Merge branches 'master' and 'devel' into for-linus
[pandora-kernel.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/slab.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "ext4_extents.h"
48
49 #include <trace/events/ext4.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static inline int ext4_begin_ordered_truncate(struct inode *inode,
54                                               loff_t new_size)
55 {
56         return jbd2_journal_begin_ordered_truncate(
57                                         EXT4_SB(inode->i_sb)->s_journal,
58                                         &EXT4_I(inode)->jinode,
59                                         new_size);
60 }
61
62 static void ext4_invalidatepage(struct page *page, unsigned long offset);
63
64 /*
65  * Test whether an inode is a fast symlink.
66  */
67 static int ext4_inode_is_fast_symlink(struct inode *inode)
68 {
69         int ea_blocks = EXT4_I(inode)->i_file_acl ?
70                 (inode->i_sb->s_blocksize >> 9) : 0;
71
72         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
73 }
74
75 /*
76  * Work out how many blocks we need to proceed with the next chunk of a
77  * truncate transaction.
78  */
79 static unsigned long blocks_for_truncate(struct inode *inode)
80 {
81         ext4_lblk_t needed;
82
83         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
84
85         /* Give ourselves just enough room to cope with inodes in which
86          * i_blocks is corrupt: we've seen disk corruptions in the past
87          * which resulted in random data in an inode which looked enough
88          * like a regular file for ext4 to try to delete it.  Things
89          * will go a bit crazy if that happens, but at least we should
90          * try not to panic the whole kernel. */
91         if (needed < 2)
92                 needed = 2;
93
94         /* But we need to bound the transaction so we don't overflow the
95          * journal. */
96         if (needed > EXT4_MAX_TRANS_DATA)
97                 needed = EXT4_MAX_TRANS_DATA;
98
99         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
100 }
101
102 /*
103  * Truncate transactions can be complex and absolutely huge.  So we need to
104  * be able to restart the transaction at a conventient checkpoint to make
105  * sure we don't overflow the journal.
106  *
107  * start_transaction gets us a new handle for a truncate transaction,
108  * and extend_transaction tries to extend the existing one a bit.  If
109  * extend fails, we need to propagate the failure up and restart the
110  * transaction in the top-level truncate loop. --sct
111  */
112 static handle_t *start_transaction(struct inode *inode)
113 {
114         handle_t *result;
115
116         result = ext4_journal_start(inode, blocks_for_truncate(inode));
117         if (!IS_ERR(result))
118                 return result;
119
120         ext4_std_error(inode->i_sb, PTR_ERR(result));
121         return result;
122 }
123
124 /*
125  * Try to extend this transaction for the purposes of truncation.
126  *
127  * Returns 0 if we managed to create more room.  If we can't create more
128  * room, and the transaction must be restarted we return 1.
129  */
130 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
131 {
132         if (!ext4_handle_valid(handle))
133                 return 0;
134         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
135                 return 0;
136         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
137                 return 0;
138         return 1;
139 }
140
141 /*
142  * Restart the transaction associated with *handle.  This does a commit,
143  * so before we call here everything must be consistently dirtied against
144  * this transaction.
145  */
146 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
147                                  int nblocks)
148 {
149         int ret;
150
151         /*
152          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
153          * moment, get_block can be called only for blocks inside i_size since
154          * page cache has been already dropped and writes are blocked by
155          * i_mutex. So we can safely drop the i_data_sem here.
156          */
157         BUG_ON(EXT4_JOURNAL(inode) == NULL);
158         jbd_debug(2, "restarting handle %p\n", handle);
159         up_write(&EXT4_I(inode)->i_data_sem);
160         ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
161         down_write(&EXT4_I(inode)->i_data_sem);
162         ext4_discard_preallocations(inode);
163
164         return ret;
165 }
166
167 /*
168  * Called at the last iput() if i_nlink is zero.
169  */
170 void ext4_delete_inode(struct inode *inode)
171 {
172         handle_t *handle;
173         int err;
174
175         if (!is_bad_inode(inode))
176                 dquot_initialize(inode);
177
178         if (ext4_should_order_data(inode))
179                 ext4_begin_ordered_truncate(inode, 0);
180         truncate_inode_pages(&inode->i_data, 0);
181
182         if (is_bad_inode(inode))
183                 goto no_delete;
184
185         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
186         if (IS_ERR(handle)) {
187                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
188                 /*
189                  * If we're going to skip the normal cleanup, we still need to
190                  * make sure that the in-core orphan linked list is properly
191                  * cleaned up.
192                  */
193                 ext4_orphan_del(NULL, inode);
194                 goto no_delete;
195         }
196
197         if (IS_SYNC(inode))
198                 ext4_handle_sync(handle);
199         inode->i_size = 0;
200         err = ext4_mark_inode_dirty(handle, inode);
201         if (err) {
202                 ext4_warning(inode->i_sb,
203                              "couldn't mark inode dirty (err %d)", err);
204                 goto stop_handle;
205         }
206         if (inode->i_blocks)
207                 ext4_truncate(inode);
208
209         /*
210          * ext4_ext_truncate() doesn't reserve any slop when it
211          * restarts journal transactions; therefore there may not be
212          * enough credits left in the handle to remove the inode from
213          * the orphan list and set the dtime field.
214          */
215         if (!ext4_handle_has_enough_credits(handle, 3)) {
216                 err = ext4_journal_extend(handle, 3);
217                 if (err > 0)
218                         err = ext4_journal_restart(handle, 3);
219                 if (err != 0) {
220                         ext4_warning(inode->i_sb,
221                                      "couldn't extend journal (err %d)", err);
222                 stop_handle:
223                         ext4_journal_stop(handle);
224                         ext4_orphan_del(NULL, inode);
225                         goto no_delete;
226                 }
227         }
228
229         /*
230          * Kill off the orphan record which ext4_truncate created.
231          * AKPM: I think this can be inside the above `if'.
232          * Note that ext4_orphan_del() has to be able to cope with the
233          * deletion of a non-existent orphan - this is because we don't
234          * know if ext4_truncate() actually created an orphan record.
235          * (Well, we could do this if we need to, but heck - it works)
236          */
237         ext4_orphan_del(handle, inode);
238         EXT4_I(inode)->i_dtime  = get_seconds();
239
240         /*
241          * One subtle ordering requirement: if anything has gone wrong
242          * (transaction abort, IO errors, whatever), then we can still
243          * do these next steps (the fs will already have been marked as
244          * having errors), but we can't free the inode if the mark_dirty
245          * fails.
246          */
247         if (ext4_mark_inode_dirty(handle, inode))
248                 /* If that failed, just do the required in-core inode clear. */
249                 clear_inode(inode);
250         else
251                 ext4_free_inode(handle, inode);
252         ext4_journal_stop(handle);
253         return;
254 no_delete:
255         clear_inode(inode);     /* We must guarantee clearing of inode... */
256 }
257
258 typedef struct {
259         __le32  *p;
260         __le32  key;
261         struct buffer_head *bh;
262 } Indirect;
263
264 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
265 {
266         p->key = *(p->p = v);
267         p->bh = bh;
268 }
269
270 /**
271  *      ext4_block_to_path - parse the block number into array of offsets
272  *      @inode: inode in question (we are only interested in its superblock)
273  *      @i_block: block number to be parsed
274  *      @offsets: array to store the offsets in
275  *      @boundary: set this non-zero if the referred-to block is likely to be
276  *             followed (on disk) by an indirect block.
277  *
278  *      To store the locations of file's data ext4 uses a data structure common
279  *      for UNIX filesystems - tree of pointers anchored in the inode, with
280  *      data blocks at leaves and indirect blocks in intermediate nodes.
281  *      This function translates the block number into path in that tree -
282  *      return value is the path length and @offsets[n] is the offset of
283  *      pointer to (n+1)th node in the nth one. If @block is out of range
284  *      (negative or too large) warning is printed and zero returned.
285  *
286  *      Note: function doesn't find node addresses, so no IO is needed. All
287  *      we need to know is the capacity of indirect blocks (taken from the
288  *      inode->i_sb).
289  */
290
291 /*
292  * Portability note: the last comparison (check that we fit into triple
293  * indirect block) is spelled differently, because otherwise on an
294  * architecture with 32-bit longs and 8Kb pages we might get into trouble
295  * if our filesystem had 8Kb blocks. We might use long long, but that would
296  * kill us on x86. Oh, well, at least the sign propagation does not matter -
297  * i_block would have to be negative in the very beginning, so we would not
298  * get there at all.
299  */
300
301 static int ext4_block_to_path(struct inode *inode,
302                               ext4_lblk_t i_block,
303                               ext4_lblk_t offsets[4], int *boundary)
304 {
305         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
306         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
307         const long direct_blocks = EXT4_NDIR_BLOCKS,
308                 indirect_blocks = ptrs,
309                 double_blocks = (1 << (ptrs_bits * 2));
310         int n = 0;
311         int final = 0;
312
313         if (i_block < direct_blocks) {
314                 offsets[n++] = i_block;
315                 final = direct_blocks;
316         } else if ((i_block -= direct_blocks) < indirect_blocks) {
317                 offsets[n++] = EXT4_IND_BLOCK;
318                 offsets[n++] = i_block;
319                 final = ptrs;
320         } else if ((i_block -= indirect_blocks) < double_blocks) {
321                 offsets[n++] = EXT4_DIND_BLOCK;
322                 offsets[n++] = i_block >> ptrs_bits;
323                 offsets[n++] = i_block & (ptrs - 1);
324                 final = ptrs;
325         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
326                 offsets[n++] = EXT4_TIND_BLOCK;
327                 offsets[n++] = i_block >> (ptrs_bits * 2);
328                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
329                 offsets[n++] = i_block & (ptrs - 1);
330                 final = ptrs;
331         } else {
332                 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
333                              i_block + direct_blocks +
334                              indirect_blocks + double_blocks, inode->i_ino);
335         }
336         if (boundary)
337                 *boundary = final - 1 - (i_block & (ptrs - 1));
338         return n;
339 }
340
341 static int __ext4_check_blockref(const char *function, unsigned int line,
342                                  struct inode *inode,
343                                  __le32 *p, unsigned int max)
344 {
345         struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
346         __le32 *bref = p;
347         unsigned int blk;
348
349         while (bref < p+max) {
350                 blk = le32_to_cpu(*bref++);
351                 if (blk &&
352                     unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
353                                                     blk, 1))) {
354                         es->s_last_error_block = cpu_to_le64(blk);
355                         ext4_error_inode(inode, function, line, blk,
356                                          "invalid block");
357                         return -EIO;
358                 }
359         }
360         return 0;
361 }
362
363
364 #define ext4_check_indirect_blockref(inode, bh)                         \
365         __ext4_check_blockref(__func__, __LINE__, inode,                \
366                               (__le32 *)(bh)->b_data,                   \
367                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
368
369 #define ext4_check_inode_blockref(inode)                                \
370         __ext4_check_blockref(__func__, __LINE__, inode,                \
371                               EXT4_I(inode)->i_data,                    \
372                               EXT4_NDIR_BLOCKS)
373
374 /**
375  *      ext4_get_branch - read the chain of indirect blocks leading to data
376  *      @inode: inode in question
377  *      @depth: depth of the chain (1 - direct pointer, etc.)
378  *      @offsets: offsets of pointers in inode/indirect blocks
379  *      @chain: place to store the result
380  *      @err: here we store the error value
381  *
382  *      Function fills the array of triples <key, p, bh> and returns %NULL
383  *      if everything went OK or the pointer to the last filled triple
384  *      (incomplete one) otherwise. Upon the return chain[i].key contains
385  *      the number of (i+1)-th block in the chain (as it is stored in memory,
386  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
387  *      number (it points into struct inode for i==0 and into the bh->b_data
388  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
389  *      block for i>0 and NULL for i==0. In other words, it holds the block
390  *      numbers of the chain, addresses they were taken from (and where we can
391  *      verify that chain did not change) and buffer_heads hosting these
392  *      numbers.
393  *
394  *      Function stops when it stumbles upon zero pointer (absent block)
395  *              (pointer to last triple returned, *@err == 0)
396  *      or when it gets an IO error reading an indirect block
397  *              (ditto, *@err == -EIO)
398  *      or when it reads all @depth-1 indirect blocks successfully and finds
399  *      the whole chain, all way to the data (returns %NULL, *err == 0).
400  *
401  *      Need to be called with
402  *      down_read(&EXT4_I(inode)->i_data_sem)
403  */
404 static Indirect *ext4_get_branch(struct inode *inode, int depth,
405                                  ext4_lblk_t  *offsets,
406                                  Indirect chain[4], int *err)
407 {
408         struct super_block *sb = inode->i_sb;
409         Indirect *p = chain;
410         struct buffer_head *bh;
411
412         *err = 0;
413         /* i_data is not going away, no lock needed */
414         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
415         if (!p->key)
416                 goto no_block;
417         while (--depth) {
418                 bh = sb_getblk(sb, le32_to_cpu(p->key));
419                 if (unlikely(!bh))
420                         goto failure;
421
422                 if (!bh_uptodate_or_lock(bh)) {
423                         if (bh_submit_read(bh) < 0) {
424                                 put_bh(bh);
425                                 goto failure;
426                         }
427                         /* validate block references */
428                         if (ext4_check_indirect_blockref(inode, bh)) {
429                                 put_bh(bh);
430                                 goto failure;
431                         }
432                 }
433
434                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
435                 /* Reader: end */
436                 if (!p->key)
437                         goto no_block;
438         }
439         return NULL;
440
441 failure:
442         *err = -EIO;
443 no_block:
444         return p;
445 }
446
447 /**
448  *      ext4_find_near - find a place for allocation with sufficient locality
449  *      @inode: owner
450  *      @ind: descriptor of indirect block.
451  *
452  *      This function returns the preferred place for block allocation.
453  *      It is used when heuristic for sequential allocation fails.
454  *      Rules are:
455  *        + if there is a block to the left of our position - allocate near it.
456  *        + if pointer will live in indirect block - allocate near that block.
457  *        + if pointer will live in inode - allocate in the same
458  *          cylinder group.
459  *
460  * In the latter case we colour the starting block by the callers PID to
461  * prevent it from clashing with concurrent allocations for a different inode
462  * in the same block group.   The PID is used here so that functionally related
463  * files will be close-by on-disk.
464  *
465  *      Caller must make sure that @ind is valid and will stay that way.
466  */
467 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
468 {
469         struct ext4_inode_info *ei = EXT4_I(inode);
470         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
471         __le32 *p;
472         ext4_fsblk_t bg_start;
473         ext4_fsblk_t last_block;
474         ext4_grpblk_t colour;
475         ext4_group_t block_group;
476         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
477
478         /* Try to find previous block */
479         for (p = ind->p - 1; p >= start; p--) {
480                 if (*p)
481                         return le32_to_cpu(*p);
482         }
483
484         /* No such thing, so let's try location of indirect block */
485         if (ind->bh)
486                 return ind->bh->b_blocknr;
487
488         /*
489          * It is going to be referred to from the inode itself? OK, just put it
490          * into the same cylinder group then.
491          */
492         block_group = ei->i_block_group;
493         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
494                 block_group &= ~(flex_size-1);
495                 if (S_ISREG(inode->i_mode))
496                         block_group++;
497         }
498         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
499         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
500
501         /*
502          * If we are doing delayed allocation, we don't need take
503          * colour into account.
504          */
505         if (test_opt(inode->i_sb, DELALLOC))
506                 return bg_start;
507
508         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
509                 colour = (current->pid % 16) *
510                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
511         else
512                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
513         return bg_start + colour;
514 }
515
516 /**
517  *      ext4_find_goal - find a preferred place for allocation.
518  *      @inode: owner
519  *      @block:  block we want
520  *      @partial: pointer to the last triple within a chain
521  *
522  *      Normally this function find the preferred place for block allocation,
523  *      returns it.
524  *      Because this is only used for non-extent files, we limit the block nr
525  *      to 32 bits.
526  */
527 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
528                                    Indirect *partial)
529 {
530         ext4_fsblk_t goal;
531
532         /*
533          * XXX need to get goal block from mballoc's data structures
534          */
535
536         goal = ext4_find_near(inode, partial);
537         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
538         return goal;
539 }
540
541 /**
542  *      ext4_blks_to_allocate: Look up the block map and count the number
543  *      of direct blocks need to be allocated for the given branch.
544  *
545  *      @branch: chain of indirect blocks
546  *      @k: number of blocks need for indirect blocks
547  *      @blks: number of data blocks to be mapped.
548  *      @blocks_to_boundary:  the offset in the indirect block
549  *
550  *      return the total number of blocks to be allocate, including the
551  *      direct and indirect blocks.
552  */
553 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
554                                  int blocks_to_boundary)
555 {
556         unsigned int count = 0;
557
558         /*
559          * Simple case, [t,d]Indirect block(s) has not allocated yet
560          * then it's clear blocks on that path have not allocated
561          */
562         if (k > 0) {
563                 /* right now we don't handle cross boundary allocation */
564                 if (blks < blocks_to_boundary + 1)
565                         count += blks;
566                 else
567                         count += blocks_to_boundary + 1;
568                 return count;
569         }
570
571         count++;
572         while (count < blks && count <= blocks_to_boundary &&
573                 le32_to_cpu(*(branch[0].p + count)) == 0) {
574                 count++;
575         }
576         return count;
577 }
578
579 /**
580  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
581  *      @indirect_blks: the number of blocks need to allocate for indirect
582  *                      blocks
583  *
584  *      @new_blocks: on return it will store the new block numbers for
585  *      the indirect blocks(if needed) and the first direct block,
586  *      @blks:  on return it will store the total number of allocated
587  *              direct blocks
588  */
589 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
590                              ext4_lblk_t iblock, ext4_fsblk_t goal,
591                              int indirect_blks, int blks,
592                              ext4_fsblk_t new_blocks[4], int *err)
593 {
594         struct ext4_allocation_request ar;
595         int target, i;
596         unsigned long count = 0, blk_allocated = 0;
597         int index = 0;
598         ext4_fsblk_t current_block = 0;
599         int ret = 0;
600
601         /*
602          * Here we try to allocate the requested multiple blocks at once,
603          * on a best-effort basis.
604          * To build a branch, we should allocate blocks for
605          * the indirect blocks(if not allocated yet), and at least
606          * the first direct block of this branch.  That's the
607          * minimum number of blocks need to allocate(required)
608          */
609         /* first we try to allocate the indirect blocks */
610         target = indirect_blks;
611         while (target > 0) {
612                 count = target;
613                 /* allocating blocks for indirect blocks and direct blocks */
614                 current_block = ext4_new_meta_blocks(handle, inode,
615                                                         goal, &count, err);
616                 if (*err)
617                         goto failed_out;
618
619                 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
620                         EXT4_ERROR_INODE(inode,
621                                          "current_block %llu + count %lu > %d!",
622                                          current_block, count,
623                                          EXT4_MAX_BLOCK_FILE_PHYS);
624                         *err = -EIO;
625                         goto failed_out;
626                 }
627
628                 target -= count;
629                 /* allocate blocks for indirect blocks */
630                 while (index < indirect_blks && count) {
631                         new_blocks[index++] = current_block++;
632                         count--;
633                 }
634                 if (count > 0) {
635                         /*
636                          * save the new block number
637                          * for the first direct block
638                          */
639                         new_blocks[index] = current_block;
640                         printk(KERN_INFO "%s returned more blocks than "
641                                                 "requested\n", __func__);
642                         WARN_ON(1);
643                         break;
644                 }
645         }
646
647         target = blks - count ;
648         blk_allocated = count;
649         if (!target)
650                 goto allocated;
651         /* Now allocate data blocks */
652         memset(&ar, 0, sizeof(ar));
653         ar.inode = inode;
654         ar.goal = goal;
655         ar.len = target;
656         ar.logical = iblock;
657         if (S_ISREG(inode->i_mode))
658                 /* enable in-core preallocation only for regular files */
659                 ar.flags = EXT4_MB_HINT_DATA;
660
661         current_block = ext4_mb_new_blocks(handle, &ar, err);
662         if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
663                 EXT4_ERROR_INODE(inode,
664                                  "current_block %llu + ar.len %d > %d!",
665                                  current_block, ar.len,
666                                  EXT4_MAX_BLOCK_FILE_PHYS);
667                 *err = -EIO;
668                 goto failed_out;
669         }
670
671         if (*err && (target == blks)) {
672                 /*
673                  * if the allocation failed and we didn't allocate
674                  * any blocks before
675                  */
676                 goto failed_out;
677         }
678         if (!*err) {
679                 if (target == blks) {
680                         /*
681                          * save the new block number
682                          * for the first direct block
683                          */
684                         new_blocks[index] = current_block;
685                 }
686                 blk_allocated += ar.len;
687         }
688 allocated:
689         /* total number of blocks allocated for direct blocks */
690         ret = blk_allocated;
691         *err = 0;
692         return ret;
693 failed_out:
694         for (i = 0; i < index; i++)
695                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
696         return ret;
697 }
698
699 /**
700  *      ext4_alloc_branch - allocate and set up a chain of blocks.
701  *      @inode: owner
702  *      @indirect_blks: number of allocated indirect blocks
703  *      @blks: number of allocated direct blocks
704  *      @offsets: offsets (in the blocks) to store the pointers to next.
705  *      @branch: place to store the chain in.
706  *
707  *      This function allocates blocks, zeroes out all but the last one,
708  *      links them into chain and (if we are synchronous) writes them to disk.
709  *      In other words, it prepares a branch that can be spliced onto the
710  *      inode. It stores the information about that chain in the branch[], in
711  *      the same format as ext4_get_branch() would do. We are calling it after
712  *      we had read the existing part of chain and partial points to the last
713  *      triple of that (one with zero ->key). Upon the exit we have the same
714  *      picture as after the successful ext4_get_block(), except that in one
715  *      place chain is disconnected - *branch->p is still zero (we did not
716  *      set the last link), but branch->key contains the number that should
717  *      be placed into *branch->p to fill that gap.
718  *
719  *      If allocation fails we free all blocks we've allocated (and forget
720  *      their buffer_heads) and return the error value the from failed
721  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
722  *      as described above and return 0.
723  */
724 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
725                              ext4_lblk_t iblock, int indirect_blks,
726                              int *blks, ext4_fsblk_t goal,
727                              ext4_lblk_t *offsets, Indirect *branch)
728 {
729         int blocksize = inode->i_sb->s_blocksize;
730         int i, n = 0;
731         int err = 0;
732         struct buffer_head *bh;
733         int num;
734         ext4_fsblk_t new_blocks[4];
735         ext4_fsblk_t current_block;
736
737         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
738                                 *blks, new_blocks, &err);
739         if (err)
740                 return err;
741
742         branch[0].key = cpu_to_le32(new_blocks[0]);
743         /*
744          * metadata blocks and data blocks are allocated.
745          */
746         for (n = 1; n <= indirect_blks;  n++) {
747                 /*
748                  * Get buffer_head for parent block, zero it out
749                  * and set the pointer to new one, then send
750                  * parent to disk.
751                  */
752                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
753                 branch[n].bh = bh;
754                 lock_buffer(bh);
755                 BUFFER_TRACE(bh, "call get_create_access");
756                 err = ext4_journal_get_create_access(handle, bh);
757                 if (err) {
758                         /* Don't brelse(bh) here; it's done in
759                          * ext4_journal_forget() below */
760                         unlock_buffer(bh);
761                         goto failed;
762                 }
763
764                 memset(bh->b_data, 0, blocksize);
765                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
766                 branch[n].key = cpu_to_le32(new_blocks[n]);
767                 *branch[n].p = branch[n].key;
768                 if (n == indirect_blks) {
769                         current_block = new_blocks[n];
770                         /*
771                          * End of chain, update the last new metablock of
772                          * the chain to point to the new allocated
773                          * data blocks numbers
774                          */
775                         for (i = 1; i < num; i++)
776                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
777                 }
778                 BUFFER_TRACE(bh, "marking uptodate");
779                 set_buffer_uptodate(bh);
780                 unlock_buffer(bh);
781
782                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
783                 err = ext4_handle_dirty_metadata(handle, inode, bh);
784                 if (err)
785                         goto failed;
786         }
787         *blks = num;
788         return err;
789 failed:
790         /* Allocation failed, free what we already allocated */
791         ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
792         for (i = 1; i <= n ; i++) {
793                 /*
794                  * branch[i].bh is newly allocated, so there is no
795                  * need to revoke the block, which is why we don't
796                  * need to set EXT4_FREE_BLOCKS_METADATA.
797                  */
798                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
799                                  EXT4_FREE_BLOCKS_FORGET);
800         }
801         for (i = n+1; i < indirect_blks; i++)
802                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
803
804         ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
805
806         return err;
807 }
808
809 /**
810  * ext4_splice_branch - splice the allocated branch onto inode.
811  * @inode: owner
812  * @block: (logical) number of block we are adding
813  * @chain: chain of indirect blocks (with a missing link - see
814  *      ext4_alloc_branch)
815  * @where: location of missing link
816  * @num:   number of indirect blocks we are adding
817  * @blks:  number of direct blocks we are adding
818  *
819  * This function fills the missing link and does all housekeeping needed in
820  * inode (->i_blocks, etc.). In case of success we end up with the full
821  * chain to new block and return 0.
822  */
823 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
824                               ext4_lblk_t block, Indirect *where, int num,
825                               int blks)
826 {
827         int i;
828         int err = 0;
829         ext4_fsblk_t current_block;
830
831         /*
832          * If we're splicing into a [td]indirect block (as opposed to the
833          * inode) then we need to get write access to the [td]indirect block
834          * before the splice.
835          */
836         if (where->bh) {
837                 BUFFER_TRACE(where->bh, "get_write_access");
838                 err = ext4_journal_get_write_access(handle, where->bh);
839                 if (err)
840                         goto err_out;
841         }
842         /* That's it */
843
844         *where->p = where->key;
845
846         /*
847          * Update the host buffer_head or inode to point to more just allocated
848          * direct blocks blocks
849          */
850         if (num == 0 && blks > 1) {
851                 current_block = le32_to_cpu(where->key) + 1;
852                 for (i = 1; i < blks; i++)
853                         *(where->p + i) = cpu_to_le32(current_block++);
854         }
855
856         /* We are done with atomic stuff, now do the rest of housekeeping */
857         /* had we spliced it onto indirect block? */
858         if (where->bh) {
859                 /*
860                  * If we spliced it onto an indirect block, we haven't
861                  * altered the inode.  Note however that if it is being spliced
862                  * onto an indirect block at the very end of the file (the
863                  * file is growing) then we *will* alter the inode to reflect
864                  * the new i_size.  But that is not done here - it is done in
865                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
866                  */
867                 jbd_debug(5, "splicing indirect only\n");
868                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
869                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
870                 if (err)
871                         goto err_out;
872         } else {
873                 /*
874                  * OK, we spliced it into the inode itself on a direct block.
875                  */
876                 ext4_mark_inode_dirty(handle, inode);
877                 jbd_debug(5, "splicing direct\n");
878         }
879         return err;
880
881 err_out:
882         for (i = 1; i <= num; i++) {
883                 /*
884                  * branch[i].bh is newly allocated, so there is no
885                  * need to revoke the block, which is why we don't
886                  * need to set EXT4_FREE_BLOCKS_METADATA.
887                  */
888                 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
889                                  EXT4_FREE_BLOCKS_FORGET);
890         }
891         ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
892                          blks, 0);
893
894         return err;
895 }
896
897 /*
898  * The ext4_ind_map_blocks() function handles non-extents inodes
899  * (i.e., using the traditional indirect/double-indirect i_blocks
900  * scheme) for ext4_map_blocks().
901  *
902  * Allocation strategy is simple: if we have to allocate something, we will
903  * have to go the whole way to leaf. So let's do it before attaching anything
904  * to tree, set linkage between the newborn blocks, write them if sync is
905  * required, recheck the path, free and repeat if check fails, otherwise
906  * set the last missing link (that will protect us from any truncate-generated
907  * removals - all blocks on the path are immune now) and possibly force the
908  * write on the parent block.
909  * That has a nice additional property: no special recovery from the failed
910  * allocations is needed - we simply release blocks and do not touch anything
911  * reachable from inode.
912  *
913  * `handle' can be NULL if create == 0.
914  *
915  * return > 0, # of blocks mapped or allocated.
916  * return = 0, if plain lookup failed.
917  * return < 0, error case.
918  *
919  * The ext4_ind_get_blocks() function should be called with
920  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
921  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
922  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
923  * blocks.
924  */
925 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
926                                struct ext4_map_blocks *map,
927                                int flags)
928 {
929         int err = -EIO;
930         ext4_lblk_t offsets[4];
931         Indirect chain[4];
932         Indirect *partial;
933         ext4_fsblk_t goal;
934         int indirect_blks;
935         int blocks_to_boundary = 0;
936         int depth;
937         int count = 0;
938         ext4_fsblk_t first_block = 0;
939
940         J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
941         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
942         depth = ext4_block_to_path(inode, map->m_lblk, offsets,
943                                    &blocks_to_boundary);
944
945         if (depth == 0)
946                 goto out;
947
948         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
949
950         /* Simplest case - block found, no allocation needed */
951         if (!partial) {
952                 first_block = le32_to_cpu(chain[depth - 1].key);
953                 count++;
954                 /*map more blocks*/
955                 while (count < map->m_len && count <= blocks_to_boundary) {
956                         ext4_fsblk_t blk;
957
958                         blk = le32_to_cpu(*(chain[depth-1].p + count));
959
960                         if (blk == first_block + count)
961                                 count++;
962                         else
963                                 break;
964                 }
965                 goto got_it;
966         }
967
968         /* Next simple case - plain lookup or failed read of indirect block */
969         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
970                 goto cleanup;
971
972         /*
973          * Okay, we need to do block allocation.
974         */
975         goal = ext4_find_goal(inode, map->m_lblk, partial);
976
977         /* the number of blocks need to allocate for [d,t]indirect blocks */
978         indirect_blks = (chain + depth) - partial - 1;
979
980         /*
981          * Next look up the indirect map to count the totoal number of
982          * direct blocks to allocate for this branch.
983          */
984         count = ext4_blks_to_allocate(partial, indirect_blks,
985                                       map->m_len, blocks_to_boundary);
986         /*
987          * Block out ext4_truncate while we alter the tree
988          */
989         err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
990                                 &count, goal,
991                                 offsets + (partial - chain), partial);
992
993         /*
994          * The ext4_splice_branch call will free and forget any buffers
995          * on the new chain if there is a failure, but that risks using
996          * up transaction credits, especially for bitmaps where the
997          * credits cannot be returned.  Can we handle this somehow?  We
998          * may need to return -EAGAIN upwards in the worst case.  --sct
999          */
1000         if (!err)
1001                 err = ext4_splice_branch(handle, inode, map->m_lblk,
1002                                          partial, indirect_blks, count);
1003         if (err)
1004                 goto cleanup;
1005
1006         map->m_flags |= EXT4_MAP_NEW;
1007
1008         ext4_update_inode_fsync_trans(handle, inode, 1);
1009 got_it:
1010         map->m_flags |= EXT4_MAP_MAPPED;
1011         map->m_pblk = le32_to_cpu(chain[depth-1].key);
1012         map->m_len = count;
1013         if (count > blocks_to_boundary)
1014                 map->m_flags |= EXT4_MAP_BOUNDARY;
1015         err = count;
1016         /* Clean up and exit */
1017         partial = chain + depth - 1;    /* the whole chain */
1018 cleanup:
1019         while (partial > chain) {
1020                 BUFFER_TRACE(partial->bh, "call brelse");
1021                 brelse(partial->bh);
1022                 partial--;
1023         }
1024 out:
1025         return err;
1026 }
1027
1028 #ifdef CONFIG_QUOTA
1029 qsize_t *ext4_get_reserved_space(struct inode *inode)
1030 {
1031         return &EXT4_I(inode)->i_reserved_quota;
1032 }
1033 #endif
1034
1035 /*
1036  * Calculate the number of metadata blocks need to reserve
1037  * to allocate a new block at @lblocks for non extent file based file
1038  */
1039 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1040                                               sector_t lblock)
1041 {
1042         struct ext4_inode_info *ei = EXT4_I(inode);
1043         sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1044         int blk_bits;
1045
1046         if (lblock < EXT4_NDIR_BLOCKS)
1047                 return 0;
1048
1049         lblock -= EXT4_NDIR_BLOCKS;
1050
1051         if (ei->i_da_metadata_calc_len &&
1052             (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1053                 ei->i_da_metadata_calc_len++;
1054                 return 0;
1055         }
1056         ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1057         ei->i_da_metadata_calc_len = 1;
1058         blk_bits = order_base_2(lblock);
1059         return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1060 }
1061
1062 /*
1063  * Calculate the number of metadata blocks need to reserve
1064  * to allocate a block located at @lblock
1065  */
1066 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1067 {
1068         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1069                 return ext4_ext_calc_metadata_amount(inode, lblock);
1070
1071         return ext4_indirect_calc_metadata_amount(inode, lblock);
1072 }
1073
1074 /*
1075  * Called with i_data_sem down, which is important since we can call
1076  * ext4_discard_preallocations() from here.
1077  */
1078 void ext4_da_update_reserve_space(struct inode *inode,
1079                                         int used, int quota_claim)
1080 {
1081         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1082         struct ext4_inode_info *ei = EXT4_I(inode);
1083
1084         spin_lock(&ei->i_block_reservation_lock);
1085         trace_ext4_da_update_reserve_space(inode, used);
1086         if (unlikely(used > ei->i_reserved_data_blocks)) {
1087                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1088                          "with only %d reserved data blocks\n",
1089                          __func__, inode->i_ino, used,
1090                          ei->i_reserved_data_blocks);
1091                 WARN_ON(1);
1092                 used = ei->i_reserved_data_blocks;
1093         }
1094
1095         /* Update per-inode reservations */
1096         ei->i_reserved_data_blocks -= used;
1097         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1098         percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1099                            used + ei->i_allocated_meta_blocks);
1100         ei->i_allocated_meta_blocks = 0;
1101
1102         if (ei->i_reserved_data_blocks == 0) {
1103                 /*
1104                  * We can release all of the reserved metadata blocks
1105                  * only when we have written all of the delayed
1106                  * allocation blocks.
1107                  */
1108                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1109                                    ei->i_reserved_meta_blocks);
1110                 ei->i_reserved_meta_blocks = 0;
1111                 ei->i_da_metadata_calc_len = 0;
1112         }
1113         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1114
1115         /* Update quota subsystem for data blocks */
1116         if (quota_claim)
1117                 dquot_claim_block(inode, used);
1118         else {
1119                 /*
1120                  * We did fallocate with an offset that is already delayed
1121                  * allocated. So on delayed allocated writeback we should
1122                  * not re-claim the quota for fallocated blocks.
1123                  */
1124                 dquot_release_reservation_block(inode, used);
1125         }
1126
1127         /*
1128          * If we have done all the pending block allocations and if
1129          * there aren't any writers on the inode, we can discard the
1130          * inode's preallocations.
1131          */
1132         if ((ei->i_reserved_data_blocks == 0) &&
1133             (atomic_read(&inode->i_writecount) == 0))
1134                 ext4_discard_preallocations(inode);
1135 }
1136
1137 static int __check_block_validity(struct inode *inode, const char *func,
1138                                 unsigned int line,
1139                                 struct ext4_map_blocks *map)
1140 {
1141         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1142                                    map->m_len)) {
1143                 ext4_error_inode(inode, func, line, map->m_pblk,
1144                                  "lblock %lu mapped to illegal pblock "
1145                                  "(length %d)", (unsigned long) map->m_lblk,
1146                                  map->m_len);
1147                 return -EIO;
1148         }
1149         return 0;
1150 }
1151
1152 #define check_block_validity(inode, map)        \
1153         __check_block_validity((inode), __func__, __LINE__, (map))
1154
1155 /*
1156  * Return the number of contiguous dirty pages in a given inode
1157  * starting at page frame idx.
1158  */
1159 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1160                                     unsigned int max_pages)
1161 {
1162         struct address_space *mapping = inode->i_mapping;
1163         pgoff_t index;
1164         struct pagevec pvec;
1165         pgoff_t num = 0;
1166         int i, nr_pages, done = 0;
1167
1168         if (max_pages == 0)
1169                 return 0;
1170         pagevec_init(&pvec, 0);
1171         while (!done) {
1172                 index = idx;
1173                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1174                                               PAGECACHE_TAG_DIRTY,
1175                                               (pgoff_t)PAGEVEC_SIZE);
1176                 if (nr_pages == 0)
1177                         break;
1178                 for (i = 0; i < nr_pages; i++) {
1179                         struct page *page = pvec.pages[i];
1180                         struct buffer_head *bh, *head;
1181
1182                         lock_page(page);
1183                         if (unlikely(page->mapping != mapping) ||
1184                             !PageDirty(page) ||
1185                             PageWriteback(page) ||
1186                             page->index != idx) {
1187                                 done = 1;
1188                                 unlock_page(page);
1189                                 break;
1190                         }
1191                         if (page_has_buffers(page)) {
1192                                 bh = head = page_buffers(page);
1193                                 do {
1194                                         if (!buffer_delay(bh) &&
1195                                             !buffer_unwritten(bh))
1196                                                 done = 1;
1197                                         bh = bh->b_this_page;
1198                                 } while (!done && (bh != head));
1199                         }
1200                         unlock_page(page);
1201                         if (done)
1202                                 break;
1203                         idx++;
1204                         num++;
1205                         if (num >= max_pages)
1206                                 break;
1207                 }
1208                 pagevec_release(&pvec);
1209         }
1210         return num;
1211 }
1212
1213 /*
1214  * The ext4_map_blocks() function tries to look up the requested blocks,
1215  * and returns if the blocks are already mapped.
1216  *
1217  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1218  * and store the allocated blocks in the result buffer head and mark it
1219  * mapped.
1220  *
1221  * If file type is extents based, it will call ext4_ext_map_blocks(),
1222  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1223  * based files
1224  *
1225  * On success, it returns the number of blocks being mapped or allocate.
1226  * if create==0 and the blocks are pre-allocated and uninitialized block,
1227  * the result buffer head is unmapped. If the create ==1, it will make sure
1228  * the buffer head is mapped.
1229  *
1230  * It returns 0 if plain look up failed (blocks have not been allocated), in
1231  * that casem, buffer head is unmapped
1232  *
1233  * It returns the error in case of allocation failure.
1234  */
1235 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1236                     struct ext4_map_blocks *map, int flags)
1237 {
1238         int retval;
1239
1240         map->m_flags = 0;
1241         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1242                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
1243                   (unsigned long) map->m_lblk);
1244         /*
1245          * Try to see if we can get the block without requesting a new
1246          * file system block.
1247          */
1248         down_read((&EXT4_I(inode)->i_data_sem));
1249         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1250                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
1251         } else {
1252                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
1253         }
1254         up_read((&EXT4_I(inode)->i_data_sem));
1255
1256         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1257                 int ret = check_block_validity(inode, map);
1258                 if (ret != 0)
1259                         return ret;
1260         }
1261
1262         /* If it is only a block(s) look up */
1263         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1264                 return retval;
1265
1266         /*
1267          * Returns if the blocks have already allocated
1268          *
1269          * Note that if blocks have been preallocated
1270          * ext4_ext_get_block() returns th create = 0
1271          * with buffer head unmapped.
1272          */
1273         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1274                 return retval;
1275
1276         /*
1277          * When we call get_blocks without the create flag, the
1278          * BH_Unwritten flag could have gotten set if the blocks
1279          * requested were part of a uninitialized extent.  We need to
1280          * clear this flag now that we are committed to convert all or
1281          * part of the uninitialized extent to be an initialized
1282          * extent.  This is because we need to avoid the combination
1283          * of BH_Unwritten and BH_Mapped flags being simultaneously
1284          * set on the buffer_head.
1285          */
1286         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1287
1288         /*
1289          * New blocks allocate and/or writing to uninitialized extent
1290          * will possibly result in updating i_data, so we take
1291          * the write lock of i_data_sem, and call get_blocks()
1292          * with create == 1 flag.
1293          */
1294         down_write((&EXT4_I(inode)->i_data_sem));
1295
1296         /*
1297          * if the caller is from delayed allocation writeout path
1298          * we have already reserved fs blocks for allocation
1299          * let the underlying get_block() function know to
1300          * avoid double accounting
1301          */
1302         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1303                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1304         /*
1305          * We need to check for EXT4 here because migrate
1306          * could have changed the inode type in between
1307          */
1308         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1309                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
1310         } else {
1311                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
1312
1313                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1314                         /*
1315                          * We allocated new blocks which will result in
1316                          * i_data's format changing.  Force the migrate
1317                          * to fail by clearing migrate flags
1318                          */
1319                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1320                 }
1321
1322                 /*
1323                  * Update reserved blocks/metadata blocks after successful
1324                  * block allocation which had been deferred till now. We don't
1325                  * support fallocate for non extent files. So we can update
1326                  * reserve space here.
1327                  */
1328                 if ((retval > 0) &&
1329                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1330                         ext4_da_update_reserve_space(inode, retval, 1);
1331         }
1332         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1333                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1334
1335         up_write((&EXT4_I(inode)->i_data_sem));
1336         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1337                 int ret = check_block_validity(inode, map);
1338                 if (ret != 0)
1339                         return ret;
1340         }
1341         return retval;
1342 }
1343
1344 /* Maximum number of blocks we map for direct IO at once. */
1345 #define DIO_MAX_BLOCKS 4096
1346
1347 static int _ext4_get_block(struct inode *inode, sector_t iblock,
1348                            struct buffer_head *bh, int flags)
1349 {
1350         handle_t *handle = ext4_journal_current_handle();
1351         struct ext4_map_blocks map;
1352         int ret = 0, started = 0;
1353         int dio_credits;
1354
1355         map.m_lblk = iblock;
1356         map.m_len = bh->b_size >> inode->i_blkbits;
1357
1358         if (flags && !handle) {
1359                 /* Direct IO write... */
1360                 if (map.m_len > DIO_MAX_BLOCKS)
1361                         map.m_len = DIO_MAX_BLOCKS;
1362                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1363                 handle = ext4_journal_start(inode, dio_credits);
1364                 if (IS_ERR(handle)) {
1365                         ret = PTR_ERR(handle);
1366                         return ret;
1367                 }
1368                 started = 1;
1369         }
1370
1371         ret = ext4_map_blocks(handle, inode, &map, flags);
1372         if (ret > 0) {
1373                 map_bh(bh, inode->i_sb, map.m_pblk);
1374                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1375                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1376                 ret = 0;
1377         }
1378         if (started)
1379                 ext4_journal_stop(handle);
1380         return ret;
1381 }
1382
1383 int ext4_get_block(struct inode *inode, sector_t iblock,
1384                    struct buffer_head *bh, int create)
1385 {
1386         return _ext4_get_block(inode, iblock, bh,
1387                                create ? EXT4_GET_BLOCKS_CREATE : 0);
1388 }
1389
1390 /*
1391  * `handle' can be NULL if create is zero
1392  */
1393 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1394                                 ext4_lblk_t block, int create, int *errp)
1395 {
1396         struct ext4_map_blocks map;
1397         struct buffer_head *bh;
1398         int fatal = 0, err;
1399
1400         J_ASSERT(handle != NULL || create == 0);
1401
1402         map.m_lblk = block;
1403         map.m_len = 1;
1404         err = ext4_map_blocks(handle, inode, &map,
1405                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1406
1407         if (err < 0)
1408                 *errp = err;
1409         if (err <= 0)
1410                 return NULL;
1411         *errp = 0;
1412
1413         bh = sb_getblk(inode->i_sb, map.m_pblk);
1414         if (!bh) {
1415                 *errp = -EIO;
1416                 return NULL;
1417         }
1418         if (map.m_flags & EXT4_MAP_NEW) {
1419                 J_ASSERT(create != 0);
1420                 J_ASSERT(handle != NULL);
1421
1422                 /*
1423                  * Now that we do not always journal data, we should
1424                  * keep in mind whether this should always journal the
1425                  * new buffer as metadata.  For now, regular file
1426                  * writes use ext4_get_block instead, so it's not a
1427                  * problem.
1428                  */
1429                 lock_buffer(bh);
1430                 BUFFER_TRACE(bh, "call get_create_access");
1431                 fatal = ext4_journal_get_create_access(handle, bh);
1432                 if (!fatal && !buffer_uptodate(bh)) {
1433                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1434                         set_buffer_uptodate(bh);
1435                 }
1436                 unlock_buffer(bh);
1437                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1438                 err = ext4_handle_dirty_metadata(handle, inode, bh);
1439                 if (!fatal)
1440                         fatal = err;
1441         } else {
1442                 BUFFER_TRACE(bh, "not a new buffer");
1443         }
1444         if (fatal) {
1445                 *errp = fatal;
1446                 brelse(bh);
1447                 bh = NULL;
1448         }
1449         return bh;
1450 }
1451
1452 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1453                                ext4_lblk_t block, int create, int *err)
1454 {
1455         struct buffer_head *bh;
1456
1457         bh = ext4_getblk(handle, inode, block, create, err);
1458         if (!bh)
1459                 return bh;
1460         if (buffer_uptodate(bh))
1461                 return bh;
1462         ll_rw_block(READ_META, 1, &bh);
1463         wait_on_buffer(bh);
1464         if (buffer_uptodate(bh))
1465                 return bh;
1466         put_bh(bh);
1467         *err = -EIO;
1468         return NULL;
1469 }
1470
1471 static int walk_page_buffers(handle_t *handle,
1472                              struct buffer_head *head,
1473                              unsigned from,
1474                              unsigned to,
1475                              int *partial,
1476                              int (*fn)(handle_t *handle,
1477                                        struct buffer_head *bh))
1478 {
1479         struct buffer_head *bh;
1480         unsigned block_start, block_end;
1481         unsigned blocksize = head->b_size;
1482         int err, ret = 0;
1483         struct buffer_head *next;
1484
1485         for (bh = head, block_start = 0;
1486              ret == 0 && (bh != head || !block_start);
1487              block_start = block_end, bh = next) {
1488                 next = bh->b_this_page;
1489                 block_end = block_start + blocksize;
1490                 if (block_end <= from || block_start >= to) {
1491                         if (partial && !buffer_uptodate(bh))
1492                                 *partial = 1;
1493                         continue;
1494                 }
1495                 err = (*fn)(handle, bh);
1496                 if (!ret)
1497                         ret = err;
1498         }
1499         return ret;
1500 }
1501
1502 /*
1503  * To preserve ordering, it is essential that the hole instantiation and
1504  * the data write be encapsulated in a single transaction.  We cannot
1505  * close off a transaction and start a new one between the ext4_get_block()
1506  * and the commit_write().  So doing the jbd2_journal_start at the start of
1507  * prepare_write() is the right place.
1508  *
1509  * Also, this function can nest inside ext4_writepage() ->
1510  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1511  * has generated enough buffer credits to do the whole page.  So we won't
1512  * block on the journal in that case, which is good, because the caller may
1513  * be PF_MEMALLOC.
1514  *
1515  * By accident, ext4 can be reentered when a transaction is open via
1516  * quota file writes.  If we were to commit the transaction while thus
1517  * reentered, there can be a deadlock - we would be holding a quota
1518  * lock, and the commit would never complete if another thread had a
1519  * transaction open and was blocking on the quota lock - a ranking
1520  * violation.
1521  *
1522  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1523  * will _not_ run commit under these circumstances because handle->h_ref
1524  * is elevated.  We'll still have enough credits for the tiny quotafile
1525  * write.
1526  */
1527 static int do_journal_get_write_access(handle_t *handle,
1528                                        struct buffer_head *bh)
1529 {
1530         int dirty = buffer_dirty(bh);
1531         int ret;
1532
1533         if (!buffer_mapped(bh) || buffer_freed(bh))
1534                 return 0;
1535         /*
1536          * __block_prepare_write() could have dirtied some buffers. Clean
1537          * the dirty bit as jbd2_journal_get_write_access() could complain
1538          * otherwise about fs integrity issues. Setting of the dirty bit
1539          * by __block_prepare_write() isn't a real problem here as we clear
1540          * the bit before releasing a page lock and thus writeback cannot
1541          * ever write the buffer.
1542          */
1543         if (dirty)
1544                 clear_buffer_dirty(bh);
1545         ret = ext4_journal_get_write_access(handle, bh);
1546         if (!ret && dirty)
1547                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1548         return ret;
1549 }
1550
1551 /*
1552  * Truncate blocks that were not used by write. We have to truncate the
1553  * pagecache as well so that corresponding buffers get properly unmapped.
1554  */
1555 static void ext4_truncate_failed_write(struct inode *inode)
1556 {
1557         truncate_inode_pages(inode->i_mapping, inode->i_size);
1558         ext4_truncate(inode);
1559 }
1560
1561 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1562                    struct buffer_head *bh_result, int create);
1563 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1564                             loff_t pos, unsigned len, unsigned flags,
1565                             struct page **pagep, void **fsdata)
1566 {
1567         struct inode *inode = mapping->host;
1568         int ret, needed_blocks;
1569         handle_t *handle;
1570         int retries = 0;
1571         struct page *page;
1572         pgoff_t index;
1573         unsigned from, to;
1574
1575         trace_ext4_write_begin(inode, pos, len, flags);
1576         /*
1577          * Reserve one block more for addition to orphan list in case
1578          * we allocate blocks but write fails for some reason
1579          */
1580         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1581         index = pos >> PAGE_CACHE_SHIFT;
1582         from = pos & (PAGE_CACHE_SIZE - 1);
1583         to = from + len;
1584
1585 retry:
1586         handle = ext4_journal_start(inode, needed_blocks);
1587         if (IS_ERR(handle)) {
1588                 ret = PTR_ERR(handle);
1589                 goto out;
1590         }
1591
1592         /* We cannot recurse into the filesystem as the transaction is already
1593          * started */
1594         flags |= AOP_FLAG_NOFS;
1595
1596         page = grab_cache_page_write_begin(mapping, index, flags);
1597         if (!page) {
1598                 ext4_journal_stop(handle);
1599                 ret = -ENOMEM;
1600                 goto out;
1601         }
1602         *pagep = page;
1603
1604         if (ext4_should_dioread_nolock(inode))
1605                 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1606                                 fsdata, ext4_get_block_write);
1607         else
1608                 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1609                                 fsdata, ext4_get_block);
1610
1611         if (!ret && ext4_should_journal_data(inode)) {
1612                 ret = walk_page_buffers(handle, page_buffers(page),
1613                                 from, to, NULL, do_journal_get_write_access);
1614         }
1615
1616         if (ret) {
1617                 unlock_page(page);
1618                 page_cache_release(page);
1619                 /*
1620                  * block_write_begin may have instantiated a few blocks
1621                  * outside i_size.  Trim these off again. Don't need
1622                  * i_size_read because we hold i_mutex.
1623                  *
1624                  * Add inode to orphan list in case we crash before
1625                  * truncate finishes
1626                  */
1627                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1628                         ext4_orphan_add(handle, inode);
1629
1630                 ext4_journal_stop(handle);
1631                 if (pos + len > inode->i_size) {
1632                         ext4_truncate_failed_write(inode);
1633                         /*
1634                          * If truncate failed early the inode might
1635                          * still be on the orphan list; we need to
1636                          * make sure the inode is removed from the
1637                          * orphan list in that case.
1638                          */
1639                         if (inode->i_nlink)
1640                                 ext4_orphan_del(NULL, inode);
1641                 }
1642         }
1643
1644         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1645                 goto retry;
1646 out:
1647         return ret;
1648 }
1649
1650 /* For write_end() in data=journal mode */
1651 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1652 {
1653         if (!buffer_mapped(bh) || buffer_freed(bh))
1654                 return 0;
1655         set_buffer_uptodate(bh);
1656         return ext4_handle_dirty_metadata(handle, NULL, bh);
1657 }
1658
1659 static int ext4_generic_write_end(struct file *file,
1660                                   struct address_space *mapping,
1661                                   loff_t pos, unsigned len, unsigned copied,
1662                                   struct page *page, void *fsdata)
1663 {
1664         int i_size_changed = 0;
1665         struct inode *inode = mapping->host;
1666         handle_t *handle = ext4_journal_current_handle();
1667
1668         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1669
1670         /*
1671          * No need to use i_size_read() here, the i_size
1672          * cannot change under us because we hold i_mutex.
1673          *
1674          * But it's important to update i_size while still holding page lock:
1675          * page writeout could otherwise come in and zero beyond i_size.
1676          */
1677         if (pos + copied > inode->i_size) {
1678                 i_size_write(inode, pos + copied);
1679                 i_size_changed = 1;
1680         }
1681
1682         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1683                 /* We need to mark inode dirty even if
1684                  * new_i_size is less that inode->i_size
1685                  * bu greater than i_disksize.(hint delalloc)
1686                  */
1687                 ext4_update_i_disksize(inode, (pos + copied));
1688                 i_size_changed = 1;
1689         }
1690         unlock_page(page);
1691         page_cache_release(page);
1692
1693         /*
1694          * Don't mark the inode dirty under page lock. First, it unnecessarily
1695          * makes the holding time of page lock longer. Second, it forces lock
1696          * ordering of page lock and transaction start for journaling
1697          * filesystems.
1698          */
1699         if (i_size_changed)
1700                 ext4_mark_inode_dirty(handle, inode);
1701
1702         return copied;
1703 }
1704
1705 /*
1706  * We need to pick up the new inode size which generic_commit_write gave us
1707  * `file' can be NULL - eg, when called from page_symlink().
1708  *
1709  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1710  * buffers are managed internally.
1711  */
1712 static int ext4_ordered_write_end(struct file *file,
1713                                   struct address_space *mapping,
1714                                   loff_t pos, unsigned len, unsigned copied,
1715                                   struct page *page, void *fsdata)
1716 {
1717         handle_t *handle = ext4_journal_current_handle();
1718         struct inode *inode = mapping->host;
1719         int ret = 0, ret2;
1720
1721         trace_ext4_ordered_write_end(inode, pos, len, copied);
1722         ret = ext4_jbd2_file_inode(handle, inode);
1723
1724         if (ret == 0) {
1725                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1726                                                         page, fsdata);
1727                 copied = ret2;
1728                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1729                         /* if we have allocated more blocks and copied
1730                          * less. We will have blocks allocated outside
1731                          * inode->i_size. So truncate them
1732                          */
1733                         ext4_orphan_add(handle, inode);
1734                 if (ret2 < 0)
1735                         ret = ret2;
1736         }
1737         ret2 = ext4_journal_stop(handle);
1738         if (!ret)
1739                 ret = ret2;
1740
1741         if (pos + len > inode->i_size) {
1742                 ext4_truncate_failed_write(inode);
1743                 /*
1744                  * If truncate failed early the inode might still be
1745                  * on the orphan list; we need to make sure the inode
1746                  * is removed from the orphan list in that case.
1747                  */
1748                 if (inode->i_nlink)
1749                         ext4_orphan_del(NULL, inode);
1750         }
1751
1752
1753         return ret ? ret : copied;
1754 }
1755
1756 static int ext4_writeback_write_end(struct file *file,
1757                                     struct address_space *mapping,
1758                                     loff_t pos, unsigned len, unsigned copied,
1759                                     struct page *page, void *fsdata)
1760 {
1761         handle_t *handle = ext4_journal_current_handle();
1762         struct inode *inode = mapping->host;
1763         int ret = 0, ret2;
1764
1765         trace_ext4_writeback_write_end(inode, pos, len, copied);
1766         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1767                                                         page, fsdata);
1768         copied = ret2;
1769         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1770                 /* if we have allocated more blocks and copied
1771                  * less. We will have blocks allocated outside
1772                  * inode->i_size. So truncate them
1773                  */
1774                 ext4_orphan_add(handle, inode);
1775
1776         if (ret2 < 0)
1777                 ret = ret2;
1778
1779         ret2 = ext4_journal_stop(handle);
1780         if (!ret)
1781                 ret = ret2;
1782
1783         if (pos + len > inode->i_size) {
1784                 ext4_truncate_failed_write(inode);
1785                 /*
1786                  * If truncate failed early the inode might still be
1787                  * on the orphan list; we need to make sure the inode
1788                  * is removed from the orphan list in that case.
1789                  */
1790                 if (inode->i_nlink)
1791                         ext4_orphan_del(NULL, inode);
1792         }
1793
1794         return ret ? ret : copied;
1795 }
1796
1797 static int ext4_journalled_write_end(struct file *file,
1798                                      struct address_space *mapping,
1799                                      loff_t pos, unsigned len, unsigned copied,
1800                                      struct page *page, void *fsdata)
1801 {
1802         handle_t *handle = ext4_journal_current_handle();
1803         struct inode *inode = mapping->host;
1804         int ret = 0, ret2;
1805         int partial = 0;
1806         unsigned from, to;
1807         loff_t new_i_size;
1808
1809         trace_ext4_journalled_write_end(inode, pos, len, copied);
1810         from = pos & (PAGE_CACHE_SIZE - 1);
1811         to = from + len;
1812
1813         if (copied < len) {
1814                 if (!PageUptodate(page))
1815                         copied = 0;
1816                 page_zero_new_buffers(page, from+copied, to);
1817         }
1818
1819         ret = walk_page_buffers(handle, page_buffers(page), from,
1820                                 to, &partial, write_end_fn);
1821         if (!partial)
1822                 SetPageUptodate(page);
1823         new_i_size = pos + copied;
1824         if (new_i_size > inode->i_size)
1825                 i_size_write(inode, pos+copied);
1826         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1827         if (new_i_size > EXT4_I(inode)->i_disksize) {
1828                 ext4_update_i_disksize(inode, new_i_size);
1829                 ret2 = ext4_mark_inode_dirty(handle, inode);
1830                 if (!ret)
1831                         ret = ret2;
1832         }
1833
1834         unlock_page(page);
1835         page_cache_release(page);
1836         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1837                 /* if we have allocated more blocks and copied
1838                  * less. We will have blocks allocated outside
1839                  * inode->i_size. So truncate them
1840                  */
1841                 ext4_orphan_add(handle, inode);
1842
1843         ret2 = ext4_journal_stop(handle);
1844         if (!ret)
1845                 ret = ret2;
1846         if (pos + len > inode->i_size) {
1847                 ext4_truncate_failed_write(inode);
1848                 /*
1849                  * If truncate failed early the inode might still be
1850                  * on the orphan list; we need to make sure the inode
1851                  * is removed from the orphan list in that case.
1852                  */
1853                 if (inode->i_nlink)
1854                         ext4_orphan_del(NULL, inode);
1855         }
1856
1857         return ret ? ret : copied;
1858 }
1859
1860 /*
1861  * Reserve a single block located at lblock
1862  */
1863 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1864 {
1865         int retries = 0;
1866         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1867         struct ext4_inode_info *ei = EXT4_I(inode);
1868         unsigned long md_needed;
1869         int ret;
1870
1871         /*
1872          * recalculate the amount of metadata blocks to reserve
1873          * in order to allocate nrblocks
1874          * worse case is one extent per block
1875          */
1876 repeat:
1877         spin_lock(&ei->i_block_reservation_lock);
1878         md_needed = ext4_calc_metadata_amount(inode, lblock);
1879         trace_ext4_da_reserve_space(inode, md_needed);
1880         spin_unlock(&ei->i_block_reservation_lock);
1881
1882         /*
1883          * We will charge metadata quota at writeout time; this saves
1884          * us from metadata over-estimation, though we may go over by
1885          * a small amount in the end.  Here we just reserve for data.
1886          */
1887         ret = dquot_reserve_block(inode, 1);
1888         if (ret)
1889                 return ret;
1890         /*
1891          * We do still charge estimated metadata to the sb though;
1892          * we cannot afford to run out of free blocks.
1893          */
1894         if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1895                 dquot_release_reservation_block(inode, 1);
1896                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1897                         yield();
1898                         goto repeat;
1899                 }
1900                 return -ENOSPC;
1901         }
1902         spin_lock(&ei->i_block_reservation_lock);
1903         ei->i_reserved_data_blocks++;
1904         ei->i_reserved_meta_blocks += md_needed;
1905         spin_unlock(&ei->i_block_reservation_lock);
1906
1907         return 0;       /* success */
1908 }
1909
1910 static void ext4_da_release_space(struct inode *inode, int to_free)
1911 {
1912         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1913         struct ext4_inode_info *ei = EXT4_I(inode);
1914
1915         if (!to_free)
1916                 return;         /* Nothing to release, exit */
1917
1918         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1919
1920         trace_ext4_da_release_space(inode, to_free);
1921         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1922                 /*
1923                  * if there aren't enough reserved blocks, then the
1924                  * counter is messed up somewhere.  Since this
1925                  * function is called from invalidate page, it's
1926                  * harmless to return without any action.
1927                  */
1928                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1929                          "ino %lu, to_free %d with only %d reserved "
1930                          "data blocks\n", inode->i_ino, to_free,
1931                          ei->i_reserved_data_blocks);
1932                 WARN_ON(1);
1933                 to_free = ei->i_reserved_data_blocks;
1934         }
1935         ei->i_reserved_data_blocks -= to_free;
1936
1937         if (ei->i_reserved_data_blocks == 0) {
1938                 /*
1939                  * We can release all of the reserved metadata blocks
1940                  * only when we have written all of the delayed
1941                  * allocation blocks.
1942                  */
1943                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1944                                    ei->i_reserved_meta_blocks);
1945                 ei->i_reserved_meta_blocks = 0;
1946                 ei->i_da_metadata_calc_len = 0;
1947         }
1948
1949         /* update fs dirty data blocks counter */
1950         percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1951
1952         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1953
1954         dquot_release_reservation_block(inode, to_free);
1955 }
1956
1957 static void ext4_da_page_release_reservation(struct page *page,
1958                                              unsigned long offset)
1959 {
1960         int to_release = 0;
1961         struct buffer_head *head, *bh;
1962         unsigned int curr_off = 0;
1963
1964         head = page_buffers(page);
1965         bh = head;
1966         do {
1967                 unsigned int next_off = curr_off + bh->b_size;
1968
1969                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1970                         to_release++;
1971                         clear_buffer_delay(bh);
1972                 }
1973                 curr_off = next_off;
1974         } while ((bh = bh->b_this_page) != head);
1975         ext4_da_release_space(page->mapping->host, to_release);
1976 }
1977
1978 /*
1979  * Delayed allocation stuff
1980  */
1981
1982 /*
1983  * mpage_da_submit_io - walks through extent of pages and try to write
1984  * them with writepage() call back
1985  *
1986  * @mpd->inode: inode
1987  * @mpd->first_page: first page of the extent
1988  * @mpd->next_page: page after the last page of the extent
1989  *
1990  * By the time mpage_da_submit_io() is called we expect all blocks
1991  * to be allocated. this may be wrong if allocation failed.
1992  *
1993  * As pages are already locked by write_cache_pages(), we can't use it
1994  */
1995 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1996 {
1997         long pages_skipped;
1998         struct pagevec pvec;
1999         unsigned long index, end;
2000         int ret = 0, err, nr_pages, i;
2001         struct inode *inode = mpd->inode;
2002         struct address_space *mapping = inode->i_mapping;
2003
2004         BUG_ON(mpd->next_page <= mpd->first_page);
2005         /*
2006          * We need to start from the first_page to the next_page - 1
2007          * to make sure we also write the mapped dirty buffer_heads.
2008          * If we look at mpd->b_blocknr we would only be looking
2009          * at the currently mapped buffer_heads.
2010          */
2011         index = mpd->first_page;
2012         end = mpd->next_page - 1;
2013
2014         pagevec_init(&pvec, 0);
2015         while (index <= end) {
2016                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2017                 if (nr_pages == 0)
2018                         break;
2019                 for (i = 0; i < nr_pages; i++) {
2020                         struct page *page = pvec.pages[i];
2021
2022                         index = page->index;
2023                         if (index > end)
2024                                 break;
2025                         index++;
2026
2027                         BUG_ON(!PageLocked(page));
2028                         BUG_ON(PageWriteback(page));
2029
2030                         pages_skipped = mpd->wbc->pages_skipped;
2031                         err = mapping->a_ops->writepage(page, mpd->wbc);
2032                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2033                                 /*
2034                                  * have successfully written the page
2035                                  * without skipping the same
2036                                  */
2037                                 mpd->pages_written++;
2038                         /*
2039                          * In error case, we have to continue because
2040                          * remaining pages are still locked
2041                          * XXX: unlock and re-dirty them?
2042                          */
2043                         if (ret == 0)
2044                                 ret = err;
2045                 }
2046                 pagevec_release(&pvec);
2047         }
2048         return ret;
2049 }
2050
2051 /*
2052  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2053  *
2054  * the function goes through all passed space and put actual disk
2055  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2056  */
2057 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd,
2058                                  struct ext4_map_blocks *map)
2059 {
2060         struct inode *inode = mpd->inode;
2061         struct address_space *mapping = inode->i_mapping;
2062         int blocks = map->m_len;
2063         sector_t pblock = map->m_pblk, cur_logical;
2064         struct buffer_head *head, *bh;
2065         pgoff_t index, end;
2066         struct pagevec pvec;
2067         int nr_pages, i;
2068
2069         index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2070         end = (map->m_lblk + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2071         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2072
2073         pagevec_init(&pvec, 0);
2074
2075         while (index <= end) {
2076                 /* XXX: optimize tail */
2077                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2078                 if (nr_pages == 0)
2079                         break;
2080                 for (i = 0; i < nr_pages; i++) {
2081                         struct page *page = pvec.pages[i];
2082
2083                         index = page->index;
2084                         if (index > end)
2085                                 break;
2086                         index++;
2087
2088                         BUG_ON(!PageLocked(page));
2089                         BUG_ON(PageWriteback(page));
2090                         BUG_ON(!page_has_buffers(page));
2091
2092                         bh = page_buffers(page);
2093                         head = bh;
2094
2095                         /* skip blocks out of the range */
2096                         do {
2097                                 if (cur_logical >= map->m_lblk)
2098                                         break;
2099                                 cur_logical++;
2100                         } while ((bh = bh->b_this_page) != head);
2101
2102                         do {
2103                                 if (cur_logical >= map->m_lblk + blocks)
2104                                         break;
2105
2106                                 if (buffer_delay(bh) || buffer_unwritten(bh)) {
2107
2108                                         BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2109
2110                                         if (buffer_delay(bh)) {
2111                                                 clear_buffer_delay(bh);
2112                                                 bh->b_blocknr = pblock;
2113                                         } else {
2114                                                 /*
2115                                                  * unwritten already should have
2116                                                  * blocknr assigned. Verify that
2117                                                  */
2118                                                 clear_buffer_unwritten(bh);
2119                                                 BUG_ON(bh->b_blocknr != pblock);
2120                                         }
2121
2122                                 } else if (buffer_mapped(bh))
2123                                         BUG_ON(bh->b_blocknr != pblock);
2124
2125                                 if (map->m_flags & EXT4_MAP_UNINIT)
2126                                         set_buffer_uninit(bh);
2127                                 cur_logical++;
2128                                 pblock++;
2129                         } while ((bh = bh->b_this_page) != head);
2130                 }
2131                 pagevec_release(&pvec);
2132         }
2133 }
2134
2135
2136 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2137                                         sector_t logical, long blk_cnt)
2138 {
2139         int nr_pages, i;
2140         pgoff_t index, end;
2141         struct pagevec pvec;
2142         struct inode *inode = mpd->inode;
2143         struct address_space *mapping = inode->i_mapping;
2144
2145         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2146         end   = (logical + blk_cnt - 1) >>
2147                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2148         while (index <= end) {
2149                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2150                 if (nr_pages == 0)
2151                         break;
2152                 for (i = 0; i < nr_pages; i++) {
2153                         struct page *page = pvec.pages[i];
2154                         if (page->index > end)
2155                                 break;
2156                         BUG_ON(!PageLocked(page));
2157                         BUG_ON(PageWriteback(page));
2158                         block_invalidatepage(page, 0);
2159                         ClearPageUptodate(page);
2160                         unlock_page(page);
2161                 }
2162                 index = pvec.pages[nr_pages - 1]->index + 1;
2163                 pagevec_release(&pvec);
2164         }
2165         return;
2166 }
2167
2168 static void ext4_print_free_blocks(struct inode *inode)
2169 {
2170         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2171         printk(KERN_CRIT "Total free blocks count %lld\n",
2172                ext4_count_free_blocks(inode->i_sb));
2173         printk(KERN_CRIT "Free/Dirty block details\n");
2174         printk(KERN_CRIT "free_blocks=%lld\n",
2175                (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2176         printk(KERN_CRIT "dirty_blocks=%lld\n",
2177                (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2178         printk(KERN_CRIT "Block reservation details\n");
2179         printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2180                EXT4_I(inode)->i_reserved_data_blocks);
2181         printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2182                EXT4_I(inode)->i_reserved_meta_blocks);
2183         return;
2184 }
2185
2186 /*
2187  * mpage_da_map_blocks - go through given space
2188  *
2189  * @mpd - bh describing space
2190  *
2191  * The function skips space we know is already mapped to disk blocks.
2192  *
2193  */
2194 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2195 {
2196         int err, blks, get_blocks_flags;
2197         struct ext4_map_blocks map;
2198         sector_t next = mpd->b_blocknr;
2199         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2200         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2201         handle_t *handle = NULL;
2202
2203         /*
2204          * We consider only non-mapped and non-allocated blocks
2205          */
2206         if ((mpd->b_state  & (1 << BH_Mapped)) &&
2207                 !(mpd->b_state & (1 << BH_Delay)) &&
2208                 !(mpd->b_state & (1 << BH_Unwritten)))
2209                 return 0;
2210
2211         /*
2212          * If we didn't accumulate anything to write simply return
2213          */
2214         if (!mpd->b_size)
2215                 return 0;
2216
2217         handle = ext4_journal_current_handle();
2218         BUG_ON(!handle);
2219
2220         /*
2221          * Call ext4_map_blocks() to allocate any delayed allocation
2222          * blocks, or to convert an uninitialized extent to be
2223          * initialized (in the case where we have written into
2224          * one or more preallocated blocks).
2225          *
2226          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2227          * indicate that we are on the delayed allocation path.  This
2228          * affects functions in many different parts of the allocation
2229          * call path.  This flag exists primarily because we don't
2230          * want to change *many* call functions, so ext4_map_blocks()
2231          * will set the magic i_delalloc_reserved_flag once the
2232          * inode's allocation semaphore is taken.
2233          *
2234          * If the blocks in questions were delalloc blocks, set
2235          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2236          * variables are updated after the blocks have been allocated.
2237          */
2238         map.m_lblk = next;
2239         map.m_len = max_blocks;
2240         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2241         if (ext4_should_dioread_nolock(mpd->inode))
2242                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2243         if (mpd->b_state & (1 << BH_Delay))
2244                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2245
2246         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2247         if (blks < 0) {
2248                 struct super_block *sb = mpd->inode->i_sb;
2249
2250                 err = blks;
2251                 /*
2252                  * If get block returns with error we simply
2253                  * return. Later writepage will redirty the page and
2254                  * writepages will find the dirty page again
2255                  */
2256                 if (err == -EAGAIN)
2257                         return 0;
2258
2259                 if (err == -ENOSPC &&
2260                     ext4_count_free_blocks(sb)) {
2261                         mpd->retval = err;
2262                         return 0;
2263                 }
2264
2265                 /*
2266                  * get block failure will cause us to loop in
2267                  * writepages, because a_ops->writepage won't be able
2268                  * to make progress. The page will be redirtied by
2269                  * writepage and writepages will again try to write
2270                  * the same.
2271                  */
2272                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2273                         ext4_msg(sb, KERN_CRIT,
2274                                  "delayed block allocation failed for inode %lu "
2275                                  "at logical offset %llu with max blocks %zd "
2276                                  "with error %d", mpd->inode->i_ino,
2277                                  (unsigned long long) next,
2278                                  mpd->b_size >> mpd->inode->i_blkbits, err);
2279                         ext4_msg(sb, KERN_CRIT,
2280                                 "This should not happen!! Data will be lost\n");
2281                         if (err == -ENOSPC)
2282                                 ext4_print_free_blocks(mpd->inode);
2283                 }
2284                 /* invalidate all the pages */
2285                 ext4_da_block_invalidatepages(mpd, next,
2286                                 mpd->b_size >> mpd->inode->i_blkbits);
2287                 return err;
2288         }
2289         BUG_ON(blks == 0);
2290
2291         if (map.m_flags & EXT4_MAP_NEW) {
2292                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2293                 int i;
2294
2295                 for (i = 0; i < map.m_len; i++)
2296                         unmap_underlying_metadata(bdev, map.m_pblk + i);
2297         }
2298
2299         /*
2300          * If blocks are delayed marked, we need to
2301          * put actual blocknr and drop delayed bit
2302          */
2303         if ((mpd->b_state & (1 << BH_Delay)) ||
2304             (mpd->b_state & (1 << BH_Unwritten)))
2305                 mpage_put_bnr_to_bhs(mpd, &map);
2306
2307         if (ext4_should_order_data(mpd->inode)) {
2308                 err = ext4_jbd2_file_inode(handle, mpd->inode);
2309                 if (err)
2310                         return err;
2311         }
2312
2313         /*
2314          * Update on-disk size along with block allocation.
2315          */
2316         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2317         if (disksize > i_size_read(mpd->inode))
2318                 disksize = i_size_read(mpd->inode);
2319         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2320                 ext4_update_i_disksize(mpd->inode, disksize);
2321                 return ext4_mark_inode_dirty(handle, mpd->inode);
2322         }
2323
2324         return 0;
2325 }
2326
2327 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2328                 (1 << BH_Delay) | (1 << BH_Unwritten))
2329
2330 /*
2331  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2332  *
2333  * @mpd->lbh - extent of blocks
2334  * @logical - logical number of the block in the file
2335  * @bh - bh of the block (used to access block's state)
2336  *
2337  * the function is used to collect contig. blocks in same state
2338  */
2339 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2340                                    sector_t logical, size_t b_size,
2341                                    unsigned long b_state)
2342 {
2343         sector_t next;
2344         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2345
2346         /*
2347          * XXX Don't go larger than mballoc is willing to allocate
2348          * This is a stopgap solution.  We eventually need to fold
2349          * mpage_da_submit_io() into this function and then call
2350          * ext4_map_blocks() multiple times in a loop
2351          */
2352         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2353                 goto flush_it;
2354
2355         /* check if thereserved journal credits might overflow */
2356         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2357                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2358                         /*
2359                          * With non-extent format we are limited by the journal
2360                          * credit available.  Total credit needed to insert
2361                          * nrblocks contiguous blocks is dependent on the
2362                          * nrblocks.  So limit nrblocks.
2363                          */
2364                         goto flush_it;
2365                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2366                                 EXT4_MAX_TRANS_DATA) {
2367                         /*
2368                          * Adding the new buffer_head would make it cross the
2369                          * allowed limit for which we have journal credit
2370                          * reserved. So limit the new bh->b_size
2371                          */
2372                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2373                                                 mpd->inode->i_blkbits;
2374                         /* we will do mpage_da_submit_io in the next loop */
2375                 }
2376         }
2377         /*
2378          * First block in the extent
2379          */
2380         if (mpd->b_size == 0) {
2381                 mpd->b_blocknr = logical;
2382                 mpd->b_size = b_size;
2383                 mpd->b_state = b_state & BH_FLAGS;
2384                 return;
2385         }
2386
2387         next = mpd->b_blocknr + nrblocks;
2388         /*
2389          * Can we merge the block to our big extent?
2390          */
2391         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2392                 mpd->b_size += b_size;
2393                 return;
2394         }
2395
2396 flush_it:
2397         /*
2398          * We couldn't merge the block to our extent, so we
2399          * need to flush current  extent and start new one
2400          */
2401         if (mpage_da_map_blocks(mpd) == 0)
2402                 mpage_da_submit_io(mpd);
2403         mpd->io_done = 1;
2404         return;
2405 }
2406
2407 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2408 {
2409         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2410 }
2411
2412 /*
2413  * __mpage_da_writepage - finds extent of pages and blocks
2414  *
2415  * @page: page to consider
2416  * @wbc: not used, we just follow rules
2417  * @data: context
2418  *
2419  * The function finds extents of pages and scan them for all blocks.
2420  */
2421 static int __mpage_da_writepage(struct page *page,
2422                                 struct writeback_control *wbc, void *data)
2423 {
2424         struct mpage_da_data *mpd = data;
2425         struct inode *inode = mpd->inode;
2426         struct buffer_head *bh, *head;
2427         sector_t logical;
2428
2429         /*
2430          * Can we merge this page to current extent?
2431          */
2432         if (mpd->next_page != page->index) {
2433                 /*
2434                  * Nope, we can't. So, we map non-allocated blocks
2435                  * and start IO on them using writepage()
2436                  */
2437                 if (mpd->next_page != mpd->first_page) {
2438                         if (mpage_da_map_blocks(mpd) == 0)
2439                                 mpage_da_submit_io(mpd);
2440                         /*
2441                          * skip rest of the page in the page_vec
2442                          */
2443                         mpd->io_done = 1;
2444                         redirty_page_for_writepage(wbc, page);
2445                         unlock_page(page);
2446                         return MPAGE_DA_EXTENT_TAIL;
2447                 }
2448
2449                 /*
2450                  * Start next extent of pages ...
2451                  */
2452                 mpd->first_page = page->index;
2453
2454                 /*
2455                  * ... and blocks
2456                  */
2457                 mpd->b_size = 0;
2458                 mpd->b_state = 0;
2459                 mpd->b_blocknr = 0;
2460         }
2461
2462         mpd->next_page = page->index + 1;
2463         logical = (sector_t) page->index <<
2464                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2465
2466         if (!page_has_buffers(page)) {
2467                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2468                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2469                 if (mpd->io_done)
2470                         return MPAGE_DA_EXTENT_TAIL;
2471         } else {
2472                 /*
2473                  * Page with regular buffer heads, just add all dirty ones
2474                  */
2475                 head = page_buffers(page);
2476                 bh = head;
2477                 do {
2478                         BUG_ON(buffer_locked(bh));
2479                         /*
2480                          * We need to try to allocate
2481                          * unmapped blocks in the same page.
2482                          * Otherwise we won't make progress
2483                          * with the page in ext4_writepage
2484                          */
2485                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2486                                 mpage_add_bh_to_extent(mpd, logical,
2487                                                        bh->b_size,
2488                                                        bh->b_state);
2489                                 if (mpd->io_done)
2490                                         return MPAGE_DA_EXTENT_TAIL;
2491                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2492                                 /*
2493                                  * mapped dirty buffer. We need to update
2494                                  * the b_state because we look at
2495                                  * b_state in mpage_da_map_blocks. We don't
2496                                  * update b_size because if we find an
2497                                  * unmapped buffer_head later we need to
2498                                  * use the b_state flag of that buffer_head.
2499                                  */
2500                                 if (mpd->b_size == 0)
2501                                         mpd->b_state = bh->b_state & BH_FLAGS;
2502                         }
2503                         logical++;
2504                 } while ((bh = bh->b_this_page) != head);
2505         }
2506
2507         return 0;
2508 }
2509
2510 /*
2511  * This is a special get_blocks_t callback which is used by
2512  * ext4_da_write_begin().  It will either return mapped block or
2513  * reserve space for a single block.
2514  *
2515  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2516  * We also have b_blocknr = -1 and b_bdev initialized properly
2517  *
2518  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2519  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2520  * initialized properly.
2521  */
2522 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2523                                   struct buffer_head *bh, int create)
2524 {
2525         struct ext4_map_blocks map;
2526         int ret = 0;
2527         sector_t invalid_block = ~((sector_t) 0xffff);
2528
2529         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2530                 invalid_block = ~0;
2531
2532         BUG_ON(create == 0);
2533         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2534
2535         map.m_lblk = iblock;
2536         map.m_len = 1;
2537
2538         /*
2539          * first, we need to know whether the block is allocated already
2540          * preallocated blocks are unmapped but should treated
2541          * the same as allocated blocks.
2542          */
2543         ret = ext4_map_blocks(NULL, inode, &map, 0);
2544         if (ret < 0)
2545                 return ret;
2546         if (ret == 0) {
2547                 if (buffer_delay(bh))
2548                         return 0; /* Not sure this could or should happen */
2549                 /*
2550                  * XXX: __block_prepare_write() unmaps passed block,
2551                  * is it OK?
2552                  */
2553                 ret = ext4_da_reserve_space(inode, iblock);
2554                 if (ret)
2555                         /* not enough space to reserve */
2556                         return ret;
2557
2558                 map_bh(bh, inode->i_sb, invalid_block);
2559                 set_buffer_new(bh);
2560                 set_buffer_delay(bh);
2561                 return 0;
2562         }
2563
2564         map_bh(bh, inode->i_sb, map.m_pblk);
2565         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2566
2567         if (buffer_unwritten(bh)) {
2568                 /* A delayed write to unwritten bh should be marked
2569                  * new and mapped.  Mapped ensures that we don't do
2570                  * get_block multiple times when we write to the same
2571                  * offset and new ensures that we do proper zero out
2572                  * for partial write.
2573                  */
2574                 set_buffer_new(bh);
2575                 set_buffer_mapped(bh);
2576         }
2577         return 0;
2578 }
2579
2580 /*
2581  * This function is used as a standard get_block_t calback function
2582  * when there is no desire to allocate any blocks.  It is used as a
2583  * callback function for block_prepare_write() and block_write_full_page().
2584  * These functions should only try to map a single block at a time.
2585  *
2586  * Since this function doesn't do block allocations even if the caller
2587  * requests it by passing in create=1, it is critically important that
2588  * any caller checks to make sure that any buffer heads are returned
2589  * by this function are either all already mapped or marked for
2590  * delayed allocation before calling  block_write_full_page().  Otherwise,
2591  * b_blocknr could be left unitialized, and the page write functions will
2592  * be taken by surprise.
2593  */
2594 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2595                                    struct buffer_head *bh_result, int create)
2596 {
2597         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2598         return _ext4_get_block(inode, iblock, bh_result, 0);
2599 }
2600
2601 static int bget_one(handle_t *handle, struct buffer_head *bh)
2602 {
2603         get_bh(bh);
2604         return 0;
2605 }
2606
2607 static int bput_one(handle_t *handle, struct buffer_head *bh)
2608 {
2609         put_bh(bh);
2610         return 0;
2611 }
2612
2613 static int __ext4_journalled_writepage(struct page *page,
2614                                        unsigned int len)
2615 {
2616         struct address_space *mapping = page->mapping;
2617         struct inode *inode = mapping->host;
2618         struct buffer_head *page_bufs;
2619         handle_t *handle = NULL;
2620         int ret = 0;
2621         int err;
2622
2623         page_bufs = page_buffers(page);
2624         BUG_ON(!page_bufs);
2625         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2626         /* As soon as we unlock the page, it can go away, but we have
2627          * references to buffers so we are safe */
2628         unlock_page(page);
2629
2630         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2631         if (IS_ERR(handle)) {
2632                 ret = PTR_ERR(handle);
2633                 goto out;
2634         }
2635
2636         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2637                                 do_journal_get_write_access);
2638
2639         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2640                                 write_end_fn);
2641         if (ret == 0)
2642                 ret = err;
2643         err = ext4_journal_stop(handle);
2644         if (!ret)
2645                 ret = err;
2646
2647         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2648         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2649 out:
2650         return ret;
2651 }
2652
2653 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2654 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2655
2656 /*
2657  * Note that we don't need to start a transaction unless we're journaling data
2658  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2659  * need to file the inode to the transaction's list in ordered mode because if
2660  * we are writing back data added by write(), the inode is already there and if
2661  * we are writing back data modified via mmap(), noone guarantees in which
2662  * transaction the data will hit the disk. In case we are journaling data, we
2663  * cannot start transaction directly because transaction start ranks above page
2664  * lock so we have to do some magic.
2665  *
2666  * This function can get called via...
2667  *   - ext4_da_writepages after taking page lock (have journal handle)
2668  *   - journal_submit_inode_data_buffers (no journal handle)
2669  *   - shrink_page_list via pdflush (no journal handle)
2670  *   - grab_page_cache when doing write_begin (have journal handle)
2671  *
2672  * We don't do any block allocation in this function. If we have page with
2673  * multiple blocks we need to write those buffer_heads that are mapped. This
2674  * is important for mmaped based write. So if we do with blocksize 1K
2675  * truncate(f, 1024);
2676  * a = mmap(f, 0, 4096);
2677  * a[0] = 'a';
2678  * truncate(f, 4096);
2679  * we have in the page first buffer_head mapped via page_mkwrite call back
2680  * but other bufer_heads would be unmapped but dirty(dirty done via the
2681  * do_wp_page). So writepage should write the first block. If we modify
2682  * the mmap area beyond 1024 we will again get a page_fault and the
2683  * page_mkwrite callback will do the block allocation and mark the
2684  * buffer_heads mapped.
2685  *
2686  * We redirty the page if we have any buffer_heads that is either delay or
2687  * unwritten in the page.
2688  *
2689  * We can get recursively called as show below.
2690  *
2691  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2692  *              ext4_writepage()
2693  *
2694  * But since we don't do any block allocation we should not deadlock.
2695  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2696  */
2697 static int ext4_writepage(struct page *page,
2698                           struct writeback_control *wbc)
2699 {
2700         int ret = 0;
2701         loff_t size;
2702         unsigned int len;
2703         struct buffer_head *page_bufs = NULL;
2704         struct inode *inode = page->mapping->host;
2705
2706         trace_ext4_writepage(inode, page);
2707         size = i_size_read(inode);
2708         if (page->index == size >> PAGE_CACHE_SHIFT)
2709                 len = size & ~PAGE_CACHE_MASK;
2710         else
2711                 len = PAGE_CACHE_SIZE;
2712
2713         if (page_has_buffers(page)) {
2714                 page_bufs = page_buffers(page);
2715                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2716                                         ext4_bh_delay_or_unwritten)) {
2717                         /*
2718                          * We don't want to do  block allocation
2719                          * So redirty the page and return
2720                          * We may reach here when we do a journal commit
2721                          * via journal_submit_inode_data_buffers.
2722                          * If we don't have mapping block we just ignore
2723                          * them. We can also reach here via shrink_page_list
2724                          */
2725                         redirty_page_for_writepage(wbc, page);
2726                         unlock_page(page);
2727                         return 0;
2728                 }
2729         } else {
2730                 /*
2731                  * The test for page_has_buffers() is subtle:
2732                  * We know the page is dirty but it lost buffers. That means
2733                  * that at some moment in time after write_begin()/write_end()
2734                  * has been called all buffers have been clean and thus they
2735                  * must have been written at least once. So they are all
2736                  * mapped and we can happily proceed with mapping them
2737                  * and writing the page.
2738                  *
2739                  * Try to initialize the buffer_heads and check whether
2740                  * all are mapped and non delay. We don't want to
2741                  * do block allocation here.
2742                  */
2743                 ret = block_prepare_write(page, 0, len,
2744                                           noalloc_get_block_write);
2745                 if (!ret) {
2746                         page_bufs = page_buffers(page);
2747                         /* check whether all are mapped and non delay */
2748                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2749                                                 ext4_bh_delay_or_unwritten)) {
2750                                 redirty_page_for_writepage(wbc, page);
2751                                 unlock_page(page);
2752                                 return 0;
2753                         }
2754                 } else {
2755                         /*
2756                          * We can't do block allocation here
2757                          * so just redity the page and unlock
2758                          * and return
2759                          */
2760                         redirty_page_for_writepage(wbc, page);
2761                         unlock_page(page);
2762                         return 0;
2763                 }
2764                 /* now mark the buffer_heads as dirty and uptodate */
2765                 block_commit_write(page, 0, len);
2766         }
2767
2768         if (PageChecked(page) && ext4_should_journal_data(inode)) {
2769                 /*
2770                  * It's mmapped pagecache.  Add buffers and journal it.  There
2771                  * doesn't seem much point in redirtying the page here.
2772                  */
2773                 ClearPageChecked(page);
2774                 return __ext4_journalled_writepage(page, len);
2775         }
2776
2777         if (page_bufs && buffer_uninit(page_bufs)) {
2778                 ext4_set_bh_endio(page_bufs, inode);
2779                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2780                                             wbc, ext4_end_io_buffer_write);
2781         } else
2782                 ret = block_write_full_page(page, noalloc_get_block_write,
2783                                             wbc);
2784
2785         return ret;
2786 }
2787
2788 /*
2789  * This is called via ext4_da_writepages() to
2790  * calulate the total number of credits to reserve to fit
2791  * a single extent allocation into a single transaction,
2792  * ext4_da_writpeages() will loop calling this before
2793  * the block allocation.
2794  */
2795
2796 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2797 {
2798         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2799
2800         /*
2801          * With non-extent format the journal credit needed to
2802          * insert nrblocks contiguous block is dependent on
2803          * number of contiguous block. So we will limit
2804          * number of contiguous block to a sane value
2805          */
2806         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2807             (max_blocks > EXT4_MAX_TRANS_DATA))
2808                 max_blocks = EXT4_MAX_TRANS_DATA;
2809
2810         return ext4_chunk_trans_blocks(inode, max_blocks);
2811 }
2812
2813 /*
2814  * write_cache_pages_da - walk the list of dirty pages of the given
2815  * address space and call the callback function (which usually writes
2816  * the pages).
2817  *
2818  * This is a forked version of write_cache_pages().  Differences:
2819  *      Range cyclic is ignored.
2820  *      no_nrwrite_index_update is always presumed true
2821  */
2822 static int write_cache_pages_da(struct address_space *mapping,
2823                                 struct writeback_control *wbc,
2824                                 struct mpage_da_data *mpd)
2825 {
2826         int ret = 0;
2827         int done = 0;
2828         struct pagevec pvec;
2829         int nr_pages;
2830         pgoff_t index;
2831         pgoff_t end;            /* Inclusive */
2832         long nr_to_write = wbc->nr_to_write;
2833
2834         pagevec_init(&pvec, 0);
2835         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2836         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2837
2838         while (!done && (index <= end)) {
2839                 int i;
2840
2841                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2842                               PAGECACHE_TAG_DIRTY,
2843                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2844                 if (nr_pages == 0)
2845                         break;
2846
2847                 for (i = 0; i < nr_pages; i++) {
2848                         struct page *page = pvec.pages[i];
2849
2850                         /*
2851                          * At this point, the page may be truncated or
2852                          * invalidated (changing page->mapping to NULL), or
2853                          * even swizzled back from swapper_space to tmpfs file
2854                          * mapping. However, page->index will not change
2855                          * because we have a reference on the page.
2856                          */
2857                         if (page->index > end) {
2858                                 done = 1;
2859                                 break;
2860                         }
2861
2862                         lock_page(page);
2863
2864                         /*
2865                          * Page truncated or invalidated. We can freely skip it
2866                          * then, even for data integrity operations: the page
2867                          * has disappeared concurrently, so there could be no
2868                          * real expectation of this data interity operation
2869                          * even if there is now a new, dirty page at the same
2870                          * pagecache address.
2871                          */
2872                         if (unlikely(page->mapping != mapping)) {
2873 continue_unlock:
2874                                 unlock_page(page);
2875                                 continue;
2876                         }
2877
2878                         if (!PageDirty(page)) {
2879                                 /* someone wrote it for us */
2880                                 goto continue_unlock;
2881                         }
2882
2883                         if (PageWriteback(page)) {
2884                                 if (wbc->sync_mode != WB_SYNC_NONE)
2885                                         wait_on_page_writeback(page);
2886                                 else
2887                                         goto continue_unlock;
2888                         }
2889
2890                         BUG_ON(PageWriteback(page));
2891                         if (!clear_page_dirty_for_io(page))
2892                                 goto continue_unlock;
2893
2894                         ret = __mpage_da_writepage(page, wbc, mpd);
2895                         if (unlikely(ret)) {
2896                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2897                                         unlock_page(page);
2898                                         ret = 0;
2899                                 } else {
2900                                         done = 1;
2901                                         break;
2902                                 }
2903                         }
2904
2905                         if (nr_to_write > 0) {
2906                                 nr_to_write--;
2907                                 if (nr_to_write == 0 &&
2908                                     wbc->sync_mode == WB_SYNC_NONE) {
2909                                         /*
2910                                          * We stop writing back only if we are
2911                                          * not doing integrity sync. In case of
2912                                          * integrity sync we have to keep going
2913                                          * because someone may be concurrently
2914                                          * dirtying pages, and we might have
2915                                          * synced a lot of newly appeared dirty
2916                                          * pages, but have not synced all of the
2917                                          * old dirty pages.
2918                                          */
2919                                         done = 1;
2920                                         break;
2921                                 }
2922                         }
2923                 }
2924                 pagevec_release(&pvec);
2925                 cond_resched();
2926         }
2927         return ret;
2928 }
2929
2930
2931 static int ext4_da_writepages(struct address_space *mapping,
2932                               struct writeback_control *wbc)
2933 {
2934         pgoff_t index;
2935         int range_whole = 0;
2936         handle_t *handle = NULL;
2937         struct mpage_da_data mpd;
2938         struct inode *inode = mapping->host;
2939         int pages_written = 0;
2940         long pages_skipped;
2941         unsigned int max_pages;
2942         int range_cyclic, cycled = 1, io_done = 0;
2943         int needed_blocks, ret = 0;
2944         long desired_nr_to_write, nr_to_writebump = 0;
2945         loff_t range_start = wbc->range_start;
2946         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2947
2948         trace_ext4_da_writepages(inode, wbc);
2949
2950         /*
2951          * No pages to write? This is mainly a kludge to avoid starting
2952          * a transaction for special inodes like journal inode on last iput()
2953          * because that could violate lock ordering on umount
2954          */
2955         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2956                 return 0;
2957
2958         /*
2959          * If the filesystem has aborted, it is read-only, so return
2960          * right away instead of dumping stack traces later on that
2961          * will obscure the real source of the problem.  We test
2962          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2963          * the latter could be true if the filesystem is mounted
2964          * read-only, and in that case, ext4_da_writepages should
2965          * *never* be called, so if that ever happens, we would want
2966          * the stack trace.
2967          */
2968         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2969                 return -EROFS;
2970
2971         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2972                 range_whole = 1;
2973
2974         range_cyclic = wbc->range_cyclic;
2975         if (wbc->range_cyclic) {
2976                 index = mapping->writeback_index;
2977                 if (index)
2978                         cycled = 0;
2979                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2980                 wbc->range_end  = LLONG_MAX;
2981                 wbc->range_cyclic = 0;
2982         } else
2983                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2984
2985         /*
2986          * This works around two forms of stupidity.  The first is in
2987          * the writeback code, which caps the maximum number of pages
2988          * written to be 1024 pages.  This is wrong on multiple
2989          * levels; different architectues have a different page size,
2990          * which changes the maximum amount of data which gets
2991          * written.  Secondly, 4 megabytes is way too small.  XFS
2992          * forces this value to be 16 megabytes by multiplying
2993          * nr_to_write parameter by four, and then relies on its
2994          * allocator to allocate larger extents to make them
2995          * contiguous.  Unfortunately this brings us to the second
2996          * stupidity, which is that ext4's mballoc code only allocates
2997          * at most 2048 blocks.  So we force contiguous writes up to
2998          * the number of dirty blocks in the inode, or
2999          * sbi->max_writeback_mb_bump whichever is smaller.
3000          */
3001         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
3002         if (!range_cyclic && range_whole)
3003                 desired_nr_to_write = wbc->nr_to_write * 8;
3004         else
3005                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
3006                                                            max_pages);
3007         if (desired_nr_to_write > max_pages)
3008                 desired_nr_to_write = max_pages;
3009
3010         if (wbc->nr_to_write < desired_nr_to_write) {
3011                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
3012                 wbc->nr_to_write = desired_nr_to_write;
3013         }
3014
3015         mpd.wbc = wbc;
3016         mpd.inode = mapping->host;
3017
3018         pages_skipped = wbc->pages_skipped;
3019
3020 retry:
3021         while (!ret && wbc->nr_to_write > 0) {
3022
3023                 /*
3024                  * we  insert one extent at a time. So we need
3025                  * credit needed for single extent allocation.
3026                  * journalled mode is currently not supported
3027                  * by delalloc
3028                  */
3029                 BUG_ON(ext4_should_journal_data(inode));
3030                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
3031
3032                 /* start a new transaction*/
3033                 handle = ext4_journal_start(inode, needed_blocks);
3034                 if (IS_ERR(handle)) {
3035                         ret = PTR_ERR(handle);
3036                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3037                                "%ld pages, ino %lu; err %d", __func__,
3038                                 wbc->nr_to_write, inode->i_ino, ret);
3039                         goto out_writepages;
3040                 }
3041
3042                 /*
3043                  * Now call __mpage_da_writepage to find the next
3044                  * contiguous region of logical blocks that need
3045                  * blocks to be allocated by ext4.  We don't actually
3046                  * submit the blocks for I/O here, even though
3047                  * write_cache_pages thinks it will, and will set the
3048                  * pages as clean for write before calling
3049                  * __mpage_da_writepage().
3050                  */
3051                 mpd.b_size = 0;
3052                 mpd.b_state = 0;
3053                 mpd.b_blocknr = 0;
3054                 mpd.first_page = 0;
3055                 mpd.next_page = 0;
3056                 mpd.io_done = 0;
3057                 mpd.pages_written = 0;
3058                 mpd.retval = 0;
3059                 ret = write_cache_pages_da(mapping, wbc, &mpd);
3060                 /*
3061                  * If we have a contiguous extent of pages and we
3062                  * haven't done the I/O yet, map the blocks and submit
3063                  * them for I/O.
3064                  */
3065                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3066                         if (mpage_da_map_blocks(&mpd) == 0)
3067                                 mpage_da_submit_io(&mpd);
3068                         mpd.io_done = 1;
3069                         ret = MPAGE_DA_EXTENT_TAIL;
3070                 }
3071                 trace_ext4_da_write_pages(inode, &mpd);
3072                 wbc->nr_to_write -= mpd.pages_written;
3073
3074                 ext4_journal_stop(handle);
3075
3076                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3077                         /* commit the transaction which would
3078                          * free blocks released in the transaction
3079                          * and try again
3080                          */
3081                         jbd2_journal_force_commit_nested(sbi->s_journal);
3082                         wbc->pages_skipped = pages_skipped;
3083                         ret = 0;
3084                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
3085                         /*
3086                          * got one extent now try with
3087                          * rest of the pages
3088                          */
3089                         pages_written += mpd.pages_written;
3090                         wbc->pages_skipped = pages_skipped;
3091                         ret = 0;
3092                         io_done = 1;
3093                 } else if (wbc->nr_to_write)
3094                         /*
3095                          * There is no more writeout needed
3096                          * or we requested for a noblocking writeout
3097                          * and we found the device congested
3098                          */
3099                         break;
3100         }
3101         if (!io_done && !cycled) {
3102                 cycled = 1;
3103                 index = 0;
3104                 wbc->range_start = index << PAGE_CACHE_SHIFT;
3105                 wbc->range_end  = mapping->writeback_index - 1;
3106                 goto retry;
3107         }
3108         if (pages_skipped != wbc->pages_skipped)
3109                 ext4_msg(inode->i_sb, KERN_CRIT,
3110                          "This should not happen leaving %s "
3111                          "with nr_to_write = %ld ret = %d",
3112                          __func__, wbc->nr_to_write, ret);
3113
3114         /* Update index */
3115         index += pages_written;
3116         wbc->range_cyclic = range_cyclic;
3117         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3118                 /*
3119                  * set the writeback_index so that range_cyclic
3120                  * mode will write it back later
3121                  */
3122                 mapping->writeback_index = index;
3123
3124 out_writepages:
3125         wbc->nr_to_write -= nr_to_writebump;
3126         wbc->range_start = range_start;
3127         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3128         return ret;
3129 }
3130
3131 #define FALL_BACK_TO_NONDELALLOC 1
3132 static int ext4_nonda_switch(struct super_block *sb)
3133 {
3134         s64 free_blocks, dirty_blocks;
3135         struct ext4_sb_info *sbi = EXT4_SB(sb);
3136
3137         /*
3138          * switch to non delalloc mode if we are running low
3139          * on free block. The free block accounting via percpu
3140          * counters can get slightly wrong with percpu_counter_batch getting
3141          * accumulated on each CPU without updating global counters
3142          * Delalloc need an accurate free block accounting. So switch
3143          * to non delalloc when we are near to error range.
3144          */
3145         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3146         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3147         if (2 * free_blocks < 3 * dirty_blocks ||
3148                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3149                 /*
3150                  * free block count is less than 150% of dirty blocks
3151                  * or free blocks is less than watermark
3152                  */
3153                 return 1;
3154         }
3155         /*
3156          * Even if we don't switch but are nearing capacity,
3157          * start pushing delalloc when 1/2 of free blocks are dirty.
3158          */
3159         if (free_blocks < 2 * dirty_blocks)
3160                 writeback_inodes_sb_if_idle(sb);
3161
3162         return 0;
3163 }
3164
3165 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3166                                loff_t pos, unsigned len, unsigned flags,
3167                                struct page **pagep, void **fsdata)
3168 {
3169         int ret, retries = 0;
3170         struct page *page;
3171         pgoff_t index;
3172         struct inode *inode = mapping->host;
3173         handle_t *handle;
3174
3175         index = pos >> PAGE_CACHE_SHIFT;
3176
3177         if (ext4_nonda_switch(inode->i_sb)) {
3178                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3179                 return ext4_write_begin(file, mapping, pos,
3180                                         len, flags, pagep, fsdata);
3181         }
3182         *fsdata = (void *)0;
3183         trace_ext4_da_write_begin(inode, pos, len, flags);
3184 retry:
3185         /*
3186          * With delayed allocation, we don't log the i_disksize update
3187          * if there is delayed block allocation. But we still need
3188          * to journalling the i_disksize update if writes to the end
3189          * of file which has an already mapped buffer.
3190          */
3191         handle = ext4_journal_start(inode, 1);
3192         if (IS_ERR(handle)) {
3193                 ret = PTR_ERR(handle);
3194                 goto out;
3195         }
3196         /* We cannot recurse into the filesystem as the transaction is already
3197          * started */
3198         flags |= AOP_FLAG_NOFS;
3199
3200         page = grab_cache_page_write_begin(mapping, index, flags);
3201         if (!page) {
3202                 ext4_journal_stop(handle);
3203                 ret = -ENOMEM;
3204                 goto out;
3205         }
3206         *pagep = page;
3207
3208         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3209                                 ext4_da_get_block_prep);
3210         if (ret < 0) {
3211                 unlock_page(page);
3212                 ext4_journal_stop(handle);
3213                 page_cache_release(page);
3214                 /*
3215                  * block_write_begin may have instantiated a few blocks
3216                  * outside i_size.  Trim these off again. Don't need
3217                  * i_size_read because we hold i_mutex.
3218                  */
3219                 if (pos + len > inode->i_size)
3220                         ext4_truncate_failed_write(inode);
3221         }
3222
3223         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3224                 goto retry;
3225 out:
3226         return ret;
3227 }
3228
3229 /*
3230  * Check if we should update i_disksize
3231  * when write to the end of file but not require block allocation
3232  */
3233 static int ext4_da_should_update_i_disksize(struct page *page,
3234                                             unsigned long offset)
3235 {
3236         struct buffer_head *bh;
3237         struct inode *inode = page->mapping->host;
3238         unsigned int idx;
3239         int i;
3240
3241         bh = page_buffers(page);
3242         idx = offset >> inode->i_blkbits;
3243
3244         for (i = 0; i < idx; i++)
3245                 bh = bh->b_this_page;
3246
3247         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3248                 return 0;
3249         return 1;
3250 }
3251
3252 static int ext4_da_write_end(struct file *file,
3253                              struct address_space *mapping,
3254                              loff_t pos, unsigned len, unsigned copied,
3255                              struct page *page, void *fsdata)
3256 {
3257         struct inode *inode = mapping->host;
3258         int ret = 0, ret2;
3259         handle_t *handle = ext4_journal_current_handle();
3260         loff_t new_i_size;
3261         unsigned long start, end;
3262         int write_mode = (int)(unsigned long)fsdata;
3263
3264         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3265                 if (ext4_should_order_data(inode)) {
3266                         return ext4_ordered_write_end(file, mapping, pos,
3267                                         len, copied, page, fsdata);
3268                 } else if (ext4_should_writeback_data(inode)) {
3269                         return ext4_writeback_write_end(file, mapping, pos,
3270                                         len, copied, page, fsdata);
3271                 } else {
3272                         BUG();
3273                 }
3274         }
3275
3276         trace_ext4_da_write_end(inode, pos, len, copied);
3277         start = pos & (PAGE_CACHE_SIZE - 1);
3278         end = start + copied - 1;
3279
3280         /*
3281          * generic_write_end() will run mark_inode_dirty() if i_size
3282          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3283          * into that.
3284          */
3285
3286         new_i_size = pos + copied;
3287         if (new_i_size > EXT4_I(inode)->i_disksize) {
3288                 if (ext4_da_should_update_i_disksize(page, end)) {
3289                         down_write(&EXT4_I(inode)->i_data_sem);
3290                         if (new_i_size > EXT4_I(inode)->i_disksize) {
3291                                 /*
3292                                  * Updating i_disksize when extending file
3293                                  * without needing block allocation
3294                                  */
3295                                 if (ext4_should_order_data(inode))
3296                                         ret = ext4_jbd2_file_inode(handle,
3297                                                                    inode);
3298
3299                                 EXT4_I(inode)->i_disksize = new_i_size;
3300                         }
3301                         up_write(&EXT4_I(inode)->i_data_sem);
3302                         /* We need to mark inode dirty even if
3303                          * new_i_size is less that inode->i_size
3304                          * bu greater than i_disksize.(hint delalloc)
3305                          */
3306                         ext4_mark_inode_dirty(handle, inode);
3307                 }
3308         }
3309         ret2 = generic_write_end(file, mapping, pos, len, copied,
3310                                                         page, fsdata);
3311         copied = ret2;
3312         if (ret2 < 0)
3313                 ret = ret2;
3314         ret2 = ext4_journal_stop(handle);
3315         if (!ret)
3316                 ret = ret2;
3317
3318         return ret ? ret : copied;
3319 }
3320
3321 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3322 {
3323         /*
3324          * Drop reserved blocks
3325          */
3326         BUG_ON(!PageLocked(page));
3327         if (!page_has_buffers(page))
3328                 goto out;
3329
3330         ext4_da_page_release_reservation(page, offset);
3331
3332 out:
3333         ext4_invalidatepage(page, offset);
3334
3335         return;
3336 }
3337
3338 /*
3339  * Force all delayed allocation blocks to be allocated for a given inode.
3340  */
3341 int ext4_alloc_da_blocks(struct inode *inode)
3342 {
3343         trace_ext4_alloc_da_blocks(inode);
3344
3345         if (!EXT4_I(inode)->i_reserved_data_blocks &&
3346             !EXT4_I(inode)->i_reserved_meta_blocks)
3347                 return 0;
3348
3349         /*
3350          * We do something simple for now.  The filemap_flush() will
3351          * also start triggering a write of the data blocks, which is
3352          * not strictly speaking necessary (and for users of
3353          * laptop_mode, not even desirable).  However, to do otherwise
3354          * would require replicating code paths in:
3355          *
3356          * ext4_da_writepages() ->
3357          *    write_cache_pages() ---> (via passed in callback function)
3358          *        __mpage_da_writepage() -->
3359          *           mpage_add_bh_to_extent()
3360          *           mpage_da_map_blocks()
3361          *
3362          * The problem is that write_cache_pages(), located in
3363          * mm/page-writeback.c, marks pages clean in preparation for
3364          * doing I/O, which is not desirable if we're not planning on
3365          * doing I/O at all.
3366          *
3367          * We could call write_cache_pages(), and then redirty all of
3368          * the pages by calling redirty_page_for_writeback() but that
3369          * would be ugly in the extreme.  So instead we would need to
3370          * replicate parts of the code in the above functions,
3371          * simplifying them becuase we wouldn't actually intend to
3372          * write out the pages, but rather only collect contiguous
3373          * logical block extents, call the multi-block allocator, and
3374          * then update the buffer heads with the block allocations.
3375          *
3376          * For now, though, we'll cheat by calling filemap_flush(),
3377          * which will map the blocks, and start the I/O, but not
3378          * actually wait for the I/O to complete.
3379          */
3380         return filemap_flush(inode->i_mapping);
3381 }
3382
3383 /*
3384  * bmap() is special.  It gets used by applications such as lilo and by
3385  * the swapper to find the on-disk block of a specific piece of data.
3386  *
3387  * Naturally, this is dangerous if the block concerned is still in the
3388  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3389  * filesystem and enables swap, then they may get a nasty shock when the
3390  * data getting swapped to that swapfile suddenly gets overwritten by
3391  * the original zero's written out previously to the journal and
3392  * awaiting writeback in the kernel's buffer cache.
3393  *
3394  * So, if we see any bmap calls here on a modified, data-journaled file,
3395  * take extra steps to flush any blocks which might be in the cache.
3396  */
3397 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3398 {
3399         struct inode *inode = mapping->host;
3400         journal_t *journal;
3401         int err;
3402
3403         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3404                         test_opt(inode->i_sb, DELALLOC)) {
3405                 /*
3406                  * With delalloc we want to sync the file
3407                  * so that we can make sure we allocate
3408                  * blocks for file
3409                  */
3410                 filemap_write_and_wait(mapping);
3411         }
3412
3413         if (EXT4_JOURNAL(inode) &&
3414             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3415                 /*
3416                  * This is a REALLY heavyweight approach, but the use of
3417                  * bmap on dirty files is expected to be extremely rare:
3418                  * only if we run lilo or swapon on a freshly made file
3419                  * do we expect this to happen.
3420                  *
3421                  * (bmap requires CAP_SYS_RAWIO so this does not
3422                  * represent an unprivileged user DOS attack --- we'd be
3423                  * in trouble if mortal users could trigger this path at
3424                  * will.)
3425                  *
3426                  * NB. EXT4_STATE_JDATA is not set on files other than
3427                  * regular files.  If somebody wants to bmap a directory
3428                  * or symlink and gets confused because the buffer
3429                  * hasn't yet been flushed to disk, they deserve
3430                  * everything they get.
3431                  */
3432
3433                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3434                 journal = EXT4_JOURNAL(inode);
3435                 jbd2_journal_lock_updates(journal);
3436                 err = jbd2_journal_flush(journal);
3437                 jbd2_journal_unlock_updates(journal);
3438
3439                 if (err)
3440                         return 0;
3441         }
3442
3443         return generic_block_bmap(mapping, block, ext4_get_block);
3444 }
3445
3446 static int ext4_readpage(struct file *file, struct page *page)
3447 {
3448         return mpage_readpage(page, ext4_get_block);
3449 }
3450
3451 static int
3452 ext4_readpages(struct file *file, struct address_space *mapping,
3453                 struct list_head *pages, unsigned nr_pages)
3454 {
3455         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3456 }
3457
3458 static void ext4_free_io_end(ext4_io_end_t *io)
3459 {
3460         BUG_ON(!io);
3461         if (io->page)
3462                 put_page(io->page);
3463         iput(io->inode);
3464         kfree(io);
3465 }
3466
3467 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3468 {
3469         struct buffer_head *head, *bh;
3470         unsigned int curr_off = 0;
3471
3472         if (!page_has_buffers(page))
3473                 return;
3474         head = bh = page_buffers(page);
3475         do {
3476                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3477                                         && bh->b_private) {
3478                         ext4_free_io_end(bh->b_private);
3479                         bh->b_private = NULL;
3480                         bh->b_end_io = NULL;
3481                 }
3482                 curr_off = curr_off + bh->b_size;
3483                 bh = bh->b_this_page;
3484         } while (bh != head);
3485 }
3486
3487 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3488 {
3489         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3490
3491         /*
3492          * free any io_end structure allocated for buffers to be discarded
3493          */
3494         if (ext4_should_dioread_nolock(page->mapping->host))
3495                 ext4_invalidatepage_free_endio(page, offset);
3496         /*
3497          * If it's a full truncate we just forget about the pending dirtying
3498          */
3499         if (offset == 0)
3500                 ClearPageChecked(page);
3501
3502         if (journal)
3503                 jbd2_journal_invalidatepage(journal, page, offset);
3504         else
3505                 block_invalidatepage(page, offset);
3506 }
3507
3508 static int ext4_releasepage(struct page *page, gfp_t wait)
3509 {
3510         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3511
3512         WARN_ON(PageChecked(page));
3513         if (!page_has_buffers(page))
3514                 return 0;
3515         if (journal)
3516                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3517         else
3518                 return try_to_free_buffers(page);
3519 }
3520
3521 /*
3522  * O_DIRECT for ext3 (or indirect map) based files
3523  *
3524  * If the O_DIRECT write will extend the file then add this inode to the
3525  * orphan list.  So recovery will truncate it back to the original size
3526  * if the machine crashes during the write.
3527  *
3528  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3529  * crashes then stale disk data _may_ be exposed inside the file. But current
3530  * VFS code falls back into buffered path in that case so we are safe.
3531  */
3532 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3533                               const struct iovec *iov, loff_t offset,
3534                               unsigned long nr_segs)
3535 {
3536         struct file *file = iocb->ki_filp;
3537         struct inode *inode = file->f_mapping->host;
3538         struct ext4_inode_info *ei = EXT4_I(inode);
3539         handle_t *handle;
3540         ssize_t ret;
3541         int orphan = 0;
3542         size_t count = iov_length(iov, nr_segs);
3543         int retries = 0;
3544
3545         if (rw == WRITE) {
3546                 loff_t final_size = offset + count;
3547
3548                 if (final_size > inode->i_size) {
3549                         /* Credits for sb + inode write */
3550                         handle = ext4_journal_start(inode, 2);
3551                         if (IS_ERR(handle)) {
3552                                 ret = PTR_ERR(handle);
3553                                 goto out;
3554                         }
3555                         ret = ext4_orphan_add(handle, inode);
3556                         if (ret) {
3557                                 ext4_journal_stop(handle);
3558                                 goto out;
3559                         }
3560                         orphan = 1;
3561                         ei->i_disksize = inode->i_size;
3562                         ext4_journal_stop(handle);
3563                 }
3564         }
3565
3566 retry:
3567         if (rw == READ && ext4_should_dioread_nolock(inode))
3568                 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
3569                                  inode->i_sb->s_bdev, iov,
3570                                  offset, nr_segs,
3571                                  ext4_get_block, NULL);
3572         else
3573                 ret = blockdev_direct_IO(rw, iocb, inode,
3574                                  inode->i_sb->s_bdev, iov,
3575                                  offset, nr_segs,
3576                                  ext4_get_block, NULL);
3577         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3578                 goto retry;
3579
3580         if (orphan) {
3581                 int err;
3582
3583                 /* Credits for sb + inode write */
3584                 handle = ext4_journal_start(inode, 2);
3585                 if (IS_ERR(handle)) {
3586                         /* This is really bad luck. We've written the data
3587                          * but cannot extend i_size. Bail out and pretend
3588                          * the write failed... */
3589                         ret = PTR_ERR(handle);
3590                         if (inode->i_nlink)
3591                                 ext4_orphan_del(NULL, inode);
3592
3593                         goto out;
3594                 }
3595                 if (inode->i_nlink)
3596                         ext4_orphan_del(handle, inode);
3597                 if (ret > 0) {
3598                         loff_t end = offset + ret;
3599                         if (end > inode->i_size) {
3600                                 ei->i_disksize = end;
3601                                 i_size_write(inode, end);
3602                                 /*
3603                                  * We're going to return a positive `ret'
3604                                  * here due to non-zero-length I/O, so there's
3605                                  * no way of reporting error returns from
3606                                  * ext4_mark_inode_dirty() to userspace.  So
3607                                  * ignore it.
3608                                  */
3609                                 ext4_mark_inode_dirty(handle, inode);
3610                         }
3611                 }
3612                 err = ext4_journal_stop(handle);
3613                 if (ret == 0)
3614                         ret = err;
3615         }
3616 out:
3617         return ret;
3618 }
3619
3620 /*
3621  * ext4_get_block used when preparing for a DIO write or buffer write.
3622  * We allocate an uinitialized extent if blocks haven't been allocated.
3623  * The extent will be converted to initialized after the IO is complete.
3624  */
3625 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3626                    struct buffer_head *bh_result, int create)
3627 {
3628         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3629                    inode->i_ino, create);
3630         return _ext4_get_block(inode, iblock, bh_result,
3631                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3632 }
3633
3634 static void dump_completed_IO(struct inode * inode)
3635 {
3636 #ifdef  EXT4_DEBUG
3637         struct list_head *cur, *before, *after;
3638         ext4_io_end_t *io, *io0, *io1;
3639         unsigned long flags;
3640
3641         if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3642                 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
3643                 return;
3644         }
3645
3646         ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
3647         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3648         list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
3649                 cur = &io->list;
3650                 before = cur->prev;
3651                 io0 = container_of(before, ext4_io_end_t, list);
3652                 after = cur->next;
3653                 io1 = container_of(after, ext4_io_end_t, list);
3654
3655                 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3656                             io, inode->i_ino, io0, io1);
3657         }
3658         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3659 #endif
3660 }
3661
3662 /*
3663  * check a range of space and convert unwritten extents to written.
3664  */
3665 static int ext4_end_io_nolock(ext4_io_end_t *io)
3666 {
3667         struct inode *inode = io->inode;
3668         loff_t offset = io->offset;
3669         ssize_t size = io->size;
3670         int ret = 0;
3671
3672         ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
3673                    "list->prev 0x%p\n",
3674                    io, inode->i_ino, io->list.next, io->list.prev);
3675
3676         if (list_empty(&io->list))
3677                 return ret;
3678
3679         if (io->flag != EXT4_IO_UNWRITTEN)
3680                 return ret;
3681
3682         ret = ext4_convert_unwritten_extents(inode, offset, size);
3683         if (ret < 0) {
3684                 printk(KERN_EMERG "%s: failed to convert unwritten"
3685                         "extents to written extents, error is %d"
3686                         " io is still on inode %lu aio dio list\n",
3687                        __func__, ret, inode->i_ino);
3688                 return ret;
3689         }
3690
3691         if (io->iocb)
3692                 aio_complete(io->iocb, io->result, 0);
3693         /* clear the DIO AIO unwritten flag */
3694         io->flag = 0;
3695         return ret;
3696 }
3697
3698 /*
3699  * work on completed aio dio IO, to convert unwritten extents to extents
3700  */
3701 static void ext4_end_io_work(struct work_struct *work)
3702 {
3703         ext4_io_end_t           *io = container_of(work, ext4_io_end_t, work);
3704         struct inode            *inode = io->inode;
3705         struct ext4_inode_info  *ei = EXT4_I(inode);
3706         unsigned long           flags;
3707         int                     ret;
3708
3709         mutex_lock(&inode->i_mutex);
3710         ret = ext4_end_io_nolock(io);
3711         if (ret < 0) {
3712                 mutex_unlock(&inode->i_mutex);
3713                 return;
3714         }
3715
3716         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3717         if (!list_empty(&io->list))
3718                 list_del_init(&io->list);
3719         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3720         mutex_unlock(&inode->i_mutex);
3721         ext4_free_io_end(io);
3722 }
3723
3724 /*
3725  * This function is called from ext4_sync_file().
3726  *
3727  * When IO is completed, the work to convert unwritten extents to
3728  * written is queued on workqueue but may not get immediately
3729  * scheduled. When fsync is called, we need to ensure the
3730  * conversion is complete before fsync returns.
3731  * The inode keeps track of a list of pending/completed IO that
3732  * might needs to do the conversion. This function walks through
3733  * the list and convert the related unwritten extents for completed IO
3734  * to written.
3735  * The function return the number of pending IOs on success.
3736  */
3737 int flush_completed_IO(struct inode *inode)
3738 {
3739         ext4_io_end_t *io;
3740         struct ext4_inode_info *ei = EXT4_I(inode);
3741         unsigned long flags;
3742         int ret = 0;
3743         int ret2 = 0;
3744
3745         if (list_empty(&ei->i_completed_io_list))
3746                 return ret;
3747
3748         dump_completed_IO(inode);
3749         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3750         while (!list_empty(&ei->i_completed_io_list)){
3751                 io = list_entry(ei->i_completed_io_list.next,
3752                                 ext4_io_end_t, list);
3753                 /*
3754                  * Calling ext4_end_io_nolock() to convert completed
3755                  * IO to written.
3756                  *
3757                  * When ext4_sync_file() is called, run_queue() may already
3758                  * about to flush the work corresponding to this io structure.
3759                  * It will be upset if it founds the io structure related
3760                  * to the work-to-be schedule is freed.
3761                  *
3762                  * Thus we need to keep the io structure still valid here after
3763                  * convertion finished. The io structure has a flag to
3764                  * avoid double converting from both fsync and background work
3765                  * queue work.
3766                  */
3767                 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3768                 ret = ext4_end_io_nolock(io);
3769                 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3770                 if (ret < 0)
3771                         ret2 = ret;
3772                 else
3773                         list_del_init(&io->list);
3774         }
3775         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3776         return (ret2 < 0) ? ret2 : 0;
3777 }
3778
3779 static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
3780 {
3781         ext4_io_end_t *io = NULL;
3782
3783         io = kmalloc(sizeof(*io), flags);
3784
3785         if (io) {
3786                 igrab(inode);
3787                 io->inode = inode;
3788                 io->flag = 0;
3789                 io->offset = 0;
3790                 io->size = 0;
3791                 io->page = NULL;
3792                 io->iocb = NULL;
3793                 io->result = 0;
3794                 INIT_WORK(&io->work, ext4_end_io_work);
3795                 INIT_LIST_HEAD(&io->list);
3796         }
3797
3798         return io;
3799 }
3800
3801 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3802                             ssize_t size, void *private, int ret,
3803                             bool is_async)
3804 {
3805         ext4_io_end_t *io_end = iocb->private;
3806         struct workqueue_struct *wq;
3807         unsigned long flags;
3808         struct ext4_inode_info *ei;
3809
3810         /* if not async direct IO or dio with 0 bytes write, just return */
3811         if (!io_end || !size)
3812                 goto out;
3813
3814         ext_debug("ext4_end_io_dio(): io_end 0x%p"
3815                   "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3816                   iocb->private, io_end->inode->i_ino, iocb, offset,
3817                   size);
3818
3819         /* if not aio dio with unwritten extents, just free io and return */
3820         if (io_end->flag != EXT4_IO_UNWRITTEN){
3821                 ext4_free_io_end(io_end);
3822                 iocb->private = NULL;
3823 out:
3824                 if (is_async)
3825                         aio_complete(iocb, ret, 0);
3826                 return;
3827         }
3828
3829         io_end->offset = offset;
3830         io_end->size = size;
3831         if (is_async) {
3832                 io_end->iocb = iocb;
3833                 io_end->result = ret;
3834         }
3835         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3836
3837         /* queue the work to convert unwritten extents to written */
3838         queue_work(wq, &io_end->work);
3839
3840         /* Add the io_end to per-inode completed aio dio list*/
3841         ei = EXT4_I(io_end->inode);
3842         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3843         list_add_tail(&io_end->list, &ei->i_completed_io_list);
3844         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3845         iocb->private = NULL;
3846 }
3847
3848 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3849 {
3850         ext4_io_end_t *io_end = bh->b_private;
3851         struct workqueue_struct *wq;
3852         struct inode *inode;
3853         unsigned long flags;
3854
3855         if (!test_clear_buffer_uninit(bh) || !io_end)
3856                 goto out;
3857
3858         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3859                 printk("sb umounted, discard end_io request for inode %lu\n",
3860                         io_end->inode->i_ino);
3861                 ext4_free_io_end(io_end);
3862                 goto out;
3863         }
3864
3865         io_end->flag = EXT4_IO_UNWRITTEN;
3866         inode = io_end->inode;
3867
3868         /* Add the io_end to per-inode completed io list*/
3869         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3870         list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3871         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3872
3873         wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3874         /* queue the work to convert unwritten extents to written */
3875         queue_work(wq, &io_end->work);
3876 out:
3877         bh->b_private = NULL;
3878         bh->b_end_io = NULL;
3879         clear_buffer_uninit(bh);
3880         end_buffer_async_write(bh, uptodate);
3881 }
3882
3883 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3884 {
3885         ext4_io_end_t *io_end;
3886         struct page *page = bh->b_page;
3887         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3888         size_t size = bh->b_size;
3889
3890 retry:
3891         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3892         if (!io_end) {
3893                 if (printk_ratelimit())
3894                         printk(KERN_WARNING "%s: allocation fail\n", __func__);
3895                 schedule();
3896                 goto retry;
3897         }
3898         io_end->offset = offset;
3899         io_end->size = size;
3900         /*
3901          * We need to hold a reference to the page to make sure it
3902          * doesn't get evicted before ext4_end_io_work() has a chance
3903          * to convert the extent from written to unwritten.
3904          */
3905         io_end->page = page;
3906         get_page(io_end->page);
3907
3908         bh->b_private = io_end;
3909         bh->b_end_io = ext4_end_io_buffer_write;
3910         return 0;
3911 }
3912
3913 /*
3914  * For ext4 extent files, ext4 will do direct-io write to holes,
3915  * preallocated extents, and those write extend the file, no need to
3916  * fall back to buffered IO.
3917  *
3918  * For holes, we fallocate those blocks, mark them as unintialized
3919  * If those blocks were preallocated, we mark sure they are splited, but
3920  * still keep the range to write as unintialized.
3921  *
3922  * The unwrritten extents will be converted to written when DIO is completed.
3923  * For async direct IO, since the IO may still pending when return, we
3924  * set up an end_io call back function, which will do the convertion
3925  * when async direct IO completed.
3926  *
3927  * If the O_DIRECT write will extend the file then add this inode to the
3928  * orphan list.  So recovery will truncate it back to the original size
3929  * if the machine crashes during the write.
3930  *
3931  */
3932 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3933                               const struct iovec *iov, loff_t offset,
3934                               unsigned long nr_segs)
3935 {
3936         struct file *file = iocb->ki_filp;
3937         struct inode *inode = file->f_mapping->host;
3938         ssize_t ret;
3939         size_t count = iov_length(iov, nr_segs);
3940
3941         loff_t final_size = offset + count;
3942         if (rw == WRITE && final_size <= inode->i_size) {
3943                 /*
3944                  * We could direct write to holes and fallocate.
3945                  *
3946                  * Allocated blocks to fill the hole are marked as uninitialized
3947                  * to prevent paralel buffered read to expose the stale data
3948                  * before DIO complete the data IO.
3949                  *
3950                  * As to previously fallocated extents, ext4 get_block
3951                  * will just simply mark the buffer mapped but still
3952                  * keep the extents uninitialized.
3953                  *
3954                  * for non AIO case, we will convert those unwritten extents
3955                  * to written after return back from blockdev_direct_IO.
3956                  *
3957                  * for async DIO, the conversion needs to be defered when
3958                  * the IO is completed. The ext4 end_io callback function
3959                  * will be called to take care of the conversion work.
3960                  * Here for async case, we allocate an io_end structure to
3961                  * hook to the iocb.
3962                  */
3963                 iocb->private = NULL;
3964                 EXT4_I(inode)->cur_aio_dio = NULL;
3965                 if (!is_sync_kiocb(iocb)) {
3966                         iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3967                         if (!iocb->private)
3968                                 return -ENOMEM;
3969                         /*
3970                          * we save the io structure for current async
3971                          * direct IO, so that later ext4_map_blocks()
3972                          * could flag the io structure whether there
3973                          * is a unwritten extents needs to be converted
3974                          * when IO is completed.
3975                          */
3976                         EXT4_I(inode)->cur_aio_dio = iocb->private;
3977                 }
3978
3979                 ret = blockdev_direct_IO(rw, iocb, inode,
3980                                          inode->i_sb->s_bdev, iov,
3981                                          offset, nr_segs,
3982                                          ext4_get_block_write,
3983                                          ext4_end_io_dio);
3984                 if (iocb->private)
3985                         EXT4_I(inode)->cur_aio_dio = NULL;
3986                 /*
3987                  * The io_end structure takes a reference to the inode,
3988                  * that structure needs to be destroyed and the
3989                  * reference to the inode need to be dropped, when IO is
3990                  * complete, even with 0 byte write, or failed.
3991                  *
3992                  * In the successful AIO DIO case, the io_end structure will be
3993                  * desctroyed and the reference to the inode will be dropped
3994                  * after the end_io call back function is called.
3995                  *
3996                  * In the case there is 0 byte write, or error case, since
3997                  * VFS direct IO won't invoke the end_io call back function,
3998                  * we need to free the end_io structure here.
3999                  */
4000                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
4001                         ext4_free_io_end(iocb->private);
4002                         iocb->private = NULL;
4003                 } else if (ret > 0 && ext4_test_inode_state(inode,
4004                                                 EXT4_STATE_DIO_UNWRITTEN)) {
4005                         int err;
4006                         /*
4007                          * for non AIO case, since the IO is already
4008                          * completed, we could do the convertion right here
4009                          */
4010                         err = ext4_convert_unwritten_extents(inode,
4011                                                              offset, ret);
4012                         if (err < 0)
4013                                 ret = err;
4014                         ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
4015                 }
4016                 return ret;
4017         }
4018
4019         /* for write the the end of file case, we fall back to old way */
4020         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4021 }
4022
4023 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
4024                               const struct iovec *iov, loff_t offset,
4025                               unsigned long nr_segs)
4026 {
4027         struct file *file = iocb->ki_filp;
4028         struct inode *inode = file->f_mapping->host;
4029
4030         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4031                 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
4032
4033         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4034 }
4035
4036 /*
4037  * Pages can be marked dirty completely asynchronously from ext4's journalling
4038  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
4039  * much here because ->set_page_dirty is called under VFS locks.  The page is
4040  * not necessarily locked.
4041  *
4042  * We cannot just dirty the page and leave attached buffers clean, because the
4043  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
4044  * or jbddirty because all the journalling code will explode.
4045  *
4046  * So what we do is to mark the page "pending dirty" and next time writepage
4047  * is called, propagate that into the buffers appropriately.
4048  */
4049 static int ext4_journalled_set_page_dirty(struct page *page)
4050 {
4051         SetPageChecked(page);
4052         return __set_page_dirty_nobuffers(page);
4053 }
4054
4055 static const struct address_space_operations ext4_ordered_aops = {
4056         .readpage               = ext4_readpage,
4057         .readpages              = ext4_readpages,
4058         .writepage              = ext4_writepage,
4059         .sync_page              = block_sync_page,
4060         .write_begin            = ext4_write_begin,
4061         .write_end              = ext4_ordered_write_end,
4062         .bmap                   = ext4_bmap,
4063         .invalidatepage         = ext4_invalidatepage,
4064         .releasepage            = ext4_releasepage,
4065         .direct_IO              = ext4_direct_IO,
4066         .migratepage            = buffer_migrate_page,
4067         .is_partially_uptodate  = block_is_partially_uptodate,
4068         .error_remove_page      = generic_error_remove_page,
4069 };
4070
4071 static const struct address_space_operations ext4_writeback_aops = {
4072         .readpage               = ext4_readpage,
4073         .readpages              = ext4_readpages,
4074         .writepage              = ext4_writepage,
4075         .sync_page              = block_sync_page,
4076         .write_begin            = ext4_write_begin,
4077         .write_end              = ext4_writeback_write_end,
4078         .bmap                   = ext4_bmap,
4079         .invalidatepage         = ext4_invalidatepage,
4080         .releasepage            = ext4_releasepage,
4081         .direct_IO              = ext4_direct_IO,
4082         .migratepage            = buffer_migrate_page,
4083         .is_partially_uptodate  = block_is_partially_uptodate,
4084         .error_remove_page      = generic_error_remove_page,
4085 };
4086
4087 static const struct address_space_operations ext4_journalled_aops = {
4088         .readpage               = ext4_readpage,
4089         .readpages              = ext4_readpages,
4090         .writepage              = ext4_writepage,
4091         .sync_page              = block_sync_page,
4092         .write_begin            = ext4_write_begin,
4093         .write_end              = ext4_journalled_write_end,
4094         .set_page_dirty         = ext4_journalled_set_page_dirty,
4095         .bmap                   = ext4_bmap,
4096         .invalidatepage         = ext4_invalidatepage,
4097         .releasepage            = ext4_releasepage,
4098         .is_partially_uptodate  = block_is_partially_uptodate,
4099         .error_remove_page      = generic_error_remove_page,
4100 };
4101
4102 static const struct address_space_operations ext4_da_aops = {
4103         .readpage               = ext4_readpage,
4104         .readpages              = ext4_readpages,
4105         .writepage              = ext4_writepage,
4106         .writepages             = ext4_da_writepages,
4107         .sync_page              = block_sync_page,
4108         .write_begin            = ext4_da_write_begin,
4109         .write_end              = ext4_da_write_end,
4110         .bmap                   = ext4_bmap,
4111         .invalidatepage         = ext4_da_invalidatepage,
4112         .releasepage            = ext4_releasepage,
4113         .direct_IO              = ext4_direct_IO,
4114         .migratepage            = buffer_migrate_page,
4115         .is_partially_uptodate  = block_is_partially_uptodate,
4116         .error_remove_page      = generic_error_remove_page,
4117 };
4118
4119 void ext4_set_aops(struct inode *inode)
4120 {
4121         if (ext4_should_order_data(inode) &&
4122                 test_opt(inode->i_sb, DELALLOC))
4123                 inode->i_mapping->a_ops = &ext4_da_aops;
4124         else if (ext4_should_order_data(inode))
4125                 inode->i_mapping->a_ops = &ext4_ordered_aops;
4126         else if (ext4_should_writeback_data(inode) &&
4127                  test_opt(inode->i_sb, DELALLOC))
4128                 inode->i_mapping->a_ops = &ext4_da_aops;
4129         else if (ext4_should_writeback_data(inode))
4130                 inode->i_mapping->a_ops = &ext4_writeback_aops;
4131         else
4132                 inode->i_mapping->a_ops = &ext4_journalled_aops;
4133 }
4134
4135 /*
4136  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4137  * up to the end of the block which corresponds to `from'.
4138  * This required during truncate. We need to physically zero the tail end
4139  * of that block so it doesn't yield old data if the file is later grown.
4140  */
4141 int ext4_block_truncate_page(handle_t *handle,
4142                 struct address_space *mapping, loff_t from)
4143 {
4144         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
4145         unsigned offset = from & (PAGE_CACHE_SIZE-1);
4146         unsigned blocksize, length, pos;
4147         ext4_lblk_t iblock;
4148         struct inode *inode = mapping->host;
4149         struct buffer_head *bh;
4150         struct page *page;
4151         int err = 0;
4152
4153         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4154                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
4155         if (!page)
4156                 return -EINVAL;
4157
4158         blocksize = inode->i_sb->s_blocksize;
4159         length = blocksize - (offset & (blocksize - 1));
4160         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4161
4162         if (!page_has_buffers(page))
4163                 create_empty_buffers(page, blocksize, 0);
4164
4165         /* Find the buffer that contains "offset" */
4166         bh = page_buffers(page);
4167         pos = blocksize;
4168         while (offset >= pos) {
4169                 bh = bh->b_this_page;
4170                 iblock++;
4171                 pos += blocksize;
4172         }
4173
4174         err = 0;
4175         if (buffer_freed(bh)) {
4176                 BUFFER_TRACE(bh, "freed: skip");
4177                 goto unlock;
4178         }
4179
4180         if (!buffer_mapped(bh)) {
4181                 BUFFER_TRACE(bh, "unmapped");
4182                 ext4_get_block(inode, iblock, bh, 0);
4183                 /* unmapped? It's a hole - nothing to do */
4184                 if (!buffer_mapped(bh)) {
4185                         BUFFER_TRACE(bh, "still unmapped");
4186                         goto unlock;
4187                 }
4188         }
4189
4190         /* Ok, it's mapped. Make sure it's up-to-date */
4191         if (PageUptodate(page))
4192                 set_buffer_uptodate(bh);
4193
4194         if (!buffer_uptodate(bh)) {
4195                 err = -EIO;
4196                 ll_rw_block(READ, 1, &bh);
4197                 wait_on_buffer(bh);
4198                 /* Uhhuh. Read error. Complain and punt. */
4199                 if (!buffer_uptodate(bh))
4200                         goto unlock;
4201         }
4202
4203         if (ext4_should_journal_data(inode)) {
4204                 BUFFER_TRACE(bh, "get write access");
4205                 err = ext4_journal_get_write_access(handle, bh);
4206                 if (err)
4207                         goto unlock;
4208         }
4209
4210         zero_user(page, offset, length);
4211
4212         BUFFER_TRACE(bh, "zeroed end of block");
4213
4214         err = 0;
4215         if (ext4_should_journal_data(inode)) {
4216                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4217         } else {
4218                 if (ext4_should_order_data(inode))
4219                         err = ext4_jbd2_file_inode(handle, inode);
4220                 mark_buffer_dirty(bh);
4221         }
4222
4223 unlock:
4224         unlock_page(page);
4225         page_cache_release(page);
4226         return err;
4227 }
4228
4229 /*
4230  * Probably it should be a library function... search for first non-zero word
4231  * or memcmp with zero_page, whatever is better for particular architecture.
4232  * Linus?
4233  */
4234 static inline int all_zeroes(__le32 *p, __le32 *q)
4235 {
4236         while (p < q)
4237                 if (*p++)
4238                         return 0;
4239         return 1;
4240 }
4241
4242 /**
4243  *      ext4_find_shared - find the indirect blocks for partial truncation.
4244  *      @inode:   inode in question
4245  *      @depth:   depth of the affected branch
4246  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4247  *      @chain:   place to store the pointers to partial indirect blocks
4248  *      @top:     place to the (detached) top of branch
4249  *
4250  *      This is a helper function used by ext4_truncate().
4251  *
4252  *      When we do truncate() we may have to clean the ends of several
4253  *      indirect blocks but leave the blocks themselves alive. Block is
4254  *      partially truncated if some data below the new i_size is refered
4255  *      from it (and it is on the path to the first completely truncated
4256  *      data block, indeed).  We have to free the top of that path along
4257  *      with everything to the right of the path. Since no allocation
4258  *      past the truncation point is possible until ext4_truncate()
4259  *      finishes, we may safely do the latter, but top of branch may
4260  *      require special attention - pageout below the truncation point
4261  *      might try to populate it.
4262  *
4263  *      We atomically detach the top of branch from the tree, store the
4264  *      block number of its root in *@top, pointers to buffer_heads of
4265  *      partially truncated blocks - in @chain[].bh and pointers to
4266  *      their last elements that should not be removed - in
4267  *      @chain[].p. Return value is the pointer to last filled element
4268  *      of @chain.
4269  *
4270  *      The work left to caller to do the actual freeing of subtrees:
4271  *              a) free the subtree starting from *@top
4272  *              b) free the subtrees whose roots are stored in
4273  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4274  *              c) free the subtrees growing from the inode past the @chain[0].
4275  *                      (no partially truncated stuff there).  */
4276
4277 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4278                                   ext4_lblk_t offsets[4], Indirect chain[4],
4279                                   __le32 *top)
4280 {
4281         Indirect *partial, *p;
4282         int k, err;
4283
4284         *top = 0;
4285         /* Make k index the deepest non-null offset + 1 */
4286         for (k = depth; k > 1 && !offsets[k-1]; k--)
4287                 ;
4288         partial = ext4_get_branch(inode, k, offsets, chain, &err);
4289         /* Writer: pointers */
4290         if (!partial)
4291                 partial = chain + k-1;
4292         /*
4293          * If the branch acquired continuation since we've looked at it -
4294          * fine, it should all survive and (new) top doesn't belong to us.
4295          */
4296         if (!partial->key && *partial->p)
4297                 /* Writer: end */
4298                 goto no_top;
4299         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4300                 ;
4301         /*
4302          * OK, we've found the last block that must survive. The rest of our
4303          * branch should be detached before unlocking. However, if that rest
4304          * of branch is all ours and does not grow immediately from the inode
4305          * it's easier to cheat and just decrement partial->p.
4306          */
4307         if (p == chain + k - 1 && p > chain) {
4308                 p->p--;
4309         } else {
4310                 *top = *p->p;
4311                 /* Nope, don't do this in ext4.  Must leave the tree intact */
4312 #if 0
4313                 *p->p = 0;
4314 #endif
4315         }
4316         /* Writer: end */
4317
4318         while (partial > p) {
4319                 brelse(partial->bh);
4320                 partial--;
4321         }
4322 no_top:
4323         return partial;
4324 }
4325
4326 /*
4327  * Zero a number of block pointers in either an inode or an indirect block.
4328  * If we restart the transaction we must again get write access to the
4329  * indirect block for further modification.
4330  *
4331  * We release `count' blocks on disk, but (last - first) may be greater
4332  * than `count' because there can be holes in there.
4333  */
4334 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4335                              struct buffer_head *bh,
4336                              ext4_fsblk_t block_to_free,
4337                              unsigned long count, __le32 *first,
4338                              __le32 *last)
4339 {
4340         __le32 *p;
4341         int     flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4342
4343         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4344                 flags |= EXT4_FREE_BLOCKS_METADATA;
4345
4346         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4347                                    count)) {
4348                 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4349                                  "blocks %llu len %lu",
4350                                  (unsigned long long) block_to_free, count);
4351                 return 1;
4352         }
4353
4354         if (try_to_extend_transaction(handle, inode)) {
4355                 if (bh) {
4356                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4357                         ext4_handle_dirty_metadata(handle, inode, bh);
4358                 }
4359                 ext4_mark_inode_dirty(handle, inode);
4360                 ext4_truncate_restart_trans(handle, inode,
4361                                             blocks_for_truncate(inode));
4362                 if (bh) {
4363                         BUFFER_TRACE(bh, "retaking write access");
4364                         ext4_journal_get_write_access(handle, bh);
4365                 }
4366         }
4367
4368         for (p = first; p < last; p++)
4369                 *p = 0;
4370
4371         ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4372         return 0;
4373 }
4374
4375 /**
4376  * ext4_free_data - free a list of data blocks
4377  * @handle:     handle for this transaction
4378  * @inode:      inode we are dealing with
4379  * @this_bh:    indirect buffer_head which contains *@first and *@last
4380  * @first:      array of block numbers
4381  * @last:       points immediately past the end of array
4382  *
4383  * We are freeing all blocks refered from that array (numbers are stored as
4384  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4385  *
4386  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4387  * blocks are contiguous then releasing them at one time will only affect one
4388  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4389  * actually use a lot of journal space.
4390  *
4391  * @this_bh will be %NULL if @first and @last point into the inode's direct
4392  * block pointers.
4393  */
4394 static void ext4_free_data(handle_t *handle, struct inode *inode,
4395                            struct buffer_head *this_bh,
4396                            __le32 *first, __le32 *last)
4397 {
4398         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4399         unsigned long count = 0;            /* Number of blocks in the run */
4400         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
4401                                                corresponding to
4402                                                block_to_free */
4403         ext4_fsblk_t nr;                    /* Current block # */
4404         __le32 *p;                          /* Pointer into inode/ind
4405                                                for current block */
4406         int err;
4407
4408         if (this_bh) {                          /* For indirect block */
4409                 BUFFER_TRACE(this_bh, "get_write_access");
4410                 err = ext4_journal_get_write_access(handle, this_bh);
4411                 /* Important: if we can't update the indirect pointers
4412                  * to the blocks, we can't free them. */
4413                 if (err)
4414                         return;
4415         }
4416
4417         for (p = first; p < last; p++) {
4418                 nr = le32_to_cpu(*p);
4419                 if (nr) {
4420                         /* accumulate blocks to free if they're contiguous */
4421                         if (count == 0) {
4422                                 block_to_free = nr;
4423                                 block_to_free_p = p;
4424                                 count = 1;
4425                         } else if (nr == block_to_free + count) {
4426                                 count++;
4427                         } else {
4428                                 if (ext4_clear_blocks(handle, inode, this_bh,
4429                                                       block_to_free, count,
4430                                                       block_to_free_p, p))
4431                                         break;
4432                                 block_to_free = nr;
4433                                 block_to_free_p = p;
4434                                 count = 1;
4435                         }
4436                 }
4437         }
4438
4439         if (count > 0)
4440                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4441                                   count, block_to_free_p, p);
4442
4443         if (this_bh) {
4444                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4445
4446                 /*
4447                  * The buffer head should have an attached journal head at this
4448                  * point. However, if the data is corrupted and an indirect
4449                  * block pointed to itself, it would have been detached when
4450                  * the block was cleared. Check for this instead of OOPSing.
4451                  */
4452                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4453                         ext4_handle_dirty_metadata(handle, inode, this_bh);
4454                 else
4455                         EXT4_ERROR_INODE(inode,
4456                                          "circular indirect block detected at "
4457                                          "block %llu",
4458                                 (unsigned long long) this_bh->b_blocknr);
4459         }
4460 }
4461
4462 /**
4463  *      ext4_free_branches - free an array of branches
4464  *      @handle: JBD handle for this transaction
4465  *      @inode: inode we are dealing with
4466  *      @parent_bh: the buffer_head which contains *@first and *@last
4467  *      @first: array of block numbers
4468  *      @last:  pointer immediately past the end of array
4469  *      @depth: depth of the branches to free
4470  *
4471  *      We are freeing all blocks refered from these branches (numbers are
4472  *      stored as little-endian 32-bit) and updating @inode->i_blocks
4473  *      appropriately.
4474  */
4475 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4476                                struct buffer_head *parent_bh,
4477                                __le32 *first, __le32 *last, int depth)
4478 {
4479         ext4_fsblk_t nr;
4480         __le32 *p;
4481
4482         if (ext4_handle_is_aborted(handle))
4483                 return;
4484
4485         if (depth--) {
4486                 struct buffer_head *bh;
4487                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4488                 p = last;
4489                 while (--p >= first) {
4490                         nr = le32_to_cpu(*p);
4491                         if (!nr)
4492                                 continue;               /* A hole */
4493
4494                         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4495                                                    nr, 1)) {
4496                                 EXT4_ERROR_INODE(inode,
4497                                                  "invalid indirect mapped "
4498                                                  "block %lu (level %d)",
4499                                                  (unsigned long) nr, depth);
4500                                 break;
4501                         }
4502
4503                         /* Go read the buffer for the next level down */
4504                         bh = sb_bread(inode->i_sb, nr);
4505
4506                         /*
4507                          * A read failure? Report error and clear slot
4508                          * (should be rare).
4509                          */
4510                         if (!bh) {
4511                                 EXT4_ERROR_INODE_BLOCK(inode, nr,
4512                                                        "Read failure");
4513                                 continue;
4514                         }
4515
4516                         /* This zaps the entire block.  Bottom up. */
4517                         BUFFER_TRACE(bh, "free child branches");
4518                         ext4_free_branches(handle, inode, bh,
4519                                         (__le32 *) bh->b_data,
4520                                         (__le32 *) bh->b_data + addr_per_block,
4521                                         depth);
4522
4523                         /*
4524                          * Everything below this this pointer has been
4525                          * released.  Now let this top-of-subtree go.
4526                          *
4527                          * We want the freeing of this indirect block to be
4528                          * atomic in the journal with the updating of the
4529                          * bitmap block which owns it.  So make some room in
4530                          * the journal.
4531                          *
4532                          * We zero the parent pointer *after* freeing its
4533                          * pointee in the bitmaps, so if extend_transaction()
4534                          * for some reason fails to put the bitmap changes and
4535                          * the release into the same transaction, recovery
4536                          * will merely complain about releasing a free block,
4537                          * rather than leaking blocks.
4538                          */
4539                         if (ext4_handle_is_aborted(handle))
4540                                 return;
4541                         if (try_to_extend_transaction(handle, inode)) {
4542                                 ext4_mark_inode_dirty(handle, inode);
4543                                 ext4_truncate_restart_trans(handle, inode,
4544                                             blocks_for_truncate(inode));
4545                         }
4546
4547                         /*
4548                          * The forget flag here is critical because if
4549                          * we are journaling (and not doing data
4550                          * journaling), we have to make sure a revoke
4551                          * record is written to prevent the journal
4552                          * replay from overwriting the (former)
4553                          * indirect block if it gets reallocated as a
4554                          * data block.  This must happen in the same
4555                          * transaction where the data blocks are
4556                          * actually freed.
4557                          */
4558                         ext4_free_blocks(handle, inode, 0, nr, 1,
4559                                          EXT4_FREE_BLOCKS_METADATA|
4560                                          EXT4_FREE_BLOCKS_FORGET);
4561
4562                         if (parent_bh) {
4563                                 /*
4564                                  * The block which we have just freed is
4565                                  * pointed to by an indirect block: journal it
4566                                  */
4567                                 BUFFER_TRACE(parent_bh, "get_write_access");
4568                                 if (!ext4_journal_get_write_access(handle,
4569                                                                    parent_bh)){
4570                                         *p = 0;
4571                                         BUFFER_TRACE(parent_bh,
4572                                         "call ext4_handle_dirty_metadata");
4573                                         ext4_handle_dirty_metadata(handle,
4574                                                                    inode,
4575                                                                    parent_bh);
4576                                 }
4577                         }
4578                 }
4579         } else {
4580                 /* We have reached the bottom of the tree. */
4581                 BUFFER_TRACE(parent_bh, "free data blocks");
4582                 ext4_free_data(handle, inode, parent_bh, first, last);
4583         }
4584 }
4585
4586 int ext4_can_truncate(struct inode *inode)
4587 {
4588         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4589                 return 0;
4590         if (S_ISREG(inode->i_mode))
4591                 return 1;
4592         if (S_ISDIR(inode->i_mode))
4593                 return 1;
4594         if (S_ISLNK(inode->i_mode))
4595                 return !ext4_inode_is_fast_symlink(inode);
4596         return 0;
4597 }
4598
4599 /*
4600  * ext4_truncate()
4601  *
4602  * We block out ext4_get_block() block instantiations across the entire
4603  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4604  * simultaneously on behalf of the same inode.
4605  *
4606  * As we work through the truncate and commmit bits of it to the journal there
4607  * is one core, guiding principle: the file's tree must always be consistent on
4608  * disk.  We must be able to restart the truncate after a crash.
4609  *
4610  * The file's tree may be transiently inconsistent in memory (although it
4611  * probably isn't), but whenever we close off and commit a journal transaction,
4612  * the contents of (the filesystem + the journal) must be consistent and
4613  * restartable.  It's pretty simple, really: bottom up, right to left (although
4614  * left-to-right works OK too).
4615  *
4616  * Note that at recovery time, journal replay occurs *before* the restart of
4617  * truncate against the orphan inode list.
4618  *
4619  * The committed inode has the new, desired i_size (which is the same as
4620  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4621  * that this inode's truncate did not complete and it will again call
4622  * ext4_truncate() to have another go.  So there will be instantiated blocks
4623  * to the right of the truncation point in a crashed ext4 filesystem.  But
4624  * that's fine - as long as they are linked from the inode, the post-crash
4625  * ext4_truncate() run will find them and release them.
4626  */
4627 void ext4_truncate(struct inode *inode)
4628 {
4629         handle_t *handle;
4630         struct ext4_inode_info *ei = EXT4_I(inode);
4631         __le32 *i_data = ei->i_data;
4632         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4633         struct address_space *mapping = inode->i_mapping;
4634         ext4_lblk_t offsets[4];
4635         Indirect chain[4];
4636         Indirect *partial;
4637         __le32 nr = 0;
4638         int n;
4639         ext4_lblk_t last_block;
4640         unsigned blocksize = inode->i_sb->s_blocksize;
4641
4642         if (!ext4_can_truncate(inode))
4643                 return;
4644
4645         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4646
4647         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4648                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4649
4650         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4651                 ext4_ext_truncate(inode);
4652                 return;
4653         }
4654
4655         handle = start_transaction(inode);
4656         if (IS_ERR(handle))
4657                 return;         /* AKPM: return what? */
4658
4659         last_block = (inode->i_size + blocksize-1)
4660                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4661
4662         if (inode->i_size & (blocksize - 1))
4663                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4664                         goto out_stop;
4665
4666         n = ext4_block_to_path(inode, last_block, offsets, NULL);
4667         if (n == 0)
4668                 goto out_stop;  /* error */
4669
4670         /*
4671          * OK.  This truncate is going to happen.  We add the inode to the
4672          * orphan list, so that if this truncate spans multiple transactions,
4673          * and we crash, we will resume the truncate when the filesystem
4674          * recovers.  It also marks the inode dirty, to catch the new size.
4675          *
4676          * Implication: the file must always be in a sane, consistent
4677          * truncatable state while each transaction commits.
4678          */
4679         if (ext4_orphan_add(handle, inode))
4680                 goto out_stop;
4681
4682         /*
4683          * From here we block out all ext4_get_block() callers who want to
4684          * modify the block allocation tree.
4685          */
4686         down_write(&ei->i_data_sem);
4687
4688         ext4_discard_preallocations(inode);
4689
4690         /*
4691          * The orphan list entry will now protect us from any crash which
4692          * occurs before the truncate completes, so it is now safe to propagate
4693          * the new, shorter inode size (held for now in i_size) into the
4694          * on-disk inode. We do this via i_disksize, which is the value which
4695          * ext4 *really* writes onto the disk inode.
4696          */
4697         ei->i_disksize = inode->i_size;
4698
4699         if (n == 1) {           /* direct blocks */
4700                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4701                                i_data + EXT4_NDIR_BLOCKS);
4702                 goto do_indirects;
4703         }
4704
4705         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4706         /* Kill the top of shared branch (not detached) */
4707         if (nr) {
4708                 if (partial == chain) {
4709                         /* Shared branch grows from the inode */
4710                         ext4_free_branches(handle, inode, NULL,
4711                                            &nr, &nr+1, (chain+n-1) - partial);
4712                         *partial->p = 0;
4713                         /*
4714                          * We mark the inode dirty prior to restart,
4715                          * and prior to stop.  No need for it here.
4716                          */
4717                 } else {
4718                         /* Shared branch grows from an indirect block */
4719                         BUFFER_TRACE(partial->bh, "get_write_access");
4720                         ext4_free_branches(handle, inode, partial->bh,
4721                                         partial->p,
4722                                         partial->p+1, (chain+n-1) - partial);
4723                 }
4724         }
4725         /* Clear the ends of indirect blocks on the shared branch */
4726         while (partial > chain) {
4727                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4728                                    (__le32*)partial->bh->b_data+addr_per_block,
4729                                    (chain+n-1) - partial);
4730                 BUFFER_TRACE(partial->bh, "call brelse");
4731                 brelse(partial->bh);
4732                 partial--;
4733         }
4734 do_indirects:
4735         /* Kill the remaining (whole) subtrees */
4736         switch (offsets[0]) {
4737         default:
4738                 nr = i_data[EXT4_IND_BLOCK];
4739                 if (nr) {
4740                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4741                         i_data[EXT4_IND_BLOCK] = 0;
4742                 }
4743         case EXT4_IND_BLOCK:
4744                 nr = i_data[EXT4_DIND_BLOCK];
4745                 if (nr) {
4746                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4747                         i_data[EXT4_DIND_BLOCK] = 0;
4748                 }
4749         case EXT4_DIND_BLOCK:
4750                 nr = i_data[EXT4_TIND_BLOCK];
4751                 if (nr) {
4752                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4753                         i_data[EXT4_TIND_BLOCK] = 0;
4754                 }
4755         case EXT4_TIND_BLOCK:
4756                 ;
4757         }
4758
4759         up_write(&ei->i_data_sem);
4760         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4761         ext4_mark_inode_dirty(handle, inode);
4762
4763         /*
4764          * In a multi-transaction truncate, we only make the final transaction
4765          * synchronous
4766          */
4767         if (IS_SYNC(inode))
4768                 ext4_handle_sync(handle);
4769 out_stop:
4770         /*
4771          * If this was a simple ftruncate(), and the file will remain alive
4772          * then we need to clear up the orphan record which we created above.
4773          * However, if this was a real unlink then we were called by
4774          * ext4_delete_inode(), and we allow that function to clean up the
4775          * orphan info for us.
4776          */
4777         if (inode->i_nlink)
4778                 ext4_orphan_del(handle, inode);
4779
4780         ext4_journal_stop(handle);
4781 }
4782
4783 /*
4784  * ext4_get_inode_loc returns with an extra refcount against the inode's
4785  * underlying buffer_head on success. If 'in_mem' is true, we have all
4786  * data in memory that is needed to recreate the on-disk version of this
4787  * inode.
4788  */
4789 static int __ext4_get_inode_loc(struct inode *inode,
4790                                 struct ext4_iloc *iloc, int in_mem)
4791 {
4792         struct ext4_group_desc  *gdp;
4793         struct buffer_head      *bh;
4794         struct super_block      *sb = inode->i_sb;
4795         ext4_fsblk_t            block;
4796         int                     inodes_per_block, inode_offset;
4797
4798         iloc->bh = NULL;
4799         if (!ext4_valid_inum(sb, inode->i_ino))
4800                 return -EIO;
4801
4802         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4803         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4804         if (!gdp)
4805                 return -EIO;
4806
4807         /*
4808          * Figure out the offset within the block group inode table
4809          */
4810         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4811         inode_offset = ((inode->i_ino - 1) %
4812                         EXT4_INODES_PER_GROUP(sb));
4813         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4814         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4815
4816         bh = sb_getblk(sb, block);
4817         if (!bh) {
4818                 EXT4_ERROR_INODE_BLOCK(inode, block,
4819                                        "unable to read itable block");
4820                 return -EIO;
4821         }
4822         if (!buffer_uptodate(bh)) {
4823                 lock_buffer(bh);
4824
4825                 /*
4826                  * If the buffer has the write error flag, we have failed
4827                  * to write out another inode in the same block.  In this
4828                  * case, we don't have to read the block because we may
4829                  * read the old inode data successfully.
4830                  */
4831                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4832                         set_buffer_uptodate(bh);
4833
4834                 if (buffer_uptodate(bh)) {
4835                         /* someone brought it uptodate while we waited */
4836                         unlock_buffer(bh);
4837                         goto has_buffer;
4838                 }
4839
4840                 /*
4841                  * If we have all information of the inode in memory and this
4842                  * is the only valid inode in the block, we need not read the
4843                  * block.
4844                  */
4845                 if (in_mem) {
4846                         struct buffer_head *bitmap_bh;
4847                         int i, start;
4848
4849                         start = inode_offset & ~(inodes_per_block - 1);
4850
4851                         /* Is the inode bitmap in cache? */
4852                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4853                         if (!bitmap_bh)
4854                                 goto make_io;
4855
4856                         /*
4857                          * If the inode bitmap isn't in cache then the
4858                          * optimisation may end up performing two reads instead
4859                          * of one, so skip it.
4860                          */
4861                         if (!buffer_uptodate(bitmap_bh)) {
4862                                 brelse(bitmap_bh);
4863                                 goto make_io;
4864                         }
4865                         for (i = start; i < start + inodes_per_block; i++) {
4866                                 if (i == inode_offset)
4867                                         continue;
4868                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4869                                         break;
4870                         }
4871                         brelse(bitmap_bh);
4872                         if (i == start + inodes_per_block) {
4873                                 /* all other inodes are free, so skip I/O */
4874                                 memset(bh->b_data, 0, bh->b_size);
4875                                 set_buffer_uptodate(bh);
4876                                 unlock_buffer(bh);
4877                                 goto has_buffer;
4878                         }
4879                 }
4880
4881 make_io:
4882                 /*
4883                  * If we need to do any I/O, try to pre-readahead extra
4884                  * blocks from the inode table.
4885                  */
4886                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4887                         ext4_fsblk_t b, end, table;
4888                         unsigned num;
4889
4890                         table = ext4_inode_table(sb, gdp);
4891                         /* s_inode_readahead_blks is always a power of 2 */
4892                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4893                         if (table > b)
4894                                 b = table;
4895                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4896                         num = EXT4_INODES_PER_GROUP(sb);
4897                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4898                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4899                                 num -= ext4_itable_unused_count(sb, gdp);
4900                         table += num / inodes_per_block;
4901                         if (end > table)
4902                                 end = table;
4903                         while (b <= end)
4904                                 sb_breadahead(sb, b++);
4905                 }
4906
4907                 /*
4908                  * There are other valid inodes in the buffer, this inode
4909                  * has in-inode xattrs, or we don't have this inode in memory.
4910                  * Read the block from disk.
4911                  */
4912                 get_bh(bh);
4913                 bh->b_end_io = end_buffer_read_sync;
4914                 submit_bh(READ_META, bh);
4915                 wait_on_buffer(bh);
4916                 if (!buffer_uptodate(bh)) {
4917                         EXT4_ERROR_INODE_BLOCK(inode, block,
4918                                                "unable to read itable block");
4919                         brelse(bh);
4920                         return -EIO;
4921                 }
4922         }
4923 has_buffer:
4924         iloc->bh = bh;
4925         return 0;
4926 }
4927
4928 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4929 {
4930         /* We have all inode data except xattrs in memory here. */
4931         return __ext4_get_inode_loc(inode, iloc,
4932                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4933 }
4934
4935 void ext4_set_inode_flags(struct inode *inode)
4936 {
4937         unsigned int flags = EXT4_I(inode)->i_flags;
4938
4939         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4940         if (flags & EXT4_SYNC_FL)
4941                 inode->i_flags |= S_SYNC;
4942         if (flags & EXT4_APPEND_FL)
4943                 inode->i_flags |= S_APPEND;
4944         if (flags & EXT4_IMMUTABLE_FL)
4945                 inode->i_flags |= S_IMMUTABLE;
4946         if (flags & EXT4_NOATIME_FL)
4947                 inode->i_flags |= S_NOATIME;
4948         if (flags & EXT4_DIRSYNC_FL)
4949                 inode->i_flags |= S_DIRSYNC;
4950 }
4951
4952 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4953 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4954 {
4955         unsigned int vfs_fl;
4956         unsigned long old_fl, new_fl;
4957
4958         do {
4959                 vfs_fl = ei->vfs_inode.i_flags;
4960                 old_fl = ei->i_flags;
4961                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4962                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4963                                 EXT4_DIRSYNC_FL);
4964                 if (vfs_fl & S_SYNC)
4965                         new_fl |= EXT4_SYNC_FL;
4966                 if (vfs_fl & S_APPEND)
4967                         new_fl |= EXT4_APPEND_FL;
4968                 if (vfs_fl & S_IMMUTABLE)
4969                         new_fl |= EXT4_IMMUTABLE_FL;
4970                 if (vfs_fl & S_NOATIME)
4971                         new_fl |= EXT4_NOATIME_FL;
4972                 if (vfs_fl & S_DIRSYNC)
4973                         new_fl |= EXT4_DIRSYNC_FL;
4974         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4975 }
4976
4977 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4978                                   struct ext4_inode_info *ei)
4979 {
4980         blkcnt_t i_blocks ;
4981         struct inode *inode = &(ei->vfs_inode);
4982         struct super_block *sb = inode->i_sb;
4983
4984         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4985                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4986                 /* we are using combined 48 bit field */
4987                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4988                                         le32_to_cpu(raw_inode->i_blocks_lo);
4989                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4990                         /* i_blocks represent file system block size */
4991                         return i_blocks  << (inode->i_blkbits - 9);
4992                 } else {
4993                         return i_blocks;
4994                 }
4995         } else {
4996                 return le32_to_cpu(raw_inode->i_blocks_lo);
4997         }
4998 }
4999
5000 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
5001 {
5002         struct ext4_iloc iloc;
5003         struct ext4_inode *raw_inode;
5004         struct ext4_inode_info *ei;
5005         struct inode *inode;
5006         journal_t *journal = EXT4_SB(sb)->s_journal;
5007         long ret;
5008         int block;
5009
5010         inode = iget_locked(sb, ino);
5011         if (!inode)
5012                 return ERR_PTR(-ENOMEM);
5013         if (!(inode->i_state & I_NEW))
5014                 return inode;
5015
5016         ei = EXT4_I(inode);
5017         iloc.bh = 0;
5018
5019         ret = __ext4_get_inode_loc(inode, &iloc, 0);
5020         if (ret < 0)
5021                 goto bad_inode;
5022         raw_inode = ext4_raw_inode(&iloc);
5023         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
5024         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
5025         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
5026         if (!(test_opt(inode->i_sb, NO_UID32))) {
5027                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
5028                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
5029         }
5030         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
5031
5032         ei->i_state_flags = 0;
5033         ei->i_dir_start_lookup = 0;
5034         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5035         /* We now have enough fields to check if the inode was active or not.
5036          * This is needed because nfsd might try to access dead inodes
5037          * the test is that same one that e2fsck uses
5038          * NeilBrown 1999oct15
5039          */
5040         if (inode->i_nlink == 0) {
5041                 if (inode->i_mode == 0 ||
5042                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
5043                         /* this inode is deleted */
5044                         ret = -ESTALE;
5045                         goto bad_inode;
5046                 }
5047                 /* The only unlinked inodes we let through here have
5048                  * valid i_mode and are being read by the orphan
5049                  * recovery code: that's fine, we're about to complete
5050                  * the process of deleting those. */
5051         }
5052         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5053         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5054         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5055         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
5056                 ei->i_file_acl |=
5057                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5058         inode->i_size = ext4_isize(raw_inode);
5059         ei->i_disksize = inode->i_size;
5060 #ifdef CONFIG_QUOTA
5061         ei->i_reserved_quota = 0;
5062 #endif
5063         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5064         ei->i_block_group = iloc.block_group;
5065         ei->i_last_alloc_group = ~0;
5066         /*
5067          * NOTE! The in-memory inode i_data array is in little-endian order
5068          * even on big-endian machines: we do NOT byteswap the block numbers!
5069          */
5070         for (block = 0; block < EXT4_N_BLOCKS; block++)
5071                 ei->i_data[block] = raw_inode->i_block[block];
5072         INIT_LIST_HEAD(&ei->i_orphan);
5073
5074         /*
5075          * Set transaction id's of transactions that have to be committed
5076          * to finish f[data]sync. We set them to currently running transaction
5077          * as we cannot be sure that the inode or some of its metadata isn't
5078          * part of the transaction - the inode could have been reclaimed and
5079          * now it is reread from disk.
5080          */
5081         if (journal) {
5082                 transaction_t *transaction;
5083                 tid_t tid;
5084
5085                 read_lock(&journal->j_state_lock);
5086                 if (journal->j_running_transaction)
5087                         transaction = journal->j_running_transaction;
5088                 else
5089                         transaction = journal->j_committing_transaction;
5090                 if (transaction)
5091                         tid = transaction->t_tid;
5092                 else
5093                         tid = journal->j_commit_sequence;
5094                 read_unlock(&journal->j_state_lock);
5095                 ei->i_sync_tid = tid;
5096                 ei->i_datasync_tid = tid;
5097         }
5098
5099         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5100                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5101                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5102                     EXT4_INODE_SIZE(inode->i_sb)) {
5103                         ret = -EIO;
5104                         goto bad_inode;
5105                 }
5106                 if (ei->i_extra_isize == 0) {
5107                         /* The extra space is currently unused. Use it. */
5108                         ei->i_extra_isize = sizeof(struct ext4_inode) -
5109                                             EXT4_GOOD_OLD_INODE_SIZE;
5110                 } else {
5111                         __le32 *magic = (void *)raw_inode +
5112                                         EXT4_GOOD_OLD_INODE_SIZE +
5113                                         ei->i_extra_isize;
5114                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5115                                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5116                 }
5117         } else
5118                 ei->i_extra_isize = 0;
5119
5120         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5121         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5122         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5123         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5124
5125         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5126         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5127                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5128                         inode->i_version |=
5129                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5130         }
5131
5132         ret = 0;
5133         if (ei->i_file_acl &&
5134             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5135                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
5136                                  ei->i_file_acl);
5137                 ret = -EIO;
5138                 goto bad_inode;
5139         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5140                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5141                     (S_ISLNK(inode->i_mode) &&
5142                      !ext4_inode_is_fast_symlink(inode)))
5143                         /* Validate extent which is part of inode */
5144                         ret = ext4_ext_check_inode(inode);
5145         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5146                    (S_ISLNK(inode->i_mode) &&
5147                     !ext4_inode_is_fast_symlink(inode))) {
5148                 /* Validate block references which are part of inode */
5149                 ret = ext4_check_inode_blockref(inode);
5150         }
5151         if (ret)
5152                 goto bad_inode;
5153
5154         if (S_ISREG(inode->i_mode)) {
5155                 inode->i_op = &ext4_file_inode_operations;
5156                 inode->i_fop = &ext4_file_operations;
5157                 ext4_set_aops(inode);
5158         } else if (S_ISDIR(inode->i_mode)) {
5159                 inode->i_op = &ext4_dir_inode_operations;
5160                 inode->i_fop = &ext4_dir_operations;
5161         } else if (S_ISLNK(inode->i_mode)) {
5162                 if (ext4_inode_is_fast_symlink(inode)) {
5163                         inode->i_op = &ext4_fast_symlink_inode_operations;
5164                         nd_terminate_link(ei->i_data, inode->i_size,
5165                                 sizeof(ei->i_data) - 1);
5166                 } else {
5167                         inode->i_op = &ext4_symlink_inode_operations;
5168                         ext4_set_aops(inode);
5169                 }
5170         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5171               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5172                 inode->i_op = &ext4_special_inode_operations;
5173                 if (raw_inode->i_block[0])
5174                         init_special_inode(inode, inode->i_mode,
5175                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5176                 else
5177                         init_special_inode(inode, inode->i_mode,
5178                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5179         } else {
5180                 ret = -EIO;
5181                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5182                 goto bad_inode;
5183         }
5184         brelse(iloc.bh);
5185         ext4_set_inode_flags(inode);
5186         unlock_new_inode(inode);
5187         return inode;
5188
5189 bad_inode:
5190         brelse(iloc.bh);
5191         iget_failed(inode);
5192         return ERR_PTR(ret);
5193 }
5194
5195 static int ext4_inode_blocks_set(handle_t *handle,
5196                                 struct ext4_inode *raw_inode,
5197                                 struct ext4_inode_info *ei)
5198 {
5199         struct inode *inode = &(ei->vfs_inode);
5200         u64 i_blocks = inode->i_blocks;
5201         struct super_block *sb = inode->i_sb;
5202
5203         if (i_blocks <= ~0U) {
5204                 /*
5205                  * i_blocks can be represnted in a 32 bit variable
5206                  * as multiple of 512 bytes
5207                  */
5208                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5209                 raw_inode->i_blocks_high = 0;
5210                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5211                 return 0;
5212         }
5213         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5214                 return -EFBIG;
5215
5216         if (i_blocks <= 0xffffffffffffULL) {
5217                 /*
5218                  * i_blocks can be represented in a 48 bit variable
5219                  * as multiple of 512 bytes
5220                  */
5221                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5222                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5223                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5224         } else {
5225                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5226                 /* i_block is stored in file system block size */
5227                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5228                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5229                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5230         }
5231         return 0;
5232 }
5233
5234 /*
5235  * Post the struct inode info into an on-disk inode location in the
5236  * buffer-cache.  This gobbles the caller's reference to the
5237  * buffer_head in the inode location struct.
5238  *
5239  * The caller must have write access to iloc->bh.
5240  */
5241 static int ext4_do_update_inode(handle_t *handle,
5242                                 struct inode *inode,
5243                                 struct ext4_iloc *iloc)
5244 {
5245         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5246         struct ext4_inode_info *ei = EXT4_I(inode);
5247         struct buffer_head *bh = iloc->bh;
5248         int err = 0, rc, block;
5249
5250         /* For fields not not tracking in the in-memory inode,
5251          * initialise them to zero for new inodes. */
5252         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5253                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5254
5255         ext4_get_inode_flags(ei);
5256         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5257         if (!(test_opt(inode->i_sb, NO_UID32))) {
5258                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5259                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5260 /*
5261  * Fix up interoperability with old kernels. Otherwise, old inodes get
5262  * re-used with the upper 16 bits of the uid/gid intact
5263  */
5264                 if (!ei->i_dtime) {
5265                         raw_inode->i_uid_high =
5266                                 cpu_to_le16(high_16_bits(inode->i_uid));
5267                         raw_inode->i_gid_high =
5268                                 cpu_to_le16(high_16_bits(inode->i_gid));
5269                 } else {
5270                         raw_inode->i_uid_high = 0;
5271                         raw_inode->i_gid_high = 0;
5272                 }
5273         } else {
5274                 raw_inode->i_uid_low =
5275                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
5276                 raw_inode->i_gid_low =
5277                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
5278                 raw_inode->i_uid_high = 0;
5279                 raw_inode->i_gid_high = 0;
5280         }
5281         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5282
5283         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5284         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5285         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5286         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5287
5288         if (ext4_inode_blocks_set(handle, raw_inode, ei))
5289                 goto out_brelse;
5290         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5291         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5292         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5293             cpu_to_le32(EXT4_OS_HURD))
5294                 raw_inode->i_file_acl_high =
5295                         cpu_to_le16(ei->i_file_acl >> 32);
5296         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5297         ext4_isize_set(raw_inode, ei->i_disksize);
5298         if (ei->i_disksize > 0x7fffffffULL) {
5299                 struct super_block *sb = inode->i_sb;
5300                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5301                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5302                                 EXT4_SB(sb)->s_es->s_rev_level ==
5303                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5304                         /* If this is the first large file
5305                          * created, add a flag to the superblock.
5306                          */
5307                         err = ext4_journal_get_write_access(handle,
5308                                         EXT4_SB(sb)->s_sbh);
5309                         if (err)
5310                                 goto out_brelse;
5311                         ext4_update_dynamic_rev(sb);
5312                         EXT4_SET_RO_COMPAT_FEATURE(sb,
5313                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5314                         sb->s_dirt = 1;
5315                         ext4_handle_sync(handle);
5316                         err = ext4_handle_dirty_metadata(handle, NULL,
5317                                         EXT4_SB(sb)->s_sbh);
5318                 }
5319         }
5320         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5321         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5322                 if (old_valid_dev(inode->i_rdev)) {
5323                         raw_inode->i_block[0] =
5324                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5325                         raw_inode->i_block[1] = 0;
5326                 } else {
5327                         raw_inode->i_block[0] = 0;
5328                         raw_inode->i_block[1] =
5329                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5330                         raw_inode->i_block[2] = 0;
5331                 }
5332         } else
5333                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5334                         raw_inode->i_block[block] = ei->i_data[block];
5335
5336         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5337         if (ei->i_extra_isize) {
5338                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5339                         raw_inode->i_version_hi =
5340                         cpu_to_le32(inode->i_version >> 32);
5341                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5342         }
5343
5344         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5345         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5346         if (!err)
5347                 err = rc;
5348         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5349
5350         ext4_update_inode_fsync_trans(handle, inode, 0);
5351 out_brelse:
5352         brelse(bh);
5353         ext4_std_error(inode->i_sb, err);
5354         return err;
5355 }
5356
5357 /*
5358  * ext4_write_inode()
5359  *
5360  * We are called from a few places:
5361  *
5362  * - Within generic_file_write() for O_SYNC files.
5363  *   Here, there will be no transaction running. We wait for any running
5364  *   trasnaction to commit.
5365  *
5366  * - Within sys_sync(), kupdate and such.
5367  *   We wait on commit, if tol to.
5368  *
5369  * - Within prune_icache() (PF_MEMALLOC == true)
5370  *   Here we simply return.  We can't afford to block kswapd on the
5371  *   journal commit.
5372  *
5373  * In all cases it is actually safe for us to return without doing anything,
5374  * because the inode has been copied into a raw inode buffer in
5375  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5376  * knfsd.
5377  *
5378  * Note that we are absolutely dependent upon all inode dirtiers doing the
5379  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5380  * which we are interested.
5381  *
5382  * It would be a bug for them to not do this.  The code:
5383  *
5384  *      mark_inode_dirty(inode)
5385  *      stuff();
5386  *      inode->i_size = expr;
5387  *
5388  * is in error because a kswapd-driven write_inode() could occur while
5389  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5390  * will no longer be on the superblock's dirty inode list.
5391  */
5392 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5393 {
5394         int err;
5395
5396         if (current->flags & PF_MEMALLOC)
5397                 return 0;
5398
5399         if (EXT4_SB(inode->i_sb)->s_journal) {
5400                 if (ext4_journal_current_handle()) {
5401                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5402                         dump_stack();
5403                         return -EIO;
5404                 }
5405
5406                 if (wbc->sync_mode != WB_SYNC_ALL)
5407                         return 0;
5408
5409                 err = ext4_force_commit(inode->i_sb);
5410         } else {
5411                 struct ext4_iloc iloc;
5412
5413                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5414                 if (err)
5415                         return err;
5416                 if (wbc->sync_mode == WB_SYNC_ALL)
5417                         sync_dirty_buffer(iloc.bh);
5418                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5419                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5420                                          "IO error syncing inode");
5421                         err = -EIO;
5422                 }
5423                 brelse(iloc.bh);
5424         }
5425         return err;
5426 }
5427
5428 /*
5429  * ext4_setattr()
5430  *
5431  * Called from notify_change.
5432  *
5433  * We want to trap VFS attempts to truncate the file as soon as
5434  * possible.  In particular, we want to make sure that when the VFS
5435  * shrinks i_size, we put the inode on the orphan list and modify
5436  * i_disksize immediately, so that during the subsequent flushing of
5437  * dirty pages and freeing of disk blocks, we can guarantee that any
5438  * commit will leave the blocks being flushed in an unused state on
5439  * disk.  (On recovery, the inode will get truncated and the blocks will
5440  * be freed, so we have a strong guarantee that no future commit will
5441  * leave these blocks visible to the user.)
5442  *
5443  * Another thing we have to assure is that if we are in ordered mode
5444  * and inode is still attached to the committing transaction, we must
5445  * we start writeout of all the dirty pages which are being truncated.
5446  * This way we are sure that all the data written in the previous
5447  * transaction are already on disk (truncate waits for pages under
5448  * writeback).
5449  *
5450  * Called with inode->i_mutex down.
5451  */
5452 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5453 {
5454         struct inode *inode = dentry->d_inode;
5455         int error, rc = 0;
5456         const unsigned int ia_valid = attr->ia_valid;
5457
5458         error = inode_change_ok(inode, attr);
5459         if (error)
5460                 return error;
5461
5462         if (is_quota_modification(inode, attr))
5463                 dquot_initialize(inode);
5464         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5465                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5466                 handle_t *handle;
5467
5468                 /* (user+group)*(old+new) structure, inode write (sb,
5469                  * inode block, ? - but truncate inode update has it) */
5470                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5471                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5472                 if (IS_ERR(handle)) {
5473                         error = PTR_ERR(handle);
5474                         goto err_out;
5475                 }
5476                 error = dquot_transfer(inode, attr);
5477                 if (error) {
5478                         ext4_journal_stop(handle);
5479                         return error;
5480                 }
5481                 /* Update corresponding info in inode so that everything is in
5482                  * one transaction */
5483                 if (attr->ia_valid & ATTR_UID)
5484                         inode->i_uid = attr->ia_uid;
5485                 if (attr->ia_valid & ATTR_GID)
5486                         inode->i_gid = attr->ia_gid;
5487                 error = ext4_mark_inode_dirty(handle, inode);
5488                 ext4_journal_stop(handle);
5489         }
5490
5491         if (attr->ia_valid & ATTR_SIZE) {
5492                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5493                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5494
5495                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5496                                 return -EFBIG;
5497                 }
5498         }
5499
5500         if (S_ISREG(inode->i_mode) &&
5501             attr->ia_valid & ATTR_SIZE &&
5502             (attr->ia_size < inode->i_size ||
5503              (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5504                 handle_t *handle;
5505
5506                 handle = ext4_journal_start(inode, 3);
5507                 if (IS_ERR(handle)) {
5508                         error = PTR_ERR(handle);
5509                         goto err_out;
5510                 }
5511
5512                 error = ext4_orphan_add(handle, inode);
5513                 EXT4_I(inode)->i_disksize = attr->ia_size;
5514                 rc = ext4_mark_inode_dirty(handle, inode);
5515                 if (!error)
5516                         error = rc;
5517                 ext4_journal_stop(handle);
5518
5519                 if (ext4_should_order_data(inode)) {
5520                         error = ext4_begin_ordered_truncate(inode,
5521                                                             attr->ia_size);
5522                         if (error) {
5523                                 /* Do as much error cleanup as possible */
5524                                 handle = ext4_journal_start(inode, 3);
5525                                 if (IS_ERR(handle)) {
5526                                         ext4_orphan_del(NULL, inode);
5527                                         goto err_out;
5528                                 }
5529                                 ext4_orphan_del(handle, inode);
5530                                 ext4_journal_stop(handle);
5531                                 goto err_out;
5532                         }
5533                 }
5534                 /* ext4_truncate will clear the flag */
5535                 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5536                         ext4_truncate(inode);
5537         }
5538
5539         rc = inode_setattr(inode, attr);
5540
5541         /* If inode_setattr's call to ext4_truncate failed to get a
5542          * transaction handle at all, we need to clean up the in-core
5543          * orphan list manually. */
5544         if (inode->i_nlink)
5545                 ext4_orphan_del(NULL, inode);
5546
5547         if (!rc && (ia_valid & ATTR_MODE))
5548                 rc = ext4_acl_chmod(inode);
5549
5550 err_out:
5551         ext4_std_error(inode->i_sb, error);
5552         if (!error)
5553                 error = rc;
5554         return error;
5555 }
5556
5557 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5558                  struct kstat *stat)
5559 {
5560         struct inode *inode;
5561         unsigned long delalloc_blocks;
5562
5563         inode = dentry->d_inode;
5564         generic_fillattr(inode, stat);
5565
5566         /*
5567          * We can't update i_blocks if the block allocation is delayed
5568          * otherwise in the case of system crash before the real block
5569          * allocation is done, we will have i_blocks inconsistent with
5570          * on-disk file blocks.
5571          * We always keep i_blocks updated together with real
5572          * allocation. But to not confuse with user, stat
5573          * will return the blocks that include the delayed allocation
5574          * blocks for this file.
5575          */
5576         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5577         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5578         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5579
5580         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5581         return 0;
5582 }
5583
5584 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5585                                       int chunk)
5586 {
5587         int indirects;
5588
5589         /* if nrblocks are contiguous */
5590         if (chunk) {
5591                 /*
5592                  * With N contiguous data blocks, it need at most
5593                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5594                  * 2 dindirect blocks
5595                  * 1 tindirect block
5596                  */
5597                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5598                 return indirects + 3;
5599         }
5600         /*
5601          * if nrblocks are not contiguous, worse case, each block touch
5602          * a indirect block, and each indirect block touch a double indirect
5603          * block, plus a triple indirect block
5604          */
5605         indirects = nrblocks * 2 + 1;
5606         return indirects;
5607 }
5608
5609 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5610 {
5611         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5612                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5613         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5614 }
5615
5616 /*
5617  * Account for index blocks, block groups bitmaps and block group
5618  * descriptor blocks if modify datablocks and index blocks
5619  * worse case, the indexs blocks spread over different block groups
5620  *
5621  * If datablocks are discontiguous, they are possible to spread over
5622  * different block groups too. If they are contiuguous, with flexbg,
5623  * they could still across block group boundary.
5624  *
5625  * Also account for superblock, inode, quota and xattr blocks
5626  */
5627 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5628 {
5629         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5630         int gdpblocks;
5631         int idxblocks;
5632         int ret = 0;
5633
5634         /*
5635          * How many index blocks need to touch to modify nrblocks?
5636          * The "Chunk" flag indicating whether the nrblocks is
5637          * physically contiguous on disk
5638          *
5639          * For Direct IO and fallocate, they calls get_block to allocate
5640          * one single extent at a time, so they could set the "Chunk" flag
5641          */
5642         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5643
5644         ret = idxblocks;
5645
5646         /*
5647          * Now let's see how many group bitmaps and group descriptors need
5648          * to account
5649          */
5650         groups = idxblocks;
5651         if (chunk)
5652                 groups += 1;
5653         else
5654                 groups += nrblocks;
5655
5656         gdpblocks = groups;
5657         if (groups > ngroups)
5658                 groups = ngroups;
5659         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5660                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5661
5662         /* bitmaps and block group descriptor blocks */
5663         ret += groups + gdpblocks;
5664
5665         /* Blocks for super block, inode, quota and xattr blocks */
5666         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5667
5668         return ret;
5669 }
5670
5671 /*
5672  * Calulate the total number of credits to reserve to fit
5673  * the modification of a single pages into a single transaction,
5674  * which may include multiple chunks of block allocations.
5675  *
5676  * This could be called via ext4_write_begin()
5677  *
5678  * We need to consider the worse case, when
5679  * one new block per extent.
5680  */
5681 int ext4_writepage_trans_blocks(struct inode *inode)
5682 {
5683         int bpp = ext4_journal_blocks_per_page(inode);
5684         int ret;
5685
5686         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5687
5688         /* Account for data blocks for journalled mode */
5689         if (ext4_should_journal_data(inode))
5690                 ret += bpp;
5691         return ret;
5692 }
5693
5694 /*
5695  * Calculate the journal credits for a chunk of data modification.
5696  *
5697  * This is called from DIO, fallocate or whoever calling
5698  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5699  *
5700  * journal buffers for data blocks are not included here, as DIO
5701  * and fallocate do no need to journal data buffers.
5702  */
5703 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5704 {
5705         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5706 }
5707
5708 /*
5709  * The caller must have previously called ext4_reserve_inode_write().
5710  * Give this, we know that the caller already has write access to iloc->bh.
5711  */
5712 int ext4_mark_iloc_dirty(handle_t *handle,
5713                          struct inode *inode, struct ext4_iloc *iloc)
5714 {
5715         int err = 0;
5716
5717         if (test_opt(inode->i_sb, I_VERSION))
5718                 inode_inc_iversion(inode);
5719
5720         /* the do_update_inode consumes one bh->b_count */
5721         get_bh(iloc->bh);
5722
5723         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5724         err = ext4_do_update_inode(handle, inode, iloc);
5725         put_bh(iloc->bh);
5726         return err;
5727 }
5728
5729 /*
5730  * On success, We end up with an outstanding reference count against
5731  * iloc->bh.  This _must_ be cleaned up later.
5732  */
5733
5734 int
5735 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5736                          struct ext4_iloc *iloc)
5737 {
5738         int err;
5739
5740         err = ext4_get_inode_loc(inode, iloc);
5741         if (!err) {
5742                 BUFFER_TRACE(iloc->bh, "get_write_access");
5743                 err = ext4_journal_get_write_access(handle, iloc->bh);
5744                 if (err) {
5745                         brelse(iloc->bh);
5746                         iloc->bh = NULL;
5747                 }
5748         }
5749         ext4_std_error(inode->i_sb, err);
5750         return err;
5751 }
5752
5753 /*
5754  * Expand an inode by new_extra_isize bytes.
5755  * Returns 0 on success or negative error number on failure.
5756  */
5757 static int ext4_expand_extra_isize(struct inode *inode,
5758                                    unsigned int new_extra_isize,
5759                                    struct ext4_iloc iloc,
5760                                    handle_t *handle)
5761 {
5762         struct ext4_inode *raw_inode;
5763         struct ext4_xattr_ibody_header *header;
5764
5765         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5766                 return 0;
5767
5768         raw_inode = ext4_raw_inode(&iloc);
5769
5770         header = IHDR(inode, raw_inode);
5771
5772         /* No extended attributes present */
5773         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5774             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5775                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5776                         new_extra_isize);
5777                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5778                 return 0;
5779         }
5780
5781         /* try to expand with EAs present */
5782         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5783                                           raw_inode, handle);
5784 }
5785
5786 /*
5787  * What we do here is to mark the in-core inode as clean with respect to inode
5788  * dirtiness (it may still be data-dirty).
5789  * This means that the in-core inode may be reaped by prune_icache
5790  * without having to perform any I/O.  This is a very good thing,
5791  * because *any* task may call prune_icache - even ones which
5792  * have a transaction open against a different journal.
5793  *
5794  * Is this cheating?  Not really.  Sure, we haven't written the
5795  * inode out, but prune_icache isn't a user-visible syncing function.
5796  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5797  * we start and wait on commits.
5798  *
5799  * Is this efficient/effective?  Well, we're being nice to the system
5800  * by cleaning up our inodes proactively so they can be reaped
5801  * without I/O.  But we are potentially leaving up to five seconds'
5802  * worth of inodes floating about which prune_icache wants us to
5803  * write out.  One way to fix that would be to get prune_icache()
5804  * to do a write_super() to free up some memory.  It has the desired
5805  * effect.
5806  */
5807 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5808 {
5809         struct ext4_iloc iloc;
5810         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5811         static unsigned int mnt_count;
5812         int err, ret;
5813
5814         might_sleep();
5815         err = ext4_reserve_inode_write(handle, inode, &iloc);
5816         if (ext4_handle_valid(handle) &&
5817             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5818             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5819                 /*
5820                  * We need extra buffer credits since we may write into EA block
5821                  * with this same handle. If journal_extend fails, then it will
5822                  * only result in a minor loss of functionality for that inode.
5823                  * If this is felt to be critical, then e2fsck should be run to
5824                  * force a large enough s_min_extra_isize.
5825                  */
5826                 if ((jbd2_journal_extend(handle,
5827                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5828                         ret = ext4_expand_extra_isize(inode,
5829                                                       sbi->s_want_extra_isize,
5830                                                       iloc, handle);
5831                         if (ret) {
5832                                 ext4_set_inode_state(inode,
5833                                                      EXT4_STATE_NO_EXPAND);
5834                                 if (mnt_count !=
5835                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5836                                         ext4_warning(inode->i_sb,
5837                                         "Unable to expand inode %lu. Delete"
5838                                         " some EAs or run e2fsck.",
5839                                         inode->i_ino);
5840                                         mnt_count =
5841                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5842                                 }
5843                         }
5844                 }
5845         }
5846         if (!err)
5847                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5848         return err;
5849 }
5850
5851 /*
5852  * ext4_dirty_inode() is called from __mark_inode_dirty()
5853  *
5854  * We're really interested in the case where a file is being extended.
5855  * i_size has been changed by generic_commit_write() and we thus need
5856  * to include the updated inode in the current transaction.
5857  *
5858  * Also, dquot_alloc_block() will always dirty the inode when blocks
5859  * are allocated to the file.
5860  *
5861  * If the inode is marked synchronous, we don't honour that here - doing
5862  * so would cause a commit on atime updates, which we don't bother doing.
5863  * We handle synchronous inodes at the highest possible level.
5864  */
5865 void ext4_dirty_inode(struct inode *inode)
5866 {
5867         handle_t *handle;
5868
5869         handle = ext4_journal_start(inode, 2);
5870         if (IS_ERR(handle))
5871                 goto out;
5872
5873         ext4_mark_inode_dirty(handle, inode);
5874
5875         ext4_journal_stop(handle);
5876 out:
5877         return;
5878 }
5879
5880 #if 0
5881 /*
5882  * Bind an inode's backing buffer_head into this transaction, to prevent
5883  * it from being flushed to disk early.  Unlike
5884  * ext4_reserve_inode_write, this leaves behind no bh reference and
5885  * returns no iloc structure, so the caller needs to repeat the iloc
5886  * lookup to mark the inode dirty later.
5887  */
5888 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5889 {
5890         struct ext4_iloc iloc;
5891
5892         int err = 0;
5893         if (handle) {
5894                 err = ext4_get_inode_loc(inode, &iloc);
5895                 if (!err) {
5896                         BUFFER_TRACE(iloc.bh, "get_write_access");
5897                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5898                         if (!err)
5899                                 err = ext4_handle_dirty_metadata(handle,
5900                                                                  NULL,
5901                                                                  iloc.bh);
5902                         brelse(iloc.bh);
5903                 }
5904         }
5905         ext4_std_error(inode->i_sb, err);
5906         return err;
5907 }
5908 #endif
5909
5910 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5911 {
5912         journal_t *journal;
5913         handle_t *handle;
5914         int err;
5915
5916         /*
5917          * We have to be very careful here: changing a data block's
5918          * journaling status dynamically is dangerous.  If we write a
5919          * data block to the journal, change the status and then delete
5920          * that block, we risk forgetting to revoke the old log record
5921          * from the journal and so a subsequent replay can corrupt data.
5922          * So, first we make sure that the journal is empty and that
5923          * nobody is changing anything.
5924          */
5925
5926         journal = EXT4_JOURNAL(inode);
5927         if (!journal)
5928                 return 0;
5929         if (is_journal_aborted(journal))
5930                 return -EROFS;
5931
5932         jbd2_journal_lock_updates(journal);
5933         jbd2_journal_flush(journal);
5934
5935         /*
5936          * OK, there are no updates running now, and all cached data is
5937          * synced to disk.  We are now in a completely consistent state
5938          * which doesn't have anything in the journal, and we know that
5939          * no filesystem updates are running, so it is safe to modify
5940          * the inode's in-core data-journaling state flag now.
5941          */
5942
5943         if (val)
5944                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5945         else
5946                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5947         ext4_set_aops(inode);
5948
5949         jbd2_journal_unlock_updates(journal);
5950
5951         /* Finally we can mark the inode as dirty. */
5952
5953         handle = ext4_journal_start(inode, 1);
5954         if (IS_ERR(handle))
5955                 return PTR_ERR(handle);
5956
5957         err = ext4_mark_inode_dirty(handle, inode);
5958         ext4_handle_sync(handle);
5959         ext4_journal_stop(handle);
5960         ext4_std_error(inode->i_sb, err);
5961
5962         return err;
5963 }
5964
5965 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5966 {
5967         return !buffer_mapped(bh);
5968 }
5969
5970 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5971 {
5972         struct page *page = vmf->page;
5973         loff_t size;
5974         unsigned long len;
5975         int ret = -EINVAL;
5976         void *fsdata;
5977         struct file *file = vma->vm_file;
5978         struct inode *inode = file->f_path.dentry->d_inode;
5979         struct address_space *mapping = inode->i_mapping;
5980
5981         /*
5982          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5983          * get i_mutex because we are already holding mmap_sem.
5984          */
5985         down_read(&inode->i_alloc_sem);
5986         size = i_size_read(inode);
5987         if (page->mapping != mapping || size <= page_offset(page)
5988             || !PageUptodate(page)) {
5989                 /* page got truncated from under us? */
5990                 goto out_unlock;
5991         }
5992         ret = 0;
5993         if (PageMappedToDisk(page))
5994                 goto out_unlock;
5995
5996         if (page->index == size >> PAGE_CACHE_SHIFT)
5997                 len = size & ~PAGE_CACHE_MASK;
5998         else
5999                 len = PAGE_CACHE_SIZE;
6000
6001         lock_page(page);
6002         /*
6003          * return if we have all the buffers mapped. This avoid
6004          * the need to call write_begin/write_end which does a
6005          * journal_start/journal_stop which can block and take
6006          * long time
6007          */
6008         if (page_has_buffers(page)) {
6009                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
6010                                         ext4_bh_unmapped)) {
6011                         unlock_page(page);
6012                         goto out_unlock;
6013                 }
6014         }
6015         unlock_page(page);
6016         /*
6017          * OK, we need to fill the hole... Do write_begin write_end
6018          * to do block allocation/reservation.We are not holding
6019          * inode.i__mutex here. That allow * parallel write_begin,
6020          * write_end call. lock_page prevent this from happening
6021          * on the same page though
6022          */
6023         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
6024                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
6025         if (ret < 0)
6026                 goto out_unlock;
6027         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
6028                         len, len, page, fsdata);
6029         if (ret < 0)
6030                 goto out_unlock;
6031         ret = 0;
6032 out_unlock:
6033         if (ret)
6034                 ret = VM_FAULT_SIGBUS;
6035         up_read(&inode->i_alloc_sem);
6036         return ret;
6037 }