ext4: Fix ext4_should_writeback_data() for no-journal mode
[pandora-kernel.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/module.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/jbd2.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static inline int ext4_begin_ordered_truncate(struct inode *inode,
53                                               loff_t new_size)
54 {
55         trace_ext4_begin_ordered_truncate(inode, new_size);
56         /*
57          * If jinode is zero, then we never opened the file for
58          * writing, so there's no need to call
59          * jbd2_journal_begin_ordered_truncate() since there's no
60          * outstanding writes we need to flush.
61          */
62         if (!EXT4_I(inode)->jinode)
63                 return 0;
64         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
65                                                    EXT4_I(inode)->jinode,
66                                                    new_size);
67 }
68
69 static void ext4_invalidatepage(struct page *page, unsigned long offset);
70 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
71                                    struct buffer_head *bh_result, int create);
72 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
73 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
74 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
75 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
76
77 /*
78  * Test whether an inode is a fast symlink.
79  */
80 static int ext4_inode_is_fast_symlink(struct inode *inode)
81 {
82         int ea_blocks = EXT4_I(inode)->i_file_acl ?
83                 (inode->i_sb->s_blocksize >> 9) : 0;
84
85         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
86 }
87
88 /*
89  * Restart the transaction associated with *handle.  This does a commit,
90  * so before we call here everything must be consistently dirtied against
91  * this transaction.
92  */
93 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
94                                  int nblocks)
95 {
96         int ret;
97
98         /*
99          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
100          * moment, get_block can be called only for blocks inside i_size since
101          * page cache has been already dropped and writes are blocked by
102          * i_mutex. So we can safely drop the i_data_sem here.
103          */
104         BUG_ON(EXT4_JOURNAL(inode) == NULL);
105         jbd_debug(2, "restarting handle %p\n", handle);
106         up_write(&EXT4_I(inode)->i_data_sem);
107         ret = ext4_journal_restart(handle, nblocks);
108         down_write(&EXT4_I(inode)->i_data_sem);
109         ext4_discard_preallocations(inode);
110
111         return ret;
112 }
113
114 /*
115  * Called at the last iput() if i_nlink is zero.
116  */
117 void ext4_evict_inode(struct inode *inode)
118 {
119         handle_t *handle;
120         int err;
121
122         trace_ext4_evict_inode(inode);
123         if (inode->i_nlink) {
124                 /*
125                  * When journalling data dirty buffers are tracked only in the
126                  * journal. So although mm thinks everything is clean and
127                  * ready for reaping the inode might still have some pages to
128                  * write in the running transaction or waiting to be
129                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
130                  * (via truncate_inode_pages()) to discard these buffers can
131                  * cause data loss. Also even if we did not discard these
132                  * buffers, we would have no way to find them after the inode
133                  * is reaped and thus user could see stale data if he tries to
134                  * read them before the transaction is checkpointed. So be
135                  * careful and force everything to disk here... We use
136                  * ei->i_datasync_tid to store the newest transaction
137                  * containing inode's data.
138                  *
139                  * Note that directories do not have this problem because they
140                  * don't use page cache.
141                  */
142                 if (ext4_should_journal_data(inode) &&
143                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
144                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
145                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
146
147                         jbd2_log_start_commit(journal, commit_tid);
148                         jbd2_log_wait_commit(journal, commit_tid);
149                         filemap_write_and_wait(&inode->i_data);
150                 }
151                 truncate_inode_pages(&inode->i_data, 0);
152                 goto no_delete;
153         }
154
155         if (!is_bad_inode(inode))
156                 dquot_initialize(inode);
157
158         if (ext4_should_order_data(inode))
159                 ext4_begin_ordered_truncate(inode, 0);
160         truncate_inode_pages(&inode->i_data, 0);
161
162         if (is_bad_inode(inode))
163                 goto no_delete;
164
165         handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
166         if (IS_ERR(handle)) {
167                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
168                 /*
169                  * If we're going to skip the normal cleanup, we still need to
170                  * make sure that the in-core orphan linked list is properly
171                  * cleaned up.
172                  */
173                 ext4_orphan_del(NULL, inode);
174                 goto no_delete;
175         }
176
177         if (IS_SYNC(inode))
178                 ext4_handle_sync(handle);
179         inode->i_size = 0;
180         err = ext4_mark_inode_dirty(handle, inode);
181         if (err) {
182                 ext4_warning(inode->i_sb,
183                              "couldn't mark inode dirty (err %d)", err);
184                 goto stop_handle;
185         }
186         if (inode->i_blocks)
187                 ext4_truncate(inode);
188
189         /*
190          * ext4_ext_truncate() doesn't reserve any slop when it
191          * restarts journal transactions; therefore there may not be
192          * enough credits left in the handle to remove the inode from
193          * the orphan list and set the dtime field.
194          */
195         if (!ext4_handle_has_enough_credits(handle, 3)) {
196                 err = ext4_journal_extend(handle, 3);
197                 if (err > 0)
198                         err = ext4_journal_restart(handle, 3);
199                 if (err != 0) {
200                         ext4_warning(inode->i_sb,
201                                      "couldn't extend journal (err %d)", err);
202                 stop_handle:
203                         ext4_journal_stop(handle);
204                         ext4_orphan_del(NULL, inode);
205                         goto no_delete;
206                 }
207         }
208
209         /*
210          * Kill off the orphan record which ext4_truncate created.
211          * AKPM: I think this can be inside the above `if'.
212          * Note that ext4_orphan_del() has to be able to cope with the
213          * deletion of a non-existent orphan - this is because we don't
214          * know if ext4_truncate() actually created an orphan record.
215          * (Well, we could do this if we need to, but heck - it works)
216          */
217         ext4_orphan_del(handle, inode);
218         EXT4_I(inode)->i_dtime  = get_seconds();
219
220         /*
221          * One subtle ordering requirement: if anything has gone wrong
222          * (transaction abort, IO errors, whatever), then we can still
223          * do these next steps (the fs will already have been marked as
224          * having errors), but we can't free the inode if the mark_dirty
225          * fails.
226          */
227         if (ext4_mark_inode_dirty(handle, inode))
228                 /* If that failed, just do the required in-core inode clear. */
229                 ext4_clear_inode(inode);
230         else
231                 ext4_free_inode(handle, inode);
232         ext4_journal_stop(handle);
233         return;
234 no_delete:
235         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
236 }
237
238 #ifdef CONFIG_QUOTA
239 qsize_t *ext4_get_reserved_space(struct inode *inode)
240 {
241         return &EXT4_I(inode)->i_reserved_quota;
242 }
243 #endif
244
245 /*
246  * Calculate the number of metadata blocks need to reserve
247  * to allocate a block located at @lblock
248  */
249 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
250 {
251         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
252                 return ext4_ext_calc_metadata_amount(inode, lblock);
253
254         return ext4_ind_calc_metadata_amount(inode, lblock);
255 }
256
257 /*
258  * Called with i_data_sem down, which is important since we can call
259  * ext4_discard_preallocations() from here.
260  */
261 void ext4_da_update_reserve_space(struct inode *inode,
262                                         int used, int quota_claim)
263 {
264         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
265         struct ext4_inode_info *ei = EXT4_I(inode);
266
267         spin_lock(&ei->i_block_reservation_lock);
268         trace_ext4_da_update_reserve_space(inode, used);
269         if (unlikely(used > ei->i_reserved_data_blocks)) {
270                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
271                          "with only %d reserved data blocks\n",
272                          __func__, inode->i_ino, used,
273                          ei->i_reserved_data_blocks);
274                 WARN_ON(1);
275                 used = ei->i_reserved_data_blocks;
276         }
277
278         /* Update per-inode reservations */
279         ei->i_reserved_data_blocks -= used;
280         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
281         percpu_counter_sub(&sbi->s_dirtyblocks_counter,
282                            used + ei->i_allocated_meta_blocks);
283         ei->i_allocated_meta_blocks = 0;
284
285         if (ei->i_reserved_data_blocks == 0) {
286                 /*
287                  * We can release all of the reserved metadata blocks
288                  * only when we have written all of the delayed
289                  * allocation blocks.
290                  */
291                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
292                                    ei->i_reserved_meta_blocks);
293                 ei->i_reserved_meta_blocks = 0;
294                 ei->i_da_metadata_calc_len = 0;
295         }
296         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
297
298         /* Update quota subsystem for data blocks */
299         if (quota_claim)
300                 dquot_claim_block(inode, used);
301         else {
302                 /*
303                  * We did fallocate with an offset that is already delayed
304                  * allocated. So on delayed allocated writeback we should
305                  * not re-claim the quota for fallocated blocks.
306                  */
307                 dquot_release_reservation_block(inode, used);
308         }
309
310         /*
311          * If we have done all the pending block allocations and if
312          * there aren't any writers on the inode, we can discard the
313          * inode's preallocations.
314          */
315         if ((ei->i_reserved_data_blocks == 0) &&
316             (atomic_read(&inode->i_writecount) == 0))
317                 ext4_discard_preallocations(inode);
318 }
319
320 static int __check_block_validity(struct inode *inode, const char *func,
321                                 unsigned int line,
322                                 struct ext4_map_blocks *map)
323 {
324         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
325                                    map->m_len)) {
326                 ext4_error_inode(inode, func, line, map->m_pblk,
327                                  "lblock %lu mapped to illegal pblock "
328                                  "(length %d)", (unsigned long) map->m_lblk,
329                                  map->m_len);
330                 return -EIO;
331         }
332         return 0;
333 }
334
335 #define check_block_validity(inode, map)        \
336         __check_block_validity((inode), __func__, __LINE__, (map))
337
338 /*
339  * Return the number of contiguous dirty pages in a given inode
340  * starting at page frame idx.
341  */
342 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
343                                     unsigned int max_pages)
344 {
345         struct address_space *mapping = inode->i_mapping;
346         pgoff_t index;
347         struct pagevec pvec;
348         pgoff_t num = 0;
349         int i, nr_pages, done = 0;
350
351         if (max_pages == 0)
352                 return 0;
353         pagevec_init(&pvec, 0);
354         while (!done) {
355                 index = idx;
356                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
357                                               PAGECACHE_TAG_DIRTY,
358                                               (pgoff_t)PAGEVEC_SIZE);
359                 if (nr_pages == 0)
360                         break;
361                 for (i = 0; i < nr_pages; i++) {
362                         struct page *page = pvec.pages[i];
363                         struct buffer_head *bh, *head;
364
365                         lock_page(page);
366                         if (unlikely(page->mapping != mapping) ||
367                             !PageDirty(page) ||
368                             PageWriteback(page) ||
369                             page->index != idx) {
370                                 done = 1;
371                                 unlock_page(page);
372                                 break;
373                         }
374                         if (page_has_buffers(page)) {
375                                 bh = head = page_buffers(page);
376                                 do {
377                                         if (!buffer_delay(bh) &&
378                                             !buffer_unwritten(bh))
379                                                 done = 1;
380                                         bh = bh->b_this_page;
381                                 } while (!done && (bh != head));
382                         }
383                         unlock_page(page);
384                         if (done)
385                                 break;
386                         idx++;
387                         num++;
388                         if (num >= max_pages) {
389                                 done = 1;
390                                 break;
391                         }
392                 }
393                 pagevec_release(&pvec);
394         }
395         return num;
396 }
397
398 /*
399  * The ext4_map_blocks() function tries to look up the requested blocks,
400  * and returns if the blocks are already mapped.
401  *
402  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
403  * and store the allocated blocks in the result buffer head and mark it
404  * mapped.
405  *
406  * If file type is extents based, it will call ext4_ext_map_blocks(),
407  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
408  * based files
409  *
410  * On success, it returns the number of blocks being mapped or allocate.
411  * if create==0 and the blocks are pre-allocated and uninitialized block,
412  * the result buffer head is unmapped. If the create ==1, it will make sure
413  * the buffer head is mapped.
414  *
415  * It returns 0 if plain look up failed (blocks have not been allocated), in
416  * that casem, buffer head is unmapped
417  *
418  * It returns the error in case of allocation failure.
419  */
420 int ext4_map_blocks(handle_t *handle, struct inode *inode,
421                     struct ext4_map_blocks *map, int flags)
422 {
423         int retval;
424
425         map->m_flags = 0;
426         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
427                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
428                   (unsigned long) map->m_lblk);
429         /*
430          * Try to see if we can get the block without requesting a new
431          * file system block.
432          */
433         down_read((&EXT4_I(inode)->i_data_sem));
434         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
435                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
436         } else {
437                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
438         }
439         up_read((&EXT4_I(inode)->i_data_sem));
440
441         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
442                 int ret = check_block_validity(inode, map);
443                 if (ret != 0)
444                         return ret;
445         }
446
447         /* If it is only a block(s) look up */
448         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
449                 return retval;
450
451         /*
452          * Returns if the blocks have already allocated
453          *
454          * Note that if blocks have been preallocated
455          * ext4_ext_get_block() returns th create = 0
456          * with buffer head unmapped.
457          */
458         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
459                 return retval;
460
461         /*
462          * When we call get_blocks without the create flag, the
463          * BH_Unwritten flag could have gotten set if the blocks
464          * requested were part of a uninitialized extent.  We need to
465          * clear this flag now that we are committed to convert all or
466          * part of the uninitialized extent to be an initialized
467          * extent.  This is because we need to avoid the combination
468          * of BH_Unwritten and BH_Mapped flags being simultaneously
469          * set on the buffer_head.
470          */
471         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
472
473         /*
474          * New blocks allocate and/or writing to uninitialized extent
475          * will possibly result in updating i_data, so we take
476          * the write lock of i_data_sem, and call get_blocks()
477          * with create == 1 flag.
478          */
479         down_write((&EXT4_I(inode)->i_data_sem));
480
481         /*
482          * if the caller is from delayed allocation writeout path
483          * we have already reserved fs blocks for allocation
484          * let the underlying get_block() function know to
485          * avoid double accounting
486          */
487         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
488                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
489         /*
490          * We need to check for EXT4 here because migrate
491          * could have changed the inode type in between
492          */
493         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
494                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
495         } else {
496                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
497
498                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
499                         /*
500                          * We allocated new blocks which will result in
501                          * i_data's format changing.  Force the migrate
502                          * to fail by clearing migrate flags
503                          */
504                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
505                 }
506
507                 /*
508                  * Update reserved blocks/metadata blocks after successful
509                  * block allocation which had been deferred till now. We don't
510                  * support fallocate for non extent files. So we can update
511                  * reserve space here.
512                  */
513                 if ((retval > 0) &&
514                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
515                         ext4_da_update_reserve_space(inode, retval, 1);
516         }
517         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
518                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
519
520         up_write((&EXT4_I(inode)->i_data_sem));
521         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
522                 int ret = check_block_validity(inode, map);
523                 if (ret != 0)
524                         return ret;
525         }
526         return retval;
527 }
528
529 /* Maximum number of blocks we map for direct IO at once. */
530 #define DIO_MAX_BLOCKS 4096
531
532 static int _ext4_get_block(struct inode *inode, sector_t iblock,
533                            struct buffer_head *bh, int flags)
534 {
535         handle_t *handle = ext4_journal_current_handle();
536         struct ext4_map_blocks map;
537         int ret = 0, started = 0;
538         int dio_credits;
539
540         map.m_lblk = iblock;
541         map.m_len = bh->b_size >> inode->i_blkbits;
542
543         if (flags && !handle) {
544                 /* Direct IO write... */
545                 if (map.m_len > DIO_MAX_BLOCKS)
546                         map.m_len = DIO_MAX_BLOCKS;
547                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
548                 handle = ext4_journal_start(inode, dio_credits);
549                 if (IS_ERR(handle)) {
550                         ret = PTR_ERR(handle);
551                         return ret;
552                 }
553                 started = 1;
554         }
555
556         ret = ext4_map_blocks(handle, inode, &map, flags);
557         if (ret > 0) {
558                 map_bh(bh, inode->i_sb, map.m_pblk);
559                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
560                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
561                 ret = 0;
562         }
563         if (started)
564                 ext4_journal_stop(handle);
565         return ret;
566 }
567
568 int ext4_get_block(struct inode *inode, sector_t iblock,
569                    struct buffer_head *bh, int create)
570 {
571         return _ext4_get_block(inode, iblock, bh,
572                                create ? EXT4_GET_BLOCKS_CREATE : 0);
573 }
574
575 /*
576  * `handle' can be NULL if create is zero
577  */
578 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
579                                 ext4_lblk_t block, int create, int *errp)
580 {
581         struct ext4_map_blocks map;
582         struct buffer_head *bh;
583         int fatal = 0, err;
584
585         J_ASSERT(handle != NULL || create == 0);
586
587         map.m_lblk = block;
588         map.m_len = 1;
589         err = ext4_map_blocks(handle, inode, &map,
590                               create ? EXT4_GET_BLOCKS_CREATE : 0);
591
592         if (err < 0)
593                 *errp = err;
594         if (err <= 0)
595                 return NULL;
596         *errp = 0;
597
598         bh = sb_getblk(inode->i_sb, map.m_pblk);
599         if (!bh) {
600                 *errp = -EIO;
601                 return NULL;
602         }
603         if (map.m_flags & EXT4_MAP_NEW) {
604                 J_ASSERT(create != 0);
605                 J_ASSERT(handle != NULL);
606
607                 /*
608                  * Now that we do not always journal data, we should
609                  * keep in mind whether this should always journal the
610                  * new buffer as metadata.  For now, regular file
611                  * writes use ext4_get_block instead, so it's not a
612                  * problem.
613                  */
614                 lock_buffer(bh);
615                 BUFFER_TRACE(bh, "call get_create_access");
616                 fatal = ext4_journal_get_create_access(handle, bh);
617                 if (!fatal && !buffer_uptodate(bh)) {
618                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
619                         set_buffer_uptodate(bh);
620                 }
621                 unlock_buffer(bh);
622                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
623                 err = ext4_handle_dirty_metadata(handle, inode, bh);
624                 if (!fatal)
625                         fatal = err;
626         } else {
627                 BUFFER_TRACE(bh, "not a new buffer");
628         }
629         if (fatal) {
630                 *errp = fatal;
631                 brelse(bh);
632                 bh = NULL;
633         }
634         return bh;
635 }
636
637 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
638                                ext4_lblk_t block, int create, int *err)
639 {
640         struct buffer_head *bh;
641
642         bh = ext4_getblk(handle, inode, block, create, err);
643         if (!bh)
644                 return bh;
645         if (buffer_uptodate(bh))
646                 return bh;
647         ll_rw_block(READ_META, 1, &bh);
648         wait_on_buffer(bh);
649         if (buffer_uptodate(bh))
650                 return bh;
651         put_bh(bh);
652         *err = -EIO;
653         return NULL;
654 }
655
656 static int walk_page_buffers(handle_t *handle,
657                              struct buffer_head *head,
658                              unsigned from,
659                              unsigned to,
660                              int *partial,
661                              int (*fn)(handle_t *handle,
662                                        struct buffer_head *bh))
663 {
664         struct buffer_head *bh;
665         unsigned block_start, block_end;
666         unsigned blocksize = head->b_size;
667         int err, ret = 0;
668         struct buffer_head *next;
669
670         for (bh = head, block_start = 0;
671              ret == 0 && (bh != head || !block_start);
672              block_start = block_end, bh = next) {
673                 next = bh->b_this_page;
674                 block_end = block_start + blocksize;
675                 if (block_end <= from || block_start >= to) {
676                         if (partial && !buffer_uptodate(bh))
677                                 *partial = 1;
678                         continue;
679                 }
680                 err = (*fn)(handle, bh);
681                 if (!ret)
682                         ret = err;
683         }
684         return ret;
685 }
686
687 /*
688  * To preserve ordering, it is essential that the hole instantiation and
689  * the data write be encapsulated in a single transaction.  We cannot
690  * close off a transaction and start a new one between the ext4_get_block()
691  * and the commit_write().  So doing the jbd2_journal_start at the start of
692  * prepare_write() is the right place.
693  *
694  * Also, this function can nest inside ext4_writepage() ->
695  * block_write_full_page(). In that case, we *know* that ext4_writepage()
696  * has generated enough buffer credits to do the whole page.  So we won't
697  * block on the journal in that case, which is good, because the caller may
698  * be PF_MEMALLOC.
699  *
700  * By accident, ext4 can be reentered when a transaction is open via
701  * quota file writes.  If we were to commit the transaction while thus
702  * reentered, there can be a deadlock - we would be holding a quota
703  * lock, and the commit would never complete if another thread had a
704  * transaction open and was blocking on the quota lock - a ranking
705  * violation.
706  *
707  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
708  * will _not_ run commit under these circumstances because handle->h_ref
709  * is elevated.  We'll still have enough credits for the tiny quotafile
710  * write.
711  */
712 static int do_journal_get_write_access(handle_t *handle,
713                                        struct buffer_head *bh)
714 {
715         int dirty = buffer_dirty(bh);
716         int ret;
717
718         if (!buffer_mapped(bh) || buffer_freed(bh))
719                 return 0;
720         /*
721          * __block_write_begin() could have dirtied some buffers. Clean
722          * the dirty bit as jbd2_journal_get_write_access() could complain
723          * otherwise about fs integrity issues. Setting of the dirty bit
724          * by __block_write_begin() isn't a real problem here as we clear
725          * the bit before releasing a page lock and thus writeback cannot
726          * ever write the buffer.
727          */
728         if (dirty)
729                 clear_buffer_dirty(bh);
730         ret = ext4_journal_get_write_access(handle, bh);
731         if (!ret && dirty)
732                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
733         return ret;
734 }
735
736 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
737                    struct buffer_head *bh_result, int create);
738 static int ext4_write_begin(struct file *file, struct address_space *mapping,
739                             loff_t pos, unsigned len, unsigned flags,
740                             struct page **pagep, void **fsdata)
741 {
742         struct inode *inode = mapping->host;
743         int ret, needed_blocks;
744         handle_t *handle;
745         int retries = 0;
746         struct page *page;
747         pgoff_t index;
748         unsigned from, to;
749
750         trace_ext4_write_begin(inode, pos, len, flags);
751         /*
752          * Reserve one block more for addition to orphan list in case
753          * we allocate blocks but write fails for some reason
754          */
755         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
756         index = pos >> PAGE_CACHE_SHIFT;
757         from = pos & (PAGE_CACHE_SIZE - 1);
758         to = from + len;
759
760 retry:
761         handle = ext4_journal_start(inode, needed_blocks);
762         if (IS_ERR(handle)) {
763                 ret = PTR_ERR(handle);
764                 goto out;
765         }
766
767         /* We cannot recurse into the filesystem as the transaction is already
768          * started */
769         flags |= AOP_FLAG_NOFS;
770
771         page = grab_cache_page_write_begin(mapping, index, flags);
772         if (!page) {
773                 ext4_journal_stop(handle);
774                 ret = -ENOMEM;
775                 goto out;
776         }
777         *pagep = page;
778
779         if (ext4_should_dioread_nolock(inode))
780                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
781         else
782                 ret = __block_write_begin(page, pos, len, ext4_get_block);
783
784         if (!ret && ext4_should_journal_data(inode)) {
785                 ret = walk_page_buffers(handle, page_buffers(page),
786                                 from, to, NULL, do_journal_get_write_access);
787         }
788
789         if (ret) {
790                 unlock_page(page);
791                 page_cache_release(page);
792                 /*
793                  * __block_write_begin may have instantiated a few blocks
794                  * outside i_size.  Trim these off again. Don't need
795                  * i_size_read because we hold i_mutex.
796                  *
797                  * Add inode to orphan list in case we crash before
798                  * truncate finishes
799                  */
800                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
801                         ext4_orphan_add(handle, inode);
802
803                 ext4_journal_stop(handle);
804                 if (pos + len > inode->i_size) {
805                         ext4_truncate_failed_write(inode);
806                         /*
807                          * If truncate failed early the inode might
808                          * still be on the orphan list; we need to
809                          * make sure the inode is removed from the
810                          * orphan list in that case.
811                          */
812                         if (inode->i_nlink)
813                                 ext4_orphan_del(NULL, inode);
814                 }
815         }
816
817         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
818                 goto retry;
819 out:
820         return ret;
821 }
822
823 /* For write_end() in data=journal mode */
824 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
825 {
826         if (!buffer_mapped(bh) || buffer_freed(bh))
827                 return 0;
828         set_buffer_uptodate(bh);
829         return ext4_handle_dirty_metadata(handle, NULL, bh);
830 }
831
832 static int ext4_generic_write_end(struct file *file,
833                                   struct address_space *mapping,
834                                   loff_t pos, unsigned len, unsigned copied,
835                                   struct page *page, void *fsdata)
836 {
837         int i_size_changed = 0;
838         struct inode *inode = mapping->host;
839         handle_t *handle = ext4_journal_current_handle();
840
841         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
842
843         /*
844          * No need to use i_size_read() here, the i_size
845          * cannot change under us because we hold i_mutex.
846          *
847          * But it's important to update i_size while still holding page lock:
848          * page writeout could otherwise come in and zero beyond i_size.
849          */
850         if (pos + copied > inode->i_size) {
851                 i_size_write(inode, pos + copied);
852                 i_size_changed = 1;
853         }
854
855         if (pos + copied >  EXT4_I(inode)->i_disksize) {
856                 /* We need to mark inode dirty even if
857                  * new_i_size is less that inode->i_size
858                  * bu greater than i_disksize.(hint delalloc)
859                  */
860                 ext4_update_i_disksize(inode, (pos + copied));
861                 i_size_changed = 1;
862         }
863         unlock_page(page);
864         page_cache_release(page);
865
866         /*
867          * Don't mark the inode dirty under page lock. First, it unnecessarily
868          * makes the holding time of page lock longer. Second, it forces lock
869          * ordering of page lock and transaction start for journaling
870          * filesystems.
871          */
872         if (i_size_changed)
873                 ext4_mark_inode_dirty(handle, inode);
874
875         return copied;
876 }
877
878 /*
879  * We need to pick up the new inode size which generic_commit_write gave us
880  * `file' can be NULL - eg, when called from page_symlink().
881  *
882  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
883  * buffers are managed internally.
884  */
885 static int ext4_ordered_write_end(struct file *file,
886                                   struct address_space *mapping,
887                                   loff_t pos, unsigned len, unsigned copied,
888                                   struct page *page, void *fsdata)
889 {
890         handle_t *handle = ext4_journal_current_handle();
891         struct inode *inode = mapping->host;
892         int ret = 0, ret2;
893
894         trace_ext4_ordered_write_end(inode, pos, len, copied);
895         ret = ext4_jbd2_file_inode(handle, inode);
896
897         if (ret == 0) {
898                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
899                                                         page, fsdata);
900                 copied = ret2;
901                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
902                         /* if we have allocated more blocks and copied
903                          * less. We will have blocks allocated outside
904                          * inode->i_size. So truncate them
905                          */
906                         ext4_orphan_add(handle, inode);
907                 if (ret2 < 0)
908                         ret = ret2;
909         }
910         ret2 = ext4_journal_stop(handle);
911         if (!ret)
912                 ret = ret2;
913
914         if (pos + len > inode->i_size) {
915                 ext4_truncate_failed_write(inode);
916                 /*
917                  * If truncate failed early the inode might still be
918                  * on the orphan list; we need to make sure the inode
919                  * is removed from the orphan list in that case.
920                  */
921                 if (inode->i_nlink)
922                         ext4_orphan_del(NULL, inode);
923         }
924
925
926         return ret ? ret : copied;
927 }
928
929 static int ext4_writeback_write_end(struct file *file,
930                                     struct address_space *mapping,
931                                     loff_t pos, unsigned len, unsigned copied,
932                                     struct page *page, void *fsdata)
933 {
934         handle_t *handle = ext4_journal_current_handle();
935         struct inode *inode = mapping->host;
936         int ret = 0, ret2;
937
938         trace_ext4_writeback_write_end(inode, pos, len, copied);
939         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
940                                                         page, fsdata);
941         copied = ret2;
942         if (pos + len > inode->i_size && ext4_can_truncate(inode))
943                 /* if we have allocated more blocks and copied
944                  * less. We will have blocks allocated outside
945                  * inode->i_size. So truncate them
946                  */
947                 ext4_orphan_add(handle, inode);
948
949         if (ret2 < 0)
950                 ret = ret2;
951
952         ret2 = ext4_journal_stop(handle);
953         if (!ret)
954                 ret = ret2;
955
956         if (pos + len > inode->i_size) {
957                 ext4_truncate_failed_write(inode);
958                 /*
959                  * If truncate failed early the inode might still be
960                  * on the orphan list; we need to make sure the inode
961                  * is removed from the orphan list in that case.
962                  */
963                 if (inode->i_nlink)
964                         ext4_orphan_del(NULL, inode);
965         }
966
967         return ret ? ret : copied;
968 }
969
970 static int ext4_journalled_write_end(struct file *file,
971                                      struct address_space *mapping,
972                                      loff_t pos, unsigned len, unsigned copied,
973                                      struct page *page, void *fsdata)
974 {
975         handle_t *handle = ext4_journal_current_handle();
976         struct inode *inode = mapping->host;
977         int ret = 0, ret2;
978         int partial = 0;
979         unsigned from, to;
980         loff_t new_i_size;
981
982         trace_ext4_journalled_write_end(inode, pos, len, copied);
983         from = pos & (PAGE_CACHE_SIZE - 1);
984         to = from + len;
985
986         BUG_ON(!ext4_handle_valid(handle));
987
988         if (copied < len) {
989                 if (!PageUptodate(page))
990                         copied = 0;
991                 page_zero_new_buffers(page, from+copied, to);
992         }
993
994         ret = walk_page_buffers(handle, page_buffers(page), from,
995                                 to, &partial, write_end_fn);
996         if (!partial)
997                 SetPageUptodate(page);
998         new_i_size = pos + copied;
999         if (new_i_size > inode->i_size)
1000                 i_size_write(inode, pos+copied);
1001         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1002         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1003         if (new_i_size > EXT4_I(inode)->i_disksize) {
1004                 ext4_update_i_disksize(inode, new_i_size);
1005                 ret2 = ext4_mark_inode_dirty(handle, inode);
1006                 if (!ret)
1007                         ret = ret2;
1008         }
1009
1010         unlock_page(page);
1011         page_cache_release(page);
1012         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1013                 /* if we have allocated more blocks and copied
1014                  * less. We will have blocks allocated outside
1015                  * inode->i_size. So truncate them
1016                  */
1017                 ext4_orphan_add(handle, inode);
1018
1019         ret2 = ext4_journal_stop(handle);
1020         if (!ret)
1021                 ret = ret2;
1022         if (pos + len > inode->i_size) {
1023                 ext4_truncate_failed_write(inode);
1024                 /*
1025                  * If truncate failed early the inode might still be
1026                  * on the orphan list; we need to make sure the inode
1027                  * is removed from the orphan list in that case.
1028                  */
1029                 if (inode->i_nlink)
1030                         ext4_orphan_del(NULL, inode);
1031         }
1032
1033         return ret ? ret : copied;
1034 }
1035
1036 /*
1037  * Reserve a single block located at lblock
1038  */
1039 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1040 {
1041         int retries = 0;
1042         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1043         struct ext4_inode_info *ei = EXT4_I(inode);
1044         unsigned long md_needed;
1045         int ret;
1046
1047         /*
1048          * recalculate the amount of metadata blocks to reserve
1049          * in order to allocate nrblocks
1050          * worse case is one extent per block
1051          */
1052 repeat:
1053         spin_lock(&ei->i_block_reservation_lock);
1054         md_needed = ext4_calc_metadata_amount(inode, lblock);
1055         trace_ext4_da_reserve_space(inode, md_needed);
1056         spin_unlock(&ei->i_block_reservation_lock);
1057
1058         /*
1059          * We will charge metadata quota at writeout time; this saves
1060          * us from metadata over-estimation, though we may go over by
1061          * a small amount in the end.  Here we just reserve for data.
1062          */
1063         ret = dquot_reserve_block(inode, 1);
1064         if (ret)
1065                 return ret;
1066         /*
1067          * We do still charge estimated metadata to the sb though;
1068          * we cannot afford to run out of free blocks.
1069          */
1070         if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) {
1071                 dquot_release_reservation_block(inode, 1);
1072                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1073                         yield();
1074                         goto repeat;
1075                 }
1076                 return -ENOSPC;
1077         }
1078         spin_lock(&ei->i_block_reservation_lock);
1079         ei->i_reserved_data_blocks++;
1080         ei->i_reserved_meta_blocks += md_needed;
1081         spin_unlock(&ei->i_block_reservation_lock);
1082
1083         return 0;       /* success */
1084 }
1085
1086 static void ext4_da_release_space(struct inode *inode, int to_free)
1087 {
1088         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1089         struct ext4_inode_info *ei = EXT4_I(inode);
1090
1091         if (!to_free)
1092                 return;         /* Nothing to release, exit */
1093
1094         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1095
1096         trace_ext4_da_release_space(inode, to_free);
1097         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1098                 /*
1099                  * if there aren't enough reserved blocks, then the
1100                  * counter is messed up somewhere.  Since this
1101                  * function is called from invalidate page, it's
1102                  * harmless to return without any action.
1103                  */
1104                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1105                          "ino %lu, to_free %d with only %d reserved "
1106                          "data blocks\n", inode->i_ino, to_free,
1107                          ei->i_reserved_data_blocks);
1108                 WARN_ON(1);
1109                 to_free = ei->i_reserved_data_blocks;
1110         }
1111         ei->i_reserved_data_blocks -= to_free;
1112
1113         if (ei->i_reserved_data_blocks == 0) {
1114                 /*
1115                  * We can release all of the reserved metadata blocks
1116                  * only when we have written all of the delayed
1117                  * allocation blocks.
1118                  */
1119                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1120                                    ei->i_reserved_meta_blocks);
1121                 ei->i_reserved_meta_blocks = 0;
1122                 ei->i_da_metadata_calc_len = 0;
1123         }
1124
1125         /* update fs dirty data blocks counter */
1126         percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1127
1128         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1129
1130         dquot_release_reservation_block(inode, to_free);
1131 }
1132
1133 static void ext4_da_page_release_reservation(struct page *page,
1134                                              unsigned long offset)
1135 {
1136         int to_release = 0;
1137         struct buffer_head *head, *bh;
1138         unsigned int curr_off = 0;
1139
1140         head = page_buffers(page);
1141         bh = head;
1142         do {
1143                 unsigned int next_off = curr_off + bh->b_size;
1144
1145                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1146                         to_release++;
1147                         clear_buffer_delay(bh);
1148                 }
1149                 curr_off = next_off;
1150         } while ((bh = bh->b_this_page) != head);
1151         ext4_da_release_space(page->mapping->host, to_release);
1152 }
1153
1154 /*
1155  * Delayed allocation stuff
1156  */
1157
1158 /*
1159  * mpage_da_submit_io - walks through extent of pages and try to write
1160  * them with writepage() call back
1161  *
1162  * @mpd->inode: inode
1163  * @mpd->first_page: first page of the extent
1164  * @mpd->next_page: page after the last page of the extent
1165  *
1166  * By the time mpage_da_submit_io() is called we expect all blocks
1167  * to be allocated. this may be wrong if allocation failed.
1168  *
1169  * As pages are already locked by write_cache_pages(), we can't use it
1170  */
1171 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1172                               struct ext4_map_blocks *map)
1173 {
1174         struct pagevec pvec;
1175         unsigned long index, end;
1176         int ret = 0, err, nr_pages, i;
1177         struct inode *inode = mpd->inode;
1178         struct address_space *mapping = inode->i_mapping;
1179         loff_t size = i_size_read(inode);
1180         unsigned int len, block_start;
1181         struct buffer_head *bh, *page_bufs = NULL;
1182         int journal_data = ext4_should_journal_data(inode);
1183         sector_t pblock = 0, cur_logical = 0;
1184         struct ext4_io_submit io_submit;
1185
1186         BUG_ON(mpd->next_page <= mpd->first_page);
1187         memset(&io_submit, 0, sizeof(io_submit));
1188         /*
1189          * We need to start from the first_page to the next_page - 1
1190          * to make sure we also write the mapped dirty buffer_heads.
1191          * If we look at mpd->b_blocknr we would only be looking
1192          * at the currently mapped buffer_heads.
1193          */
1194         index = mpd->first_page;
1195         end = mpd->next_page - 1;
1196
1197         pagevec_init(&pvec, 0);
1198         while (index <= end) {
1199                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1200                 if (nr_pages == 0)
1201                         break;
1202                 for (i = 0; i < nr_pages; i++) {
1203                         int commit_write = 0, skip_page = 0;
1204                         struct page *page = pvec.pages[i];
1205
1206                         index = page->index;
1207                         if (index > end)
1208                                 break;
1209
1210                         if (index == size >> PAGE_CACHE_SHIFT)
1211                                 len = size & ~PAGE_CACHE_MASK;
1212                         else
1213                                 len = PAGE_CACHE_SIZE;
1214                         if (map) {
1215                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1216                                                         inode->i_blkbits);
1217                                 pblock = map->m_pblk + (cur_logical -
1218                                                         map->m_lblk);
1219                         }
1220                         index++;
1221
1222                         BUG_ON(!PageLocked(page));
1223                         BUG_ON(PageWriteback(page));
1224
1225                         /*
1226                          * If the page does not have buffers (for
1227                          * whatever reason), try to create them using
1228                          * __block_write_begin.  If this fails,
1229                          * skip the page and move on.
1230                          */
1231                         if (!page_has_buffers(page)) {
1232                                 if (__block_write_begin(page, 0, len,
1233                                                 noalloc_get_block_write)) {
1234                                 skip_page:
1235                                         unlock_page(page);
1236                                         continue;
1237                                 }
1238                                 commit_write = 1;
1239                         }
1240
1241                         bh = page_bufs = page_buffers(page);
1242                         block_start = 0;
1243                         do {
1244                                 if (!bh)
1245                                         goto skip_page;
1246                                 if (map && (cur_logical >= map->m_lblk) &&
1247                                     (cur_logical <= (map->m_lblk +
1248                                                      (map->m_len - 1)))) {
1249                                         if (buffer_delay(bh)) {
1250                                                 clear_buffer_delay(bh);
1251                                                 bh->b_blocknr = pblock;
1252                                         }
1253                                         if (buffer_unwritten(bh) ||
1254                                             buffer_mapped(bh))
1255                                                 BUG_ON(bh->b_blocknr != pblock);
1256                                         if (map->m_flags & EXT4_MAP_UNINIT)
1257                                                 set_buffer_uninit(bh);
1258                                         clear_buffer_unwritten(bh);
1259                                 }
1260
1261                                 /* skip page if block allocation undone */
1262                                 if (buffer_delay(bh) || buffer_unwritten(bh))
1263                                         skip_page = 1;
1264                                 bh = bh->b_this_page;
1265                                 block_start += bh->b_size;
1266                                 cur_logical++;
1267                                 pblock++;
1268                         } while (bh != page_bufs);
1269
1270                         if (skip_page)
1271                                 goto skip_page;
1272
1273                         if (commit_write)
1274                                 /* mark the buffer_heads as dirty & uptodate */
1275                                 block_commit_write(page, 0, len);
1276
1277                         clear_page_dirty_for_io(page);
1278                         /*
1279                          * Delalloc doesn't support data journalling,
1280                          * but eventually maybe we'll lift this
1281                          * restriction.
1282                          */
1283                         if (unlikely(journal_data && PageChecked(page)))
1284                                 err = __ext4_journalled_writepage(page, len);
1285                         else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1286                                 err = ext4_bio_write_page(&io_submit, page,
1287                                                           len, mpd->wbc);
1288                         else
1289                                 err = block_write_full_page(page,
1290                                         noalloc_get_block_write, mpd->wbc);
1291
1292                         if (!err)
1293                                 mpd->pages_written++;
1294                         /*
1295                          * In error case, we have to continue because
1296                          * remaining pages are still locked
1297                          */
1298                         if (ret == 0)
1299                                 ret = err;
1300                 }
1301                 pagevec_release(&pvec);
1302         }
1303         ext4_io_submit(&io_submit);
1304         return ret;
1305 }
1306
1307 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1308 {
1309         int nr_pages, i;
1310         pgoff_t index, end;
1311         struct pagevec pvec;
1312         struct inode *inode = mpd->inode;
1313         struct address_space *mapping = inode->i_mapping;
1314
1315         index = mpd->first_page;
1316         end   = mpd->next_page - 1;
1317         while (index <= end) {
1318                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1319                 if (nr_pages == 0)
1320                         break;
1321                 for (i = 0; i < nr_pages; i++) {
1322                         struct page *page = pvec.pages[i];
1323                         if (page->index > end)
1324                                 break;
1325                         BUG_ON(!PageLocked(page));
1326                         BUG_ON(PageWriteback(page));
1327                         block_invalidatepage(page, 0);
1328                         ClearPageUptodate(page);
1329                         unlock_page(page);
1330                 }
1331                 index = pvec.pages[nr_pages - 1]->index + 1;
1332                 pagevec_release(&pvec);
1333         }
1334         return;
1335 }
1336
1337 static void ext4_print_free_blocks(struct inode *inode)
1338 {
1339         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1340         printk(KERN_CRIT "Total free blocks count %lld\n",
1341                ext4_count_free_blocks(inode->i_sb));
1342         printk(KERN_CRIT "Free/Dirty block details\n");
1343         printk(KERN_CRIT "free_blocks=%lld\n",
1344                (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
1345         printk(KERN_CRIT "dirty_blocks=%lld\n",
1346                (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1347         printk(KERN_CRIT "Block reservation details\n");
1348         printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1349                EXT4_I(inode)->i_reserved_data_blocks);
1350         printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1351                EXT4_I(inode)->i_reserved_meta_blocks);
1352         return;
1353 }
1354
1355 /*
1356  * mpage_da_map_and_submit - go through given space, map them
1357  *       if necessary, and then submit them for I/O
1358  *
1359  * @mpd - bh describing space
1360  *
1361  * The function skips space we know is already mapped to disk blocks.
1362  *
1363  */
1364 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1365 {
1366         int err, blks, get_blocks_flags;
1367         struct ext4_map_blocks map, *mapp = NULL;
1368         sector_t next = mpd->b_blocknr;
1369         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1370         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1371         handle_t *handle = NULL;
1372
1373         /*
1374          * If the blocks are mapped already, or we couldn't accumulate
1375          * any blocks, then proceed immediately to the submission stage.
1376          */
1377         if ((mpd->b_size == 0) ||
1378             ((mpd->b_state  & (1 << BH_Mapped)) &&
1379              !(mpd->b_state & (1 << BH_Delay)) &&
1380              !(mpd->b_state & (1 << BH_Unwritten))))
1381                 goto submit_io;
1382
1383         handle = ext4_journal_current_handle();
1384         BUG_ON(!handle);
1385
1386         /*
1387          * Call ext4_map_blocks() to allocate any delayed allocation
1388          * blocks, or to convert an uninitialized extent to be
1389          * initialized (in the case where we have written into
1390          * one or more preallocated blocks).
1391          *
1392          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1393          * indicate that we are on the delayed allocation path.  This
1394          * affects functions in many different parts of the allocation
1395          * call path.  This flag exists primarily because we don't
1396          * want to change *many* call functions, so ext4_map_blocks()
1397          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1398          * inode's allocation semaphore is taken.
1399          *
1400          * If the blocks in questions were delalloc blocks, set
1401          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1402          * variables are updated after the blocks have been allocated.
1403          */
1404         map.m_lblk = next;
1405         map.m_len = max_blocks;
1406         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1407         if (ext4_should_dioread_nolock(mpd->inode))
1408                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1409         if (mpd->b_state & (1 << BH_Delay))
1410                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1411
1412         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1413         if (blks < 0) {
1414                 struct super_block *sb = mpd->inode->i_sb;
1415
1416                 err = blks;
1417                 /*
1418                  * If get block returns EAGAIN or ENOSPC and there
1419                  * appears to be free blocks we will just let
1420                  * mpage_da_submit_io() unlock all of the pages.
1421                  */
1422                 if (err == -EAGAIN)
1423                         goto submit_io;
1424
1425                 if (err == -ENOSPC &&
1426                     ext4_count_free_blocks(sb)) {
1427                         mpd->retval = err;
1428                         goto submit_io;
1429                 }
1430
1431                 /*
1432                  * get block failure will cause us to loop in
1433                  * writepages, because a_ops->writepage won't be able
1434                  * to make progress. The page will be redirtied by
1435                  * writepage and writepages will again try to write
1436                  * the same.
1437                  */
1438                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1439                         ext4_msg(sb, KERN_CRIT,
1440                                  "delayed block allocation failed for inode %lu "
1441                                  "at logical offset %llu with max blocks %zd "
1442                                  "with error %d", mpd->inode->i_ino,
1443                                  (unsigned long long) next,
1444                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1445                         ext4_msg(sb, KERN_CRIT,
1446                                 "This should not happen!! Data will be lost\n");
1447                         if (err == -ENOSPC)
1448                                 ext4_print_free_blocks(mpd->inode);
1449                 }
1450                 /* invalidate all the pages */
1451                 ext4_da_block_invalidatepages(mpd);
1452
1453                 /* Mark this page range as having been completed */
1454                 mpd->io_done = 1;
1455                 return;
1456         }
1457         BUG_ON(blks == 0);
1458
1459         mapp = &map;
1460         if (map.m_flags & EXT4_MAP_NEW) {
1461                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1462                 int i;
1463
1464                 for (i = 0; i < map.m_len; i++)
1465                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1466         }
1467
1468         if (ext4_should_order_data(mpd->inode)) {
1469                 err = ext4_jbd2_file_inode(handle, mpd->inode);
1470                 if (err)
1471                         /* This only happens if the journal is aborted */
1472                         return;
1473         }
1474
1475         /*
1476          * Update on-disk size along with block allocation.
1477          */
1478         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1479         if (disksize > i_size_read(mpd->inode))
1480                 disksize = i_size_read(mpd->inode);
1481         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1482                 ext4_update_i_disksize(mpd->inode, disksize);
1483                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1484                 if (err)
1485                         ext4_error(mpd->inode->i_sb,
1486                                    "Failed to mark inode %lu dirty",
1487                                    mpd->inode->i_ino);
1488         }
1489
1490 submit_io:
1491         mpage_da_submit_io(mpd, mapp);
1492         mpd->io_done = 1;
1493 }
1494
1495 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1496                 (1 << BH_Delay) | (1 << BH_Unwritten))
1497
1498 /*
1499  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1500  *
1501  * @mpd->lbh - extent of blocks
1502  * @logical - logical number of the block in the file
1503  * @bh - bh of the block (used to access block's state)
1504  *
1505  * the function is used to collect contig. blocks in same state
1506  */
1507 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1508                                    sector_t logical, size_t b_size,
1509                                    unsigned long b_state)
1510 {
1511         sector_t next;
1512         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1513
1514         /*
1515          * XXX Don't go larger than mballoc is willing to allocate
1516          * This is a stopgap solution.  We eventually need to fold
1517          * mpage_da_submit_io() into this function and then call
1518          * ext4_map_blocks() multiple times in a loop
1519          */
1520         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1521                 goto flush_it;
1522
1523         /* check if thereserved journal credits might overflow */
1524         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1525                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1526                         /*
1527                          * With non-extent format we are limited by the journal
1528                          * credit available.  Total credit needed to insert
1529                          * nrblocks contiguous blocks is dependent on the
1530                          * nrblocks.  So limit nrblocks.
1531                          */
1532                         goto flush_it;
1533                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1534                                 EXT4_MAX_TRANS_DATA) {
1535                         /*
1536                          * Adding the new buffer_head would make it cross the
1537                          * allowed limit for which we have journal credit
1538                          * reserved. So limit the new bh->b_size
1539                          */
1540                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1541                                                 mpd->inode->i_blkbits;
1542                         /* we will do mpage_da_submit_io in the next loop */
1543                 }
1544         }
1545         /*
1546          * First block in the extent
1547          */
1548         if (mpd->b_size == 0) {
1549                 mpd->b_blocknr = logical;
1550                 mpd->b_size = b_size;
1551                 mpd->b_state = b_state & BH_FLAGS;
1552                 return;
1553         }
1554
1555         next = mpd->b_blocknr + nrblocks;
1556         /*
1557          * Can we merge the block to our big extent?
1558          */
1559         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1560                 mpd->b_size += b_size;
1561                 return;
1562         }
1563
1564 flush_it:
1565         /*
1566          * We couldn't merge the block to our extent, so we
1567          * need to flush current  extent and start new one
1568          */
1569         mpage_da_map_and_submit(mpd);
1570         return;
1571 }
1572
1573 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1574 {
1575         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1576 }
1577
1578 /*
1579  * This is a special get_blocks_t callback which is used by
1580  * ext4_da_write_begin().  It will either return mapped block or
1581  * reserve space for a single block.
1582  *
1583  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1584  * We also have b_blocknr = -1 and b_bdev initialized properly
1585  *
1586  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1587  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1588  * initialized properly.
1589  */
1590 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1591                                   struct buffer_head *bh, int create)
1592 {
1593         struct ext4_map_blocks map;
1594         int ret = 0;
1595         sector_t invalid_block = ~((sector_t) 0xffff);
1596
1597         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1598                 invalid_block = ~0;
1599
1600         BUG_ON(create == 0);
1601         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1602
1603         map.m_lblk = iblock;
1604         map.m_len = 1;
1605
1606         /*
1607          * first, we need to know whether the block is allocated already
1608          * preallocated blocks are unmapped but should treated
1609          * the same as allocated blocks.
1610          */
1611         ret = ext4_map_blocks(NULL, inode, &map, 0);
1612         if (ret < 0)
1613                 return ret;
1614         if (ret == 0) {
1615                 if (buffer_delay(bh))
1616                         return 0; /* Not sure this could or should happen */
1617                 /*
1618                  * XXX: __block_write_begin() unmaps passed block, is it OK?
1619                  */
1620                 ret = ext4_da_reserve_space(inode, iblock);
1621                 if (ret)
1622                         /* not enough space to reserve */
1623                         return ret;
1624
1625                 map_bh(bh, inode->i_sb, invalid_block);
1626                 set_buffer_new(bh);
1627                 set_buffer_delay(bh);
1628                 return 0;
1629         }
1630
1631         map_bh(bh, inode->i_sb, map.m_pblk);
1632         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1633
1634         if (buffer_unwritten(bh)) {
1635                 /* A delayed write to unwritten bh should be marked
1636                  * new and mapped.  Mapped ensures that we don't do
1637                  * get_block multiple times when we write to the same
1638                  * offset and new ensures that we do proper zero out
1639                  * for partial write.
1640                  */
1641                 set_buffer_new(bh);
1642                 set_buffer_mapped(bh);
1643         }
1644         return 0;
1645 }
1646
1647 /*
1648  * This function is used as a standard get_block_t calback function
1649  * when there is no desire to allocate any blocks.  It is used as a
1650  * callback function for block_write_begin() and block_write_full_page().
1651  * These functions should only try to map a single block at a time.
1652  *
1653  * Since this function doesn't do block allocations even if the caller
1654  * requests it by passing in create=1, it is critically important that
1655  * any caller checks to make sure that any buffer heads are returned
1656  * by this function are either all already mapped or marked for
1657  * delayed allocation before calling  block_write_full_page().  Otherwise,
1658  * b_blocknr could be left unitialized, and the page write functions will
1659  * be taken by surprise.
1660  */
1661 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1662                                    struct buffer_head *bh_result, int create)
1663 {
1664         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1665         return _ext4_get_block(inode, iblock, bh_result, 0);
1666 }
1667
1668 static int bget_one(handle_t *handle, struct buffer_head *bh)
1669 {
1670         get_bh(bh);
1671         return 0;
1672 }
1673
1674 static int bput_one(handle_t *handle, struct buffer_head *bh)
1675 {
1676         put_bh(bh);
1677         return 0;
1678 }
1679
1680 static int __ext4_journalled_writepage(struct page *page,
1681                                        unsigned int len)
1682 {
1683         struct address_space *mapping = page->mapping;
1684         struct inode *inode = mapping->host;
1685         struct buffer_head *page_bufs;
1686         handle_t *handle = NULL;
1687         int ret = 0;
1688         int err;
1689
1690         ClearPageChecked(page);
1691         page_bufs = page_buffers(page);
1692         BUG_ON(!page_bufs);
1693         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1694         /* As soon as we unlock the page, it can go away, but we have
1695          * references to buffers so we are safe */
1696         unlock_page(page);
1697
1698         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1699         if (IS_ERR(handle)) {
1700                 ret = PTR_ERR(handle);
1701                 goto out;
1702         }
1703
1704         BUG_ON(!ext4_handle_valid(handle));
1705
1706         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1707                                 do_journal_get_write_access);
1708
1709         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1710                                 write_end_fn);
1711         if (ret == 0)
1712                 ret = err;
1713         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1714         err = ext4_journal_stop(handle);
1715         if (!ret)
1716                 ret = err;
1717
1718         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1719         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1720 out:
1721         return ret;
1722 }
1723
1724 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1725 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1726
1727 /*
1728  * Note that we don't need to start a transaction unless we're journaling data
1729  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1730  * need to file the inode to the transaction's list in ordered mode because if
1731  * we are writing back data added by write(), the inode is already there and if
1732  * we are writing back data modified via mmap(), no one guarantees in which
1733  * transaction the data will hit the disk. In case we are journaling data, we
1734  * cannot start transaction directly because transaction start ranks above page
1735  * lock so we have to do some magic.
1736  *
1737  * This function can get called via...
1738  *   - ext4_da_writepages after taking page lock (have journal handle)
1739  *   - journal_submit_inode_data_buffers (no journal handle)
1740  *   - shrink_page_list via pdflush (no journal handle)
1741  *   - grab_page_cache when doing write_begin (have journal handle)
1742  *
1743  * We don't do any block allocation in this function. If we have page with
1744  * multiple blocks we need to write those buffer_heads that are mapped. This
1745  * is important for mmaped based write. So if we do with blocksize 1K
1746  * truncate(f, 1024);
1747  * a = mmap(f, 0, 4096);
1748  * a[0] = 'a';
1749  * truncate(f, 4096);
1750  * we have in the page first buffer_head mapped via page_mkwrite call back
1751  * but other bufer_heads would be unmapped but dirty(dirty done via the
1752  * do_wp_page). So writepage should write the first block. If we modify
1753  * the mmap area beyond 1024 we will again get a page_fault and the
1754  * page_mkwrite callback will do the block allocation and mark the
1755  * buffer_heads mapped.
1756  *
1757  * We redirty the page if we have any buffer_heads that is either delay or
1758  * unwritten in the page.
1759  *
1760  * We can get recursively called as show below.
1761  *
1762  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1763  *              ext4_writepage()
1764  *
1765  * But since we don't do any block allocation we should not deadlock.
1766  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1767  */
1768 static int ext4_writepage(struct page *page,
1769                           struct writeback_control *wbc)
1770 {
1771         int ret = 0, commit_write = 0;
1772         loff_t size;
1773         unsigned int len;
1774         struct buffer_head *page_bufs = NULL;
1775         struct inode *inode = page->mapping->host;
1776
1777         trace_ext4_writepage(page);
1778         size = i_size_read(inode);
1779         if (page->index == size >> PAGE_CACHE_SHIFT)
1780                 len = size & ~PAGE_CACHE_MASK;
1781         else
1782                 len = PAGE_CACHE_SIZE;
1783
1784         /*
1785          * If the page does not have buffers (for whatever reason),
1786          * try to create them using __block_write_begin.  If this
1787          * fails, redirty the page and move on.
1788          */
1789         if (!page_has_buffers(page)) {
1790                 if (__block_write_begin(page, 0, len,
1791                                         noalloc_get_block_write)) {
1792                 redirty_page:
1793                         redirty_page_for_writepage(wbc, page);
1794                         unlock_page(page);
1795                         return 0;
1796                 }
1797                 commit_write = 1;
1798         }
1799         page_bufs = page_buffers(page);
1800         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1801                               ext4_bh_delay_or_unwritten)) {
1802                 /*
1803                  * We don't want to do block allocation, so redirty
1804                  * the page and return.  We may reach here when we do
1805                  * a journal commit via journal_submit_inode_data_buffers.
1806                  * We can also reach here via shrink_page_list
1807                  */
1808                 goto redirty_page;
1809         }
1810         if (commit_write)
1811                 /* now mark the buffer_heads as dirty and uptodate */
1812                 block_commit_write(page, 0, len);
1813
1814         if (PageChecked(page) && ext4_should_journal_data(inode))
1815                 /*
1816                  * It's mmapped pagecache.  Add buffers and journal it.  There
1817                  * doesn't seem much point in redirtying the page here.
1818                  */
1819                 return __ext4_journalled_writepage(page, len);
1820
1821         if (buffer_uninit(page_bufs)) {
1822                 ext4_set_bh_endio(page_bufs, inode);
1823                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
1824                                             wbc, ext4_end_io_buffer_write);
1825         } else
1826                 ret = block_write_full_page(page, noalloc_get_block_write,
1827                                             wbc);
1828
1829         return ret;
1830 }
1831
1832 /*
1833  * This is called via ext4_da_writepages() to
1834  * calculate the total number of credits to reserve to fit
1835  * a single extent allocation into a single transaction,
1836  * ext4_da_writpeages() will loop calling this before
1837  * the block allocation.
1838  */
1839
1840 static int ext4_da_writepages_trans_blocks(struct inode *inode)
1841 {
1842         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1843
1844         /*
1845          * With non-extent format the journal credit needed to
1846          * insert nrblocks contiguous block is dependent on
1847          * number of contiguous block. So we will limit
1848          * number of contiguous block to a sane value
1849          */
1850         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1851             (max_blocks > EXT4_MAX_TRANS_DATA))
1852                 max_blocks = EXT4_MAX_TRANS_DATA;
1853
1854         return ext4_chunk_trans_blocks(inode, max_blocks);
1855 }
1856
1857 /*
1858  * write_cache_pages_da - walk the list of dirty pages of the given
1859  * address space and accumulate pages that need writing, and call
1860  * mpage_da_map_and_submit to map a single contiguous memory region
1861  * and then write them.
1862  */
1863 static int write_cache_pages_da(struct address_space *mapping,
1864                                 struct writeback_control *wbc,
1865                                 struct mpage_da_data *mpd,
1866                                 pgoff_t *done_index)
1867 {
1868         struct buffer_head      *bh, *head;
1869         struct inode            *inode = mapping->host;
1870         struct pagevec          pvec;
1871         unsigned int            nr_pages;
1872         sector_t                logical;
1873         pgoff_t                 index, end;
1874         long                    nr_to_write = wbc->nr_to_write;
1875         int                     i, tag, ret = 0;
1876
1877         memset(mpd, 0, sizeof(struct mpage_da_data));
1878         mpd->wbc = wbc;
1879         mpd->inode = inode;
1880         pagevec_init(&pvec, 0);
1881         index = wbc->range_start >> PAGE_CACHE_SHIFT;
1882         end = wbc->range_end >> PAGE_CACHE_SHIFT;
1883
1884         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1885                 tag = PAGECACHE_TAG_TOWRITE;
1886         else
1887                 tag = PAGECACHE_TAG_DIRTY;
1888
1889         *done_index = index;
1890         while (index <= end) {
1891                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1892                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1893                 if (nr_pages == 0)
1894                         return 0;
1895
1896                 for (i = 0; i < nr_pages; i++) {
1897                         struct page *page = pvec.pages[i];
1898
1899                         /*
1900                          * At this point, the page may be truncated or
1901                          * invalidated (changing page->mapping to NULL), or
1902                          * even swizzled back from swapper_space to tmpfs file
1903                          * mapping. However, page->index will not change
1904                          * because we have a reference on the page.
1905                          */
1906                         if (page->index > end)
1907                                 goto out;
1908
1909                         *done_index = page->index + 1;
1910
1911                         /*
1912                          * If we can't merge this page, and we have
1913                          * accumulated an contiguous region, write it
1914                          */
1915                         if ((mpd->next_page != page->index) &&
1916                             (mpd->next_page != mpd->first_page)) {
1917                                 mpage_da_map_and_submit(mpd);
1918                                 goto ret_extent_tail;
1919                         }
1920
1921                         lock_page(page);
1922
1923                         /*
1924                          * If the page is no longer dirty, or its
1925                          * mapping no longer corresponds to inode we
1926                          * are writing (which means it has been
1927                          * truncated or invalidated), or the page is
1928                          * already under writeback and we are not
1929                          * doing a data integrity writeback, skip the page
1930                          */
1931                         if (!PageDirty(page) ||
1932                             (PageWriteback(page) &&
1933                              (wbc->sync_mode == WB_SYNC_NONE)) ||
1934                             unlikely(page->mapping != mapping)) {
1935                                 unlock_page(page);
1936                                 continue;
1937                         }
1938
1939                         wait_on_page_writeback(page);
1940                         BUG_ON(PageWriteback(page));
1941
1942                         if (mpd->next_page != page->index)
1943                                 mpd->first_page = page->index;
1944                         mpd->next_page = page->index + 1;
1945                         logical = (sector_t) page->index <<
1946                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1947
1948                         if (!page_has_buffers(page)) {
1949                                 mpage_add_bh_to_extent(mpd, logical,
1950                                                        PAGE_CACHE_SIZE,
1951                                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
1952                                 if (mpd->io_done)
1953                                         goto ret_extent_tail;
1954                         } else {
1955                                 /*
1956                                  * Page with regular buffer heads,
1957                                  * just add all dirty ones
1958                                  */
1959                                 head = page_buffers(page);
1960                                 bh = head;
1961                                 do {
1962                                         BUG_ON(buffer_locked(bh));
1963                                         /*
1964                                          * We need to try to allocate
1965                                          * unmapped blocks in the same page.
1966                                          * Otherwise we won't make progress
1967                                          * with the page in ext4_writepage
1968                                          */
1969                                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
1970                                                 mpage_add_bh_to_extent(mpd, logical,
1971                                                                        bh->b_size,
1972                                                                        bh->b_state);
1973                                                 if (mpd->io_done)
1974                                                         goto ret_extent_tail;
1975                                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
1976                                                 /*
1977                                                  * mapped dirty buffer. We need
1978                                                  * to update the b_state
1979                                                  * because we look at b_state
1980                                                  * in mpage_da_map_blocks.  We
1981                                                  * don't update b_size because
1982                                                  * if we find an unmapped
1983                                                  * buffer_head later we need to
1984                                                  * use the b_state flag of that
1985                                                  * buffer_head.
1986                                                  */
1987                                                 if (mpd->b_size == 0)
1988                                                         mpd->b_state = bh->b_state & BH_FLAGS;
1989                                         }
1990                                         logical++;
1991                                 } while ((bh = bh->b_this_page) != head);
1992                         }
1993
1994                         if (nr_to_write > 0) {
1995                                 nr_to_write--;
1996                                 if (nr_to_write == 0 &&
1997                                     wbc->sync_mode == WB_SYNC_NONE)
1998                                         /*
1999                                          * We stop writing back only if we are
2000                                          * not doing integrity sync. In case of
2001                                          * integrity sync we have to keep going
2002                                          * because someone may be concurrently
2003                                          * dirtying pages, and we might have
2004                                          * synced a lot of newly appeared dirty
2005                                          * pages, but have not synced all of the
2006                                          * old dirty pages.
2007                                          */
2008                                         goto out;
2009                         }
2010                 }
2011                 pagevec_release(&pvec);
2012                 cond_resched();
2013         }
2014         return 0;
2015 ret_extent_tail:
2016         ret = MPAGE_DA_EXTENT_TAIL;
2017 out:
2018         pagevec_release(&pvec);
2019         cond_resched();
2020         return ret;
2021 }
2022
2023
2024 static int ext4_da_writepages(struct address_space *mapping,
2025                               struct writeback_control *wbc)
2026 {
2027         pgoff_t index;
2028         int range_whole = 0;
2029         handle_t *handle = NULL;
2030         struct mpage_da_data mpd;
2031         struct inode *inode = mapping->host;
2032         int pages_written = 0;
2033         unsigned int max_pages;
2034         int range_cyclic, cycled = 1, io_done = 0;
2035         int needed_blocks, ret = 0;
2036         long desired_nr_to_write, nr_to_writebump = 0;
2037         loff_t range_start = wbc->range_start;
2038         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2039         pgoff_t done_index = 0;
2040         pgoff_t end;
2041
2042         trace_ext4_da_writepages(inode, wbc);
2043
2044         /*
2045          * No pages to write? This is mainly a kludge to avoid starting
2046          * a transaction for special inodes like journal inode on last iput()
2047          * because that could violate lock ordering on umount
2048          */
2049         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2050                 return 0;
2051
2052         /*
2053          * If the filesystem has aborted, it is read-only, so return
2054          * right away instead of dumping stack traces later on that
2055          * will obscure the real source of the problem.  We test
2056          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2057          * the latter could be true if the filesystem is mounted
2058          * read-only, and in that case, ext4_da_writepages should
2059          * *never* be called, so if that ever happens, we would want
2060          * the stack trace.
2061          */
2062         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2063                 return -EROFS;
2064
2065         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2066                 range_whole = 1;
2067
2068         range_cyclic = wbc->range_cyclic;
2069         if (wbc->range_cyclic) {
2070                 index = mapping->writeback_index;
2071                 if (index)
2072                         cycled = 0;
2073                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2074                 wbc->range_end  = LLONG_MAX;
2075                 wbc->range_cyclic = 0;
2076                 end = -1;
2077         } else {
2078                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2079                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2080         }
2081
2082         /*
2083          * This works around two forms of stupidity.  The first is in
2084          * the writeback code, which caps the maximum number of pages
2085          * written to be 1024 pages.  This is wrong on multiple
2086          * levels; different architectues have a different page size,
2087          * which changes the maximum amount of data which gets
2088          * written.  Secondly, 4 megabytes is way too small.  XFS
2089          * forces this value to be 16 megabytes by multiplying
2090          * nr_to_write parameter by four, and then relies on its
2091          * allocator to allocate larger extents to make them
2092          * contiguous.  Unfortunately this brings us to the second
2093          * stupidity, which is that ext4's mballoc code only allocates
2094          * at most 2048 blocks.  So we force contiguous writes up to
2095          * the number of dirty blocks in the inode, or
2096          * sbi->max_writeback_mb_bump whichever is smaller.
2097          */
2098         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2099         if (!range_cyclic && range_whole) {
2100                 if (wbc->nr_to_write == LONG_MAX)
2101                         desired_nr_to_write = wbc->nr_to_write;
2102                 else
2103                         desired_nr_to_write = wbc->nr_to_write * 8;
2104         } else
2105                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2106                                                            max_pages);
2107         if (desired_nr_to_write > max_pages)
2108                 desired_nr_to_write = max_pages;
2109
2110         if (wbc->nr_to_write < desired_nr_to_write) {
2111                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2112                 wbc->nr_to_write = desired_nr_to_write;
2113         }
2114
2115 retry:
2116         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2117                 tag_pages_for_writeback(mapping, index, end);
2118
2119         while (!ret && wbc->nr_to_write > 0) {
2120
2121                 /*
2122                  * we  insert one extent at a time. So we need
2123                  * credit needed for single extent allocation.
2124                  * journalled mode is currently not supported
2125                  * by delalloc
2126                  */
2127                 BUG_ON(ext4_should_journal_data(inode));
2128                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2129
2130                 /* start a new transaction*/
2131                 handle = ext4_journal_start(inode, needed_blocks);
2132                 if (IS_ERR(handle)) {
2133                         ret = PTR_ERR(handle);
2134                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2135                                "%ld pages, ino %lu; err %d", __func__,
2136                                 wbc->nr_to_write, inode->i_ino, ret);
2137                         goto out_writepages;
2138                 }
2139
2140                 /*
2141                  * Now call write_cache_pages_da() to find the next
2142                  * contiguous region of logical blocks that need
2143                  * blocks to be allocated by ext4 and submit them.
2144                  */
2145                 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2146                 /*
2147                  * If we have a contiguous extent of pages and we
2148                  * haven't done the I/O yet, map the blocks and submit
2149                  * them for I/O.
2150                  */
2151                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2152                         mpage_da_map_and_submit(&mpd);
2153                         ret = MPAGE_DA_EXTENT_TAIL;
2154                 }
2155                 trace_ext4_da_write_pages(inode, &mpd);
2156                 wbc->nr_to_write -= mpd.pages_written;
2157
2158                 ext4_journal_stop(handle);
2159
2160                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2161                         /* commit the transaction which would
2162                          * free blocks released in the transaction
2163                          * and try again
2164                          */
2165                         jbd2_journal_force_commit_nested(sbi->s_journal);
2166                         ret = 0;
2167                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2168                         /*
2169                          * got one extent now try with
2170                          * rest of the pages
2171                          */
2172                         pages_written += mpd.pages_written;
2173                         ret = 0;
2174                         io_done = 1;
2175                 } else if (wbc->nr_to_write)
2176                         /*
2177                          * There is no more writeout needed
2178                          * or we requested for a noblocking writeout
2179                          * and we found the device congested
2180                          */
2181                         break;
2182         }
2183         if (!io_done && !cycled) {
2184                 cycled = 1;
2185                 index = 0;
2186                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2187                 wbc->range_end  = mapping->writeback_index - 1;
2188                 goto retry;
2189         }
2190
2191         /* Update index */
2192         wbc->range_cyclic = range_cyclic;
2193         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2194                 /*
2195                  * set the writeback_index so that range_cyclic
2196                  * mode will write it back later
2197                  */
2198                 mapping->writeback_index = done_index;
2199
2200 out_writepages:
2201         wbc->nr_to_write -= nr_to_writebump;
2202         wbc->range_start = range_start;
2203         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2204         return ret;
2205 }
2206
2207 #define FALL_BACK_TO_NONDELALLOC 1
2208 static int ext4_nonda_switch(struct super_block *sb)
2209 {
2210         s64 free_blocks, dirty_blocks;
2211         struct ext4_sb_info *sbi = EXT4_SB(sb);
2212
2213         /*
2214          * switch to non delalloc mode if we are running low
2215          * on free block. The free block accounting via percpu
2216          * counters can get slightly wrong with percpu_counter_batch getting
2217          * accumulated on each CPU without updating global counters
2218          * Delalloc need an accurate free block accounting. So switch
2219          * to non delalloc when we are near to error range.
2220          */
2221         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2222         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2223         if (2 * free_blocks < 3 * dirty_blocks ||
2224                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2225                 /*
2226                  * free block count is less than 150% of dirty blocks
2227                  * or free blocks is less than watermark
2228                  */
2229                 return 1;
2230         }
2231         /*
2232          * Even if we don't switch but are nearing capacity,
2233          * start pushing delalloc when 1/2 of free blocks are dirty.
2234          */
2235         if (free_blocks < 2 * dirty_blocks)
2236                 writeback_inodes_sb_if_idle(sb);
2237
2238         return 0;
2239 }
2240
2241 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2242                                loff_t pos, unsigned len, unsigned flags,
2243                                struct page **pagep, void **fsdata)
2244 {
2245         int ret, retries = 0;
2246         struct page *page;
2247         pgoff_t index;
2248         struct inode *inode = mapping->host;
2249         handle_t *handle;
2250
2251         index = pos >> PAGE_CACHE_SHIFT;
2252
2253         if (ext4_nonda_switch(inode->i_sb)) {
2254                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2255                 return ext4_write_begin(file, mapping, pos,
2256                                         len, flags, pagep, fsdata);
2257         }
2258         *fsdata = (void *)0;
2259         trace_ext4_da_write_begin(inode, pos, len, flags);
2260 retry:
2261         /*
2262          * With delayed allocation, we don't log the i_disksize update
2263          * if there is delayed block allocation. But we still need
2264          * to journalling the i_disksize update if writes to the end
2265          * of file which has an already mapped buffer.
2266          */
2267         handle = ext4_journal_start(inode, 1);
2268         if (IS_ERR(handle)) {
2269                 ret = PTR_ERR(handle);
2270                 goto out;
2271         }
2272         /* We cannot recurse into the filesystem as the transaction is already
2273          * started */
2274         flags |= AOP_FLAG_NOFS;
2275
2276         page = grab_cache_page_write_begin(mapping, index, flags);
2277         if (!page) {
2278                 ext4_journal_stop(handle);
2279                 ret = -ENOMEM;
2280                 goto out;
2281         }
2282         *pagep = page;
2283
2284         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2285         if (ret < 0) {
2286                 unlock_page(page);
2287                 ext4_journal_stop(handle);
2288                 page_cache_release(page);
2289                 /*
2290                  * block_write_begin may have instantiated a few blocks
2291                  * outside i_size.  Trim these off again. Don't need
2292                  * i_size_read because we hold i_mutex.
2293                  */
2294                 if (pos + len > inode->i_size)
2295                         ext4_truncate_failed_write(inode);
2296         }
2297
2298         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2299                 goto retry;
2300 out:
2301         return ret;
2302 }
2303
2304 /*
2305  * Check if we should update i_disksize
2306  * when write to the end of file but not require block allocation
2307  */
2308 static int ext4_da_should_update_i_disksize(struct page *page,
2309                                             unsigned long offset)
2310 {
2311         struct buffer_head *bh;
2312         struct inode *inode = page->mapping->host;
2313         unsigned int idx;
2314         int i;
2315
2316         bh = page_buffers(page);
2317         idx = offset >> inode->i_blkbits;
2318
2319         for (i = 0; i < idx; i++)
2320                 bh = bh->b_this_page;
2321
2322         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2323                 return 0;
2324         return 1;
2325 }
2326
2327 static int ext4_da_write_end(struct file *file,
2328                              struct address_space *mapping,
2329                              loff_t pos, unsigned len, unsigned copied,
2330                              struct page *page, void *fsdata)
2331 {
2332         struct inode *inode = mapping->host;
2333         int ret = 0, ret2;
2334         handle_t *handle = ext4_journal_current_handle();
2335         loff_t new_i_size;
2336         unsigned long start, end;
2337         int write_mode = (int)(unsigned long)fsdata;
2338
2339         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2340                 if (ext4_should_order_data(inode)) {
2341                         return ext4_ordered_write_end(file, mapping, pos,
2342                                         len, copied, page, fsdata);
2343                 } else if (ext4_should_writeback_data(inode)) {
2344                         return ext4_writeback_write_end(file, mapping, pos,
2345                                         len, copied, page, fsdata);
2346                 } else {
2347                         BUG();
2348                 }
2349         }
2350
2351         trace_ext4_da_write_end(inode, pos, len, copied);
2352         start = pos & (PAGE_CACHE_SIZE - 1);
2353         end = start + copied - 1;
2354
2355         /*
2356          * generic_write_end() will run mark_inode_dirty() if i_size
2357          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2358          * into that.
2359          */
2360
2361         new_i_size = pos + copied;
2362         if (new_i_size > EXT4_I(inode)->i_disksize) {
2363                 if (ext4_da_should_update_i_disksize(page, end)) {
2364                         down_write(&EXT4_I(inode)->i_data_sem);
2365                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2366                                 /*
2367                                  * Updating i_disksize when extending file
2368                                  * without needing block allocation
2369                                  */
2370                                 if (ext4_should_order_data(inode))
2371                                         ret = ext4_jbd2_file_inode(handle,
2372                                                                    inode);
2373
2374                                 EXT4_I(inode)->i_disksize = new_i_size;
2375                         }
2376                         up_write(&EXT4_I(inode)->i_data_sem);
2377                         /* We need to mark inode dirty even if
2378                          * new_i_size is less that inode->i_size
2379                          * bu greater than i_disksize.(hint delalloc)
2380                          */
2381                         ext4_mark_inode_dirty(handle, inode);
2382                 }
2383         }
2384         ret2 = generic_write_end(file, mapping, pos, len, copied,
2385                                                         page, fsdata);
2386         copied = ret2;
2387         if (ret2 < 0)
2388                 ret = ret2;
2389         ret2 = ext4_journal_stop(handle);
2390         if (!ret)
2391                 ret = ret2;
2392
2393         return ret ? ret : copied;
2394 }
2395
2396 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2397 {
2398         /*
2399          * Drop reserved blocks
2400          */
2401         BUG_ON(!PageLocked(page));
2402         if (!page_has_buffers(page))
2403                 goto out;
2404
2405         ext4_da_page_release_reservation(page, offset);
2406
2407 out:
2408         ext4_invalidatepage(page, offset);
2409
2410         return;
2411 }
2412
2413 /*
2414  * Force all delayed allocation blocks to be allocated for a given inode.
2415  */
2416 int ext4_alloc_da_blocks(struct inode *inode)
2417 {
2418         trace_ext4_alloc_da_blocks(inode);
2419
2420         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2421             !EXT4_I(inode)->i_reserved_meta_blocks)
2422                 return 0;
2423
2424         /*
2425          * We do something simple for now.  The filemap_flush() will
2426          * also start triggering a write of the data blocks, which is
2427          * not strictly speaking necessary (and for users of
2428          * laptop_mode, not even desirable).  However, to do otherwise
2429          * would require replicating code paths in:
2430          *
2431          * ext4_da_writepages() ->
2432          *    write_cache_pages() ---> (via passed in callback function)
2433          *        __mpage_da_writepage() -->
2434          *           mpage_add_bh_to_extent()
2435          *           mpage_da_map_blocks()
2436          *
2437          * The problem is that write_cache_pages(), located in
2438          * mm/page-writeback.c, marks pages clean in preparation for
2439          * doing I/O, which is not desirable if we're not planning on
2440          * doing I/O at all.
2441          *
2442          * We could call write_cache_pages(), and then redirty all of
2443          * the pages by calling redirty_page_for_writepage() but that
2444          * would be ugly in the extreme.  So instead we would need to
2445          * replicate parts of the code in the above functions,
2446          * simplifying them because we wouldn't actually intend to
2447          * write out the pages, but rather only collect contiguous
2448          * logical block extents, call the multi-block allocator, and
2449          * then update the buffer heads with the block allocations.
2450          *
2451          * For now, though, we'll cheat by calling filemap_flush(),
2452          * which will map the blocks, and start the I/O, but not
2453          * actually wait for the I/O to complete.
2454          */
2455         return filemap_flush(inode->i_mapping);
2456 }
2457
2458 /*
2459  * bmap() is special.  It gets used by applications such as lilo and by
2460  * the swapper to find the on-disk block of a specific piece of data.
2461  *
2462  * Naturally, this is dangerous if the block concerned is still in the
2463  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2464  * filesystem and enables swap, then they may get a nasty shock when the
2465  * data getting swapped to that swapfile suddenly gets overwritten by
2466  * the original zero's written out previously to the journal and
2467  * awaiting writeback in the kernel's buffer cache.
2468  *
2469  * So, if we see any bmap calls here on a modified, data-journaled file,
2470  * take extra steps to flush any blocks which might be in the cache.
2471  */
2472 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2473 {
2474         struct inode *inode = mapping->host;
2475         journal_t *journal;
2476         int err;
2477
2478         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2479                         test_opt(inode->i_sb, DELALLOC)) {
2480                 /*
2481                  * With delalloc we want to sync the file
2482                  * so that we can make sure we allocate
2483                  * blocks for file
2484                  */
2485                 filemap_write_and_wait(mapping);
2486         }
2487
2488         if (EXT4_JOURNAL(inode) &&
2489             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2490                 /*
2491                  * This is a REALLY heavyweight approach, but the use of
2492                  * bmap on dirty files is expected to be extremely rare:
2493                  * only if we run lilo or swapon on a freshly made file
2494                  * do we expect this to happen.
2495                  *
2496                  * (bmap requires CAP_SYS_RAWIO so this does not
2497                  * represent an unprivileged user DOS attack --- we'd be
2498                  * in trouble if mortal users could trigger this path at
2499                  * will.)
2500                  *
2501                  * NB. EXT4_STATE_JDATA is not set on files other than
2502                  * regular files.  If somebody wants to bmap a directory
2503                  * or symlink and gets confused because the buffer
2504                  * hasn't yet been flushed to disk, they deserve
2505                  * everything they get.
2506                  */
2507
2508                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2509                 journal = EXT4_JOURNAL(inode);
2510                 jbd2_journal_lock_updates(journal);
2511                 err = jbd2_journal_flush(journal);
2512                 jbd2_journal_unlock_updates(journal);
2513
2514                 if (err)
2515                         return 0;
2516         }
2517
2518         return generic_block_bmap(mapping, block, ext4_get_block);
2519 }
2520
2521 static int ext4_readpage(struct file *file, struct page *page)
2522 {
2523         trace_ext4_readpage(page);
2524         return mpage_readpage(page, ext4_get_block);
2525 }
2526
2527 static int
2528 ext4_readpages(struct file *file, struct address_space *mapping,
2529                 struct list_head *pages, unsigned nr_pages)
2530 {
2531         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2532 }
2533
2534 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2535 {
2536         struct buffer_head *head, *bh;
2537         unsigned int curr_off = 0;
2538
2539         if (!page_has_buffers(page))
2540                 return;
2541         head = bh = page_buffers(page);
2542         do {
2543                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2544                                         && bh->b_private) {
2545                         ext4_free_io_end(bh->b_private);
2546                         bh->b_private = NULL;
2547                         bh->b_end_io = NULL;
2548                 }
2549                 curr_off = curr_off + bh->b_size;
2550                 bh = bh->b_this_page;
2551         } while (bh != head);
2552 }
2553
2554 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2555 {
2556         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2557
2558         trace_ext4_invalidatepage(page, offset);
2559
2560         /*
2561          * free any io_end structure allocated for buffers to be discarded
2562          */
2563         if (ext4_should_dioread_nolock(page->mapping->host))
2564                 ext4_invalidatepage_free_endio(page, offset);
2565         /*
2566          * If it's a full truncate we just forget about the pending dirtying
2567          */
2568         if (offset == 0)
2569                 ClearPageChecked(page);
2570
2571         if (journal)
2572                 jbd2_journal_invalidatepage(journal, page, offset);
2573         else
2574                 block_invalidatepage(page, offset);
2575 }
2576
2577 static int ext4_releasepage(struct page *page, gfp_t wait)
2578 {
2579         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2580
2581         trace_ext4_releasepage(page);
2582
2583         WARN_ON(PageChecked(page));
2584         if (!page_has_buffers(page))
2585                 return 0;
2586         if (journal)
2587                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2588         else
2589                 return try_to_free_buffers(page);
2590 }
2591
2592 /*
2593  * ext4_get_block used when preparing for a DIO write or buffer write.
2594  * We allocate an uinitialized extent if blocks haven't been allocated.
2595  * The extent will be converted to initialized after the IO is complete.
2596  */
2597 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2598                    struct buffer_head *bh_result, int create)
2599 {
2600         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2601                    inode->i_ino, create);
2602         return _ext4_get_block(inode, iblock, bh_result,
2603                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2604 }
2605
2606 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2607                             ssize_t size, void *private, int ret,
2608                             bool is_async)
2609 {
2610         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2611         ext4_io_end_t *io_end = iocb->private;
2612         struct workqueue_struct *wq;
2613         unsigned long flags;
2614         struct ext4_inode_info *ei;
2615
2616         /* if not async direct IO or dio with 0 bytes write, just return */
2617         if (!io_end || !size)
2618                 goto out;
2619
2620         ext_debug("ext4_end_io_dio(): io_end 0x%p"
2621                   "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2622                   iocb->private, io_end->inode->i_ino, iocb, offset,
2623                   size);
2624
2625         /* if not aio dio with unwritten extents, just free io and return */
2626         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2627                 ext4_free_io_end(io_end);
2628                 iocb->private = NULL;
2629 out:
2630                 if (is_async)
2631                         aio_complete(iocb, ret, 0);
2632                 inode_dio_done(inode);
2633                 return;
2634         }
2635
2636         io_end->offset = offset;
2637         io_end->size = size;
2638         if (is_async) {
2639                 io_end->iocb = iocb;
2640                 io_end->result = ret;
2641         }
2642         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2643
2644         /* Add the io_end to per-inode completed aio dio list*/
2645         ei = EXT4_I(io_end->inode);
2646         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2647         list_add_tail(&io_end->list, &ei->i_completed_io_list);
2648         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2649
2650         /* queue the work to convert unwritten extents to written */
2651         queue_work(wq, &io_end->work);
2652         iocb->private = NULL;
2653
2654         /* XXX: probably should move into the real I/O completion handler */
2655         inode_dio_done(inode);
2656 }
2657
2658 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2659 {
2660         ext4_io_end_t *io_end = bh->b_private;
2661         struct workqueue_struct *wq;
2662         struct inode *inode;
2663         unsigned long flags;
2664
2665         if (!test_clear_buffer_uninit(bh) || !io_end)
2666                 goto out;
2667
2668         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2669                 printk("sb umounted, discard end_io request for inode %lu\n",
2670                         io_end->inode->i_ino);
2671                 ext4_free_io_end(io_end);
2672                 goto out;
2673         }
2674
2675         io_end->flag = EXT4_IO_END_UNWRITTEN;
2676         inode = io_end->inode;
2677
2678         /* Add the io_end to per-inode completed io list*/
2679         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2680         list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2681         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2682
2683         wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2684         /* queue the work to convert unwritten extents to written */
2685         queue_work(wq, &io_end->work);
2686 out:
2687         bh->b_private = NULL;
2688         bh->b_end_io = NULL;
2689         clear_buffer_uninit(bh);
2690         end_buffer_async_write(bh, uptodate);
2691 }
2692
2693 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2694 {
2695         ext4_io_end_t *io_end;
2696         struct page *page = bh->b_page;
2697         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2698         size_t size = bh->b_size;
2699
2700 retry:
2701         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2702         if (!io_end) {
2703                 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2704                 schedule();
2705                 goto retry;
2706         }
2707         io_end->offset = offset;
2708         io_end->size = size;
2709         /*
2710          * We need to hold a reference to the page to make sure it
2711          * doesn't get evicted before ext4_end_io_work() has a chance
2712          * to convert the extent from written to unwritten.
2713          */
2714         io_end->page = page;
2715         get_page(io_end->page);
2716
2717         bh->b_private = io_end;
2718         bh->b_end_io = ext4_end_io_buffer_write;
2719         return 0;
2720 }
2721
2722 /*
2723  * For ext4 extent files, ext4 will do direct-io write to holes,
2724  * preallocated extents, and those write extend the file, no need to
2725  * fall back to buffered IO.
2726  *
2727  * For holes, we fallocate those blocks, mark them as uninitialized
2728  * If those blocks were preallocated, we mark sure they are splited, but
2729  * still keep the range to write as uninitialized.
2730  *
2731  * The unwrritten extents will be converted to written when DIO is completed.
2732  * For async direct IO, since the IO may still pending when return, we
2733  * set up an end_io call back function, which will do the conversion
2734  * when async direct IO completed.
2735  *
2736  * If the O_DIRECT write will extend the file then add this inode to the
2737  * orphan list.  So recovery will truncate it back to the original size
2738  * if the machine crashes during the write.
2739  *
2740  */
2741 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2742                               const struct iovec *iov, loff_t offset,
2743                               unsigned long nr_segs)
2744 {
2745         struct file *file = iocb->ki_filp;
2746         struct inode *inode = file->f_mapping->host;
2747         ssize_t ret;
2748         size_t count = iov_length(iov, nr_segs);
2749
2750         loff_t final_size = offset + count;
2751         if (rw == WRITE && final_size <= inode->i_size) {
2752                 /*
2753                  * We could direct write to holes and fallocate.
2754                  *
2755                  * Allocated blocks to fill the hole are marked as uninitialized
2756                  * to prevent parallel buffered read to expose the stale data
2757                  * before DIO complete the data IO.
2758                  *
2759                  * As to previously fallocated extents, ext4 get_block
2760                  * will just simply mark the buffer mapped but still
2761                  * keep the extents uninitialized.
2762                  *
2763                  * for non AIO case, we will convert those unwritten extents
2764                  * to written after return back from blockdev_direct_IO.
2765                  *
2766                  * for async DIO, the conversion needs to be defered when
2767                  * the IO is completed. The ext4 end_io callback function
2768                  * will be called to take care of the conversion work.
2769                  * Here for async case, we allocate an io_end structure to
2770                  * hook to the iocb.
2771                  */
2772                 iocb->private = NULL;
2773                 EXT4_I(inode)->cur_aio_dio = NULL;
2774                 if (!is_sync_kiocb(iocb)) {
2775                         iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2776                         if (!iocb->private)
2777                                 return -ENOMEM;
2778                         /*
2779                          * we save the io structure for current async
2780                          * direct IO, so that later ext4_map_blocks()
2781                          * could flag the io structure whether there
2782                          * is a unwritten extents needs to be converted
2783                          * when IO is completed.
2784                          */
2785                         EXT4_I(inode)->cur_aio_dio = iocb->private;
2786                 }
2787
2788                 ret = __blockdev_direct_IO(rw, iocb, inode,
2789                                          inode->i_sb->s_bdev, iov,
2790                                          offset, nr_segs,
2791                                          ext4_get_block_write,
2792                                          ext4_end_io_dio,
2793                                          NULL,
2794                                          DIO_LOCKING | DIO_SKIP_HOLES);
2795                 if (iocb->private)
2796                         EXT4_I(inode)->cur_aio_dio = NULL;
2797                 /*
2798                  * The io_end structure takes a reference to the inode,
2799                  * that structure needs to be destroyed and the
2800                  * reference to the inode need to be dropped, when IO is
2801                  * complete, even with 0 byte write, or failed.
2802                  *
2803                  * In the successful AIO DIO case, the io_end structure will be
2804                  * desctroyed and the reference to the inode will be dropped
2805                  * after the end_io call back function is called.
2806                  *
2807                  * In the case there is 0 byte write, or error case, since
2808                  * VFS direct IO won't invoke the end_io call back function,
2809                  * we need to free the end_io structure here.
2810                  */
2811                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2812                         ext4_free_io_end(iocb->private);
2813                         iocb->private = NULL;
2814                 } else if (ret > 0 && ext4_test_inode_state(inode,
2815                                                 EXT4_STATE_DIO_UNWRITTEN)) {
2816                         int err;
2817                         /*
2818                          * for non AIO case, since the IO is already
2819                          * completed, we could do the conversion right here
2820                          */
2821                         err = ext4_convert_unwritten_extents(inode,
2822                                                              offset, ret);
2823                         if (err < 0)
2824                                 ret = err;
2825                         ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2826                 }
2827                 return ret;
2828         }
2829
2830         /* for write the the end of file case, we fall back to old way */
2831         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2832 }
2833
2834 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2835                               const struct iovec *iov, loff_t offset,
2836                               unsigned long nr_segs)
2837 {
2838         struct file *file = iocb->ki_filp;
2839         struct inode *inode = file->f_mapping->host;
2840         ssize_t ret;
2841
2842         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
2843         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2844                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
2845         else
2846                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2847         trace_ext4_direct_IO_exit(inode, offset,
2848                                 iov_length(iov, nr_segs), rw, ret);
2849         return ret;
2850 }
2851
2852 /*
2853  * Pages can be marked dirty completely asynchronously from ext4's journalling
2854  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
2855  * much here because ->set_page_dirty is called under VFS locks.  The page is
2856  * not necessarily locked.
2857  *
2858  * We cannot just dirty the page and leave attached buffers clean, because the
2859  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
2860  * or jbddirty because all the journalling code will explode.
2861  *
2862  * So what we do is to mark the page "pending dirty" and next time writepage
2863  * is called, propagate that into the buffers appropriately.
2864  */
2865 static int ext4_journalled_set_page_dirty(struct page *page)
2866 {
2867         SetPageChecked(page);
2868         return __set_page_dirty_nobuffers(page);
2869 }
2870
2871 static const struct address_space_operations ext4_ordered_aops = {
2872         .readpage               = ext4_readpage,
2873         .readpages              = ext4_readpages,
2874         .writepage              = ext4_writepage,
2875         .write_begin            = ext4_write_begin,
2876         .write_end              = ext4_ordered_write_end,
2877         .bmap                   = ext4_bmap,
2878         .invalidatepage         = ext4_invalidatepage,
2879         .releasepage            = ext4_releasepage,
2880         .direct_IO              = ext4_direct_IO,
2881         .migratepage            = buffer_migrate_page,
2882         .is_partially_uptodate  = block_is_partially_uptodate,
2883         .error_remove_page      = generic_error_remove_page,
2884 };
2885
2886 static const struct address_space_operations ext4_writeback_aops = {
2887         .readpage               = ext4_readpage,
2888         .readpages              = ext4_readpages,
2889         .writepage              = ext4_writepage,
2890         .write_begin            = ext4_write_begin,
2891         .write_end              = ext4_writeback_write_end,
2892         .bmap                   = ext4_bmap,
2893         .invalidatepage         = ext4_invalidatepage,
2894         .releasepage            = ext4_releasepage,
2895         .direct_IO              = ext4_direct_IO,
2896         .migratepage            = buffer_migrate_page,
2897         .is_partially_uptodate  = block_is_partially_uptodate,
2898         .error_remove_page      = generic_error_remove_page,
2899 };
2900
2901 static const struct address_space_operations ext4_journalled_aops = {
2902         .readpage               = ext4_readpage,
2903         .readpages              = ext4_readpages,
2904         .writepage              = ext4_writepage,
2905         .write_begin            = ext4_write_begin,
2906         .write_end              = ext4_journalled_write_end,
2907         .set_page_dirty         = ext4_journalled_set_page_dirty,
2908         .bmap                   = ext4_bmap,
2909         .invalidatepage         = ext4_invalidatepage,
2910         .releasepage            = ext4_releasepage,
2911         .is_partially_uptodate  = block_is_partially_uptodate,
2912         .error_remove_page      = generic_error_remove_page,
2913 };
2914
2915 static const struct address_space_operations ext4_da_aops = {
2916         .readpage               = ext4_readpage,
2917         .readpages              = ext4_readpages,
2918         .writepage              = ext4_writepage,
2919         .writepages             = ext4_da_writepages,
2920         .write_begin            = ext4_da_write_begin,
2921         .write_end              = ext4_da_write_end,
2922         .bmap                   = ext4_bmap,
2923         .invalidatepage         = ext4_da_invalidatepage,
2924         .releasepage            = ext4_releasepage,
2925         .direct_IO              = ext4_direct_IO,
2926         .migratepage            = buffer_migrate_page,
2927         .is_partially_uptodate  = block_is_partially_uptodate,
2928         .error_remove_page      = generic_error_remove_page,
2929 };
2930
2931 void ext4_set_aops(struct inode *inode)
2932 {
2933         if (ext4_should_order_data(inode) &&
2934                 test_opt(inode->i_sb, DELALLOC))
2935                 inode->i_mapping->a_ops = &ext4_da_aops;
2936         else if (ext4_should_order_data(inode))
2937                 inode->i_mapping->a_ops = &ext4_ordered_aops;
2938         else if (ext4_should_writeback_data(inode) &&
2939                  test_opt(inode->i_sb, DELALLOC))
2940                 inode->i_mapping->a_ops = &ext4_da_aops;
2941         else if (ext4_should_writeback_data(inode))
2942                 inode->i_mapping->a_ops = &ext4_writeback_aops;
2943         else
2944                 inode->i_mapping->a_ops = &ext4_journalled_aops;
2945 }
2946
2947 /*
2948  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
2949  * up to the end of the block which corresponds to `from'.
2950  * This required during truncate. We need to physically zero the tail end
2951  * of that block so it doesn't yield old data if the file is later grown.
2952  */
2953 int ext4_block_truncate_page(handle_t *handle,
2954                 struct address_space *mapping, loff_t from)
2955 {
2956         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2957         unsigned length;
2958         unsigned blocksize;
2959         struct inode *inode = mapping->host;
2960
2961         blocksize = inode->i_sb->s_blocksize;
2962         length = blocksize - (offset & (blocksize - 1));
2963
2964         return ext4_block_zero_page_range(handle, mapping, from, length);
2965 }
2966
2967 /*
2968  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
2969  * starting from file offset 'from'.  The range to be zero'd must
2970  * be contained with in one block.  If the specified range exceeds
2971  * the end of the block it will be shortened to end of the block
2972  * that cooresponds to 'from'
2973  */
2974 int ext4_block_zero_page_range(handle_t *handle,
2975                 struct address_space *mapping, loff_t from, loff_t length)
2976 {
2977         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2978         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2979         unsigned blocksize, max, pos;
2980         ext4_lblk_t iblock;
2981         struct inode *inode = mapping->host;
2982         struct buffer_head *bh;
2983         struct page *page;
2984         int err = 0;
2985
2986         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
2987                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
2988         if (!page)
2989                 return -EINVAL;
2990
2991         blocksize = inode->i_sb->s_blocksize;
2992         max = blocksize - (offset & (blocksize - 1));
2993
2994         /*
2995          * correct length if it does not fall between
2996          * 'from' and the end of the block
2997          */
2998         if (length > max || length < 0)
2999                 length = max;
3000
3001         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3002
3003         if (!page_has_buffers(page))
3004                 create_empty_buffers(page, blocksize, 0);
3005
3006         /* Find the buffer that contains "offset" */
3007         bh = page_buffers(page);
3008         pos = blocksize;
3009         while (offset >= pos) {
3010                 bh = bh->b_this_page;
3011                 iblock++;
3012                 pos += blocksize;
3013         }
3014
3015         err = 0;
3016         if (buffer_freed(bh)) {
3017                 BUFFER_TRACE(bh, "freed: skip");
3018                 goto unlock;
3019         }
3020
3021         if (!buffer_mapped(bh)) {
3022                 BUFFER_TRACE(bh, "unmapped");
3023                 ext4_get_block(inode, iblock, bh, 0);
3024                 /* unmapped? It's a hole - nothing to do */
3025                 if (!buffer_mapped(bh)) {
3026                         BUFFER_TRACE(bh, "still unmapped");
3027                         goto unlock;
3028                 }
3029         }
3030
3031         /* Ok, it's mapped. Make sure it's up-to-date */
3032         if (PageUptodate(page))
3033                 set_buffer_uptodate(bh);
3034
3035         if (!buffer_uptodate(bh)) {
3036                 err = -EIO;
3037                 ll_rw_block(READ, 1, &bh);
3038                 wait_on_buffer(bh);
3039                 /* Uhhuh. Read error. Complain and punt. */
3040                 if (!buffer_uptodate(bh))
3041                         goto unlock;
3042         }
3043
3044         if (ext4_should_journal_data(inode)) {
3045                 BUFFER_TRACE(bh, "get write access");
3046                 err = ext4_journal_get_write_access(handle, bh);
3047                 if (err)
3048                         goto unlock;
3049         }
3050
3051         zero_user(page, offset, length);
3052
3053         BUFFER_TRACE(bh, "zeroed end of block");
3054
3055         err = 0;
3056         if (ext4_should_journal_data(inode)) {
3057                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3058         } else {
3059                 if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
3060                         err = ext4_jbd2_file_inode(handle, inode);
3061                 mark_buffer_dirty(bh);
3062         }
3063
3064 unlock:
3065         unlock_page(page);
3066         page_cache_release(page);
3067         return err;
3068 }
3069
3070 int ext4_can_truncate(struct inode *inode)
3071 {
3072         if (S_ISREG(inode->i_mode))
3073                 return 1;
3074         if (S_ISDIR(inode->i_mode))
3075                 return 1;
3076         if (S_ISLNK(inode->i_mode))
3077                 return !ext4_inode_is_fast_symlink(inode);
3078         return 0;
3079 }
3080
3081 /*
3082  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3083  * associated with the given offset and length
3084  *
3085  * @inode:  File inode
3086  * @offset: The offset where the hole will begin
3087  * @len:    The length of the hole
3088  *
3089  * Returns: 0 on sucess or negative on failure
3090  */
3091
3092 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3093 {
3094         struct inode *inode = file->f_path.dentry->d_inode;
3095         if (!S_ISREG(inode->i_mode))
3096                 return -ENOTSUPP;
3097
3098         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3099                 /* TODO: Add support for non extent hole punching */
3100                 return -ENOTSUPP;
3101         }
3102
3103         return ext4_ext_punch_hole(file, offset, length);
3104 }
3105
3106 /*
3107  * ext4_truncate()
3108  *
3109  * We block out ext4_get_block() block instantiations across the entire
3110  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3111  * simultaneously on behalf of the same inode.
3112  *
3113  * As we work through the truncate and commmit bits of it to the journal there
3114  * is one core, guiding principle: the file's tree must always be consistent on
3115  * disk.  We must be able to restart the truncate after a crash.
3116  *
3117  * The file's tree may be transiently inconsistent in memory (although it
3118  * probably isn't), but whenever we close off and commit a journal transaction,
3119  * the contents of (the filesystem + the journal) must be consistent and
3120  * restartable.  It's pretty simple, really: bottom up, right to left (although
3121  * left-to-right works OK too).
3122  *
3123  * Note that at recovery time, journal replay occurs *before* the restart of
3124  * truncate against the orphan inode list.
3125  *
3126  * The committed inode has the new, desired i_size (which is the same as
3127  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3128  * that this inode's truncate did not complete and it will again call
3129  * ext4_truncate() to have another go.  So there will be instantiated blocks
3130  * to the right of the truncation point in a crashed ext4 filesystem.  But
3131  * that's fine - as long as they are linked from the inode, the post-crash
3132  * ext4_truncate() run will find them and release them.
3133  */
3134 void ext4_truncate(struct inode *inode)
3135 {
3136         trace_ext4_truncate_enter(inode);
3137
3138         if (!ext4_can_truncate(inode))
3139                 return;
3140
3141         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3142
3143         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3144                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3145
3146         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3147                 ext4_ext_truncate(inode);
3148         else
3149                 ext4_ind_truncate(inode);
3150
3151         trace_ext4_truncate_exit(inode);
3152 }
3153
3154 /*
3155  * ext4_get_inode_loc returns with an extra refcount against the inode's
3156  * underlying buffer_head on success. If 'in_mem' is true, we have all
3157  * data in memory that is needed to recreate the on-disk version of this
3158  * inode.
3159  */
3160 static int __ext4_get_inode_loc(struct inode *inode,
3161                                 struct ext4_iloc *iloc, int in_mem)
3162 {
3163         struct ext4_group_desc  *gdp;
3164         struct buffer_head      *bh;
3165         struct super_block      *sb = inode->i_sb;
3166         ext4_fsblk_t            block;
3167         int                     inodes_per_block, inode_offset;
3168
3169         iloc->bh = NULL;
3170         if (!ext4_valid_inum(sb, inode->i_ino))
3171                 return -EIO;
3172
3173         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3174         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3175         if (!gdp)
3176                 return -EIO;
3177
3178         /*
3179          * Figure out the offset within the block group inode table
3180          */
3181         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3182         inode_offset = ((inode->i_ino - 1) %
3183                         EXT4_INODES_PER_GROUP(sb));
3184         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3185         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3186
3187         bh = sb_getblk(sb, block);
3188         if (!bh) {
3189                 EXT4_ERROR_INODE_BLOCK(inode, block,
3190                                        "unable to read itable block");
3191                 return -EIO;
3192         }
3193         if (!buffer_uptodate(bh)) {
3194                 lock_buffer(bh);
3195
3196                 /*
3197                  * If the buffer has the write error flag, we have failed
3198                  * to write out another inode in the same block.  In this
3199                  * case, we don't have to read the block because we may
3200                  * read the old inode data successfully.
3201                  */
3202                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3203                         set_buffer_uptodate(bh);
3204
3205                 if (buffer_uptodate(bh)) {
3206                         /* someone brought it uptodate while we waited */
3207                         unlock_buffer(bh);
3208                         goto has_buffer;
3209                 }
3210
3211                 /*
3212                  * If we have all information of the inode in memory and this
3213                  * is the only valid inode in the block, we need not read the
3214                  * block.
3215                  */
3216                 if (in_mem) {
3217                         struct buffer_head *bitmap_bh;
3218                         int i, start;
3219
3220                         start = inode_offset & ~(inodes_per_block - 1);
3221
3222                         /* Is the inode bitmap in cache? */
3223                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3224                         if (!bitmap_bh)
3225                                 goto make_io;
3226
3227                         /*
3228                          * If the inode bitmap isn't in cache then the
3229                          * optimisation may end up performing two reads instead
3230                          * of one, so skip it.
3231                          */
3232                         if (!buffer_uptodate(bitmap_bh)) {
3233                                 brelse(bitmap_bh);
3234                                 goto make_io;
3235                         }
3236                         for (i = start; i < start + inodes_per_block; i++) {
3237                                 if (i == inode_offset)
3238                                         continue;
3239                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3240                                         break;
3241                         }
3242                         brelse(bitmap_bh);
3243                         if (i == start + inodes_per_block) {
3244                                 /* all other inodes are free, so skip I/O */
3245                                 memset(bh->b_data, 0, bh->b_size);
3246                                 set_buffer_uptodate(bh);
3247                                 unlock_buffer(bh);
3248                                 goto has_buffer;
3249                         }
3250                 }
3251
3252 make_io:
3253                 /*
3254                  * If we need to do any I/O, try to pre-readahead extra
3255                  * blocks from the inode table.
3256                  */
3257                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3258                         ext4_fsblk_t b, end, table;
3259                         unsigned num;
3260
3261                         table = ext4_inode_table(sb, gdp);
3262                         /* s_inode_readahead_blks is always a power of 2 */
3263                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3264                         if (table > b)
3265                                 b = table;
3266                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3267                         num = EXT4_INODES_PER_GROUP(sb);
3268                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3269                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3270                                 num -= ext4_itable_unused_count(sb, gdp);
3271                         table += num / inodes_per_block;
3272                         if (end > table)
3273                                 end = table;
3274                         while (b <= end)
3275                                 sb_breadahead(sb, b++);
3276                 }
3277
3278                 /*
3279                  * There are other valid inodes in the buffer, this inode
3280                  * has in-inode xattrs, or we don't have this inode in memory.
3281                  * Read the block from disk.
3282                  */
3283                 trace_ext4_load_inode(inode);
3284                 get_bh(bh);
3285                 bh->b_end_io = end_buffer_read_sync;
3286                 submit_bh(READ_META, bh);
3287                 wait_on_buffer(bh);
3288                 if (!buffer_uptodate(bh)) {
3289                         EXT4_ERROR_INODE_BLOCK(inode, block,
3290                                                "unable to read itable block");
3291                         brelse(bh);
3292                         return -EIO;
3293                 }
3294         }
3295 has_buffer:
3296         iloc->bh = bh;
3297         return 0;
3298 }
3299
3300 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3301 {
3302         /* We have all inode data except xattrs in memory here. */
3303         return __ext4_get_inode_loc(inode, iloc,
3304                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3305 }
3306
3307 void ext4_set_inode_flags(struct inode *inode)
3308 {
3309         unsigned int flags = EXT4_I(inode)->i_flags;
3310
3311         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3312         if (flags & EXT4_SYNC_FL)
3313                 inode->i_flags |= S_SYNC;
3314         if (flags & EXT4_APPEND_FL)
3315                 inode->i_flags |= S_APPEND;
3316         if (flags & EXT4_IMMUTABLE_FL)
3317                 inode->i_flags |= S_IMMUTABLE;
3318         if (flags & EXT4_NOATIME_FL)
3319                 inode->i_flags |= S_NOATIME;
3320         if (flags & EXT4_DIRSYNC_FL)
3321                 inode->i_flags |= S_DIRSYNC;
3322 }
3323
3324 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3325 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3326 {
3327         unsigned int vfs_fl;
3328         unsigned long old_fl, new_fl;
3329
3330         do {
3331                 vfs_fl = ei->vfs_inode.i_flags;
3332                 old_fl = ei->i_flags;
3333                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3334                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3335                                 EXT4_DIRSYNC_FL);
3336                 if (vfs_fl & S_SYNC)
3337                         new_fl |= EXT4_SYNC_FL;
3338                 if (vfs_fl & S_APPEND)
3339                         new_fl |= EXT4_APPEND_FL;
3340                 if (vfs_fl & S_IMMUTABLE)
3341                         new_fl |= EXT4_IMMUTABLE_FL;
3342                 if (vfs_fl & S_NOATIME)
3343                         new_fl |= EXT4_NOATIME_FL;
3344                 if (vfs_fl & S_DIRSYNC)
3345                         new_fl |= EXT4_DIRSYNC_FL;
3346         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3347 }
3348
3349 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3350                                   struct ext4_inode_info *ei)
3351 {
3352         blkcnt_t i_blocks ;
3353         struct inode *inode = &(ei->vfs_inode);
3354         struct super_block *sb = inode->i_sb;
3355
3356         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3357                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3358                 /* we are using combined 48 bit field */
3359                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3360                                         le32_to_cpu(raw_inode->i_blocks_lo);
3361                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3362                         /* i_blocks represent file system block size */
3363                         return i_blocks  << (inode->i_blkbits - 9);
3364                 } else {
3365                         return i_blocks;
3366                 }
3367         } else {
3368                 return le32_to_cpu(raw_inode->i_blocks_lo);
3369         }
3370 }
3371
3372 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3373 {
3374         struct ext4_iloc iloc;
3375         struct ext4_inode *raw_inode;
3376         struct ext4_inode_info *ei;
3377         struct inode *inode;
3378         journal_t *journal = EXT4_SB(sb)->s_journal;
3379         long ret;
3380         int block;
3381
3382         inode = iget_locked(sb, ino);
3383         if (!inode)
3384                 return ERR_PTR(-ENOMEM);
3385         if (!(inode->i_state & I_NEW))
3386                 return inode;
3387
3388         ei = EXT4_I(inode);
3389         iloc.bh = NULL;
3390
3391         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3392         if (ret < 0)
3393                 goto bad_inode;
3394         raw_inode = ext4_raw_inode(&iloc);
3395         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3396         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3397         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3398         if (!(test_opt(inode->i_sb, NO_UID32))) {
3399                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3400                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3401         }
3402         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3403
3404         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3405         ei->i_dir_start_lookup = 0;
3406         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3407         /* We now have enough fields to check if the inode was active or not.
3408          * This is needed because nfsd might try to access dead inodes
3409          * the test is that same one that e2fsck uses
3410          * NeilBrown 1999oct15
3411          */
3412         if (inode->i_nlink == 0) {
3413                 if (inode->i_mode == 0 ||
3414                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3415                         /* this inode is deleted */
3416                         ret = -ESTALE;
3417                         goto bad_inode;
3418                 }
3419                 /* The only unlinked inodes we let through here have
3420                  * valid i_mode and are being read by the orphan
3421                  * recovery code: that's fine, we're about to complete
3422                  * the process of deleting those. */
3423         }
3424         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3425         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3426         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3427         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3428                 ei->i_file_acl |=
3429                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3430         inode->i_size = ext4_isize(raw_inode);
3431         ei->i_disksize = inode->i_size;
3432 #ifdef CONFIG_QUOTA
3433         ei->i_reserved_quota = 0;
3434 #endif
3435         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3436         ei->i_block_group = iloc.block_group;
3437         ei->i_last_alloc_group = ~0;
3438         /*
3439          * NOTE! The in-memory inode i_data array is in little-endian order
3440          * even on big-endian machines: we do NOT byteswap the block numbers!
3441          */
3442         for (block = 0; block < EXT4_N_BLOCKS; block++)
3443                 ei->i_data[block] = raw_inode->i_block[block];
3444         INIT_LIST_HEAD(&ei->i_orphan);
3445
3446         /*
3447          * Set transaction id's of transactions that have to be committed
3448          * to finish f[data]sync. We set them to currently running transaction
3449          * as we cannot be sure that the inode or some of its metadata isn't
3450          * part of the transaction - the inode could have been reclaimed and
3451          * now it is reread from disk.
3452          */
3453         if (journal) {
3454                 transaction_t *transaction;
3455                 tid_t tid;
3456
3457                 read_lock(&journal->j_state_lock);
3458                 if (journal->j_running_transaction)
3459                         transaction = journal->j_running_transaction;
3460                 else
3461                         transaction = journal->j_committing_transaction;
3462                 if (transaction)
3463                         tid = transaction->t_tid;
3464                 else
3465                         tid = journal->j_commit_sequence;
3466                 read_unlock(&journal->j_state_lock);
3467                 ei->i_sync_tid = tid;
3468                 ei->i_datasync_tid = tid;
3469         }
3470
3471         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3472                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3473                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3474                     EXT4_INODE_SIZE(inode->i_sb)) {
3475                         ret = -EIO;
3476                         goto bad_inode;
3477                 }
3478                 if (ei->i_extra_isize == 0) {
3479                         /* The extra space is currently unused. Use it. */
3480                         ei->i_extra_isize = sizeof(struct ext4_inode) -
3481                                             EXT4_GOOD_OLD_INODE_SIZE;
3482                 } else {
3483                         __le32 *magic = (void *)raw_inode +
3484                                         EXT4_GOOD_OLD_INODE_SIZE +
3485                                         ei->i_extra_isize;
3486                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3487                                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3488                 }
3489         } else
3490                 ei->i_extra_isize = 0;
3491
3492         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3493         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3494         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3495         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3496
3497         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3498         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3499                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3500                         inode->i_version |=
3501                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3502         }
3503
3504         ret = 0;
3505         if (ei->i_file_acl &&
3506             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3507                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3508                                  ei->i_file_acl);
3509                 ret = -EIO;
3510                 goto bad_inode;
3511         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3512                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3513                     (S_ISLNK(inode->i_mode) &&
3514                      !ext4_inode_is_fast_symlink(inode)))
3515                         /* Validate extent which is part of inode */
3516                         ret = ext4_ext_check_inode(inode);
3517         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3518                    (S_ISLNK(inode->i_mode) &&
3519                     !ext4_inode_is_fast_symlink(inode))) {
3520                 /* Validate block references which are part of inode */
3521                 ret = ext4_ind_check_inode(inode);
3522         }
3523         if (ret)
3524                 goto bad_inode;
3525
3526         if (S_ISREG(inode->i_mode)) {
3527                 inode->i_op = &ext4_file_inode_operations;
3528                 inode->i_fop = &ext4_file_operations;
3529                 ext4_set_aops(inode);
3530         } else if (S_ISDIR(inode->i_mode)) {
3531                 inode->i_op = &ext4_dir_inode_operations;
3532                 inode->i_fop = &ext4_dir_operations;
3533         } else if (S_ISLNK(inode->i_mode)) {
3534                 if (ext4_inode_is_fast_symlink(inode)) {
3535                         inode->i_op = &ext4_fast_symlink_inode_operations;
3536                         nd_terminate_link(ei->i_data, inode->i_size,
3537                                 sizeof(ei->i_data) - 1);
3538                 } else {
3539                         inode->i_op = &ext4_symlink_inode_operations;
3540                         ext4_set_aops(inode);
3541                 }
3542         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3543               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3544                 inode->i_op = &ext4_special_inode_operations;
3545                 if (raw_inode->i_block[0])
3546                         init_special_inode(inode, inode->i_mode,
3547                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3548                 else
3549                         init_special_inode(inode, inode->i_mode,
3550                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3551         } else {
3552                 ret = -EIO;
3553                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3554                 goto bad_inode;
3555         }
3556         brelse(iloc.bh);
3557         ext4_set_inode_flags(inode);
3558         unlock_new_inode(inode);
3559         return inode;
3560
3561 bad_inode:
3562         brelse(iloc.bh);
3563         iget_failed(inode);
3564         return ERR_PTR(ret);
3565 }
3566
3567 static int ext4_inode_blocks_set(handle_t *handle,
3568                                 struct ext4_inode *raw_inode,
3569                                 struct ext4_inode_info *ei)
3570 {
3571         struct inode *inode = &(ei->vfs_inode);
3572         u64 i_blocks = inode->i_blocks;
3573         struct super_block *sb = inode->i_sb;
3574
3575         if (i_blocks <= ~0U) {
3576                 /*
3577                  * i_blocks can be represnted in a 32 bit variable
3578                  * as multiple of 512 bytes
3579                  */
3580                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3581                 raw_inode->i_blocks_high = 0;
3582                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3583                 return 0;
3584         }
3585         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3586                 return -EFBIG;
3587
3588         if (i_blocks <= 0xffffffffffffULL) {
3589                 /*
3590                  * i_blocks can be represented in a 48 bit variable
3591                  * as multiple of 512 bytes
3592                  */
3593                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3594                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3595                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3596         } else {
3597                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3598                 /* i_block is stored in file system block size */
3599                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3600                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3601                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3602         }
3603         return 0;
3604 }
3605
3606 /*
3607  * Post the struct inode info into an on-disk inode location in the
3608  * buffer-cache.  This gobbles the caller's reference to the
3609  * buffer_head in the inode location struct.
3610  *
3611  * The caller must have write access to iloc->bh.
3612  */
3613 static int ext4_do_update_inode(handle_t *handle,
3614                                 struct inode *inode,
3615                                 struct ext4_iloc *iloc)
3616 {
3617         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3618         struct ext4_inode_info *ei = EXT4_I(inode);
3619         struct buffer_head *bh = iloc->bh;
3620         int err = 0, rc, block;
3621
3622         /* For fields not not tracking in the in-memory inode,
3623          * initialise them to zero for new inodes. */
3624         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3625                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3626
3627         ext4_get_inode_flags(ei);
3628         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3629         if (!(test_opt(inode->i_sb, NO_UID32))) {
3630                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3631                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3632 /*
3633  * Fix up interoperability with old kernels. Otherwise, old inodes get
3634  * re-used with the upper 16 bits of the uid/gid intact
3635  */
3636                 if (!ei->i_dtime) {
3637                         raw_inode->i_uid_high =
3638                                 cpu_to_le16(high_16_bits(inode->i_uid));
3639                         raw_inode->i_gid_high =
3640                                 cpu_to_le16(high_16_bits(inode->i_gid));
3641                 } else {
3642                         raw_inode->i_uid_high = 0;
3643                         raw_inode->i_gid_high = 0;
3644                 }
3645         } else {
3646                 raw_inode->i_uid_low =
3647                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
3648                 raw_inode->i_gid_low =
3649                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
3650                 raw_inode->i_uid_high = 0;
3651                 raw_inode->i_gid_high = 0;
3652         }
3653         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3654
3655         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3656         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3657         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3658         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3659
3660         if (ext4_inode_blocks_set(handle, raw_inode, ei))
3661                 goto out_brelse;
3662         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3663         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
3664         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3665             cpu_to_le32(EXT4_OS_HURD))
3666                 raw_inode->i_file_acl_high =
3667                         cpu_to_le16(ei->i_file_acl >> 32);
3668         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3669         ext4_isize_set(raw_inode, ei->i_disksize);
3670         if (ei->i_disksize > 0x7fffffffULL) {
3671                 struct super_block *sb = inode->i_sb;
3672                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3673                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3674                                 EXT4_SB(sb)->s_es->s_rev_level ==
3675                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3676                         /* If this is the first large file
3677                          * created, add a flag to the superblock.
3678                          */
3679                         err = ext4_journal_get_write_access(handle,
3680                                         EXT4_SB(sb)->s_sbh);
3681                         if (err)
3682                                 goto out_brelse;
3683                         ext4_update_dynamic_rev(sb);
3684                         EXT4_SET_RO_COMPAT_FEATURE(sb,
3685                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3686                         sb->s_dirt = 1;
3687                         ext4_handle_sync(handle);
3688                         err = ext4_handle_dirty_metadata(handle, NULL,
3689                                         EXT4_SB(sb)->s_sbh);
3690                 }
3691         }
3692         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3693         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3694                 if (old_valid_dev(inode->i_rdev)) {
3695                         raw_inode->i_block[0] =
3696                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
3697                         raw_inode->i_block[1] = 0;
3698                 } else {
3699                         raw_inode->i_block[0] = 0;
3700                         raw_inode->i_block[1] =
3701                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
3702                         raw_inode->i_block[2] = 0;
3703                 }
3704         } else
3705                 for (block = 0; block < EXT4_N_BLOCKS; block++)
3706                         raw_inode->i_block[block] = ei->i_data[block];
3707
3708         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3709         if (ei->i_extra_isize) {
3710                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3711                         raw_inode->i_version_hi =
3712                         cpu_to_le32(inode->i_version >> 32);
3713                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3714         }
3715
3716         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3717         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
3718         if (!err)
3719                 err = rc;
3720         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
3721
3722         ext4_update_inode_fsync_trans(handle, inode, 0);
3723 out_brelse:
3724         brelse(bh);
3725         ext4_std_error(inode->i_sb, err);
3726         return err;
3727 }
3728
3729 /*
3730  * ext4_write_inode()
3731  *
3732  * We are called from a few places:
3733  *
3734  * - Within generic_file_write() for O_SYNC files.
3735  *   Here, there will be no transaction running. We wait for any running
3736  *   trasnaction to commit.
3737  *
3738  * - Within sys_sync(), kupdate and such.
3739  *   We wait on commit, if tol to.
3740  *
3741  * - Within prune_icache() (PF_MEMALLOC == true)
3742  *   Here we simply return.  We can't afford to block kswapd on the
3743  *   journal commit.
3744  *
3745  * In all cases it is actually safe for us to return without doing anything,
3746  * because the inode has been copied into a raw inode buffer in
3747  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3748  * knfsd.
3749  *
3750  * Note that we are absolutely dependent upon all inode dirtiers doing the
3751  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3752  * which we are interested.
3753  *
3754  * It would be a bug for them to not do this.  The code:
3755  *
3756  *      mark_inode_dirty(inode)
3757  *      stuff();
3758  *      inode->i_size = expr;
3759  *
3760  * is in error because a kswapd-driven write_inode() could occur while
3761  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3762  * will no longer be on the superblock's dirty inode list.
3763  */
3764 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
3765 {
3766         int err;
3767
3768         if (current->flags & PF_MEMALLOC)
3769                 return 0;
3770
3771         if (EXT4_SB(inode->i_sb)->s_journal) {
3772                 if (ext4_journal_current_handle()) {
3773                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3774                         dump_stack();
3775                         return -EIO;
3776                 }
3777
3778                 if (wbc->sync_mode != WB_SYNC_ALL)
3779                         return 0;
3780
3781                 err = ext4_force_commit(inode->i_sb);
3782         } else {
3783                 struct ext4_iloc iloc;
3784
3785                 err = __ext4_get_inode_loc(inode, &iloc, 0);
3786                 if (err)
3787                         return err;
3788                 if (wbc->sync_mode == WB_SYNC_ALL)
3789                         sync_dirty_buffer(iloc.bh);
3790                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
3791                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
3792                                          "IO error syncing inode");
3793                         err = -EIO;
3794                 }
3795                 brelse(iloc.bh);
3796         }
3797         return err;
3798 }
3799
3800 /*
3801  * ext4_setattr()
3802  *
3803  * Called from notify_change.
3804  *
3805  * We want to trap VFS attempts to truncate the file as soon as
3806  * possible.  In particular, we want to make sure that when the VFS
3807  * shrinks i_size, we put the inode on the orphan list and modify
3808  * i_disksize immediately, so that during the subsequent flushing of
3809  * dirty pages and freeing of disk blocks, we can guarantee that any
3810  * commit will leave the blocks being flushed in an unused state on
3811  * disk.  (On recovery, the inode will get truncated and the blocks will
3812  * be freed, so we have a strong guarantee that no future commit will
3813  * leave these blocks visible to the user.)
3814  *
3815  * Another thing we have to assure is that if we are in ordered mode
3816  * and inode is still attached to the committing transaction, we must
3817  * we start writeout of all the dirty pages which are being truncated.
3818  * This way we are sure that all the data written in the previous
3819  * transaction are already on disk (truncate waits for pages under
3820  * writeback).
3821  *
3822  * Called with inode->i_mutex down.
3823  */
3824 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3825 {
3826         struct inode *inode = dentry->d_inode;
3827         int error, rc = 0;
3828         int orphan = 0;
3829         const unsigned int ia_valid = attr->ia_valid;
3830
3831         error = inode_change_ok(inode, attr);
3832         if (error)
3833                 return error;
3834
3835         if (is_quota_modification(inode, attr))
3836                 dquot_initialize(inode);
3837         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3838                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3839                 handle_t *handle;
3840
3841                 /* (user+group)*(old+new) structure, inode write (sb,
3842                  * inode block, ? - but truncate inode update has it) */
3843                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3844                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
3845                 if (IS_ERR(handle)) {
3846                         error = PTR_ERR(handle);
3847                         goto err_out;
3848                 }
3849                 error = dquot_transfer(inode, attr);
3850                 if (error) {
3851                         ext4_journal_stop(handle);
3852                         return error;
3853                 }
3854                 /* Update corresponding info in inode so that everything is in
3855                  * one transaction */
3856                 if (attr->ia_valid & ATTR_UID)
3857                         inode->i_uid = attr->ia_uid;
3858                 if (attr->ia_valid & ATTR_GID)
3859                         inode->i_gid = attr->ia_gid;
3860                 error = ext4_mark_inode_dirty(handle, inode);
3861                 ext4_journal_stop(handle);
3862         }
3863
3864         if (attr->ia_valid & ATTR_SIZE) {
3865                 inode_dio_wait(inode);
3866
3867                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3868                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3869
3870                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
3871                                 return -EFBIG;
3872                 }
3873         }
3874
3875         if (S_ISREG(inode->i_mode) &&
3876             attr->ia_valid & ATTR_SIZE &&
3877             (attr->ia_size < inode->i_size)) {
3878                 handle_t *handle;
3879
3880                 handle = ext4_journal_start(inode, 3);
3881                 if (IS_ERR(handle)) {
3882                         error = PTR_ERR(handle);
3883                         goto err_out;
3884                 }
3885                 if (ext4_handle_valid(handle)) {
3886                         error = ext4_orphan_add(handle, inode);
3887                         orphan = 1;
3888                 }
3889                 EXT4_I(inode)->i_disksize = attr->ia_size;
3890                 rc = ext4_mark_inode_dirty(handle, inode);
3891                 if (!error)
3892                         error = rc;
3893                 ext4_journal_stop(handle);
3894
3895                 if (ext4_should_order_data(inode)) {
3896                         error = ext4_begin_ordered_truncate(inode,
3897                                                             attr->ia_size);
3898                         if (error) {
3899                                 /* Do as much error cleanup as possible */
3900                                 handle = ext4_journal_start(inode, 3);
3901                                 if (IS_ERR(handle)) {
3902                                         ext4_orphan_del(NULL, inode);
3903                                         goto err_out;
3904                                 }
3905                                 ext4_orphan_del(handle, inode);
3906                                 orphan = 0;
3907                                 ext4_journal_stop(handle);
3908                                 goto err_out;
3909                         }
3910                 }
3911         }
3912
3913         if (attr->ia_valid & ATTR_SIZE) {
3914                 if (attr->ia_size != i_size_read(inode)) {
3915                         truncate_setsize(inode, attr->ia_size);
3916                         ext4_truncate(inode);
3917                 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3918                         ext4_truncate(inode);
3919         }
3920
3921         if (!rc) {
3922                 setattr_copy(inode, attr);
3923                 mark_inode_dirty(inode);
3924         }
3925
3926         /*
3927          * If the call to ext4_truncate failed to get a transaction handle at
3928          * all, we need to clean up the in-core orphan list manually.
3929          */
3930         if (orphan && inode->i_nlink)
3931                 ext4_orphan_del(NULL, inode);
3932
3933         if (!rc && (ia_valid & ATTR_MODE))
3934                 rc = ext4_acl_chmod(inode);
3935
3936 err_out:
3937         ext4_std_error(inode->i_sb, error);
3938         if (!error)
3939                 error = rc;
3940         return error;
3941 }
3942
3943 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
3944                  struct kstat *stat)
3945 {
3946         struct inode *inode;
3947         unsigned long delalloc_blocks;
3948
3949         inode = dentry->d_inode;
3950         generic_fillattr(inode, stat);
3951
3952         /*
3953          * We can't update i_blocks if the block allocation is delayed
3954          * otherwise in the case of system crash before the real block
3955          * allocation is done, we will have i_blocks inconsistent with
3956          * on-disk file blocks.
3957          * We always keep i_blocks updated together with real
3958          * allocation. But to not confuse with user, stat
3959          * will return the blocks that include the delayed allocation
3960          * blocks for this file.
3961          */
3962         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
3963
3964         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
3965         return 0;
3966 }
3967
3968 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
3969 {
3970         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3971                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
3972         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
3973 }
3974
3975 /*
3976  * Account for index blocks, block groups bitmaps and block group
3977  * descriptor blocks if modify datablocks and index blocks
3978  * worse case, the indexs blocks spread over different block groups
3979  *
3980  * If datablocks are discontiguous, they are possible to spread over
3981  * different block groups too. If they are contiuguous, with flexbg,
3982  * they could still across block group boundary.
3983  *
3984  * Also account for superblock, inode, quota and xattr blocks
3985  */
3986 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
3987 {
3988         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
3989         int gdpblocks;
3990         int idxblocks;
3991         int ret = 0;
3992
3993         /*
3994          * How many index blocks need to touch to modify nrblocks?
3995          * The "Chunk" flag indicating whether the nrblocks is
3996          * physically contiguous on disk
3997          *
3998          * For Direct IO and fallocate, they calls get_block to allocate
3999          * one single extent at a time, so they could set the "Chunk" flag
4000          */
4001         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4002
4003         ret = idxblocks;
4004
4005         /*
4006          * Now let's see how many group bitmaps and group descriptors need
4007          * to account
4008          */
4009         groups = idxblocks;
4010         if (chunk)
4011                 groups += 1;
4012         else
4013                 groups += nrblocks;
4014
4015         gdpblocks = groups;
4016         if (groups > ngroups)
4017                 groups = ngroups;
4018         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4019                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4020
4021         /* bitmaps and block group descriptor blocks */
4022         ret += groups + gdpblocks;
4023
4024         /* Blocks for super block, inode, quota and xattr blocks */
4025         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4026
4027         return ret;
4028 }
4029
4030 /*
4031  * Calculate the total number of credits to reserve to fit
4032  * the modification of a single pages into a single transaction,
4033  * which may include multiple chunks of block allocations.
4034  *
4035  * This could be called via ext4_write_begin()
4036  *
4037  * We need to consider the worse case, when
4038  * one new block per extent.
4039  */
4040 int ext4_writepage_trans_blocks(struct inode *inode)
4041 {
4042         int bpp = ext4_journal_blocks_per_page(inode);
4043         int ret;
4044
4045         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4046
4047         /* Account for data blocks for journalled mode */
4048         if (ext4_should_journal_data(inode))
4049                 ret += bpp;
4050         return ret;
4051 }
4052
4053 /*
4054  * Calculate the journal credits for a chunk of data modification.
4055  *
4056  * This is called from DIO, fallocate or whoever calling
4057  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4058  *
4059  * journal buffers for data blocks are not included here, as DIO
4060  * and fallocate do no need to journal data buffers.
4061  */
4062 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4063 {
4064         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4065 }
4066
4067 /*
4068  * The caller must have previously called ext4_reserve_inode_write().
4069  * Give this, we know that the caller already has write access to iloc->bh.
4070  */
4071 int ext4_mark_iloc_dirty(handle_t *handle,
4072                          struct inode *inode, struct ext4_iloc *iloc)
4073 {
4074         int err = 0;
4075
4076         if (test_opt(inode->i_sb, I_VERSION))
4077                 inode_inc_iversion(inode);
4078
4079         /* the do_update_inode consumes one bh->b_count */
4080         get_bh(iloc->bh);
4081
4082         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4083         err = ext4_do_update_inode(handle, inode, iloc);
4084         put_bh(iloc->bh);
4085         return err;
4086 }
4087
4088 /*
4089  * On success, We end up with an outstanding reference count against
4090  * iloc->bh.  This _must_ be cleaned up later.
4091  */
4092
4093 int
4094 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4095                          struct ext4_iloc *iloc)
4096 {
4097         int err;
4098
4099         err = ext4_get_inode_loc(inode, iloc);
4100         if (!err) {
4101                 BUFFER_TRACE(iloc->bh, "get_write_access");
4102                 err = ext4_journal_get_write_access(handle, iloc->bh);
4103                 if (err) {
4104                         brelse(iloc->bh);
4105                         iloc->bh = NULL;
4106                 }
4107         }
4108         ext4_std_error(inode->i_sb, err);
4109         return err;
4110 }
4111
4112 /*
4113  * Expand an inode by new_extra_isize bytes.
4114  * Returns 0 on success or negative error number on failure.
4115  */
4116 static int ext4_expand_extra_isize(struct inode *inode,
4117                                    unsigned int new_extra_isize,
4118                                    struct ext4_iloc iloc,
4119                                    handle_t *handle)
4120 {
4121         struct ext4_inode *raw_inode;
4122         struct ext4_xattr_ibody_header *header;
4123
4124         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4125                 return 0;
4126
4127         raw_inode = ext4_raw_inode(&iloc);
4128
4129         header = IHDR(inode, raw_inode);
4130
4131         /* No extended attributes present */
4132         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4133             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4134                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4135                         new_extra_isize);
4136                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4137                 return 0;
4138         }
4139
4140         /* try to expand with EAs present */
4141         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4142                                           raw_inode, handle);
4143 }
4144
4145 /*
4146  * What we do here is to mark the in-core inode as clean with respect to inode
4147  * dirtiness (it may still be data-dirty).
4148  * This means that the in-core inode may be reaped by prune_icache
4149  * without having to perform any I/O.  This is a very good thing,
4150  * because *any* task may call prune_icache - even ones which
4151  * have a transaction open against a different journal.
4152  *
4153  * Is this cheating?  Not really.  Sure, we haven't written the
4154  * inode out, but prune_icache isn't a user-visible syncing function.
4155  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4156  * we start and wait on commits.
4157  *
4158  * Is this efficient/effective?  Well, we're being nice to the system
4159  * by cleaning up our inodes proactively so they can be reaped
4160  * without I/O.  But we are potentially leaving up to five seconds'
4161  * worth of inodes floating about which prune_icache wants us to
4162  * write out.  One way to fix that would be to get prune_icache()
4163  * to do a write_super() to free up some memory.  It has the desired
4164  * effect.
4165  */
4166 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4167 {
4168         struct ext4_iloc iloc;
4169         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4170         static unsigned int mnt_count;
4171         int err, ret;
4172
4173         might_sleep();
4174         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4175         err = ext4_reserve_inode_write(handle, inode, &iloc);
4176         if (ext4_handle_valid(handle) &&
4177             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4178             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4179                 /*
4180                  * We need extra buffer credits since we may write into EA block
4181                  * with this same handle. If journal_extend fails, then it will
4182                  * only result in a minor loss of functionality for that inode.
4183                  * If this is felt to be critical, then e2fsck should be run to
4184                  * force a large enough s_min_extra_isize.
4185                  */
4186                 if ((jbd2_journal_extend(handle,
4187                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4188                         ret = ext4_expand_extra_isize(inode,
4189                                                       sbi->s_want_extra_isize,
4190                                                       iloc, handle);
4191                         if (ret) {
4192                                 ext4_set_inode_state(inode,
4193                                                      EXT4_STATE_NO_EXPAND);
4194                                 if (mnt_count !=
4195                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4196                                         ext4_warning(inode->i_sb,
4197                                         "Unable to expand inode %lu. Delete"
4198                                         " some EAs or run e2fsck.",
4199                                         inode->i_ino);
4200                                         mnt_count =
4201                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4202                                 }
4203                         }
4204                 }
4205         }
4206         if (!err)
4207                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4208         return err;
4209 }
4210
4211 /*
4212  * ext4_dirty_inode() is called from __mark_inode_dirty()
4213  *
4214  * We're really interested in the case where a file is being extended.
4215  * i_size has been changed by generic_commit_write() and we thus need
4216  * to include the updated inode in the current transaction.
4217  *
4218  * Also, dquot_alloc_block() will always dirty the inode when blocks
4219  * are allocated to the file.
4220  *
4221  * If the inode is marked synchronous, we don't honour that here - doing
4222  * so would cause a commit on atime updates, which we don't bother doing.
4223  * We handle synchronous inodes at the highest possible level.
4224  */
4225 void ext4_dirty_inode(struct inode *inode, int flags)
4226 {
4227         handle_t *handle;
4228
4229         handle = ext4_journal_start(inode, 2);
4230         if (IS_ERR(handle))
4231                 goto out;
4232
4233         ext4_mark_inode_dirty(handle, inode);
4234
4235         ext4_journal_stop(handle);
4236 out:
4237         return;
4238 }
4239
4240 #if 0
4241 /*
4242  * Bind an inode's backing buffer_head into this transaction, to prevent
4243  * it from being flushed to disk early.  Unlike
4244  * ext4_reserve_inode_write, this leaves behind no bh reference and
4245  * returns no iloc structure, so the caller needs to repeat the iloc
4246  * lookup to mark the inode dirty later.
4247  */
4248 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4249 {
4250         struct ext4_iloc iloc;
4251
4252         int err = 0;
4253         if (handle) {
4254                 err = ext4_get_inode_loc(inode, &iloc);
4255                 if (!err) {
4256                         BUFFER_TRACE(iloc.bh, "get_write_access");
4257                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4258                         if (!err)
4259                                 err = ext4_handle_dirty_metadata(handle,
4260                                                                  NULL,
4261                                                                  iloc.bh);
4262                         brelse(iloc.bh);
4263                 }
4264         }
4265         ext4_std_error(inode->i_sb, err);
4266         return err;
4267 }
4268 #endif
4269
4270 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4271 {
4272         journal_t *journal;
4273         handle_t *handle;
4274         int err;
4275
4276         /*
4277          * We have to be very careful here: changing a data block's
4278          * journaling status dynamically is dangerous.  If we write a
4279          * data block to the journal, change the status and then delete
4280          * that block, we risk forgetting to revoke the old log record
4281          * from the journal and so a subsequent replay can corrupt data.
4282          * So, first we make sure that the journal is empty and that
4283          * nobody is changing anything.
4284          */
4285
4286         journal = EXT4_JOURNAL(inode);
4287         if (!journal)
4288                 return 0;
4289         if (is_journal_aborted(journal))
4290                 return -EROFS;
4291
4292         jbd2_journal_lock_updates(journal);
4293         jbd2_journal_flush(journal);
4294
4295         /*
4296          * OK, there are no updates running now, and all cached data is
4297          * synced to disk.  We are now in a completely consistent state
4298          * which doesn't have anything in the journal, and we know that
4299          * no filesystem updates are running, so it is safe to modify
4300          * the inode's in-core data-journaling state flag now.
4301          */
4302
4303         if (val)
4304                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4305         else
4306                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4307         ext4_set_aops(inode);
4308
4309         jbd2_journal_unlock_updates(journal);
4310
4311         /* Finally we can mark the inode as dirty. */
4312
4313         handle = ext4_journal_start(inode, 1);
4314         if (IS_ERR(handle))
4315                 return PTR_ERR(handle);
4316
4317         err = ext4_mark_inode_dirty(handle, inode);
4318         ext4_handle_sync(handle);
4319         ext4_journal_stop(handle);
4320         ext4_std_error(inode->i_sb, err);
4321
4322         return err;
4323 }
4324
4325 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4326 {
4327         return !buffer_mapped(bh);
4328 }
4329
4330 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4331 {
4332         struct page *page = vmf->page;
4333         loff_t size;
4334         unsigned long len;
4335         int ret;
4336         struct file *file = vma->vm_file;
4337         struct inode *inode = file->f_path.dentry->d_inode;
4338         struct address_space *mapping = inode->i_mapping;
4339         handle_t *handle;
4340         get_block_t *get_block;
4341         int retries = 0;
4342
4343         /*
4344          * This check is racy but catches the common case. We rely on
4345          * __block_page_mkwrite() to do a reliable check.
4346          */
4347         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4348         /* Delalloc case is easy... */
4349         if (test_opt(inode->i_sb, DELALLOC) &&
4350             !ext4_should_journal_data(inode) &&
4351             !ext4_nonda_switch(inode->i_sb)) {
4352                 do {
4353                         ret = __block_page_mkwrite(vma, vmf,
4354                                                    ext4_da_get_block_prep);
4355                 } while (ret == -ENOSPC &&
4356                        ext4_should_retry_alloc(inode->i_sb, &retries));
4357                 goto out_ret;
4358         }
4359
4360         lock_page(page);
4361         size = i_size_read(inode);
4362         /* Page got truncated from under us? */
4363         if (page->mapping != mapping || page_offset(page) > size) {
4364                 unlock_page(page);
4365                 ret = VM_FAULT_NOPAGE;
4366                 goto out;
4367         }
4368
4369         if (page->index == size >> PAGE_CACHE_SHIFT)
4370                 len = size & ~PAGE_CACHE_MASK;
4371         else
4372                 len = PAGE_CACHE_SIZE;
4373         /*
4374          * Return if we have all the buffers mapped. This avoids the need to do
4375          * journal_start/journal_stop which can block and take a long time
4376          */
4377         if (page_has_buffers(page)) {
4378                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4379                                         ext4_bh_unmapped)) {
4380                         /* Wait so that we don't change page under IO */
4381                         wait_on_page_writeback(page);
4382                         ret = VM_FAULT_LOCKED;
4383                         goto out;
4384                 }
4385         }
4386         unlock_page(page);
4387         /* OK, we need to fill the hole... */
4388         if (ext4_should_dioread_nolock(inode))
4389                 get_block = ext4_get_block_write;
4390         else
4391                 get_block = ext4_get_block;
4392 retry_alloc:
4393         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4394         if (IS_ERR(handle)) {
4395                 ret = VM_FAULT_SIGBUS;
4396                 goto out;
4397         }
4398         ret = __block_page_mkwrite(vma, vmf, get_block);
4399         if (!ret && ext4_should_journal_data(inode)) {
4400                 if (walk_page_buffers(handle, page_buffers(page), 0,
4401                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4402                         unlock_page(page);
4403                         ret = VM_FAULT_SIGBUS;
4404                         goto out;
4405                 }
4406                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4407         }
4408         ext4_journal_stop(handle);
4409         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4410                 goto retry_alloc;
4411 out_ret:
4412         ret = block_page_mkwrite_return(ret);
4413 out:
4414         return ret;
4415 }