Merge branch 'stable-3.2' into pandora-3.2
[pandora-kernel.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/module.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/jbd2.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static inline int ext4_begin_ordered_truncate(struct inode *inode,
53                                               loff_t new_size)
54 {
55         trace_ext4_begin_ordered_truncate(inode, new_size);
56         /*
57          * If jinode is zero, then we never opened the file for
58          * writing, so there's no need to call
59          * jbd2_journal_begin_ordered_truncate() since there's no
60          * outstanding writes we need to flush.
61          */
62         if (!EXT4_I(inode)->jinode)
63                 return 0;
64         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
65                                                    EXT4_I(inode)->jinode,
66                                                    new_size);
67 }
68
69 static void ext4_invalidatepage(struct page *page, unsigned long offset);
70 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
71                                    struct buffer_head *bh_result, int create);
72 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
73 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
74 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
75 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
76
77 /*
78  * Test whether an inode is a fast symlink.
79  */
80 static int ext4_inode_is_fast_symlink(struct inode *inode)
81 {
82         int ea_blocks = EXT4_I(inode)->i_file_acl ?
83                 (inode->i_sb->s_blocksize >> 9) : 0;
84
85         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
86 }
87
88 /*
89  * Restart the transaction associated with *handle.  This does a commit,
90  * so before we call here everything must be consistently dirtied against
91  * this transaction.
92  */
93 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
94                                  int nblocks)
95 {
96         int ret;
97
98         /*
99          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
100          * moment, get_block can be called only for blocks inside i_size since
101          * page cache has been already dropped and writes are blocked by
102          * i_mutex. So we can safely drop the i_data_sem here.
103          */
104         BUG_ON(EXT4_JOURNAL(inode) == NULL);
105         jbd_debug(2, "restarting handle %p\n", handle);
106         up_write(&EXT4_I(inode)->i_data_sem);
107         ret = ext4_journal_restart(handle, nblocks);
108         down_write(&EXT4_I(inode)->i_data_sem);
109         ext4_discard_preallocations(inode);
110
111         return ret;
112 }
113
114 /*
115  * Called at the last iput() if i_nlink is zero.
116  */
117 void ext4_evict_inode(struct inode *inode)
118 {
119         handle_t *handle;
120         int err;
121
122         trace_ext4_evict_inode(inode);
123
124         ext4_ioend_wait(inode);
125
126         if (inode->i_nlink) {
127                 /*
128                  * When journalling data dirty buffers are tracked only in the
129                  * journal. So although mm thinks everything is clean and
130                  * ready for reaping the inode might still have some pages to
131                  * write in the running transaction or waiting to be
132                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
133                  * (via truncate_inode_pages()) to discard these buffers can
134                  * cause data loss. Also even if we did not discard these
135                  * buffers, we would have no way to find them after the inode
136                  * is reaped and thus user could see stale data if he tries to
137                  * read them before the transaction is checkpointed. So be
138                  * careful and force everything to disk here... We use
139                  * ei->i_datasync_tid to store the newest transaction
140                  * containing inode's data.
141                  *
142                  * Note that directories do not have this problem because they
143                  * don't use page cache.
144                  */
145                 if (inode->i_ino != EXT4_JOURNAL_INO &&
146                     ext4_should_journal_data(inode) &&
147                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
148                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
149                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
150
151                         jbd2_complete_transaction(journal, commit_tid);
152                         filemap_write_and_wait(&inode->i_data);
153                 }
154                 truncate_inode_pages(&inode->i_data, 0);
155                 goto no_delete;
156         }
157
158         if (is_bad_inode(inode))
159                 goto no_delete;
160         dquot_initialize(inode);
161
162         if (ext4_should_order_data(inode))
163                 ext4_begin_ordered_truncate(inode, 0);
164         truncate_inode_pages(&inode->i_data, 0);
165
166
167         handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
168         if (IS_ERR(handle)) {
169                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
170                 /*
171                  * If we're going to skip the normal cleanup, we still need to
172                  * make sure that the in-core orphan linked list is properly
173                  * cleaned up.
174                  */
175                 ext4_orphan_del(NULL, inode);
176                 goto no_delete;
177         }
178
179         if (IS_SYNC(inode))
180                 ext4_handle_sync(handle);
181         inode->i_size = 0;
182         err = ext4_mark_inode_dirty(handle, inode);
183         if (err) {
184                 ext4_warning(inode->i_sb,
185                              "couldn't mark inode dirty (err %d)", err);
186                 goto stop_handle;
187         }
188         if (inode->i_blocks)
189                 ext4_truncate(inode);
190
191         /*
192          * ext4_ext_truncate() doesn't reserve any slop when it
193          * restarts journal transactions; therefore there may not be
194          * enough credits left in the handle to remove the inode from
195          * the orphan list and set the dtime field.
196          */
197         if (!ext4_handle_has_enough_credits(handle, 3)) {
198                 err = ext4_journal_extend(handle, 3);
199                 if (err > 0)
200                         err = ext4_journal_restart(handle, 3);
201                 if (err != 0) {
202                         ext4_warning(inode->i_sb,
203                                      "couldn't extend journal (err %d)", err);
204                 stop_handle:
205                         ext4_journal_stop(handle);
206                         ext4_orphan_del(NULL, inode);
207                         goto no_delete;
208                 }
209         }
210
211         /*
212          * Kill off the orphan record which ext4_truncate created.
213          * AKPM: I think this can be inside the above `if'.
214          * Note that ext4_orphan_del() has to be able to cope with the
215          * deletion of a non-existent orphan - this is because we don't
216          * know if ext4_truncate() actually created an orphan record.
217          * (Well, we could do this if we need to, but heck - it works)
218          */
219         ext4_orphan_del(handle, inode);
220         EXT4_I(inode)->i_dtime  = get_seconds();
221
222         /*
223          * One subtle ordering requirement: if anything has gone wrong
224          * (transaction abort, IO errors, whatever), then we can still
225          * do these next steps (the fs will already have been marked as
226          * having errors), but we can't free the inode if the mark_dirty
227          * fails.
228          */
229         if (ext4_mark_inode_dirty(handle, inode))
230                 /* If that failed, just do the required in-core inode clear. */
231                 ext4_clear_inode(inode);
232         else
233                 ext4_free_inode(handle, inode);
234         ext4_journal_stop(handle);
235         return;
236 no_delete:
237         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
238 }
239
240 #ifdef CONFIG_QUOTA
241 qsize_t *ext4_get_reserved_space(struct inode *inode)
242 {
243         return &EXT4_I(inode)->i_reserved_quota;
244 }
245 #endif
246
247 /*
248  * Calculate the number of metadata blocks need to reserve
249  * to allocate a block located at @lblock
250  */
251 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
252 {
253         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
254                 return ext4_ext_calc_metadata_amount(inode, lblock);
255
256         return ext4_ind_calc_metadata_amount(inode, lblock);
257 }
258
259 /*
260  * Called with i_data_sem down, which is important since we can call
261  * ext4_discard_preallocations() from here.
262  */
263 void ext4_da_update_reserve_space(struct inode *inode,
264                                         int used, int quota_claim)
265 {
266         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
267         struct ext4_inode_info *ei = EXT4_I(inode);
268
269         spin_lock(&ei->i_block_reservation_lock);
270         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
271         if (unlikely(used > ei->i_reserved_data_blocks)) {
272                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
273                          "with only %d reserved data blocks\n",
274                          __func__, inode->i_ino, used,
275                          ei->i_reserved_data_blocks);
276                 WARN_ON(1);
277                 used = ei->i_reserved_data_blocks;
278         }
279
280         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
281                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
282                          "with only %d reserved metadata blocks\n", __func__,
283                          inode->i_ino, ei->i_allocated_meta_blocks,
284                          ei->i_reserved_meta_blocks);
285                 WARN_ON(1);
286                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
287         }
288
289         /* Update per-inode reservations */
290         ei->i_reserved_data_blocks -= used;
291         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
292         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
293                            used + ei->i_allocated_meta_blocks);
294         ei->i_allocated_meta_blocks = 0;
295
296         if (ei->i_reserved_data_blocks == 0) {
297                 /*
298                  * We can release all of the reserved metadata blocks
299                  * only when we have written all of the delayed
300                  * allocation blocks.
301                  */
302                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
303                                    ei->i_reserved_meta_blocks);
304                 ei->i_reserved_meta_blocks = 0;
305                 ei->i_da_metadata_calc_len = 0;
306         }
307         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
308
309         /* Update quota subsystem for data blocks */
310         if (quota_claim)
311                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
312         else {
313                 /*
314                  * We did fallocate with an offset that is already delayed
315                  * allocated. So on delayed allocated writeback we should
316                  * not re-claim the quota for fallocated blocks.
317                  */
318                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
319         }
320
321         /*
322          * If we have done all the pending block allocations and if
323          * there aren't any writers on the inode, we can discard the
324          * inode's preallocations.
325          */
326         if ((ei->i_reserved_data_blocks == 0) &&
327             (atomic_read(&inode->i_writecount) == 0))
328                 ext4_discard_preallocations(inode);
329 }
330
331 static int __check_block_validity(struct inode *inode, const char *func,
332                                 unsigned int line,
333                                 struct ext4_map_blocks *map)
334 {
335         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
336                                    map->m_len)) {
337                 ext4_error_inode(inode, func, line, map->m_pblk,
338                                  "lblock %lu mapped to illegal pblock "
339                                  "(length %d)", (unsigned long) map->m_lblk,
340                                  map->m_len);
341                 return -EIO;
342         }
343         return 0;
344 }
345
346 #define check_block_validity(inode, map)        \
347         __check_block_validity((inode), __func__, __LINE__, (map))
348
349 /*
350  * Return the number of contiguous dirty pages in a given inode
351  * starting at page frame idx.
352  */
353 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
354                                     unsigned int max_pages)
355 {
356         struct address_space *mapping = inode->i_mapping;
357         pgoff_t index;
358         struct pagevec pvec;
359         pgoff_t num = 0;
360         int i, nr_pages, done = 0;
361
362         if (max_pages == 0)
363                 return 0;
364         pagevec_init(&pvec, 0);
365         while (!done) {
366                 index = idx;
367                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
368                                               PAGECACHE_TAG_DIRTY,
369                                               (pgoff_t)PAGEVEC_SIZE);
370                 if (nr_pages == 0)
371                         break;
372                 for (i = 0; i < nr_pages; i++) {
373                         struct page *page = pvec.pages[i];
374                         struct buffer_head *bh, *head;
375
376                         lock_page(page);
377                         if (unlikely(page->mapping != mapping) ||
378                             !PageDirty(page) ||
379                             PageWriteback(page) ||
380                             page->index != idx) {
381                                 done = 1;
382                                 unlock_page(page);
383                                 break;
384                         }
385                         if (page_has_buffers(page)) {
386                                 bh = head = page_buffers(page);
387                                 do {
388                                         if (!buffer_delay(bh) &&
389                                             !buffer_unwritten(bh))
390                                                 done = 1;
391                                         bh = bh->b_this_page;
392                                 } while (!done && (bh != head));
393                         }
394                         unlock_page(page);
395                         if (done)
396                                 break;
397                         idx++;
398                         num++;
399                         if (num >= max_pages) {
400                                 done = 1;
401                                 break;
402                         }
403                 }
404                 pagevec_release(&pvec);
405         }
406         return num;
407 }
408
409 /*
410  * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
411  */
412 static void set_buffers_da_mapped(struct inode *inode,
413                                    struct ext4_map_blocks *map)
414 {
415         struct address_space *mapping = inode->i_mapping;
416         struct pagevec pvec;
417         int i, nr_pages;
418         pgoff_t index, end;
419
420         index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
421         end = (map->m_lblk + map->m_len - 1) >>
422                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
423
424         pagevec_init(&pvec, 0);
425         while (index <= end) {
426                 nr_pages = pagevec_lookup(&pvec, mapping, index,
427                                           min(end - index + 1,
428                                               (pgoff_t)PAGEVEC_SIZE));
429                 if (nr_pages == 0)
430                         break;
431                 for (i = 0; i < nr_pages; i++) {
432                         struct page *page = pvec.pages[i];
433                         struct buffer_head *bh, *head;
434
435                         if (unlikely(page->mapping != mapping) ||
436                             !PageDirty(page))
437                                 break;
438
439                         if (page_has_buffers(page)) {
440                                 bh = head = page_buffers(page);
441                                 do {
442                                         set_buffer_da_mapped(bh);
443                                         bh = bh->b_this_page;
444                                 } while (bh != head);
445                         }
446                         index++;
447                 }
448                 pagevec_release(&pvec);
449         }
450 }
451
452 /*
453  * The ext4_map_blocks() function tries to look up the requested blocks,
454  * and returns if the blocks are already mapped.
455  *
456  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
457  * and store the allocated blocks in the result buffer head and mark it
458  * mapped.
459  *
460  * If file type is extents based, it will call ext4_ext_map_blocks(),
461  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
462  * based files
463  *
464  * On success, it returns the number of blocks being mapped or allocate.
465  * if create==0 and the blocks are pre-allocated and uninitialized block,
466  * the result buffer head is unmapped. If the create ==1, it will make sure
467  * the buffer head is mapped.
468  *
469  * It returns 0 if plain look up failed (blocks have not been allocated), in
470  * that case, buffer head is unmapped
471  *
472  * It returns the error in case of allocation failure.
473  */
474 int ext4_map_blocks(handle_t *handle, struct inode *inode,
475                     struct ext4_map_blocks *map, int flags)
476 {
477         int retval;
478
479         map->m_flags = 0;
480         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
481                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
482                   (unsigned long) map->m_lblk);
483
484         /* We can handle the block number less than EXT_MAX_BLOCKS */
485         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
486                 return -EIO;
487
488         /*
489          * Try to see if we can get the block without requesting a new
490          * file system block.
491          */
492         down_read((&EXT4_I(inode)->i_data_sem));
493         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
494                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
495                                              EXT4_GET_BLOCKS_KEEP_SIZE);
496         } else {
497                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
498                                              EXT4_GET_BLOCKS_KEEP_SIZE);
499         }
500         up_read((&EXT4_I(inode)->i_data_sem));
501
502         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
503                 int ret = check_block_validity(inode, map);
504                 if (ret != 0)
505                         return ret;
506         }
507
508         /* If it is only a block(s) look up */
509         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
510                 return retval;
511
512         /*
513          * Returns if the blocks have already allocated
514          *
515          * Note that if blocks have been preallocated
516          * ext4_ext_get_block() returns the create = 0
517          * with buffer head unmapped.
518          */
519         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
520                 return retval;
521
522         /*
523          * When we call get_blocks without the create flag, the
524          * BH_Unwritten flag could have gotten set if the blocks
525          * requested were part of a uninitialized extent.  We need to
526          * clear this flag now that we are committed to convert all or
527          * part of the uninitialized extent to be an initialized
528          * extent.  This is because we need to avoid the combination
529          * of BH_Unwritten and BH_Mapped flags being simultaneously
530          * set on the buffer_head.
531          */
532         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
533
534         /*
535          * New blocks allocate and/or writing to uninitialized extent
536          * will possibly result in updating i_data, so we take
537          * the write lock of i_data_sem, and call get_blocks()
538          * with create == 1 flag.
539          */
540         down_write((&EXT4_I(inode)->i_data_sem));
541
542         /*
543          * if the caller is from delayed allocation writeout path
544          * we have already reserved fs blocks for allocation
545          * let the underlying get_block() function know to
546          * avoid double accounting
547          */
548         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
549                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
550         /*
551          * We need to check for EXT4 here because migrate
552          * could have changed the inode type in between
553          */
554         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
555                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
556         } else {
557                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
558
559                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
560                         /*
561                          * We allocated new blocks which will result in
562                          * i_data's format changing.  Force the migrate
563                          * to fail by clearing migrate flags
564                          */
565                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
566                 }
567
568                 /*
569                  * Update reserved blocks/metadata blocks after successful
570                  * block allocation which had been deferred till now. We don't
571                  * support fallocate for non extent files. So we can update
572                  * reserve space here.
573                  */
574                 if ((retval > 0) &&
575                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
576                         ext4_da_update_reserve_space(inode, retval, 1);
577         }
578         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
579                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
580
581                 /* If we have successfully mapped the delayed allocated blocks,
582                  * set the BH_Da_Mapped bit on them. Its important to do this
583                  * under the protection of i_data_sem.
584                  */
585                 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
586                         set_buffers_da_mapped(inode, map);
587         }
588
589         up_write((&EXT4_I(inode)->i_data_sem));
590         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
591                 int ret = check_block_validity(inode, map);
592                 if (ret != 0)
593                         return ret;
594         }
595         return retval;
596 }
597
598 /*
599  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
600  * we have to be careful as someone else may be manipulating b_state as well.
601  */
602 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
603 {
604         unsigned long old_state;
605         unsigned long new_state;
606
607         flags &= EXT4_MAP_FLAGS;
608
609         /* Dummy buffer_head? Set non-atomically. */
610         if (!bh->b_page) {
611                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
612                 return;
613         }
614         /*
615          * Someone else may be modifying b_state. Be careful! This is ugly but
616          * once we get rid of using bh as a container for mapping information
617          * to pass to / from get_block functions, this can go away.
618          */
619         do {
620                 old_state = ACCESS_ONCE(bh->b_state);
621                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
622         } while (unlikely(
623                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
624 }
625
626 /* Maximum number of blocks we map for direct IO at once. */
627 #define DIO_MAX_BLOCKS 4096
628
629 static int _ext4_get_block(struct inode *inode, sector_t iblock,
630                            struct buffer_head *bh, int flags)
631 {
632         handle_t *handle = ext4_journal_current_handle();
633         struct ext4_map_blocks map;
634         int ret = 0, started = 0;
635         int dio_credits;
636
637         map.m_lblk = iblock;
638         map.m_len = bh->b_size >> inode->i_blkbits;
639
640         if (flags && !handle) {
641                 /* Direct IO write... */
642                 if (map.m_len > DIO_MAX_BLOCKS)
643                         map.m_len = DIO_MAX_BLOCKS;
644                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
645                 handle = ext4_journal_start(inode, dio_credits);
646                 if (IS_ERR(handle)) {
647                         ret = PTR_ERR(handle);
648                         return ret;
649                 }
650                 started = 1;
651         }
652
653         ret = ext4_map_blocks(handle, inode, &map, flags);
654         if (ret > 0) {
655                 map_bh(bh, inode->i_sb, map.m_pblk);
656                 ext4_update_bh_state(bh, map.m_flags);
657                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
658                 ret = 0;
659         }
660         if (started)
661                 ext4_journal_stop(handle);
662         return ret;
663 }
664
665 int ext4_get_block(struct inode *inode, sector_t iblock,
666                    struct buffer_head *bh, int create)
667 {
668         return _ext4_get_block(inode, iblock, bh,
669                                create ? EXT4_GET_BLOCKS_CREATE : 0);
670 }
671
672 /*
673  * `handle' can be NULL if create is zero
674  */
675 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
676                                 ext4_lblk_t block, int create, int *errp)
677 {
678         struct ext4_map_blocks map;
679         struct buffer_head *bh;
680         int fatal = 0, err;
681
682         J_ASSERT(handle != NULL || create == 0);
683
684         map.m_lblk = block;
685         map.m_len = 1;
686         err = ext4_map_blocks(handle, inode, &map,
687                               create ? EXT4_GET_BLOCKS_CREATE : 0);
688
689         if (err < 0)
690                 *errp = err;
691         if (err <= 0)
692                 return NULL;
693         *errp = 0;
694
695         bh = sb_getblk(inode->i_sb, map.m_pblk);
696         if (!bh) {
697                 *errp = -ENOMEM;
698                 return NULL;
699         }
700         if (map.m_flags & EXT4_MAP_NEW) {
701                 J_ASSERT(create != 0);
702                 J_ASSERT(handle != NULL);
703
704                 /*
705                  * Now that we do not always journal data, we should
706                  * keep in mind whether this should always journal the
707                  * new buffer as metadata.  For now, regular file
708                  * writes use ext4_get_block instead, so it's not a
709                  * problem.
710                  */
711                 lock_buffer(bh);
712                 BUFFER_TRACE(bh, "call get_create_access");
713                 fatal = ext4_journal_get_create_access(handle, bh);
714                 if (!fatal && !buffer_uptodate(bh)) {
715                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
716                         set_buffer_uptodate(bh);
717                 }
718                 unlock_buffer(bh);
719                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
720                 err = ext4_handle_dirty_metadata(handle, inode, bh);
721                 if (!fatal)
722                         fatal = err;
723         } else {
724                 BUFFER_TRACE(bh, "not a new buffer");
725         }
726         if (fatal) {
727                 *errp = fatal;
728                 brelse(bh);
729                 bh = NULL;
730         }
731         return bh;
732 }
733
734 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
735                                ext4_lblk_t block, int create, int *err)
736 {
737         struct buffer_head *bh;
738
739         bh = ext4_getblk(handle, inode, block, create, err);
740         if (!bh)
741                 return bh;
742         if (buffer_uptodate(bh))
743                 return bh;
744         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
745         wait_on_buffer(bh);
746         if (buffer_uptodate(bh))
747                 return bh;
748         put_bh(bh);
749         *err = -EIO;
750         return NULL;
751 }
752
753 static int walk_page_buffers(handle_t *handle,
754                              struct buffer_head *head,
755                              unsigned from,
756                              unsigned to,
757                              int *partial,
758                              int (*fn)(handle_t *handle,
759                                        struct buffer_head *bh))
760 {
761         struct buffer_head *bh;
762         unsigned block_start, block_end;
763         unsigned blocksize = head->b_size;
764         int err, ret = 0;
765         struct buffer_head *next;
766
767         for (bh = head, block_start = 0;
768              ret == 0 && (bh != head || !block_start);
769              block_start = block_end, bh = next) {
770                 next = bh->b_this_page;
771                 block_end = block_start + blocksize;
772                 if (block_end <= from || block_start >= to) {
773                         if (partial && !buffer_uptodate(bh))
774                                 *partial = 1;
775                         continue;
776                 }
777                 err = (*fn)(handle, bh);
778                 if (!ret)
779                         ret = err;
780         }
781         return ret;
782 }
783
784 /*
785  * To preserve ordering, it is essential that the hole instantiation and
786  * the data write be encapsulated in a single transaction.  We cannot
787  * close off a transaction and start a new one between the ext4_get_block()
788  * and the commit_write().  So doing the jbd2_journal_start at the start of
789  * prepare_write() is the right place.
790  *
791  * Also, this function can nest inside ext4_writepage() ->
792  * block_write_full_page(). In that case, we *know* that ext4_writepage()
793  * has generated enough buffer credits to do the whole page.  So we won't
794  * block on the journal in that case, which is good, because the caller may
795  * be PF_MEMALLOC.
796  *
797  * By accident, ext4 can be reentered when a transaction is open via
798  * quota file writes.  If we were to commit the transaction while thus
799  * reentered, there can be a deadlock - we would be holding a quota
800  * lock, and the commit would never complete if another thread had a
801  * transaction open and was blocking on the quota lock - a ranking
802  * violation.
803  *
804  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
805  * will _not_ run commit under these circumstances because handle->h_ref
806  * is elevated.  We'll still have enough credits for the tiny quotafile
807  * write.
808  */
809 static int do_journal_get_write_access(handle_t *handle,
810                                        struct buffer_head *bh)
811 {
812         int dirty = buffer_dirty(bh);
813         int ret;
814
815         if (!buffer_mapped(bh) || buffer_freed(bh))
816                 return 0;
817         /*
818          * __block_write_begin() could have dirtied some buffers. Clean
819          * the dirty bit as jbd2_journal_get_write_access() could complain
820          * otherwise about fs integrity issues. Setting of the dirty bit
821          * by __block_write_begin() isn't a real problem here as we clear
822          * the bit before releasing a page lock and thus writeback cannot
823          * ever write the buffer.
824          */
825         if (dirty)
826                 clear_buffer_dirty(bh);
827         ret = ext4_journal_get_write_access(handle, bh);
828         if (!ret && dirty)
829                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
830         return ret;
831 }
832
833 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
834                    struct buffer_head *bh_result, int create);
835 static int ext4_write_begin(struct file *file, struct address_space *mapping,
836                             loff_t pos, unsigned len, unsigned flags,
837                             struct page **pagep, void **fsdata)
838 {
839         struct inode *inode = mapping->host;
840         int ret, needed_blocks;
841         handle_t *handle;
842         int retries = 0;
843         struct page *page;
844         pgoff_t index;
845         unsigned from, to;
846
847         trace_ext4_write_begin(inode, pos, len, flags);
848         /*
849          * Reserve one block more for addition to orphan list in case
850          * we allocate blocks but write fails for some reason
851          */
852         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
853         index = pos >> PAGE_CACHE_SHIFT;
854         from = pos & (PAGE_CACHE_SIZE - 1);
855         to = from + len;
856
857 retry:
858         handle = ext4_journal_start(inode, needed_blocks);
859         if (IS_ERR(handle)) {
860                 ret = PTR_ERR(handle);
861                 goto out;
862         }
863
864         /* We cannot recurse into the filesystem as the transaction is already
865          * started */
866         flags |= AOP_FLAG_NOFS;
867
868         page = grab_cache_page_write_begin(mapping, index, flags);
869         if (!page) {
870                 ext4_journal_stop(handle);
871                 ret = -ENOMEM;
872                 goto out;
873         }
874         *pagep = page;
875
876         if (ext4_should_dioread_nolock(inode))
877                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
878         else
879                 ret = __block_write_begin(page, pos, len, ext4_get_block);
880
881         if (!ret && ext4_should_journal_data(inode)) {
882                 ret = walk_page_buffers(handle, page_buffers(page),
883                                 from, to, NULL, do_journal_get_write_access);
884         }
885
886         if (ret) {
887                 unlock_page(page);
888                 page_cache_release(page);
889                 /*
890                  * __block_write_begin may have instantiated a few blocks
891                  * outside i_size.  Trim these off again. Don't need
892                  * i_size_read because we hold i_mutex.
893                  *
894                  * Add inode to orphan list in case we crash before
895                  * truncate finishes
896                  */
897                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
898                         ext4_orphan_add(handle, inode);
899
900                 ext4_journal_stop(handle);
901                 if (pos + len > inode->i_size) {
902                         ext4_truncate_failed_write(inode);
903                         /*
904                          * If truncate failed early the inode might
905                          * still be on the orphan list; we need to
906                          * make sure the inode is removed from the
907                          * orphan list in that case.
908                          */
909                         if (inode->i_nlink)
910                                 ext4_orphan_del(NULL, inode);
911                 }
912         }
913
914         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
915                 goto retry;
916 out:
917         return ret;
918 }
919
920 /* For write_end() in data=journal mode */
921 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
922 {
923         if (!buffer_mapped(bh) || buffer_freed(bh))
924                 return 0;
925         set_buffer_uptodate(bh);
926         return ext4_handle_dirty_metadata(handle, NULL, bh);
927 }
928
929 static int ext4_generic_write_end(struct file *file,
930                                   struct address_space *mapping,
931                                   loff_t pos, unsigned len, unsigned copied,
932                                   struct page *page, void *fsdata)
933 {
934         int i_size_changed = 0;
935         struct inode *inode = mapping->host;
936         handle_t *handle = ext4_journal_current_handle();
937
938         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
939
940         /*
941          * No need to use i_size_read() here, the i_size
942          * cannot change under us because we hold i_mutex.
943          *
944          * But it's important to update i_size while still holding page lock:
945          * page writeout could otherwise come in and zero beyond i_size.
946          */
947         if (pos + copied > inode->i_size) {
948                 i_size_write(inode, pos + copied);
949                 i_size_changed = 1;
950         }
951
952         if (pos + copied >  EXT4_I(inode)->i_disksize) {
953                 /* We need to mark inode dirty even if
954                  * new_i_size is less that inode->i_size
955                  * bu greater than i_disksize.(hint delalloc)
956                  */
957                 ext4_update_i_disksize(inode, (pos + copied));
958                 i_size_changed = 1;
959         }
960         unlock_page(page);
961         page_cache_release(page);
962
963         /*
964          * Don't mark the inode dirty under page lock. First, it unnecessarily
965          * makes the holding time of page lock longer. Second, it forces lock
966          * ordering of page lock and transaction start for journaling
967          * filesystems.
968          */
969         if (i_size_changed)
970                 ext4_mark_inode_dirty(handle, inode);
971
972         return copied;
973 }
974
975 /*
976  * We need to pick up the new inode size which generic_commit_write gave us
977  * `file' can be NULL - eg, when called from page_symlink().
978  *
979  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
980  * buffers are managed internally.
981  */
982 static int ext4_ordered_write_end(struct file *file,
983                                   struct address_space *mapping,
984                                   loff_t pos, unsigned len, unsigned copied,
985                                   struct page *page, void *fsdata)
986 {
987         handle_t *handle = ext4_journal_current_handle();
988         struct inode *inode = mapping->host;
989         int ret = 0, ret2;
990
991         trace_ext4_ordered_write_end(inode, pos, len, copied);
992         ret = ext4_jbd2_file_inode(handle, inode);
993
994         if (ret == 0) {
995                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
996                                                         page, fsdata);
997                 copied = ret2;
998                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
999                         /* if we have allocated more blocks and copied
1000                          * less. We will have blocks allocated outside
1001                          * inode->i_size. So truncate them
1002                          */
1003                         ext4_orphan_add(handle, inode);
1004                 if (ret2 < 0)
1005                         ret = ret2;
1006         } else {
1007                 unlock_page(page);
1008                 page_cache_release(page);
1009         }
1010
1011         ret2 = ext4_journal_stop(handle);
1012         if (!ret)
1013                 ret = ret2;
1014
1015         if (pos + len > inode->i_size) {
1016                 ext4_truncate_failed_write(inode);
1017                 /*
1018                  * If truncate failed early the inode might still be
1019                  * on the orphan list; we need to make sure the inode
1020                  * is removed from the orphan list in that case.
1021                  */
1022                 if (inode->i_nlink)
1023                         ext4_orphan_del(NULL, inode);
1024         }
1025
1026
1027         return ret ? ret : copied;
1028 }
1029
1030 static int ext4_writeback_write_end(struct file *file,
1031                                     struct address_space *mapping,
1032                                     loff_t pos, unsigned len, unsigned copied,
1033                                     struct page *page, void *fsdata)
1034 {
1035         handle_t *handle = ext4_journal_current_handle();
1036         struct inode *inode = mapping->host;
1037         int ret = 0, ret2;
1038
1039         trace_ext4_writeback_write_end(inode, pos, len, copied);
1040         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1041                                                         page, fsdata);
1042         copied = ret2;
1043         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1044                 /* if we have allocated more blocks and copied
1045                  * less. We will have blocks allocated outside
1046                  * inode->i_size. So truncate them
1047                  */
1048                 ext4_orphan_add(handle, inode);
1049
1050         if (ret2 < 0)
1051                 ret = ret2;
1052
1053         ret2 = ext4_journal_stop(handle);
1054         if (!ret)
1055                 ret = ret2;
1056
1057         if (pos + len > inode->i_size) {
1058                 ext4_truncate_failed_write(inode);
1059                 /*
1060                  * If truncate failed early the inode might still be
1061                  * on the orphan list; we need to make sure the inode
1062                  * is removed from the orphan list in that case.
1063                  */
1064                 if (inode->i_nlink)
1065                         ext4_orphan_del(NULL, inode);
1066         }
1067
1068         return ret ? ret : copied;
1069 }
1070
1071 /*
1072  * This is a private version of page_zero_new_buffers() which doesn't
1073  * set the buffer to be dirty, since in data=journalled mode we need
1074  * to call ext4_handle_dirty_metadata() instead.
1075  */
1076 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1077                                             struct page *page,
1078                                             unsigned from, unsigned to)
1079 {
1080         unsigned int block_start = 0, block_end;
1081         struct buffer_head *head, *bh;
1082
1083         bh = head = page_buffers(page);
1084         do {
1085                 block_end = block_start + bh->b_size;
1086                 if (buffer_new(bh)) {
1087                         if (block_end > from && block_start < to) {
1088                                 if (!PageUptodate(page)) {
1089                                         unsigned start, size;
1090
1091                                         start = max(from, block_start);
1092                                         size = min(to, block_end) - start;
1093
1094                                         zero_user(page, start, size);
1095                                         write_end_fn(handle, bh);
1096                                 }
1097                                 clear_buffer_new(bh);
1098                         }
1099                 }
1100                 block_start = block_end;
1101                 bh = bh->b_this_page;
1102         } while (bh != head);
1103 }
1104
1105 static int ext4_journalled_write_end(struct file *file,
1106                                      struct address_space *mapping,
1107                                      loff_t pos, unsigned len, unsigned copied,
1108                                      struct page *page, void *fsdata)
1109 {
1110         handle_t *handle = ext4_journal_current_handle();
1111         struct inode *inode = mapping->host;
1112         int ret = 0, ret2;
1113         int partial = 0;
1114         unsigned from, to;
1115         loff_t new_i_size;
1116
1117         trace_ext4_journalled_write_end(inode, pos, len, copied);
1118         from = pos & (PAGE_CACHE_SIZE - 1);
1119         to = from + len;
1120
1121         BUG_ON(!ext4_handle_valid(handle));
1122
1123         if (unlikely(copied < len) && !PageUptodate(page)) {
1124                 copied = 0;
1125                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1126         } else {
1127                 if (unlikely(copied < len))
1128                         ext4_journalled_zero_new_buffers(handle, page,
1129                                                          from + copied, to);
1130                 ret = walk_page_buffers(handle, page_buffers(page), from,
1131                                         from + copied, &partial,
1132                                         write_end_fn);
1133                 if (!partial)
1134                         SetPageUptodate(page);
1135         }
1136         new_i_size = pos + copied;
1137         if (new_i_size > inode->i_size)
1138                 i_size_write(inode, pos+copied);
1139         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1140         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1141         if (new_i_size > EXT4_I(inode)->i_disksize) {
1142                 ext4_update_i_disksize(inode, new_i_size);
1143                 ret2 = ext4_mark_inode_dirty(handle, inode);
1144                 if (!ret)
1145                         ret = ret2;
1146         }
1147
1148         unlock_page(page);
1149         page_cache_release(page);
1150         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1151                 /* if we have allocated more blocks and copied
1152                  * less. We will have blocks allocated outside
1153                  * inode->i_size. So truncate them
1154                  */
1155                 ext4_orphan_add(handle, inode);
1156
1157         ret2 = ext4_journal_stop(handle);
1158         if (!ret)
1159                 ret = ret2;
1160         if (pos + len > inode->i_size) {
1161                 ext4_truncate_failed_write(inode);
1162                 /*
1163                  * If truncate failed early the inode might still be
1164                  * on the orphan list; we need to make sure the inode
1165                  * is removed from the orphan list in that case.
1166                  */
1167                 if (inode->i_nlink)
1168                         ext4_orphan_del(NULL, inode);
1169         }
1170
1171         return ret ? ret : copied;
1172 }
1173
1174 /*
1175  * Reserve a single cluster located at lblock
1176  */
1177 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1178 {
1179         int retries = 0;
1180         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1181         struct ext4_inode_info *ei = EXT4_I(inode);
1182         unsigned int md_needed;
1183         int ret;
1184         ext4_lblk_t save_last_lblock;
1185         int save_len;
1186
1187         /*
1188          * We will charge metadata quota at writeout time; this saves
1189          * us from metadata over-estimation, though we may go over by
1190          * a small amount in the end.  Here we just reserve for data.
1191          */
1192         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1193         if (ret)
1194                 return ret;
1195
1196         /*
1197          * recalculate the amount of metadata blocks to reserve
1198          * in order to allocate nrblocks
1199          * worse case is one extent per block
1200          */
1201 repeat:
1202         spin_lock(&ei->i_block_reservation_lock);
1203         /*
1204          * ext4_calc_metadata_amount() has side effects, which we have
1205          * to be prepared undo if we fail to claim space.
1206          */
1207         save_len = ei->i_da_metadata_calc_len;
1208         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1209         md_needed = EXT4_NUM_B2C(sbi,
1210                                  ext4_calc_metadata_amount(inode, lblock));
1211         trace_ext4_da_reserve_space(inode, md_needed);
1212
1213         /*
1214          * We do still charge estimated metadata to the sb though;
1215          * we cannot afford to run out of free blocks.
1216          */
1217         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1218                 ei->i_da_metadata_calc_len = save_len;
1219                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1220                 spin_unlock(&ei->i_block_reservation_lock);
1221                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1222                         yield();
1223                         goto repeat;
1224                 }
1225                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1226                 return -ENOSPC;
1227         }
1228         ei->i_reserved_data_blocks++;
1229         ei->i_reserved_meta_blocks += md_needed;
1230         spin_unlock(&ei->i_block_reservation_lock);
1231
1232         return 0;       /* success */
1233 }
1234
1235 static void ext4_da_release_space(struct inode *inode, int to_free)
1236 {
1237         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1238         struct ext4_inode_info *ei = EXT4_I(inode);
1239
1240         if (!to_free)
1241                 return;         /* Nothing to release, exit */
1242
1243         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1244
1245         trace_ext4_da_release_space(inode, to_free);
1246         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1247                 /*
1248                  * if there aren't enough reserved blocks, then the
1249                  * counter is messed up somewhere.  Since this
1250                  * function is called from invalidate page, it's
1251                  * harmless to return without any action.
1252                  */
1253                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1254                          "ino %lu, to_free %d with only %d reserved "
1255                          "data blocks\n", inode->i_ino, to_free,
1256                          ei->i_reserved_data_blocks);
1257                 WARN_ON(1);
1258                 to_free = ei->i_reserved_data_blocks;
1259         }
1260         ei->i_reserved_data_blocks -= to_free;
1261
1262         if (ei->i_reserved_data_blocks == 0) {
1263                 /*
1264                  * We can release all of the reserved metadata blocks
1265                  * only when we have written all of the delayed
1266                  * allocation blocks.
1267                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1268                  * i_reserved_data_blocks, etc. refer to number of clusters.
1269                  */
1270                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1271                                    ei->i_reserved_meta_blocks);
1272                 ei->i_reserved_meta_blocks = 0;
1273                 ei->i_da_metadata_calc_len = 0;
1274         }
1275
1276         /* update fs dirty data blocks counter */
1277         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1278
1279         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1280
1281         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1282 }
1283
1284 static void ext4_da_page_release_reservation(struct page *page,
1285                                              unsigned long offset)
1286 {
1287         int to_release = 0;
1288         struct buffer_head *head, *bh;
1289         unsigned int curr_off = 0;
1290         struct inode *inode = page->mapping->host;
1291         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1292         int num_clusters;
1293
1294         head = page_buffers(page);
1295         bh = head;
1296         do {
1297                 unsigned int next_off = curr_off + bh->b_size;
1298
1299                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1300                         to_release++;
1301                         clear_buffer_delay(bh);
1302                         clear_buffer_da_mapped(bh);
1303                 }
1304                 curr_off = next_off;
1305         } while ((bh = bh->b_this_page) != head);
1306
1307         /* If we have released all the blocks belonging to a cluster, then we
1308          * need to release the reserved space for that cluster. */
1309         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1310         while (num_clusters > 0) {
1311                 ext4_fsblk_t lblk;
1312                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1313                         ((num_clusters - 1) << sbi->s_cluster_bits);
1314                 if (sbi->s_cluster_ratio == 1 ||
1315                     !ext4_find_delalloc_cluster(inode, lblk, 1))
1316                         ext4_da_release_space(inode, 1);
1317
1318                 num_clusters--;
1319         }
1320 }
1321
1322 /*
1323  * Delayed allocation stuff
1324  */
1325
1326 /*
1327  * mpage_da_submit_io - walks through extent of pages and try to write
1328  * them with writepage() call back
1329  *
1330  * @mpd->inode: inode
1331  * @mpd->first_page: first page of the extent
1332  * @mpd->next_page: page after the last page of the extent
1333  *
1334  * By the time mpage_da_submit_io() is called we expect all blocks
1335  * to be allocated. this may be wrong if allocation failed.
1336  *
1337  * As pages are already locked by write_cache_pages(), we can't use it
1338  */
1339 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1340                               struct ext4_map_blocks *map)
1341 {
1342         struct pagevec pvec;
1343         unsigned long index, end;
1344         int ret = 0, err, nr_pages, i;
1345         struct inode *inode = mpd->inode;
1346         struct address_space *mapping = inode->i_mapping;
1347         loff_t size = i_size_read(inode);
1348         unsigned int len, block_start;
1349         struct buffer_head *bh, *page_bufs = NULL;
1350         int journal_data = ext4_should_journal_data(inode);
1351         sector_t pblock = 0, cur_logical = 0;
1352         struct ext4_io_submit io_submit;
1353
1354         BUG_ON(mpd->next_page <= mpd->first_page);
1355         memset(&io_submit, 0, sizeof(io_submit));
1356         /*
1357          * We need to start from the first_page to the next_page - 1
1358          * to make sure we also write the mapped dirty buffer_heads.
1359          * If we look at mpd->b_blocknr we would only be looking
1360          * at the currently mapped buffer_heads.
1361          */
1362         index = mpd->first_page;
1363         end = mpd->next_page - 1;
1364
1365         pagevec_init(&pvec, 0);
1366         while (index <= end) {
1367                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1368                 if (nr_pages == 0)
1369                         break;
1370                 for (i = 0; i < nr_pages; i++) {
1371                         int commit_write = 0, skip_page = 0;
1372                         struct page *page = pvec.pages[i];
1373
1374                         index = page->index;
1375                         if (index > end)
1376                                 break;
1377
1378                         if (index == size >> PAGE_CACHE_SHIFT)
1379                                 len = size & ~PAGE_CACHE_MASK;
1380                         else
1381                                 len = PAGE_CACHE_SIZE;
1382                         if (map) {
1383                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1384                                                         inode->i_blkbits);
1385                                 pblock = map->m_pblk + (cur_logical -
1386                                                         map->m_lblk);
1387                         }
1388                         index++;
1389
1390                         BUG_ON(!PageLocked(page));
1391                         BUG_ON(PageWriteback(page));
1392
1393                         /*
1394                          * If the page does not have buffers (for
1395                          * whatever reason), try to create them using
1396                          * __block_write_begin.  If this fails,
1397                          * skip the page and move on.
1398                          */
1399                         if (!page_has_buffers(page)) {
1400                                 if (__block_write_begin(page, 0, len,
1401                                                 noalloc_get_block_write)) {
1402                                 skip_page:
1403                                         unlock_page(page);
1404                                         continue;
1405                                 }
1406                                 commit_write = 1;
1407                         }
1408
1409                         bh = page_bufs = page_buffers(page);
1410                         block_start = 0;
1411                         do {
1412                                 if (!bh)
1413                                         goto skip_page;
1414                                 if (map && (cur_logical >= map->m_lblk) &&
1415                                     (cur_logical <= (map->m_lblk +
1416                                                      (map->m_len - 1)))) {
1417                                         if (buffer_delay(bh)) {
1418                                                 clear_buffer_delay(bh);
1419                                                 bh->b_blocknr = pblock;
1420                                         }
1421                                         if (buffer_da_mapped(bh))
1422                                                 clear_buffer_da_mapped(bh);
1423                                         if (buffer_unwritten(bh) ||
1424                                             buffer_mapped(bh))
1425                                                 BUG_ON(bh->b_blocknr != pblock);
1426                                         if (map->m_flags & EXT4_MAP_UNINIT)
1427                                                 set_buffer_uninit(bh);
1428                                         clear_buffer_unwritten(bh);
1429                                 }
1430
1431                                 /*
1432                                  * skip page if block allocation undone and
1433                                  * block is dirty
1434                                  */
1435                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1436                                         skip_page = 1;
1437                                 bh = bh->b_this_page;
1438                                 block_start += bh->b_size;
1439                                 cur_logical++;
1440                                 pblock++;
1441                         } while (bh != page_bufs);
1442
1443                         if (skip_page)
1444                                 goto skip_page;
1445
1446                         if (commit_write)
1447                                 /* mark the buffer_heads as dirty & uptodate */
1448                                 block_commit_write(page, 0, len);
1449
1450                         clear_page_dirty_for_io(page);
1451                         /*
1452                          * Delalloc doesn't support data journalling,
1453                          * but eventually maybe we'll lift this
1454                          * restriction.
1455                          */
1456                         if (unlikely(journal_data && PageChecked(page)))
1457                                 err = __ext4_journalled_writepage(page, len);
1458                         else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1459                                 err = ext4_bio_write_page(&io_submit, page,
1460                                                           len, mpd->wbc);
1461                         else if (buffer_uninit(page_bufs)) {
1462                                 ext4_set_bh_endio(page_bufs, inode);
1463                                 err = block_write_full_page_endio(page,
1464                                         noalloc_get_block_write,
1465                                         mpd->wbc, ext4_end_io_buffer_write);
1466                         } else
1467                                 err = block_write_full_page(page,
1468                                         noalloc_get_block_write, mpd->wbc);
1469
1470                         if (!err)
1471                                 mpd->pages_written++;
1472                         /*
1473                          * In error case, we have to continue because
1474                          * remaining pages are still locked
1475                          */
1476                         if (ret == 0)
1477                                 ret = err;
1478                 }
1479                 pagevec_release(&pvec);
1480         }
1481         ext4_io_submit(&io_submit);
1482         return ret;
1483 }
1484
1485 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1486 {
1487         int nr_pages, i;
1488         pgoff_t index, end;
1489         struct pagevec pvec;
1490         struct inode *inode = mpd->inode;
1491         struct address_space *mapping = inode->i_mapping;
1492
1493         index = mpd->first_page;
1494         end   = mpd->next_page - 1;
1495         pagevec_init(&pvec, 0);
1496         while (index <= end) {
1497                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1498                 if (nr_pages == 0)
1499                         break;
1500                 for (i = 0; i < nr_pages; i++) {
1501                         struct page *page = pvec.pages[i];
1502                         if (page->index > end)
1503                                 break;
1504                         BUG_ON(!PageLocked(page));
1505                         BUG_ON(PageWriteback(page));
1506                         block_invalidatepage(page, 0);
1507                         ClearPageUptodate(page);
1508                         unlock_page(page);
1509                 }
1510                 index = pvec.pages[nr_pages - 1]->index + 1;
1511                 pagevec_release(&pvec);
1512         }
1513         return;
1514 }
1515
1516 static void ext4_print_free_blocks(struct inode *inode)
1517 {
1518         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1519         printk(KERN_CRIT "Total free blocks count %lld\n",
1520                EXT4_C2B(EXT4_SB(inode->i_sb),
1521                         ext4_count_free_clusters(inode->i_sb)));
1522         printk(KERN_CRIT "Free/Dirty block details\n");
1523         printk(KERN_CRIT "free_blocks=%lld\n",
1524                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1525                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1526         printk(KERN_CRIT "dirty_blocks=%lld\n",
1527                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1528                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1529         printk(KERN_CRIT "Block reservation details\n");
1530         printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1531                EXT4_I(inode)->i_reserved_data_blocks);
1532         printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1533                EXT4_I(inode)->i_reserved_meta_blocks);
1534         return;
1535 }
1536
1537 /*
1538  * mpage_da_map_and_submit - go through given space, map them
1539  *       if necessary, and then submit them for I/O
1540  *
1541  * @mpd - bh describing space
1542  *
1543  * The function skips space we know is already mapped to disk blocks.
1544  *
1545  */
1546 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1547 {
1548         int err, blks, get_blocks_flags;
1549         struct ext4_map_blocks map, *mapp = NULL;
1550         sector_t next = mpd->b_blocknr;
1551         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1552         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1553         handle_t *handle = NULL;
1554
1555         /*
1556          * If the blocks are mapped already, or we couldn't accumulate
1557          * any blocks, then proceed immediately to the submission stage.
1558          */
1559         if ((mpd->b_size == 0) ||
1560             ((mpd->b_state  & (1 << BH_Mapped)) &&
1561              !(mpd->b_state & (1 << BH_Delay)) &&
1562              !(mpd->b_state & (1 << BH_Unwritten))))
1563                 goto submit_io;
1564
1565         handle = ext4_journal_current_handle();
1566         BUG_ON(!handle);
1567
1568         /*
1569          * Call ext4_map_blocks() to allocate any delayed allocation
1570          * blocks, or to convert an uninitialized extent to be
1571          * initialized (in the case where we have written into
1572          * one or more preallocated blocks).
1573          *
1574          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1575          * indicate that we are on the delayed allocation path.  This
1576          * affects functions in many different parts of the allocation
1577          * call path.  This flag exists primarily because we don't
1578          * want to change *many* call functions, so ext4_map_blocks()
1579          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1580          * inode's allocation semaphore is taken.
1581          *
1582          * If the blocks in questions were delalloc blocks, set
1583          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1584          * variables are updated after the blocks have been allocated.
1585          */
1586         map.m_lblk = next;
1587         map.m_len = max_blocks;
1588         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1589         if (ext4_should_dioread_nolock(mpd->inode))
1590                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1591         if (mpd->b_state & (1 << BH_Delay))
1592                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1593
1594         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1595         if (blks < 0) {
1596                 struct super_block *sb = mpd->inode->i_sb;
1597
1598                 err = blks;
1599                 /*
1600                  * If get block returns EAGAIN or ENOSPC and there
1601                  * appears to be free blocks we will just let
1602                  * mpage_da_submit_io() unlock all of the pages.
1603                  */
1604                 if (err == -EAGAIN)
1605                         goto submit_io;
1606
1607                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1608                         mpd->retval = err;
1609                         goto submit_io;
1610                 }
1611
1612                 /*
1613                  * get block failure will cause us to loop in
1614                  * writepages, because a_ops->writepage won't be able
1615                  * to make progress. The page will be redirtied by
1616                  * writepage and writepages will again try to write
1617                  * the same.
1618                  */
1619                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1620                         ext4_msg(sb, KERN_CRIT,
1621                                  "delayed block allocation failed for inode %lu "
1622                                  "at logical offset %llu with max blocks %zd "
1623                                  "with error %d", mpd->inode->i_ino,
1624                                  (unsigned long long) next,
1625                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1626                         ext4_msg(sb, KERN_CRIT,
1627                                 "This should not happen!! Data will be lost\n");
1628                         if (err == -ENOSPC)
1629                                 ext4_print_free_blocks(mpd->inode);
1630                 }
1631                 /* invalidate all the pages */
1632                 ext4_da_block_invalidatepages(mpd);
1633
1634                 /* Mark this page range as having been completed */
1635                 mpd->io_done = 1;
1636                 return;
1637         }
1638         BUG_ON(blks == 0);
1639
1640         mapp = &map;
1641         if (map.m_flags & EXT4_MAP_NEW) {
1642                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1643                 int i;
1644
1645                 for (i = 0; i < map.m_len; i++)
1646                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1647
1648                 if (ext4_should_order_data(mpd->inode)) {
1649                         err = ext4_jbd2_file_inode(handle, mpd->inode);
1650                         if (err) {
1651                                 /* Only if the journal is aborted */
1652                                 mpd->retval = err;
1653                                 goto submit_io;
1654                         }
1655                 }
1656         }
1657
1658         /*
1659          * Update on-disk size along with block allocation.
1660          */
1661         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1662         if (disksize > i_size_read(mpd->inode))
1663                 disksize = i_size_read(mpd->inode);
1664         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1665                 ext4_update_i_disksize(mpd->inode, disksize);
1666                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1667                 if (err)
1668                         ext4_error(mpd->inode->i_sb,
1669                                    "Failed to mark inode %lu dirty",
1670                                    mpd->inode->i_ino);
1671         }
1672
1673 submit_io:
1674         mpage_da_submit_io(mpd, mapp);
1675         mpd->io_done = 1;
1676 }
1677
1678 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1679                 (1 << BH_Delay) | (1 << BH_Unwritten))
1680
1681 /*
1682  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1683  *
1684  * @mpd->lbh - extent of blocks
1685  * @logical - logical number of the block in the file
1686  * @bh - bh of the block (used to access block's state)
1687  *
1688  * the function is used to collect contig. blocks in same state
1689  */
1690 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1691                                    sector_t logical, size_t b_size,
1692                                    unsigned long b_state)
1693 {
1694         sector_t next;
1695         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1696
1697         /*
1698          * XXX Don't go larger than mballoc is willing to allocate
1699          * This is a stopgap solution.  We eventually need to fold
1700          * mpage_da_submit_io() into this function and then call
1701          * ext4_map_blocks() multiple times in a loop
1702          */
1703         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1704                 goto flush_it;
1705
1706         /* check if thereserved journal credits might overflow */
1707         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1708                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1709                         /*
1710                          * With non-extent format we are limited by the journal
1711                          * credit available.  Total credit needed to insert
1712                          * nrblocks contiguous blocks is dependent on the
1713                          * nrblocks.  So limit nrblocks.
1714                          */
1715                         goto flush_it;
1716                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1717                                 EXT4_MAX_TRANS_DATA) {
1718                         /*
1719                          * Adding the new buffer_head would make it cross the
1720                          * allowed limit for which we have journal credit
1721                          * reserved. So limit the new bh->b_size
1722                          */
1723                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1724                                                 mpd->inode->i_blkbits;
1725                         /* we will do mpage_da_submit_io in the next loop */
1726                 }
1727         }
1728         /*
1729          * First block in the extent
1730          */
1731         if (mpd->b_size == 0) {
1732                 mpd->b_blocknr = logical;
1733                 mpd->b_size = b_size;
1734                 mpd->b_state = b_state & BH_FLAGS;
1735                 return;
1736         }
1737
1738         next = mpd->b_blocknr + nrblocks;
1739         /*
1740          * Can we merge the block to our big extent?
1741          */
1742         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1743                 mpd->b_size += b_size;
1744                 return;
1745         }
1746
1747 flush_it:
1748         /*
1749          * We couldn't merge the block to our extent, so we
1750          * need to flush current  extent and start new one
1751          */
1752         mpage_da_map_and_submit(mpd);
1753         return;
1754 }
1755
1756 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1757 {
1758         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1759 }
1760
1761 /*
1762  * This function is grabs code from the very beginning of
1763  * ext4_map_blocks, but assumes that the caller is from delayed write
1764  * time. This function looks up the requested blocks and sets the
1765  * buffer delay bit under the protection of i_data_sem.
1766  */
1767 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1768                               struct ext4_map_blocks *map,
1769                               struct buffer_head *bh)
1770 {
1771         int retval;
1772         sector_t invalid_block = ~((sector_t) 0xffff);
1773
1774         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1775                 invalid_block = ~0;
1776
1777         map->m_flags = 0;
1778         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1779                   "logical block %lu\n", inode->i_ino, map->m_len,
1780                   (unsigned long) map->m_lblk);
1781         /*
1782          * Try to see if we can get the block without requesting a new
1783          * file system block.
1784          */
1785         down_read((&EXT4_I(inode)->i_data_sem));
1786         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1787                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1788         else
1789                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1790
1791         if (retval == 0) {
1792                 /*
1793                  * XXX: __block_prepare_write() unmaps passed block,
1794                  * is it OK?
1795                  */
1796                 /* If the block was allocated from previously allocated cluster,
1797                  * then we dont need to reserve it again. */
1798                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1799                         retval = ext4_da_reserve_space(inode, iblock);
1800                         if (retval)
1801                                 /* not enough space to reserve */
1802                                 goto out_unlock;
1803                 }
1804
1805                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1806                  * and it should not appear on the bh->b_state.
1807                  */
1808                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1809
1810                 map_bh(bh, inode->i_sb, invalid_block);
1811                 set_buffer_new(bh);
1812                 set_buffer_delay(bh);
1813         }
1814
1815 out_unlock:
1816         up_read((&EXT4_I(inode)->i_data_sem));
1817
1818         return retval;
1819 }
1820
1821 /*
1822  * This is a special get_blocks_t callback which is used by
1823  * ext4_da_write_begin().  It will either return mapped block or
1824  * reserve space for a single block.
1825  *
1826  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1827  * We also have b_blocknr = -1 and b_bdev initialized properly
1828  *
1829  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1830  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1831  * initialized properly.
1832  */
1833 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1834                                   struct buffer_head *bh, int create)
1835 {
1836         struct ext4_map_blocks map;
1837         int ret = 0;
1838
1839         BUG_ON(create == 0);
1840         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1841
1842         map.m_lblk = iblock;
1843         map.m_len = 1;
1844
1845         /*
1846          * first, we need to know whether the block is allocated already
1847          * preallocated blocks are unmapped but should treated
1848          * the same as allocated blocks.
1849          */
1850         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1851         if (ret <= 0)
1852                 return ret;
1853
1854         map_bh(bh, inode->i_sb, map.m_pblk);
1855         ext4_update_bh_state(bh, map.m_flags);
1856
1857         if (buffer_unwritten(bh)) {
1858                 /* A delayed write to unwritten bh should be marked
1859                  * new and mapped.  Mapped ensures that we don't do
1860                  * get_block multiple times when we write to the same
1861                  * offset and new ensures that we do proper zero out
1862                  * for partial write.
1863                  */
1864                 set_buffer_new(bh);
1865                 set_buffer_mapped(bh);
1866         }
1867         return 0;
1868 }
1869
1870 /*
1871  * This function is used as a standard get_block_t calback function
1872  * when there is no desire to allocate any blocks.  It is used as a
1873  * callback function for block_write_begin() and block_write_full_page().
1874  * These functions should only try to map a single block at a time.
1875  *
1876  * Since this function doesn't do block allocations even if the caller
1877  * requests it by passing in create=1, it is critically important that
1878  * any caller checks to make sure that any buffer heads are returned
1879  * by this function are either all already mapped or marked for
1880  * delayed allocation before calling  block_write_full_page().  Otherwise,
1881  * b_blocknr could be left unitialized, and the page write functions will
1882  * be taken by surprise.
1883  */
1884 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1885                                    struct buffer_head *bh_result, int create)
1886 {
1887         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1888         return _ext4_get_block(inode, iblock, bh_result, 0);
1889 }
1890
1891 static int bget_one(handle_t *handle, struct buffer_head *bh)
1892 {
1893         get_bh(bh);
1894         return 0;
1895 }
1896
1897 static int bput_one(handle_t *handle, struct buffer_head *bh)
1898 {
1899         put_bh(bh);
1900         return 0;
1901 }
1902
1903 static int __ext4_journalled_writepage(struct page *page,
1904                                        unsigned int len)
1905 {
1906         struct address_space *mapping = page->mapping;
1907         struct inode *inode = mapping->host;
1908         struct buffer_head *page_bufs;
1909         handle_t *handle = NULL;
1910         int ret = 0;
1911         int err;
1912
1913         ClearPageChecked(page);
1914         page_bufs = page_buffers(page);
1915         BUG_ON(!page_bufs);
1916         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1917         /*
1918          * We need to release the page lock before we start the
1919          * journal, so grab a reference so the page won't disappear
1920          * out from under us.
1921          */
1922         get_page(page);
1923         unlock_page(page);
1924
1925         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1926         if (IS_ERR(handle)) {
1927                 ret = PTR_ERR(handle);
1928                 put_page(page);
1929                 goto out_no_pagelock;
1930         }
1931         BUG_ON(!ext4_handle_valid(handle));
1932
1933         lock_page(page);
1934         put_page(page);
1935         if (page->mapping != mapping) {
1936                 /* The page got truncated from under us */
1937                 ext4_journal_stop(handle);
1938                 ret = 0;
1939                 goto out;
1940         }
1941
1942         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1943                                 do_journal_get_write_access);
1944
1945         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1946                                 write_end_fn);
1947         if (ret == 0)
1948                 ret = err;
1949         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1950         err = ext4_journal_stop(handle);
1951         if (!ret)
1952                 ret = err;
1953
1954         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1955         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1956 out:
1957         unlock_page(page);
1958 out_no_pagelock:
1959         return ret;
1960 }
1961
1962 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1963 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1964
1965 /*
1966  * Note that we don't need to start a transaction unless we're journaling data
1967  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1968  * need to file the inode to the transaction's list in ordered mode because if
1969  * we are writing back data added by write(), the inode is already there and if
1970  * we are writing back data modified via mmap(), no one guarantees in which
1971  * transaction the data will hit the disk. In case we are journaling data, we
1972  * cannot start transaction directly because transaction start ranks above page
1973  * lock so we have to do some magic.
1974  *
1975  * This function can get called via...
1976  *   - ext4_da_writepages after taking page lock (have journal handle)
1977  *   - journal_submit_inode_data_buffers (no journal handle)
1978  *   - shrink_page_list via pdflush (no journal handle)
1979  *   - grab_page_cache when doing write_begin (have journal handle)
1980  *
1981  * We don't do any block allocation in this function. If we have page with
1982  * multiple blocks we need to write those buffer_heads that are mapped. This
1983  * is important for mmaped based write. So if we do with blocksize 1K
1984  * truncate(f, 1024);
1985  * a = mmap(f, 0, 4096);
1986  * a[0] = 'a';
1987  * truncate(f, 4096);
1988  * we have in the page first buffer_head mapped via page_mkwrite call back
1989  * but other bufer_heads would be unmapped but dirty(dirty done via the
1990  * do_wp_page). So writepage should write the first block. If we modify
1991  * the mmap area beyond 1024 we will again get a page_fault and the
1992  * page_mkwrite callback will do the block allocation and mark the
1993  * buffer_heads mapped.
1994  *
1995  * We redirty the page if we have any buffer_heads that is either delay or
1996  * unwritten in the page.
1997  *
1998  * We can get recursively called as show below.
1999  *
2000  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2001  *              ext4_writepage()
2002  *
2003  * But since we don't do any block allocation we should not deadlock.
2004  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2005  */
2006 static int ext4_writepage(struct page *page,
2007                           struct writeback_control *wbc)
2008 {
2009         int ret = 0, commit_write = 0;
2010         loff_t size;
2011         unsigned int len;
2012         struct buffer_head *page_bufs = NULL;
2013         struct inode *inode = page->mapping->host;
2014
2015         trace_ext4_writepage(page);
2016         size = i_size_read(inode);
2017         if (page->index == size >> PAGE_CACHE_SHIFT)
2018                 len = size & ~PAGE_CACHE_MASK;
2019         else
2020                 len = PAGE_CACHE_SIZE;
2021
2022         /*
2023          * If the page does not have buffers (for whatever reason),
2024          * try to create them using __block_write_begin.  If this
2025          * fails, redirty the page and move on.
2026          */
2027         if (!page_has_buffers(page)) {
2028                 if (__block_write_begin(page, 0, len,
2029                                         noalloc_get_block_write)) {
2030                 redirty_page:
2031                         redirty_page_for_writepage(wbc, page);
2032                         unlock_page(page);
2033                         return 0;
2034                 }
2035                 commit_write = 1;
2036         }
2037         page_bufs = page_buffers(page);
2038         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2039                               ext4_bh_delay_or_unwritten)) {
2040                 /*
2041                  * We don't want to do block allocation, so redirty
2042                  * the page and return.  We may reach here when we do
2043                  * a journal commit via journal_submit_inode_data_buffers.
2044                  * We can also reach here via shrink_page_list but it
2045                  * should never be for direct reclaim so warn if that
2046                  * happens
2047                  */
2048                 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2049                                                                 PF_MEMALLOC);
2050                 goto redirty_page;
2051         }
2052         if (commit_write)
2053                 /* now mark the buffer_heads as dirty and uptodate */
2054                 block_commit_write(page, 0, len);
2055
2056         if (PageChecked(page) && ext4_should_journal_data(inode))
2057                 /*
2058                  * It's mmapped pagecache.  Add buffers and journal it.  There
2059                  * doesn't seem much point in redirtying the page here.
2060                  */
2061                 return __ext4_journalled_writepage(page, len);
2062
2063         if (buffer_uninit(page_bufs)) {
2064                 ext4_set_bh_endio(page_bufs, inode);
2065                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2066                                             wbc, ext4_end_io_buffer_write);
2067         } else
2068                 ret = block_write_full_page(page, noalloc_get_block_write,
2069                                             wbc);
2070
2071         return ret;
2072 }
2073
2074 /*
2075  * This is called via ext4_da_writepages() to
2076  * calculate the total number of credits to reserve to fit
2077  * a single extent allocation into a single transaction,
2078  * ext4_da_writpeages() will loop calling this before
2079  * the block allocation.
2080  */
2081
2082 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2083 {
2084         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2085
2086         /*
2087          * With non-extent format the journal credit needed to
2088          * insert nrblocks contiguous block is dependent on
2089          * number of contiguous block. So we will limit
2090          * number of contiguous block to a sane value
2091          */
2092         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2093             (max_blocks > EXT4_MAX_TRANS_DATA))
2094                 max_blocks = EXT4_MAX_TRANS_DATA;
2095
2096         return ext4_chunk_trans_blocks(inode, max_blocks);
2097 }
2098
2099 /*
2100  * write_cache_pages_da - walk the list of dirty pages of the given
2101  * address space and accumulate pages that need writing, and call
2102  * mpage_da_map_and_submit to map a single contiguous memory region
2103  * and then write them.
2104  */
2105 static int write_cache_pages_da(struct address_space *mapping,
2106                                 struct writeback_control *wbc,
2107                                 struct mpage_da_data *mpd,
2108                                 pgoff_t *done_index)
2109 {
2110         struct buffer_head      *bh, *head;
2111         struct inode            *inode = mapping->host;
2112         struct pagevec          pvec;
2113         unsigned int            nr_pages;
2114         sector_t                logical;
2115         pgoff_t                 index, end;
2116         long                    nr_to_write = wbc->nr_to_write;
2117         int                     i, tag, ret = 0;
2118
2119         memset(mpd, 0, sizeof(struct mpage_da_data));
2120         mpd->wbc = wbc;
2121         mpd->inode = inode;
2122         pagevec_init(&pvec, 0);
2123         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2124         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2125
2126         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2127                 tag = PAGECACHE_TAG_TOWRITE;
2128         else
2129                 tag = PAGECACHE_TAG_DIRTY;
2130
2131         *done_index = index;
2132         while (index <= end) {
2133                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2134                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2135                 if (nr_pages == 0)
2136                         return 0;
2137
2138                 for (i = 0; i < nr_pages; i++) {
2139                         struct page *page = pvec.pages[i];
2140
2141                         /*
2142                          * At this point, the page may be truncated or
2143                          * invalidated (changing page->mapping to NULL), or
2144                          * even swizzled back from swapper_space to tmpfs file
2145                          * mapping. However, page->index will not change
2146                          * because we have a reference on the page.
2147                          */
2148                         if (page->index > end)
2149                                 goto out;
2150
2151                         *done_index = page->index + 1;
2152
2153                         /*
2154                          * If we can't merge this page, and we have
2155                          * accumulated an contiguous region, write it
2156                          */
2157                         if ((mpd->next_page != page->index) &&
2158                             (mpd->next_page != mpd->first_page)) {
2159                                 mpage_da_map_and_submit(mpd);
2160                                 goto ret_extent_tail;
2161                         }
2162
2163                         lock_page(page);
2164
2165                         /*
2166                          * If the page is no longer dirty, or its
2167                          * mapping no longer corresponds to inode we
2168                          * are writing (which means it has been
2169                          * truncated or invalidated), or the page is
2170                          * already under writeback and we are not
2171                          * doing a data integrity writeback, skip the page
2172                          */
2173                         if (!PageDirty(page) ||
2174                             (PageWriteback(page) &&
2175                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2176                             unlikely(page->mapping != mapping)) {
2177                                 unlock_page(page);
2178                                 continue;
2179                         }
2180
2181                         wait_on_page_writeback(page);
2182                         BUG_ON(PageWriteback(page));
2183
2184                         if (mpd->next_page != page->index)
2185                                 mpd->first_page = page->index;
2186                         mpd->next_page = page->index + 1;
2187                         logical = (sector_t) page->index <<
2188                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2189
2190                         if (!page_has_buffers(page)) {
2191                                 mpage_add_bh_to_extent(mpd, logical,
2192                                                        PAGE_CACHE_SIZE,
2193                                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2194                                 if (mpd->io_done)
2195                                         goto ret_extent_tail;
2196                         } else {
2197                                 /*
2198                                  * Page with regular buffer heads,
2199                                  * just add all dirty ones
2200                                  */
2201                                 head = page_buffers(page);
2202                                 bh = head;
2203                                 do {
2204                                         BUG_ON(buffer_locked(bh));
2205                                         /*
2206                                          * We need to try to allocate
2207                                          * unmapped blocks in the same page.
2208                                          * Otherwise we won't make progress
2209                                          * with the page in ext4_writepage
2210                                          */
2211                                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2212                                                 mpage_add_bh_to_extent(mpd, logical,
2213                                                                        bh->b_size,
2214                                                                        bh->b_state);
2215                                                 if (mpd->io_done)
2216                                                         goto ret_extent_tail;
2217                                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2218                                                 /*
2219                                                  * mapped dirty buffer. We need
2220                                                  * to update the b_state
2221                                                  * because we look at b_state
2222                                                  * in mpage_da_map_blocks.  We
2223                                                  * don't update b_size because
2224                                                  * if we find an unmapped
2225                                                  * buffer_head later we need to
2226                                                  * use the b_state flag of that
2227                                                  * buffer_head.
2228                                                  */
2229                                                 if (mpd->b_size == 0)
2230                                                         mpd->b_state = bh->b_state & BH_FLAGS;
2231                                         }
2232                                         logical++;
2233                                 } while ((bh = bh->b_this_page) != head);
2234                         }
2235
2236                         if (nr_to_write > 0) {
2237                                 nr_to_write--;
2238                                 if (nr_to_write == 0 &&
2239                                     wbc->sync_mode == WB_SYNC_NONE)
2240                                         /*
2241                                          * We stop writing back only if we are
2242                                          * not doing integrity sync. In case of
2243                                          * integrity sync we have to keep going
2244                                          * because someone may be concurrently
2245                                          * dirtying pages, and we might have
2246                                          * synced a lot of newly appeared dirty
2247                                          * pages, but have not synced all of the
2248                                          * old dirty pages.
2249                                          */
2250                                         goto out;
2251                         }
2252                 }
2253                 pagevec_release(&pvec);
2254                 cond_resched();
2255         }
2256         return 0;
2257 ret_extent_tail:
2258         ret = MPAGE_DA_EXTENT_TAIL;
2259 out:
2260         pagevec_release(&pvec);
2261         cond_resched();
2262         return ret;
2263 }
2264
2265
2266 static int ext4_da_writepages(struct address_space *mapping,
2267                               struct writeback_control *wbc)
2268 {
2269         pgoff_t index;
2270         int range_whole = 0;
2271         handle_t *handle = NULL;
2272         struct mpage_da_data mpd;
2273         struct inode *inode = mapping->host;
2274         int pages_written = 0;
2275         unsigned int max_pages;
2276         int range_cyclic, cycled = 1, io_done = 0;
2277         int needed_blocks, ret = 0;
2278         long desired_nr_to_write, nr_to_writebump = 0;
2279         loff_t range_start = wbc->range_start;
2280         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2281         pgoff_t done_index = 0;
2282         pgoff_t end;
2283         struct blk_plug plug;
2284
2285         trace_ext4_da_writepages(inode, wbc);
2286
2287         /*
2288          * No pages to write? This is mainly a kludge to avoid starting
2289          * a transaction for special inodes like journal inode on last iput()
2290          * because that could violate lock ordering on umount
2291          */
2292         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2293                 return 0;
2294
2295         /*
2296          * If the filesystem has aborted, it is read-only, so return
2297          * right away instead of dumping stack traces later on that
2298          * will obscure the real source of the problem.  We test
2299          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2300          * the latter could be true if the filesystem is mounted
2301          * read-only, and in that case, ext4_da_writepages should
2302          * *never* be called, so if that ever happens, we would want
2303          * the stack trace.
2304          */
2305         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2306                 return -EROFS;
2307
2308         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2309                 range_whole = 1;
2310
2311         range_cyclic = wbc->range_cyclic;
2312         if (wbc->range_cyclic) {
2313                 index = mapping->writeback_index;
2314                 if (index)
2315                         cycled = 0;
2316                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2317                 wbc->range_end  = LLONG_MAX;
2318                 wbc->range_cyclic = 0;
2319                 end = -1;
2320         } else {
2321                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2322                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2323         }
2324
2325         /*
2326          * This works around two forms of stupidity.  The first is in
2327          * the writeback code, which caps the maximum number of pages
2328          * written to be 1024 pages.  This is wrong on multiple
2329          * levels; different architectues have a different page size,
2330          * which changes the maximum amount of data which gets
2331          * written.  Secondly, 4 megabytes is way too small.  XFS
2332          * forces this value to be 16 megabytes by multiplying
2333          * nr_to_write parameter by four, and then relies on its
2334          * allocator to allocate larger extents to make them
2335          * contiguous.  Unfortunately this brings us to the second
2336          * stupidity, which is that ext4's mballoc code only allocates
2337          * at most 2048 blocks.  So we force contiguous writes up to
2338          * the number of dirty blocks in the inode, or
2339          * sbi->max_writeback_mb_bump whichever is smaller.
2340          */
2341         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2342         if (!range_cyclic && range_whole) {
2343                 if (wbc->nr_to_write == LONG_MAX)
2344                         desired_nr_to_write = wbc->nr_to_write;
2345                 else
2346                         desired_nr_to_write = wbc->nr_to_write * 8;
2347         } else
2348                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2349                                                            max_pages);
2350         if (desired_nr_to_write > max_pages)
2351                 desired_nr_to_write = max_pages;
2352
2353         if (wbc->nr_to_write < desired_nr_to_write) {
2354                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2355                 wbc->nr_to_write = desired_nr_to_write;
2356         }
2357
2358 retry:
2359         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2360                 tag_pages_for_writeback(mapping, index, end);
2361
2362         blk_start_plug(&plug);
2363         while (!ret && wbc->nr_to_write > 0) {
2364
2365                 /*
2366                  * we  insert one extent at a time. So we need
2367                  * credit needed for single extent allocation.
2368                  * journalled mode is currently not supported
2369                  * by delalloc
2370                  */
2371                 BUG_ON(ext4_should_journal_data(inode));
2372                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2373
2374                 /* start a new transaction*/
2375                 handle = ext4_journal_start(inode, needed_blocks);
2376                 if (IS_ERR(handle)) {
2377                         ret = PTR_ERR(handle);
2378                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2379                                "%ld pages, ino %lu; err %d", __func__,
2380                                 wbc->nr_to_write, inode->i_ino, ret);
2381                         blk_finish_plug(&plug);
2382                         goto out_writepages;
2383                 }
2384
2385                 /*
2386                  * Now call write_cache_pages_da() to find the next
2387                  * contiguous region of logical blocks that need
2388                  * blocks to be allocated by ext4 and submit them.
2389                  */
2390                 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2391                 /*
2392                  * If we have a contiguous extent of pages and we
2393                  * haven't done the I/O yet, map the blocks and submit
2394                  * them for I/O.
2395                  */
2396                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2397                         mpage_da_map_and_submit(&mpd);
2398                         ret = MPAGE_DA_EXTENT_TAIL;
2399                 }
2400                 trace_ext4_da_write_pages(inode, &mpd);
2401                 wbc->nr_to_write -= mpd.pages_written;
2402
2403                 ext4_journal_stop(handle);
2404
2405                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2406                         /* commit the transaction which would
2407                          * free blocks released in the transaction
2408                          * and try again
2409                          */
2410                         jbd2_journal_force_commit_nested(sbi->s_journal);
2411                         ret = 0;
2412                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2413                         /*
2414                          * Got one extent now try with rest of the pages.
2415                          * If mpd.retval is set -EIO, journal is aborted.
2416                          * So we don't need to write any more.
2417                          */
2418                         pages_written += mpd.pages_written;
2419                         ret = mpd.retval;
2420                         io_done = 1;
2421                 } else if (wbc->nr_to_write)
2422                         /*
2423                          * There is no more writeout needed
2424                          * or we requested for a noblocking writeout
2425                          * and we found the device congested
2426                          */
2427                         break;
2428         }
2429         blk_finish_plug(&plug);
2430         if (!io_done && !cycled) {
2431                 cycled = 1;
2432                 index = 0;
2433                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2434                 wbc->range_end  = mapping->writeback_index - 1;
2435                 goto retry;
2436         }
2437
2438         /* Update index */
2439         wbc->range_cyclic = range_cyclic;
2440         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2441                 /*
2442                  * set the writeback_index so that range_cyclic
2443                  * mode will write it back later
2444                  */
2445                 mapping->writeback_index = done_index;
2446
2447 out_writepages:
2448         wbc->nr_to_write -= nr_to_writebump;
2449         wbc->range_start = range_start;
2450         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2451         return ret;
2452 }
2453
2454 #define FALL_BACK_TO_NONDELALLOC 1
2455 static int ext4_nonda_switch(struct super_block *sb)
2456 {
2457         s64 free_blocks, dirty_blocks;
2458         struct ext4_sb_info *sbi = EXT4_SB(sb);
2459
2460         /*
2461          * switch to non delalloc mode if we are running low
2462          * on free block. The free block accounting via percpu
2463          * counters can get slightly wrong with percpu_counter_batch getting
2464          * accumulated on each CPU without updating global counters
2465          * Delalloc need an accurate free block accounting. So switch
2466          * to non delalloc when we are near to error range.
2467          */
2468         free_blocks  = EXT4_C2B(sbi,
2469                 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2470         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2471         /*
2472          * Start pushing delalloc when 1/2 of free blocks are dirty.
2473          */
2474         if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2475             !writeback_in_progress(sb->s_bdi) &&
2476             down_read_trylock(&sb->s_umount)) {
2477                 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2478                 up_read(&sb->s_umount);
2479         }
2480
2481         if (2 * free_blocks < 3 * dirty_blocks ||
2482                 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2483                 /*
2484                  * free block count is less than 150% of dirty blocks
2485                  * or free blocks is less than watermark
2486                  */
2487                 return 1;
2488         }
2489         return 0;
2490 }
2491
2492 /* We always reserve for an inode update; the superblock could be there too */
2493 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2494 {
2495         if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2496                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2497                 return 1;
2498
2499         if (pos + len <= 0x7fffffffULL)
2500                 return 1;
2501
2502         /* We might need to update the superblock to set LARGE_FILE */
2503         return 2;
2504 }
2505
2506 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2507                                loff_t pos, unsigned len, unsigned flags,
2508                                struct page **pagep, void **fsdata)
2509 {
2510         int ret, retries = 0;
2511         struct page *page;
2512         pgoff_t index;
2513         struct inode *inode = mapping->host;
2514         handle_t *handle;
2515
2516         index = pos >> PAGE_CACHE_SHIFT;
2517
2518         if (ext4_nonda_switch(inode->i_sb)) {
2519                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2520                 return ext4_write_begin(file, mapping, pos,
2521                                         len, flags, pagep, fsdata);
2522         }
2523         *fsdata = (void *)0;
2524         trace_ext4_da_write_begin(inode, pos, len, flags);
2525 retry:
2526         /*
2527          * With delayed allocation, we don't log the i_disksize update
2528          * if there is delayed block allocation. But we still need
2529          * to journalling the i_disksize update if writes to the end
2530          * of file which has an already mapped buffer.
2531          */
2532         handle = ext4_journal_start(inode,
2533                                 ext4_da_write_credits(inode, pos, len));
2534         if (IS_ERR(handle)) {
2535                 ret = PTR_ERR(handle);
2536                 goto out;
2537         }
2538         /* We cannot recurse into the filesystem as the transaction is already
2539          * started */
2540         flags |= AOP_FLAG_NOFS;
2541
2542         page = grab_cache_page_write_begin(mapping, index, flags);
2543         if (!page) {
2544                 ext4_journal_stop(handle);
2545                 ret = -ENOMEM;
2546                 goto out;
2547         }
2548         *pagep = page;
2549
2550         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2551         if (ret < 0) {
2552                 unlock_page(page);
2553                 ext4_journal_stop(handle);
2554                 page_cache_release(page);
2555                 /*
2556                  * block_write_begin may have instantiated a few blocks
2557                  * outside i_size.  Trim these off again. Don't need
2558                  * i_size_read because we hold i_mutex.
2559                  */
2560                 if (pos + len > inode->i_size)
2561                         ext4_truncate_failed_write(inode);
2562         }
2563
2564         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2565                 goto retry;
2566 out:
2567         return ret;
2568 }
2569
2570 /*
2571  * Check if we should update i_disksize
2572  * when write to the end of file but not require block allocation
2573  */
2574 static int ext4_da_should_update_i_disksize(struct page *page,
2575                                             unsigned long offset)
2576 {
2577         struct buffer_head *bh;
2578         struct inode *inode = page->mapping->host;
2579         unsigned int idx;
2580         int i;
2581
2582         bh = page_buffers(page);
2583         idx = offset >> inode->i_blkbits;
2584
2585         for (i = 0; i < idx; i++)
2586                 bh = bh->b_this_page;
2587
2588         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2589                 return 0;
2590         return 1;
2591 }
2592
2593 static int ext4_da_write_end(struct file *file,
2594                              struct address_space *mapping,
2595                              loff_t pos, unsigned len, unsigned copied,
2596                              struct page *page, void *fsdata)
2597 {
2598         struct inode *inode = mapping->host;
2599         int ret = 0, ret2;
2600         handle_t *handle = ext4_journal_current_handle();
2601         loff_t new_i_size;
2602         unsigned long start, end;
2603         int write_mode = (int)(unsigned long)fsdata;
2604
2605         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2606                 switch (ext4_inode_journal_mode(inode)) {
2607                 case EXT4_INODE_ORDERED_DATA_MODE:
2608                         return ext4_ordered_write_end(file, mapping, pos,
2609                                         len, copied, page, fsdata);
2610                 case EXT4_INODE_WRITEBACK_DATA_MODE:
2611                         return ext4_writeback_write_end(file, mapping, pos,
2612                                         len, copied, page, fsdata);
2613                 default:
2614                         BUG();
2615                 }
2616         }
2617
2618         trace_ext4_da_write_end(inode, pos, len, copied);
2619         start = pos & (PAGE_CACHE_SIZE - 1);
2620         end = start + copied - 1;
2621
2622         /*
2623          * generic_write_end() will run mark_inode_dirty() if i_size
2624          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2625          * into that.
2626          */
2627
2628         new_i_size = pos + copied;
2629         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2630                 if (ext4_da_should_update_i_disksize(page, end)) {
2631                         down_write(&EXT4_I(inode)->i_data_sem);
2632                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2633                                 /*
2634                                  * Updating i_disksize when extending file
2635                                  * without needing block allocation
2636                                  */
2637                                 if (ext4_should_order_data(inode))
2638                                         ret = ext4_jbd2_file_inode(handle,
2639                                                                    inode);
2640
2641                                 EXT4_I(inode)->i_disksize = new_i_size;
2642                         }
2643                         up_write(&EXT4_I(inode)->i_data_sem);
2644                         /* We need to mark inode dirty even if
2645                          * new_i_size is less that inode->i_size
2646                          * bu greater than i_disksize.(hint delalloc)
2647                          */
2648                         ext4_mark_inode_dirty(handle, inode);
2649                 }
2650         }
2651         ret2 = generic_write_end(file, mapping, pos, len, copied,
2652                                                         page, fsdata);
2653         copied = ret2;
2654         if (ret2 < 0)
2655                 ret = ret2;
2656         ret2 = ext4_journal_stop(handle);
2657         if (!ret)
2658                 ret = ret2;
2659
2660         return ret ? ret : copied;
2661 }
2662
2663 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2664 {
2665         /*
2666          * Drop reserved blocks
2667          */
2668         BUG_ON(!PageLocked(page));
2669         if (!page_has_buffers(page))
2670                 goto out;
2671
2672         ext4_da_page_release_reservation(page, offset);
2673
2674 out:
2675         ext4_invalidatepage(page, offset);
2676
2677         return;
2678 }
2679
2680 /*
2681  * Force all delayed allocation blocks to be allocated for a given inode.
2682  */
2683 int ext4_alloc_da_blocks(struct inode *inode)
2684 {
2685         trace_ext4_alloc_da_blocks(inode);
2686
2687         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2688             !EXT4_I(inode)->i_reserved_meta_blocks)
2689                 return 0;
2690
2691         /*
2692          * We do something simple for now.  The filemap_flush() will
2693          * also start triggering a write of the data blocks, which is
2694          * not strictly speaking necessary (and for users of
2695          * laptop_mode, not even desirable).  However, to do otherwise
2696          * would require replicating code paths in:
2697          *
2698          * ext4_da_writepages() ->
2699          *    write_cache_pages() ---> (via passed in callback function)
2700          *        __mpage_da_writepage() -->
2701          *           mpage_add_bh_to_extent()
2702          *           mpage_da_map_blocks()
2703          *
2704          * The problem is that write_cache_pages(), located in
2705          * mm/page-writeback.c, marks pages clean in preparation for
2706          * doing I/O, which is not desirable if we're not planning on
2707          * doing I/O at all.
2708          *
2709          * We could call write_cache_pages(), and then redirty all of
2710          * the pages by calling redirty_page_for_writepage() but that
2711          * would be ugly in the extreme.  So instead we would need to
2712          * replicate parts of the code in the above functions,
2713          * simplifying them because we wouldn't actually intend to
2714          * write out the pages, but rather only collect contiguous
2715          * logical block extents, call the multi-block allocator, and
2716          * then update the buffer heads with the block allocations.
2717          *
2718          * For now, though, we'll cheat by calling filemap_flush(),
2719          * which will map the blocks, and start the I/O, but not
2720          * actually wait for the I/O to complete.
2721          */
2722         return filemap_flush(inode->i_mapping);
2723 }
2724
2725 /*
2726  * bmap() is special.  It gets used by applications such as lilo and by
2727  * the swapper to find the on-disk block of a specific piece of data.
2728  *
2729  * Naturally, this is dangerous if the block concerned is still in the
2730  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2731  * filesystem and enables swap, then they may get a nasty shock when the
2732  * data getting swapped to that swapfile suddenly gets overwritten by
2733  * the original zero's written out previously to the journal and
2734  * awaiting writeback in the kernel's buffer cache.
2735  *
2736  * So, if we see any bmap calls here on a modified, data-journaled file,
2737  * take extra steps to flush any blocks which might be in the cache.
2738  */
2739 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2740 {
2741         struct inode *inode = mapping->host;
2742         journal_t *journal;
2743         int err;
2744
2745         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2746                         test_opt(inode->i_sb, DELALLOC)) {
2747                 /*
2748                  * With delalloc we want to sync the file
2749                  * so that we can make sure we allocate
2750                  * blocks for file
2751                  */
2752                 filemap_write_and_wait(mapping);
2753         }
2754
2755         if (EXT4_JOURNAL(inode) &&
2756             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2757                 /*
2758                  * This is a REALLY heavyweight approach, but the use of
2759                  * bmap on dirty files is expected to be extremely rare:
2760                  * only if we run lilo or swapon on a freshly made file
2761                  * do we expect this to happen.
2762                  *
2763                  * (bmap requires CAP_SYS_RAWIO so this does not
2764                  * represent an unprivileged user DOS attack --- we'd be
2765                  * in trouble if mortal users could trigger this path at
2766                  * will.)
2767                  *
2768                  * NB. EXT4_STATE_JDATA is not set on files other than
2769                  * regular files.  If somebody wants to bmap a directory
2770                  * or symlink and gets confused because the buffer
2771                  * hasn't yet been flushed to disk, they deserve
2772                  * everything they get.
2773                  */
2774
2775                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2776                 journal = EXT4_JOURNAL(inode);
2777                 jbd2_journal_lock_updates(journal);
2778                 err = jbd2_journal_flush(journal);
2779                 jbd2_journal_unlock_updates(journal);
2780
2781                 if (err)
2782                         return 0;
2783         }
2784
2785         return generic_block_bmap(mapping, block, ext4_get_block);
2786 }
2787
2788 static int ext4_readpage(struct file *file, struct page *page)
2789 {
2790         trace_ext4_readpage(page);
2791         return mpage_readpage(page, ext4_get_block);
2792 }
2793
2794 static int
2795 ext4_readpages(struct file *file, struct address_space *mapping,
2796                 struct list_head *pages, unsigned nr_pages)
2797 {
2798         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2799 }
2800
2801 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2802 {
2803         struct buffer_head *head, *bh;
2804         unsigned int curr_off = 0;
2805
2806         if (!page_has_buffers(page))
2807                 return;
2808         head = bh = page_buffers(page);
2809         do {
2810                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2811                                         && bh->b_private) {
2812                         ext4_free_io_end(bh->b_private);
2813                         bh->b_private = NULL;
2814                         bh->b_end_io = NULL;
2815                 }
2816                 curr_off = curr_off + bh->b_size;
2817                 bh = bh->b_this_page;
2818         } while (bh != head);
2819 }
2820
2821 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2822 {
2823         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2824
2825         trace_ext4_invalidatepage(page, offset);
2826
2827         /*
2828          * free any io_end structure allocated for buffers to be discarded
2829          */
2830         if (ext4_should_dioread_nolock(page->mapping->host))
2831                 ext4_invalidatepage_free_endio(page, offset);
2832         /*
2833          * If it's a full truncate we just forget about the pending dirtying
2834          */
2835         if (offset == 0)
2836                 ClearPageChecked(page);
2837
2838         if (journal)
2839                 jbd2_journal_invalidatepage(journal, page, offset);
2840         else
2841                 block_invalidatepage(page, offset);
2842 }
2843
2844 static int ext4_releasepage(struct page *page, gfp_t wait)
2845 {
2846         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2847
2848         trace_ext4_releasepage(page);
2849
2850         WARN_ON(PageChecked(page));
2851         if (!page_has_buffers(page))
2852                 return 0;
2853         if (journal)
2854                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2855         else
2856                 return try_to_free_buffers(page);
2857 }
2858
2859 /*
2860  * ext4_get_block used when preparing for a DIO write or buffer write.
2861  * We allocate an uinitialized extent if blocks haven't been allocated.
2862  * The extent will be converted to initialized after the IO is complete.
2863  */
2864 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2865                    struct buffer_head *bh_result, int create)
2866 {
2867         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2868                    inode->i_ino, create);
2869         return _ext4_get_block(inode, iblock, bh_result,
2870                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2871 }
2872
2873 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2874                             ssize_t size, void *private, int ret,
2875                             bool is_async)
2876 {
2877         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2878         ext4_io_end_t *io_end = iocb->private;
2879         struct workqueue_struct *wq;
2880         unsigned long flags;
2881         struct ext4_inode_info *ei;
2882
2883         /* if not async direct IO or dio with 0 bytes write, just return */
2884         if (!io_end || !size)
2885                 goto out;
2886
2887         ext_debug("ext4_end_io_dio(): io_end 0x%p"
2888                   "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2889                   iocb->private, io_end->inode->i_ino, iocb, offset,
2890                   size);
2891
2892         iocb->private = NULL;
2893
2894         /* if not aio dio with unwritten extents, just free io and return */
2895         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2896                 ext4_free_io_end(io_end);
2897 out:
2898                 inode_dio_done(inode);
2899                 if (is_async)
2900                         aio_complete(iocb, ret, 0);
2901                 return;
2902         }
2903
2904         io_end->offset = offset;
2905         io_end->size = size;
2906         if (is_async) {
2907                 io_end->iocb = iocb;
2908                 io_end->result = ret;
2909         }
2910         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2911
2912         /* Add the io_end to per-inode completed aio dio list*/
2913         ei = EXT4_I(io_end->inode);
2914         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2915         list_add_tail(&io_end->list, &ei->i_completed_io_list);
2916         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2917
2918         /* queue the work to convert unwritten extents to written */
2919         queue_work(wq, &io_end->work);
2920 }
2921
2922 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2923 {
2924         ext4_io_end_t *io_end = bh->b_private;
2925         struct workqueue_struct *wq;
2926         struct inode *inode;
2927         unsigned long flags;
2928
2929         if (!test_clear_buffer_uninit(bh) || !io_end)
2930                 goto out;
2931
2932         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2933                 printk("sb umounted, discard end_io request for inode %lu\n",
2934                         io_end->inode->i_ino);
2935                 ext4_free_io_end(io_end);
2936                 goto out;
2937         }
2938
2939         /*
2940          * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2941          * but being more careful is always safe for the future change.
2942          */
2943         inode = io_end->inode;
2944         ext4_set_io_unwritten_flag(inode, io_end);
2945
2946         /* Add the io_end to per-inode completed io list*/
2947         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2948         list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2949         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2950
2951         wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2952         /* queue the work to convert unwritten extents to written */
2953         queue_work(wq, &io_end->work);
2954 out:
2955         bh->b_private = NULL;
2956         bh->b_end_io = NULL;
2957         clear_buffer_uninit(bh);
2958         end_buffer_async_write(bh, uptodate);
2959 }
2960
2961 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2962 {
2963         ext4_io_end_t *io_end;
2964         struct page *page = bh->b_page;
2965         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2966         size_t size = bh->b_size;
2967
2968 retry:
2969         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2970         if (!io_end) {
2971                 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2972                 schedule();
2973                 goto retry;
2974         }
2975         io_end->offset = offset;
2976         io_end->size = size;
2977         /*
2978          * We need to hold a reference to the page to make sure it
2979          * doesn't get evicted before ext4_end_io_work() has a chance
2980          * to convert the extent from written to unwritten.
2981          */
2982         io_end->page = page;
2983         get_page(io_end->page);
2984
2985         bh->b_private = io_end;
2986         bh->b_end_io = ext4_end_io_buffer_write;
2987         return 0;
2988 }
2989
2990 /*
2991  * For ext4 extent files, ext4 will do direct-io write to holes,
2992  * preallocated extents, and those write extend the file, no need to
2993  * fall back to buffered IO.
2994  *
2995  * For holes, we fallocate those blocks, mark them as uninitialized
2996  * If those blocks were preallocated, we mark sure they are splited, but
2997  * still keep the range to write as uninitialized.
2998  *
2999  * The unwrritten extents will be converted to written when DIO is completed.
3000  * For async direct IO, since the IO may still pending when return, we
3001  * set up an end_io call back function, which will do the conversion
3002  * when async direct IO completed.
3003  *
3004  * If the O_DIRECT write will extend the file then add this inode to the
3005  * orphan list.  So recovery will truncate it back to the original size
3006  * if the machine crashes during the write.
3007  *
3008  */
3009 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3010                               const struct iovec *iov, loff_t offset,
3011                               unsigned long nr_segs)
3012 {
3013         struct file *file = iocb->ki_filp;
3014         struct inode *inode = file->f_mapping->host;
3015         ssize_t ret;
3016         size_t count = iov_length(iov, nr_segs);
3017
3018         loff_t final_size = offset + count;
3019         if (rw == WRITE && final_size <= inode->i_size) {
3020                 /*
3021                  * We could direct write to holes and fallocate.
3022                  *
3023                  * Allocated blocks to fill the hole are marked as uninitialized
3024                  * to prevent parallel buffered read to expose the stale data
3025                  * before DIO complete the data IO.
3026                  *
3027                  * As to previously fallocated extents, ext4 get_block
3028                  * will just simply mark the buffer mapped but still
3029                  * keep the extents uninitialized.
3030                  *
3031                  * for non AIO case, we will convert those unwritten extents
3032                  * to written after return back from blockdev_direct_IO.
3033                  *
3034                  * for async DIO, the conversion needs to be defered when
3035                  * the IO is completed. The ext4 end_io callback function
3036                  * will be called to take care of the conversion work.
3037                  * Here for async case, we allocate an io_end structure to
3038                  * hook to the iocb.
3039                  */
3040                 iocb->private = NULL;
3041                 EXT4_I(inode)->cur_aio_dio = NULL;
3042                 if (!is_sync_kiocb(iocb)) {
3043                         ext4_io_end_t *io_end =
3044                                 ext4_init_io_end(inode, GFP_NOFS);
3045                         if (!io_end)
3046                                 return -ENOMEM;
3047                         io_end->flag |= EXT4_IO_END_DIRECT;
3048                         iocb->private = io_end;
3049                         /*
3050                          * we save the io structure for current async
3051                          * direct IO, so that later ext4_map_blocks()
3052                          * could flag the io structure whether there
3053                          * is a unwritten extents needs to be converted
3054                          * when IO is completed.
3055                          */
3056                         EXT4_I(inode)->cur_aio_dio = iocb->private;
3057                 }
3058
3059                 ret = __blockdev_direct_IO(rw, iocb, inode,
3060                                          inode->i_sb->s_bdev, iov,
3061                                          offset, nr_segs,
3062                                          ext4_get_block_write,
3063                                          ext4_end_io_dio,
3064                                          NULL,
3065                                          DIO_LOCKING | DIO_SKIP_HOLES);
3066                 if (iocb->private)
3067                         EXT4_I(inode)->cur_aio_dio = NULL;
3068                 /*
3069                  * The io_end structure takes a reference to the inode,
3070                  * that structure needs to be destroyed and the
3071                  * reference to the inode need to be dropped, when IO is
3072                  * complete, even with 0 byte write, or failed.
3073                  *
3074                  * In the successful AIO DIO case, the io_end structure will be
3075                  * desctroyed and the reference to the inode will be dropped
3076                  * after the end_io call back function is called.
3077                  *
3078                  * In the case there is 0 byte write, or error case, since
3079                  * VFS direct IO won't invoke the end_io call back function,
3080                  * we need to free the end_io structure here.
3081                  */
3082                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3083                         ext4_free_io_end(iocb->private);
3084                         iocb->private = NULL;
3085                 } else if (ret > 0 && ext4_test_inode_state(inode,
3086                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3087                         int err;
3088                         /*
3089                          * for non AIO case, since the IO is already
3090                          * completed, we could do the conversion right here
3091                          */
3092                         err = ext4_convert_unwritten_extents(inode,
3093                                                              offset, ret);
3094                         if (err < 0)
3095                                 ret = err;
3096                         ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3097                 }
3098                 return ret;
3099         }
3100
3101         /* for write the the end of file case, we fall back to old way */
3102         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3103 }
3104
3105 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3106                               const struct iovec *iov, loff_t offset,
3107                               unsigned long nr_segs)
3108 {
3109         struct file *file = iocb->ki_filp;
3110         struct inode *inode = file->f_mapping->host;
3111         ssize_t ret;
3112
3113         /*
3114          * If we are doing data journalling we don't support O_DIRECT
3115          */
3116         if (ext4_should_journal_data(inode))
3117                 return 0;
3118
3119         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3120         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3121                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3122         else
3123                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3124         trace_ext4_direct_IO_exit(inode, offset,
3125                                 iov_length(iov, nr_segs), rw, ret);
3126         return ret;
3127 }
3128
3129 /*
3130  * Pages can be marked dirty completely asynchronously from ext4's journalling
3131  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3132  * much here because ->set_page_dirty is called under VFS locks.  The page is
3133  * not necessarily locked.
3134  *
3135  * We cannot just dirty the page and leave attached buffers clean, because the
3136  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3137  * or jbddirty because all the journalling code will explode.
3138  *
3139  * So what we do is to mark the page "pending dirty" and next time writepage
3140  * is called, propagate that into the buffers appropriately.
3141  */
3142 static int ext4_journalled_set_page_dirty(struct page *page)
3143 {
3144         SetPageChecked(page);
3145         return __set_page_dirty_nobuffers(page);
3146 }
3147
3148 static const struct address_space_operations ext4_ordered_aops = {
3149         .readpage               = ext4_readpage,
3150         .readpages              = ext4_readpages,
3151         .writepage              = ext4_writepage,
3152         .write_begin            = ext4_write_begin,
3153         .write_end              = ext4_ordered_write_end,
3154         .bmap                   = ext4_bmap,
3155         .invalidatepage         = ext4_invalidatepage,
3156         .releasepage            = ext4_releasepage,
3157         .direct_IO              = ext4_direct_IO,
3158         .migratepage            = buffer_migrate_page,
3159         .is_partially_uptodate  = block_is_partially_uptodate,
3160         .error_remove_page      = generic_error_remove_page,
3161 };
3162
3163 static const struct address_space_operations ext4_writeback_aops = {
3164         .readpage               = ext4_readpage,
3165         .readpages              = ext4_readpages,
3166         .writepage              = ext4_writepage,
3167         .write_begin            = ext4_write_begin,
3168         .write_end              = ext4_writeback_write_end,
3169         .bmap                   = ext4_bmap,
3170         .invalidatepage         = ext4_invalidatepage,
3171         .releasepage            = ext4_releasepage,
3172         .direct_IO              = ext4_direct_IO,
3173         .migratepage            = buffer_migrate_page,
3174         .is_partially_uptodate  = block_is_partially_uptodate,
3175         .error_remove_page      = generic_error_remove_page,
3176 };
3177
3178 static const struct address_space_operations ext4_journalled_aops = {
3179         .readpage               = ext4_readpage,
3180         .readpages              = ext4_readpages,
3181         .writepage              = ext4_writepage,
3182         .write_begin            = ext4_write_begin,
3183         .write_end              = ext4_journalled_write_end,
3184         .set_page_dirty         = ext4_journalled_set_page_dirty,
3185         .bmap                   = ext4_bmap,
3186         .invalidatepage         = ext4_invalidatepage,
3187         .releasepage            = ext4_releasepage,
3188         .direct_IO              = ext4_direct_IO,
3189         .is_partially_uptodate  = block_is_partially_uptodate,
3190         .error_remove_page      = generic_error_remove_page,
3191 };
3192
3193 static const struct address_space_operations ext4_da_aops = {
3194         .readpage               = ext4_readpage,
3195         .readpages              = ext4_readpages,
3196         .writepage              = ext4_writepage,
3197         .writepages             = ext4_da_writepages,
3198         .write_begin            = ext4_da_write_begin,
3199         .write_end              = ext4_da_write_end,
3200         .bmap                   = ext4_bmap,
3201         .invalidatepage         = ext4_da_invalidatepage,
3202         .releasepage            = ext4_releasepage,
3203         .direct_IO              = ext4_direct_IO,
3204         .migratepage            = buffer_migrate_page,
3205         .is_partially_uptodate  = block_is_partially_uptodate,
3206         .error_remove_page      = generic_error_remove_page,
3207 };
3208
3209 void ext4_set_aops(struct inode *inode)
3210 {
3211         switch (ext4_inode_journal_mode(inode)) {
3212         case EXT4_INODE_ORDERED_DATA_MODE:
3213                 if (test_opt(inode->i_sb, DELALLOC))
3214                         inode->i_mapping->a_ops = &ext4_da_aops;
3215                 else
3216                         inode->i_mapping->a_ops = &ext4_ordered_aops;
3217                 break;
3218         case EXT4_INODE_WRITEBACK_DATA_MODE:
3219                 if (test_opt(inode->i_sb, DELALLOC))
3220                         inode->i_mapping->a_ops = &ext4_da_aops;
3221                 else
3222                         inode->i_mapping->a_ops = &ext4_writeback_aops;
3223                 break;
3224         case EXT4_INODE_JOURNAL_DATA_MODE:
3225                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3226                 break;
3227         default:
3228                 BUG();
3229         }
3230 }
3231
3232
3233 /*
3234  * ext4_discard_partial_page_buffers()
3235  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3236  * This function finds and locks the page containing the offset
3237  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3238  * Calling functions that already have the page locked should call
3239  * ext4_discard_partial_page_buffers_no_lock directly.
3240  */
3241 int ext4_discard_partial_page_buffers(handle_t *handle,
3242                 struct address_space *mapping, loff_t from,
3243                 loff_t length, int flags)
3244 {
3245         struct inode *inode = mapping->host;
3246         struct page *page;
3247         int err = 0;
3248
3249         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3250                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3251         if (!page)
3252                 return -ENOMEM;
3253
3254         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3255                 from, length, flags);
3256
3257         unlock_page(page);
3258         page_cache_release(page);
3259         return err;
3260 }
3261
3262 /*
3263  * ext4_discard_partial_page_buffers_no_lock()
3264  * Zeros a page range of length 'length' starting from offset 'from'.
3265  * Buffer heads that correspond to the block aligned regions of the
3266  * zeroed range will be unmapped.  Unblock aligned regions
3267  * will have the corresponding buffer head mapped if needed so that
3268  * that region of the page can be updated with the partial zero out.
3269  *
3270  * This function assumes that the page has already been  locked.  The
3271  * The range to be discarded must be contained with in the given page.
3272  * If the specified range exceeds the end of the page it will be shortened
3273  * to the end of the page that corresponds to 'from'.  This function is
3274  * appropriate for updating a page and it buffer heads to be unmapped and
3275  * zeroed for blocks that have been either released, or are going to be
3276  * released.
3277  *
3278  * handle: The journal handle
3279  * inode:  The files inode
3280  * page:   A locked page that contains the offset "from"
3281  * from:   The starting byte offset (from the begining of the file)
3282  *         to begin discarding
3283  * len:    The length of bytes to discard
3284  * flags:  Optional flags that may be used:
3285  *
3286  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3287  *         Only zero the regions of the page whose buffer heads
3288  *         have already been unmapped.  This flag is appropriate
3289  *         for updateing the contents of a page whose blocks may
3290  *         have already been released, and we only want to zero
3291  *         out the regions that correspond to those released blocks.
3292  *
3293  * Returns zero on sucess or negative on failure.
3294  */
3295 int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3296                 struct inode *inode, struct page *page, loff_t from,
3297                 loff_t length, int flags)
3298 {
3299         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3300         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3301         unsigned int blocksize, max, pos;
3302         ext4_lblk_t iblock;
3303         struct buffer_head *bh;
3304         int err = 0;
3305
3306         blocksize = inode->i_sb->s_blocksize;
3307         max = PAGE_CACHE_SIZE - offset;
3308
3309         if (index != page->index)
3310                 return -EINVAL;
3311
3312         /*
3313          * correct length if it does not fall between
3314          * 'from' and the end of the page
3315          */
3316         if (length > max || length < 0)
3317                 length = max;
3318
3319         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3320
3321         if (!page_has_buffers(page))
3322                 create_empty_buffers(page, blocksize, 0);
3323
3324         /* Find the buffer that contains "offset" */
3325         bh = page_buffers(page);
3326         pos = blocksize;
3327         while (offset >= pos) {
3328                 bh = bh->b_this_page;
3329                 iblock++;
3330                 pos += blocksize;
3331         }
3332
3333         pos = offset;
3334         while (pos < offset + length) {
3335                 unsigned int end_of_block, range_to_discard;
3336
3337                 err = 0;
3338
3339                 /* The length of space left to zero and unmap */
3340                 range_to_discard = offset + length - pos;
3341
3342                 /* The length of space until the end of the block */
3343                 end_of_block = blocksize - (pos & (blocksize-1));
3344
3345                 /*
3346                  * Do not unmap or zero past end of block
3347                  * for this buffer head
3348                  */
3349                 if (range_to_discard > end_of_block)
3350                         range_to_discard = end_of_block;
3351
3352
3353                 /*
3354                  * Skip this buffer head if we are only zeroing unampped
3355                  * regions of the page
3356                  */
3357                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3358                         buffer_mapped(bh))
3359                                 goto next;
3360
3361                 /* If the range is block aligned, unmap */
3362                 if (range_to_discard == blocksize) {
3363                         clear_buffer_dirty(bh);
3364                         bh->b_bdev = NULL;
3365                         clear_buffer_mapped(bh);
3366                         clear_buffer_req(bh);
3367                         clear_buffer_new(bh);
3368                         clear_buffer_delay(bh);
3369                         clear_buffer_unwritten(bh);
3370                         clear_buffer_uptodate(bh);
3371                         zero_user(page, pos, range_to_discard);
3372                         BUFFER_TRACE(bh, "Buffer discarded");
3373                         goto next;
3374                 }
3375
3376                 /*
3377                  * If this block is not completely contained in the range
3378                  * to be discarded, then it is not going to be released. Because
3379                  * we need to keep this block, we need to make sure this part
3380                  * of the page is uptodate before we modify it by writeing
3381                  * partial zeros on it.
3382                  */
3383                 if (!buffer_mapped(bh)) {
3384                         /*
3385                          * Buffer head must be mapped before we can read
3386                          * from the block
3387                          */
3388                         BUFFER_TRACE(bh, "unmapped");
3389                         ext4_get_block(inode, iblock, bh, 0);
3390                         /* unmapped? It's a hole - nothing to do */
3391                         if (!buffer_mapped(bh)) {
3392                                 BUFFER_TRACE(bh, "still unmapped");
3393                                 goto next;
3394                         }
3395                 }
3396
3397                 /* Ok, it's mapped. Make sure it's up-to-date */
3398                 if (PageUptodate(page))
3399                         set_buffer_uptodate(bh);
3400
3401                 if (!buffer_uptodate(bh)) {
3402                         err = -EIO;
3403                         ll_rw_block(READ, 1, &bh);
3404                         wait_on_buffer(bh);
3405                         /* Uhhuh. Read error. Complain and punt.*/
3406                         if (!buffer_uptodate(bh))
3407                                 goto next;
3408                 }
3409
3410                 if (ext4_should_journal_data(inode)) {
3411                         BUFFER_TRACE(bh, "get write access");
3412                         err = ext4_journal_get_write_access(handle, bh);
3413                         if (err)
3414                                 goto next;
3415                 }
3416
3417                 zero_user(page, pos, range_to_discard);
3418
3419                 err = 0;
3420                 if (ext4_should_journal_data(inode)) {
3421                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3422                 } else
3423                         mark_buffer_dirty(bh);
3424
3425                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3426 next:
3427                 bh = bh->b_this_page;
3428                 iblock++;
3429                 pos += range_to_discard;
3430         }
3431
3432         return err;
3433 }
3434
3435 /*
3436  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3437  * up to the end of the block which corresponds to `from'.
3438  * This required during truncate. We need to physically zero the tail end
3439  * of that block so it doesn't yield old data if the file is later grown.
3440  */
3441 int ext4_block_truncate_page(handle_t *handle,
3442                 struct address_space *mapping, loff_t from)
3443 {
3444         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3445         unsigned length;
3446         unsigned blocksize;
3447         struct inode *inode = mapping->host;
3448
3449         blocksize = inode->i_sb->s_blocksize;
3450         length = blocksize - (offset & (blocksize - 1));
3451
3452         return ext4_block_zero_page_range(handle, mapping, from, length);
3453 }
3454
3455 /*
3456  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3457  * starting from file offset 'from'.  The range to be zero'd must
3458  * be contained with in one block.  If the specified range exceeds
3459  * the end of the block it will be shortened to end of the block
3460  * that cooresponds to 'from'
3461  */
3462 int ext4_block_zero_page_range(handle_t *handle,
3463                 struct address_space *mapping, loff_t from, loff_t length)
3464 {
3465         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3466         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3467         unsigned blocksize, max, pos;
3468         ext4_lblk_t iblock;
3469         struct inode *inode = mapping->host;
3470         struct buffer_head *bh;
3471         struct page *page;
3472         int err = 0;
3473
3474         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3475                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3476         if (!page)
3477                 return -ENOMEM;
3478
3479         blocksize = inode->i_sb->s_blocksize;
3480         max = blocksize - (offset & (blocksize - 1));
3481
3482         /*
3483          * correct length if it does not fall between
3484          * 'from' and the end of the block
3485          */
3486         if (length > max || length < 0)
3487                 length = max;
3488
3489         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3490
3491         if (!page_has_buffers(page))
3492                 create_empty_buffers(page, blocksize, 0);
3493
3494         /* Find the buffer that contains "offset" */
3495         bh = page_buffers(page);
3496         pos = blocksize;
3497         while (offset >= pos) {
3498                 bh = bh->b_this_page;
3499                 iblock++;
3500                 pos += blocksize;
3501         }
3502
3503         err = 0;
3504         if (buffer_freed(bh)) {
3505                 BUFFER_TRACE(bh, "freed: skip");
3506                 goto unlock;
3507         }
3508
3509         if (!buffer_mapped(bh)) {
3510                 BUFFER_TRACE(bh, "unmapped");
3511                 ext4_get_block(inode, iblock, bh, 0);
3512                 /* unmapped? It's a hole - nothing to do */
3513                 if (!buffer_mapped(bh)) {
3514                         BUFFER_TRACE(bh, "still unmapped");
3515                         goto unlock;
3516                 }
3517         }
3518
3519         /* Ok, it's mapped. Make sure it's up-to-date */
3520         if (PageUptodate(page))
3521                 set_buffer_uptodate(bh);
3522
3523         if (!buffer_uptodate(bh)) {
3524                 err = -EIO;
3525                 ll_rw_block(READ, 1, &bh);
3526                 wait_on_buffer(bh);
3527                 /* Uhhuh. Read error. Complain and punt. */
3528                 if (!buffer_uptodate(bh))
3529                         goto unlock;
3530         }
3531
3532         if (ext4_should_journal_data(inode)) {
3533                 BUFFER_TRACE(bh, "get write access");
3534                 err = ext4_journal_get_write_access(handle, bh);
3535                 if (err)
3536                         goto unlock;
3537         }
3538
3539         zero_user(page, offset, length);
3540
3541         BUFFER_TRACE(bh, "zeroed end of block");
3542
3543         err = 0;
3544         if (ext4_should_journal_data(inode)) {
3545                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3546         } else
3547                 mark_buffer_dirty(bh);
3548
3549 unlock:
3550         unlock_page(page);
3551         page_cache_release(page);
3552         return err;
3553 }
3554
3555 int ext4_can_truncate(struct inode *inode)
3556 {
3557         if (S_ISREG(inode->i_mode))
3558                 return 1;
3559         if (S_ISDIR(inode->i_mode))
3560                 return 1;
3561         if (S_ISLNK(inode->i_mode))
3562                 return !ext4_inode_is_fast_symlink(inode);
3563         return 0;
3564 }
3565
3566 /*
3567  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3568  * associated with the given offset and length
3569  *
3570  * @inode:  File inode
3571  * @offset: The offset where the hole will begin
3572  * @len:    The length of the hole
3573  *
3574  * Returns: 0 on sucess or negative on failure
3575  */
3576
3577 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3578 {
3579         struct inode *inode = file->f_path.dentry->d_inode;
3580         if (!S_ISREG(inode->i_mode))
3581                 return -ENOTSUPP;
3582
3583         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3584                 /* TODO: Add support for non extent hole punching */
3585                 return -ENOTSUPP;
3586         }
3587
3588         if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3589                 /* TODO: Add support for bigalloc file systems */
3590                 return -ENOTSUPP;
3591         }
3592
3593         return ext4_ext_punch_hole(file, offset, length);
3594 }
3595
3596 /*
3597  * ext4_truncate()
3598  *
3599  * We block out ext4_get_block() block instantiations across the entire
3600  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3601  * simultaneously on behalf of the same inode.
3602  *
3603  * As we work through the truncate and commmit bits of it to the journal there
3604  * is one core, guiding principle: the file's tree must always be consistent on
3605  * disk.  We must be able to restart the truncate after a crash.
3606  *
3607  * The file's tree may be transiently inconsistent in memory (although it
3608  * probably isn't), but whenever we close off and commit a journal transaction,
3609  * the contents of (the filesystem + the journal) must be consistent and
3610  * restartable.  It's pretty simple, really: bottom up, right to left (although
3611  * left-to-right works OK too).
3612  *
3613  * Note that at recovery time, journal replay occurs *before* the restart of
3614  * truncate against the orphan inode list.
3615  *
3616  * The committed inode has the new, desired i_size (which is the same as
3617  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3618  * that this inode's truncate did not complete and it will again call
3619  * ext4_truncate() to have another go.  So there will be instantiated blocks
3620  * to the right of the truncation point in a crashed ext4 filesystem.  But
3621  * that's fine - as long as they are linked from the inode, the post-crash
3622  * ext4_truncate() run will find them and release them.
3623  */
3624 void ext4_truncate(struct inode *inode)
3625 {
3626         trace_ext4_truncate_enter(inode);
3627
3628         if (!ext4_can_truncate(inode))
3629                 return;
3630
3631         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3632
3633         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3634                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3635
3636         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3637                 ext4_ext_truncate(inode);
3638         else
3639                 ext4_ind_truncate(inode);
3640
3641         trace_ext4_truncate_exit(inode);
3642 }
3643
3644 /*
3645  * ext4_get_inode_loc returns with an extra refcount against the inode's
3646  * underlying buffer_head on success. If 'in_mem' is true, we have all
3647  * data in memory that is needed to recreate the on-disk version of this
3648  * inode.
3649  */
3650 static int __ext4_get_inode_loc(struct inode *inode,
3651                                 struct ext4_iloc *iloc, int in_mem)
3652 {
3653         struct ext4_group_desc  *gdp;
3654         struct buffer_head      *bh;
3655         struct super_block      *sb = inode->i_sb;
3656         ext4_fsblk_t            block;
3657         int                     inodes_per_block, inode_offset;
3658
3659         iloc->bh = NULL;
3660         if (!ext4_valid_inum(sb, inode->i_ino))
3661                 return -EIO;
3662
3663         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3664         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3665         if (!gdp)
3666                 return -EIO;
3667
3668         /*
3669          * Figure out the offset within the block group inode table
3670          */
3671         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3672         inode_offset = ((inode->i_ino - 1) %
3673                         EXT4_INODES_PER_GROUP(sb));
3674         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3675         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3676
3677         bh = sb_getblk(sb, block);
3678         if (!bh)
3679                 return -ENOMEM;
3680         if (!buffer_uptodate(bh)) {
3681                 lock_buffer(bh);
3682
3683                 /*
3684                  * If the buffer has the write error flag, we have failed
3685                  * to write out another inode in the same block.  In this
3686                  * case, we don't have to read the block because we may
3687                  * read the old inode data successfully.
3688                  */
3689                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3690                         set_buffer_uptodate(bh);
3691
3692                 if (buffer_uptodate(bh)) {
3693                         /* someone brought it uptodate while we waited */
3694                         unlock_buffer(bh);
3695                         goto has_buffer;
3696                 }
3697
3698                 /*
3699                  * If we have all information of the inode in memory and this
3700                  * is the only valid inode in the block, we need not read the
3701                  * block.
3702                  */
3703                 if (in_mem) {
3704                         struct buffer_head *bitmap_bh;
3705                         int i, start;
3706
3707                         start = inode_offset & ~(inodes_per_block - 1);
3708
3709                         /* Is the inode bitmap in cache? */
3710                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3711                         if (!bitmap_bh)
3712                                 goto make_io;
3713
3714                         /*
3715                          * If the inode bitmap isn't in cache then the
3716                          * optimisation may end up performing two reads instead
3717                          * of one, so skip it.
3718                          */
3719                         if (!buffer_uptodate(bitmap_bh)) {
3720                                 brelse(bitmap_bh);
3721                                 goto make_io;
3722                         }
3723                         for (i = start; i < start + inodes_per_block; i++) {
3724                                 if (i == inode_offset)
3725                                         continue;
3726                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3727                                         break;
3728                         }
3729                         brelse(bitmap_bh);
3730                         if (i == start + inodes_per_block) {
3731                                 /* all other inodes are free, so skip I/O */
3732                                 memset(bh->b_data, 0, bh->b_size);
3733                                 set_buffer_uptodate(bh);
3734                                 unlock_buffer(bh);
3735                                 goto has_buffer;
3736                         }
3737                 }
3738
3739 make_io:
3740                 /*
3741                  * If we need to do any I/O, try to pre-readahead extra
3742                  * blocks from the inode table.
3743                  */
3744                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3745                         ext4_fsblk_t b, end, table;
3746                         unsigned num;
3747
3748                         table = ext4_inode_table(sb, gdp);
3749                         /* s_inode_readahead_blks is always a power of 2 */
3750                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3751                         if (table > b)
3752                                 b = table;
3753                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3754                         num = EXT4_INODES_PER_GROUP(sb);
3755                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3756                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3757                                 num -= ext4_itable_unused_count(sb, gdp);
3758                         table += num / inodes_per_block;
3759                         if (end > table)
3760                                 end = table;
3761                         while (b <= end)
3762                                 sb_breadahead(sb, b++);
3763                 }
3764
3765                 /*
3766                  * There are other valid inodes in the buffer, this inode
3767                  * has in-inode xattrs, or we don't have this inode in memory.
3768                  * Read the block from disk.
3769                  */
3770                 trace_ext4_load_inode(inode);
3771                 get_bh(bh);
3772                 bh->b_end_io = end_buffer_read_sync;
3773                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3774                 wait_on_buffer(bh);
3775                 if (!buffer_uptodate(bh)) {
3776                         EXT4_ERROR_INODE_BLOCK(inode, block,
3777                                                "unable to read itable block");
3778                         brelse(bh);
3779                         return -EIO;
3780                 }
3781         }
3782 has_buffer:
3783         iloc->bh = bh;
3784         return 0;
3785 }
3786
3787 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3788 {
3789         /* We have all inode data except xattrs in memory here. */
3790         return __ext4_get_inode_loc(inode, iloc,
3791                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3792 }
3793
3794 void ext4_set_inode_flags(struct inode *inode)
3795 {
3796         unsigned int flags = EXT4_I(inode)->i_flags;
3797         unsigned int new_fl = 0;
3798
3799         if (flags & EXT4_SYNC_FL)
3800                 new_fl |= S_SYNC;
3801         if (flags & EXT4_APPEND_FL)
3802                 new_fl |= S_APPEND;
3803         if (flags & EXT4_IMMUTABLE_FL)
3804                 new_fl |= S_IMMUTABLE;
3805         if (flags & EXT4_NOATIME_FL)
3806                 new_fl |= S_NOATIME;
3807         if (flags & EXT4_DIRSYNC_FL)
3808                 new_fl |= S_DIRSYNC;
3809         set_mask_bits(&inode->i_flags,
3810                       S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC, new_fl);
3811 }
3812
3813 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3814 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3815 {
3816         unsigned int vfs_fl;
3817         unsigned long old_fl, new_fl;
3818
3819         do {
3820                 vfs_fl = ei->vfs_inode.i_flags;
3821                 old_fl = ei->i_flags;
3822                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3823                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3824                                 EXT4_DIRSYNC_FL);
3825                 if (vfs_fl & S_SYNC)
3826                         new_fl |= EXT4_SYNC_FL;
3827                 if (vfs_fl & S_APPEND)
3828                         new_fl |= EXT4_APPEND_FL;
3829                 if (vfs_fl & S_IMMUTABLE)
3830                         new_fl |= EXT4_IMMUTABLE_FL;
3831                 if (vfs_fl & S_NOATIME)
3832                         new_fl |= EXT4_NOATIME_FL;
3833                 if (vfs_fl & S_DIRSYNC)
3834                         new_fl |= EXT4_DIRSYNC_FL;
3835         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3836 }
3837
3838 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3839                                   struct ext4_inode_info *ei)
3840 {
3841         blkcnt_t i_blocks ;
3842         struct inode *inode = &(ei->vfs_inode);
3843         struct super_block *sb = inode->i_sb;
3844
3845         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3846                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3847                 /* we are using combined 48 bit field */
3848                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3849                                         le32_to_cpu(raw_inode->i_blocks_lo);
3850                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3851                         /* i_blocks represent file system block size */
3852                         return i_blocks  << (inode->i_blkbits - 9);
3853                 } else {
3854                         return i_blocks;
3855                 }
3856         } else {
3857                 return le32_to_cpu(raw_inode->i_blocks_lo);
3858         }
3859 }
3860
3861 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3862 {
3863         struct ext4_iloc iloc;
3864         struct ext4_inode *raw_inode;
3865         struct ext4_inode_info *ei;
3866         struct inode *inode;
3867         journal_t *journal = EXT4_SB(sb)->s_journal;
3868         long ret;
3869         loff_t size;
3870         int block;
3871
3872         inode = iget_locked(sb, ino);
3873         if (!inode)
3874                 return ERR_PTR(-ENOMEM);
3875         if (!(inode->i_state & I_NEW))
3876                 return inode;
3877
3878         ei = EXT4_I(inode);
3879         iloc.bh = NULL;
3880
3881         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3882         if (ret < 0)
3883                 goto bad_inode;
3884         raw_inode = ext4_raw_inode(&iloc);
3885         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3886         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3887         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3888         if (!(test_opt(inode->i_sb, NO_UID32))) {
3889                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3890                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3891         }
3892         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3893
3894         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3895         ei->i_dir_start_lookup = 0;
3896         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3897         /* We now have enough fields to check if the inode was active or not.
3898          * This is needed because nfsd might try to access dead inodes
3899          * the test is that same one that e2fsck uses
3900          * NeilBrown 1999oct15
3901          */
3902         if (inode->i_nlink == 0) {
3903                 if (inode->i_mode == 0 ||
3904                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3905                         /* this inode is deleted */
3906                         ret = -ESTALE;
3907                         goto bad_inode;
3908                 }
3909                 /* The only unlinked inodes we let through here have
3910                  * valid i_mode and are being read by the orphan
3911                  * recovery code: that's fine, we're about to complete
3912                  * the process of deleting those. */
3913         }
3914         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3915         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3916         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3917         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3918                 ei->i_file_acl |=
3919                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3920         inode->i_size = ext4_isize(raw_inode);
3921         if ((size = i_size_read(inode)) < 0) {
3922                 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
3923                 ret = -EIO;
3924                 goto bad_inode;
3925         }
3926         ei->i_disksize = inode->i_size;
3927 #ifdef CONFIG_QUOTA
3928         ei->i_reserved_quota = 0;
3929 #endif
3930         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3931         ei->i_block_group = iloc.block_group;
3932         ei->i_last_alloc_group = ~0;
3933         /*
3934          * NOTE! The in-memory inode i_data array is in little-endian order
3935          * even on big-endian machines: we do NOT byteswap the block numbers!
3936          */
3937         for (block = 0; block < EXT4_N_BLOCKS; block++)
3938                 ei->i_data[block] = raw_inode->i_block[block];
3939         INIT_LIST_HEAD(&ei->i_orphan);
3940
3941         /*
3942          * Set transaction id's of transactions that have to be committed
3943          * to finish f[data]sync. We set them to currently running transaction
3944          * as we cannot be sure that the inode or some of its metadata isn't
3945          * part of the transaction - the inode could have been reclaimed and
3946          * now it is reread from disk.
3947          */
3948         if (journal) {
3949                 transaction_t *transaction;
3950                 tid_t tid;
3951
3952                 read_lock(&journal->j_state_lock);
3953                 if (journal->j_running_transaction)
3954                         transaction = journal->j_running_transaction;
3955                 else
3956                         transaction = journal->j_committing_transaction;
3957                 if (transaction)
3958                         tid = transaction->t_tid;
3959                 else
3960                         tid = journal->j_commit_sequence;
3961                 read_unlock(&journal->j_state_lock);
3962                 ei->i_sync_tid = tid;
3963                 ei->i_datasync_tid = tid;
3964         }
3965
3966         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3967                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3968                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3969                     EXT4_INODE_SIZE(inode->i_sb)) {
3970                         ret = -EIO;
3971                         goto bad_inode;
3972                 }
3973                 if (ei->i_extra_isize == 0) {
3974                         /* The extra space is currently unused. Use it. */
3975                         ei->i_extra_isize = sizeof(struct ext4_inode) -
3976                                             EXT4_GOOD_OLD_INODE_SIZE;
3977                 } else {
3978                         __le32 *magic = (void *)raw_inode +
3979                                         EXT4_GOOD_OLD_INODE_SIZE +
3980                                         ei->i_extra_isize;
3981                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3982                                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3983                 }
3984         } else
3985                 ei->i_extra_isize = 0;
3986
3987         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3988         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3989         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3990         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3991
3992         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3993         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3994                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3995                         inode->i_version |=
3996                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3997         }
3998
3999         ret = 0;
4000         if (ei->i_file_acl &&
4001             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4002                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4003                                  ei->i_file_acl);
4004                 ret = -EIO;
4005                 goto bad_inode;
4006         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4007                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4008                     (S_ISLNK(inode->i_mode) &&
4009                      !ext4_inode_is_fast_symlink(inode)))
4010                         /* Validate extent which is part of inode */
4011                         ret = ext4_ext_check_inode(inode);
4012         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4013                    (S_ISLNK(inode->i_mode) &&
4014                     !ext4_inode_is_fast_symlink(inode))) {
4015                 /* Validate block references which are part of inode */
4016                 ret = ext4_ind_check_inode(inode);
4017         }
4018         if (ret)
4019                 goto bad_inode;
4020
4021         if (S_ISREG(inode->i_mode)) {
4022                 inode->i_op = &ext4_file_inode_operations;
4023                 inode->i_fop = &ext4_file_operations;
4024                 ext4_set_aops(inode);
4025         } else if (S_ISDIR(inode->i_mode)) {
4026                 inode->i_op = &ext4_dir_inode_operations;
4027                 inode->i_fop = &ext4_dir_operations;
4028         } else if (S_ISLNK(inode->i_mode)) {
4029                 if (ext4_inode_is_fast_symlink(inode)) {
4030                         inode->i_op = &ext4_fast_symlink_inode_operations;
4031                         nd_terminate_link(ei->i_data, inode->i_size,
4032                                 sizeof(ei->i_data) - 1);
4033                 } else {
4034                         inode->i_op = &ext4_symlink_inode_operations;
4035                         ext4_set_aops(inode);
4036                 }
4037         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4038               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4039                 inode->i_op = &ext4_special_inode_operations;
4040                 if (raw_inode->i_block[0])
4041                         init_special_inode(inode, inode->i_mode,
4042                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4043                 else
4044                         init_special_inode(inode, inode->i_mode,
4045                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4046         } else {
4047                 ret = -EIO;
4048                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4049                 goto bad_inode;
4050         }
4051         brelse(iloc.bh);
4052         ext4_set_inode_flags(inode);
4053         unlock_new_inode(inode);
4054         return inode;
4055
4056 bad_inode:
4057         brelse(iloc.bh);
4058         iget_failed(inode);
4059         return ERR_PTR(ret);
4060 }
4061
4062 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4063 {
4064         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4065                 return ERR_PTR(-EIO);
4066         return ext4_iget(sb, ino);
4067 }
4068
4069 static int ext4_inode_blocks_set(handle_t *handle,
4070                                 struct ext4_inode *raw_inode,
4071                                 struct ext4_inode_info *ei)
4072 {
4073         struct inode *inode = &(ei->vfs_inode);
4074         u64 i_blocks = inode->i_blocks;
4075         struct super_block *sb = inode->i_sb;
4076
4077         if (i_blocks <= ~0U) {
4078                 /*
4079                  * i_blocks can be represnted in a 32 bit variable
4080                  * as multiple of 512 bytes
4081                  */
4082                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4083                 raw_inode->i_blocks_high = 0;
4084                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4085                 return 0;
4086         }
4087         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4088                 return -EFBIG;
4089
4090         if (i_blocks <= 0xffffffffffffULL) {
4091                 /*
4092                  * i_blocks can be represented in a 48 bit variable
4093                  * as multiple of 512 bytes
4094                  */
4095                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4096                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4097                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4098         } else {
4099                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4100                 /* i_block is stored in file system block size */
4101                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4102                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4103                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4104         }
4105         return 0;
4106 }
4107
4108 /*
4109  * Post the struct inode info into an on-disk inode location in the
4110  * buffer-cache.  This gobbles the caller's reference to the
4111  * buffer_head in the inode location struct.
4112  *
4113  * The caller must have write access to iloc->bh.
4114  */
4115 static int ext4_do_update_inode(handle_t *handle,
4116                                 struct inode *inode,
4117                                 struct ext4_iloc *iloc)
4118 {
4119         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4120         struct ext4_inode_info *ei = EXT4_I(inode);
4121         struct buffer_head *bh = iloc->bh;
4122         int err = 0, rc, block;
4123         int need_datasync = 0;
4124
4125         /* For fields not not tracking in the in-memory inode,
4126          * initialise them to zero for new inodes. */
4127         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4128                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4129
4130         ext4_get_inode_flags(ei);
4131         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4132         if (!(test_opt(inode->i_sb, NO_UID32))) {
4133                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4134                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4135 /*
4136  * Fix up interoperability with old kernels. Otherwise, old inodes get
4137  * re-used with the upper 16 bits of the uid/gid intact
4138  */
4139                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4140                         raw_inode->i_uid_high = 0;
4141                         raw_inode->i_gid_high = 0;
4142                 } else {
4143                         raw_inode->i_uid_high =
4144                                 cpu_to_le16(high_16_bits(inode->i_uid));
4145                         raw_inode->i_gid_high =
4146                                 cpu_to_le16(high_16_bits(inode->i_gid));
4147                 }
4148         } else {
4149                 raw_inode->i_uid_low =
4150                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4151                 raw_inode->i_gid_low =
4152                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4153                 raw_inode->i_uid_high = 0;
4154                 raw_inode->i_gid_high = 0;
4155         }
4156         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4157
4158         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4159         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4160         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4161         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4162
4163         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4164                 goto out_brelse;
4165         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4166         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4167         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4168             cpu_to_le32(EXT4_OS_HURD))
4169                 raw_inode->i_file_acl_high =
4170                         cpu_to_le16(ei->i_file_acl >> 32);
4171         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4172         if (ei->i_disksize != ext4_isize(raw_inode)) {
4173                 ext4_isize_set(raw_inode, ei->i_disksize);
4174                 need_datasync = 1;
4175         }
4176         if (ei->i_disksize > 0x7fffffffULL) {
4177                 struct super_block *sb = inode->i_sb;
4178                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4179                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4180                                 EXT4_SB(sb)->s_es->s_rev_level ==
4181                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4182                         /* If this is the first large file
4183                          * created, add a flag to the superblock.
4184                          */
4185                         err = ext4_journal_get_write_access(handle,
4186                                         EXT4_SB(sb)->s_sbh);
4187                         if (err)
4188                                 goto out_brelse;
4189                         ext4_update_dynamic_rev(sb);
4190                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4191                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4192                         sb->s_dirt = 1;
4193                         ext4_handle_sync(handle);
4194                         err = ext4_handle_dirty_metadata(handle, NULL,
4195                                         EXT4_SB(sb)->s_sbh);
4196                 }
4197         }
4198         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4199         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4200                 if (old_valid_dev(inode->i_rdev)) {
4201                         raw_inode->i_block[0] =
4202                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4203                         raw_inode->i_block[1] = 0;
4204                 } else {
4205                         raw_inode->i_block[0] = 0;
4206                         raw_inode->i_block[1] =
4207                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4208                         raw_inode->i_block[2] = 0;
4209                 }
4210         } else
4211                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4212                         raw_inode->i_block[block] = ei->i_data[block];
4213
4214         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4215         if (ei->i_extra_isize) {
4216                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4217                         raw_inode->i_version_hi =
4218                         cpu_to_le32(inode->i_version >> 32);
4219                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4220         }
4221
4222         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4223         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4224         if (!err)
4225                 err = rc;
4226         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4227
4228         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4229 out_brelse:
4230         brelse(bh);
4231         ext4_std_error(inode->i_sb, err);
4232         return err;
4233 }
4234
4235 /*
4236  * ext4_write_inode()
4237  *
4238  * We are called from a few places:
4239  *
4240  * - Within generic_file_write() for O_SYNC files.
4241  *   Here, there will be no transaction running. We wait for any running
4242  *   trasnaction to commit.
4243  *
4244  * - Within sys_sync(), kupdate and such.
4245  *   We wait on commit, if tol to.
4246  *
4247  * - Within prune_icache() (PF_MEMALLOC == true)
4248  *   Here we simply return.  We can't afford to block kswapd on the
4249  *   journal commit.
4250  *
4251  * In all cases it is actually safe for us to return without doing anything,
4252  * because the inode has been copied into a raw inode buffer in
4253  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4254  * knfsd.
4255  *
4256  * Note that we are absolutely dependent upon all inode dirtiers doing the
4257  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4258  * which we are interested.
4259  *
4260  * It would be a bug for them to not do this.  The code:
4261  *
4262  *      mark_inode_dirty(inode)
4263  *      stuff();
4264  *      inode->i_size = expr;
4265  *
4266  * is in error because a kswapd-driven write_inode() could occur while
4267  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4268  * will no longer be on the superblock's dirty inode list.
4269  */
4270 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4271 {
4272         int err;
4273
4274         if (current->flags & PF_MEMALLOC)
4275                 return 0;
4276
4277         if (EXT4_SB(inode->i_sb)->s_journal) {
4278                 if (ext4_journal_current_handle()) {
4279                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4280                         dump_stack();
4281                         return -EIO;
4282                 }
4283
4284                 if (wbc->sync_mode != WB_SYNC_ALL)
4285                         return 0;
4286
4287                 err = ext4_force_commit(inode->i_sb);
4288         } else {
4289                 struct ext4_iloc iloc;
4290
4291                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4292                 if (err)
4293                         return err;
4294                 if (wbc->sync_mode == WB_SYNC_ALL)
4295                         sync_dirty_buffer(iloc.bh);
4296                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4297                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4298                                          "IO error syncing inode");
4299                         err = -EIO;
4300                 }
4301                 brelse(iloc.bh);
4302         }
4303         return err;
4304 }
4305
4306 /*
4307  * ext4_setattr()
4308  *
4309  * Called from notify_change.
4310  *
4311  * We want to trap VFS attempts to truncate the file as soon as
4312  * possible.  In particular, we want to make sure that when the VFS
4313  * shrinks i_size, we put the inode on the orphan list and modify
4314  * i_disksize immediately, so that during the subsequent flushing of
4315  * dirty pages and freeing of disk blocks, we can guarantee that any
4316  * commit will leave the blocks being flushed in an unused state on
4317  * disk.  (On recovery, the inode will get truncated and the blocks will
4318  * be freed, so we have a strong guarantee that no future commit will
4319  * leave these blocks visible to the user.)
4320  *
4321  * Another thing we have to assure is that if we are in ordered mode
4322  * and inode is still attached to the committing transaction, we must
4323  * we start writeout of all the dirty pages which are being truncated.
4324  * This way we are sure that all the data written in the previous
4325  * transaction are already on disk (truncate waits for pages under
4326  * writeback).
4327  *
4328  * Called with inode->i_mutex down.
4329  */
4330 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4331 {
4332         struct inode *inode = dentry->d_inode;
4333         int error, rc = 0;
4334         int orphan = 0;
4335         const unsigned int ia_valid = attr->ia_valid;
4336
4337         error = setattr_prepare(dentry, attr);
4338         if (error)
4339                 return error;
4340
4341         if (is_quota_modification(inode, attr))
4342                 dquot_initialize(inode);
4343         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4344                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4345                 handle_t *handle;
4346
4347                 /* (user+group)*(old+new) structure, inode write (sb,
4348                  * inode block, ? - but truncate inode update has it) */
4349                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4350                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4351                 if (IS_ERR(handle)) {
4352                         error = PTR_ERR(handle);
4353                         goto err_out;
4354                 }
4355                 error = dquot_transfer(inode, attr);
4356                 if (error) {
4357                         ext4_journal_stop(handle);
4358                         return error;
4359                 }
4360                 /* Update corresponding info in inode so that everything is in
4361                  * one transaction */
4362                 if (attr->ia_valid & ATTR_UID)
4363                         inode->i_uid = attr->ia_uid;
4364                 if (attr->ia_valid & ATTR_GID)
4365                         inode->i_gid = attr->ia_gid;
4366                 error = ext4_mark_inode_dirty(handle, inode);
4367                 ext4_journal_stop(handle);
4368         }
4369
4370         if (attr->ia_valid & ATTR_SIZE) {
4371                 inode_dio_wait(inode);
4372
4373                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4374                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4375
4376                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4377                                 return -EFBIG;
4378                 }
4379         }
4380
4381         if (S_ISREG(inode->i_mode) &&
4382             attr->ia_valid & ATTR_SIZE &&
4383             (attr->ia_size < inode->i_size)) {
4384                 handle_t *handle;
4385
4386                 handle = ext4_journal_start(inode, 3);
4387                 if (IS_ERR(handle)) {
4388                         error = PTR_ERR(handle);
4389                         goto err_out;
4390                 }
4391                 if (ext4_handle_valid(handle)) {
4392                         error = ext4_orphan_add(handle, inode);
4393                         orphan = 1;
4394                 }
4395                 EXT4_I(inode)->i_disksize = attr->ia_size;
4396                 rc = ext4_mark_inode_dirty(handle, inode);
4397                 if (!error)
4398                         error = rc;
4399                 ext4_journal_stop(handle);
4400
4401                 if (ext4_should_order_data(inode)) {
4402                         error = ext4_begin_ordered_truncate(inode,
4403                                                             attr->ia_size);
4404                         if (error) {
4405                                 /* Do as much error cleanup as possible */
4406                                 handle = ext4_journal_start(inode, 3);
4407                                 if (IS_ERR(handle)) {
4408                                         ext4_orphan_del(NULL, inode);
4409                                         goto err_out;
4410                                 }
4411                                 ext4_orphan_del(handle, inode);
4412                                 orphan = 0;
4413                                 ext4_journal_stop(handle);
4414                                 goto err_out;
4415                         }
4416                 }
4417         }
4418
4419         if (attr->ia_valid & ATTR_SIZE) {
4420                 if (attr->ia_size != i_size_read(inode)) {
4421                         truncate_setsize(inode, attr->ia_size);
4422                         ext4_truncate(inode);
4423                 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
4424                         ext4_truncate(inode);
4425         }
4426
4427         if (!rc) {
4428                 setattr_copy(inode, attr);
4429                 mark_inode_dirty(inode);
4430         }
4431
4432         /*
4433          * If the call to ext4_truncate failed to get a transaction handle at
4434          * all, we need to clean up the in-core orphan list manually.
4435          */
4436         if (orphan && inode->i_nlink)
4437                 ext4_orphan_del(NULL, inode);
4438
4439         if (!rc && (ia_valid & ATTR_MODE))
4440                 rc = ext4_acl_chmod(inode);
4441
4442 err_out:
4443         ext4_std_error(inode->i_sb, error);
4444         if (!error)
4445                 error = rc;
4446         return error;
4447 }
4448
4449 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4450                  struct kstat *stat)
4451 {
4452         struct inode *inode;
4453         unsigned long long delalloc_blocks;
4454
4455         inode = dentry->d_inode;
4456         generic_fillattr(inode, stat);
4457
4458         /*
4459          * We can't update i_blocks if the block allocation is delayed
4460          * otherwise in the case of system crash before the real block
4461          * allocation is done, we will have i_blocks inconsistent with
4462          * on-disk file blocks.
4463          * We always keep i_blocks updated together with real
4464          * allocation. But to not confuse with user, stat
4465          * will return the blocks that include the delayed allocation
4466          * blocks for this file.
4467          */
4468         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4469
4470         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4471         return 0;
4472 }
4473
4474 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4475 {
4476         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4477                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4478         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4479 }
4480
4481 /*
4482  * Account for index blocks, block groups bitmaps and block group
4483  * descriptor blocks if modify datablocks and index blocks
4484  * worse case, the indexs blocks spread over different block groups
4485  *
4486  * If datablocks are discontiguous, they are possible to spread over
4487  * different block groups too. If they are contiuguous, with flexbg,
4488  * they could still across block group boundary.
4489  *
4490  * Also account for superblock, inode, quota and xattr blocks
4491  */
4492 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4493 {
4494         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4495         int gdpblocks;
4496         int idxblocks;
4497         int ret = 0;
4498
4499         /*
4500          * How many index blocks need to touch to modify nrblocks?
4501          * The "Chunk" flag indicating whether the nrblocks is
4502          * physically contiguous on disk
4503          *
4504          * For Direct IO and fallocate, they calls get_block to allocate
4505          * one single extent at a time, so they could set the "Chunk" flag
4506          */
4507         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4508
4509         ret = idxblocks;
4510
4511         /*
4512          * Now let's see how many group bitmaps and group descriptors need
4513          * to account
4514          */
4515         groups = idxblocks;
4516         if (chunk)
4517                 groups += 1;
4518         else
4519                 groups += nrblocks;
4520
4521         gdpblocks = groups;
4522         if (groups > ngroups)
4523                 groups = ngroups;
4524         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4525                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4526
4527         /* bitmaps and block group descriptor blocks */
4528         ret += groups + gdpblocks;
4529
4530         /* Blocks for super block, inode, quota and xattr blocks */
4531         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4532
4533         return ret;
4534 }
4535
4536 /*
4537  * Calculate the total number of credits to reserve to fit
4538  * the modification of a single pages into a single transaction,
4539  * which may include multiple chunks of block allocations.
4540  *
4541  * This could be called via ext4_write_begin()
4542  *
4543  * We need to consider the worse case, when
4544  * one new block per extent.
4545  */
4546 int ext4_writepage_trans_blocks(struct inode *inode)
4547 {
4548         int bpp = ext4_journal_blocks_per_page(inode);
4549         int ret;
4550
4551         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4552
4553         /* Account for data blocks for journalled mode */
4554         if (ext4_should_journal_data(inode))
4555                 ret += bpp;
4556         return ret;
4557 }
4558
4559 /*
4560  * Calculate the journal credits for a chunk of data modification.
4561  *
4562  * This is called from DIO, fallocate or whoever calling
4563  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4564  *
4565  * journal buffers for data blocks are not included here, as DIO
4566  * and fallocate do no need to journal data buffers.
4567  */
4568 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4569 {
4570         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4571 }
4572
4573 /*
4574  * The caller must have previously called ext4_reserve_inode_write().
4575  * Give this, we know that the caller already has write access to iloc->bh.
4576  */
4577 int ext4_mark_iloc_dirty(handle_t *handle,
4578                          struct inode *inode, struct ext4_iloc *iloc)
4579 {
4580         int err = 0;
4581
4582         if (test_opt(inode->i_sb, I_VERSION))
4583                 inode_inc_iversion(inode);
4584
4585         /* the do_update_inode consumes one bh->b_count */
4586         get_bh(iloc->bh);
4587
4588         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4589         err = ext4_do_update_inode(handle, inode, iloc);
4590         put_bh(iloc->bh);
4591         return err;
4592 }
4593
4594 /*
4595  * On success, We end up with an outstanding reference count against
4596  * iloc->bh.  This _must_ be cleaned up later.
4597  */
4598
4599 int
4600 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4601                          struct ext4_iloc *iloc)
4602 {
4603         int err;
4604
4605         err = ext4_get_inode_loc(inode, iloc);
4606         if (!err) {
4607                 BUFFER_TRACE(iloc->bh, "get_write_access");
4608                 err = ext4_journal_get_write_access(handle, iloc->bh);
4609                 if (err) {
4610                         brelse(iloc->bh);
4611                         iloc->bh = NULL;
4612                 }
4613         }
4614         ext4_std_error(inode->i_sb, err);
4615         return err;
4616 }
4617
4618 /*
4619  * Expand an inode by new_extra_isize bytes.
4620  * Returns 0 on success or negative error number on failure.
4621  */
4622 static int ext4_expand_extra_isize(struct inode *inode,
4623                                    unsigned int new_extra_isize,
4624                                    struct ext4_iloc iloc,
4625                                    handle_t *handle)
4626 {
4627         struct ext4_inode *raw_inode;
4628         struct ext4_xattr_ibody_header *header;
4629
4630         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4631                 return 0;
4632
4633         raw_inode = ext4_raw_inode(&iloc);
4634
4635         header = IHDR(inode, raw_inode);
4636
4637         /* No extended attributes present */
4638         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4639             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4640                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4641                         new_extra_isize);
4642                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4643                 return 0;
4644         }
4645
4646         /* try to expand with EAs present */
4647         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4648                                           raw_inode, handle);
4649 }
4650
4651 /*
4652  * What we do here is to mark the in-core inode as clean with respect to inode
4653  * dirtiness (it may still be data-dirty).
4654  * This means that the in-core inode may be reaped by prune_icache
4655  * without having to perform any I/O.  This is a very good thing,
4656  * because *any* task may call prune_icache - even ones which
4657  * have a transaction open against a different journal.
4658  *
4659  * Is this cheating?  Not really.  Sure, we haven't written the
4660  * inode out, but prune_icache isn't a user-visible syncing function.
4661  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4662  * we start and wait on commits.
4663  *
4664  * Is this efficient/effective?  Well, we're being nice to the system
4665  * by cleaning up our inodes proactively so they can be reaped
4666  * without I/O.  But we are potentially leaving up to five seconds'
4667  * worth of inodes floating about which prune_icache wants us to
4668  * write out.  One way to fix that would be to get prune_icache()
4669  * to do a write_super() to free up some memory.  It has the desired
4670  * effect.
4671  */
4672 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4673 {
4674         struct ext4_iloc iloc;
4675         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4676         static unsigned int mnt_count;
4677         int err, ret;
4678
4679         might_sleep();
4680         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4681         err = ext4_reserve_inode_write(handle, inode, &iloc);
4682         if (err)
4683                 return err;
4684         if (ext4_handle_valid(handle) &&
4685             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4686             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4687                 /*
4688                  * We need extra buffer credits since we may write into EA block
4689                  * with this same handle. If journal_extend fails, then it will
4690                  * only result in a minor loss of functionality for that inode.
4691                  * If this is felt to be critical, then e2fsck should be run to
4692                  * force a large enough s_min_extra_isize.
4693                  */
4694                 if ((jbd2_journal_extend(handle,
4695                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4696                         ret = ext4_expand_extra_isize(inode,
4697                                                       sbi->s_want_extra_isize,
4698                                                       iloc, handle);
4699                         if (ret) {
4700                                 ext4_set_inode_state(inode,
4701                                                      EXT4_STATE_NO_EXPAND);
4702                                 if (mnt_count !=
4703                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4704                                         ext4_warning(inode->i_sb,
4705                                         "Unable to expand inode %lu. Delete"
4706                                         " some EAs or run e2fsck.",
4707                                         inode->i_ino);
4708                                         mnt_count =
4709                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4710                                 }
4711                         }
4712                 }
4713         }
4714         return ext4_mark_iloc_dirty(handle, inode, &iloc);
4715 }
4716
4717 /*
4718  * ext4_dirty_inode() is called from __mark_inode_dirty()
4719  *
4720  * We're really interested in the case where a file is being extended.
4721  * i_size has been changed by generic_commit_write() and we thus need
4722  * to include the updated inode in the current transaction.
4723  *
4724  * Also, dquot_alloc_block() will always dirty the inode when blocks
4725  * are allocated to the file.
4726  *
4727  * If the inode is marked synchronous, we don't honour that here - doing
4728  * so would cause a commit on atime updates, which we don't bother doing.
4729  * We handle synchronous inodes at the highest possible level.
4730  */
4731 void ext4_dirty_inode(struct inode *inode, int flags)
4732 {
4733         handle_t *handle;
4734
4735         handle = ext4_journal_start(inode, 2);
4736         if (IS_ERR(handle))
4737                 goto out;
4738
4739         ext4_mark_inode_dirty(handle, inode);
4740
4741         ext4_journal_stop(handle);
4742 out:
4743         return;
4744 }
4745
4746 #if 0
4747 /*
4748  * Bind an inode's backing buffer_head into this transaction, to prevent
4749  * it from being flushed to disk early.  Unlike
4750  * ext4_reserve_inode_write, this leaves behind no bh reference and
4751  * returns no iloc structure, so the caller needs to repeat the iloc
4752  * lookup to mark the inode dirty later.
4753  */
4754 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4755 {
4756         struct ext4_iloc iloc;
4757
4758         int err = 0;
4759         if (handle) {
4760                 err = ext4_get_inode_loc(inode, &iloc);
4761                 if (!err) {
4762                         BUFFER_TRACE(iloc.bh, "get_write_access");
4763                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4764                         if (!err)
4765                                 err = ext4_handle_dirty_metadata(handle,
4766                                                                  NULL,
4767                                                                  iloc.bh);
4768                         brelse(iloc.bh);
4769                 }
4770         }
4771         ext4_std_error(inode->i_sb, err);
4772         return err;
4773 }
4774 #endif
4775
4776 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4777 {
4778         journal_t *journal;
4779         handle_t *handle;
4780         int err;
4781
4782         /*
4783          * We have to be very careful here: changing a data block's
4784          * journaling status dynamically is dangerous.  If we write a
4785          * data block to the journal, change the status and then delete
4786          * that block, we risk forgetting to revoke the old log record
4787          * from the journal and so a subsequent replay can corrupt data.
4788          * So, first we make sure that the journal is empty and that
4789          * nobody is changing anything.
4790          */
4791
4792         journal = EXT4_JOURNAL(inode);
4793         if (!journal)
4794                 return 0;
4795         if (is_journal_aborted(journal))
4796                 return -EROFS;
4797
4798         jbd2_journal_lock_updates(journal);
4799         jbd2_journal_flush(journal);
4800
4801         /*
4802          * OK, there are no updates running now, and all cached data is
4803          * synced to disk.  We are now in a completely consistent state
4804          * which doesn't have anything in the journal, and we know that
4805          * no filesystem updates are running, so it is safe to modify
4806          * the inode's in-core data-journaling state flag now.
4807          */
4808
4809         if (val)
4810                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4811         else
4812                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4813         ext4_set_aops(inode);
4814
4815         jbd2_journal_unlock_updates(journal);
4816
4817         /* Finally we can mark the inode as dirty. */
4818
4819         handle = ext4_journal_start(inode, 1);
4820         if (IS_ERR(handle))
4821                 return PTR_ERR(handle);
4822
4823         err = ext4_mark_inode_dirty(handle, inode);
4824         ext4_handle_sync(handle);
4825         ext4_journal_stop(handle);
4826         ext4_std_error(inode->i_sb, err);
4827
4828         return err;
4829 }
4830
4831 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4832 {
4833         return !buffer_mapped(bh);
4834 }
4835
4836 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4837 {
4838         struct page *page = vmf->page;
4839         loff_t size;
4840         unsigned long len;
4841         int ret;
4842         struct file *file = vma->vm_file;
4843         struct inode *inode = file->f_path.dentry->d_inode;
4844         struct address_space *mapping = inode->i_mapping;
4845         handle_t *handle;
4846         get_block_t *get_block;
4847         int retries = 0;
4848
4849         /*
4850          * This check is racy but catches the common case. We rely on
4851          * __block_page_mkwrite() to do a reliable check.
4852          */
4853         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4854         /* Delalloc case is easy... */
4855         if (test_opt(inode->i_sb, DELALLOC) &&
4856             !ext4_should_journal_data(inode) &&
4857             !ext4_nonda_switch(inode->i_sb)) {
4858                 do {
4859                         ret = __block_page_mkwrite(vma, vmf,
4860                                                    ext4_da_get_block_prep);
4861                 } while (ret == -ENOSPC &&
4862                        ext4_should_retry_alloc(inode->i_sb, &retries));
4863                 goto out_ret;
4864         }
4865
4866         lock_page(page);
4867         size = i_size_read(inode);
4868         /* Page got truncated from under us? */
4869         if (page->mapping != mapping || page_offset(page) > size) {
4870                 unlock_page(page);
4871                 ret = VM_FAULT_NOPAGE;
4872                 goto out;
4873         }
4874
4875         if (page->index == size >> PAGE_CACHE_SHIFT)
4876                 len = size & ~PAGE_CACHE_MASK;
4877         else
4878                 len = PAGE_CACHE_SIZE;
4879         /*
4880          * Return if we have all the buffers mapped. This avoids the need to do
4881          * journal_start/journal_stop which can block and take a long time
4882          */
4883         if (page_has_buffers(page)) {
4884                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4885                                         ext4_bh_unmapped)) {
4886                         /* Wait so that we don't change page under IO */
4887                         wait_on_page_writeback(page);
4888                         ret = VM_FAULT_LOCKED;
4889                         goto out;
4890                 }
4891         }
4892         unlock_page(page);
4893         /* OK, we need to fill the hole... */
4894         if (ext4_should_dioread_nolock(inode))
4895                 get_block = ext4_get_block_write;
4896         else
4897                 get_block = ext4_get_block;
4898 retry_alloc:
4899         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4900         if (IS_ERR(handle)) {
4901                 ret = VM_FAULT_SIGBUS;
4902                 goto out;
4903         }
4904         ret = __block_page_mkwrite(vma, vmf, get_block);
4905         if (!ret && ext4_should_journal_data(inode)) {
4906                 if (walk_page_buffers(handle, page_buffers(page), 0,
4907                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4908                         unlock_page(page);
4909                         ret = VM_FAULT_SIGBUS;
4910                         ext4_journal_stop(handle);
4911                         goto out;
4912                 }
4913                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4914         }
4915         ext4_journal_stop(handle);
4916         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4917                 goto retry_alloc;
4918 out_ret:
4919         ret = block_page_mkwrite_return(ret);
4920 out:
4921         return ret;
4922 }