                                   mpd->b_size >> mpd->inode->i_blkbits, err);
2196                 printk(KERN_EMERG "This should not happen.!! "
2197                                         "Data will be lost\n");
2198                 if (err == -ENOSPC) {
2199                         ext4_print_free_blocks(mpd->inode);
2200                 }
2201                 /* invalidate all the pages */
2202                 ext4_da_block_invalidatepages(mpd, next,
2203                                 mpd->b_size >> mpd->inode->i_blkbits);
2204                 return err;
2205         }
2206         BUG_ON(blks == 0);
2207
2208         new.b_size = (blks << mpd->inode->i_blkbits);
2209
2210         if (buffer_new(&new))
2211                 __unmap_underlying_blocks(mpd->inode, &new);
2212
2213         /*
2214          * If blocks are delayed marked, we need to
2215          * put actual blocknr and drop delayed bit
2216          */
2217         if ((mpd->b_state & (1 << BH_Delay)) ||
2218             (mpd->b_state & (1 << BH_Unwritten)))
2219                 mpage_put_bnr_to_bhs(mpd, next, &new);
2220
2221         if (ext4_should_order_data(mpd->inode)) {
2222                 err = ext4_jbd2_file_inode(handle, mpd->inode);
2223                 if (err)
2224                         return err;
2225         }
2226
2227         /*
2228          * Update on-disk size along with block allocation.
2229          */
2230         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2231         if (disksize > i_size_read(mpd->inode))
2232                 disksize = i_size_read(mpd->inode);
2233         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2234                 ext4_update_i_disksize(mpd->inode, disksize);
2235                 return ext4_mark_inode_dirty(handle, mpd->inode);
2236         }
2237
2238         return 0;
2239 }
2240
2241 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2242                 (1 << BH_Delay) | (1 << BH_Unwritten))
2243
2244 /*
2245  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2246  *
2247  * @mpd->lbh - extent of blocks
2248  * @logical - logical number of the block in the file
2249  * @bh - bh of the block (used to access block's state)
2250  *
2251  * the function is used to collect contig. blocks in same state
2252  */
2253 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2254                                    sector_t logical, size_t b_size,
2255                                    unsigned long b_state)
2256 {
2257         sector_t next;
2258         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2259
2260         /* check if thereserved journal credits might overflow */
2261         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2262                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2263                         /*
2264                          * With non-extent format we are limited by the journal
2265                          * credit available.  Total credit needed to insert
2266                          * nrblocks contiguous blocks is dependent on the
2267                          * nrblocks.  So limit nrblocks.
2268                          */
2269                         goto flush_it;
2270                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2271                                 EXT4_MAX_TRANS_DATA) {
2272                         /*
2273                          * Adding the new buffer_head would make it cross the
2274                          * allowed limit for which we have journal credit
2275                          * reserved. So limit the new bh->b_size
2276                          */
2277                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2278                                                 mpd->inode->i_blkbits;
2279                         /* we will do mpage_da_submit_io in the next loop */
2280                 }
2281         }
2282         /*
2283          * First block in the extent
2284          */
2285         if (mpd->b_size == 0) {
2286                 mpd->b_blocknr = logical;
2287                 mpd->b_size = b_size;
2288                 mpd->b_state = b_state & BH_FLAGS;
2289                 return;
2290         }
2291
2292         next = mpd->b_blocknr + nrblocks;
2293         /*
2294          * Can we merge the block to our big extent?
2295          */
2296         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2297                 mpd->b_size += b_size;
2298                 return;
2299         }
2300
2301 flush_it:
2302         /*
2303          * We couldn't merge the block to our extent, so we
2304          * need to flush current  extent and start new one
2305          */
2306         if (mpage_da_map_blocks(mpd) == 0)
2307                 mpage_da_submit_io(mpd);
2308         mpd->io_done = 1;
2309         return;
2310 }
2311
2312 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2313 {
2314         /*
2315          * unmapped buffer is possible for holes.
2316          * delay buffer is possible with delayed allocation.
2317          * We also need to consider unwritten buffer as unmapped.
2318          */
2319         return (!buffer_mapped(bh) || buffer_delay(bh) ||
2320                                 buffer_unwritten(bh)) && buffer_dirty(bh);
2321 }
2322
2323 /*
2324  * __mpage_da_writepage - finds extent of pages and blocks
2325  *
2326  * @page: page to consider
2327  * @wbc: not used, we just follow rules
2328  * @data: context
2329  *
2330  * The function finds extents of pages and scan them for all blocks.
2331  */
2332 static int __mpage_da_writepage(struct page *page,
2333                                 struct writeback_control *wbc, void *data)
2334 {
2335         struct mpage_da_data *mpd = data;
2336         struct inode *inode = mpd->inode;
2337         struct buffer_head *bh, *head;
2338         sector_t logical;
2339
2340         if (mpd->io_done) {
2341                 /*
2342                  * Rest of the page in the page_vec
2343                  * redirty then and skip then. We will
2344                  * try to to write them again after
2345                  * starting a new transaction
2346                  */
2347                 redirty_page_for_writepage(wbc, page);
2348                 unlock_page(page);
2349                 return MPAGE_DA_EXTENT_TAIL;
2350         }
2351         /*
2352          * Can we merge this page to current extent?
2353          */
2354         if (mpd->next_page != page->index) {
2355                 /*
2356                  * Nope, we can't. So, we map non-allocated blocks
2357                  * and start IO on them using writepage()
2358                  */
2359                 if (mpd->next_page != mpd->first_page) {
2360                         if (mpage_da_map_blocks(mpd) == 0)
2361                                 mpage_da_submit_io(mpd);
2362                         /*
2363                          * skip rest of the page in the page_vec
2364                          */
2365                         mpd->io_done = 1;
2366                         redirty_page_for_writepage(wbc, page);
2367                         unlock_page(page);
2368                         return MPAGE_DA_EXTENT_TAIL;
2369                 }
2370
2371                 /*
2372                  * Start next extent of pages ...
2373                  */
2374                 mpd->first_page = page->index;
2375
2376                 /*
2377                  * ... and blocks
2378                  */
2379                 mpd->b_size = 0;
2380                 mpd->b_state = 0;
2381                 mpd->b_blocknr = 0;
2382         }
2383
2384         mpd->next_page = page->index + 1;
2385         logical = (sector_t) page->index <<
2386                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2387
2388         if (!page_has_buffers(page)) {
2389                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2390                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2391                 if (mpd->io_done)
2392                         return MPAGE_DA_EXTENT_TAIL;
2393         } else {
2394                 /*
2395                  * Page with regular buffer heads, just add all dirty ones
2396                  */
2397                 head = page_buffers(page);
2398                 bh = head;
2399                 do {
2400                         BUG_ON(buffer_locked(bh));
2401                         /*
2402                          * We need to try to allocate
2403                          * unmapped blocks in the same page.
2404                          * Otherwise we won't make progress
2405                          * with the page in ext4_da_writepage
2406                          */
2407                         if (ext4_bh_unmapped_or_delay(NULL, bh)) {
2408                                 mpage_add_bh_to_extent(mpd, logical,
2409                                                        bh->b_size,
2410                                                        bh->b_state);
2411                                 if (mpd->io_done)
2412                                         return MPAGE_DA_EXTENT_TAIL;
2413                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2414                                 /*
2415                                  * mapped dirty buffer. We need to update
2416                                  * the b_state because we look at
2417                                  * b_state in mpage_da_map_blocks. We don't
2418                                  * update b_size because if we find an
2419                                  * unmapped buffer_head later we need to
2420                                  * use the b_state flag of that buffer_head.
2421                                  */
2422                                 if (mpd->b_size == 0)
2423                                         mpd->b_state = bh->b_state & BH_FLAGS;
2424                         }
2425                         logical++;
2426                 } while ((bh = bh->b_this_page) != head);
2427         }
2428
2429         return 0;
2430 }
2431
2432 /*
2433  * This is a special get_blocks_t callback which is used by
2434  * ext4_da_write_begin().  It will either return mapped block or
2435  * reserve space for a single block.
2436  *
2437  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2438  * We also have b_blocknr = -1 and b_bdev initialized properly
2439  *
2440  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2441  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2442  * initialized properly.
2443  */
2444 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2445                                   struct buffer_head *bh_result, int create)
2446 {
2447         int ret = 0;
2448         sector_t invalid_block = ~((sector_t) 0xffff);
2449
2450         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2451                 invalid_block = ~0;
2452
2453         BUG_ON(create == 0);
2454         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2455
2456         /*
2457          * first, we need to know whether the block is allocated already
2458          * preallocated blocks are unmapped but should treated
2459          * the same as allocated blocks.
2460          */
2461         ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2462         if ((ret == 0) && !buffer_delay(bh_result)) {
2463                 /* the block isn't (pre)allocated yet, let's reserve space */
2464                 /*
2465                  * XXX: __block_prepare_write() unmaps passed block,
2466                  * is it OK?
2467                  */
2468                 ret = ext4_da_reserve_space(inode, 1);
2469                 if (ret)
2470                         /* not enough space to reserve */
2471                         return ret;
2472
2473                 map_bh(bh_result, inode->i_sb, invalid_block);
2474                 set_buffer_new(bh_result);
2475                 set_buffer_delay(bh_result);
2476         } else if (ret > 0) {
2477                 bh_result->b_size = (ret << inode->i_blkbits);
2478                 if (buffer_unwritten(bh_result)) {
2479                         /* A delayed write to unwritten bh should
2480                          * be marked new and mapped.  Mapped ensures
2481                          * that we don't do get_block multiple times
2482                          * when we write to the same offset and new
2483                          * ensures that we do proper zero out for
2484                          * partial write.
2485                          */
2486                         set_buffer_new(bh_result);
2487                         set_buffer_mapped(bh_result);
2488                 }
2489                 ret = 0;
2490         }
2491
2492         return ret;
2493 }
2494
2495 /*
2496  * This function is used as a standard get_block_t calback function
2497  * when there is no desire to allocate any blocks.  It is used as a
2498  * callback function for block_prepare_write(), nobh_writepage(), and
2499  * block_write_full_page().  These functions should only try to map a
2500  * single block at a time.
2501  *
2502  * Since this function doesn't do block allocations even if the caller
2503  * requests it by passing in create=1, it is critically important that
2504  * any caller checks to make sure that any buffer heads are returned
2505  * by this function are either all already mapped or marked for
2506  * delayed allocation before calling nobh_writepage() or
2507  * block_write_full_page().  Otherwise, b_blocknr could be left
2508  * unitialized, and the page write functions will be taken by
2509  * surprise.
2510  */
2511 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2512                                    struct buffer_head *bh_result, int create)
2513 {
2514         int ret = 0;
2515         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2516
2517         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2518
2519         /*
2520          * we don't want to do block allocation in writepage
2521          * so call get_block_wrap with create = 0
2522          */
2523         ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2524         BUG_ON(create && ret == 0);
2525         if (ret > 0) {
2526                 bh_result->b_size = (ret << inode->i_blkbits);
2527                 ret = 0;
2528         }
2529         return ret;
2530 }
2531
2532 /*
2533  * This function can get called via...
2534  *   - ext4_da_writepages after taking page lock (have journal handle)
2535  *   - journal_submit_inode_data_buffers (no journal handle)
2536  *   - shrink_page_list via pdflush (no journal handle)
2537  *   - grab_page_cache when doing write_begin (have journal handle)
2538  */
2539 static int ext4_da_writepage(struct page *page,
2540                                 struct writeback_control *wbc)
2541 {
2542         int ret = 0;
2543         loff_t size;
2544         unsigned int len;
2545         struct buffer_head *page_bufs;
2546         struct inode *inode = page->mapping->host;
2547
2548         trace_ext4_da_writepage(inode, page);
2549         size = i_size_read(inode);
2550         if (page->index == size >> PAGE_CACHE_SHIFT)
2551                 len = size & ~PAGE_CACHE_MASK;
2552         else
2553                 len = PAGE_CACHE_SIZE;
2554
2555         if (page_has_buffers(page)) {
2556                 page_bufs = page_buffers(page);
2557                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2558                                         ext4_bh_unmapped_or_delay)) {
2559                         /*
2560                          * We don't want to do  block allocation
2561                          * So redirty the page and return
2562                          * We may reach here when we do a journal commit
2563                          * via journal_submit_inode_data_buffers.
2564                          * If we don't have mapping block we just ignore
2565                          * them. We can also reach here via shrink_page_list
2566                          */
2567                         redirty_page_for_writepage(wbc, page);
2568                         unlock_page(page);
2569                         return 0;
2570                 }
2571         } else {
2572                 /*
2573                  * The test for page_has_buffers() is subtle:
2574                  * We know the page is dirty but it lost buffers. That means
2575                  * that at some moment in time after write_begin()/write_end()
2576                  * has been called all buffers have been clean and thus they
2577                  * must have been written at least once. So they are all
2578                  * mapped and we can happily proceed with mapping them
2579                  * and writing the page.
2580                  *
2581                  * Try to initialize the buffer_heads and check whether
2582                  * all are mapped and non delay. We don't want to
2583                  * do block allocation here.
2584                  */
2585                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2586                                           noalloc_get_block_write);
2587                 if (!ret) {
2588                         page_bufs = page_buffers(page);
2589                         /* check whether all are mapped and non delay */
2590                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2591                                                 ext4_bh_unmapped_or_delay)) {
2592                                 redirty_page_for_writepage(wbc, page);
2593                                 unlock_page(page);
2594                                 return 0;
2595                         }
2596                 } else {
2597                         /*
2598                          * We can't do block allocation here
2599                          * so just redity the page and unlock
2600                          * and return
2601                          */
2602                         redirty_page_for_writepage(wbc, page);
2603                         unlock_page(page);
2604                         return 0;
2605                 }
2606                 /* now mark the buffer_heads as dirty and uptodate */
2607                 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2608         }
2609
2610         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2611                 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2612         else
2613                 ret = block_write_full_page(page, noalloc_get_block_write,
2614                                             wbc);
2615
2616         return ret;
2617 }
2618
2619 /*
2620  * This is called via ext4_da_writepages() to
2621  * calulate the total number of credits to reserve to fit
2622  * a single extent allocation into a single transaction,
2623  * ext4_da_writpeages() will loop calling this before
2624  * the block allocation.
2625  */
2626
2627 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2628 {
2629         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2630
2631         /*
2632          * With non-extent format the journal credit needed to
2633          * insert nrblocks contiguous block is dependent on
2634          * number of contiguous block. So we will limit
2635          * number of contiguous block to a sane value
2636          */
2637         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2638             (max_blocks > EXT4_MAX_TRANS_DATA))
2639                 max_blocks = EXT4_MAX_TRANS_DATA;
2640
2641         return ext4_chunk_trans_blocks(inode, max_blocks);
2642 }
2643
2644 static int ext4_da_writepages(struct address_space *mapping,
2645                               struct writeback_control *wbc)
2646 {
2647         pgoff_t index;
2648         int range_whole = 0;
2649         handle_t *handle = NULL;
2650         struct mpage_da_data mpd;
2651         struct inode *inode = mapping->host;
2652         int no_nrwrite_index_update;
2653         int pages_written = 0;
2654         long pages_skipped;
2655         int range_cyclic, cycled = 1, io_done = 0;
2656         int needed_blocks, ret = 0, nr_to_writebump = 0;
2657         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2658
2659         trace_ext4_da_writepages(inode, wbc);
2660
2661         /*
2662          * No pages to write? This is mainly a kludge to avoid starting
2663          * a transaction for special inodes like journal inode on last iput()
2664          * because that could violate lock ordering on umount
2665          */
2666         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2667                 return 0;
2668
2669         /*
2670          * If the filesystem has aborted, it is read-only, so return
2671          * right away instead of dumping stack traces later on that
2672          * will obscure the real source of the problem.  We test
2673          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2674          * the latter could be true if the filesystem is mounted
2675          * read-only, and in that case, ext4_da_writepages should
2676          * *never* be called, so if that ever happens, we would want
2677          * the stack trace.
2678          */
2679         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2680                 return -EROFS;
2681
2682         /*
2683          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2684          * This make sure small files blocks are allocated in
2685          * single attempt. This ensure that small files
2686          * get less fragmented.
2687          */
2688         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2689                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2690                 wbc->nr_to_write = sbi->s_mb_stream_request;
2691         }
2692         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2693                 range_whole = 1;
2694
2695         range_cyclic = wbc->range_cyclic;
2696         if (wbc->range_cyclic) {
2697                 index = mapping->writeback_index;
2698                 if (index)
2699                         cycled = 0;
2700                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2701                 wbc->range_end  = LLONG_MAX;
2702                 wbc->range_cyclic = 0;
2703         } else
2704                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2705
2706         mpd.wbc = wbc;
2707         mpd.inode = mapping->host;
2708
2709         /*
2710          * we don't want write_cache_pages to update
2711          * nr_to_write and writeback_index
2712          */
2713         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2714         wbc->no_nrwrite_index_update = 1;
2715         pages_skipped = wbc->pages_skipped;
2716
2717 retry:
2718         while (!ret && wbc->nr_to_write > 0) {
2719
2720                 /*
2721                  * we  insert one extent at a time. So we need
2722                  * credit needed for single extent allocation.
2723                  * journalled mode is currently not supported
2724                  * by delalloc
2725                  */
2726                 BUG_ON(ext4_should_journal_data(inode));
2727                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2728
2729                 /* start a new transaction*/
2730                 handle = ext4_journal_start(inode, needed_blocks);
2731                 if (IS_ERR(handle)) {
2732                         ret = PTR_ERR(handle);
2733                         printk(KERN_CRIT "%s: jbd2_start: "
2734                                "%ld pages, ino %lu; err %d\n", __func__,
2735                                 wbc->nr_to_write, inode->i_ino, ret);
2736                         dump_stack();
2737                         goto out_writepages;
2738                 }
2739
2740                 /*
2741                  * Now call __mpage_da_writepage to find the next
2742                  * contiguous region of logical blocks that need
2743                  * blocks to be allocated by ext4.  We don't actually
2744                  * submit the blocks for I/O here, even though
2745                  * write_cache_pages thinks it will, and will set the
2746                  * pages as clean for write before calling
2747                  * __mpage_da_writepage().
2748                  */
2749                 mpd.b_size = 0;
2750                 mpd.b_state = 0;
2751                 mpd.b_blocknr = 0;
2752                 mpd.first_page = 0;
2753                 mpd.next_page = 0;
2754                 mpd.io_done = 0;
2755                 mpd.pages_written = 0;
2756                 mpd.retval = 0;
2757                 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2758                                         &mpd);
2759                 /*
2760                  * If we have a contigous extent of pages and we
2761                  * haven't done the I/O yet, map the blocks and submit
2762                  * them for I/O.
2763                  */
2764                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2765                         if (mpage_da_map_blocks(&mpd) == 0)
2766                                 mpage_da_submit_io(&mpd);
2767                         mpd.io_done = 1;
2768                         ret = MPAGE_DA_EXTENT_TAIL;
2769                 }
2770                 wbc->nr_to_write -= mpd.pages_written;
2771
2772                 ext4_journal_stop(handle);
2773
2774                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2775                         /* commit the transaction which would
2776                          * free blocks released in the transaction
2777                          * and try again
2778                          */
2779                         jbd2_journal_force_commit_nested(sbi->s_journal);
2780                         wbc->pages_skipped = pages_skipped;
2781                         ret = 0;
2782                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2783                         /*
2784                          * got one extent now try with
2785                          * rest of the pages
2786                          */
2787                         pages_written += mpd.pages_written;
2788                         wbc->pages_skipped = pages_skipped;
2789                         ret = 0;
2790                         io_done = 1;
2791                 } else if (wbc->nr_to_write)
2792                         /*
2793                          * There is no more writeout needed
2794                          * or we requested for a noblocking writeout
2795                          * and we found the device congested
2796                          */
2797                         break;
2798         }
2799         if (!io_done && !cycled) {
2800                 cycled = 1;
2801                 index = 0;
2802                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2803                 wbc->range_end  = mapping->writeback_index - 1;
2804                 goto retry;
2805         }
2806         if (pages_skipped != wbc->pages_skipped)
2807                 printk(KERN_EMERG "This should not happen leaving %s "
2808                                 "with nr_to_write = %ld ret = %d\n",
2809                                 __func__, wbc->nr_to_write, ret);
2810
2811         /* Update index */
2812         index += pages_written;
2813         wbc->range_cyclic = range_cyclic;
2814         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2815                 /*
2816                  * set the writeback_index so that range_cyclic
2817                  * mode will write it back later
2818                  */
2819                 mapping->writeback_index = index;
2820
2821 out_writepages:
2822         if (!no_nrwrite_index_update)
2823                 wbc->no_nrwrite_index_update = 0;
2824         wbc->nr_to_write -= nr_to_writebump;
2825         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2826         return ret;
2827 }
2828
2829 #define FALL_BACK_TO_NONDELALLOC 1
2830 static int ext4_nonda_switch(struct super_block *sb)
2831 {
2832         s64 free_blocks, dirty_blocks;
2833         struct ext4_sb_info *sbi = EXT4_SB(sb);
2834
2835         /*
2836          * switch to non delalloc mode if we are running low
2837          * on free block. The free block accounting via percpu
2838          * counters can get slightly wrong with percpu_counter_batch getting
2839          * accumulated on each CPU without updating global counters
2840          * Delalloc need an accurate free block accounting. So switch
2841          * to non delalloc when we are near to error range.
2842          */
2843         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2844         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2845         if (2 * free_blocks < 3 * dirty_blocks ||
2846                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2847                 /*
2848                  * free block count is less that 150% of dirty blocks
2849                  * or free blocks is less that watermark
2850                  */
2851                 return 1;
2852         }
2853         return 0;
2854 }
2855
2856 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2857                                 loff_t pos, unsigned len, unsigned flags,
2858                                 struct page **pagep, void **fsdata)
2859 {
2860         int ret, retries = 0;
2861         struct page *page;
2862         pgoff_t index;
2863         unsigned from, to;
2864         struct inode *inode = mapping->host;
2865         handle_t *handle;
2866
2867         index = pos >> PAGE_CACHE_SHIFT;
2868         from = pos & (PAGE_CACHE_SIZE - 1);
2869         to = from + len;
2870
2871         if (ext4_nonda_switch(inode->i_sb)) {
2872                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2873                 return ext4_write_begin(file, mapping, pos,
2874                                         len, flags, pagep, fsdata);
2875         }
2876         *fsdata = (void *)0;
2877         trace_ext4_da_write_begin(inode, pos, len, flags);
2878 retry:
2879         /*
2880          * With delayed allocation, we don't log the i_disksize update
2881          * if there is delayed block allocation. But we still need
2882          * to journalling the i_disksize update if writes to the end
2883          * of file which has an already mapped buffer.
2884          */
2885         handle = ext4_journal_start(inode, 1);
2886         if (IS_ERR(handle)) {
2887                 ret = PTR_ERR(handle);
2888                 goto out;
2889         }
2890         /* We cannot recurse into the filesystem as the transaction is already
2891          * started */
2892         flags |= AOP_FLAG_NOFS;
2893
2894         page = grab_cache_page_write_begin(mapping, index, flags);
2895         if (!page) {
2896                 ext4_journal_stop(handle);
2897                 ret = -ENOMEM;
2898                 goto out;
2899         }
2900         *pagep = page;
2901
2902         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2903                                 ext4_da_get_block_prep);
2904         if (ret < 0) {
2905                 unlock_page(page);
2906                 ext4_journal_stop(handle);
2907                 page_cache_release(page);
2908                 /*
2909                  * block_write_begin may have instantiated a few blocks
2910                  * outside i_size.  Trim these off again. Don't need
2911                  * i_size_read because we hold i_mutex.
2912                  */
2913                 if (pos + len > inode->i_size)
2914                         vmtruncate(inode, inode->i_size);
2915         }
2916
2917         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2918                 goto retry;
2919 out:
2920         return ret;
2921 }
2922
2923 /*
2924  * Check if we should update i_disksize
2925  * when write to the end of file but not require block allocation
2926  */
2927 static int ext4_da_should_update_i_disksize(struct page *page,
2928                                          unsigned long offset)
2929 {
2930         struct buffer_head *bh;
2931         struct inode *inode = page->mapping->host;
2932         unsigned int idx;
2933         int i;
2934
2935         bh = page_buffers(page);
2936         idx = offset >> inode->i_blkbits;
2937
2938         for (i = 0; i < idx; i++)
2939                 bh = bh->b_this_page;
2940
2941         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2942                 return 0;
2943         return 1;
2944 }
2945
2946 static int ext4_da_write_end(struct file *file,
2947                                 struct address_space *mapping,
2948                                 loff_t pos, unsigned len, unsigned copied,
2949                                 struct page *page, void *fsdata)
2950 {
2951         struct inode *inode = mapping->host;
2952         int ret = 0, ret2;
2953         handle_t *handle = ext4_journal_current_handle();
2954         loff_t new_i_size;
2955         unsigned long start, end;
2956         int write_mode = (int)(unsigned long)fsdata;
2957
2958         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2959                 if (ext4_should_order_data(inode)) {
2960                         return ext4_ordered_write_end(file, mapping, pos,
2961                                         len, copied, page, fsdata);
2962                 } else if (ext4_should_writeback_data(inode)) {
2963                         return ext4_writeback_write_end(file, mapping, pos,
2964                                         len, copied, page, fsdata);
2965                 } else {
2966                         BUG();
2967                 }
2968         }
2969
2970         trace_ext4_da_write_end(inode, pos, len, copied);
2971         start = pos & (PAGE_CACHE_SIZE - 1);
2972         end = start + copied - 1;
2973
2974         /*
2975          * generic_write_end() will run mark_inode_dirty() if i_size
2976          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2977          * into that.
2978          */
2979
2980         new_i_size = pos + copied;
2981         if (new_i_size > EXT4_I(inode)->i_disksize) {
2982                 if (ext4_da_should_update_i_disksize(page, end)) {
2983                         down_write(&EXT4_I(inode)->i_data_sem);
2984                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2985                                 /*
2986                                  * Updating i_disksize when extending file
2987                                  * without needing block allocation
2988                                  */
2989                                 if (ext4_should_order_data(inode))
2990                                         ret = ext4_jbd2_file_inode(handle,
2991                                                                    inode);
2992
2993                                 EXT4_I(inode)->i_disksize = new_i_size;
2994                         }
2995                         up_write(&EXT4_I(inode)->i_data_sem);
2996                         /* We need to mark inode dirty even if
2997                          * new_i_size is less that inode->i_size
2998                          * bu greater than i_disksize.(hint delalloc)
2999                          */
3000                         ext4_mark_inode_dirty(handle, inode);
3001                 }
3002         }
3003         ret2 = generic_write_end(file, mapping, pos, len, copied,
3004                                                         page, fsdata);
3005         copied = ret2;
3006         if (ret2 < 0)
3007                 ret = ret2;
3008         ret2 = ext4_journal_stop(handle);
3009         if (!ret)
3010                 ret = ret2;
3011
3012         return ret ? ret : copied;
3013 }
3014
3015 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3016 {
3017         /*
3018          * Drop reserved blocks
3019          */
3020         BUG_ON(!PageLocked(page));
3021         if (!page_has_buffers(page))
3022                 goto out;
3023
3024         ext4_da_page_release_reservation(page, offset);
3025
3026 out:
3027         ext4_invalidatepage(page, offset);
3028
3029         return;
3030 }
3031
3032 /*
3033  * Force all delayed allocation blocks to be allocated for a given inode.
3034  */
3035 int ext4_alloc_da_blocks(struct inode *inode)
3036 {
3037         if (!EXT4_I(inode)->i_reserved_data_blocks &&
3038             !EXT4_I(inode)->i_reserved_meta_blocks)
3039                 return 0;
3040
3041         /*
3042          * We do something simple for now.  The filemap_flush() will
3043          * also start triggering a write of the data blocks, which is
3044          * not strictly speaking necessary (and for users of
3045          * laptop_mode, not even desirable).  However, to do otherwise
3046          * would require replicating code paths in:
3047          * 
3048          * ext4_da_writepages() ->
3049          *    write_cache_pages() ---> (via passed in callback function)
3050          *        __mpage_da_writepage() -->
3051          *           mpage_add_bh_to_extent()
3052          *           mpage_da_map_blocks()
3053          *
3054          * The problem is that write_cache_pages(), located in
3055          * mm/page-writeback.c, marks pages clean in preparation for
3056          * doing I/O, which is not desirable if we're not planning on
3057          * doing I/O at all.
3058          *
3059          * We could call write_cache_pages(), and then redirty all of
3060          * the pages by calling redirty_page_for_writeback() but that
3061          * would be ugly in the extreme.  So instead we would need to
3062          * replicate parts of the code in the above functions,
3063          * simplifying them becuase we wouldn't actually intend to
3064          * write out the pages, but rather only collect contiguous
3065          * logical block extents, call the multi-block allocator, and
3066          * then update the buffer heads with the block allocations.
3067          * 
3068          * For now, though, we'll cheat by calling filemap_flush(),
3069          * which will map the blocks, and start the I/O, but not
3070          * actually wait for the I/O to complete.
3071          */
3072         return filemap_flush(inode->i_mapping);
3073 }
3074
3075 /*
3076  * bmap() is special.  It gets used by applications such as lilo and by
3077  * the swapper to find the on-disk block of a specific piece of data.
3078  *
3079  * Naturally, this is dangerous if the block concerned is still in the
3080  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3081  * filesystem and enables swap, then they may get a nasty shock when the
3082  * data getting swapped to that swapfile suddenly gets overwritten by
3083  * the original zero's written out previously to the journal and
3084  * awaiting writeback in the kernel's buffer cache.
3085  *
3086  * So, if we see any bmap calls here on a modified, data-journaled file,
3087  * take extra steps to flush any blocks which might be in the cache.
3088  */
3089 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3090 {
3091         struct inode *inode = mapping->host;
3092         journal_t *journal;
3093         int err;
3094
3095         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3096                         test_opt(inode->i_sb, DELALLOC)) {
3097                 /*
3098                  * With delalloc we want to sync the file
3099                  * so that we can make sure we allocate
3100                  * blocks for file
3101                  */
3102                 filemap_write_and_wait(mapping);
3103         }
3104
3105         if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3106                 /*
3107                  * This is a REALLY heavyweight approach, but the use of
3108                  * bmap on dirty files is expected to be extremely rare:
3109                  * only if we run lilo or swapon on a freshly made file
3110                  * do we expect this to happen.
3111                  *
3112                  * (bmap requires CAP_SYS_RAWIO so this does not
3113                  * represent an unprivileged user DOS attack --- we'd be
3114                  * in trouble if mortal users could trigger this path at
3115                  * will.)
3116                  *
3117                  * NB. EXT4_STATE_JDATA is not set on files other than
3118                  * regular files.  If somebody wants to bmap a directory
3119                  * or symlink and gets confused because the buffer
3120                  * hasn't yet been flushed to disk, they deserve
3121                  * everything they get.
3122                  */
3123
3124                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3125                 journal = EXT4_JOURNAL(inode);
3126                 jbd2_journal_lock_updates(journal);
3127                 err = jbd2_journal_flush(journal);
3128                 jbd2_journal_unlock_updates(journal);
3129
3130                 if (err)
3131                         return 0;
3132         }
3133
3134         return generic_block_bmap(mapping, block, ext4_get_block);
3135 }
3136
3137 static int bget_one(handle_t *handle, struct buffer_head *bh)
3138 {
3139         get_bh(bh);
3140         return 0;
3141 }
3142
3143 static int bput_one(handle_t *handle, struct buffer_head *bh)
3144 {
3145         put_bh(bh);
3146         return 0;
3147 }
3148
3149 /*
3150  * Note that we don't need to start a transaction unless we're journaling data
3151  * because we should have holes filled from ext4_page_mkwrite(). We even don't
3152  * need to file the inode to the transaction's list in ordered mode because if
3153  * we are writing back data added by write(), the inode is already there and if
3154  * we are writing back data modified via mmap(), noone guarantees in which
3155  * transaction the data will hit the disk. In case we are journaling data, we
3156  * cannot start transaction directly because transaction start ranks above page
3157  * lock so we have to do some magic.
3158  *
3159  * In all journaling modes block_write_full_page() will start the I/O.
3160  *
3161  * Problem:
3162  *
3163  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
3164  *              ext4_writepage()
3165  *
3166  * Similar for:
3167  *
3168  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
3169  *
3170  * Same applies to ext4_get_block().  We will deadlock on various things like
3171  * lock_journal and i_data_sem
3172  *
3173  * Setting PF_MEMALLOC here doesn't work - too many internal memory
3174  * allocations fail.
3175  *
3176  * 16May01: If we're reentered then journal_current_handle() will be
3177  *          non-zero. We simply *return*.
3178  *
3179  * 1 July 2001: @@@ FIXME:
3180  *   In journalled data mode, a data buffer may be metadata against the
3181  *   current transaction.  But the same file is part of a shared mapping
3182  *   and someone does a writepage() on it.
3183  *
3184  *   We will move the buffer onto the async_data list, but *after* it has
3185  *   been dirtied. So there's a small window where we have dirty data on
3186  *   BJ_Metadata.
3187  *
3188  *   Note that this only applies to the last partial page in the file.  The
3189  *   bit which block_write_full_page() uses prepare/commit for.  (That's
3190  *   broken code anyway: it's wrong for msync()).
3191  *
3192  *   It's a rare case: affects the final partial page, for journalled data
3193  *   where the file is subject to bith write() and writepage() in the same
3194  *   transction.  To fix it we'll need a custom block_write_full_page().
3195  *   We'll probably need that anyway for journalling writepage() output.
3196  *
3197  * We don't honour synchronous mounts for writepage().  That would be
3198  * disastrous.  Any write() or metadata operation will sync the fs for
3199  * us.
3200  *
3201  */
3202 static int __ext4_normal_writepage(struct page *page,
3203                                 struct writeback_control *wbc)
3204 {
3205         struct inode *inode = page->mapping->host;
3206
3207         if (test_opt(inode->i_sb, NOBH))
3208                 return nobh_writepage(page, noalloc_get_block_write, wbc);
3209         else
3210                 return block_write_full_page(page, noalloc_get_block_write,
3211                                              wbc);
3212 }
3213
3214 static int ext4_normal_writepage(struct page *page,
3215                                 struct writeback_control *wbc)
3216 {
3217         struct inode *inode = page->mapping->host;
3218         loff_t size = i_size_read(inode);
3219         loff_t len;
3220
3221         trace_ext4_normal_writepage(inode, page);
3222         J_ASSERT(PageLocked(page));
3223         if (page->index == size >> PAGE_CACHE_SHIFT)
3224                 len = size & ~PAGE_CACHE_MASK;
3225         else
3226                 len = PAGE_CACHE_SIZE;
3227
3228         if (page_has_buffers(page)) {
3229                 /* if page has buffers it should all be mapped
3230                  * and allocated. If there are not buffers attached
3231                  * to the page we know the page is dirty but it lost
3232                  * buffers. That means that at some moment in time
3233                  * after write_begin() / write_end() has been called
3234                  * all buffers have been clean and thus they must have been
3235                  * written at least once. So they are all mapped and we can
3236                  * happily proceed with mapping them and writing the page.
3237                  */
3238                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3239                                         ext4_bh_unmapped_or_delay));
3240         }
3241
3242         if (!ext4_journal_current_handle())
3243                 return __ext4_normal_writepage(page, wbc);
3244
3245         redirty_page_for_writepage(wbc, page);
3246         unlock_page(page);
3247         return 0;
3248 }
3249
3250 static int __ext4_journalled_writepage(struct page *page,
3251                                 struct writeback_control *wbc)
3252 {
3253         struct address_space *mapping = page->mapping;
3254         struct inode *inode = mapping->host;
3255         struct buffer_head *page_bufs;
3256         handle_t *handle = NULL;
3257         int ret = 0;
3258         int err;
3259
3260         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3261                                   noalloc_get_block_write);
3262         if (ret != 0)
3263                 goto out_unlock;
3264
3265         page_bufs = page_buffers(page);
3266         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3267                                                                 bget_one);
3268         /* As soon as we unlock the page, it can go away, but we have
3269          * references to buffers so we are safe */
3270         unlock_page(page);
3271
3272         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3273         if (IS_ERR(handle)) {
3274                 ret = PTR_ERR(handle);
3275                 goto out;
3276         }
3277
3278         ret = walk_page_buffers(handle, page_bufs, 0,
3279                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3280
3281         err = walk_page_buffers(handle, page_bufs, 0,
3282                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
3283         if (ret == 0)
3284                 ret = err;
3285         err = ext4_journal_stop(handle);
3286         if (!ret)
3287                 ret = err;
3288
3289         walk_page_buffers(handle, page_bufs, 0,
3290                                 PAGE_CACHE_SIZE, NULL, bput_one);
3291         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3292         goto out;
3293
3294 out_unlock:
3295         unlock_page(page);
3296 out:
3297         return ret;
3298 }
3299
3300 static int ext4_journalled_writepage(struct page *page,
3301                                 struct writeback_control *wbc)
3302 {
3303         struct inode *inode = page->mapping->host;
3304         loff_t size = i_size_read(inode);
3305         loff_t len;
3306
3307         trace_ext4_journalled_writepage(inode, page);
3308         J_ASSERT(PageLocked(page));
3309         if (page->index == size >> PAGE_CACHE_SHIFT)
3310                 len = size & ~PAGE_CACHE_MASK;
3311         else
3312                 len = PAGE_CACHE_SIZE;
3313
3314         if (page_has_buffers(page)) {
3315                 /* if page has buffers it should all be mapped
3316                  * and allocated. If there are not buffers attached
3317                  * to the page we know the page is dirty but it lost
3318                  * buffers. That means that at some moment in time
3319                  * after write_begin() / write_end() has been called
3320                  * all buffers have been clean and thus they must have been
3321                  * written at least once. So they are all mapped and we can
3322                  * happily proceed with mapping them and writing the page.
3323                  */
3324                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3325                                         ext4_bh_unmapped_or_delay));
3326         }
3327
3328         if (ext4_journal_current_handle())
3329                 goto no_write;
3330
3331         if (PageChecked(page)) {
3332                 /*
3333                  * It's mmapped pagecache.  Add buffers and journal it.  There
3334                  * doesn't seem much point in redirtying the page here.
3335                  */
3336                 ClearPageChecked(page);
3337                 return __ext4_journalled_writepage(page, wbc);
3338         } else {
3339                 /*
3340                  * It may be a page full of checkpoint-mode buffers.  We don't
3341                  * really know unless we go poke around in the buffer_heads.
3342                  * But block_write_full_page will do the right thing.
3343                  */
3344                 return block_write_full_page(page, noalloc_get_block_write,
3345                                              wbc);
3346         }
3347 no_write:
3348         redirty_page_for_writepage(wbc, page);
3349         unlock_page(page);
3350         return 0;
3351 }
3352
3353 static int ext4_readpage(struct file *file, struct page *page)
3354 {
3355         return mpage_readpage(page, ext4_get_block);
3356 }
3357
3358 static int
3359 ext4_readpages(struct file *file, struct address_space *mapping,
3360                 struct list_head *pages, unsigned nr_pages)
3361 {
3362         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3363 }
3364
3365 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3366 {
3367         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3368
3369         /*
3370          * If it's a full truncate we just forget about the pending dirtying
3371          */
3372         if (offset == 0)
3373                 ClearPageChecked(page);
3374
3375         if (journal)
3376                 jbd2_journal_invalidatepage(journal, page, offset);
3377         else
3378                 block_invalidatepage(page, offset);
3379 }
3380
3381 static int ext4_releasepage(struct page *page, gfp_t wait)
3382 {
3383         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3384
3385         WARN_ON(PageChecked(page));
3386         if (!page_has_buffers(page))
3387                 return 0;
3388         if (journal)
3389                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3390         else
3391                 return try_to_free_buffers(page);
3392 }
3393
3394 /*
3395  * If the O_DIRECT write will extend the file then add this inode to the
3396  * orphan list.  So recovery will truncate it back to the original size
3397  * if the machine crashes during the write.
3398  *
3399  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3400  * crashes then stale disk data _may_ be exposed inside the file. But current
3401  * VFS code falls back into buffered path in that case so we are safe.
3402  */
3403 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3404                         const struct iovec *iov, loff_t offset,
3405                         unsigned long nr_segs)
3406 {
3407         struct file *file = iocb->ki_filp;
3408         struct inode *inode = file->f_mapping->host;
3409         struct ext4_inode_info *ei = EXT4_I(inode);
3410         handle_t *handle;
3411         ssize_t ret;
3412         int orphan = 0;
3413         size_t count = iov_length(iov, nr_segs);
3414
3415         if (rw == WRITE) {
3416                 loff_t final_size = offset + count;
3417
3418                 if (final_size > inode->i_size) {
3419                         /* Credits for sb + inode write */
3420                         handle = ext4_journal_start(inode, 2);
3421                         if (IS_ERR(handle)) {
3422                                 ret = PTR_ERR(handle);
3423                                 goto out;
3424                         }
3425                         ret = ext4_orphan_add(handle, inode);
3426                         if (ret) {
3427                                 ext4_journal_stop(handle);
3428                                 goto out;
3429                         }
3430                         orphan = 1;
3431                         ei->i_disksize = inode->i_size;
3432                         ext4_journal_stop(handle);
3433                 }
3434         }
3435
3436         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3437                                  offset, nr_segs,
3438                                  ext4_get_block, NULL);
3439
3440         if (orphan) {
3441                 int err;
3442
3443                 /* Credits for sb + inode write */
3444                 handle = ext4_journal_start(inode, 2);
3445                 if (IS_ERR(handle)) {
3446                         /* This is really bad luck. We've written the data
3447                          * but cannot extend i_size. Bail out and pretend
3448                          * the write failed... */
3449                         ret = PTR_ERR(handle);
3450                         goto out;
3451                 }
3452                 if (inode->i_nlink)
3453                         ext4_orphan_del(handle, inode);
3454                 if (ret > 0) {
3455                         loff_t end = offset + ret;
3456                         if (end > inode->i_size) {
3457                                 ei->i_disksize = end;
3458                                 i_size_write(inode, end);
3459                                 /*
3460                                  * We're going to return a positive `ret'
3461                                  * here due to non-zero-length I/O, so there's
3462                                  * no way of reporting error returns from
3463                                  * ext4_mark_inode_dirty() to userspace.  So
3464                                  * ignore it.
3465                                  */
3466                                 ext4_mark_inode_dirty(handle, inode);
3467                         }
3468                 }
3469                 err = ext4_journal_stop(handle);
3470                 if (ret == 0)
3471                         ret = err;
3472         }
3473 out:
3474         return ret;
3475 }
3476
3477 /*
3478  * Pages can be marked dirty completely asynchronously from ext4's journalling
3479  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3480  * much here because ->set_page_dirty is called under VFS locks.  The page is
3481  * not necessarily locked.
3482  *
3483  * We cannot just dirty the page and leave attached buffers clean, because the
3484  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3485  * or jbddirty because all the journalling code will explode.
3486  *
3487  * So what we do is to mark the page "pending dirty" and next time writepage
3488  * is called, propagate that into the buffers appropriately.
3489  */
3490 static int ext4_journalled_set_page_dirty(struct page *page)
3491 {
3492         SetPageChecked(page);
3493         return __set_page_dirty_nobuffers(page);
3494 }
3495
3496 static const struct address_space_operations ext4_ordered_aops = {
3497         .readpage               = ext4_readpage,
3498         .readpages              = ext4_readpages,
3499         .writepage              = ext4_normal_writepage,
3500         .sync_page              = block_sync_page,
3501         .write_begin            = ext4_write_begin,
3502         .write_end              = ext4_ordered_write_end,
3503         .bmap                   = ext4_bmap,
3504         .invalidatepage         = ext4_invalidatepage,
3505         .releasepage            = ext4_releasepage,
3506         .direct_IO              = ext4_direct_IO,
3507         .migratepage            = buffer_migrate_page,
3508         .is_partially_uptodate  = block_is_partially_uptodate,
3509 };
3510
3511 static const struct address_space_operations ext4_writeback_aops = {
3512         .readpage               = ext4_readpage,
3513         .readpages              = ext4_readpages,
3514         .writepage              = ext4_normal_writepage,
3515         .sync_page              = block_sync_page,
3516         .write_begin            = ext4_write_begin,
3517         .write_end              = ext4_writeback_write_end,
3518         .bmap                   = ext4_bmap,
3519         .invalidatepage         = ext4_invalidatepage,
3520         .releasepage            = ext4_releasepage,
3521         .direct_IO              = ext4_direct_IO,
3522         .migratepage            = buffer_migrate_page,
3523         .is_partially_uptodate  = block_is_partially_uptodate,
3524 };
3525
3526 static const struct address_space_operations ext4_journalled_aops = {
3527         .readpage               = ext4_readpage,
3528         .readpages              = ext4_readpages,
3529         .writepage              = ext4_journalled_writepage,
3530         .sync_page              = block_sync_page,
3531         .write_begin            = ext4_write_begin,
3532         .write_end              = ext4_journalled_write_end,
3533         .set_page_dirty         = ext4_journalled_set_page_dirty,
3534         .bmap                   = ext4_bmap,
3535         .invalidatepage         = ext4_invalidatepage,
3536         .releasepage            = ext4_releasepage,
3537         .is_partially_uptodate  = block_is_partially_uptodate,
3538 };
3539
3540 static const struct address_space_operations ext4_da_aops = {
3541         .readpage               = ext4_readpage,
3542         .readpages              = ext4_readpages,
3543         .writepage              = ext4_da_writepage,
3544         .writepages             = ext4_da_writepages,
3545         .sync_page              = block_sync_page,
3546         .write_begin            = ext4_da_write_begin,
3547         .write_end              = ext4_da_write_end,
3548         .bmap                   = ext4_bmap,
3549         .invalidatepage         = ext4_da_invalidatepage,
3550         .releasepage            = ext4_releasepage,
3551         .direct_IO              = ext4_direct_IO,
3552         .migratepage            = buffer_migrate_page,
3553         .is_partially_uptodate  = block_is_partially_uptodate,
3554 };
3555
3556 void ext4_set_aops(struct inode *inode)
3557 {
3558         if (ext4_should_order_data(inode) &&
3559                 test_opt(inode->i_sb, DELALLOC))
3560                 inode->i_mapping->a_ops = &ext4_da_aops;
3561         else if (ext4_should_order_data(inode))
3562                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3563         else if (ext4_should_writeback_data(inode) &&
3564                  test_opt(inode->i_sb, DELALLOC))
3565                 inode->i_mapping->a_ops = &ext4_da_aops;
3566         else if (ext4_should_writeback_data(inode))
3567                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3568         else
3569                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3570 }
3571
3572 /*
3573  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3574  * up to the end of the block which corresponds to `from'.
3575  * This required during truncate. We need to physically zero the tail end
3576  * of that block so it doesn't yield old data if the file is later grown.
3577  */
3578 int ext4_block_truncate_page(handle_t *handle,
3579                 struct address_space *mapping, loff_t from)
3580 {
3581         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3582         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3583         unsigned blocksize, length, pos;
3584         ext4_lblk_t iblock;
3585         struct inode *inode = mapping->host;
3586         struct buffer_head *bh;
3587         struct page *page;
3588         int err = 0;
3589
3590         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3591         if (!page)
3592                 return -EINVAL;
3593
3594         blocksize = inode->i_sb->s_blocksize;
3595         length = blocksize - (offset & (blocksize - 1));
3596         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3597
3598         /*
3599          * For "nobh" option,  we can only work if we don't need to
3600          * read-in the page - otherwise we create buffers to do the IO.
3601          */
3602         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3603              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3604                 zero_user(page, offset, length);
3605                 set_page_dirty(page);
3606                 goto unlock;
3607         }
3608
3609         if (!page_has_buffers(page))
3610                 create_empty_buffers(page, blocksize, 0);
3611
3612         /* Find the buffer that contains "offset" */
3613         bh = page_buffers(page);
3614         pos = blocksize;
3615         while (offset >= pos) {
3616                 bh = bh->b_this_page;
3617                 iblock++;
3618                 pos += blocksize;
3619         }
3620
3621         err = 0;
3622         if (buffer_freed(bh)) {
3623                 BUFFER_TRACE(bh, "freed: skip");
3624                 goto unlock;
3625         }
3626
3627         if (!buffer_mapped(bh)) {
3628                 BUFFER_TRACE(bh, "unmapped");
3629                 ext4_get_block(inode, iblock, bh, 0);
3630                 /* unmapped? It's a hole - nothing to do */
3631                 if (!buffer_mapped(bh)) {
3632                         BUFFER_TRACE(bh, "still unmapped");
3633                         goto unlock;
3634                 }
3635         }
3636
3637         /* Ok, it's mapped. Make sure it's up-to-date */
3638         if (PageUptodate(page))
3639                 set_buffer_uptodate(bh);
3640
3641         if (!buffer_uptodate(bh)) {
3642                 err = -EIO;
3643                 ll_rw_block(READ, 1, &bh);
3644                 wait_on_buffer(bh);
3645                 /* Uhhuh. Read error. Complain and punt. */
3646                 if (!buffer_uptodate(bh))
3647                         goto unlock;
3648         }
3649
3650         if (ext4_should_journal_data(inode)) {
3651                 BUFFER_TRACE(bh, "get write access");
3652                 err = ext4_journal_get_write_access(handle, bh);
3653                 if (err)
3654                         goto unlock;
3655         }
3656
3657         zero_user(page, offset, length);
3658
3659         BUFFER_TRACE(bh, "zeroed end of block");
3660
3661         err = 0;
3662         if (ext4_should_journal_data(inode)) {
3663                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3664         } else {
3665                 if (ext4_should_order_data(inode))
3666                         err = ext4_jbd2_file_inode(handle, inode);
3667                 mark_buffer_dirty(bh);
3668         }
3669
3670 unlock:
3671         unlock_page(page);
3672         page_cache_release(page);
3673         return err;
3674 }
3675
3676 /*
3677  * Probably it should be a library function... search for first non-zero word
3678  * or memcmp with zero_page, whatever is better for particular architecture.
3679  * Linus?
3680  */
3681 static inline int all_zeroes(__le32 *p, __le32 *q)
3682 {
3683         while (p < q)
3684                 if (*p++)
3685                         return 0;
3686         return 1;
3687 }
3688
3689 /**
3690  *      ext4_find_shared - find the indirect blocks for partial truncation.
3691  *      @inode:   inode in question
3692  *      @depth:   depth of the affected branch
3693  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3694  *      @chain:   place to store the pointers to partial indirect blocks
3695  *      @top:     place to the (detached) top of branch
3696  *
3697  *      This is a helper function used by ext4_truncate().
3698  *
3699  *      When we do truncate() we may have to clean the ends of several
3700  *      indirect blocks but leave the blocks themselves alive. Block is
3701  *      partially truncated if some data below the new i_size is refered
3702  *      from it (and it is on the path to the first completely truncated
3703  *      data block, indeed).  We have to free the top of that path along
3704  *      with everything to the right of the path. Since no allocation
3705  *      past the truncation point is possible until ext4_truncate()
3706  *      finishes, we may safely do the latter, but top of branch may
3707  *      require special attention - pageout below the truncation point
3708  *      might try to populate it.
3709  *
3710  *      We atomically detach the top of branch from the tree, store the
3711  *      block number of its root in *@top, pointers to buffer_heads of
3712  *      partially truncated blocks - in @chain[].bh and pointers to
3713  *      their last elements that should not be removed - in
3714  *      @chain[].p. Return value is the pointer to last filled element
3715  *      of @chain.
3716  *
3717  *      The work left to caller to do the actual freeing of subtrees:
3718  *              a) free the subtree starting from *@top
3719  *              b) free the subtrees whose roots are stored in
3720  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3721  *              c) free the subtrees growing from the inode past the @chain[0].
3722  *                      (no partially truncated stuff there).  */
3723
3724 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3725                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3726 {
3727         Indirect *partial, *p;
3728         int k, err;
3729
3730         *top = 0;
3731         /* Make k index the deepest non-null offest + 1 */
3732         for (k = depth; k > 1 && !offsets[k-1]; k--)
3733                 ;
3734         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3735         /* Writer: pointers */
3736         if (!partial)
3737                 partial = chain + k-1;
3738         /*
3739          * If the branch acquired continuation since we've looked at it -
3740          * fine, it should all survive and (new) top doesn't belong to us.
3741          */
3742         if (!partial->key && *partial->p)
3743                 /* Writer: end */
3744                 goto no_top;
3745         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3746                 ;
3747         /*
3748          * OK, we've found the last block that must survive. The rest of our
3749          * branch should be detached before unlocking. However, if that rest
3750          * of branch is all ours and does not grow immediately from the inode
3751          * it's easier to cheat and just decrement partial->p.
3752          */
3753         if (p == chain + k - 1 && p > chain) {
3754                 p->p--;
3755         } else {
3756                 *top = *p->p;
3757                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3758 #if 0
3759                 *p->p = 0;
3760 #endif
3761         }
3762         /* Writer: end */
3763
3764         while (partial > p) {
3765                 brelse(partial->bh);
3766                 partial--;
3767         }
3768 no_top:
3769         return partial;
3770 }
3771
3772 /*
3773  * Zero a number of block pointers in either an inode or an indirect block.
3774  * If we restart the transaction we must again get write access to the
3775  * indirect block for further modification.
3776  *
3777  * We release `count' blocks on disk, but (last - first) may be greater
3778  * than `count' because there can be holes in there.
3779  */
3780 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3781                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3782                 unsigned long count, __le32 *first, __le32 *last)
3783 {
3784         __le32 *p;
3785         if (try_to_extend_transaction(handle, inode)) {
3786                 if (bh) {
3787                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3788                         ext4_handle_dirty_metadata(handle, inode, bh);
3789                 }
3790                 ext4_mark_inode_dirty(handle, inode);
3791                 ext4_journal_test_restart(handle, inode);
3792                 if (bh) {
3793                         BUFFER_TRACE(bh, "retaking write access");
3794                         ext4_journal_get_write_access(handle, bh);
3795                 }
3796         }
3797
3798         /*
3799          * Any buffers which are on the journal will be in memory. We find
3800          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3801          * on them.  We've already detached each block from the file, so
3802          * bforget() in jbd2_journal_forget() should be safe.
3803          *
3804          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3805          */
3806         for (p = first; p < last; p++) {
3807                 u32 nr = le32_to_cpu(*p);
3808                 if (nr) {
3809                         struct buffer_head *tbh;
3810
3811                         *p = 0;
3812                         tbh = sb_find_get_block(inode->i_sb, nr);
3813                         ext4_forget(handle, 0, inode, tbh, nr);
3814                 }
3815         }
3816
3817         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3818 }
3819
3820 /**
3821  * ext4_free_data - free a list of data blocks
3822  * @handle:     handle for this transaction
3823  * @inode:      inode we are dealing with
3824  * @this_bh:    indirect buffer_head which contains *@first and *@last
3825  * @first:      array of block numbers
3826  * @last:       points immediately past the end of array
3827  *
3828  * We are freeing all blocks refered from that array (numbers are stored as
3829  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3830  *
3831  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3832  * blocks are contiguous then releasing them at one time will only affect one
3833  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3834  * actually use a lot of journal space.
3835  *
3836  * @this_bh will be %NULL if @first and @last point into the inode's direct
3837  * block pointers.
3838  */
3839 static void ext4_free_data(handle_t *handle, struct inode *inode,
3840                            struct buffer_head *this_bh,
3841                            __le32 *first, __le32 *last)
3842 {
3843         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3844         unsigned long count = 0;            /* Number of blocks in the run */
3845         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3846                                                corresponding to
3847                                                block_to_free */
3848         ext4_fsblk_t nr;                    /* Current block # */
3849         __le32 *p;                          /* Pointer into inode/ind
3850                                                for current block */
3851         int err;
3852
3853         if (this_bh) {                          /* For indirect block */
3854                 BUFFER_TRACE(this_bh, "get_write_access");
3855                 err = ext4_journal_get_write_access(handle, this_bh);
3856                 /* Important: if we can't update the indirect pointers
3857                  * to the blocks, we can't free them. */
3858                 if (err)
3859                         return;
3860         }
3861
3862         for (p = first; p < last; p++) {
3863                 nr = le32_to_cpu(*p);
3864                 if (nr) {
3865                         /* accumulate blocks to free if they're contiguous */
3866                         if (count == 0) {
3867                                 block_to_free = nr;
3868                                 block_to_free_p = p;
3869                                 count = 1;
3870                         } else if (nr == block_to_free + count) {
3871                                 count++;
3872                         } else {
3873                                 ext4_clear_blocks(handle, inode, this_bh,
3874                                                   block_to_free,
3875                                                   count, block_to_free_p, p);
3876                                 block_to_free = nr;
3877                                 block_to_free_p = p;
3878                                 count = 1;
3879                         }
3880                 }
3881         }
3882
3883         if (count > 0)
3884                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3885                                   count, block_to_free_p, p);
3886
3887         if (this_bh) {
3888                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3889
3890                 /*
3891                  * The buffer head should have an attached journal head at this
3892                  * point. However, if the data is corrupted and an indirect
3893                  * block pointed to itself, it would have been detached when
3894                  * the block was cleared. Check for this instead of OOPSing.
3895                  */
3896                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3897                         ext4_handle_dirty_metadata(handle, inode, this_bh);
3898                 else
3899                         ext4_error(inode->i_sb, __func__,
3900                                    "circular indirect block detected, "
3901                                    "inode=%lu, block=%llu",
3902                                    inode->i_ino,
3903                                    (unsigned long long) this_bh->b_blocknr);
3904         }
3905 }
3906
3907 /**
3908  *      ext4_free_branches - free an array of branches
3909  *      @handle: JBD handle for this transaction
3910  *      @inode: inode we are dealing with
3911  *      @parent_bh: the buffer_head which contains *@first and *@last
3912  *      @first: array of block numbers
3913  *      @last:  pointer immediately past the end of array
3914  *      @depth: depth of the branches to free
3915  *
3916  *      We are freeing all blocks refered from these branches (numbers are
3917  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3918  *      appropriately.
3919  */
3920 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3921                                struct buffer_head *parent_bh,
3922                                __le32 *first, __le32 *last, int depth)
3923 {
3924         ext4_fsblk_t nr;
3925         __le32 *p;
3926
3927         if (ext4_handle_is_aborted(handle))
3928                 return;
3929
3930         if (depth--) {
3931                 struct buffer_head *bh;
3932                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3933                 p = last;
3934                 while (--p >= first) {
3935                         nr = le32_to_cpu(*p);
3936                         if (!nr)
3937                                 continue;               /* A hole */
3938
3939                         /* Go read the buffer for the next level down */
3940                         bh = sb_bread(inode->i_sb, nr);
3941
3942                         /*
3943                          * A read failure? Report error and clear slot
3944                          * (should be rare).
3945                          */
3946                         if (!bh) {
3947                                 ext4_error(inode->i_sb, "ext4_free_branches",
3948                                            "Read failure, inode=%lu, block=%llu",
3949                                            inode->i_ino, nr);
3950                                 continue;
3951                         }
3952
3953                         /* This zaps the entire block.  Bottom up. */
3954                         BUFFER_TRACE(bh, "free child branches");
3955                         ext4_free_branches(handle, inode, bh,
3956                                         (__le32 *) bh->b_data,
3957                                         (__le32 *) bh->b_data + addr_per_block,
3958                                         depth);
3959
3960                         /*
3961                          * We've probably journalled the indirect block several
3962                          * times during the truncate.  But it's no longer
3963                          * needed and we now drop it from the transaction via
3964                          * jbd2_journal_revoke().
3965                          *
3966                          * That's easy if it's exclusively part of this
3967                          * transaction.  But if it's part of the committing
3968                          * transaction then jbd2_journal_forget() will simply
3969                          * brelse() it.  That means that if the underlying
3970                          * block is reallocated in ext4_get_block(),
3971                          * unmap_underlying_metadata() will find this block
3972                          * and will try to get rid of it.  damn, damn.
3973                          *
3974                          * If this block has already been committed to the
3975                          * journal, a revoke record will be written.  And
3976                          * revoke records must be emitted *before* clearing
3977                          * this block's bit in the bitmaps.
3978                          */
3979                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3980
3981                         /*
3982                          * Everything below this this pointer has been
3983                          * released.  Now let this top-of-subtree go.
3984                          *
3985                          * We want the freeing of this indirect block to be
3986                          * atomic in the journal with the updating of the
3987                          * bitmap block which owns it.  So make some room in
3988                          * the journal.
3989                          *
3990                          * We zero the parent pointer *after* freeing its
3991                          * pointee in the bitmaps, so if extend_transaction()
3992                          * for some reason fails to put the bitmap changes and
3993                          * the release into the same transaction, recovery
3994                          * will merely complain about releasing a free block,
3995                          * rather than leaking blocks.
3996                          */
3997                         if (ext4_handle_is_aborted(handle))
3998                                 return;
3999                         if (try_to_extend_transaction(handle, inode)) {
4000                                 ext4_mark_inode_dirty(handle, inode);
4001                                 ext4_journal_test_restart(handle, inode);
4002                         }
4003
4004                         ext4_free_blocks(handle, inode, nr, 1, 1);
4005
4006                         if (parent_bh) {
4007                                 /*
4008                                  * The block which we have just freed is
4009                                  * pointed to by an indirect block: journal it
4010                                  */
4011                                 BUFFER_TRACE(parent_bh, "get_write_access");
4012                                 if (!ext4_journal_get_write_access(handle,
4013                                                                    parent_bh)){
4014                                         *p = 0;
4015                                         BUFFER_TRACE(parent_bh,
4016                                         "call ext4_handle_dirty_metadata");
4017                                         ext4_handle_dirty_metadata(handle,
4018                                                                    inode,
4019                                                                    parent_bh);
4020                                 }
4021                         }
4022                 }
4023         } else {
4024                 /* We have reached the bottom of the tree. */
4025                 BUFFER_TRACE(parent_bh, "free data blocks");
4026                 ext4_free_data(handle, inode, parent_bh, first, last);
4027         }
4028 }
4029
4030 int ext4_can_truncate(struct inode *inode)
4031 {
4032         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4033                 return 0;
4034         if (S_ISREG(inode->i_mode))
4035                 return 1;
4036         if (S_ISDIR(inode->i_mode))
4037                 return 1;
4038         if (S_ISLNK(inode->i_mode))
4039                 return !ext4_inode_is_fast_symlink(inode);
4040         return 0;
4041 }
4042
4043 /*
4044  * ext4_truncate()
4045  *
4046  * We block out ext4_get_block() block instantiations across the entire
4047  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4048  * simultaneously on behalf of the same inode.
4049  *
4050  * As we work through the truncate and commmit bits of it to the journal there
4051  * is one core, guiding principle: the file's tree must always be consistent on
4052  * disk.  We must be able to restart the truncate after a crash.
4053  *
4054  * The file's tree may be transiently inconsistent in memory (although it
4055  * probably isn't), but whenever we close off and commit a journal transaction,
4056  * the contents of (the filesystem + the journal) must be consistent and
4057  * restartable.  It's pretty simple, really: bottom up, right to left (although
4058  * left-to-right works OK too).
4059  *
4060  * Note that at recovery time, journal replay occurs *before* the restart of
4061  * truncate against the orphan inode list.
4062  *
4063  * The committed inode has the new, desired i_size (which is the same as
4064  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4065  * that this inode's truncate did not complete and it will again call
4066  * ext4_truncate() to have another go.  So there will be instantiated blocks
4067  * to the right of the truncation point in a crashed ext4 filesystem.  But
4068  * that's fine - as long as they are linked from the inode, the post-crash
4069  * ext4_truncate() run will find them and release them.
4070  */
4071 void ext4_truncate(struct inode *inode)
4072 {
4073         handle_t *handle;
4074         struct ext4_inode_info *ei = EXT4_I(inode);
4075         __le32 *i_data = ei->i_data;
4076         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4077         struct address_space *mapping = inode->i_mapping;
4078         ext4_lblk_t offsets[4];
4079         Indirect chain[4];
4080         Indirect *partial;
4081         __le32 nr = 0;
4082         int n;
4083         ext4_lblk_t last_block;
4084         unsigned blocksize = inode->i_sb->s_blocksize;
4085
4086         if (!ext4_can_truncate(inode))
4087                 return;
4088
4089         if (ei->i_disksize && inode->i_size == 0 &&
4090             !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4091                 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4092
4093         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4094                 ext4_ext_truncate(inode);
4095                 return;
4096         }
4097
4098         handle = start_transaction(inode);
4099         if (IS_ERR(handle))
4100                 return;         /* AKPM: return what? */
4101
4102         last_block = (inode->i_size + blocksize-1)
4103                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4104
4105         if (inode->i_size & (blocksize - 1))
4106                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4107                         goto out_stop;
4108
4109         n = ext4_block_to_path(inode, last_block, offsets, NULL);
4110         if (n == 0)
4111                 goto out_stop;  /* error */
4112
4113         /*
4114          * OK.  This truncate is going to happen.  We add the inode to the
4115          * orphan list, so that if this truncate spans multiple transactions,
4116          * and we crash, we will resume the truncate when the filesystem
4117          * recovers.  It also marks the inode dirty, to catch the new size.
4118          *
4119          * Implication: the file must always be in a sane, consistent
4120          * truncatable state while each transaction commits.
4121          */
4122         if (ext4_orphan_add(handle, inode))
4123                 goto out_stop;
4124
4125         /*
4126          * From here we block out all ext4_get_block() callers who want to
4127          * modify the block allocation tree.
4128          */
4129         down_write(&ei->i_data_sem);
4130
4131         ext4_discard_preallocations(inode);
4132
4133         /*
4134          * The orphan list entry will now protect us from any crash which
4135          * occurs before the truncate completes, so it is now safe to propagate
4136          * the new, shorter inode size (held for now in i_size) into the
4137          * on-disk inode. We do this via i_disksize, which is the value which
4138          * ext4 *really* writes onto the disk inode.
4139          */
4140         ei->i_disksize = inode->i_size;
4141
4142         if (n == 1) {           /* direct blocks */
4143                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4144                                i_data + EXT4_NDIR_BLOCKS);
4145                 goto do_indirects;
4146         }
4147
4148         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4149         /* Kill the top of shared branch (not detached) */
4150         if (nr) {
4151                 if (partial == chain) {
4152                         /* Shared branch grows from the inode */
4153                         ext4_free_branches(handle, inode, NULL,
4154                                            &nr, &nr+1, (chain+n-1) - partial);
4155                         *partial->p = 0;
4156                         /*
4157                          * We mark the inode dirty prior to restart,
4158                          * and prior to stop.  No need for it here.
4159                          */
4160                 } else {
4161                         /* Shared branch grows from an indirect block */
4162                         BUFFER_TRACE(partial->bh, "get_write_access");
4163                         ext4_free_branches(handle, inode, partial->bh,
4164                                         partial->p,
4165                                         partial->p+1, (chain+n-1) - partial);
4166                 }
4167         }
4168         /* Clear the ends of indirect blocks on the shared branch */
4169         while (partial > chain) {
4170                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4171                                    (__le32*)partial->bh->b_data+addr_per_block,
4172                                    (chain+n-1) - partial);
4173                 BUFFER_TRACE(partial->bh, "call brelse");
4174                 brelse (partial->bh);
4175                 partial--;
4176         }
4177 do_indirects:
4178         /* Kill the remaining (whole) subtrees */
4179         switch (offsets[0]) {
4180         default:
4181                 nr = i_data[EXT4_IND_BLOCK];
4182                 if (nr) {
4183                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4184                         i_data[EXT4_IND_BLOCK] = 0;
4185                 }
4186         case EXT4_IND_BLOCK:
4187                 nr = i_data[EXT4_DIND_BLOCK];
4188                 if (nr) {
4189                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4190                         i_data[EXT4_DIND_BLOCK] = 0;
4191                 }
4192         case EXT4_DIND_BLOCK:
4193                 nr = i_data[EXT4_TIND_BLOCK];
4194                 if (nr) {
4195                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4196                         i_data[EXT4_TIND_BLOCK] = 0;
4197                 }
4198         case EXT4_TIND_BLOCK:
4199                 ;
4200         }
4201
4202         up_write(&ei->i_data_sem);
4203         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4204         ext4_mark_inode_dirty(handle, inode);
4205
4206         /*
4207          * In a multi-transaction truncate, we only make the final transaction
4208          * synchronous
4209          */
4210         if (IS_SYNC(inode))
4211                 ext4_handle_sync(handle);
4212 out_stop:
4213         /*
4214          * If this was a simple ftruncate(), and the file will remain alive
4215          * then we need to clear up the orphan record which we created above.
4216          * However, if this was a real unlink then we were called by
4217          * ext4_delete_inode(), and we allow that function to clean up the
4218          * orphan info for us.
4219          */
4220         if (inode->i_nlink)
4221                 ext4_orphan_del(handle, inode);
4222
4223         ext4_journal_stop(handle);
4224 }
4225
4226 /*
4227  * ext4_get_inode_loc returns with an extra refcount against the inode's
4228  * underlying buffer_head on success. If 'in_mem' is true, we have all
4229  * data in memory that is needed to recreate the on-disk version of this
4230  * inode.
4231  */
4232 static int __ext4_get_inode_loc(struct inode *inode,
4233                                 struct ext4_iloc *iloc, int in_mem)
4234 {
4235         struct ext4_group_desc  *gdp;
4236         struct buffer_head      *bh;
4237         struct super_block      *sb = inode->i_sb;
4238         ext4_fsblk_t            block;
4239         int                     inodes_per_block, inode_offset;
4240
4241         iloc->bh = NULL;
4242         if (!ext4_valid_inum(sb, inode->i_ino))
4243                 return -EIO;
4244
4245         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4246         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4247         if (!gdp)
4248                 return -EIO;
4249
4250         /*
4251          * Figure out the offset within the block group inode table
4252          */
4253         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4254         inode_offset = ((inode->i_ino - 1) %
4255                         EXT4_INODES_PER_GROUP(sb));
4256         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4257         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4258
4259         bh = sb_getblk(sb, block);
4260         if (!bh) {
4261                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4262                            "inode block - inode=%lu, block=%llu",
4263                            inode->i_ino, block);
4264                 return -EIO;
4265         }
4266         if (!buffer_uptodate(bh)) {
4267                 lock_buffer(bh);
4268
4269                 /*
4270                  * If the buffer has the write error flag, we have failed
4271                  * to write out another inode in the same block.  In this
4272                  * case, we don't have to read the block because we may
4273                  * read the old inode data successfully.
4274                  */
4275                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4276                         set_buffer_uptodate(bh);
4277
4278                 if (buffer_uptodate(bh)) {
4279                         /* someone brought it uptodate while we waited */
4280                         unlock_buffer(bh);
4281                         goto has_buffer;
4282                 }
4283
4284                 /*
4285                  * If we have all information of the inode in memory and this
4286                  * is the only valid inode in the block, we need not read the
4287                  * block.
4288                  */
4289                 if (in_mem) {
4290                         struct buffer_head *bitmap_bh;
4291                         int i, start;
4292
4293                         start = inode_offset & ~(inodes_per_block - 1);
4294
4295                         /* Is the inode bitmap in cache? */
4296                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4297                         if (!bitmap_bh)
4298                                 goto make_io;
4299
4300                         /*
4301                          * If the inode bitmap isn't in cache then the
4302                          * optimisation may end up performing two reads instead
4303                          * of one, so skip it.
4304                          */
4305                         if (!buffer_uptodate(bitmap_bh)) {
4306                                 brelse(bitmap_bh);
4307                                 goto make_io;
4308                         }
4309                         for (i = start; i < start + inodes_per_block; i++) {
4310                                 if (i == inode_offset)
4311                                         continue;
4312                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4313                                         break;
4314                         }
4315                         brelse(bitmap_bh);
4316                         if (i == start + inodes_per_block) {
4317                                 /* all other inodes are free, so skip I/O */
4318                                 memset(bh->b_data, 0, bh->b_size);
4319                                 set_buffer_uptodate(bh);
4320                                 unlock_buffer(bh);
4321                                 goto has_buffer;
4322                         }
4323                 }
4324
4325 make_io:
4326                 /*
4327                  * If we need to do any I/O, try to pre-readahead extra
4328                  * blocks from the inode table.
4329                  */
4330                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4331                         ext4_fsblk_t b, end, table;
4332                         unsigned num;
4333
4334                         table = ext4_inode_table(sb, gdp);
4335                         /* s_inode_readahead_blks is always a power of 2 */
4336                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4337                         if (table > b)
4338                                 b = table;
4339                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4340                         num = EXT4_INODES_PER_GROUP(sb);
4341                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4342                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4343                                 num -= ext4_itable_unused_count(sb, gdp);
4344                         table += num / inodes_per_block;
4345                         if (end > table)
4346                                 end = table;
4347                         while (b <= end)
4348                                 sb_breadahead(sb, b++);
4349                 }
4350
4351                 /*
4352                  * There are other valid inodes in the buffer, this inode
4353                  * has in-inode xattrs, or we don't have this inode in memory.
4354                  * Read the block from disk.
4355                  */
4356                 get_bh(bh);
4357                 bh->b_end_io = end_buffer_read_sync;
4358                 submit_bh(READ_META, bh);
4359                 wait_on_buffer(bh);
4360                 if (!buffer_uptodate(bh)) {
4361                         ext4_error(sb, __func__,
4362                                    "unable to read inode block - inode=%lu, "
4363                                    "block=%llu", inode->i_ino, block);
4364                         brelse(bh);
4365                         return -EIO;
4366                 }
4367         }
4368 has_buffer:
4369         iloc->bh = bh;
4370         return 0;
4371 }
4372
4373 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4374 {
4375         /* We have all inode data except xattrs in memory here. */
4376         return __ext4_get_inode_loc(inode, iloc,
4377                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4378 }
4379
4380 void ext4_set_inode_flags(struct inode *inode)
4381 {
4382         unsigned int flags = EXT4_I(inode)->i_flags;
4383
4384         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4385         if (flags & EXT4_SYNC_FL)
4386                 inode->i_flags |= S_SYNC;
4387         if (flags & EXT4_APPEND_FL)
4388                 inode->i_flags |= S_APPEND;
4389         if (flags & EXT4_IMMUTABLE_FL)
4390                 inode->i_flags |= S_IMMUTABLE;
4391         if (flags & EXT4_NOATIME_FL)
4392                 inode->i_flags |= S_NOATIME;
4393         if (flags & EXT4_DIRSYNC_FL)
4394                 inode->i_flags |= S_DIRSYNC;
4395 }
4396
4397 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4398 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4399 {
4400         unsigned int flags = ei->vfs_inode.i_flags;
4401
4402         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4403                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4404         if (flags & S_SYNC)
4405                 ei->i_flags |= EXT4_SYNC_FL;
4406         if (flags & S_APPEND)
4407                 ei->i_flags |= EXT4_APPEND_FL;
4408         if (flags & S_IMMUTABLE)
4409                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4410         if (flags & S_NOATIME)
4411                 ei->i_flags |= EXT4_NOATIME_FL;
4412         if (flags & S_DIRSYNC)
4413                 ei->i_flags |= EXT4_DIRSYNC_FL;
4414 }
4415 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4416                                         struct ext4_inode_info *ei)
4417 {
4418         blkcnt_t i_blocks ;
4419         struct inode *inode = &(ei->vfs_inode);
4420         struct super_block *sb = inode->i_sb;
4421
4422         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4423                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4424                 /* we are using combined 48 bit field */
4425                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4426                                         le32_to_cpu(raw_inode->i_blocks_lo);
4427                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4428                         /* i_blocks represent file system block size */
4429                         return i_blocks  << (inode->i_blkbits - 9);
4430                 } else {
4431                         return i_blocks;
4432                 }
4433         } else {
4434                 return le32_to_cpu(raw_inode->i_blocks_lo);
4435         }
4436 }
4437
4438 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4439 {
4440         struct ext4_iloc iloc;
4441         struct ext4_inode *raw_inode;
4442         struct ext4_inode_info *ei;
4443         struct buffer_head *bh;
4444         struct inode *inode;
4445         long ret;
4446         int block;
4447
4448         inode = iget_locked(sb, ino);
4449         if (!inode)
4450                 return ERR_PTR(-ENOMEM);
4451         if (!(inode->i_state & I_NEW))
4452                 return inode;
4453
4454         ei = EXT4_I(inode);
4455 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4456         ei->i_acl = EXT4_ACL_NOT_CACHED;
4457         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4458 #endif
4459
4460         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4461         if (ret < 0)
4462                 goto bad_inode;
4463         bh = iloc.bh;
4464         raw_inode = ext4_raw_inode(&iloc);
4465         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4466         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4467         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4468         if (!(test_opt(inode->i_sb, NO_UID32))) {
4469                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4470                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4471         }
4472         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4473
4474         ei->i_state = 0;
4475         ei->i_dir_start_lookup = 0;
4476         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4477         /* We now have enough fields to check if the inode was active or not.
4478          * This is needed because nfsd might try to access dead inodes
4479          * the test is that same one that e2fsck uses
4480          * NeilBrown 1999oct15
4481          */
4482         if (inode->i_nlink == 0) {
4483                 if (inode->i_mode == 0 ||
4484                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4485                         /* this inode is deleted */
4486                         brelse(bh);
4487                         ret = -ESTALE;
4488                         goto bad_inode;
4489                 }
4490                 /* The only unlinked inodes we let through here have
4491                  * valid i_mode and are being read by the orphan
4492                  * recovery code: that's fine, we're about to complete
4493                  * the process of deleting those. */
4494         }
4495         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4496         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4497         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4498         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4499                 ei->i_file_acl |=
4500                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4501         inode->i_size = ext4_isize(raw_inode);
4502         ei->i_disksize = inode->i_size;
4503         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4504         ei->i_block_group = iloc.block_group;
4505         ei->i_last_alloc_group = ~0;
4506         /*
4507          * NOTE! The in-memory inode i_data array is in little-endian order
4508          * even on big-endian machines: we do NOT byteswap the block numbers!
4509          */
4510         for (block = 0; block < EXT4_N_BLOCKS; block++)
4511                 ei->i_data[block] = raw_inode->i_block[block];
4512         INIT_LIST_HEAD(&ei->i_orphan);
4513
4514         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4515                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4516                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4517                     EXT4_INODE_SIZE(inode->i_sb)) {
4518                         brelse(bh);
4519                         ret = -EIO;
4520                         goto bad_inode;
4521                 }
4522                 if (ei->i_extra_isize == 0) {
4523                         /* The extra space is currently unused. Use it. */
4524                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4525                                             EXT4_GOOD_OLD_INODE_SIZE;
4526                 } else {
4527                         __le32 *magic = (void *)raw_inode +
4528                                         EXT4_GOOD_OLD_INODE_SIZE +
4529                                         ei->i_extra_isize;
4530                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4531                                  ei->i_state |= EXT4_STATE_XATTR;
4532                 }
4533         } else
4534                 ei->i_extra_isize = 0;
4535
4536         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4537         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4538         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4539         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4540
4541         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4542         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4543                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4544                         inode->i_version |=
4545                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4546         }
4547
4548         ret = 0;
4549         if (ei->i_file_acl &&
4550             ((ei->i_file_acl < 
4551               (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4552                EXT4_SB(sb)->s_gdb_count)) ||
4553              (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4554                 ext4_error(sb, __func__,
4555                            "bad extended attribute block %llu in inode #%lu",
4556                            ei->i_file_acl, inode->i_ino);
4557                 ret = -EIO;
4558                 goto bad_inode;
4559         } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4560                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4561                     (S_ISLNK(inode->i_mode) &&
4562                      !ext4_inode_is_fast_symlink(inode)))
4563                         /* Validate extent which is part of inode */
4564                         ret = ext4_ext_check_inode(inode);
4565         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4566                    (S_ISLNK(inode->i_mode) &&
4567                     !ext4_inode_is_fast_symlink(inode))) {
4568                 /* Validate block references which are part of inode */
4569                 ret = ext4_check_inode_blockref(inode);
4570         }
4571         if (ret) {
4572                 brelse(bh);
4573                 goto bad_inode;
4574         }
4575
4576         if (S_ISREG(inode->i_mode)) {
4577                 inode->i_op = &ext4_file_inode_operations;
4578                 inode->i_fop = &ext4_file_operations;
4579                 ext4_set_aops(inode);
4580         } else if (S_ISDIR(inode->i_mode)) {
4581                 inode->i_op = &ext4_dir_inode_operations;
4582                 inode->i_fop = &ext4_dir_operations;
4583         } else if (S_ISLNK(inode->i_mode)) {
4584                 if (ext4_inode_is_fast_symlink(inode)) {
4585                         inode->i_op = &ext4_fast_symlink_inode_operations;
4586                         nd_terminate_link(ei->i_data, inode->i_size,
4587                                 sizeof(ei->i_data) - 1);
4588                 } else {
4589                         inode->i_op = &ext4_symlink_inode_operations;
4590                         ext4_set_aops(inode);
4591                 }
4592         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4593               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4594                 inode->i_op = &ext4_special_inode_operations;
4595                 if (raw_inode->i_block[0])
4596                         init_special_inode(inode, inode->i_mode,
4597                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4598                 else
4599                         init_special_inode(inode, inode->i_mode,
4600                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4601         } else {
4602                 brelse(bh);
4603                 ret = -EIO;
4604                 ext4_error(inode->i_sb, __func__, 
4605                            "bogus i_mode (%o) for inode=%lu",
4606                            inode->i_mode, inode->i_ino);
4607                 goto bad_inode;
4608         }
4609         brelse(iloc.bh);
4610         ext4_set_inode_flags(inode);
4611         unlock_new_inode(inode);
4612         return inode;
4613
4614 bad_inode:
4615         iget_failed(inode);
4616         return ERR_PTR(ret);
4617 }
4618
4619 static int ext4_inode_blocks_set(handle_t *handle,
4620                                 struct ext4_inode *raw_inode,
4621                                 struct ext4_inode_info *ei)
4622 {
4623         struct inode *inode = &(ei->vfs_inode);
4624         u64 i_blocks = inode->i_blocks;
4625         struct super_block *sb = inode->i_sb;
4626
4627         if (i_blocks <= ~0U) {
4628                 /*
4629                  * i_blocks can be represnted in a 32 bit variable
4630                  * as multiple of 512 bytes
4631                  */
4632                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4633                 raw_inode->i_blocks_high = 0;
4634                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4635                 return 0;
4636         }
4637         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4638                 return -EFBIG;
4639
4640         if (i_blocks <= 0xffffffffffffULL) {
4641                 /*
4642                  * i_blocks can be represented in a 48 bit variable
4643                  * as multiple of 512 bytes
4644                  */
4645                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4646                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4647                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4648         } else {
4649                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4650                 /* i_block is stored in file system block size */
4651                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4652                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4653                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4654         }
4655         return 0;
4656 }
4657
4658 /*
4659  * Post the struct inode info into an on-disk inode location in the
4660  * buffer-cache.  This gobbles the caller's reference to the
4661  * buffer_head in the inode location struct.
4662  *
4663  * The caller must have write access to iloc->bh.
4664  */
4665 static int ext4_do_update_inode(handle_t *handle,
4666                                 struct inode *inode,
4667                                 struct ext4_iloc *iloc)
4668 {
4669         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4670         struct ext4_inode_info *ei = EXT4_I(inode);
4671         struct buffer_head *bh = iloc->bh;
4672         int err = 0, rc, block;
4673
4674         /* For fields not not tracking in the in-memory inode,
4675          * initialise them to zero for new inodes. */
4676         if (ei->i_state & EXT4_STATE_NEW)
4677                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4678
4679         ext4_get_inode_flags(ei);
4680         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4681         if (!(test_opt(inode->i_sb, NO_UID32))) {
4682                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4683                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4684 /*
4685  * Fix up interoperability with old kernels. Otherwise, old inodes get
4686  * re-used with the upper 16 bits of the uid/gid intact
4687  */
4688                 if (!ei->i_dtime) {
4689                         raw_inode->i_uid_high =
4690                                 cpu_to_le16(high_16_bits(inode->i_uid));
4691                         raw_inode->i_gid_high =
4692                                 cpu_to_le16(high_16_bits(inode->i_gid));
4693                 } else {
4694                         raw_inode->i_uid_high = 0;
4695                         raw_inode->i_gid_high = 0;
4696                 }
4697         } else {
4698                 raw_inode->i_uid_low =
4699                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4700                 raw_inode->i_gid_low =
4701                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4702                 raw_inode->i_uid_high = 0;
4703                 raw_inode->i_gid_high = 0;
4704         }
4705         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4706
4707         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4708         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4709         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4710         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4711
4712         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4713                 goto out_brelse;
4714         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4715         /* clear the migrate flag in the raw_inode */
4716         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4717         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4718             cpu_to_le32(EXT4_OS_HURD))
4719                 raw_inode->i_file_acl_high =
4720                         cpu_to_le16(ei->i_file_acl >> 32);
4721         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4722         ext4_isize_set(raw_inode, ei->i_disksize);
4723         if (ei->i_disksize > 0x7fffffffULL) {
4724                 struct super_block *sb = inode->i_sb;
4725                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4726                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4727                                 EXT4_SB(sb)->s_es->s_rev_level ==
4728                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4729                         /* If this is the first large file
4730                          * created, add a flag to the superblock.
4731                          */
4732                         err = ext4_journal_get_write_access(handle,
4733                                         EXT4_SB(sb)->s_sbh);
4734                         if (err)
4735                                 goto out_brelse;
4736                         ext4_update_dynamic_rev(sb);
4737                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4738                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4739                         sb->s_dirt = 1;
4740                         ext4_handle_sync(handle);
4741                         err = ext4_handle_dirty_metadata(handle, inode,
4742                                         EXT4_SB(sb)->s_sbh);
4743                 }
4744         }
4745         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4746         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4747                 if (old_valid_dev(inode->i_rdev)) {
4748                         raw_inode->i_block[0] =
4749                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4750                         raw_inode->i_block[1] = 0;
4751                 } else {
4752                         raw_inode->i_block[0] = 0;
4753                         raw_inode->i_block[1] =
4754                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4755                         raw_inode->i_block[2] = 0;
4756                 }
4757         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4758                 raw_inode->i_block[block] = ei->i_data[block];
4759
4760         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4761         if (ei->i_extra_isize) {
4762                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4763                         raw_inode->i_version_hi =
4764                         cpu_to_le32(inode->i_version >> 32);
4765                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4766         }
4767
4768         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4769         rc = ext4_handle_dirty_metadata(handle, inode, bh);
4770         if (!err)
4771                 err = rc;
4772         ei->i_state &= ~EXT4_STATE_NEW;
4773
4774 out_brelse:
4775         brelse(bh);
4776         ext4_std_error(inode->i_sb, err);
4777         return err;
4778 }
4779
4780 /*
4781  * ext4_write_inode()
4782  *
4783  * We are called from a few places:
4784  *
4785  * - Within generic_file_write() for O_SYNC files.
4786  *   Here, there will be no transaction running. We wait for any running
4787  *   trasnaction to commit.
4788  *
4789  * - Within sys_sync(), kupdate and such.
4790  *   We wait on commit, if tol to.
4791  *
4792  * - Within prune_icache() (PF_MEMALLOC == true)
4793  *   Here we simply return.  We can't afford to block kswapd on the
4794  *   journal commit.
4795  *
4796  * In all cases it is actually safe for us to return without doing anything,
4797  * because the inode has been copied into a raw inode buffer in
4798  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4799  * knfsd.
4800  *
4801  * Note that we are absolutely dependent upon all inode dirtiers doing the
4802  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4803  * which we are interested.
4804  *
4805  * It would be a bug for them to not do this.  The code:
4806  *
4807  *      mark_inode_dirty(inode)
4808  *      stuff();
4809  *      inode->i_size = expr;
4810  *
4811  * is in error because a kswapd-driven write_inode() could occur while
4812  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4813  * will no longer be on the superblock's dirty inode list.
4814  */
4815 int ext4_write_inode(struct inode *inode, int wait)
4816 {
4817         if (current->flags & PF_MEMALLOC)
4818                 return 0;
4819
4820         if (ext4_journal_current_handle()) {
4821                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4822                 dump_stack();
4823                 return -EIO;
4824         }
4825
4826         if (!wait)
4827                 return 0;
4828
4829         return ext4_force_commit(inode->i_sb);
4830 }
4831
4832 /*
4833  * ext4_setattr()
4834  *
4835  * Called from notify_change.
4836  *
4837  * We want to trap VFS attempts to truncate the file as soon as
4838  * possible.  In particular, we want to make sure that when the VFS
4839  * shrinks i_size, we put the inode on the orphan list and modify
4840  * i_disksize immediately, so that during the subsequent flushing of
4841  * dirty pages and freeing of disk blocks, we can guarantee that any
4842  * commit will leave the blocks being flushed in an unused state on
4843  * disk.  (On recovery, the inode will get truncated and the blocks will
4844  * be freed, so we have a strong guarantee that no future commit will
4845  * leave these blocks visible to the user.)
4846  *
4847  * Another thing we have to assure is that if we are in ordered mode
4848  * and inode is still attached to the committing transaction, we must
4849  * we start writeout of all the dirty pages which are being truncated.
4850  * This way we are sure that all the data written in the previous
4851  * transaction are already on disk (truncate waits for pages under
4852  * writeback).
4853  *
4854  * Called with inode->i_mutex down.
4855  */
4856 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4857 {
4858         struct inode *inode = dentry->d_inode;
4859         int error, rc = 0;
4860         const unsigned int ia_valid = attr->ia_valid;
4861
4862         error = inode_change_ok(inode, attr);
4863         if (error)
4864                 return error;
4865
4866         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4867                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4868                 handle_t *handle;
4869
4870                 /* (user+group)*(old+new) structure, inode write (sb,
4871                  * inode block, ? - but truncate inode update has it) */
4872                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4873                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4874                 if (IS_ERR(handle)) {
4875                         error = PTR_ERR(handle);
4876                         goto err_out;
4877                 }
4878                 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4879                 if (error) {
4880                         ext4_journal_stop(handle);
4881                         return error;
4882                 }
4883                 /* Update corresponding info in inode so that everything is in
4884                  * one transaction */
4885                 if (attr->ia_valid & ATTR_UID)
4886                         inode->i_uid = attr->ia_uid;
4887                 if (attr->ia_valid & ATTR_GID)
4888                         inode->i_gid = attr->ia_gid;
4889                 error = ext4_mark_inode_dirty(handle, inode);
4890                 ext4_journal_stop(handle);
4891         }
4892
4893         if (attr->ia_valid & ATTR_SIZE) {
4894                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4895                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4896
4897                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4898                                 error = -EFBIG;
4899                                 goto err_out;
4900                         }
4901                 }
4902         }
4903
4904         if (S_ISREG(inode->i_mode) &&
4905             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4906                 handle_t *handle;
4907
4908                 handle = ext4_journal_start(inode, 3);
4909                 if (IS_ERR(handle)) {
4910                         error = PTR_ERR(handle);
4911                         goto err_out;
4912                 }
4913
4914                 error = ext4_orphan_add(handle, inode);
4915                 EXT4_I(inode)->i_disksize = attr->ia_size;
4916                 rc = ext4_mark_inode_dirty(handle, inode);
4917                 if (!error)
4918                         error = rc;
4919                 ext4_journal_stop(handle);
4920
4921                 if (ext4_should_order_data(inode)) {
4922                         error = ext4_begin_ordered_truncate(inode,
4923                                                             attr->ia_size);
4924                         if (error) {
4925                                 /* Do as much error cleanup as possible */
4926                                 handle = ext4_journal_start(inode, 3);
4927                                 if (IS_ERR(handle)) {
4928                                         ext4_orphan_del(NULL, inode);
4929                                         goto err_out;
4930                                 }
4931                                 ext4_orphan_del(handle, inode);
4932                                 ext4_journal_stop(handle);
4933                                 goto err_out;
4934                         }
4935                 }
4936         }
4937
4938         rc = inode_setattr(inode, attr);
4939
4940         /* If inode_setattr's call to ext4_truncate failed to get a
4941          * transaction handle at all, we need to clean up the in-core
4942          * orphan list manually. */
4943         if (inode->i_nlink)
4944                 ext4_orphan_del(NULL, inode);
4945
4946         if (!rc && (ia_valid & ATTR_MODE))
4947                 rc = ext4_acl_chmod(inode);
4948
4949 err_out:
4950         ext4_std_error(inode->i_sb, error);
4951         if (!error)
4952                 error = rc;
4953         return error;
4954 }
4955
4956 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4957                  struct kstat *stat)
4958 {
4959         struct inode *inode;
4960         unsigned long delalloc_blocks;
4961
4962         inode = dentry->d_inode;
4963         generic_fillattr(inode, stat);
4964
4965         /*
4966          * We can't update i_blocks if the block allocation is delayed
4967          * otherwise in the case of system crash before the real block
4968          * allocation is done, we will have i_blocks inconsistent with
4969          * on-disk file blocks.
4970          * We always keep i_blocks updated together with real
4971          * allocation. But to not confuse with user, stat
4972          * will return the blocks that include the delayed allocation
4973          * blocks for this file.
4974          */
4975         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4976         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4977         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4978
4979         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4980         return 0;
4981 }
4982
4983 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4984                                       int chunk)
4985 {
4986         int indirects;
4987
4988         /* if nrblocks are contiguous */
4989         if (chunk) {
4990                 /*
4991                  * With N contiguous data blocks, it need at most
4992                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4993                  * 2 dindirect blocks
4994                  * 1 tindirect block
4995                  */
4996                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4997                 return indirects + 3;
4998         }
4999         /*
5000          * if nrblocks are not contiguous, worse case, each block touch
5001          * a indirect block, and each indirect block touch a double indirect
5002          * block, plus a triple indirect block
5003          */
5004         indirects = nrblocks * 2 + 1;
5005         return indirects;
5006 }
5007
5008 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5009 {
5010         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5011                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5012         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5013 }
5014
5015 /*
5016  * Account for index blocks, block groups bitmaps and block group
5017  * descriptor blocks if modify datablocks and index blocks
5018  * worse case, the indexs blocks spread over different block groups
5019  *
5020  * If datablocks are discontiguous, they are possible to spread over
5021  * different block groups too. If they are contiugous, with flexbg,
5022  * they could still across block group boundary.
5023  *
5024  * Also account for superblock, inode, quota and xattr blocks
5025  */
5026 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5027 {
5028         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5029         int gdpblocks;
5030         int idxblocks;
5031         int ret = 0;
5032
5033         /*
5034          * How many index blocks need to touch to modify nrblocks?
5035          * The "Chunk" flag indicating whether the nrblocks is
5036          * physically contiguous on disk
5037          *
5038          * For Direct IO and fallocate, they calls get_block to allocate
5039          * one single extent at a time, so they could set the "Chunk" flag
5040          */
5041         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5042
5043         ret = idxblocks;
5044
5045         /*
5046          * Now let's see how many group bitmaps and group descriptors need
5047          * to account
5048          */
5049         groups = idxblocks;
5050         if (chunk)
5051                 groups += 1;
5052         else
5053                 groups += nrblocks;
5054
5055         gdpblocks = groups;
5056         if (groups > ngroups)
5057                 groups = ngroups;
5058         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5059                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5060
5061         /* bitmaps and block group descriptor blocks */
5062         ret += groups + gdpblocks;
5063
5064         /* Blocks for super block, inode, quota and xattr blocks */
5065         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5066
5067         return ret;
5068 }
5069
5070 /*
5071  * Calulate the total number of credits to reserve to fit
5072  * the modification of a single pages into a single transaction,
5073  * which may include multiple chunks of block allocations.
5074  *
5075  * This could be called via ext4_write_begin()
5076  *
5077  * We need to consider the worse case, when
5078  * one new block per extent.
5079  */
5080 int ext4_writepage_trans_blocks(struct inode *inode)
5081 {
5082         int bpp = ext4_journal_blocks_per_page(inode);
5083         int ret;
5084
5085         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5086
5087         /* Account for data blocks for journalled mode */
5088         if (ext4_should_journal_data(inode))
5089                 ret += bpp;
5090         return ret;
5091 }
5092
5093 /*
5094  * Calculate the journal credits for a chunk of data modification.
5095  *
5096  * This is called from DIO, fallocate or whoever calling
5097  * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5098  *
5099  * journal buffers for data blocks are not included here, as DIO
5100  * and fallocate do no need to journal data buffers.
5101  */
5102 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5103 {
5104         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5105 }
5106
5107 /*
5108  * The caller must have previously called ext4_reserve_inode_write().
5109  * Give this, we know that the caller already has write access to iloc->bh.
5110  */
5111 int ext4_mark_iloc_dirty(handle_t *handle,
5112                 struct inode *inode, struct ext4_iloc *iloc)
5113 {
5114         int err = 0;
5115
5116         if (test_opt(inode->i_sb, I_VERSION))
5117                 inode_inc_iversion(inode);
5118
5119         /* the do_update_inode consumes one bh->b_count */
5120         get_bh(iloc->bh);
5121
5122         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5123         err = ext4_do_update_inode(handle, inode, iloc);
5124         put_bh(iloc->bh);
5125         return err;
5126 }
5127
5128 /*
5129  * On success, We end up with an outstanding reference count against
5130  * iloc->bh.  This _must_ be cleaned up later.
5131  */
5132
5133 int
5134 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5135                          struct ext4_iloc *iloc)
5136 {
5137         int err;
5138
5139         err = ext4_get_inode_loc(inode, iloc);
5140         if (!err) {
5141                 BUFFER_TRACE(iloc->bh, "get_write_access");
5142                 err = ext4_journal_get_write_access(handle, iloc->bh);
5143                 if (err) {
5144                         brelse(iloc->bh);
5145                         iloc->bh = NULL;
5146                 }
5147         }
5148         ext4_std_error(inode->i_sb, err);
5149         return err;
5150 }
5151
5152 /*
5153  * Expand an inode by new_extra_isize bytes.
5154  * Returns 0 on success or negative error number on failure.
5155  */
5156 static int ext4_expand_extra_isize(struct inode *inode,
5157                                    unsigned int new_extra_isize,
5158                                    struct ext4_iloc iloc,
5159                                    handle_t *handle)
5160 {
5161         struct ext4_inode *raw_inode;
5162         struct ext4_xattr_ibody_header *header;
5163         struct ext4_xattr_entry *entry;
5164
5165         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5166                 return 0;
5167
5168         raw_inode = ext4_raw_inode(&iloc);
5169
5170         header = IHDR(inode, raw_inode);
5171         entry = IFIRST(header);
5172
5173         /* No extended attributes present */
5174         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5175                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5176                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5177                         new_extra_isize);
5178                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5179                 return 0;
5180         }
5181
5182         /* try to expand with EAs present */
5183         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5184                                           raw_inode, handle);
5185 }
5186
5187 /*
5188  * What we do here is to mark the in-core inode as clean with respect to inode
5189  * dirtiness (it may still be data-dirty).
5190  * This means that the in-core inode may be reaped by prune_icache
5191  * without having to perform any I/O.  This is a very good thing,
5192  * because *any* task may call prune_icache - even ones which
5193  * have a transaction open against a different journal.
5194  *
5195  * Is this cheating?  Not really.  Sure, we haven't written the
5196  * inode out, but prune_icache isn't a user-visible syncing function.
5197  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5198  * we start and wait on commits.
5199  *
5200  * Is this efficient/effective?  Well, we're being nice to the system
5201  * by cleaning up our inodes proactively so they can be reaped
5202  * without I/O.  But we are potentially leaving up to five seconds'
5203  * worth of inodes floating about which prune_icache wants us to
5204  * write out.  One way to fix that would be to get prune_icache()
5205  * to do a write_super() to free up some memory.  It has the desired
5206  * effect.
5207  */
5208 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5209 {
5210         struct ext4_iloc iloc;
5211         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5212         static unsigned int mnt_count;
5213         int err, ret;
5214
5215         might_sleep();
5216         err = ext4_reserve_inode_write(handle, inode, &iloc);
5217         if (ext4_handle_valid(handle) &&
5218             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5219             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5220                 /*
5221                  * We need extra buffer credits since we may write into EA block
5222                  * with this same handle. If journal_extend fails, then it will
5223                  * only result in a minor loss of functionality for that inode.
5224                  * If this is felt to be critical, then e2fsck should be run to
5225                  * force a large enough s_min_extra_isize.
5226                  */
5227                 if ((jbd2_journal_extend(handle,
5228                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5229                         ret = ext4_expand_extra_isize(inode,
5230                                                       sbi->s_want_extra_isize,
5231                                                       iloc, handle);
5232                         if (ret) {
5233                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5234                                 if (mnt_count !=
5235                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5236                                         ext4_warning(inode->i_sb, __func__,
5237                                         "Unable to expand inode %lu. Delete"
5238                                         " some EAs or run e2fsck.",
5239                                         inode->i_ino);
5240                                         mnt_count =
5241                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5242                                 }
5243                         }
5244                 }
5245         }
5246         if (!err)
5247                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5248         return err;
5249 }
5250
5251 /*
5252  * ext4_dirty_inode() is called from __mark_inode_dirty()
5253  *
5254  * We're really interested in the case where a file is being extended.
5255  * i_size has been changed by generic_commit_write() and we thus need
5256  * to include the updated inode in the current transaction.
5257  *
5258  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5259  * are allocated to the file.
5260  *
5261  * If the inode is marked synchronous, we don't honour that here - doing
5262  * so would cause a commit on atime updates, which we don't bother doing.
5263  * We handle synchronous inodes at the highest possible level.
5264  */
5265 void ext4_dirty_inode(struct inode *inode)
5266 {
5267         handle_t *current_handle = ext4_journal_current_handle();
5268         handle_t *handle;
5269
5270         if (!ext4_handle_valid(current_handle)) {
5271                 ext4_mark_inode_dirty(current_handle, inode);
5272                 return;
5273         }
5274
5275         handle = ext4_journal_start(inode, 2);
5276         if (IS_ERR(handle))
5277                 goto out;
5278         if (current_handle &&
5279                 current_handle->h_transaction != handle->h_transaction) {
5280                 /* This task has a transaction open against a different fs */
5281                 printk(KERN_EMERG "%s: transactions do not match!\n",
5282                        __func__);
5283         } else {
5284                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
5285                                 current_handle);
5286                 ext4_mark_inode_dirty(handle, inode);
5287         }
5288         ext4_journal_stop(handle);
5289 out:
5290         return;
5291 }
5292
5293 #if 0
5294 /*
5295  * Bind an inode's backing buffer_head into this transaction, to prevent
5296  * it from being flushed to disk early.  Unlike
5297  * ext4_reserve_inode_write, this leaves behind no bh reference and
5298  * returns no iloc structure, so the caller needs to repeat the iloc
5299  * lookup to mark the inode dirty later.
5300  */
5301 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5302 {
5303         struct ext4_iloc iloc;
5304
5305         int err = 0;
5306         if (handle) {
5307                 err = ext4_get_inode_loc(inode, &iloc);
5308                 if (!err) {
5309                         BUFFER_TRACE(iloc.bh, "get_write_access");
5310                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5311                         if (!err)
5312                                 err = ext4_handle_dirty_metadata(handle,
5313                                                                  inode,
5314                                                                  iloc.bh);
5315                         brelse(iloc.bh);
5316                 }
5317         }
5318         ext4_std_error(inode->i_sb, err);
5319         return err;
5320 }
5321 #endif
5322
5323 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5324 {
5325         journal_t *journal;
5326         handle_t *handle;
5327         int err;
5328
5329         /*
5330          * We have to be very careful here: changing a data block's
5331          * journaling status dynamically is dangerous.  If we write a
5332          * data block to the journal, change the status and then delete
5333          * that block, we risk forgetting to revoke the old log record
5334          * from the journal and so a subsequent replay can corrupt data.
5335          * So, first we make sure that the journal is empty and that
5336          * nobody is changing anything.
5337          */
5338
5339         journal = EXT4_JOURNAL(inode);
5340         if (!journal)
5341                 return 0;
5342         if (is_journal_aborted(journal))
5343                 return -EROFS;
5344
5345         jbd2_journal_lock_updates(journal);
5346         jbd2_journal_flush(journal);
5347
5348         /*
5349          * OK, there are no updates running now, and all cached data is
5350          * synced to disk.  We are now in a completely consistent state
5351          * which doesn't have anything in the journal, and we know that
5352          * no filesystem updates are running, so it is safe to modify
5353          * the inode's in-core data-journaling state flag now.
5354          */
5355
5356         if (val)
5357                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5358         else
5359                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5360         ext4_set_aops(inode);
5361
5362         jbd2_journal_unlock_updates(journal);
5363
5364         /* Finally we can mark the inode as dirty. */
5365
5366         handle = ext4_journal_start(inode, 1);
5367         if (IS_ERR(handle))
5368                 return PTR_ERR(handle);
5369
5370         err = ext4_mark_inode_dirty(handle, inode);
5371         ext4_handle_sync(handle);
5372         ext4_journal_stop(handle);
5373         ext4_std_error(inode->i_sb, err);
5374
5375         return err;
5376 }
5377
5378 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5379 {
5380         return !buffer_mapped(bh);
5381 }
5382
5383 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5384 {
5385         struct page *page = vmf->page;
5386         loff_t size;
5387         unsigned long len;
5388         int ret = -EINVAL;
5389         void *fsdata;
5390         struct file *file = vma->vm_file;
5391         struct inode *inode = file->f_path.dentry->d_inode;
5392         struct address_space *mapping = inode->i_mapping;
5393
5394         /*
5395          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5396          * get i_mutex because we are already holding mmap_sem.
5397          */
5398         down_read(&inode->i_alloc_sem);
5399         size = i_size_read(inode);
5400         if (page->mapping != mapping || size <= page_offset(page)
5401             || !PageUptodate(page)) {
5402                 /* page got truncated from under us? */
5403                 goto out_unlock;
5404         }
5405         ret = 0;
5406         if (PageMappedToDisk(page))
5407                 goto out_unlock;
5408
5409         if (page->index == size >> PAGE_CACHE_SHIFT)
5410                 len = size & ~PAGE_CACHE_MASK;
5411         else
5412                 len = PAGE_CACHE_SIZE;
5413
5414         if (page_has_buffers(page)) {
5415                 /* return if we have all the buffers mapped */
5416                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5417                                        ext4_bh_unmapped))
5418                         goto out_unlock;
5419         }
5420         /*
5421          * OK, we need to fill the hole... Do write_begin write_end
5422          * to do block allocation/reservation.We are not holding
5423          * inode.i__mutex here. That allow * parallel write_begin,
5424          * write_end call. lock_page prevent this from happening
5425          * on the same page though
5426          */
5427         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5428                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5429         if (ret < 0)
5430                 goto out_unlock;
5431         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5432                         len, len, page, fsdata);
5433         if (ret < 0)
5434                 goto out_unlock;
5435         ret = 0;
5436 out_unlock:
5437         if (ret)
5438                 ret = VM_FAULT_SIGBUS;
5439         up_read(&inode->i_alloc_sem);
5440         return ret;
5441 }