ext4: fix data=journal fast mount/umount hang
[pandora-kernel.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = raw->i_checksum_lo;
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = raw->i_checksum_hi;
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = csum_lo;
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = csum_hi;
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86                 return 1;
87
88         provided = le16_to_cpu(raw->i_checksum_lo);
89         calculated = ext4_inode_csum(inode, raw, ei);
90         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93         else
94                 calculated &= 0xFFFF;
95
96         return provided == calculated;
97 }
98
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100                                 struct ext4_inode_info *ei)
101 {
102         __u32 csum;
103
104         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105             cpu_to_le32(EXT4_OS_LINUX) ||
106             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108                 return;
109
110         csum = ext4_inode_csum(inode, raw, ei);
111         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118                                               loff_t new_size)
119 {
120         trace_ext4_begin_ordered_truncate(inode, new_size);
121         /*
122          * If jinode is zero, then we never opened the file for
123          * writing, so there's no need to call
124          * jbd2_journal_begin_ordered_truncate() since there's no
125          * outstanding writes we need to flush.
126          */
127         if (!EXT4_I(inode)->jinode)
128                 return 0;
129         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130                                                    EXT4_I(inode)->jinode,
131                                                    new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
136 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
137 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
138                 struct inode *inode, struct page *page, loff_t from,
139                 loff_t length, int flags);
140
141 /*
142  * Test whether an inode is a fast symlink.
143  */
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
145 {
146         int ea_blocks = EXT4_I(inode)->i_file_acl ?
147                 (inode->i_sb->s_blocksize >> 9) : 0;
148
149         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150 }
151
152 /*
153  * Restart the transaction associated with *handle.  This does a commit,
154  * so before we call here everything must be consistently dirtied against
155  * this transaction.
156  */
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158                                  int nblocks)
159 {
160         int ret;
161
162         /*
163          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164          * moment, get_block can be called only for blocks inside i_size since
165          * page cache has been already dropped and writes are blocked by
166          * i_mutex. So we can safely drop the i_data_sem here.
167          */
168         BUG_ON(EXT4_JOURNAL(inode) == NULL);
169         jbd_debug(2, "restarting handle %p\n", handle);
170         up_write(&EXT4_I(inode)->i_data_sem);
171         ret = ext4_journal_restart(handle, nblocks);
172         down_write(&EXT4_I(inode)->i_data_sem);
173         ext4_discard_preallocations(inode);
174
175         return ret;
176 }
177
178 /*
179  * Called at the last iput() if i_nlink is zero.
180  */
181 void ext4_evict_inode(struct inode *inode)
182 {
183         handle_t *handle;
184         int err;
185
186         trace_ext4_evict_inode(inode);
187
188         if (inode->i_nlink) {
189                 /*
190                  * When journalling data dirty buffers are tracked only in the
191                  * journal. So although mm thinks everything is clean and
192                  * ready for reaping the inode might still have some pages to
193                  * write in the running transaction or waiting to be
194                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
195                  * (via truncate_inode_pages()) to discard these buffers can
196                  * cause data loss. Also even if we did not discard these
197                  * buffers, we would have no way to find them after the inode
198                  * is reaped and thus user could see stale data if he tries to
199                  * read them before the transaction is checkpointed. So be
200                  * careful and force everything to disk here... We use
201                  * ei->i_datasync_tid to store the newest transaction
202                  * containing inode's data.
203                  *
204                  * Note that directories do not have this problem because they
205                  * don't use page cache.
206                  */
207                 if (ext4_should_journal_data(inode) &&
208                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
209                     inode->i_ino != EXT4_JOURNAL_INO) {
210                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
211                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
212
213                         jbd2_log_start_commit(journal, commit_tid);
214                         jbd2_log_wait_commit(journal, commit_tid);
215                         filemap_write_and_wait(&inode->i_data);
216                 }
217                 truncate_inode_pages(&inode->i_data, 0);
218                 ext4_ioend_shutdown(inode);
219                 goto no_delete;
220         }
221
222         if (!is_bad_inode(inode))
223                 dquot_initialize(inode);
224
225         if (ext4_should_order_data(inode))
226                 ext4_begin_ordered_truncate(inode, 0);
227         truncate_inode_pages(&inode->i_data, 0);
228         ext4_ioend_shutdown(inode);
229
230         if (is_bad_inode(inode))
231                 goto no_delete;
232
233         /*
234          * Protect us against freezing - iput() caller didn't have to have any
235          * protection against it
236          */
237         sb_start_intwrite(inode->i_sb);
238         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239                                     ext4_blocks_for_truncate(inode)+3);
240         if (IS_ERR(handle)) {
241                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
242                 /*
243                  * If we're going to skip the normal cleanup, we still need to
244                  * make sure that the in-core orphan linked list is properly
245                  * cleaned up.
246                  */
247                 ext4_orphan_del(NULL, inode);
248                 sb_end_intwrite(inode->i_sb);
249                 goto no_delete;
250         }
251
252         if (IS_SYNC(inode))
253                 ext4_handle_sync(handle);
254         inode->i_size = 0;
255         err = ext4_mark_inode_dirty(handle, inode);
256         if (err) {
257                 ext4_warning(inode->i_sb,
258                              "couldn't mark inode dirty (err %d)", err);
259                 goto stop_handle;
260         }
261         if (inode->i_blocks)
262                 ext4_truncate(inode);
263
264         /*
265          * ext4_ext_truncate() doesn't reserve any slop when it
266          * restarts journal transactions; therefore there may not be
267          * enough credits left in the handle to remove the inode from
268          * the orphan list and set the dtime field.
269          */
270         if (!ext4_handle_has_enough_credits(handle, 3)) {
271                 err = ext4_journal_extend(handle, 3);
272                 if (err > 0)
273                         err = ext4_journal_restart(handle, 3);
274                 if (err != 0) {
275                         ext4_warning(inode->i_sb,
276                                      "couldn't extend journal (err %d)", err);
277                 stop_handle:
278                         ext4_journal_stop(handle);
279                         ext4_orphan_del(NULL, inode);
280                         sb_end_intwrite(inode->i_sb);
281                         goto no_delete;
282                 }
283         }
284
285         /*
286          * Kill off the orphan record which ext4_truncate created.
287          * AKPM: I think this can be inside the above `if'.
288          * Note that ext4_orphan_del() has to be able to cope with the
289          * deletion of a non-existent orphan - this is because we don't
290          * know if ext4_truncate() actually created an orphan record.
291          * (Well, we could do this if we need to, but heck - it works)
292          */
293         ext4_orphan_del(handle, inode);
294         EXT4_I(inode)->i_dtime  = get_seconds();
295
296         /*
297          * One subtle ordering requirement: if anything has gone wrong
298          * (transaction abort, IO errors, whatever), then we can still
299          * do these next steps (the fs will already have been marked as
300          * having errors), but we can't free the inode if the mark_dirty
301          * fails.
302          */
303         if (ext4_mark_inode_dirty(handle, inode))
304                 /* If that failed, just do the required in-core inode clear. */
305                 ext4_clear_inode(inode);
306         else
307                 ext4_free_inode(handle, inode);
308         ext4_journal_stop(handle);
309         sb_end_intwrite(inode->i_sb);
310         return;
311 no_delete:
312         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
313 }
314
315 #ifdef CONFIG_QUOTA
316 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 {
318         return &EXT4_I(inode)->i_reserved_quota;
319 }
320 #endif
321
322 /*
323  * Calculate the number of metadata blocks need to reserve
324  * to allocate a block located at @lblock
325  */
326 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
327 {
328         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
329                 return ext4_ext_calc_metadata_amount(inode, lblock);
330
331         return ext4_ind_calc_metadata_amount(inode, lblock);
332 }
333
334 /*
335  * Called with i_data_sem down, which is important since we can call
336  * ext4_discard_preallocations() from here.
337  */
338 void ext4_da_update_reserve_space(struct inode *inode,
339                                         int used, int quota_claim)
340 {
341         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
342         struct ext4_inode_info *ei = EXT4_I(inode);
343
344         spin_lock(&ei->i_block_reservation_lock);
345         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
346         if (unlikely(used > ei->i_reserved_data_blocks)) {
347                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
348                          "with only %d reserved data blocks",
349                          __func__, inode->i_ino, used,
350                          ei->i_reserved_data_blocks);
351                 WARN_ON(1);
352                 used = ei->i_reserved_data_blocks;
353         }
354
355         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
356                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
357                         "with only %d reserved metadata blocks "
358                         "(releasing %d blocks with reserved %d data blocks)",
359                         inode->i_ino, ei->i_allocated_meta_blocks,
360                              ei->i_reserved_meta_blocks, used,
361                              ei->i_reserved_data_blocks);
362                 WARN_ON(1);
363                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364         }
365
366         /* Update per-inode reservations */
367         ei->i_reserved_data_blocks -= used;
368         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370                            used + ei->i_allocated_meta_blocks);
371         ei->i_allocated_meta_blocks = 0;
372
373         if (ei->i_reserved_data_blocks == 0) {
374                 /*
375                  * We can release all of the reserved metadata blocks
376                  * only when we have written all of the delayed
377                  * allocation blocks.
378                  */
379                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380                                    ei->i_reserved_meta_blocks);
381                 ei->i_reserved_meta_blocks = 0;
382                 ei->i_da_metadata_calc_len = 0;
383         }
384         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385
386         /* Update quota subsystem for data blocks */
387         if (quota_claim)
388                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
389         else {
390                 /*
391                  * We did fallocate with an offset that is already delayed
392                  * allocated. So on delayed allocated writeback we should
393                  * not re-claim the quota for fallocated blocks.
394                  */
395                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396         }
397
398         /*
399          * If we have done all the pending block allocations and if
400          * there aren't any writers on the inode, we can discard the
401          * inode's preallocations.
402          */
403         if ((ei->i_reserved_data_blocks == 0) &&
404             (atomic_read(&inode->i_writecount) == 0))
405                 ext4_discard_preallocations(inode);
406 }
407
408 static int __check_block_validity(struct inode *inode, const char *func,
409                                 unsigned int line,
410                                 struct ext4_map_blocks *map)
411 {
412         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413                                    map->m_len)) {
414                 ext4_error_inode(inode, func, line, map->m_pblk,
415                                  "lblock %lu mapped to illegal pblock "
416                                  "(length %d)", (unsigned long) map->m_lblk,
417                                  map->m_len);
418                 return -EIO;
419         }
420         return 0;
421 }
422
423 #define check_block_validity(inode, map)        \
424         __check_block_validity((inode), __func__, __LINE__, (map))
425
426 /*
427  * Return the number of contiguous dirty pages in a given inode
428  * starting at page frame idx.
429  */
430 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
431                                     unsigned int max_pages)
432 {
433         struct address_space *mapping = inode->i_mapping;
434         pgoff_t index;
435         struct pagevec pvec;
436         pgoff_t num = 0;
437         int i, nr_pages, done = 0;
438
439         if (max_pages == 0)
440                 return 0;
441         pagevec_init(&pvec, 0);
442         while (!done) {
443                 index = idx;
444                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445                                               PAGECACHE_TAG_DIRTY,
446                                               (pgoff_t)PAGEVEC_SIZE);
447                 if (nr_pages == 0)
448                         break;
449                 for (i = 0; i < nr_pages; i++) {
450                         struct page *page = pvec.pages[i];
451                         struct buffer_head *bh, *head;
452
453                         lock_page(page);
454                         if (unlikely(page->mapping != mapping) ||
455                             !PageDirty(page) ||
456                             PageWriteback(page) ||
457                             page->index != idx) {
458                                 done = 1;
459                                 unlock_page(page);
460                                 break;
461                         }
462                         if (page_has_buffers(page)) {
463                                 bh = head = page_buffers(page);
464                                 do {
465                                         if (!buffer_delay(bh) &&
466                                             !buffer_unwritten(bh))
467                                                 done = 1;
468                                         bh = bh->b_this_page;
469                                 } while (!done && (bh != head));
470                         }
471                         unlock_page(page);
472                         if (done)
473                                 break;
474                         idx++;
475                         num++;
476                         if (num >= max_pages) {
477                                 done = 1;
478                                 break;
479                         }
480                 }
481                 pagevec_release(&pvec);
482         }
483         return num;
484 }
485
486 #ifdef ES_AGGRESSIVE_TEST
487 static void ext4_map_blocks_es_recheck(handle_t *handle,
488                                        struct inode *inode,
489                                        struct ext4_map_blocks *es_map,
490                                        struct ext4_map_blocks *map,
491                                        int flags)
492 {
493         int retval;
494
495         map->m_flags = 0;
496         /*
497          * There is a race window that the result is not the same.
498          * e.g. xfstests #223 when dioread_nolock enables.  The reason
499          * is that we lookup a block mapping in extent status tree with
500          * out taking i_data_sem.  So at the time the unwritten extent
501          * could be converted.
502          */
503         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
504                 down_read((&EXT4_I(inode)->i_data_sem));
505         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
506                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
507                                              EXT4_GET_BLOCKS_KEEP_SIZE);
508         } else {
509                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
510                                              EXT4_GET_BLOCKS_KEEP_SIZE);
511         }
512         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
513                 up_read((&EXT4_I(inode)->i_data_sem));
514         /*
515          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
516          * because it shouldn't be marked in es_map->m_flags.
517          */
518         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
519
520         /*
521          * We don't check m_len because extent will be collpased in status
522          * tree.  So the m_len might not equal.
523          */
524         if (es_map->m_lblk != map->m_lblk ||
525             es_map->m_flags != map->m_flags ||
526             es_map->m_pblk != map->m_pblk) {
527                 printk("ES cache assertation failed for inode: %lu "
528                        "es_cached ex [%d/%d/%llu/%x] != "
529                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
530                        inode->i_ino, es_map->m_lblk, es_map->m_len,
531                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
532                        map->m_len, map->m_pblk, map->m_flags,
533                        retval, flags);
534         }
535 }
536 #endif /* ES_AGGRESSIVE_TEST */
537
538 /*
539  * The ext4_map_blocks() function tries to look up the requested blocks,
540  * and returns if the blocks are already mapped.
541  *
542  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
543  * and store the allocated blocks in the result buffer head and mark it
544  * mapped.
545  *
546  * If file type is extents based, it will call ext4_ext_map_blocks(),
547  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
548  * based files
549  *
550  * On success, it returns the number of blocks being mapped or allocate.
551  * if create==0 and the blocks are pre-allocated and uninitialized block,
552  * the result buffer head is unmapped. If the create ==1, it will make sure
553  * the buffer head is mapped.
554  *
555  * It returns 0 if plain look up failed (blocks have not been allocated), in
556  * that case, buffer head is unmapped
557  *
558  * It returns the error in case of allocation failure.
559  */
560 int ext4_map_blocks(handle_t *handle, struct inode *inode,
561                     struct ext4_map_blocks *map, int flags)
562 {
563         struct extent_status es;
564         int retval;
565 #ifdef ES_AGGRESSIVE_TEST
566         struct ext4_map_blocks orig_map;
567
568         memcpy(&orig_map, map, sizeof(*map));
569 #endif
570
571         map->m_flags = 0;
572         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
573                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
574                   (unsigned long) map->m_lblk);
575
576         /* Lookup extent status tree firstly */
577         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
578                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
579                         map->m_pblk = ext4_es_pblock(&es) +
580                                         map->m_lblk - es.es_lblk;
581                         map->m_flags |= ext4_es_is_written(&es) ?
582                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
583                         retval = es.es_len - (map->m_lblk - es.es_lblk);
584                         if (retval > map->m_len)
585                                 retval = map->m_len;
586                         map->m_len = retval;
587                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
588                         retval = 0;
589                 } else {
590                         BUG_ON(1);
591                 }
592 #ifdef ES_AGGRESSIVE_TEST
593                 ext4_map_blocks_es_recheck(handle, inode, map,
594                                            &orig_map, flags);
595 #endif
596                 goto found;
597         }
598
599         /*
600          * Try to see if we can get the block without requesting a new
601          * file system block.
602          */
603         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
604                 down_read((&EXT4_I(inode)->i_data_sem));
605         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
606                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
607                                              EXT4_GET_BLOCKS_KEEP_SIZE);
608         } else {
609                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
610                                              EXT4_GET_BLOCKS_KEEP_SIZE);
611         }
612         if (retval > 0) {
613                 int ret;
614                 unsigned long long status;
615
616 #ifdef ES_AGGRESSIVE_TEST
617                 if (retval != map->m_len) {
618                         printk("ES len assertation failed for inode: %lu "
619                                "retval %d != map->m_len %d "
620                                "in %s (lookup)\n", inode->i_ino, retval,
621                                map->m_len, __func__);
622                 }
623 #endif
624
625                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
626                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
627                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
628                     ext4_find_delalloc_range(inode, map->m_lblk,
629                                              map->m_lblk + map->m_len - 1))
630                         status |= EXTENT_STATUS_DELAYED;
631                 ret = ext4_es_insert_extent(inode, map->m_lblk,
632                                             map->m_len, map->m_pblk, status);
633                 if (ret < 0)
634                         retval = ret;
635         }
636         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
637                 up_read((&EXT4_I(inode)->i_data_sem));
638
639 found:
640         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
641                 int ret = check_block_validity(inode, map);
642                 if (ret != 0)
643                         return ret;
644         }
645
646         /* If it is only a block(s) look up */
647         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
648                 return retval;
649
650         /*
651          * Returns if the blocks have already allocated
652          *
653          * Note that if blocks have been preallocated
654          * ext4_ext_get_block() returns the create = 0
655          * with buffer head unmapped.
656          */
657         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
658                 return retval;
659
660         /*
661          * Here we clear m_flags because after allocating an new extent,
662          * it will be set again.
663          */
664         map->m_flags &= ~EXT4_MAP_FLAGS;
665
666         /*
667          * New blocks allocate and/or writing to uninitialized extent
668          * will possibly result in updating i_data, so we take
669          * the write lock of i_data_sem, and call get_blocks()
670          * with create == 1 flag.
671          */
672         down_write((&EXT4_I(inode)->i_data_sem));
673
674         /*
675          * if the caller is from delayed allocation writeout path
676          * we have already reserved fs blocks for allocation
677          * let the underlying get_block() function know to
678          * avoid double accounting
679          */
680         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
681                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
682         /*
683          * We need to check for EXT4 here because migrate
684          * could have changed the inode type in between
685          */
686         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
687                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
688         } else {
689                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
690
691                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
692                         /*
693                          * We allocated new blocks which will result in
694                          * i_data's format changing.  Force the migrate
695                          * to fail by clearing migrate flags
696                          */
697                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
698                 }
699
700                 /*
701                  * Update reserved blocks/metadata blocks after successful
702                  * block allocation which had been deferred till now. We don't
703                  * support fallocate for non extent files. So we can update
704                  * reserve space here.
705                  */
706                 if ((retval > 0) &&
707                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
708                         ext4_da_update_reserve_space(inode, retval, 1);
709         }
710         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
711                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
712
713         if (retval > 0) {
714                 int ret;
715                 unsigned long long status;
716
717 #ifdef ES_AGGRESSIVE_TEST
718                 if (retval != map->m_len) {
719                         printk("ES len assertation failed for inode: %lu "
720                                "retval %d != map->m_len %d "
721                                "in %s (allocation)\n", inode->i_ino, retval,
722                                map->m_len, __func__);
723                 }
724 #endif
725
726                 /*
727                  * If the extent has been zeroed out, we don't need to update
728                  * extent status tree.
729                  */
730                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
731                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
732                         if (ext4_es_is_written(&es))
733                                 goto has_zeroout;
734                 }
735                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
736                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
737                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
738                     ext4_find_delalloc_range(inode, map->m_lblk,
739                                              map->m_lblk + map->m_len - 1))
740                         status |= EXTENT_STATUS_DELAYED;
741                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
742                                             map->m_pblk, status);
743                 if (ret < 0)
744                         retval = ret;
745         }
746
747 has_zeroout:
748         up_write((&EXT4_I(inode)->i_data_sem));
749         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
750                 int ret = check_block_validity(inode, map);
751                 if (ret != 0)
752                         return ret;
753         }
754         return retval;
755 }
756
757 /* Maximum number of blocks we map for direct IO at once. */
758 #define DIO_MAX_BLOCKS 4096
759
760 static int _ext4_get_block(struct inode *inode, sector_t iblock,
761                            struct buffer_head *bh, int flags)
762 {
763         handle_t *handle = ext4_journal_current_handle();
764         struct ext4_map_blocks map;
765         int ret = 0, started = 0;
766         int dio_credits;
767
768         if (ext4_has_inline_data(inode))
769                 return -ERANGE;
770
771         map.m_lblk = iblock;
772         map.m_len = bh->b_size >> inode->i_blkbits;
773
774         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
775                 /* Direct IO write... */
776                 if (map.m_len > DIO_MAX_BLOCKS)
777                         map.m_len = DIO_MAX_BLOCKS;
778                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
779                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
780                                             dio_credits);
781                 if (IS_ERR(handle)) {
782                         ret = PTR_ERR(handle);
783                         return ret;
784                 }
785                 started = 1;
786         }
787
788         ret = ext4_map_blocks(handle, inode, &map, flags);
789         if (ret > 0) {
790                 map_bh(bh, inode->i_sb, map.m_pblk);
791                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
792                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
793                 ret = 0;
794         }
795         if (started)
796                 ext4_journal_stop(handle);
797         return ret;
798 }
799
800 int ext4_get_block(struct inode *inode, sector_t iblock,
801                    struct buffer_head *bh, int create)
802 {
803         return _ext4_get_block(inode, iblock, bh,
804                                create ? EXT4_GET_BLOCKS_CREATE : 0);
805 }
806
807 /*
808  * `handle' can be NULL if create is zero
809  */
810 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
811                                 ext4_lblk_t block, int create, int *errp)
812 {
813         struct ext4_map_blocks map;
814         struct buffer_head *bh;
815         int fatal = 0, err;
816
817         J_ASSERT(handle != NULL || create == 0);
818
819         map.m_lblk = block;
820         map.m_len = 1;
821         err = ext4_map_blocks(handle, inode, &map,
822                               create ? EXT4_GET_BLOCKS_CREATE : 0);
823
824         /* ensure we send some value back into *errp */
825         *errp = 0;
826
827         if (create && err == 0)
828                 err = -ENOSPC;  /* should never happen */
829         if (err < 0)
830                 *errp = err;
831         if (err <= 0)
832                 return NULL;
833
834         bh = sb_getblk(inode->i_sb, map.m_pblk);
835         if (unlikely(!bh)) {
836                 *errp = -ENOMEM;
837                 return NULL;
838         }
839         if (map.m_flags & EXT4_MAP_NEW) {
840                 J_ASSERT(create != 0);
841                 J_ASSERT(handle != NULL);
842
843                 /*
844                  * Now that we do not always journal data, we should
845                  * keep in mind whether this should always journal the
846                  * new buffer as metadata.  For now, regular file
847                  * writes use ext4_get_block instead, so it's not a
848                  * problem.
849                  */
850                 lock_buffer(bh);
851                 BUFFER_TRACE(bh, "call get_create_access");
852                 fatal = ext4_journal_get_create_access(handle, bh);
853                 if (!fatal && !buffer_uptodate(bh)) {
854                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
855                         set_buffer_uptodate(bh);
856                 }
857                 unlock_buffer(bh);
858                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
859                 err = ext4_handle_dirty_metadata(handle, inode, bh);
860                 if (!fatal)
861                         fatal = err;
862         } else {
863                 BUFFER_TRACE(bh, "not a new buffer");
864         }
865         if (fatal) {
866                 *errp = fatal;
867                 brelse(bh);
868                 bh = NULL;
869         }
870         return bh;
871 }
872
873 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
874                                ext4_lblk_t block, int create, int *err)
875 {
876         struct buffer_head *bh;
877
878         bh = ext4_getblk(handle, inode, block, create, err);
879         if (!bh)
880                 return bh;
881         if (buffer_uptodate(bh))
882                 return bh;
883         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
884         wait_on_buffer(bh);
885         if (buffer_uptodate(bh))
886                 return bh;
887         put_bh(bh);
888         *err = -EIO;
889         return NULL;
890 }
891
892 int ext4_walk_page_buffers(handle_t *handle,
893                            struct buffer_head *head,
894                            unsigned from,
895                            unsigned to,
896                            int *partial,
897                            int (*fn)(handle_t *handle,
898                                      struct buffer_head *bh))
899 {
900         struct buffer_head *bh;
901         unsigned block_start, block_end;
902         unsigned blocksize = head->b_size;
903         int err, ret = 0;
904         struct buffer_head *next;
905
906         for (bh = head, block_start = 0;
907              ret == 0 && (bh != head || !block_start);
908              block_start = block_end, bh = next) {
909                 next = bh->b_this_page;
910                 block_end = block_start + blocksize;
911                 if (block_end <= from || block_start >= to) {
912                         if (partial && !buffer_uptodate(bh))
913                                 *partial = 1;
914                         continue;
915                 }
916                 err = (*fn)(handle, bh);
917                 if (!ret)
918                         ret = err;
919         }
920         return ret;
921 }
922
923 /*
924  * To preserve ordering, it is essential that the hole instantiation and
925  * the data write be encapsulated in a single transaction.  We cannot
926  * close off a transaction and start a new one between the ext4_get_block()
927  * and the commit_write().  So doing the jbd2_journal_start at the start of
928  * prepare_write() is the right place.
929  *
930  * Also, this function can nest inside ext4_writepage().  In that case, we
931  * *know* that ext4_writepage() has generated enough buffer credits to do the
932  * whole page.  So we won't block on the journal in that case, which is good,
933  * because the caller may be PF_MEMALLOC.
934  *
935  * By accident, ext4 can be reentered when a transaction is open via
936  * quota file writes.  If we were to commit the transaction while thus
937  * reentered, there can be a deadlock - we would be holding a quota
938  * lock, and the commit would never complete if another thread had a
939  * transaction open and was blocking on the quota lock - a ranking
940  * violation.
941  *
942  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
943  * will _not_ run commit under these circumstances because handle->h_ref
944  * is elevated.  We'll still have enough credits for the tiny quotafile
945  * write.
946  */
947 int do_journal_get_write_access(handle_t *handle,
948                                 struct buffer_head *bh)
949 {
950         int dirty = buffer_dirty(bh);
951         int ret;
952
953         if (!buffer_mapped(bh) || buffer_freed(bh))
954                 return 0;
955         /*
956          * __block_write_begin() could have dirtied some buffers. Clean
957          * the dirty bit as jbd2_journal_get_write_access() could complain
958          * otherwise about fs integrity issues. Setting of the dirty bit
959          * by __block_write_begin() isn't a real problem here as we clear
960          * the bit before releasing a page lock and thus writeback cannot
961          * ever write the buffer.
962          */
963         if (dirty)
964                 clear_buffer_dirty(bh);
965         ret = ext4_journal_get_write_access(handle, bh);
966         if (!ret && dirty)
967                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
968         return ret;
969 }
970
971 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
972                    struct buffer_head *bh_result, int create);
973 static int ext4_write_begin(struct file *file, struct address_space *mapping,
974                             loff_t pos, unsigned len, unsigned flags,
975                             struct page **pagep, void **fsdata)
976 {
977         struct inode *inode = mapping->host;
978         int ret, needed_blocks;
979         handle_t *handle;
980         int retries = 0;
981         struct page *page;
982         pgoff_t index;
983         unsigned from, to;
984
985         trace_ext4_write_begin(inode, pos, len, flags);
986         /*
987          * Reserve one block more for addition to orphan list in case
988          * we allocate blocks but write fails for some reason
989          */
990         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
991         index = pos >> PAGE_CACHE_SHIFT;
992         from = pos & (PAGE_CACHE_SIZE - 1);
993         to = from + len;
994
995         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
996                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
997                                                     flags, pagep);
998                 if (ret < 0)
999                         return ret;
1000                 if (ret == 1)
1001                         return 0;
1002         }
1003
1004         /*
1005          * grab_cache_page_write_begin() can take a long time if the
1006          * system is thrashing due to memory pressure, or if the page
1007          * is being written back.  So grab it first before we start
1008          * the transaction handle.  This also allows us to allocate
1009          * the page (if needed) without using GFP_NOFS.
1010          */
1011 retry_grab:
1012         page = grab_cache_page_write_begin(mapping, index, flags);
1013         if (!page)
1014                 return -ENOMEM;
1015         unlock_page(page);
1016
1017 retry_journal:
1018         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1019         if (IS_ERR(handle)) {
1020                 page_cache_release(page);
1021                 return PTR_ERR(handle);
1022         }
1023
1024         lock_page(page);
1025         if (page->mapping != mapping) {
1026                 /* The page got truncated from under us */
1027                 unlock_page(page);
1028                 page_cache_release(page);
1029                 ext4_journal_stop(handle);
1030                 goto retry_grab;
1031         }
1032         wait_on_page_writeback(page);
1033
1034         if (ext4_should_dioread_nolock(inode))
1035                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1036         else
1037                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1038
1039         if (!ret && ext4_should_journal_data(inode)) {
1040                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1041                                              from, to, NULL,
1042                                              do_journal_get_write_access);
1043         }
1044
1045         if (ret) {
1046                 unlock_page(page);
1047                 /*
1048                  * __block_write_begin may have instantiated a few blocks
1049                  * outside i_size.  Trim these off again. Don't need
1050                  * i_size_read because we hold i_mutex.
1051                  *
1052                  * Add inode to orphan list in case we crash before
1053                  * truncate finishes
1054                  */
1055                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1056                         ext4_orphan_add(handle, inode);
1057
1058                 ext4_journal_stop(handle);
1059                 if (pos + len > inode->i_size) {
1060                         ext4_truncate_failed_write(inode);
1061                         /*
1062                          * If truncate failed early the inode might
1063                          * still be on the orphan list; we need to
1064                          * make sure the inode is removed from the
1065                          * orphan list in that case.
1066                          */
1067                         if (inode->i_nlink)
1068                                 ext4_orphan_del(NULL, inode);
1069                 }
1070
1071                 if (ret == -ENOSPC &&
1072                     ext4_should_retry_alloc(inode->i_sb, &retries))
1073                         goto retry_journal;
1074                 page_cache_release(page);
1075                 return ret;
1076         }
1077         *pagep = page;
1078         return ret;
1079 }
1080
1081 /* For write_end() in data=journal mode */
1082 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1083 {
1084         if (!buffer_mapped(bh) || buffer_freed(bh))
1085                 return 0;
1086         set_buffer_uptodate(bh);
1087         return ext4_handle_dirty_metadata(handle, NULL, bh);
1088 }
1089
1090 static int ext4_generic_write_end(struct file *file,
1091                                   struct address_space *mapping,
1092                                   loff_t pos, unsigned len, unsigned copied,
1093                                   struct page *page, void *fsdata)
1094 {
1095         int i_size_changed = 0;
1096         struct inode *inode = mapping->host;
1097         handle_t *handle = ext4_journal_current_handle();
1098
1099         if (ext4_has_inline_data(inode))
1100                 copied = ext4_write_inline_data_end(inode, pos, len,
1101                                                     copied, page);
1102         else
1103                 copied = block_write_end(file, mapping, pos,
1104                                          len, copied, page, fsdata);
1105
1106         /*
1107          * No need to use i_size_read() here, the i_size
1108          * cannot change under us because we hold i_mutex.
1109          *
1110          * But it's important to update i_size while still holding page lock:
1111          * page writeout could otherwise come in and zero beyond i_size.
1112          */
1113         if (pos + copied > inode->i_size) {
1114                 i_size_write(inode, pos + copied);
1115                 i_size_changed = 1;
1116         }
1117
1118         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1119                 /* We need to mark inode dirty even if
1120                  * new_i_size is less that inode->i_size
1121                  * bu greater than i_disksize.(hint delalloc)
1122                  */
1123                 ext4_update_i_disksize(inode, (pos + copied));
1124                 i_size_changed = 1;
1125         }
1126         unlock_page(page);
1127         page_cache_release(page);
1128
1129         /*
1130          * Don't mark the inode dirty under page lock. First, it unnecessarily
1131          * makes the holding time of page lock longer. Second, it forces lock
1132          * ordering of page lock and transaction start for journaling
1133          * filesystems.
1134          */
1135         if (i_size_changed)
1136                 ext4_mark_inode_dirty(handle, inode);
1137
1138         return copied;
1139 }
1140
1141 /*
1142  * We need to pick up the new inode size which generic_commit_write gave us
1143  * `file' can be NULL - eg, when called from page_symlink().
1144  *
1145  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1146  * buffers are managed internally.
1147  */
1148 static int ext4_ordered_write_end(struct file *file,
1149                                   struct address_space *mapping,
1150                                   loff_t pos, unsigned len, unsigned copied,
1151                                   struct page *page, void *fsdata)
1152 {
1153         handle_t *handle = ext4_journal_current_handle();
1154         struct inode *inode = mapping->host;
1155         int ret = 0, ret2;
1156
1157         trace_ext4_ordered_write_end(inode, pos, len, copied);
1158         ret = ext4_jbd2_file_inode(handle, inode);
1159
1160         if (ret == 0) {
1161                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1162                                                         page, fsdata);
1163                 copied = ret2;
1164                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1165                         /* if we have allocated more blocks and copied
1166                          * less. We will have blocks allocated outside
1167                          * inode->i_size. So truncate them
1168                          */
1169                         ext4_orphan_add(handle, inode);
1170                 if (ret2 < 0)
1171                         ret = ret2;
1172         } else {
1173                 unlock_page(page);
1174                 page_cache_release(page);
1175         }
1176
1177         ret2 = ext4_journal_stop(handle);
1178         if (!ret)
1179                 ret = ret2;
1180
1181         if (pos + len > inode->i_size) {
1182                 ext4_truncate_failed_write(inode);
1183                 /*
1184                  * If truncate failed early the inode might still be
1185                  * on the orphan list; we need to make sure the inode
1186                  * is removed from the orphan list in that case.
1187                  */
1188                 if (inode->i_nlink)
1189                         ext4_orphan_del(NULL, inode);
1190         }
1191
1192
1193         return ret ? ret : copied;
1194 }
1195
1196 static int ext4_writeback_write_end(struct file *file,
1197                                     struct address_space *mapping,
1198                                     loff_t pos, unsigned len, unsigned copied,
1199                                     struct page *page, void *fsdata)
1200 {
1201         handle_t *handle = ext4_journal_current_handle();
1202         struct inode *inode = mapping->host;
1203         int ret = 0, ret2;
1204
1205         trace_ext4_writeback_write_end(inode, pos, len, copied);
1206         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1207                                                         page, fsdata);
1208         copied = ret2;
1209         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1210                 /* if we have allocated more blocks and copied
1211                  * less. We will have blocks allocated outside
1212                  * inode->i_size. So truncate them
1213                  */
1214                 ext4_orphan_add(handle, inode);
1215
1216         if (ret2 < 0)
1217                 ret = ret2;
1218
1219         ret2 = ext4_journal_stop(handle);
1220         if (!ret)
1221                 ret = ret2;
1222
1223         if (pos + len > inode->i_size) {
1224                 ext4_truncate_failed_write(inode);
1225                 /*
1226                  * If truncate failed early the inode might still be
1227                  * on the orphan list; we need to make sure the inode
1228                  * is removed from the orphan list in that case.
1229                  */
1230                 if (inode->i_nlink)
1231                         ext4_orphan_del(NULL, inode);
1232         }
1233
1234         return ret ? ret : copied;
1235 }
1236
1237 static int ext4_journalled_write_end(struct file *file,
1238                                      struct address_space *mapping,
1239                                      loff_t pos, unsigned len, unsigned copied,
1240                                      struct page *page, void *fsdata)
1241 {
1242         handle_t *handle = ext4_journal_current_handle();
1243         struct inode *inode = mapping->host;
1244         int ret = 0, ret2;
1245         int partial = 0;
1246         unsigned from, to;
1247         loff_t new_i_size;
1248
1249         trace_ext4_journalled_write_end(inode, pos, len, copied);
1250         from = pos & (PAGE_CACHE_SIZE - 1);
1251         to = from + len;
1252
1253         BUG_ON(!ext4_handle_valid(handle));
1254
1255         if (ext4_has_inline_data(inode))
1256                 copied = ext4_write_inline_data_end(inode, pos, len,
1257                                                     copied, page);
1258         else {
1259                 if (copied < len) {
1260                         if (!PageUptodate(page))
1261                                 copied = 0;
1262                         page_zero_new_buffers(page, from+copied, to);
1263                 }
1264
1265                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1266                                              to, &partial, write_end_fn);
1267                 if (!partial)
1268                         SetPageUptodate(page);
1269         }
1270         new_i_size = pos + copied;
1271         if (new_i_size > inode->i_size)
1272                 i_size_write(inode, pos+copied);
1273         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1274         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1275         if (new_i_size > EXT4_I(inode)->i_disksize) {
1276                 ext4_update_i_disksize(inode, new_i_size);
1277                 ret2 = ext4_mark_inode_dirty(handle, inode);
1278                 if (!ret)
1279                         ret = ret2;
1280         }
1281
1282         unlock_page(page);
1283         page_cache_release(page);
1284         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1285                 /* if we have allocated more blocks and copied
1286                  * less. We will have blocks allocated outside
1287                  * inode->i_size. So truncate them
1288                  */
1289                 ext4_orphan_add(handle, inode);
1290
1291         ret2 = ext4_journal_stop(handle);
1292         if (!ret)
1293                 ret = ret2;
1294         if (pos + len > inode->i_size) {
1295                 ext4_truncate_failed_write(inode);
1296                 /*
1297                  * If truncate failed early the inode might still be
1298                  * on the orphan list; we need to make sure the inode
1299                  * is removed from the orphan list in that case.
1300                  */
1301                 if (inode->i_nlink)
1302                         ext4_orphan_del(NULL, inode);
1303         }
1304
1305         return ret ? ret : copied;
1306 }
1307
1308 /*
1309  * Reserve a metadata for a single block located at lblock
1310  */
1311 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1312 {
1313         int retries = 0;
1314         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1315         struct ext4_inode_info *ei = EXT4_I(inode);
1316         unsigned int md_needed;
1317         ext4_lblk_t save_last_lblock;
1318         int save_len;
1319
1320         /*
1321          * recalculate the amount of metadata blocks to reserve
1322          * in order to allocate nrblocks
1323          * worse case is one extent per block
1324          */
1325 repeat:
1326         spin_lock(&ei->i_block_reservation_lock);
1327         /*
1328          * ext4_calc_metadata_amount() has side effects, which we have
1329          * to be prepared undo if we fail to claim space.
1330          */
1331         save_len = ei->i_da_metadata_calc_len;
1332         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1333         md_needed = EXT4_NUM_B2C(sbi,
1334                                  ext4_calc_metadata_amount(inode, lblock));
1335         trace_ext4_da_reserve_space(inode, md_needed);
1336
1337         /*
1338          * We do still charge estimated metadata to the sb though;
1339          * we cannot afford to run out of free blocks.
1340          */
1341         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1342                 ei->i_da_metadata_calc_len = save_len;
1343                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1344                 spin_unlock(&ei->i_block_reservation_lock);
1345                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1346                         cond_resched();
1347                         goto repeat;
1348                 }
1349                 return -ENOSPC;
1350         }
1351         ei->i_reserved_meta_blocks += md_needed;
1352         spin_unlock(&ei->i_block_reservation_lock);
1353
1354         return 0;       /* success */
1355 }
1356
1357 /*
1358  * Reserve a single cluster located at lblock
1359  */
1360 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1361 {
1362         int retries = 0;
1363         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1364         struct ext4_inode_info *ei = EXT4_I(inode);
1365         unsigned int md_needed;
1366         int ret;
1367         ext4_lblk_t save_last_lblock;
1368         int save_len;
1369
1370         /*
1371          * We will charge metadata quota at writeout time; this saves
1372          * us from metadata over-estimation, though we may go over by
1373          * a small amount in the end.  Here we just reserve for data.
1374          */
1375         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1376         if (ret)
1377                 return ret;
1378
1379         /*
1380          * recalculate the amount of metadata blocks to reserve
1381          * in order to allocate nrblocks
1382          * worse case is one extent per block
1383          */
1384 repeat:
1385         spin_lock(&ei->i_block_reservation_lock);
1386         /*
1387          * ext4_calc_metadata_amount() has side effects, which we have
1388          * to be prepared undo if we fail to claim space.
1389          */
1390         save_len = ei->i_da_metadata_calc_len;
1391         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1392         md_needed = EXT4_NUM_B2C(sbi,
1393                                  ext4_calc_metadata_amount(inode, lblock));
1394         trace_ext4_da_reserve_space(inode, md_needed);
1395
1396         /*
1397          * We do still charge estimated metadata to the sb though;
1398          * we cannot afford to run out of free blocks.
1399          */
1400         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1401                 ei->i_da_metadata_calc_len = save_len;
1402                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1403                 spin_unlock(&ei->i_block_reservation_lock);
1404                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1405                         cond_resched();
1406                         goto repeat;
1407                 }
1408                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1409                 return -ENOSPC;
1410         }
1411         ei->i_reserved_data_blocks++;
1412         ei->i_reserved_meta_blocks += md_needed;
1413         spin_unlock(&ei->i_block_reservation_lock);
1414
1415         return 0;       /* success */
1416 }
1417
1418 static void ext4_da_release_space(struct inode *inode, int to_free)
1419 {
1420         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1421         struct ext4_inode_info *ei = EXT4_I(inode);
1422
1423         if (!to_free)
1424                 return;         /* Nothing to release, exit */
1425
1426         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1427
1428         trace_ext4_da_release_space(inode, to_free);
1429         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1430                 /*
1431                  * if there aren't enough reserved blocks, then the
1432                  * counter is messed up somewhere.  Since this
1433                  * function is called from invalidate page, it's
1434                  * harmless to return without any action.
1435                  */
1436                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1437                          "ino %lu, to_free %d with only %d reserved "
1438                          "data blocks", inode->i_ino, to_free,
1439                          ei->i_reserved_data_blocks);
1440                 WARN_ON(1);
1441                 to_free = ei->i_reserved_data_blocks;
1442         }
1443         ei->i_reserved_data_blocks -= to_free;
1444
1445         if (ei->i_reserved_data_blocks == 0) {
1446                 /*
1447                  * We can release all of the reserved metadata blocks
1448                  * only when we have written all of the delayed
1449                  * allocation blocks.
1450                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1451                  * i_reserved_data_blocks, etc. refer to number of clusters.
1452                  */
1453                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1454                                    ei->i_reserved_meta_blocks);
1455                 ei->i_reserved_meta_blocks = 0;
1456                 ei->i_da_metadata_calc_len = 0;
1457         }
1458
1459         /* update fs dirty data blocks counter */
1460         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1461
1462         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1463
1464         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1465 }
1466
1467 static void ext4_da_page_release_reservation(struct page *page,
1468                                              unsigned long offset)
1469 {
1470         int to_release = 0;
1471         struct buffer_head *head, *bh;
1472         unsigned int curr_off = 0;
1473         struct inode *inode = page->mapping->host;
1474         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1475         int num_clusters;
1476         ext4_fsblk_t lblk;
1477
1478         head = page_buffers(page);
1479         bh = head;
1480         do {
1481                 unsigned int next_off = curr_off + bh->b_size;
1482
1483                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1484                         to_release++;
1485                         clear_buffer_delay(bh);
1486                 }
1487                 curr_off = next_off;
1488         } while ((bh = bh->b_this_page) != head);
1489
1490         if (to_release) {
1491                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1492                 ext4_es_remove_extent(inode, lblk, to_release);
1493         }
1494
1495         /* If we have released all the blocks belonging to a cluster, then we
1496          * need to release the reserved space for that cluster. */
1497         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1498         while (num_clusters > 0) {
1499                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1500                         ((num_clusters - 1) << sbi->s_cluster_bits);
1501                 if (sbi->s_cluster_ratio == 1 ||
1502                     !ext4_find_delalloc_cluster(inode, lblk))
1503                         ext4_da_release_space(inode, 1);
1504
1505                 num_clusters--;
1506         }
1507 }
1508
1509 /*
1510  * Delayed allocation stuff
1511  */
1512
1513 /*
1514  * mpage_da_submit_io - walks through extent of pages and try to write
1515  * them with writepage() call back
1516  *
1517  * @mpd->inode: inode
1518  * @mpd->first_page: first page of the extent
1519  * @mpd->next_page: page after the last page of the extent
1520  *
1521  * By the time mpage_da_submit_io() is called we expect all blocks
1522  * to be allocated. this may be wrong if allocation failed.
1523  *
1524  * As pages are already locked by write_cache_pages(), we can't use it
1525  */
1526 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1527                               struct ext4_map_blocks *map)
1528 {
1529         struct pagevec pvec;
1530         unsigned long index, end;
1531         int ret = 0, err, nr_pages, i;
1532         struct inode *inode = mpd->inode;
1533         struct address_space *mapping = inode->i_mapping;
1534         loff_t size = i_size_read(inode);
1535         unsigned int len, block_start;
1536         struct buffer_head *bh, *page_bufs = NULL;
1537         sector_t pblock = 0, cur_logical = 0;
1538         struct ext4_io_submit io_submit;
1539
1540         BUG_ON(mpd->next_page <= mpd->first_page);
1541         memset(&io_submit, 0, sizeof(io_submit));
1542         /*
1543          * We need to start from the first_page to the next_page - 1
1544          * to make sure we also write the mapped dirty buffer_heads.
1545          * If we look at mpd->b_blocknr we would only be looking
1546          * at the currently mapped buffer_heads.
1547          */
1548         index = mpd->first_page;
1549         end = mpd->next_page - 1;
1550
1551         pagevec_init(&pvec, 0);
1552         while (index <= end) {
1553                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1554                 if (nr_pages == 0)
1555                         break;
1556                 for (i = 0; i < nr_pages; i++) {
1557                         int skip_page = 0;
1558                         struct page *page = pvec.pages[i];
1559
1560                         index = page->index;
1561                         if (index > end)
1562                                 break;
1563
1564                         if (index == size >> PAGE_CACHE_SHIFT)
1565                                 len = size & ~PAGE_CACHE_MASK;
1566                         else
1567                                 len = PAGE_CACHE_SIZE;
1568                         if (map) {
1569                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1570                                                         inode->i_blkbits);
1571                                 pblock = map->m_pblk + (cur_logical -
1572                                                         map->m_lblk);
1573                         }
1574                         index++;
1575
1576                         BUG_ON(!PageLocked(page));
1577                         BUG_ON(PageWriteback(page));
1578
1579                         bh = page_bufs = page_buffers(page);
1580                         block_start = 0;
1581                         do {
1582                                 if (map && (cur_logical >= map->m_lblk) &&
1583                                     (cur_logical <= (map->m_lblk +
1584                                                      (map->m_len - 1)))) {
1585                                         if (buffer_delay(bh)) {
1586                                                 clear_buffer_delay(bh);
1587                                                 bh->b_blocknr = pblock;
1588                                         }
1589                                         if (buffer_unwritten(bh) ||
1590                                             buffer_mapped(bh))
1591                                                 BUG_ON(bh->b_blocknr != pblock);
1592                                         if (map->m_flags & EXT4_MAP_UNINIT)
1593                                                 set_buffer_uninit(bh);
1594                                         clear_buffer_unwritten(bh);
1595                                 }
1596
1597                                 /*
1598                                  * skip page if block allocation undone and
1599                                  * block is dirty
1600                                  */
1601                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1602                                         skip_page = 1;
1603                                 bh = bh->b_this_page;
1604                                 block_start += bh->b_size;
1605                                 cur_logical++;
1606                                 pblock++;
1607                         } while (bh != page_bufs);
1608
1609                         if (skip_page) {
1610                                 unlock_page(page);
1611                                 continue;
1612                         }
1613
1614                         clear_page_dirty_for_io(page);
1615                         err = ext4_bio_write_page(&io_submit, page, len,
1616                                                   mpd->wbc);
1617                         if (!err)
1618                                 mpd->pages_written++;
1619                         /*
1620                          * In error case, we have to continue because
1621                          * remaining pages are still locked
1622                          */
1623                         if (ret == 0)
1624                                 ret = err;
1625                 }
1626                 pagevec_release(&pvec);
1627         }
1628         ext4_io_submit(&io_submit);
1629         return ret;
1630 }
1631
1632 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1633 {
1634         int nr_pages, i;
1635         pgoff_t index, end;
1636         struct pagevec pvec;
1637         struct inode *inode = mpd->inode;
1638         struct address_space *mapping = inode->i_mapping;
1639         ext4_lblk_t start, last;
1640
1641         index = mpd->first_page;
1642         end   = mpd->next_page - 1;
1643
1644         start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1645         last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1646         ext4_es_remove_extent(inode, start, last - start + 1);
1647
1648         pagevec_init(&pvec, 0);
1649         while (index <= end) {
1650                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1651                 if (nr_pages == 0)
1652                         break;
1653                 for (i = 0; i < nr_pages; i++) {
1654                         struct page *page = pvec.pages[i];
1655                         if (page->index > end)
1656                                 break;
1657                         BUG_ON(!PageLocked(page));
1658                         BUG_ON(PageWriteback(page));
1659                         block_invalidatepage(page, 0);
1660                         ClearPageUptodate(page);
1661                         unlock_page(page);
1662                 }
1663                 index = pvec.pages[nr_pages - 1]->index + 1;
1664                 pagevec_release(&pvec);
1665         }
1666         return;
1667 }
1668
1669 static void ext4_print_free_blocks(struct inode *inode)
1670 {
1671         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1672         struct super_block *sb = inode->i_sb;
1673
1674         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1675                EXT4_C2B(EXT4_SB(inode->i_sb),
1676                         ext4_count_free_clusters(inode->i_sb)));
1677         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1678         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1679                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1680                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1681         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1682                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1683                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1684         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1685         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1686                  EXT4_I(inode)->i_reserved_data_blocks);
1687         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1688                EXT4_I(inode)->i_reserved_meta_blocks);
1689         return;
1690 }
1691
1692 /*
1693  * mpage_da_map_and_submit - go through given space, map them
1694  *       if necessary, and then submit them for I/O
1695  *
1696  * @mpd - bh describing space
1697  *
1698  * The function skips space we know is already mapped to disk blocks.
1699  *
1700  */
1701 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1702 {
1703         int err, blks, get_blocks_flags;
1704         struct ext4_map_blocks map, *mapp = NULL;
1705         sector_t next = mpd->b_blocknr;
1706         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1707         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1708         handle_t *handle = NULL;
1709
1710         /*
1711          * If the blocks are mapped already, or we couldn't accumulate
1712          * any blocks, then proceed immediately to the submission stage.
1713          */
1714         if ((mpd->b_size == 0) ||
1715             ((mpd->b_state  & (1 << BH_Mapped)) &&
1716              !(mpd->b_state & (1 << BH_Delay)) &&
1717              !(mpd->b_state & (1 << BH_Unwritten))))
1718                 goto submit_io;
1719
1720         handle = ext4_journal_current_handle();
1721         BUG_ON(!handle);
1722
1723         /*
1724          * Call ext4_map_blocks() to allocate any delayed allocation
1725          * blocks, or to convert an uninitialized extent to be
1726          * initialized (in the case where we have written into
1727          * one or more preallocated blocks).
1728          *
1729          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1730          * indicate that we are on the delayed allocation path.  This
1731          * affects functions in many different parts of the allocation
1732          * call path.  This flag exists primarily because we don't
1733          * want to change *many* call functions, so ext4_map_blocks()
1734          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1735          * inode's allocation semaphore is taken.
1736          *
1737          * If the blocks in questions were delalloc blocks, set
1738          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1739          * variables are updated after the blocks have been allocated.
1740          */
1741         map.m_lblk = next;
1742         map.m_len = max_blocks;
1743         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1744         if (ext4_should_dioread_nolock(mpd->inode))
1745                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1746         if (mpd->b_state & (1 << BH_Delay))
1747                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1748
1749         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1750         if (blks < 0) {
1751                 struct super_block *sb = mpd->inode->i_sb;
1752
1753                 err = blks;
1754                 /*
1755                  * If get block returns EAGAIN or ENOSPC and there
1756                  * appears to be free blocks we will just let
1757                  * mpage_da_submit_io() unlock all of the pages.
1758                  */
1759                 if (err == -EAGAIN)
1760                         goto submit_io;
1761
1762                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1763                         mpd->retval = err;
1764                         goto submit_io;
1765                 }
1766
1767                 /*
1768                  * get block failure will cause us to loop in
1769                  * writepages, because a_ops->writepage won't be able
1770                  * to make progress. The page will be redirtied by
1771                  * writepage and writepages will again try to write
1772                  * the same.
1773                  */
1774                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1775                         ext4_msg(sb, KERN_CRIT,
1776                                  "delayed block allocation failed for inode %lu "
1777                                  "at logical offset %llu with max blocks %zd "
1778                                  "with error %d", mpd->inode->i_ino,
1779                                  (unsigned long long) next,
1780                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1781                         ext4_msg(sb, KERN_CRIT,
1782                                 "This should not happen!! Data will be lost");
1783                         if (err == -ENOSPC)
1784                                 ext4_print_free_blocks(mpd->inode);
1785                 }
1786                 /* invalidate all the pages */
1787                 ext4_da_block_invalidatepages(mpd);
1788
1789                 /* Mark this page range as having been completed */
1790                 mpd->io_done = 1;
1791                 return;
1792         }
1793         BUG_ON(blks == 0);
1794
1795         mapp = &map;
1796         if (map.m_flags & EXT4_MAP_NEW) {
1797                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1798                 int i;
1799
1800                 for (i = 0; i < map.m_len; i++)
1801                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1802         }
1803
1804         /*
1805          * Update on-disk size along with block allocation.
1806          */
1807         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1808         if (disksize > i_size_read(mpd->inode))
1809                 disksize = i_size_read(mpd->inode);
1810         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1811                 ext4_update_i_disksize(mpd->inode, disksize);
1812                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1813                 if (err)
1814                         ext4_error(mpd->inode->i_sb,
1815                                    "Failed to mark inode %lu dirty",
1816                                    mpd->inode->i_ino);
1817         }
1818
1819 submit_io:
1820         mpage_da_submit_io(mpd, mapp);
1821         mpd->io_done = 1;
1822 }
1823
1824 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1825                 (1 << BH_Delay) | (1 << BH_Unwritten))
1826
1827 /*
1828  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1829  *
1830  * @mpd->lbh - extent of blocks
1831  * @logical - logical number of the block in the file
1832  * @b_state - b_state of the buffer head added
1833  *
1834  * the function is used to collect contig. blocks in same state
1835  */
1836 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1837                                    unsigned long b_state)
1838 {
1839         sector_t next;
1840         int blkbits = mpd->inode->i_blkbits;
1841         int nrblocks = mpd->b_size >> blkbits;
1842
1843         /*
1844          * XXX Don't go larger than mballoc is willing to allocate
1845          * This is a stopgap solution.  We eventually need to fold
1846          * mpage_da_submit_io() into this function and then call
1847          * ext4_map_blocks() multiple times in a loop
1848          */
1849         if (nrblocks >= (8*1024*1024 >> blkbits))
1850                 goto flush_it;
1851
1852         /* check if the reserved journal credits might overflow */
1853         if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1854                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1855                         /*
1856                          * With non-extent format we are limited by the journal
1857                          * credit available.  Total credit needed to insert
1858                          * nrblocks contiguous blocks is dependent on the
1859                          * nrblocks.  So limit nrblocks.
1860                          */
1861                         goto flush_it;
1862                 }
1863         }
1864         /*
1865          * First block in the extent
1866          */
1867         if (mpd->b_size == 0) {
1868                 mpd->b_blocknr = logical;
1869                 mpd->b_size = 1 << blkbits;
1870                 mpd->b_state = b_state & BH_FLAGS;
1871                 return;
1872         }
1873
1874         next = mpd->b_blocknr + nrblocks;
1875         /*
1876          * Can we merge the block to our big extent?
1877          */
1878         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1879                 mpd->b_size += 1 << blkbits;
1880                 return;
1881         }
1882
1883 flush_it:
1884         /*
1885          * We couldn't merge the block to our extent, so we
1886          * need to flush current  extent and start new one
1887          */
1888         mpage_da_map_and_submit(mpd);
1889         return;
1890 }
1891
1892 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1893 {
1894         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1895 }
1896
1897 /*
1898  * This function is grabs code from the very beginning of
1899  * ext4_map_blocks, but assumes that the caller is from delayed write
1900  * time. This function looks up the requested blocks and sets the
1901  * buffer delay bit under the protection of i_data_sem.
1902  */
1903 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1904                               struct ext4_map_blocks *map,
1905                               struct buffer_head *bh)
1906 {
1907         struct extent_status es;
1908         int retval;
1909         sector_t invalid_block = ~((sector_t) 0xffff);
1910 #ifdef ES_AGGRESSIVE_TEST
1911         struct ext4_map_blocks orig_map;
1912
1913         memcpy(&orig_map, map, sizeof(*map));
1914 #endif
1915
1916         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1917                 invalid_block = ~0;
1918
1919         map->m_flags = 0;
1920         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1921                   "logical block %lu\n", inode->i_ino, map->m_len,
1922                   (unsigned long) map->m_lblk);
1923
1924         /* Lookup extent status tree firstly */
1925         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1926
1927                 if (ext4_es_is_hole(&es)) {
1928                         retval = 0;
1929                         down_read((&EXT4_I(inode)->i_data_sem));
1930                         goto add_delayed;
1931                 }
1932
1933                 /*
1934                  * Delayed extent could be allocated by fallocate.
1935                  * So we need to check it.
1936                  */
1937                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1938                         map_bh(bh, inode->i_sb, invalid_block);
1939                         set_buffer_new(bh);
1940                         set_buffer_delay(bh);
1941                         return 0;
1942                 }
1943
1944                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1945                 retval = es.es_len - (iblock - es.es_lblk);
1946                 if (retval > map->m_len)
1947                         retval = map->m_len;
1948                 map->m_len = retval;
1949                 if (ext4_es_is_written(&es))
1950                         map->m_flags |= EXT4_MAP_MAPPED;
1951                 else if (ext4_es_is_unwritten(&es))
1952                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1953                 else
1954                         BUG_ON(1);
1955
1956 #ifdef ES_AGGRESSIVE_TEST
1957                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1958 #endif
1959                 return retval;
1960         }
1961
1962         /*
1963          * Try to see if we can get the block without requesting a new
1964          * file system block.
1965          */
1966         down_read((&EXT4_I(inode)->i_data_sem));
1967         if (ext4_has_inline_data(inode)) {
1968                 /*
1969                  * We will soon create blocks for this page, and let
1970                  * us pretend as if the blocks aren't allocated yet.
1971                  * In case of clusters, we have to handle the work
1972                  * of mapping from cluster so that the reserved space
1973                  * is calculated properly.
1974                  */
1975                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1976                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1977                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1978                 retval = 0;
1979         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1980                 retval = ext4_ext_map_blocks(NULL, inode, map,
1981                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1982         else
1983                 retval = ext4_ind_map_blocks(NULL, inode, map,
1984                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1985
1986 add_delayed:
1987         if (retval == 0) {
1988                 int ret;
1989                 /*
1990                  * XXX: __block_prepare_write() unmaps passed block,
1991                  * is it OK?
1992                  */
1993                 /*
1994                  * If the block was allocated from previously allocated cluster,
1995                  * then we don't need to reserve it again. However we still need
1996                  * to reserve metadata for every block we're going to write.
1997                  */
1998                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1999                         ret = ext4_da_reserve_space(inode, iblock);
2000                         if (ret) {
2001                                 /* not enough space to reserve */
2002                                 retval = ret;
2003                                 goto out_unlock;
2004                         }
2005                 } else {
2006                         ret = ext4_da_reserve_metadata(inode, iblock);
2007                         if (ret) {
2008                                 /* not enough space to reserve */
2009                                 retval = ret;
2010                                 goto out_unlock;
2011                         }
2012                 }
2013
2014                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2015                                             ~0, EXTENT_STATUS_DELAYED);
2016                 if (ret) {
2017                         retval = ret;
2018                         goto out_unlock;
2019                 }
2020
2021                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
2022                  * and it should not appear on the bh->b_state.
2023                  */
2024                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
2025
2026                 map_bh(bh, inode->i_sb, invalid_block);
2027                 set_buffer_new(bh);
2028                 set_buffer_delay(bh);
2029         } else if (retval > 0) {
2030                 int ret;
2031                 unsigned long long status;
2032
2033 #ifdef ES_AGGRESSIVE_TEST
2034                 if (retval != map->m_len) {
2035                         printk("ES len assertation failed for inode: %lu "
2036                                "retval %d != map->m_len %d "
2037                                "in %s (lookup)\n", inode->i_ino, retval,
2038                                map->m_len, __func__);
2039                 }
2040 #endif
2041
2042                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
2043                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
2044                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2045                                             map->m_pblk, status);
2046                 if (ret != 0)
2047                         retval = ret;
2048         }
2049
2050 out_unlock:
2051         up_read((&EXT4_I(inode)->i_data_sem));
2052
2053         return retval;
2054 }
2055
2056 /*
2057  * This is a special get_blocks_t callback which is used by
2058  * ext4_da_write_begin().  It will either return mapped block or
2059  * reserve space for a single block.
2060  *
2061  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2062  * We also have b_blocknr = -1 and b_bdev initialized properly
2063  *
2064  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2065  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2066  * initialized properly.
2067  */
2068 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2069                            struct buffer_head *bh, int create)
2070 {
2071         struct ext4_map_blocks map;
2072         int ret = 0;
2073
2074         BUG_ON(create == 0);
2075         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2076
2077         map.m_lblk = iblock;
2078         map.m_len = 1;
2079
2080         /*
2081          * first, we need to know whether the block is allocated already
2082          * preallocated blocks are unmapped but should treated
2083          * the same as allocated blocks.
2084          */
2085         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2086         if (ret <= 0)
2087                 return ret;
2088
2089         map_bh(bh, inode->i_sb, map.m_pblk);
2090         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2091
2092         if (buffer_unwritten(bh)) {
2093                 /* A delayed write to unwritten bh should be marked
2094                  * new and mapped.  Mapped ensures that we don't do
2095                  * get_block multiple times when we write to the same
2096                  * offset and new ensures that we do proper zero out
2097                  * for partial write.
2098                  */
2099                 set_buffer_new(bh);
2100                 set_buffer_mapped(bh);
2101         }
2102         return 0;
2103 }
2104
2105 static int bget_one(handle_t *handle, struct buffer_head *bh)
2106 {
2107         get_bh(bh);
2108         return 0;
2109 }
2110
2111 static int bput_one(handle_t *handle, struct buffer_head *bh)
2112 {
2113         put_bh(bh);
2114         return 0;
2115 }
2116
2117 static int __ext4_journalled_writepage(struct page *page,
2118                                        unsigned int len)
2119 {
2120         struct address_space *mapping = page->mapping;
2121         struct inode *inode = mapping->host;
2122         struct buffer_head *page_bufs = NULL;
2123         handle_t *handle = NULL;
2124         int ret = 0, err = 0;
2125         int inline_data = ext4_has_inline_data(inode);
2126         struct buffer_head *inode_bh = NULL;
2127
2128         ClearPageChecked(page);
2129
2130         if (inline_data) {
2131                 BUG_ON(page->index != 0);
2132                 BUG_ON(len > ext4_get_max_inline_size(inode));
2133                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2134                 if (inode_bh == NULL)
2135                         goto out;
2136         } else {
2137                 page_bufs = page_buffers(page);
2138                 if (!page_bufs) {
2139                         BUG();
2140                         goto out;
2141                 }
2142                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2143                                        NULL, bget_one);
2144         }
2145         /* As soon as we unlock the page, it can go away, but we have
2146          * references to buffers so we are safe */
2147         unlock_page(page);
2148
2149         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2150                                     ext4_writepage_trans_blocks(inode));
2151         if (IS_ERR(handle)) {
2152                 ret = PTR_ERR(handle);
2153                 goto out;
2154         }
2155
2156         BUG_ON(!ext4_handle_valid(handle));
2157
2158         if (inline_data) {
2159                 ret = ext4_journal_get_write_access(handle, inode_bh);
2160
2161                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2162
2163         } else {
2164                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2165                                              do_journal_get_write_access);
2166
2167                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2168                                              write_end_fn);
2169         }
2170         if (ret == 0)
2171                 ret = err;
2172         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2173         err = ext4_journal_stop(handle);
2174         if (!ret)
2175                 ret = err;
2176
2177         if (!ext4_has_inline_data(inode))
2178                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2179                                        NULL, bput_one);
2180         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2181 out:
2182         brelse(inode_bh);
2183         return ret;
2184 }
2185
2186 /*
2187  * Note that we don't need to start a transaction unless we're journaling data
2188  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2189  * need to file the inode to the transaction's list in ordered mode because if
2190  * we are writing back data added by write(), the inode is already there and if
2191  * we are writing back data modified via mmap(), no one guarantees in which
2192  * transaction the data will hit the disk. In case we are journaling data, we
2193  * cannot start transaction directly because transaction start ranks above page
2194  * lock so we have to do some magic.
2195  *
2196  * This function can get called via...
2197  *   - ext4_da_writepages after taking page lock (have journal handle)
2198  *   - journal_submit_inode_data_buffers (no journal handle)
2199  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2200  *   - grab_page_cache when doing write_begin (have journal handle)
2201  *
2202  * We don't do any block allocation in this function. If we have page with
2203  * multiple blocks we need to write those buffer_heads that are mapped. This
2204  * is important for mmaped based write. So if we do with blocksize 1K
2205  * truncate(f, 1024);
2206  * a = mmap(f, 0, 4096);
2207  * a[0] = 'a';
2208  * truncate(f, 4096);
2209  * we have in the page first buffer_head mapped via page_mkwrite call back
2210  * but other buffer_heads would be unmapped but dirty (dirty done via the
2211  * do_wp_page). So writepage should write the first block. If we modify
2212  * the mmap area beyond 1024 we will again get a page_fault and the
2213  * page_mkwrite callback will do the block allocation and mark the
2214  * buffer_heads mapped.
2215  *
2216  * We redirty the page if we have any buffer_heads that is either delay or
2217  * unwritten in the page.
2218  *
2219  * We can get recursively called as show below.
2220  *
2221  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2222  *              ext4_writepage()
2223  *
2224  * But since we don't do any block allocation we should not deadlock.
2225  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2226  */
2227 static int ext4_writepage(struct page *page,
2228                           struct writeback_control *wbc)
2229 {
2230         int ret = 0;
2231         loff_t size;
2232         unsigned int len;
2233         struct buffer_head *page_bufs = NULL;
2234         struct inode *inode = page->mapping->host;
2235         struct ext4_io_submit io_submit;
2236
2237         trace_ext4_writepage(page);
2238         size = i_size_read(inode);
2239         if (page->index == size >> PAGE_CACHE_SHIFT)
2240                 len = size & ~PAGE_CACHE_MASK;
2241         else
2242                 len = PAGE_CACHE_SIZE;
2243
2244         page_bufs = page_buffers(page);
2245         /*
2246          * We cannot do block allocation or other extent handling in this
2247          * function. If there are buffers needing that, we have to redirty
2248          * the page. But we may reach here when we do a journal commit via
2249          * journal_submit_inode_data_buffers() and in that case we must write
2250          * allocated buffers to achieve data=ordered mode guarantees.
2251          */
2252         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2253                                    ext4_bh_delay_or_unwritten)) {
2254                 redirty_page_for_writepage(wbc, page);
2255                 if (current->flags & PF_MEMALLOC) {
2256                         /*
2257                          * For memory cleaning there's no point in writing only
2258                          * some buffers. So just bail out. Warn if we came here
2259                          * from direct reclaim.
2260                          */
2261                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2262                                                         == PF_MEMALLOC);
2263                         unlock_page(page);
2264                         return 0;
2265                 }
2266         }
2267
2268         if (PageChecked(page) && ext4_should_journal_data(inode))
2269                 /*
2270                  * It's mmapped pagecache.  Add buffers and journal it.  There
2271                  * doesn't seem much point in redirtying the page here.
2272                  */
2273                 return __ext4_journalled_writepage(page, len);
2274
2275         memset(&io_submit, 0, sizeof(io_submit));
2276         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2277         ext4_io_submit(&io_submit);
2278         return ret;
2279 }
2280
2281 /*
2282  * This is called via ext4_da_writepages() to
2283  * calculate the total number of credits to reserve to fit
2284  * a single extent allocation into a single transaction,
2285  * ext4_da_writpeages() will loop calling this before
2286  * the block allocation.
2287  */
2288
2289 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2290 {
2291         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2292
2293         /*
2294          * With non-extent format the journal credit needed to
2295          * insert nrblocks contiguous block is dependent on
2296          * number of contiguous block. So we will limit
2297          * number of contiguous block to a sane value
2298          */
2299         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2300             (max_blocks > EXT4_MAX_TRANS_DATA))
2301                 max_blocks = EXT4_MAX_TRANS_DATA;
2302
2303         return ext4_chunk_trans_blocks(inode, max_blocks);
2304 }
2305
2306 /*
2307  * write_cache_pages_da - walk the list of dirty pages of the given
2308  * address space and accumulate pages that need writing, and call
2309  * mpage_da_map_and_submit to map a single contiguous memory region
2310  * and then write them.
2311  */
2312 static int write_cache_pages_da(handle_t *handle,
2313                                 struct address_space *mapping,
2314                                 struct writeback_control *wbc,
2315                                 struct mpage_da_data *mpd,
2316                                 pgoff_t *done_index)
2317 {
2318         struct buffer_head      *bh, *head;
2319         struct inode            *inode = mapping->host;
2320         struct pagevec          pvec;
2321         unsigned int            nr_pages;
2322         sector_t                logical;
2323         pgoff_t                 index, end;
2324         long                    nr_to_write = wbc->nr_to_write;
2325         int                     i, tag, ret = 0;
2326
2327         memset(mpd, 0, sizeof(struct mpage_da_data));
2328         mpd->wbc = wbc;
2329         mpd->inode = inode;
2330         pagevec_init(&pvec, 0);
2331         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2332         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2333
2334         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2335                 tag = PAGECACHE_TAG_TOWRITE;
2336         else
2337                 tag = PAGECACHE_TAG_DIRTY;
2338
2339         *done_index = index;
2340         while (index <= end) {
2341                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2342                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2343                 if (nr_pages == 0)
2344                         return 0;
2345
2346                 for (i = 0; i < nr_pages; i++) {
2347                         struct page *page = pvec.pages[i];
2348
2349                         /*
2350                          * At this point, the page may be truncated or
2351                          * invalidated (changing page->mapping to NULL), or
2352                          * even swizzled back from swapper_space to tmpfs file
2353                          * mapping. However, page->index will not change
2354                          * because we have a reference on the page.
2355                          */
2356                         if (page->index > end)
2357                                 goto out;
2358
2359                         *done_index = page->index + 1;
2360
2361                         /*
2362                          * If we can't merge this page, and we have
2363                          * accumulated an contiguous region, write it
2364                          */
2365                         if ((mpd->next_page != page->index) &&
2366                             (mpd->next_page != mpd->first_page)) {
2367                                 mpage_da_map_and_submit(mpd);
2368                                 goto ret_extent_tail;
2369                         }
2370
2371                         lock_page(page);
2372
2373                         /*
2374                          * If the page is no longer dirty, or its
2375                          * mapping no longer corresponds to inode we
2376                          * are writing (which means it has been
2377                          * truncated or invalidated), or the page is
2378                          * already under writeback and we are not
2379                          * doing a data integrity writeback, skip the page
2380                          */
2381                         if (!PageDirty(page) ||
2382                             (PageWriteback(page) &&
2383                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2384                             unlikely(page->mapping != mapping)) {
2385                                 unlock_page(page);
2386                                 continue;
2387                         }
2388
2389                         wait_on_page_writeback(page);
2390                         BUG_ON(PageWriteback(page));
2391
2392                         /*
2393                          * If we have inline data and arrive here, it means that
2394                          * we will soon create the block for the 1st page, so
2395                          * we'd better clear the inline data here.
2396                          */
2397                         if (ext4_has_inline_data(inode)) {
2398                                 BUG_ON(ext4_test_inode_state(inode,
2399                                                 EXT4_STATE_MAY_INLINE_DATA));
2400                                 ext4_destroy_inline_data(handle, inode);
2401                         }
2402
2403                         if (mpd->next_page != page->index)
2404                                 mpd->first_page = page->index;
2405                         mpd->next_page = page->index + 1;
2406                         logical = (sector_t) page->index <<
2407                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2408
2409                         /* Add all dirty buffers to mpd */
2410                         head = page_buffers(page);
2411                         bh = head;
2412                         do {
2413                                 BUG_ON(buffer_locked(bh));
2414                                 /*
2415                                  * We need to try to allocate unmapped blocks
2416                                  * in the same page.  Otherwise we won't make
2417                                  * progress with the page in ext4_writepage
2418                                  */
2419                                 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2420                                         mpage_add_bh_to_extent(mpd, logical,
2421                                                                bh->b_state);
2422                                         if (mpd->io_done)
2423                                                 goto ret_extent_tail;
2424                                 } else if (buffer_dirty(bh) &&
2425                                            buffer_mapped(bh)) {
2426                                         /*
2427                                          * mapped dirty buffer. We need to
2428                                          * update the b_state because we look
2429                                          * at b_state in mpage_da_map_blocks.
2430                                          * We don't update b_size because if we
2431                                          * find an unmapped buffer_head later
2432                                          * we need to use the b_state flag of
2433                                          * that buffer_head.
2434                                          */
2435                                         if (mpd->b_size == 0)
2436                                                 mpd->b_state =
2437                                                         bh->b_state & BH_FLAGS;
2438                                 }
2439                                 logical++;
2440                         } while ((bh = bh->b_this_page) != head);
2441
2442                         if (nr_to_write > 0) {
2443                                 nr_to_write--;
2444                                 if (nr_to_write == 0 &&
2445                                     wbc->sync_mode == WB_SYNC_NONE)
2446                                         /*
2447                                          * We stop writing back only if we are
2448                                          * not doing integrity sync. In case of
2449                                          * integrity sync we have to keep going
2450                                          * because someone may be concurrently
2451                                          * dirtying pages, and we might have
2452                                          * synced a lot of newly appeared dirty
2453                                          * pages, but have not synced all of the
2454                                          * old dirty pages.
2455                                          */
2456                                         goto out;
2457                         }
2458                 }
2459                 pagevec_release(&pvec);
2460                 cond_resched();
2461         }
2462         return 0;
2463 ret_extent_tail:
2464         ret = MPAGE_DA_EXTENT_TAIL;
2465 out:
2466         pagevec_release(&pvec);
2467         cond_resched();
2468         return ret;
2469 }
2470
2471
2472 static int ext4_da_writepages(struct address_space *mapping,
2473                               struct writeback_control *wbc)
2474 {
2475         pgoff_t index;
2476         int range_whole = 0;
2477         handle_t *handle = NULL;
2478         struct mpage_da_data mpd;
2479         struct inode *inode = mapping->host;
2480         int pages_written = 0;
2481         unsigned int max_pages;
2482         int range_cyclic, cycled = 1, io_done = 0;
2483         int needed_blocks, ret = 0;
2484         long desired_nr_to_write, nr_to_writebump = 0;
2485         loff_t range_start = wbc->range_start;
2486         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2487         pgoff_t done_index = 0;
2488         pgoff_t end;
2489         struct blk_plug plug;
2490
2491         trace_ext4_da_writepages(inode, wbc);
2492
2493         /*
2494          * No pages to write? This is mainly a kludge to avoid starting
2495          * a transaction for special inodes like journal inode on last iput()
2496          * because that could violate lock ordering on umount
2497          */
2498         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2499                 return 0;
2500
2501         /*
2502          * If the filesystem has aborted, it is read-only, so return
2503          * right away instead of dumping stack traces later on that
2504          * will obscure the real source of the problem.  We test
2505          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2506          * the latter could be true if the filesystem is mounted
2507          * read-only, and in that case, ext4_da_writepages should
2508          * *never* be called, so if that ever happens, we would want
2509          * the stack trace.
2510          */
2511         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2512                 return -EROFS;
2513
2514         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2515                 range_whole = 1;
2516
2517         range_cyclic = wbc->range_cyclic;
2518         if (wbc->range_cyclic) {
2519                 index = mapping->writeback_index;
2520                 if (index)
2521                         cycled = 0;
2522                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2523                 wbc->range_end  = LLONG_MAX;
2524                 wbc->range_cyclic = 0;
2525                 end = -1;
2526         } else {
2527                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2528                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2529         }
2530
2531         /*
2532          * This works around two forms of stupidity.  The first is in
2533          * the writeback code, which caps the maximum number of pages
2534          * written to be 1024 pages.  This is wrong on multiple
2535          * levels; different architectues have a different page size,
2536          * which changes the maximum amount of data which gets
2537          * written.  Secondly, 4 megabytes is way too small.  XFS
2538          * forces this value to be 16 megabytes by multiplying
2539          * nr_to_write parameter by four, and then relies on its
2540          * allocator to allocate larger extents to make them
2541          * contiguous.  Unfortunately this brings us to the second
2542          * stupidity, which is that ext4's mballoc code only allocates
2543          * at most 2048 blocks.  So we force contiguous writes up to
2544          * the number of dirty blocks in the inode, or
2545          * sbi->max_writeback_mb_bump whichever is smaller.
2546          */
2547         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2548         if (!range_cyclic && range_whole) {
2549                 if (wbc->nr_to_write == LONG_MAX)
2550                         desired_nr_to_write = wbc->nr_to_write;
2551                 else
2552                         desired_nr_to_write = wbc->nr_to_write * 8;
2553         } else
2554                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2555                                                            max_pages);
2556         if (desired_nr_to_write > max_pages)
2557                 desired_nr_to_write = max_pages;
2558
2559         if (wbc->nr_to_write < desired_nr_to_write) {
2560                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2561                 wbc->nr_to_write = desired_nr_to_write;
2562         }
2563
2564 retry:
2565         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2566                 tag_pages_for_writeback(mapping, index, end);
2567
2568         blk_start_plug(&plug);
2569         while (!ret && wbc->nr_to_write > 0) {
2570
2571                 /*
2572                  * we  insert one extent at a time. So we need
2573                  * credit needed for single extent allocation.
2574                  * journalled mode is currently not supported
2575                  * by delalloc
2576                  */
2577                 BUG_ON(ext4_should_journal_data(inode));
2578                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2579
2580                 /* start a new transaction*/
2581                 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2582                                             needed_blocks);
2583                 if (IS_ERR(handle)) {
2584                         ret = PTR_ERR(handle);
2585                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2586                                "%ld pages, ino %lu; err %d", __func__,
2587                                 wbc->nr_to_write, inode->i_ino, ret);
2588                         blk_finish_plug(&plug);
2589                         goto out_writepages;
2590                 }
2591
2592                 /*
2593                  * Now call write_cache_pages_da() to find the next
2594                  * contiguous region of logical blocks that need
2595                  * blocks to be allocated by ext4 and submit them.
2596                  */
2597                 ret = write_cache_pages_da(handle, mapping,
2598                                            wbc, &mpd, &done_index);
2599                 /*
2600                  * If we have a contiguous extent of pages and we
2601                  * haven't done the I/O yet, map the blocks and submit
2602                  * them for I/O.
2603                  */
2604                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2605                         mpage_da_map_and_submit(&mpd);
2606                         ret = MPAGE_DA_EXTENT_TAIL;
2607                 }
2608                 trace_ext4_da_write_pages(inode, &mpd);
2609                 wbc->nr_to_write -= mpd.pages_written;
2610
2611                 ext4_journal_stop(handle);
2612
2613                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2614                         /* commit the transaction which would
2615                          * free blocks released in the transaction
2616                          * and try again
2617                          */
2618                         jbd2_journal_force_commit_nested(sbi->s_journal);
2619                         ret = 0;
2620                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2621                         /*
2622                          * Got one extent now try with rest of the pages.
2623                          * If mpd.retval is set -EIO, journal is aborted.
2624                          * So we don't need to write any more.
2625                          */
2626                         pages_written += mpd.pages_written;
2627                         ret = mpd.retval;
2628                         io_done = 1;
2629                 } else if (wbc->nr_to_write)
2630                         /*
2631                          * There is no more writeout needed
2632                          * or we requested for a noblocking writeout
2633                          * and we found the device congested
2634                          */
2635                         break;
2636         }
2637         blk_finish_plug(&plug);
2638         if (!io_done && !cycled) {
2639                 cycled = 1;
2640                 index = 0;
2641                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2642                 wbc->range_end  = mapping->writeback_index - 1;
2643                 goto retry;
2644         }
2645
2646         /* Update index */
2647         wbc->range_cyclic = range_cyclic;
2648         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2649                 /*
2650                  * set the writeback_index so that range_cyclic
2651                  * mode will write it back later
2652                  */
2653                 mapping->writeback_index = done_index;
2654
2655 out_writepages:
2656         wbc->nr_to_write -= nr_to_writebump;
2657         wbc->range_start = range_start;
2658         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2659         return ret;
2660 }
2661
2662 static int ext4_nonda_switch(struct super_block *sb)
2663 {
2664         s64 free_blocks, dirty_blocks;
2665         struct ext4_sb_info *sbi = EXT4_SB(sb);
2666
2667         /*
2668          * switch to non delalloc mode if we are running low
2669          * on free block. The free block accounting via percpu
2670          * counters can get slightly wrong with percpu_counter_batch getting
2671          * accumulated on each CPU without updating global counters
2672          * Delalloc need an accurate free block accounting. So switch
2673          * to non delalloc when we are near to error range.
2674          */
2675         free_blocks  = EXT4_C2B(sbi,
2676                 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2677         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2678         /*
2679          * Start pushing delalloc when 1/2 of free blocks are dirty.
2680          */
2681         if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2682             !writeback_in_progress(sb->s_bdi) &&
2683             down_read_trylock(&sb->s_umount)) {
2684                 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2685                 up_read(&sb->s_umount);
2686         }
2687
2688         if (2 * free_blocks < 3 * dirty_blocks ||
2689                 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2690                 /*
2691                  * free block count is less than 150% of dirty blocks
2692                  * or free blocks is less than watermark
2693                  */
2694                 return 1;
2695         }
2696         return 0;
2697 }
2698
2699 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2700                                loff_t pos, unsigned len, unsigned flags,
2701                                struct page **pagep, void **fsdata)
2702 {
2703         int ret, retries = 0;
2704         struct page *page;
2705         pgoff_t index;
2706         struct inode *inode = mapping->host;
2707         handle_t *handle;
2708
2709         index = pos >> PAGE_CACHE_SHIFT;
2710
2711         if (ext4_nonda_switch(inode->i_sb)) {
2712                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2713                 return ext4_write_begin(file, mapping, pos,
2714                                         len, flags, pagep, fsdata);
2715         }
2716         *fsdata = (void *)0;
2717         trace_ext4_da_write_begin(inode, pos, len, flags);
2718
2719         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2720                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2721                                                       pos, len, flags,
2722                                                       pagep, fsdata);
2723                 if (ret < 0)
2724                         return ret;
2725                 if (ret == 1)
2726                         return 0;
2727         }
2728
2729         /*
2730          * grab_cache_page_write_begin() can take a long time if the
2731          * system is thrashing due to memory pressure, or if the page
2732          * is being written back.  So grab it first before we start
2733          * the transaction handle.  This also allows us to allocate
2734          * the page (if needed) without using GFP_NOFS.
2735          */
2736 retry_grab:
2737         page = grab_cache_page_write_begin(mapping, index, flags);
2738         if (!page)
2739                 return -ENOMEM;
2740         unlock_page(page);
2741
2742         /*
2743          * With delayed allocation, we don't log the i_disksize update
2744          * if there is delayed block allocation. But we still need
2745          * to journalling the i_disksize update if writes to the end
2746          * of file which has an already mapped buffer.
2747          */
2748 retry_journal:
2749         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2750         if (IS_ERR(handle)) {
2751                 page_cache_release(page);
2752                 return PTR_ERR(handle);
2753         }
2754
2755         lock_page(page);
2756         if (page->mapping != mapping) {
2757                 /* The page got truncated from under us */
2758                 unlock_page(page);
2759                 page_cache_release(page);
2760                 ext4_journal_stop(handle);
2761                 goto retry_grab;
2762         }
2763         /* In case writeback began while the page was unlocked */
2764         wait_on_page_writeback(page);
2765
2766         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2767         if (ret < 0) {
2768                 unlock_page(page);
2769                 ext4_journal_stop(handle);
2770                 /*
2771                  * block_write_begin may have instantiated a few blocks
2772                  * outside i_size.  Trim these off again. Don't need
2773                  * i_size_read because we hold i_mutex.
2774                  */
2775                 if (pos + len > inode->i_size)
2776                         ext4_truncate_failed_write(inode);
2777
2778                 if (ret == -ENOSPC &&
2779                     ext4_should_retry_alloc(inode->i_sb, &retries))
2780                         goto retry_journal;
2781
2782                 page_cache_release(page);
2783                 return ret;
2784         }
2785
2786         *pagep = page;
2787         return ret;
2788 }
2789
2790 /*
2791  * Check if we should update i_disksize
2792  * when write to the end of file but not require block allocation
2793  */
2794 static int ext4_da_should_update_i_disksize(struct page *page,
2795                                             unsigned long offset)
2796 {
2797         struct buffer_head *bh;
2798         struct inode *inode = page->mapping->host;
2799         unsigned int idx;
2800         int i;
2801
2802         bh = page_buffers(page);
2803         idx = offset >> inode->i_blkbits;
2804
2805         for (i = 0; i < idx; i++)
2806                 bh = bh->b_this_page;
2807
2808         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2809                 return 0;
2810         return 1;
2811 }
2812
2813 static int ext4_da_write_end(struct file *file,
2814                              struct address_space *mapping,
2815                              loff_t pos, unsigned len, unsigned copied,
2816                              struct page *page, void *fsdata)
2817 {
2818         struct inode *inode = mapping->host;
2819         int ret = 0, ret2;
2820         handle_t *handle = ext4_journal_current_handle();
2821         loff_t new_i_size;
2822         unsigned long start, end;
2823         int write_mode = (int)(unsigned long)fsdata;
2824
2825         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2826                 switch (ext4_inode_journal_mode(inode)) {
2827                 case EXT4_INODE_ORDERED_DATA_MODE:
2828                         return ext4_ordered_write_end(file, mapping, pos,
2829                                         len, copied, page, fsdata);
2830                 case EXT4_INODE_WRITEBACK_DATA_MODE:
2831                         return ext4_writeback_write_end(file, mapping, pos,
2832                                         len, copied, page, fsdata);
2833                 default:
2834                         BUG();
2835                 }
2836         }
2837
2838         trace_ext4_da_write_end(inode, pos, len, copied);
2839         start = pos & (PAGE_CACHE_SIZE - 1);
2840         end = start + copied - 1;
2841
2842         /*
2843          * generic_write_end() will run mark_inode_dirty() if i_size
2844          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2845          * into that.
2846          */
2847         new_i_size = pos + copied;
2848         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2849                 if (ext4_has_inline_data(inode) ||
2850                     ext4_da_should_update_i_disksize(page, end)) {
2851                         down_write(&EXT4_I(inode)->i_data_sem);
2852                         if (new_i_size > EXT4_I(inode)->i_disksize)
2853                                 EXT4_I(inode)->i_disksize = new_i_size;
2854                         up_write(&EXT4_I(inode)->i_data_sem);
2855                         /* We need to mark inode dirty even if
2856                          * new_i_size is less that inode->i_size
2857                          * bu greater than i_disksize.(hint delalloc)
2858                          */
2859                         ext4_mark_inode_dirty(handle, inode);
2860                 }
2861         }
2862
2863         if (write_mode != CONVERT_INLINE_DATA &&
2864             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2865             ext4_has_inline_data(inode))
2866                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2867                                                      page);
2868         else
2869                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2870                                                         page, fsdata);
2871
2872         copied = ret2;
2873         if (ret2 < 0)
2874                 ret = ret2;
2875         ret2 = ext4_journal_stop(handle);
2876         if (!ret)
2877                 ret = ret2;
2878
2879         return ret ? ret : copied;
2880 }
2881
2882 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2883 {
2884         /*
2885          * Drop reserved blocks
2886          */
2887         BUG_ON(!PageLocked(page));
2888         if (!page_has_buffers(page))
2889                 goto out;
2890
2891         ext4_da_page_release_reservation(page, offset);
2892
2893 out:
2894         ext4_invalidatepage(page, offset);
2895
2896         return;
2897 }
2898
2899 /*
2900  * Force all delayed allocation blocks to be allocated for a given inode.
2901  */
2902 int ext4_alloc_da_blocks(struct inode *inode)
2903 {
2904         trace_ext4_alloc_da_blocks(inode);
2905
2906         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2907             !EXT4_I(inode)->i_reserved_meta_blocks)
2908                 return 0;
2909
2910         /*
2911          * We do something simple for now.  The filemap_flush() will
2912          * also start triggering a write of the data blocks, which is
2913          * not strictly speaking necessary (and for users of
2914          * laptop_mode, not even desirable).  However, to do otherwise
2915          * would require replicating code paths in:
2916          *
2917          * ext4_da_writepages() ->
2918          *    write_cache_pages() ---> (via passed in callback function)
2919          *        __mpage_da_writepage() -->
2920          *           mpage_add_bh_to_extent()
2921          *           mpage_da_map_blocks()
2922          *
2923          * The problem is that write_cache_pages(), located in
2924          * mm/page-writeback.c, marks pages clean in preparation for
2925          * doing I/O, which is not desirable if we're not planning on
2926          * doing I/O at all.
2927          *
2928          * We could call write_cache_pages(), and then redirty all of
2929          * the pages by calling redirty_page_for_writepage() but that
2930          * would be ugly in the extreme.  So instead we would need to
2931          * replicate parts of the code in the above functions,
2932          * simplifying them because we wouldn't actually intend to
2933          * write out the pages, but rather only collect contiguous
2934          * logical block extents, call the multi-block allocator, and
2935          * then update the buffer heads with the block allocations.
2936          *
2937          * For now, though, we'll cheat by calling filemap_flush(),
2938          * which will map the blocks, and start the I/O, but not
2939          * actually wait for the I/O to complete.
2940          */
2941         return filemap_flush(inode->i_mapping);
2942 }
2943
2944 /*
2945  * bmap() is special.  It gets used by applications such as lilo and by
2946  * the swapper to find the on-disk block of a specific piece of data.
2947  *
2948  * Naturally, this is dangerous if the block concerned is still in the
2949  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2950  * filesystem and enables swap, then they may get a nasty shock when the
2951  * data getting swapped to that swapfile suddenly gets overwritten by
2952  * the original zero's written out previously to the journal and
2953  * awaiting writeback in the kernel's buffer cache.
2954  *
2955  * So, if we see any bmap calls here on a modified, data-journaled file,
2956  * take extra steps to flush any blocks which might be in the cache.
2957  */
2958 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2959 {
2960         struct inode *inode = mapping->host;
2961         journal_t *journal;
2962         int err;
2963
2964         /*
2965          * We can get here for an inline file via the FIBMAP ioctl
2966          */
2967         if (ext4_has_inline_data(inode))
2968                 return 0;
2969
2970         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2971                         test_opt(inode->i_sb, DELALLOC)) {
2972                 /*
2973                  * With delalloc we want to sync the file
2974                  * so that we can make sure we allocate
2975                  * blocks for file
2976                  */
2977                 filemap_write_and_wait(mapping);
2978         }
2979
2980         if (EXT4_JOURNAL(inode) &&
2981             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2982                 /*
2983                  * This is a REALLY heavyweight approach, but the use of
2984                  * bmap on dirty files is expected to be extremely rare:
2985                  * only if we run lilo or swapon on a freshly made file
2986                  * do we expect this to happen.
2987                  *
2988                  * (bmap requires CAP_SYS_RAWIO so this does not
2989                  * represent an unprivileged user DOS attack --- we'd be
2990                  * in trouble if mortal users could trigger this path at
2991                  * will.)
2992                  *
2993                  * NB. EXT4_STATE_JDATA is not set on files other than
2994                  * regular files.  If somebody wants to bmap a directory
2995                  * or symlink and gets confused because the buffer
2996                  * hasn't yet been flushed to disk, they deserve
2997                  * everything they get.
2998                  */
2999
3000                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3001                 journal = EXT4_JOURNAL(inode);
3002                 jbd2_journal_lock_updates(journal);
3003                 err = jbd2_journal_flush(journal);
3004                 jbd2_journal_unlock_updates(journal);
3005
3006                 if (err)
3007                         return 0;
3008         }
3009
3010         return generic_block_bmap(mapping, block, ext4_get_block);
3011 }
3012
3013 static int ext4_readpage(struct file *file, struct page *page)
3014 {
3015         int ret = -EAGAIN;
3016         struct inode *inode = page->mapping->host;
3017
3018         trace_ext4_readpage(page);
3019
3020         if (ext4_has_inline_data(inode))
3021                 ret = ext4_readpage_inline(inode, page);
3022
3023         if (ret == -EAGAIN)
3024                 return mpage_readpage(page, ext4_get_block);
3025
3026         return ret;
3027 }
3028
3029 static int
3030 ext4_readpages(struct file *file, struct address_space *mapping,
3031                 struct list_head *pages, unsigned nr_pages)
3032 {
3033         struct inode *inode = mapping->host;
3034
3035         /* If the file has inline data, no need to do readpages. */
3036         if (ext4_has_inline_data(inode))
3037                 return 0;
3038
3039         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3040 }
3041
3042 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3043 {
3044         trace_ext4_invalidatepage(page, offset);
3045
3046         /* No journalling happens on data buffers when this function is used */
3047         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3048
3049         block_invalidatepage(page, offset);
3050 }
3051
3052 static int __ext4_journalled_invalidatepage(struct page *page,
3053                                             unsigned long offset)
3054 {
3055         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3056
3057         trace_ext4_journalled_invalidatepage(page, offset);
3058
3059         /*
3060          * If it's a full truncate we just forget about the pending dirtying
3061          */
3062         if (offset == 0)
3063                 ClearPageChecked(page);
3064
3065         return jbd2_journal_invalidatepage(journal, page, offset);
3066 }
3067
3068 /* Wrapper for aops... */
3069 static void ext4_journalled_invalidatepage(struct page *page,
3070                                            unsigned long offset)
3071 {
3072         WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3073 }
3074
3075 static int ext4_releasepage(struct page *page, gfp_t wait)
3076 {
3077         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3078
3079         trace_ext4_releasepage(page);
3080
3081         /* Page has dirty journalled data -> cannot release */
3082         if (PageChecked(page))
3083                 return 0;
3084         if (journal)
3085                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3086         else
3087                 return try_to_free_buffers(page);
3088 }
3089
3090 /*
3091  * ext4_get_block used when preparing for a DIO write or buffer write.
3092  * We allocate an uinitialized extent if blocks haven't been allocated.
3093  * The extent will be converted to initialized after the IO is complete.
3094  */
3095 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3096                    struct buffer_head *bh_result, int create)
3097 {
3098         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3099                    inode->i_ino, create);
3100         return _ext4_get_block(inode, iblock, bh_result,
3101                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3102 }
3103
3104 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3105                    struct buffer_head *bh_result, int create)
3106 {
3107         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3108                    inode->i_ino, create);
3109         return _ext4_get_block(inode, iblock, bh_result,
3110                                EXT4_GET_BLOCKS_NO_LOCK);
3111 }
3112
3113 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3114                             ssize_t size, void *private, int ret,
3115                             bool is_async)
3116 {
3117         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
3118         ext4_io_end_t *io_end = iocb->private;
3119
3120         /* if not async direct IO or dio with 0 bytes write, just return */
3121         if (!io_end || !size)
3122                 goto out;
3123
3124         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3125                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3126                   iocb->private, io_end->inode->i_ino, iocb, offset,
3127                   size);
3128
3129         iocb->private = NULL;
3130
3131         /* if not aio dio with unwritten extents, just free io and return */
3132         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3133                 ext4_free_io_end(io_end);
3134 out:
3135                 inode_dio_done(inode);
3136                 if (is_async)
3137                         aio_complete(iocb, ret, 0);
3138                 return;
3139         }
3140
3141         io_end->offset = offset;
3142         io_end->size = size;
3143         if (is_async) {
3144                 io_end->iocb = iocb;
3145                 io_end->result = ret;
3146         }
3147
3148         ext4_add_complete_io(io_end);
3149 }
3150
3151 /*
3152  * For ext4 extent files, ext4 will do direct-io write to holes,
3153  * preallocated extents, and those write extend the file, no need to
3154  * fall back to buffered IO.
3155  *
3156  * For holes, we fallocate those blocks, mark them as uninitialized
3157  * If those blocks were preallocated, we mark sure they are split, but
3158  * still keep the range to write as uninitialized.
3159  *
3160  * The unwritten extents will be converted to written when DIO is completed.
3161  * For async direct IO, since the IO may still pending when return, we
3162  * set up an end_io call back function, which will do the conversion
3163  * when async direct IO completed.
3164  *
3165  * If the O_DIRECT write will extend the file then add this inode to the
3166  * orphan list.  So recovery will truncate it back to the original size
3167  * if the machine crashes during the write.
3168  *
3169  */
3170 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3171                               const struct iovec *iov, loff_t offset,
3172                               unsigned long nr_segs)
3173 {
3174         struct file *file = iocb->ki_filp;
3175         struct inode *inode = file->f_mapping->host;
3176         ssize_t ret;
3177         size_t count = iov_length(iov, nr_segs);
3178         int overwrite = 0;
3179         get_block_t *get_block_func = NULL;
3180         int dio_flags = 0;
3181         loff_t final_size = offset + count;
3182
3183         /* Use the old path for reads and writes beyond i_size. */
3184         if (rw != WRITE || final_size > inode->i_size)
3185                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3186
3187         BUG_ON(iocb->private == NULL);
3188
3189         /* If we do a overwrite dio, i_mutex locking can be released */
3190         overwrite = *((int *)iocb->private);
3191
3192         if (overwrite) {
3193                 atomic_inc(&inode->i_dio_count);
3194                 down_read(&EXT4_I(inode)->i_data_sem);
3195                 mutex_unlock(&inode->i_mutex);
3196         }
3197
3198         /*
3199          * We could direct write to holes and fallocate.
3200          *
3201          * Allocated blocks to fill the hole are marked as
3202          * uninitialized to prevent parallel buffered read to expose
3203          * the stale data before DIO complete the data IO.
3204          *
3205          * As to previously fallocated extents, ext4 get_block will
3206          * just simply mark the buffer mapped but still keep the
3207          * extents uninitialized.
3208          *
3209          * For non AIO case, we will convert those unwritten extents
3210          * to written after return back from blockdev_direct_IO.
3211          *
3212          * For async DIO, the conversion needs to be deferred when the
3213          * IO is completed. The ext4 end_io callback function will be
3214          * called to take care of the conversion work.  Here for async
3215          * case, we allocate an io_end structure to hook to the iocb.
3216          */
3217         iocb->private = NULL;
3218         ext4_inode_aio_set(inode, NULL);
3219         if (!is_sync_kiocb(iocb)) {
3220                 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3221                 if (!io_end) {
3222                         ret = -ENOMEM;
3223                         goto retake_lock;
3224                 }
3225                 io_end->flag |= EXT4_IO_END_DIRECT;
3226                 iocb->private = io_end;
3227                 /*
3228                  * we save the io structure for current async direct
3229                  * IO, so that later ext4_map_blocks() could flag the
3230                  * io structure whether there is a unwritten extents
3231                  * needs to be converted when IO is completed.
3232                  */
3233                 ext4_inode_aio_set(inode, io_end);
3234         }
3235
3236         if (overwrite) {
3237                 get_block_func = ext4_get_block_write_nolock;
3238         } else {
3239                 get_block_func = ext4_get_block_write;
3240                 dio_flags = DIO_LOCKING;
3241         }
3242         ret = __blockdev_direct_IO(rw, iocb, inode,
3243                                    inode->i_sb->s_bdev, iov,
3244                                    offset, nr_segs,
3245                                    get_block_func,
3246                                    ext4_end_io_dio,
3247                                    NULL,
3248                                    dio_flags);
3249
3250         if (iocb->private)
3251                 ext4_inode_aio_set(inode, NULL);
3252         /*
3253          * The io_end structure takes a reference to the inode, that
3254          * structure needs to be destroyed and the reference to the
3255          * inode need to be dropped, when IO is complete, even with 0
3256          * byte write, or failed.
3257          *
3258          * In the successful AIO DIO case, the io_end structure will
3259          * be destroyed and the reference to the inode will be dropped
3260          * after the end_io call back function is called.
3261          *
3262          * In the case there is 0 byte write, or error case, since VFS
3263          * direct IO won't invoke the end_io call back function, we
3264          * need to free the end_io structure here.
3265          */
3266         if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3267                 ext4_free_io_end(iocb->private);
3268                 iocb->private = NULL;
3269         } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3270                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3271                 int err;
3272                 /*
3273                  * for non AIO case, since the IO is already
3274                  * completed, we could do the conversion right here
3275                  */
3276                 err = ext4_convert_unwritten_extents(inode,
3277                                                      offset, ret);
3278                 if (err < 0)
3279                         ret = err;
3280                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3281         }
3282
3283 retake_lock:
3284         /* take i_mutex locking again if we do a ovewrite dio */
3285         if (overwrite) {
3286                 inode_dio_done(inode);
3287                 up_read(&EXT4_I(inode)->i_data_sem);
3288                 mutex_lock(&inode->i_mutex);
3289         }
3290
3291         return ret;
3292 }
3293
3294 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3295                               const struct iovec *iov, loff_t offset,
3296                               unsigned long nr_segs)
3297 {
3298         struct file *file = iocb->ki_filp;
3299         struct inode *inode = file->f_mapping->host;
3300         ssize_t ret;
3301
3302         /*
3303          * If we are doing data journalling we don't support O_DIRECT
3304          */
3305         if (ext4_should_journal_data(inode))
3306                 return 0;
3307
3308         /* Let buffer I/O handle the inline data case. */
3309         if (ext4_has_inline_data(inode))
3310                 return 0;
3311
3312         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3313         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3314                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3315         else
3316                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3317         trace_ext4_direct_IO_exit(inode, offset,
3318                                 iov_length(iov, nr_segs), rw, ret);
3319         return ret;
3320 }
3321
3322 /*
3323  * Pages can be marked dirty completely asynchronously from ext4's journalling
3324  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3325  * much here because ->set_page_dirty is called under VFS locks.  The page is
3326  * not necessarily locked.
3327  *
3328  * We cannot just dirty the page and leave attached buffers clean, because the
3329  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3330  * or jbddirty because all the journalling code will explode.
3331  *
3332  * So what we do is to mark the page "pending dirty" and next time writepage
3333  * is called, propagate that into the buffers appropriately.
3334  */
3335 static int ext4_journalled_set_page_dirty(struct page *page)
3336 {
3337         SetPageChecked(page);
3338         return __set_page_dirty_nobuffers(page);
3339 }
3340
3341 static const struct address_space_operations ext4_ordered_aops = {
3342         .readpage               = ext4_readpage,
3343         .readpages              = ext4_readpages,
3344         .writepage              = ext4_writepage,
3345         .write_begin            = ext4_write_begin,
3346         .write_end              = ext4_ordered_write_end,
3347         .bmap                   = ext4_bmap,
3348         .invalidatepage         = ext4_invalidatepage,
3349         .releasepage            = ext4_releasepage,
3350         .direct_IO              = ext4_direct_IO,
3351         .migratepage            = buffer_migrate_page,
3352         .is_partially_uptodate  = block_is_partially_uptodate,
3353         .error_remove_page      = generic_error_remove_page,
3354 };
3355
3356 static const struct address_space_operations ext4_writeback_aops = {
3357         .readpage               = ext4_readpage,
3358         .readpages              = ext4_readpages,
3359         .writepage              = ext4_writepage,
3360         .write_begin            = ext4_write_begin,
3361         .write_end              = ext4_writeback_write_end,
3362         .bmap                   = ext4_bmap,
3363         .invalidatepage         = ext4_invalidatepage,
3364         .releasepage            = ext4_releasepage,
3365         .direct_IO              = ext4_direct_IO,
3366         .migratepage            = buffer_migrate_page,
3367         .is_partially_uptodate  = block_is_partially_uptodate,
3368         .error_remove_page      = generic_error_remove_page,
3369 };
3370
3371 static const struct address_space_operations ext4_journalled_aops = {
3372         .readpage               = ext4_readpage,
3373         .readpages              = ext4_readpages,
3374         .writepage              = ext4_writepage,
3375         .write_begin            = ext4_write_begin,
3376         .write_end              = ext4_journalled_write_end,
3377         .set_page_dirty         = ext4_journalled_set_page_dirty,
3378         .bmap                   = ext4_bmap,
3379         .invalidatepage         = ext4_journalled_invalidatepage,
3380         .releasepage            = ext4_releasepage,
3381         .direct_IO              = ext4_direct_IO,
3382         .is_partially_uptodate  = block_is_partially_uptodate,
3383         .error_remove_page      = generic_error_remove_page,
3384 };
3385
3386 static const struct address_space_operations ext4_da_aops = {
3387         .readpage               = ext4_readpage,
3388         .readpages              = ext4_readpages,
3389         .writepage              = ext4_writepage,
3390         .writepages             = ext4_da_writepages,
3391         .write_begin            = ext4_da_write_begin,
3392         .write_end              = ext4_da_write_end,
3393         .bmap                   = ext4_bmap,
3394         .invalidatepage         = ext4_da_invalidatepage,
3395         .releasepage            = ext4_releasepage,
3396         .direct_IO              = ext4_direct_IO,
3397         .migratepage            = buffer_migrate_page,
3398         .is_partially_uptodate  = block_is_partially_uptodate,
3399         .error_remove_page      = generic_error_remove_page,
3400 };
3401
3402 void ext4_set_aops(struct inode *inode)
3403 {
3404         switch (ext4_inode_journal_mode(inode)) {
3405         case EXT4_INODE_ORDERED_DATA_MODE:
3406                 if (test_opt(inode->i_sb, DELALLOC))
3407                         inode->i_mapping->a_ops = &ext4_da_aops;
3408                 else
3409                         inode->i_mapping->a_ops = &ext4_ordered_aops;
3410                 break;
3411         case EXT4_INODE_WRITEBACK_DATA_MODE:
3412                 if (test_opt(inode->i_sb, DELALLOC))
3413                         inode->i_mapping->a_ops = &ext4_da_aops;
3414                 else
3415                         inode->i_mapping->a_ops = &ext4_writeback_aops;
3416                 break;
3417         case EXT4_INODE_JOURNAL_DATA_MODE:
3418                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3419                 break;
3420         default:
3421                 BUG();
3422         }
3423 }
3424
3425
3426 /*
3427  * ext4_discard_partial_page_buffers()
3428  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3429  * This function finds and locks the page containing the offset
3430  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3431  * Calling functions that already have the page locked should call
3432  * ext4_discard_partial_page_buffers_no_lock directly.
3433  */
3434 int ext4_discard_partial_page_buffers(handle_t *handle,
3435                 struct address_space *mapping, loff_t from,
3436                 loff_t length, int flags)
3437 {
3438         struct inode *inode = mapping->host;
3439         struct page *page;
3440         int err = 0;
3441
3442         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3443                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3444         if (!page)
3445                 return -ENOMEM;
3446
3447         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3448                 from, length, flags);
3449
3450         unlock_page(page);
3451         page_cache_release(page);
3452         return err;
3453 }
3454
3455 /*
3456  * ext4_discard_partial_page_buffers_no_lock()
3457  * Zeros a page range of length 'length' starting from offset 'from'.
3458  * Buffer heads that correspond to the block aligned regions of the
3459  * zeroed range will be unmapped.  Unblock aligned regions
3460  * will have the corresponding buffer head mapped if needed so that
3461  * that region of the page can be updated with the partial zero out.
3462  *
3463  * This function assumes that the page has already been  locked.  The
3464  * The range to be discarded must be contained with in the given page.
3465  * If the specified range exceeds the end of the page it will be shortened
3466  * to the end of the page that corresponds to 'from'.  This function is
3467  * appropriate for updating a page and it buffer heads to be unmapped and
3468  * zeroed for blocks that have been either released, or are going to be
3469  * released.
3470  *
3471  * handle: The journal handle
3472  * inode:  The files inode
3473  * page:   A locked page that contains the offset "from"
3474  * from:   The starting byte offset (from the beginning of the file)
3475  *         to begin discarding
3476  * len:    The length of bytes to discard
3477  * flags:  Optional flags that may be used:
3478  *
3479  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3480  *         Only zero the regions of the page whose buffer heads
3481  *         have already been unmapped.  This flag is appropriate
3482  *         for updating the contents of a page whose blocks may
3483  *         have already been released, and we only want to zero
3484  *         out the regions that correspond to those released blocks.
3485  *
3486  * Returns zero on success or negative on failure.
3487  */
3488 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3489                 struct inode *inode, struct page *page, loff_t from,
3490                 loff_t length, int flags)
3491 {
3492         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3493         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3494         unsigned int blocksize, max, pos;
3495         ext4_lblk_t iblock;
3496         struct buffer_head *bh;
3497         int err = 0;
3498
3499         blocksize = inode->i_sb->s_blocksize;
3500         max = PAGE_CACHE_SIZE - offset;
3501
3502         if (index != page->index)
3503                 return -EINVAL;
3504
3505         /*
3506          * correct length if it does not fall between
3507          * 'from' and the end of the page
3508          */
3509         if (length > max || length < 0)
3510                 length = max;
3511
3512         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3513
3514         if (!page_has_buffers(page))
3515                 create_empty_buffers(page, blocksize, 0);
3516
3517         /* Find the buffer that contains "offset" */
3518         bh = page_buffers(page);
3519         pos = blocksize;
3520         while (offset >= pos) {
3521                 bh = bh->b_this_page;
3522                 iblock++;
3523                 pos += blocksize;
3524         }
3525
3526         pos = offset;
3527         while (pos < offset + length) {
3528                 unsigned int end_of_block, range_to_discard;
3529
3530                 err = 0;
3531
3532                 /* The length of space left to zero and unmap */
3533                 range_to_discard = offset + length - pos;
3534
3535                 /* The length of space until the end of the block */
3536                 end_of_block = blocksize - (pos & (blocksize-1));
3537
3538                 /*
3539                  * Do not unmap or zero past end of block
3540                  * for this buffer head
3541                  */
3542                 if (range_to_discard > end_of_block)
3543                         range_to_discard = end_of_block;
3544
3545
3546                 /*
3547                  * Skip this buffer head if we are only zeroing unampped
3548                  * regions of the page
3549                  */
3550                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3551                         buffer_mapped(bh))
3552                                 goto next;
3553
3554                 /* If the range is block aligned, unmap */
3555                 if (range_to_discard == blocksize) {
3556                         clear_buffer_dirty(bh);
3557                         bh->b_bdev = NULL;
3558                         clear_buffer_mapped(bh);
3559                         clear_buffer_req(bh);
3560                         clear_buffer_new(bh);
3561                         clear_buffer_delay(bh);
3562                         clear_buffer_unwritten(bh);
3563                         clear_buffer_uptodate(bh);
3564                         zero_user(page, pos, range_to_discard);
3565                         BUFFER_TRACE(bh, "Buffer discarded");
3566                         goto next;
3567                 }
3568
3569                 /*
3570                  * If this block is not completely contained in the range
3571                  * to be discarded, then it is not going to be released. Because
3572                  * we need to keep this block, we need to make sure this part
3573                  * of the page is uptodate before we modify it by writeing
3574                  * partial zeros on it.
3575                  */
3576                 if (!buffer_mapped(bh)) {
3577                         /*
3578                          * Buffer head must be mapped before we can read
3579                          * from the block
3580                          */
3581                         BUFFER_TRACE(bh, "unmapped");
3582                         ext4_get_block(inode, iblock, bh, 0);
3583                         /* unmapped? It's a hole - nothing to do */
3584                         if (!buffer_mapped(bh)) {
3585                                 BUFFER_TRACE(bh, "still unmapped");
3586                                 goto next;
3587                         }
3588                 }
3589
3590                 /* Ok, it's mapped. Make sure it's up-to-date */
3591                 if (PageUptodate(page))
3592                         set_buffer_uptodate(bh);
3593
3594                 if (!buffer_uptodate(bh)) {
3595                         err = -EIO;
3596                         ll_rw_block(READ, 1, &bh);
3597                         wait_on_buffer(bh);
3598                         /* Uhhuh. Read error. Complain and punt.*/
3599                         if (!buffer_uptodate(bh))
3600                                 goto next;
3601                 }
3602
3603                 if (ext4_should_journal_data(inode)) {
3604                         BUFFER_TRACE(bh, "get write access");
3605                         err = ext4_journal_get_write_access(handle, bh);
3606                         if (err)
3607                                 goto next;
3608                 }
3609
3610                 zero_user(page, pos, range_to_discard);
3611
3612                 err = 0;
3613                 if (ext4_should_journal_data(inode)) {
3614                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3615                 } else
3616                         mark_buffer_dirty(bh);
3617
3618                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3619 next:
3620                 bh = bh->b_this_page;
3621                 iblock++;
3622                 pos += range_to_discard;
3623         }
3624
3625         return err;
3626 }
3627
3628 int ext4_can_truncate(struct inode *inode)
3629 {
3630         if (S_ISREG(inode->i_mode))
3631                 return 1;
3632         if (S_ISDIR(inode->i_mode))
3633                 return 1;
3634         if (S_ISLNK(inode->i_mode))
3635                 return !ext4_inode_is_fast_symlink(inode);
3636         return 0;
3637 }
3638
3639 /*
3640  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3641  * associated with the given offset and length
3642  *
3643  * @inode:  File inode
3644  * @offset: The offset where the hole will begin
3645  * @len:    The length of the hole
3646  *
3647  * Returns: 0 on success or negative on failure
3648  */
3649
3650 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3651 {
3652         struct inode *inode = file->f_path.dentry->d_inode;
3653         if (!S_ISREG(inode->i_mode))
3654                 return -EOPNOTSUPP;
3655
3656         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3657                 return ext4_ind_punch_hole(file, offset, length);
3658
3659         if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3660                 /* TODO: Add support for bigalloc file systems */
3661                 return -EOPNOTSUPP;
3662         }
3663
3664         trace_ext4_punch_hole(inode, offset, length);
3665
3666         return ext4_ext_punch_hole(file, offset, length);
3667 }
3668
3669 /*
3670  * ext4_truncate()
3671  *
3672  * We block out ext4_get_block() block instantiations across the entire
3673  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3674  * simultaneously on behalf of the same inode.
3675  *
3676  * As we work through the truncate and commit bits of it to the journal there
3677  * is one core, guiding principle: the file's tree must always be consistent on
3678  * disk.  We must be able to restart the truncate after a crash.
3679  *
3680  * The file's tree may be transiently inconsistent in memory (although it
3681  * probably isn't), but whenever we close off and commit a journal transaction,
3682  * the contents of (the filesystem + the journal) must be consistent and
3683  * restartable.  It's pretty simple, really: bottom up, right to left (although
3684  * left-to-right works OK too).
3685  *
3686  * Note that at recovery time, journal replay occurs *before* the restart of
3687  * truncate against the orphan inode list.
3688  *
3689  * The committed inode has the new, desired i_size (which is the same as
3690  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3691  * that this inode's truncate did not complete and it will again call
3692  * ext4_truncate() to have another go.  So there will be instantiated blocks
3693  * to the right of the truncation point in a crashed ext4 filesystem.  But
3694  * that's fine - as long as they are linked from the inode, the post-crash
3695  * ext4_truncate() run will find them and release them.
3696  */
3697 void ext4_truncate(struct inode *inode)
3698 {
3699         trace_ext4_truncate_enter(inode);
3700
3701         if (!ext4_can_truncate(inode))
3702                 return;
3703
3704         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3705
3706         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3707                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3708
3709         if (ext4_has_inline_data(inode)) {
3710                 int has_inline = 1;
3711
3712                 ext4_inline_data_truncate(inode, &has_inline);
3713                 if (has_inline)
3714                         return;
3715         }
3716
3717         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3718                 ext4_ext_truncate(inode);
3719         else
3720                 ext4_ind_truncate(inode);
3721
3722         trace_ext4_truncate_exit(inode);
3723 }
3724
3725 /*
3726  * ext4_get_inode_loc returns with an extra refcount against the inode's
3727  * underlying buffer_head on success. If 'in_mem' is true, we have all
3728  * data in memory that is needed to recreate the on-disk version of this
3729  * inode.
3730  */
3731 static int __ext4_get_inode_loc(struct inode *inode,
3732                                 struct ext4_iloc *iloc, int in_mem)
3733 {
3734         struct ext4_group_desc  *gdp;
3735         struct buffer_head      *bh;
3736         struct super_block      *sb = inode->i_sb;
3737         ext4_fsblk_t            block;
3738         int                     inodes_per_block, inode_offset;
3739
3740         iloc->bh = NULL;
3741         if (!ext4_valid_inum(sb, inode->i_ino))
3742                 return -EIO;
3743
3744         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3745         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3746         if (!gdp)
3747                 return -EIO;
3748
3749         /*
3750          * Figure out the offset within the block group inode table
3751          */
3752         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3753         inode_offset = ((inode->i_ino - 1) %
3754                         EXT4_INODES_PER_GROUP(sb));
3755         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3756         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3757
3758         bh = sb_getblk(sb, block);
3759         if (unlikely(!bh))
3760                 return -ENOMEM;
3761         if (!buffer_uptodate(bh)) {
3762                 lock_buffer(bh);
3763
3764                 /*
3765                  * If the buffer has the write error flag, we have failed
3766                  * to write out another inode in the same block.  In this
3767                  * case, we don't have to read the block because we may
3768                  * read the old inode data successfully.
3769                  */
3770                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3771                         set_buffer_uptodate(bh);
3772
3773                 if (buffer_uptodate(bh)) {
3774                         /* someone brought it uptodate while we waited */
3775                         unlock_buffer(bh);
3776                         goto has_buffer;
3777                 }
3778
3779                 /*
3780                  * If we have all information of the inode in memory and this
3781                  * is the only valid inode in the block, we need not read the
3782                  * block.
3783                  */
3784                 if (in_mem) {
3785                         struct buffer_head *bitmap_bh;
3786                         int i, start;
3787
3788                         start = inode_offset & ~(inodes_per_block - 1);
3789
3790                         /* Is the inode bitmap in cache? */
3791                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3792                         if (unlikely(!bitmap_bh))
3793                                 goto make_io;
3794
3795                         /*
3796                          * If the inode bitmap isn't in cache then the
3797                          * optimisation may end up performing two reads instead
3798                          * of one, so skip it.
3799                          */
3800                         if (!buffer_uptodate(bitmap_bh)) {
3801                                 brelse(bitmap_bh);
3802                                 goto make_io;
3803                         }
3804                         for (i = start; i < start + inodes_per_block; i++) {
3805                                 if (i == inode_offset)
3806                                         continue;
3807                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3808                                         break;
3809                         }
3810                         brelse(bitmap_bh);
3811                         if (i == start + inodes_per_block) {
3812                                 /* all other inodes are free, so skip I/O */
3813                                 memset(bh->b_data, 0, bh->b_size);
3814                                 set_buffer_uptodate(bh);
3815                                 unlock_buffer(bh);
3816                                 goto has_buffer;
3817                         }
3818                 }
3819
3820 make_io:
3821                 /*
3822                  * If we need to do any I/O, try to pre-readahead extra
3823                  * blocks from the inode table.
3824                  */
3825                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3826                         ext4_fsblk_t b, end, table;
3827                         unsigned num;
3828
3829                         table = ext4_inode_table(sb, gdp);
3830                         /* s_inode_readahead_blks is always a power of 2 */
3831                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3832                         if (table > b)
3833                                 b = table;
3834                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3835                         num = EXT4_INODES_PER_GROUP(sb);
3836                         if (ext4_has_group_desc_csum(sb))
3837                                 num -= ext4_itable_unused_count(sb, gdp);
3838                         table += num / inodes_per_block;
3839                         if (end > table)
3840                                 end = table;
3841                         while (b <= end)
3842                                 sb_breadahead(sb, b++);
3843                 }
3844
3845                 /*
3846                  * There are other valid inodes in the buffer, this inode
3847                  * has in-inode xattrs, or we don't have this inode in memory.
3848                  * Read the block from disk.
3849                  */
3850                 trace_ext4_load_inode(inode);
3851                 get_bh(bh);
3852                 bh->b_end_io = end_buffer_read_sync;
3853                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3854                 wait_on_buffer(bh);
3855                 if (!buffer_uptodate(bh)) {
3856                         EXT4_ERROR_INODE_BLOCK(inode, block,
3857                                                "unable to read itable block");
3858                         brelse(bh);
3859                         return -EIO;
3860                 }
3861         }
3862 has_buffer:
3863         iloc->bh = bh;
3864         return 0;
3865 }
3866
3867 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3868 {
3869         /* We have all inode data except xattrs in memory here. */
3870         return __ext4_get_inode_loc(inode, iloc,
3871                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3872 }
3873
3874 void ext4_set_inode_flags(struct inode *inode)
3875 {
3876         unsigned int flags = EXT4_I(inode)->i_flags;
3877
3878         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3879         if (flags & EXT4_SYNC_FL)
3880                 inode->i_flags |= S_SYNC;
3881         if (flags & EXT4_APPEND_FL)
3882                 inode->i_flags |= S_APPEND;
3883         if (flags & EXT4_IMMUTABLE_FL)
3884                 inode->i_flags |= S_IMMUTABLE;
3885         if (flags & EXT4_NOATIME_FL)
3886                 inode->i_flags |= S_NOATIME;
3887         if (flags & EXT4_DIRSYNC_FL)
3888                 inode->i_flags |= S_DIRSYNC;
3889 }
3890
3891 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3892 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3893 {
3894         unsigned int vfs_fl;
3895         unsigned long old_fl, new_fl;
3896
3897         do {
3898                 vfs_fl = ei->vfs_inode.i_flags;
3899                 old_fl = ei->i_flags;
3900                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3901                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3902                                 EXT4_DIRSYNC_FL);
3903                 if (vfs_fl & S_SYNC)
3904                         new_fl |= EXT4_SYNC_FL;
3905                 if (vfs_fl & S_APPEND)
3906                         new_fl |= EXT4_APPEND_FL;
3907                 if (vfs_fl & S_IMMUTABLE)
3908                         new_fl |= EXT4_IMMUTABLE_FL;
3909                 if (vfs_fl & S_NOATIME)
3910                         new_fl |= EXT4_NOATIME_FL;
3911                 if (vfs_fl & S_DIRSYNC)
3912                         new_fl |= EXT4_DIRSYNC_FL;
3913         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3914 }
3915
3916 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3917                                   struct ext4_inode_info *ei)
3918 {
3919         blkcnt_t i_blocks ;
3920         struct inode *inode = &(ei->vfs_inode);
3921         struct super_block *sb = inode->i_sb;
3922
3923         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3924                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3925                 /* we are using combined 48 bit field */
3926                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3927                                         le32_to_cpu(raw_inode->i_blocks_lo);
3928                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3929                         /* i_blocks represent file system block size */
3930                         return i_blocks  << (inode->i_blkbits - 9);
3931                 } else {
3932                         return i_blocks;
3933                 }
3934         } else {
3935                 return le32_to_cpu(raw_inode->i_blocks_lo);
3936         }
3937 }
3938
3939 static inline void ext4_iget_extra_inode(struct inode *inode,
3940                                          struct ext4_inode *raw_inode,
3941                                          struct ext4_inode_info *ei)
3942 {
3943         __le32 *magic = (void *)raw_inode +
3944                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3945         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3946                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3947                 ext4_find_inline_data_nolock(inode);
3948         } else
3949                 EXT4_I(inode)->i_inline_off = 0;
3950 }
3951
3952 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3953 {
3954         struct ext4_iloc iloc;
3955         struct ext4_inode *raw_inode;
3956         struct ext4_inode_info *ei;
3957         struct inode *inode;
3958         journal_t *journal = EXT4_SB(sb)->s_journal;
3959         long ret;
3960         int block;
3961         uid_t i_uid;
3962         gid_t i_gid;
3963
3964         inode = iget_locked(sb, ino);
3965         if (!inode)
3966                 return ERR_PTR(-ENOMEM);
3967         if (!(inode->i_state & I_NEW))
3968                 return inode;
3969
3970         ei = EXT4_I(inode);
3971         iloc.bh = NULL;
3972
3973         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3974         if (ret < 0)
3975                 goto bad_inode;
3976         raw_inode = ext4_raw_inode(&iloc);
3977
3978         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3979                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3980                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3981                     EXT4_INODE_SIZE(inode->i_sb)) {
3982                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3983                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3984                                 EXT4_INODE_SIZE(inode->i_sb));
3985                         ret = -EIO;
3986                         goto bad_inode;
3987                 }
3988         } else
3989                 ei->i_extra_isize = 0;
3990
3991         /* Precompute checksum seed for inode metadata */
3992         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3993                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3994                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3995                 __u32 csum;
3996                 __le32 inum = cpu_to_le32(inode->i_ino);
3997                 __le32 gen = raw_inode->i_generation;
3998                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3999                                    sizeof(inum));
4000                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4001                                               sizeof(gen));
4002         }
4003
4004         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4005                 EXT4_ERROR_INODE(inode, "checksum invalid");
4006                 ret = -EIO;
4007                 goto bad_inode;
4008         }
4009
4010         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4011         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4012         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4013         if (!(test_opt(inode->i_sb, NO_UID32))) {
4014                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4015                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4016         }
4017         i_uid_write(inode, i_uid);
4018         i_gid_write(inode, i_gid);
4019         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4020
4021         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4022         ei->i_inline_off = 0;
4023         ei->i_dir_start_lookup = 0;
4024         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4025         /* We now have enough fields to check if the inode was active or not.
4026          * This is needed because nfsd might try to access dead inodes
4027          * the test is that same one that e2fsck uses
4028          * NeilBrown 1999oct15
4029          */
4030         if (inode->i_nlink == 0) {
4031                 if (inode->i_mode == 0 ||
4032                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4033                         /* this inode is deleted */
4034                         ret = -ESTALE;
4035                         goto bad_inode;
4036                 }
4037                 /* The only unlinked inodes we let through here have
4038                  * valid i_mode and are being read by the orphan
4039                  * recovery code: that's fine, we're about to complete
4040                  * the process of deleting those. */
4041         }
4042         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4043         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4044         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4045         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4046                 ei->i_file_acl |=
4047                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4048         inode->i_size = ext4_isize(raw_inode);
4049         ei->i_disksize = inode->i_size;
4050 #ifdef CONFIG_QUOTA
4051         ei->i_reserved_quota = 0;
4052 #endif
4053         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4054         ei->i_block_group = iloc.block_group;
4055         ei->i_last_alloc_group = ~0;
4056         /*
4057          * NOTE! The in-memory inode i_data array is in little-endian order
4058          * even on big-endian machines: we do NOT byteswap the block numbers!
4059          */
4060         for (block = 0; block < EXT4_N_BLOCKS; block++)
4061                 ei->i_data[block] = raw_inode->i_block[block];
4062         INIT_LIST_HEAD(&ei->i_orphan);
4063
4064         /*
4065          * Set transaction id's of transactions that have to be committed
4066          * to finish f[data]sync. We set them to currently running transaction
4067          * as we cannot be sure that the inode or some of its metadata isn't
4068          * part of the transaction - the inode could have been reclaimed and
4069          * now it is reread from disk.
4070          */
4071         if (journal) {
4072                 transaction_t *transaction;
4073                 tid_t tid;
4074
4075                 read_lock(&journal->j_state_lock);
4076                 if (journal->j_running_transaction)
4077                         transaction = journal->j_running_transaction;
4078                 else
4079                         transaction = journal->j_committing_transaction;
4080                 if (transaction)
4081                         tid = transaction->t_tid;
4082                 else
4083                         tid = journal->j_commit_sequence;
4084                 read_unlock(&journal->j_state_lock);
4085                 ei->i_sync_tid = tid;
4086                 ei->i_datasync_tid = tid;
4087         }
4088
4089         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4090                 if (ei->i_extra_isize == 0) {
4091                         /* The extra space is currently unused. Use it. */
4092                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4093                                             EXT4_GOOD_OLD_INODE_SIZE;
4094                 } else {
4095                         ext4_iget_extra_inode(inode, raw_inode, ei);
4096                 }
4097         }
4098
4099         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4100         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4101         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4102         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4103
4104         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4105         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4106                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4107                         inode->i_version |=
4108                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4109         }
4110
4111         ret = 0;
4112         if (ei->i_file_acl &&
4113             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4114                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4115                                  ei->i_file_acl);
4116                 ret = -EIO;
4117                 goto bad_inode;
4118         } else if (!ext4_has_inline_data(inode)) {
4119                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4120                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4121                             (S_ISLNK(inode->i_mode) &&
4122                              !ext4_inode_is_fast_symlink(inode))))
4123                                 /* Validate extent which is part of inode */
4124                                 ret = ext4_ext_check_inode(inode);
4125                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4126                            (S_ISLNK(inode->i_mode) &&
4127                             !ext4_inode_is_fast_symlink(inode))) {
4128                         /* Validate block references which are part of inode */
4129                         ret = ext4_ind_check_inode(inode);
4130                 }
4131         }
4132         if (ret)
4133                 goto bad_inode;
4134
4135         if (S_ISREG(inode->i_mode)) {
4136                 inode->i_op = &ext4_file_inode_operations;
4137                 inode->i_fop = &ext4_file_operations;
4138                 ext4_set_aops(inode);
4139         } else if (S_ISDIR(inode->i_mode)) {
4140                 inode->i_op = &ext4_dir_inode_operations;
4141                 inode->i_fop = &ext4_dir_operations;
4142         } else if (S_ISLNK(inode->i_mode)) {
4143                 if (ext4_inode_is_fast_symlink(inode)) {
4144                         inode->i_op = &ext4_fast_symlink_inode_operations;
4145                         nd_terminate_link(ei->i_data, inode->i_size,
4146                                 sizeof(ei->i_data) - 1);
4147                 } else {
4148                         inode->i_op = &ext4_symlink_inode_operations;
4149                         ext4_set_aops(inode);
4150                 }
4151         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4152               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4153                 inode->i_op = &ext4_special_inode_operations;
4154                 if (raw_inode->i_block[0])
4155                         init_special_inode(inode, inode->i_mode,
4156                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4157                 else
4158                         init_special_inode(inode, inode->i_mode,
4159                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4160         } else {
4161                 ret = -EIO;
4162                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4163                 goto bad_inode;
4164         }
4165         brelse(iloc.bh);
4166         ext4_set_inode_flags(inode);
4167         unlock_new_inode(inode);
4168         return inode;
4169
4170 bad_inode:
4171         brelse(iloc.bh);
4172         iget_failed(inode);
4173         return ERR_PTR(ret);
4174 }
4175
4176 static int ext4_inode_blocks_set(handle_t *handle,
4177                                 struct ext4_inode *raw_inode,
4178                                 struct ext4_inode_info *ei)
4179 {
4180         struct inode *inode = &(ei->vfs_inode);
4181         u64 i_blocks = inode->i_blocks;
4182         struct super_block *sb = inode->i_sb;
4183
4184         if (i_blocks <= ~0U) {
4185                 /*
4186                  * i_blocks can be represented in a 32 bit variable
4187                  * as multiple of 512 bytes
4188                  */
4189                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4190                 raw_inode->i_blocks_high = 0;
4191                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4192                 return 0;
4193         }
4194         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4195                 return -EFBIG;
4196
4197         if (i_blocks <= 0xffffffffffffULL) {
4198                 /*
4199                  * i_blocks can be represented in a 48 bit variable
4200                  * as multiple of 512 bytes
4201                  */
4202                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4203                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4204                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4205         } else {
4206                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4207                 /* i_block is stored in file system block size */
4208                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4209                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4210                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4211         }
4212         return 0;
4213 }
4214
4215 /*
4216  * Post the struct inode info into an on-disk inode location in the
4217  * buffer-cache.  This gobbles the caller's reference to the
4218  * buffer_head in the inode location struct.
4219  *
4220  * The caller must have write access to iloc->bh.
4221  */
4222 static int ext4_do_update_inode(handle_t *handle,
4223                                 struct inode *inode,
4224                                 struct ext4_iloc *iloc)
4225 {
4226         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4227         struct ext4_inode_info *ei = EXT4_I(inode);
4228         struct buffer_head *bh = iloc->bh;
4229         int err = 0, rc, block;
4230         int need_datasync = 0;
4231         uid_t i_uid;
4232         gid_t i_gid;
4233
4234         /* For fields not not tracking in the in-memory inode,
4235          * initialise them to zero for new inodes. */
4236         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4237                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4238
4239         ext4_get_inode_flags(ei);
4240         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4241         i_uid = i_uid_read(inode);
4242         i_gid = i_gid_read(inode);
4243         if (!(test_opt(inode->i_sb, NO_UID32))) {
4244                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4245                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4246 /*
4247  * Fix up interoperability with old kernels. Otherwise, old inodes get
4248  * re-used with the upper 16 bits of the uid/gid intact
4249  */
4250                 if (!ei->i_dtime) {
4251                         raw_inode->i_uid_high =
4252                                 cpu_to_le16(high_16_bits(i_uid));
4253                         raw_inode->i_gid_high =
4254                                 cpu_to_le16(high_16_bits(i_gid));
4255                 } else {
4256                         raw_inode->i_uid_high = 0;
4257                         raw_inode->i_gid_high = 0;
4258                 }
4259         } else {
4260                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4261                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4262                 raw_inode->i_uid_high = 0;
4263                 raw_inode->i_gid_high = 0;
4264         }
4265         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4266
4267         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4268         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4269         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4270         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4271
4272         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4273                 goto out_brelse;
4274         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4275         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4276         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4277             cpu_to_le32(EXT4_OS_HURD))
4278                 raw_inode->i_file_acl_high =
4279                         cpu_to_le16(ei->i_file_acl >> 32);
4280         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4281         if (ei->i_disksize != ext4_isize(raw_inode)) {
4282                 ext4_isize_set(raw_inode, ei->i_disksize);
4283                 need_datasync = 1;
4284         }
4285         if (ei->i_disksize > 0x7fffffffULL) {
4286                 struct super_block *sb = inode->i_sb;
4287                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4288                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4289                                 EXT4_SB(sb)->s_es->s_rev_level ==
4290                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4291                         /* If this is the first large file
4292                          * created, add a flag to the superblock.
4293                          */
4294                         err = ext4_journal_get_write_access(handle,
4295                                         EXT4_SB(sb)->s_sbh);
4296                         if (err)
4297                                 goto out_brelse;
4298                         ext4_update_dynamic_rev(sb);
4299                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4300                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4301                         ext4_handle_sync(handle);
4302                         err = ext4_handle_dirty_super(handle, sb);
4303                 }
4304         }
4305         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4306         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4307                 if (old_valid_dev(inode->i_rdev)) {
4308                         raw_inode->i_block[0] =
4309                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4310                         raw_inode->i_block[1] = 0;
4311                 } else {
4312                         raw_inode->i_block[0] = 0;
4313                         raw_inode->i_block[1] =
4314                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4315                         raw_inode->i_block[2] = 0;
4316                 }
4317         } else if (!ext4_has_inline_data(inode)) {
4318                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4319                         raw_inode->i_block[block] = ei->i_data[block];
4320         }
4321
4322         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4323         if (ei->i_extra_isize) {
4324                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4325                         raw_inode->i_version_hi =
4326                         cpu_to_le32(inode->i_version >> 32);
4327                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4328         }
4329
4330         ext4_inode_csum_set(inode, raw_inode, ei);
4331
4332         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4333         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4334         if (!err)
4335                 err = rc;
4336         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4337
4338         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4339 out_brelse:
4340         brelse(bh);
4341         ext4_std_error(inode->i_sb, err);
4342         return err;
4343 }
4344
4345 /*
4346  * ext4_write_inode()
4347  *
4348  * We are called from a few places:
4349  *
4350  * - Within generic_file_write() for O_SYNC files.
4351  *   Here, there will be no transaction running. We wait for any running
4352  *   transaction to commit.
4353  *
4354  * - Within sys_sync(), kupdate and such.
4355  *   We wait on commit, if tol to.
4356  *
4357  * - Within prune_icache() (PF_MEMALLOC == true)
4358  *   Here we simply return.  We can't afford to block kswapd on the
4359  *   journal commit.
4360  *
4361  * In all cases it is actually safe for us to return without doing anything,
4362  * because the inode has been copied into a raw inode buffer in
4363  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4364  * knfsd.
4365  *
4366  * Note that we are absolutely dependent upon all inode dirtiers doing the
4367  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4368  * which we are interested.
4369  *
4370  * It would be a bug for them to not do this.  The code:
4371  *
4372  *      mark_inode_dirty(inode)
4373  *      stuff();
4374  *      inode->i_size = expr;
4375  *
4376  * is in error because a kswapd-driven write_inode() could occur while
4377  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4378  * will no longer be on the superblock's dirty inode list.
4379  */
4380 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4381 {
4382         int err;
4383
4384         if (current->flags & PF_MEMALLOC)
4385                 return 0;
4386
4387         if (EXT4_SB(inode->i_sb)->s_journal) {
4388                 if (ext4_journal_current_handle()) {
4389                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4390                         dump_stack();
4391                         return -EIO;
4392                 }
4393
4394                 if (wbc->sync_mode != WB_SYNC_ALL)
4395                         return 0;
4396
4397                 err = ext4_force_commit(inode->i_sb);
4398         } else {
4399                 struct ext4_iloc iloc;
4400
4401                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4402                 if (err)
4403                         return err;
4404                 if (wbc->sync_mode == WB_SYNC_ALL)
4405                         sync_dirty_buffer(iloc.bh);
4406                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4407                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4408                                          "IO error syncing inode");
4409                         err = -EIO;
4410                 }
4411                 brelse(iloc.bh);
4412         }
4413         return err;
4414 }
4415
4416 /*
4417  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4418  * buffers that are attached to a page stradding i_size and are undergoing
4419  * commit. In that case we have to wait for commit to finish and try again.
4420  */
4421 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4422 {
4423         struct page *page;
4424         unsigned offset;
4425         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4426         tid_t commit_tid = 0;
4427         int ret;
4428
4429         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4430         /*
4431          * All buffers in the last page remain valid? Then there's nothing to
4432          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4433          * blocksize case
4434          */
4435         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4436                 return;
4437         while (1) {
4438                 page = find_lock_page(inode->i_mapping,
4439                                       inode->i_size >> PAGE_CACHE_SHIFT);
4440                 if (!page)
4441                         return;
4442                 ret = __ext4_journalled_invalidatepage(page, offset);
4443                 unlock_page(page);
4444                 page_cache_release(page);
4445                 if (ret != -EBUSY)
4446                         return;
4447                 commit_tid = 0;
4448                 read_lock(&journal->j_state_lock);
4449                 if (journal->j_committing_transaction)
4450                         commit_tid = journal->j_committing_transaction->t_tid;
4451                 read_unlock(&journal->j_state_lock);
4452                 if (commit_tid)
4453                         jbd2_log_wait_commit(journal, commit_tid);
4454         }
4455 }
4456
4457 /*
4458  * ext4_setattr()
4459  *
4460  * Called from notify_change.
4461  *
4462  * We want to trap VFS attempts to truncate the file as soon as
4463  * possible.  In particular, we want to make sure that when the VFS
4464  * shrinks i_size, we put the inode on the orphan list and modify
4465  * i_disksize immediately, so that during the subsequent flushing of
4466  * dirty pages and freeing of disk blocks, we can guarantee that any
4467  * commit will leave the blocks being flushed in an unused state on
4468  * disk.  (On recovery, the inode will get truncated and the blocks will
4469  * be freed, so we have a strong guarantee that no future commit will
4470  * leave these blocks visible to the user.)
4471  *
4472  * Another thing we have to assure is that if we are in ordered mode
4473  * and inode is still attached to the committing transaction, we must
4474  * we start writeout of all the dirty pages which are being truncated.
4475  * This way we are sure that all the data written in the previous
4476  * transaction are already on disk (truncate waits for pages under
4477  * writeback).
4478  *
4479  * Called with inode->i_mutex down.
4480  */
4481 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4482 {
4483         struct inode *inode = dentry->d_inode;
4484         int error, rc = 0;
4485         int orphan = 0;
4486         const unsigned int ia_valid = attr->ia_valid;
4487
4488         error = inode_change_ok(inode, attr);
4489         if (error)
4490                 return error;
4491
4492         if (is_quota_modification(inode, attr))
4493                 dquot_initialize(inode);
4494         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4495             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4496                 handle_t *handle;
4497
4498                 /* (user+group)*(old+new) structure, inode write (sb,
4499                  * inode block, ? - but truncate inode update has it) */
4500                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4501                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4502                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4503                 if (IS_ERR(handle)) {
4504                         error = PTR_ERR(handle);
4505                         goto err_out;
4506                 }
4507                 error = dquot_transfer(inode, attr);
4508                 if (error) {
4509                         ext4_journal_stop(handle);
4510                         return error;
4511                 }
4512                 /* Update corresponding info in inode so that everything is in
4513                  * one transaction */
4514                 if (attr->ia_valid & ATTR_UID)
4515                         inode->i_uid = attr->ia_uid;
4516                 if (attr->ia_valid & ATTR_GID)
4517                         inode->i_gid = attr->ia_gid;
4518                 error = ext4_mark_inode_dirty(handle, inode);
4519                 ext4_journal_stop(handle);
4520         }
4521
4522         if (attr->ia_valid & ATTR_SIZE) {
4523
4524                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4525                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4526
4527                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4528                                 return -EFBIG;
4529                 }
4530         }
4531
4532         if (S_ISREG(inode->i_mode) &&
4533             attr->ia_valid & ATTR_SIZE &&
4534             (attr->ia_size < inode->i_size)) {
4535                 handle_t *handle;
4536
4537                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4538                 if (IS_ERR(handle)) {
4539                         error = PTR_ERR(handle);
4540                         goto err_out;
4541                 }
4542                 if (ext4_handle_valid(handle)) {
4543                         error = ext4_orphan_add(handle, inode);
4544                         orphan = 1;
4545                 }
4546                 EXT4_I(inode)->i_disksize = attr->ia_size;
4547                 rc = ext4_mark_inode_dirty(handle, inode);
4548                 if (!error)
4549                         error = rc;
4550                 ext4_journal_stop(handle);
4551
4552                 if (ext4_should_order_data(inode)) {
4553                         error = ext4_begin_ordered_truncate(inode,
4554                                                             attr->ia_size);
4555                         if (error) {
4556                                 /* Do as much error cleanup as possible */
4557                                 handle = ext4_journal_start(inode,
4558                                                             EXT4_HT_INODE, 3);
4559                                 if (IS_ERR(handle)) {
4560                                         ext4_orphan_del(NULL, inode);
4561                                         goto err_out;
4562                                 }
4563                                 ext4_orphan_del(handle, inode);
4564                                 orphan = 0;
4565                                 ext4_journal_stop(handle);
4566                                 goto err_out;
4567                         }
4568                 }
4569         }
4570
4571         if (attr->ia_valid & ATTR_SIZE) {
4572                 if (attr->ia_size != inode->i_size) {
4573                         loff_t oldsize = inode->i_size;
4574
4575                         i_size_write(inode, attr->ia_size);
4576                         /*
4577                          * Blocks are going to be removed from the inode. Wait
4578                          * for dio in flight.  Temporarily disable
4579                          * dioread_nolock to prevent livelock.
4580                          */
4581                         if (orphan) {
4582                                 if (!ext4_should_journal_data(inode)) {
4583                                         ext4_inode_block_unlocked_dio(inode);
4584                                         inode_dio_wait(inode);
4585                                         ext4_inode_resume_unlocked_dio(inode);
4586                                 } else
4587                                         ext4_wait_for_tail_page_commit(inode);
4588                         }
4589                         /*
4590                          * Truncate pagecache after we've waited for commit
4591                          * in data=journal mode to make pages freeable.
4592                          */
4593                         truncate_pagecache(inode, oldsize, inode->i_size);
4594                 }
4595                 ext4_truncate(inode);
4596         }
4597
4598         if (!rc) {
4599                 setattr_copy(inode, attr);
4600                 mark_inode_dirty(inode);
4601         }
4602
4603         /*
4604          * If the call to ext4_truncate failed to get a transaction handle at
4605          * all, we need to clean up the in-core orphan list manually.
4606          */
4607         if (orphan && inode->i_nlink)
4608                 ext4_orphan_del(NULL, inode);
4609
4610         if (!rc && (ia_valid & ATTR_MODE))
4611                 rc = ext4_acl_chmod(inode);
4612
4613 err_out:
4614         ext4_std_error(inode->i_sb, error);
4615         if (!error)
4616                 error = rc;
4617         return error;
4618 }
4619
4620 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4621                  struct kstat *stat)
4622 {
4623         struct inode *inode;
4624         unsigned long delalloc_blocks;
4625
4626         inode = dentry->d_inode;
4627         generic_fillattr(inode, stat);
4628
4629         /*
4630          * We can't update i_blocks if the block allocation is delayed
4631          * otherwise in the case of system crash before the real block
4632          * allocation is done, we will have i_blocks inconsistent with
4633          * on-disk file blocks.
4634          * We always keep i_blocks updated together with real
4635          * allocation. But to not confuse with user, stat
4636          * will return the blocks that include the delayed allocation
4637          * blocks for this file.
4638          */
4639         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4640                                 EXT4_I(inode)->i_reserved_data_blocks);
4641
4642         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4643         return 0;
4644 }
4645
4646 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4647 {
4648         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4649                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4650         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4651 }
4652
4653 /*
4654  * Account for index blocks, block groups bitmaps and block group
4655  * descriptor blocks if modify datablocks and index blocks
4656  * worse case, the indexs blocks spread over different block groups
4657  *
4658  * If datablocks are discontiguous, they are possible to spread over
4659  * different block groups too. If they are contiguous, with flexbg,
4660  * they could still across block group boundary.
4661  *
4662  * Also account for superblock, inode, quota and xattr blocks
4663  */
4664 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4665 {
4666         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4667         int gdpblocks;
4668         int idxblocks;
4669         int ret = 0;
4670
4671         /*
4672          * How many index blocks need to touch to modify nrblocks?
4673          * The "Chunk" flag indicating whether the nrblocks is
4674          * physically contiguous on disk
4675          *
4676          * For Direct IO and fallocate, they calls get_block to allocate
4677          * one single extent at a time, so they could set the "Chunk" flag
4678          */
4679         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4680
4681         ret = idxblocks;
4682
4683         /*
4684          * Now let's see how many group bitmaps and group descriptors need
4685          * to account
4686          */
4687         groups = idxblocks;
4688         if (chunk)
4689                 groups += 1;
4690         else
4691                 groups += nrblocks;
4692
4693         gdpblocks = groups;
4694         if (groups > ngroups)
4695                 groups = ngroups;
4696         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4697                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4698
4699         /* bitmaps and block group descriptor blocks */
4700         ret += groups + gdpblocks;
4701
4702         /* Blocks for super block, inode, quota and xattr blocks */
4703         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4704
4705         return ret;
4706 }
4707
4708 /*
4709  * Calculate the total number of credits to reserve to fit
4710  * the modification of a single pages into a single transaction,
4711  * which may include multiple chunks of block allocations.
4712  *
4713  * This could be called via ext4_write_begin()
4714  *
4715  * We need to consider the worse case, when
4716  * one new block per extent.
4717  */
4718 int ext4_writepage_trans_blocks(struct inode *inode)
4719 {
4720         int bpp = ext4_journal_blocks_per_page(inode);
4721         int ret;
4722
4723         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4724
4725         /* Account for data blocks for journalled mode */
4726         if (ext4_should_journal_data(inode))
4727                 ret += bpp;
4728         return ret;
4729 }
4730
4731 /*
4732  * Calculate the journal credits for a chunk of data modification.
4733  *
4734  * This is called from DIO, fallocate or whoever calling
4735  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4736  *
4737  * journal buffers for data blocks are not included here, as DIO
4738  * and fallocate do no need to journal data buffers.
4739  */
4740 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4741 {
4742         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4743 }
4744
4745 /*
4746  * The caller must have previously called ext4_reserve_inode_write().
4747  * Give this, we know that the caller already has write access to iloc->bh.
4748  */
4749 int ext4_mark_iloc_dirty(handle_t *handle,
4750                          struct inode *inode, struct ext4_iloc *iloc)
4751 {
4752         int err = 0;
4753
4754         if (IS_I_VERSION(inode))
4755                 inode_inc_iversion(inode);
4756
4757         /* the do_update_inode consumes one bh->b_count */
4758         get_bh(iloc->bh);
4759
4760         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4761         err = ext4_do_update_inode(handle, inode, iloc);
4762         put_bh(iloc->bh);
4763         return err;
4764 }
4765
4766 /*
4767  * On success, We end up with an outstanding reference count against
4768  * iloc->bh.  This _must_ be cleaned up later.
4769  */
4770
4771 int
4772 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4773                          struct ext4_iloc *iloc)
4774 {
4775         int err;
4776
4777         err = ext4_get_inode_loc(inode, iloc);
4778         if (!err) {
4779                 BUFFER_TRACE(iloc->bh, "get_write_access");
4780                 err = ext4_journal_get_write_access(handle, iloc->bh);
4781                 if (err) {
4782                         brelse(iloc->bh);
4783                         iloc->bh = NULL;
4784                 }
4785         }
4786         ext4_std_error(inode->i_sb, err);
4787         return err;
4788 }
4789
4790 /*
4791  * Expand an inode by new_extra_isize bytes.
4792  * Returns 0 on success or negative error number on failure.
4793  */
4794 static int ext4_expand_extra_isize(struct inode *inode,
4795                                    unsigned int new_extra_isize,
4796                                    struct ext4_iloc iloc,
4797                                    handle_t *handle)
4798 {
4799         struct ext4_inode *raw_inode;
4800         struct ext4_xattr_ibody_header *header;
4801
4802         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4803                 return 0;
4804
4805         raw_inode = ext4_raw_inode(&iloc);
4806
4807         header = IHDR(inode, raw_inode);
4808
4809         /* No extended attributes present */
4810         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4811             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4812                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4813                         new_extra_isize);
4814                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4815                 return 0;
4816         }
4817
4818         /* try to expand with EAs present */
4819         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4820                                           raw_inode, handle);
4821 }
4822
4823 /*
4824  * What we do here is to mark the in-core inode as clean with respect to inode
4825  * dirtiness (it may still be data-dirty).
4826  * This means that the in-core inode may be reaped by prune_icache
4827  * without having to perform any I/O.  This is a very good thing,
4828  * because *any* task may call prune_icache - even ones which
4829  * have a transaction open against a different journal.
4830  *
4831  * Is this cheating?  Not really.  Sure, we haven't written the
4832  * inode out, but prune_icache isn't a user-visible syncing function.
4833  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4834  * we start and wait on commits.
4835  */
4836 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4837 {
4838         struct ext4_iloc iloc;
4839         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4840         static unsigned int mnt_count;
4841         int err, ret;
4842
4843         might_sleep();
4844         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4845         err = ext4_reserve_inode_write(handle, inode, &iloc);
4846         if (ext4_handle_valid(handle) &&
4847             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4848             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4849                 /*
4850                  * We need extra buffer credits since we may write into EA block
4851                  * with this same handle. If journal_extend fails, then it will
4852                  * only result in a minor loss of functionality for that inode.
4853                  * If this is felt to be critical, then e2fsck should be run to
4854                  * force a large enough s_min_extra_isize.
4855                  */
4856                 if ((jbd2_journal_extend(handle,
4857                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4858                         ret = ext4_expand_extra_isize(inode,
4859                                                       sbi->s_want_extra_isize,
4860                                                       iloc, handle);
4861                         if (ret) {
4862                                 ext4_set_inode_state(inode,
4863                                                      EXT4_STATE_NO_EXPAND);
4864                                 if (mnt_count !=
4865                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4866                                         ext4_warning(inode->i_sb,
4867                                         "Unable to expand inode %lu. Delete"
4868                                         " some EAs or run e2fsck.",
4869                                         inode->i_ino);
4870                                         mnt_count =
4871                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4872                                 }
4873                         }
4874                 }
4875         }
4876         if (!err)
4877                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4878         return err;
4879 }
4880
4881 /*
4882  * ext4_dirty_inode() is called from __mark_inode_dirty()
4883  *
4884  * We're really interested in the case where a file is being extended.
4885  * i_size has been changed by generic_commit_write() and we thus need
4886  * to include the updated inode in the current transaction.
4887  *
4888  * Also, dquot_alloc_block() will always dirty the inode when blocks
4889  * are allocated to the file.
4890  *
4891  * If the inode is marked synchronous, we don't honour that here - doing
4892  * so would cause a commit on atime updates, which we don't bother doing.
4893  * We handle synchronous inodes at the highest possible level.
4894  */
4895 void ext4_dirty_inode(struct inode *inode, int flags)
4896 {
4897         handle_t *handle;
4898
4899         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4900         if (IS_ERR(handle))
4901                 goto out;
4902
4903         ext4_mark_inode_dirty(handle, inode);
4904
4905         ext4_journal_stop(handle);
4906 out:
4907         return;
4908 }
4909
4910 #if 0
4911 /*
4912  * Bind an inode's backing buffer_head into this transaction, to prevent
4913  * it from being flushed to disk early.  Unlike
4914  * ext4_reserve_inode_write, this leaves behind no bh reference and
4915  * returns no iloc structure, so the caller needs to repeat the iloc
4916  * lookup to mark the inode dirty later.
4917  */
4918 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4919 {
4920         struct ext4_iloc iloc;
4921
4922         int err = 0;
4923         if (handle) {
4924                 err = ext4_get_inode_loc(inode, &iloc);
4925                 if (!err) {
4926                         BUFFER_TRACE(iloc.bh, "get_write_access");
4927                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4928                         if (!err)
4929                                 err = ext4_handle_dirty_metadata(handle,
4930                                                                  NULL,
4931                                                                  iloc.bh);
4932                         brelse(iloc.bh);
4933                 }
4934         }
4935         ext4_std_error(inode->i_sb, err);
4936         return err;
4937 }
4938 #endif
4939
4940 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4941 {
4942         journal_t *journal;
4943         handle_t *handle;
4944         int err;
4945
4946         /*
4947          * We have to be very careful here: changing a data block's
4948          * journaling status dynamically is dangerous.  If we write a
4949          * data block to the journal, change the status and then delete
4950          * that block, we risk forgetting to revoke the old log record
4951          * from the journal and so a subsequent replay can corrupt data.
4952          * So, first we make sure that the journal is empty and that
4953          * nobody is changing anything.
4954          */
4955
4956         journal = EXT4_JOURNAL(inode);
4957         if (!journal)
4958                 return 0;
4959         if (is_journal_aborted(journal))
4960                 return -EROFS;
4961         /* We have to allocate physical blocks for delalloc blocks
4962          * before flushing journal. otherwise delalloc blocks can not
4963          * be allocated any more. even more truncate on delalloc blocks
4964          * could trigger BUG by flushing delalloc blocks in journal.
4965          * There is no delalloc block in non-journal data mode.
4966          */
4967         if (val && test_opt(inode->i_sb, DELALLOC)) {
4968                 err = ext4_alloc_da_blocks(inode);
4969                 if (err < 0)
4970                         return err;
4971         }
4972
4973         /* Wait for all existing dio workers */
4974         ext4_inode_block_unlocked_dio(inode);
4975         inode_dio_wait(inode);
4976
4977         jbd2_journal_lock_updates(journal);
4978
4979         /*
4980          * OK, there are no updates running now, and all cached data is
4981          * synced to disk.  We are now in a completely consistent state
4982          * which doesn't have anything in the journal, and we know that
4983          * no filesystem updates are running, so it is safe to modify
4984          * the inode's in-core data-journaling state flag now.
4985          */
4986
4987         if (val)
4988                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4989         else {
4990                 jbd2_journal_flush(journal);
4991                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4992         }
4993         ext4_set_aops(inode);
4994
4995         jbd2_journal_unlock_updates(journal);
4996         ext4_inode_resume_unlocked_dio(inode);
4997
4998         /* Finally we can mark the inode as dirty. */
4999
5000         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5001         if (IS_ERR(handle))
5002                 return PTR_ERR(handle);
5003
5004         err = ext4_mark_inode_dirty(handle, inode);
5005         ext4_handle_sync(handle);
5006         ext4_journal_stop(handle);
5007         ext4_std_error(inode->i_sb, err);
5008
5009         return err;
5010 }
5011
5012 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5013 {
5014         return !buffer_mapped(bh);
5015 }
5016
5017 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5018 {
5019         struct page *page = vmf->page;
5020         loff_t size;
5021         unsigned long len;
5022         int ret;
5023         struct file *file = vma->vm_file;
5024         struct inode *inode = file->f_path.dentry->d_inode;
5025         struct address_space *mapping = inode->i_mapping;
5026         handle_t *handle;
5027         get_block_t *get_block;
5028         int retries = 0;
5029
5030         sb_start_pagefault(inode->i_sb);
5031         file_update_time(vma->vm_file);
5032         /* Delalloc case is easy... */
5033         if (test_opt(inode->i_sb, DELALLOC) &&
5034             !ext4_should_journal_data(inode) &&
5035             !ext4_nonda_switch(inode->i_sb)) {
5036                 do {
5037                         ret = __block_page_mkwrite(vma, vmf,
5038                                                    ext4_da_get_block_prep);
5039                 } while (ret == -ENOSPC &&
5040                        ext4_should_retry_alloc(inode->i_sb, &retries));
5041                 goto out_ret;
5042         }
5043
5044         lock_page(page);
5045         size = i_size_read(inode);
5046         /* Page got truncated from under us? */
5047         if (page->mapping != mapping || page_offset(page) > size) {
5048                 unlock_page(page);
5049                 ret = VM_FAULT_NOPAGE;
5050                 goto out;
5051         }
5052
5053         if (page->index == size >> PAGE_CACHE_SHIFT)
5054                 len = size & ~PAGE_CACHE_MASK;
5055         else
5056                 len = PAGE_CACHE_SIZE;
5057         /*
5058          * Return if we have all the buffers mapped. This avoids the need to do
5059          * journal_start/journal_stop which can block and take a long time
5060          */
5061         if (page_has_buffers(page)) {
5062                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5063                                             0, len, NULL,
5064                                             ext4_bh_unmapped)) {
5065                         /* Wait so that we don't change page under IO */
5066                         wait_on_page_writeback(page);
5067                         ret = VM_FAULT_LOCKED;
5068                         goto out;
5069                 }
5070         }
5071         unlock_page(page);
5072         /* OK, we need to fill the hole... */
5073         if (ext4_should_dioread_nolock(inode))
5074                 get_block = ext4_get_block_write;
5075         else
5076                 get_block = ext4_get_block;
5077 retry_alloc:
5078         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5079                                     ext4_writepage_trans_blocks(inode));
5080         if (IS_ERR(handle)) {
5081                 ret = VM_FAULT_SIGBUS;
5082                 goto out;
5083         }
5084         ret = __block_page_mkwrite(vma, vmf, get_block);
5085         if (!ret && ext4_should_journal_data(inode)) {
5086                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5087                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5088                         unlock_page(page);
5089                         ret = VM_FAULT_SIGBUS;
5090                         ext4_journal_stop(handle);
5091                         goto out;
5092                 }
5093                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5094         }
5095         ext4_journal_stop(handle);
5096         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5097                 goto retry_alloc;
5098 out_ret:
5099         ret = block_page_mkwrite_return(ret);
5100 out:
5101         sb_end_pagefault(inode->i_sb);
5102         return ret;
5103 }