Merge branch 'topic/hdsp' into for-linus
[pandora-kernel.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "ext4_extents.h"
44
45 #define MPAGE_DA_EXTENT_TAIL 0x01
46
47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
48                                               loff_t new_size)
49 {
50         return jbd2_journal_begin_ordered_truncate(
51                                         EXT4_SB(inode->i_sb)->s_journal,
52                                         &EXT4_I(inode)->jinode,
53                                         new_size);
54 }
55
56 static void ext4_invalidatepage(struct page *page, unsigned long offset);
57
58 /*
59  * Test whether an inode is a fast symlink.
60  */
61 static int ext4_inode_is_fast_symlink(struct inode *inode)
62 {
63         int ea_blocks = EXT4_I(inode)->i_file_acl ?
64                 (inode->i_sb->s_blocksize >> 9) : 0;
65
66         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67 }
68
69 /*
70  * The ext4 forget function must perform a revoke if we are freeing data
71  * which has been journaled.  Metadata (eg. indirect blocks) must be
72  * revoked in all cases.
73  *
74  * "bh" may be NULL: a metadata block may have been freed from memory
75  * but there may still be a record of it in the journal, and that record
76  * still needs to be revoked.
77  *
78  * If the handle isn't valid we're not journaling so there's nothing to do.
79  */
80 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81                         struct buffer_head *bh, ext4_fsblk_t blocknr)
82 {
83         int err;
84
85         if (!ext4_handle_valid(handle))
86                 return 0;
87
88         might_sleep();
89
90         BUFFER_TRACE(bh, "enter");
91
92         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93                   "data mode %lx\n",
94                   bh, is_metadata, inode->i_mode,
95                   test_opt(inode->i_sb, DATA_FLAGS));
96
97         /* Never use the revoke function if we are doing full data
98          * journaling: there is no need to, and a V1 superblock won't
99          * support it.  Otherwise, only skip the revoke on un-journaled
100          * data blocks. */
101
102         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103             (!is_metadata && !ext4_should_journal_data(inode))) {
104                 if (bh) {
105                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
106                         return ext4_journal_forget(handle, bh);
107                 }
108                 return 0;
109         }
110
111         /*
112          * data!=journal && (is_metadata || should_journal_data(inode))
113          */
114         BUFFER_TRACE(bh, "call ext4_journal_revoke");
115         err = ext4_journal_revoke(handle, blocknr, bh);
116         if (err)
117                 ext4_abort(inode->i_sb, __func__,
118                            "error %d when attempting revoke", err);
119         BUFFER_TRACE(bh, "exit");
120         return err;
121 }
122
123 /*
124  * Work out how many blocks we need to proceed with the next chunk of a
125  * truncate transaction.
126  */
127 static unsigned long blocks_for_truncate(struct inode *inode)
128 {
129         ext4_lblk_t needed;
130
131         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132
133         /* Give ourselves just enough room to cope with inodes in which
134          * i_blocks is corrupt: we've seen disk corruptions in the past
135          * which resulted in random data in an inode which looked enough
136          * like a regular file for ext4 to try to delete it.  Things
137          * will go a bit crazy if that happens, but at least we should
138          * try not to panic the whole kernel. */
139         if (needed < 2)
140                 needed = 2;
141
142         /* But we need to bound the transaction so we don't overflow the
143          * journal. */
144         if (needed > EXT4_MAX_TRANS_DATA)
145                 needed = EXT4_MAX_TRANS_DATA;
146
147         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
148 }
149
150 /*
151  * Truncate transactions can be complex and absolutely huge.  So we need to
152  * be able to restart the transaction at a conventient checkpoint to make
153  * sure we don't overflow the journal.
154  *
155  * start_transaction gets us a new handle for a truncate transaction,
156  * and extend_transaction tries to extend the existing one a bit.  If
157  * extend fails, we need to propagate the failure up and restart the
158  * transaction in the top-level truncate loop. --sct
159  */
160 static handle_t *start_transaction(struct inode *inode)
161 {
162         handle_t *result;
163
164         result = ext4_journal_start(inode, blocks_for_truncate(inode));
165         if (!IS_ERR(result))
166                 return result;
167
168         ext4_std_error(inode->i_sb, PTR_ERR(result));
169         return result;
170 }
171
172 /*
173  * Try to extend this transaction for the purposes of truncation.
174  *
175  * Returns 0 if we managed to create more room.  If we can't create more
176  * room, and the transaction must be restarted we return 1.
177  */
178 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179 {
180         if (!ext4_handle_valid(handle))
181                 return 0;
182         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
183                 return 0;
184         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
185                 return 0;
186         return 1;
187 }
188
189 /*
190  * Restart the transaction associated with *handle.  This does a commit,
191  * so before we call here everything must be consistently dirtied against
192  * this transaction.
193  */
194 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
195 {
196         BUG_ON(EXT4_JOURNAL(inode) == NULL);
197         jbd_debug(2, "restarting handle %p\n", handle);
198         return ext4_journal_restart(handle, blocks_for_truncate(inode));
199 }
200
201 /*
202  * Called at the last iput() if i_nlink is zero.
203  */
204 void ext4_delete_inode(struct inode *inode)
205 {
206         handle_t *handle;
207         int err;
208
209         if (ext4_should_order_data(inode))
210                 ext4_begin_ordered_truncate(inode, 0);
211         truncate_inode_pages(&inode->i_data, 0);
212
213         if (is_bad_inode(inode))
214                 goto no_delete;
215
216         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217         if (IS_ERR(handle)) {
218                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
219                 /*
220                  * If we're going to skip the normal cleanup, we still need to
221                  * make sure that the in-core orphan linked list is properly
222                  * cleaned up.
223                  */
224                 ext4_orphan_del(NULL, inode);
225                 goto no_delete;
226         }
227
228         if (IS_SYNC(inode))
229                 ext4_handle_sync(handle);
230         inode->i_size = 0;
231         err = ext4_mark_inode_dirty(handle, inode);
232         if (err) {
233                 ext4_warning(inode->i_sb, __func__,
234                              "couldn't mark inode dirty (err %d)", err);
235                 goto stop_handle;
236         }
237         if (inode->i_blocks)
238                 ext4_truncate(inode);
239
240         /*
241          * ext4_ext_truncate() doesn't reserve any slop when it
242          * restarts journal transactions; therefore there may not be
243          * enough credits left in the handle to remove the inode from
244          * the orphan list and set the dtime field.
245          */
246         if (!ext4_handle_has_enough_credits(handle, 3)) {
247                 err = ext4_journal_extend(handle, 3);
248                 if (err > 0)
249                         err = ext4_journal_restart(handle, 3);
250                 if (err != 0) {
251                         ext4_warning(inode->i_sb, __func__,
252                                      "couldn't extend journal (err %d)", err);
253                 stop_handle:
254                         ext4_journal_stop(handle);
255                         goto no_delete;
256                 }
257         }
258
259         /*
260          * Kill off the orphan record which ext4_truncate created.
261          * AKPM: I think this can be inside the above `if'.
262          * Note that ext4_orphan_del() has to be able to cope with the
263          * deletion of a non-existent orphan - this is because we don't
264          * know if ext4_truncate() actually created an orphan record.
265          * (Well, we could do this if we need to, but heck - it works)
266          */
267         ext4_orphan_del(handle, inode);
268         EXT4_I(inode)->i_dtime  = get_seconds();
269
270         /*
271          * One subtle ordering requirement: if anything has gone wrong
272          * (transaction abort, IO errors, whatever), then we can still
273          * do these next steps (the fs will already have been marked as
274          * having errors), but we can't free the inode if the mark_dirty
275          * fails.
276          */
277         if (ext4_mark_inode_dirty(handle, inode))
278                 /* If that failed, just do the required in-core inode clear. */
279                 clear_inode(inode);
280         else
281                 ext4_free_inode(handle, inode);
282         ext4_journal_stop(handle);
283         return;
284 no_delete:
285         clear_inode(inode);     /* We must guarantee clearing of inode... */
286 }
287
288 typedef struct {
289         __le32  *p;
290         __le32  key;
291         struct buffer_head *bh;
292 } Indirect;
293
294 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295 {
296         p->key = *(p->p = v);
297         p->bh = bh;
298 }
299
300 /**
301  *      ext4_block_to_path - parse the block number into array of offsets
302  *      @inode: inode in question (we are only interested in its superblock)
303  *      @i_block: block number to be parsed
304  *      @offsets: array to store the offsets in
305  *      @boundary: set this non-zero if the referred-to block is likely to be
306  *             followed (on disk) by an indirect block.
307  *
308  *      To store the locations of file's data ext4 uses a data structure common
309  *      for UNIX filesystems - tree of pointers anchored in the inode, with
310  *      data blocks at leaves and indirect blocks in intermediate nodes.
311  *      This function translates the block number into path in that tree -
312  *      return value is the path length and @offsets[n] is the offset of
313  *      pointer to (n+1)th node in the nth one. If @block is out of range
314  *      (negative or too large) warning is printed and zero returned.
315  *
316  *      Note: function doesn't find node addresses, so no IO is needed. All
317  *      we need to know is the capacity of indirect blocks (taken from the
318  *      inode->i_sb).
319  */
320
321 /*
322  * Portability note: the last comparison (check that we fit into triple
323  * indirect block) is spelled differently, because otherwise on an
324  * architecture with 32-bit longs and 8Kb pages we might get into trouble
325  * if our filesystem had 8Kb blocks. We might use long long, but that would
326  * kill us on x86. Oh, well, at least the sign propagation does not matter -
327  * i_block would have to be negative in the very beginning, so we would not
328  * get there at all.
329  */
330
331 static int ext4_block_to_path(struct inode *inode,
332                         ext4_lblk_t i_block,
333                         ext4_lblk_t offsets[4], int *boundary)
334 {
335         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337         const long direct_blocks = EXT4_NDIR_BLOCKS,
338                 indirect_blocks = ptrs,
339                 double_blocks = (1 << (ptrs_bits * 2));
340         int n = 0;
341         int final = 0;
342
343         if (i_block < 0) {
344                 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345         } else if (i_block < direct_blocks) {
346                 offsets[n++] = i_block;
347                 final = direct_blocks;
348         } else if ((i_block -= direct_blocks) < indirect_blocks) {
349                 offsets[n++] = EXT4_IND_BLOCK;
350                 offsets[n++] = i_block;
351                 final = ptrs;
352         } else if ((i_block -= indirect_blocks) < double_blocks) {
353                 offsets[n++] = EXT4_DIND_BLOCK;
354                 offsets[n++] = i_block >> ptrs_bits;
355                 offsets[n++] = i_block & (ptrs - 1);
356                 final = ptrs;
357         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358                 offsets[n++] = EXT4_TIND_BLOCK;
359                 offsets[n++] = i_block >> (ptrs_bits * 2);
360                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361                 offsets[n++] = i_block & (ptrs - 1);
362                 final = ptrs;
363         } else {
364                 ext4_warning(inode->i_sb, "ext4_block_to_path",
365                                 "block %lu > max in inode %lu",
366                                 i_block + direct_blocks +
367                                 indirect_blocks + double_blocks, inode->i_ino);
368         }
369         if (boundary)
370                 *boundary = final - 1 - (i_block & (ptrs - 1));
371         return n;
372 }
373
374 static int __ext4_check_blockref(const char *function, struct inode *inode,
375                                  __le32 *p, unsigned int max) {
376
377         unsigned int maxblocks = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es);
378         __le32 *bref = p;
379         while (bref < p+max) {
380                 if (unlikely(le32_to_cpu(*bref) >= maxblocks)) {
381                         ext4_error(inode->i_sb, function,
382                                    "block reference %u >= max (%u) "
383                                    "in inode #%lu, offset=%d",
384                                    le32_to_cpu(*bref), maxblocks,
385                                    inode->i_ino, (int)(bref-p));
386                         return -EIO;
387                 }
388                 bref++;
389         }
390         return 0;
391 }
392
393
394 #define ext4_check_indirect_blockref(inode, bh)                         \
395         __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
396                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
397
398 #define ext4_check_inode_blockref(inode)                                \
399         __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
400                               EXT4_NDIR_BLOCKS)
401
402 /**
403  *      ext4_get_branch - read the chain of indirect blocks leading to data
404  *      @inode: inode in question
405  *      @depth: depth of the chain (1 - direct pointer, etc.)
406  *      @offsets: offsets of pointers in inode/indirect blocks
407  *      @chain: place to store the result
408  *      @err: here we store the error value
409  *
410  *      Function fills the array of triples <key, p, bh> and returns %NULL
411  *      if everything went OK or the pointer to the last filled triple
412  *      (incomplete one) otherwise. Upon the return chain[i].key contains
413  *      the number of (i+1)-th block in the chain (as it is stored in memory,
414  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
415  *      number (it points into struct inode for i==0 and into the bh->b_data
416  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
417  *      block for i>0 and NULL for i==0. In other words, it holds the block
418  *      numbers of the chain, addresses they were taken from (and where we can
419  *      verify that chain did not change) and buffer_heads hosting these
420  *      numbers.
421  *
422  *      Function stops when it stumbles upon zero pointer (absent block)
423  *              (pointer to last triple returned, *@err == 0)
424  *      or when it gets an IO error reading an indirect block
425  *              (ditto, *@err == -EIO)
426  *      or when it reads all @depth-1 indirect blocks successfully and finds
427  *      the whole chain, all way to the data (returns %NULL, *err == 0).
428  *
429  *      Need to be called with
430  *      down_read(&EXT4_I(inode)->i_data_sem)
431  */
432 static Indirect *ext4_get_branch(struct inode *inode, int depth,
433                                  ext4_lblk_t  *offsets,
434                                  Indirect chain[4], int *err)
435 {
436         struct super_block *sb = inode->i_sb;
437         Indirect *p = chain;
438         struct buffer_head *bh;
439
440         *err = 0;
441         /* i_data is not going away, no lock needed */
442         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
443         if (!p->key)
444                 goto no_block;
445         while (--depth) {
446                 bh = sb_getblk(sb, le32_to_cpu(p->key));
447                 if (unlikely(!bh))
448                         goto failure;
449                   
450                 if (!bh_uptodate_or_lock(bh)) {
451                         if (bh_submit_read(bh) < 0) {
452                                 put_bh(bh);
453                                 goto failure;
454                         }
455                         /* validate block references */
456                         if (ext4_check_indirect_blockref(inode, bh)) {
457                                 put_bh(bh);
458                                 goto failure;
459                         }
460                 }
461                 
462                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
463                 /* Reader: end */
464                 if (!p->key)
465                         goto no_block;
466         }
467         return NULL;
468
469 failure:
470         *err = -EIO;
471 no_block:
472         return p;
473 }
474
475 /**
476  *      ext4_find_near - find a place for allocation with sufficient locality
477  *      @inode: owner
478  *      @ind: descriptor of indirect block.
479  *
480  *      This function returns the preferred place for block allocation.
481  *      It is used when heuristic for sequential allocation fails.
482  *      Rules are:
483  *        + if there is a block to the left of our position - allocate near it.
484  *        + if pointer will live in indirect block - allocate near that block.
485  *        + if pointer will live in inode - allocate in the same
486  *          cylinder group.
487  *
488  * In the latter case we colour the starting block by the callers PID to
489  * prevent it from clashing with concurrent allocations for a different inode
490  * in the same block group.   The PID is used here so that functionally related
491  * files will be close-by on-disk.
492  *
493  *      Caller must make sure that @ind is valid and will stay that way.
494  */
495 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
496 {
497         struct ext4_inode_info *ei = EXT4_I(inode);
498         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
499         __le32 *p;
500         ext4_fsblk_t bg_start;
501         ext4_fsblk_t last_block;
502         ext4_grpblk_t colour;
503         ext4_group_t block_group;
504         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
505
506         /* Try to find previous block */
507         for (p = ind->p - 1; p >= start; p--) {
508                 if (*p)
509                         return le32_to_cpu(*p);
510         }
511
512         /* No such thing, so let's try location of indirect block */
513         if (ind->bh)
514                 return ind->bh->b_blocknr;
515
516         /*
517          * It is going to be referred to from the inode itself? OK, just put it
518          * into the same cylinder group then.
519          */
520         block_group = ei->i_block_group;
521         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
522                 block_group &= ~(flex_size-1);
523                 if (S_ISREG(inode->i_mode))
524                         block_group++;
525         }
526         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
527         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
528
529         /*
530          * If we are doing delayed allocation, we don't need take
531          * colour into account.
532          */
533         if (test_opt(inode->i_sb, DELALLOC))
534                 return bg_start;
535
536         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
537                 colour = (current->pid % 16) *
538                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
539         else
540                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
541         return bg_start + colour;
542 }
543
544 /**
545  *      ext4_find_goal - find a preferred place for allocation.
546  *      @inode: owner
547  *      @block:  block we want
548  *      @partial: pointer to the last triple within a chain
549  *
550  *      Normally this function find the preferred place for block allocation,
551  *      returns it.
552  */
553 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
554                 Indirect *partial)
555 {
556         /*
557          * XXX need to get goal block from mballoc's data structures
558          */
559
560         return ext4_find_near(inode, partial);
561 }
562
563 /**
564  *      ext4_blks_to_allocate: Look up the block map and count the number
565  *      of direct blocks need to be allocated for the given branch.
566  *
567  *      @branch: chain of indirect blocks
568  *      @k: number of blocks need for indirect blocks
569  *      @blks: number of data blocks to be mapped.
570  *      @blocks_to_boundary:  the offset in the indirect block
571  *
572  *      return the total number of blocks to be allocate, including the
573  *      direct and indirect blocks.
574  */
575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576                 int blocks_to_boundary)
577 {
578         unsigned int count = 0;
579
580         /*
581          * Simple case, [t,d]Indirect block(s) has not allocated yet
582          * then it's clear blocks on that path have not allocated
583          */
584         if (k > 0) {
585                 /* right now we don't handle cross boundary allocation */
586                 if (blks < blocks_to_boundary + 1)
587                         count += blks;
588                 else
589                         count += blocks_to_boundary + 1;
590                 return count;
591         }
592
593         count++;
594         while (count < blks && count <= blocks_to_boundary &&
595                 le32_to_cpu(*(branch[0].p + count)) == 0) {
596                 count++;
597         }
598         return count;
599 }
600
601 /**
602  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
603  *      @indirect_blks: the number of blocks need to allocate for indirect
604  *                      blocks
605  *
606  *      @new_blocks: on return it will store the new block numbers for
607  *      the indirect blocks(if needed) and the first direct block,
608  *      @blks:  on return it will store the total number of allocated
609  *              direct blocks
610  */
611 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
612                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
613                                 int indirect_blks, int blks,
614                                 ext4_fsblk_t new_blocks[4], int *err)
615 {
616         struct ext4_allocation_request ar;
617         int target, i;
618         unsigned long count = 0, blk_allocated = 0;
619         int index = 0;
620         ext4_fsblk_t current_block = 0;
621         int ret = 0;
622
623         /*
624          * Here we try to allocate the requested multiple blocks at once,
625          * on a best-effort basis.
626          * To build a branch, we should allocate blocks for
627          * the indirect blocks(if not allocated yet), and at least
628          * the first direct block of this branch.  That's the
629          * minimum number of blocks need to allocate(required)
630          */
631         /* first we try to allocate the indirect blocks */
632         target = indirect_blks;
633         while (target > 0) {
634                 count = target;
635                 /* allocating blocks for indirect blocks and direct blocks */
636                 current_block = ext4_new_meta_blocks(handle, inode,
637                                                         goal, &count, err);
638                 if (*err)
639                         goto failed_out;
640
641                 target -= count;
642                 /* allocate blocks for indirect blocks */
643                 while (index < indirect_blks && count) {
644                         new_blocks[index++] = current_block++;
645                         count--;
646                 }
647                 if (count > 0) {
648                         /*
649                          * save the new block number
650                          * for the first direct block
651                          */
652                         new_blocks[index] = current_block;
653                         printk(KERN_INFO "%s returned more blocks than "
654                                                 "requested\n", __func__);
655                         WARN_ON(1);
656                         break;
657                 }
658         }
659
660         target = blks - count ;
661         blk_allocated = count;
662         if (!target)
663                 goto allocated;
664         /* Now allocate data blocks */
665         memset(&ar, 0, sizeof(ar));
666         ar.inode = inode;
667         ar.goal = goal;
668         ar.len = target;
669         ar.logical = iblock;
670         if (S_ISREG(inode->i_mode))
671                 /* enable in-core preallocation only for regular files */
672                 ar.flags = EXT4_MB_HINT_DATA;
673
674         current_block = ext4_mb_new_blocks(handle, &ar, err);
675
676         if (*err && (target == blks)) {
677                 /*
678                  * if the allocation failed and we didn't allocate
679                  * any blocks before
680                  */
681                 goto failed_out;
682         }
683         if (!*err) {
684                 if (target == blks) {
685                 /*
686                  * save the new block number
687                  * for the first direct block
688                  */
689                         new_blocks[index] = current_block;
690                 }
691                 blk_allocated += ar.len;
692         }
693 allocated:
694         /* total number of blocks allocated for direct blocks */
695         ret = blk_allocated;
696         *err = 0;
697         return ret;
698 failed_out:
699         for (i = 0; i < index; i++)
700                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
701         return ret;
702 }
703
704 /**
705  *      ext4_alloc_branch - allocate and set up a chain of blocks.
706  *      @inode: owner
707  *      @indirect_blks: number of allocated indirect blocks
708  *      @blks: number of allocated direct blocks
709  *      @offsets: offsets (in the blocks) to store the pointers to next.
710  *      @branch: place to store the chain in.
711  *
712  *      This function allocates blocks, zeroes out all but the last one,
713  *      links them into chain and (if we are synchronous) writes them to disk.
714  *      In other words, it prepares a branch that can be spliced onto the
715  *      inode. It stores the information about that chain in the branch[], in
716  *      the same format as ext4_get_branch() would do. We are calling it after
717  *      we had read the existing part of chain and partial points to the last
718  *      triple of that (one with zero ->key). Upon the exit we have the same
719  *      picture as after the successful ext4_get_block(), except that in one
720  *      place chain is disconnected - *branch->p is still zero (we did not
721  *      set the last link), but branch->key contains the number that should
722  *      be placed into *branch->p to fill that gap.
723  *
724  *      If allocation fails we free all blocks we've allocated (and forget
725  *      their buffer_heads) and return the error value the from failed
726  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
727  *      as described above and return 0.
728  */
729 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
730                                 ext4_lblk_t iblock, int indirect_blks,
731                                 int *blks, ext4_fsblk_t goal,
732                                 ext4_lblk_t *offsets, Indirect *branch)
733 {
734         int blocksize = inode->i_sb->s_blocksize;
735         int i, n = 0;
736         int err = 0;
737         struct buffer_head *bh;
738         int num;
739         ext4_fsblk_t new_blocks[4];
740         ext4_fsblk_t current_block;
741
742         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
743                                 *blks, new_blocks, &err);
744         if (err)
745                 return err;
746
747         branch[0].key = cpu_to_le32(new_blocks[0]);
748         /*
749          * metadata blocks and data blocks are allocated.
750          */
751         for (n = 1; n <= indirect_blks;  n++) {
752                 /*
753                  * Get buffer_head for parent block, zero it out
754                  * and set the pointer to new one, then send
755                  * parent to disk.
756                  */
757                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
758                 branch[n].bh = bh;
759                 lock_buffer(bh);
760                 BUFFER_TRACE(bh, "call get_create_access");
761                 err = ext4_journal_get_create_access(handle, bh);
762                 if (err) {
763                         unlock_buffer(bh);
764                         brelse(bh);
765                         goto failed;
766                 }
767
768                 memset(bh->b_data, 0, blocksize);
769                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
770                 branch[n].key = cpu_to_le32(new_blocks[n]);
771                 *branch[n].p = branch[n].key;
772                 if (n == indirect_blks) {
773                         current_block = new_blocks[n];
774                         /*
775                          * End of chain, update the last new metablock of
776                          * the chain to point to the new allocated
777                          * data blocks numbers
778                          */
779                         for (i=1; i < num; i++)
780                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
781                 }
782                 BUFFER_TRACE(bh, "marking uptodate");
783                 set_buffer_uptodate(bh);
784                 unlock_buffer(bh);
785
786                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
787                 err = ext4_handle_dirty_metadata(handle, inode, bh);
788                 if (err)
789                         goto failed;
790         }
791         *blks = num;
792         return err;
793 failed:
794         /* Allocation failed, free what we already allocated */
795         for (i = 1; i <= n ; i++) {
796                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
797                 ext4_journal_forget(handle, branch[i].bh);
798         }
799         for (i = 0; i < indirect_blks; i++)
800                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
801
802         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
803
804         return err;
805 }
806
807 /**
808  * ext4_splice_branch - splice the allocated branch onto inode.
809  * @inode: owner
810  * @block: (logical) number of block we are adding
811  * @chain: chain of indirect blocks (with a missing link - see
812  *      ext4_alloc_branch)
813  * @where: location of missing link
814  * @num:   number of indirect blocks we are adding
815  * @blks:  number of direct blocks we are adding
816  *
817  * This function fills the missing link and does all housekeeping needed in
818  * inode (->i_blocks, etc.). In case of success we end up with the full
819  * chain to new block and return 0.
820  */
821 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
822                         ext4_lblk_t block, Indirect *where, int num, int blks)
823 {
824         int i;
825         int err = 0;
826         ext4_fsblk_t current_block;
827
828         /*
829          * If we're splicing into a [td]indirect block (as opposed to the
830          * inode) then we need to get write access to the [td]indirect block
831          * before the splice.
832          */
833         if (where->bh) {
834                 BUFFER_TRACE(where->bh, "get_write_access");
835                 err = ext4_journal_get_write_access(handle, where->bh);
836                 if (err)
837                         goto err_out;
838         }
839         /* That's it */
840
841         *where->p = where->key;
842
843         /*
844          * Update the host buffer_head or inode to point to more just allocated
845          * direct blocks blocks
846          */
847         if (num == 0 && blks > 1) {
848                 current_block = le32_to_cpu(where->key) + 1;
849                 for (i = 1; i < blks; i++)
850                         *(where->p + i) = cpu_to_le32(current_block++);
851         }
852
853         /* We are done with atomic stuff, now do the rest of housekeeping */
854
855         inode->i_ctime = ext4_current_time(inode);
856         ext4_mark_inode_dirty(handle, inode);
857
858         /* had we spliced it onto indirect block? */
859         if (where->bh) {
860                 /*
861                  * If we spliced it onto an indirect block, we haven't
862                  * altered the inode.  Note however that if it is being spliced
863                  * onto an indirect block at the very end of the file (the
864                  * file is growing) then we *will* alter the inode to reflect
865                  * the new i_size.  But that is not done here - it is done in
866                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
867                  */
868                 jbd_debug(5, "splicing indirect only\n");
869                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
870                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
871                 if (err)
872                         goto err_out;
873         } else {
874                 /*
875                  * OK, we spliced it into the inode itself on a direct block.
876                  * Inode was dirtied above.
877                  */
878                 jbd_debug(5, "splicing direct\n");
879         }
880         return err;
881
882 err_out:
883         for (i = 1; i <= num; i++) {
884                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
885                 ext4_journal_forget(handle, where[i].bh);
886                 ext4_free_blocks(handle, inode,
887                                         le32_to_cpu(where[i-1].key), 1, 0);
888         }
889         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
890
891         return err;
892 }
893
894 /*
895  * Allocation strategy is simple: if we have to allocate something, we will
896  * have to go the whole way to leaf. So let's do it before attaching anything
897  * to tree, set linkage between the newborn blocks, write them if sync is
898  * required, recheck the path, free and repeat if check fails, otherwise
899  * set the last missing link (that will protect us from any truncate-generated
900  * removals - all blocks on the path are immune now) and possibly force the
901  * write on the parent block.
902  * That has a nice additional property: no special recovery from the failed
903  * allocations is needed - we simply release blocks and do not touch anything
904  * reachable from inode.
905  *
906  * `handle' can be NULL if create == 0.
907  *
908  * return > 0, # of blocks mapped or allocated.
909  * return = 0, if plain lookup failed.
910  * return < 0, error case.
911  *
912  *
913  * Need to be called with
914  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
915  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
916  */
917 static int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
918                                   ext4_lblk_t iblock, unsigned int maxblocks,
919                                   struct buffer_head *bh_result,
920                                   int create, int extend_disksize)
921 {
922         int err = -EIO;
923         ext4_lblk_t offsets[4];
924         Indirect chain[4];
925         Indirect *partial;
926         ext4_fsblk_t goal;
927         int indirect_blks;
928         int blocks_to_boundary = 0;
929         int depth;
930         struct ext4_inode_info *ei = EXT4_I(inode);
931         int count = 0;
932         ext4_fsblk_t first_block = 0;
933         loff_t disksize;
934
935
936         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
937         J_ASSERT(handle != NULL || create == 0);
938         depth = ext4_block_to_path(inode, iblock, offsets,
939                                         &blocks_to_boundary);
940
941         if (depth == 0)
942                 goto out;
943
944         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
945
946         /* Simplest case - block found, no allocation needed */
947         if (!partial) {
948                 first_block = le32_to_cpu(chain[depth - 1].key);
949                 clear_buffer_new(bh_result);
950                 count++;
951                 /*map more blocks*/
952                 while (count < maxblocks && count <= blocks_to_boundary) {
953                         ext4_fsblk_t blk;
954
955                         blk = le32_to_cpu(*(chain[depth-1].p + count));
956
957                         if (blk == first_block + count)
958                                 count++;
959                         else
960                                 break;
961                 }
962                 goto got_it;
963         }
964
965         /* Next simple case - plain lookup or failed read of indirect block */
966         if (!create || err == -EIO)
967                 goto cleanup;
968
969         /*
970          * Okay, we need to do block allocation.
971         */
972         goal = ext4_find_goal(inode, iblock, partial);
973
974         /* the number of blocks need to allocate for [d,t]indirect blocks */
975         indirect_blks = (chain + depth) - partial - 1;
976
977         /*
978          * Next look up the indirect map to count the totoal number of
979          * direct blocks to allocate for this branch.
980          */
981         count = ext4_blks_to_allocate(partial, indirect_blks,
982                                         maxblocks, blocks_to_boundary);
983         /*
984          * Block out ext4_truncate while we alter the tree
985          */
986         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
987                                         &count, goal,
988                                         offsets + (partial - chain), partial);
989
990         /*
991          * The ext4_splice_branch call will free and forget any buffers
992          * on the new chain if there is a failure, but that risks using
993          * up transaction credits, especially for bitmaps where the
994          * credits cannot be returned.  Can we handle this somehow?  We
995          * may need to return -EAGAIN upwards in the worst case.  --sct
996          */
997         if (!err)
998                 err = ext4_splice_branch(handle, inode, iblock,
999                                         partial, indirect_blks, count);
1000         /*
1001          * i_disksize growing is protected by i_data_sem.  Don't forget to
1002          * protect it if you're about to implement concurrent
1003          * ext4_get_block() -bzzz
1004         */
1005         if (!err && extend_disksize) {
1006                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
1007                 if (disksize > i_size_read(inode))
1008                         disksize = i_size_read(inode);
1009                 if (disksize > ei->i_disksize)
1010                         ei->i_disksize = disksize;
1011         }
1012         if (err)
1013                 goto cleanup;
1014
1015         set_buffer_new(bh_result);
1016 got_it:
1017         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1018         if (count > blocks_to_boundary)
1019                 set_buffer_boundary(bh_result);
1020         err = count;
1021         /* Clean up and exit */
1022         partial = chain + depth - 1;    /* the whole chain */
1023 cleanup:
1024         while (partial > chain) {
1025                 BUFFER_TRACE(partial->bh, "call brelse");
1026                 brelse(partial->bh);
1027                 partial--;
1028         }
1029         BUFFER_TRACE(bh_result, "returned");
1030 out:
1031         return err;
1032 }
1033
1034 qsize_t ext4_get_reserved_space(struct inode *inode)
1035 {
1036         unsigned long long total;
1037
1038         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1039         total = EXT4_I(inode)->i_reserved_data_blocks +
1040                 EXT4_I(inode)->i_reserved_meta_blocks;
1041         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1042
1043         return total;
1044 }
1045 /*
1046  * Calculate the number of metadata blocks need to reserve
1047  * to allocate @blocks for non extent file based file
1048  */
1049 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1050 {
1051         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1052         int ind_blks, dind_blks, tind_blks;
1053
1054         /* number of new indirect blocks needed */
1055         ind_blks = (blocks + icap - 1) / icap;
1056
1057         dind_blks = (ind_blks + icap - 1) / icap;
1058
1059         tind_blks = 1;
1060
1061         return ind_blks + dind_blks + tind_blks;
1062 }
1063
1064 /*
1065  * Calculate the number of metadata blocks need to reserve
1066  * to allocate given number of blocks
1067  */
1068 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1069 {
1070         if (!blocks)
1071                 return 0;
1072
1073         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1074                 return ext4_ext_calc_metadata_amount(inode, blocks);
1075
1076         return ext4_indirect_calc_metadata_amount(inode, blocks);
1077 }
1078
1079 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1080 {
1081         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1082         int total, mdb, mdb_free;
1083
1084         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1085         /* recalculate the number of metablocks still need to be reserved */
1086         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1087         mdb = ext4_calc_metadata_amount(inode, total);
1088
1089         /* figure out how many metablocks to release */
1090         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1091         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1092
1093         if (mdb_free) {
1094                 /* Account for allocated meta_blocks */
1095                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1096
1097                 /* update fs dirty blocks counter */
1098                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1099                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1100                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1101         }
1102
1103         /* update per-inode reservations */
1104         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1105         EXT4_I(inode)->i_reserved_data_blocks -= used;
1106         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1107
1108         /*
1109          * free those over-booking quota for metadata blocks
1110          */
1111         if (mdb_free)
1112                 vfs_dq_release_reservation_block(inode, mdb_free);
1113
1114         /*
1115          * If we have done all the pending block allocations and if
1116          * there aren't any writers on the inode, we can discard the
1117          * inode's preallocations.
1118          */
1119         if (!total && (atomic_read(&inode->i_writecount) == 0))
1120                 ext4_discard_preallocations(inode);
1121 }
1122
1123 /*
1124  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1125  * and returns if the blocks are already mapped.
1126  *
1127  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1128  * and store the allocated blocks in the result buffer head and mark it
1129  * mapped.
1130  *
1131  * If file type is extents based, it will call ext4_ext_get_blocks(),
1132  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1133  * based files
1134  *
1135  * On success, it returns the number of blocks being mapped or allocate.
1136  * if create==0 and the blocks are pre-allocated and uninitialized block,
1137  * the result buffer head is unmapped. If the create ==1, it will make sure
1138  * the buffer head is mapped.
1139  *
1140  * It returns 0 if plain look up failed (blocks have not been allocated), in
1141  * that casem, buffer head is unmapped
1142  *
1143  * It returns the error in case of allocation failure.
1144  */
1145 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1146                         unsigned int max_blocks, struct buffer_head *bh,
1147                         int create, int extend_disksize, int flag)
1148 {
1149         int retval;
1150
1151         clear_buffer_mapped(bh);
1152         clear_buffer_unwritten(bh);
1153
1154         /*
1155          * Try to see if we can get  the block without requesting
1156          * for new file system block.
1157          */
1158         down_read((&EXT4_I(inode)->i_data_sem));
1159         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1160                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1161                                 bh, 0, 0);
1162         } else {
1163                 retval = ext4_get_blocks_handle(handle,
1164                                 inode, block, max_blocks, bh, 0, 0);
1165         }
1166         up_read((&EXT4_I(inode)->i_data_sem));
1167
1168         /* If it is only a block(s) look up */
1169         if (!create)
1170                 return retval;
1171
1172         /*
1173          * Returns if the blocks have already allocated
1174          *
1175          * Note that if blocks have been preallocated
1176          * ext4_ext_get_block() returns th create = 0
1177          * with buffer head unmapped.
1178          */
1179         if (retval > 0 && buffer_mapped(bh))
1180                 return retval;
1181
1182         /*
1183          * When we call get_blocks without the create flag, the
1184          * BH_Unwritten flag could have gotten set if the blocks
1185          * requested were part of a uninitialized extent.  We need to
1186          * clear this flag now that we are committed to convert all or
1187          * part of the uninitialized extent to be an initialized
1188          * extent.  This is because we need to avoid the combination
1189          * of BH_Unwritten and BH_Mapped flags being simultaneously
1190          * set on the buffer_head.
1191          */
1192         clear_buffer_unwritten(bh);
1193
1194         /*
1195          * New blocks allocate and/or writing to uninitialized extent
1196          * will possibly result in updating i_data, so we take
1197          * the write lock of i_data_sem, and call get_blocks()
1198          * with create == 1 flag.
1199          */
1200         down_write((&EXT4_I(inode)->i_data_sem));
1201
1202         /*
1203          * if the caller is from delayed allocation writeout path
1204          * we have already reserved fs blocks for allocation
1205          * let the underlying get_block() function know to
1206          * avoid double accounting
1207          */
1208         if (flag)
1209                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1210         /*
1211          * We need to check for EXT4 here because migrate
1212          * could have changed the inode type in between
1213          */
1214         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1215                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1216                                 bh, create, extend_disksize);
1217         } else {
1218                 retval = ext4_get_blocks_handle(handle, inode, block,
1219                                 max_blocks, bh, create, extend_disksize);
1220
1221                 if (retval > 0 && buffer_new(bh)) {
1222                         /*
1223                          * We allocated new blocks which will result in
1224                          * i_data's format changing.  Force the migrate
1225                          * to fail by clearing migrate flags
1226                          */
1227                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1228                                                         ~EXT4_EXT_MIGRATE;
1229                 }
1230         }
1231
1232         if (flag) {
1233                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1234                 /*
1235                  * Update reserved blocks/metadata blocks
1236                  * after successful block allocation
1237                  * which were deferred till now
1238                  */
1239                 if ((retval > 0) && buffer_delay(bh))
1240                         ext4_da_update_reserve_space(inode, retval);
1241         }
1242
1243         up_write((&EXT4_I(inode)->i_data_sem));
1244         return retval;
1245 }
1246
1247 /* Maximum number of blocks we map for direct IO at once. */
1248 #define DIO_MAX_BLOCKS 4096
1249
1250 int ext4_get_block(struct inode *inode, sector_t iblock,
1251                    struct buffer_head *bh_result, int create)
1252 {
1253         handle_t *handle = ext4_journal_current_handle();
1254         int ret = 0, started = 0;
1255         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1256         int dio_credits;
1257
1258         if (create && !handle) {
1259                 /* Direct IO write... */
1260                 if (max_blocks > DIO_MAX_BLOCKS)
1261                         max_blocks = DIO_MAX_BLOCKS;
1262                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1263                 handle = ext4_journal_start(inode, dio_credits);
1264                 if (IS_ERR(handle)) {
1265                         ret = PTR_ERR(handle);
1266                         goto out;
1267                 }
1268                 started = 1;
1269         }
1270
1271         ret = ext4_get_blocks_wrap(handle, inode, iblock,
1272                                         max_blocks, bh_result, create, 0, 0);
1273         if (ret > 0) {
1274                 bh_result->b_size = (ret << inode->i_blkbits);
1275                 ret = 0;
1276         }
1277         if (started)
1278                 ext4_journal_stop(handle);
1279 out:
1280         return ret;
1281 }
1282
1283 /*
1284  * `handle' can be NULL if create is zero
1285  */
1286 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1287                                 ext4_lblk_t block, int create, int *errp)
1288 {
1289         struct buffer_head dummy;
1290         int fatal = 0, err;
1291
1292         J_ASSERT(handle != NULL || create == 0);
1293
1294         dummy.b_state = 0;
1295         dummy.b_blocknr = -1000;
1296         buffer_trace_init(&dummy.b_history);
1297         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1298                                         &dummy, create, 1, 0);
1299         /*
1300          * ext4_get_blocks_handle() returns number of blocks
1301          * mapped. 0 in case of a HOLE.
1302          */
1303         if (err > 0) {
1304                 if (err > 1)
1305                         WARN_ON(1);
1306                 err = 0;
1307         }
1308         *errp = err;
1309         if (!err && buffer_mapped(&dummy)) {
1310                 struct buffer_head *bh;
1311                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1312                 if (!bh) {
1313                         *errp = -EIO;
1314                         goto err;
1315                 }
1316                 if (buffer_new(&dummy)) {
1317                         J_ASSERT(create != 0);
1318                         J_ASSERT(handle != NULL);
1319
1320                         /*
1321                          * Now that we do not always journal data, we should
1322                          * keep in mind whether this should always journal the
1323                          * new buffer as metadata.  For now, regular file
1324                          * writes use ext4_get_block instead, so it's not a
1325                          * problem.
1326                          */
1327                         lock_buffer(bh);
1328                         BUFFER_TRACE(bh, "call get_create_access");
1329                         fatal = ext4_journal_get_create_access(handle, bh);
1330                         if (!fatal && !buffer_uptodate(bh)) {
1331                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1332                                 set_buffer_uptodate(bh);
1333                         }
1334                         unlock_buffer(bh);
1335                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1336                         err = ext4_handle_dirty_metadata(handle, inode, bh);
1337                         if (!fatal)
1338                                 fatal = err;
1339                 } else {
1340                         BUFFER_TRACE(bh, "not a new buffer");
1341                 }
1342                 if (fatal) {
1343                         *errp = fatal;
1344                         brelse(bh);
1345                         bh = NULL;
1346                 }
1347                 return bh;
1348         }
1349 err:
1350         return NULL;
1351 }
1352
1353 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1354                                ext4_lblk_t block, int create, int *err)
1355 {
1356         struct buffer_head *bh;
1357
1358         bh = ext4_getblk(handle, inode, block, create, err);
1359         if (!bh)
1360                 return bh;
1361         if (buffer_uptodate(bh))
1362                 return bh;
1363         ll_rw_block(READ_META, 1, &bh);
1364         wait_on_buffer(bh);
1365         if (buffer_uptodate(bh))
1366                 return bh;
1367         put_bh(bh);
1368         *err = -EIO;
1369         return NULL;
1370 }
1371
1372 static int walk_page_buffers(handle_t *handle,
1373                              struct buffer_head *head,
1374                              unsigned from,
1375                              unsigned to,
1376                              int *partial,
1377                              int (*fn)(handle_t *handle,
1378                                        struct buffer_head *bh))
1379 {
1380         struct buffer_head *bh;
1381         unsigned block_start, block_end;
1382         unsigned blocksize = head->b_size;
1383         int err, ret = 0;
1384         struct buffer_head *next;
1385
1386         for (bh = head, block_start = 0;
1387              ret == 0 && (bh != head || !block_start);
1388              block_start = block_end, bh = next)
1389         {
1390                 next = bh->b_this_page;
1391                 block_end = block_start + blocksize;
1392                 if (block_end <= from || block_start >= to) {
1393                         if (partial && !buffer_uptodate(bh))
1394                                 *partial = 1;
1395                         continue;
1396                 }
1397                 err = (*fn)(handle, bh);
1398                 if (!ret)
1399                         ret = err;
1400         }
1401         return ret;
1402 }
1403
1404 /*
1405  * To preserve ordering, it is essential that the hole instantiation and
1406  * the data write be encapsulated in a single transaction.  We cannot
1407  * close off a transaction and start a new one between the ext4_get_block()
1408  * and the commit_write().  So doing the jbd2_journal_start at the start of
1409  * prepare_write() is the right place.
1410  *
1411  * Also, this function can nest inside ext4_writepage() ->
1412  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1413  * has generated enough buffer credits to do the whole page.  So we won't
1414  * block on the journal in that case, which is good, because the caller may
1415  * be PF_MEMALLOC.
1416  *
1417  * By accident, ext4 can be reentered when a transaction is open via
1418  * quota file writes.  If we were to commit the transaction while thus
1419  * reentered, there can be a deadlock - we would be holding a quota
1420  * lock, and the commit would never complete if another thread had a
1421  * transaction open and was blocking on the quota lock - a ranking
1422  * violation.
1423  *
1424  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1425  * will _not_ run commit under these circumstances because handle->h_ref
1426  * is elevated.  We'll still have enough credits for the tiny quotafile
1427  * write.
1428  */
1429 static int do_journal_get_write_access(handle_t *handle,
1430                                         struct buffer_head *bh)
1431 {
1432         if (!buffer_mapped(bh) || buffer_freed(bh))
1433                 return 0;
1434         return ext4_journal_get_write_access(handle, bh);
1435 }
1436
1437 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1438                                 loff_t pos, unsigned len, unsigned flags,
1439                                 struct page **pagep, void **fsdata)
1440 {
1441         struct inode *inode = mapping->host;
1442         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1443         handle_t *handle;
1444         int retries = 0;
1445         struct page *page;
1446         pgoff_t index;
1447         unsigned from, to;
1448
1449         trace_mark(ext4_write_begin,
1450                    "dev %s ino %lu pos %llu len %u flags %u",
1451                    inode->i_sb->s_id, inode->i_ino,
1452                    (unsigned long long) pos, len, flags);
1453         index = pos >> PAGE_CACHE_SHIFT;
1454         from = pos & (PAGE_CACHE_SIZE - 1);
1455         to = from + len;
1456
1457 retry:
1458         handle = ext4_journal_start(inode, needed_blocks);
1459         if (IS_ERR(handle)) {
1460                 ret = PTR_ERR(handle);
1461                 goto out;
1462         }
1463
1464         /* We cannot recurse into the filesystem as the transaction is already
1465          * started */
1466         flags |= AOP_FLAG_NOFS;
1467
1468         page = grab_cache_page_write_begin(mapping, index, flags);
1469         if (!page) {
1470                 ext4_journal_stop(handle);
1471                 ret = -ENOMEM;
1472                 goto out;
1473         }
1474         *pagep = page;
1475
1476         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1477                                 ext4_get_block);
1478
1479         if (!ret && ext4_should_journal_data(inode)) {
1480                 ret = walk_page_buffers(handle, page_buffers(page),
1481                                 from, to, NULL, do_journal_get_write_access);
1482         }
1483
1484         if (ret) {
1485                 unlock_page(page);
1486                 ext4_journal_stop(handle);
1487                 page_cache_release(page);
1488                 /*
1489                  * block_write_begin may have instantiated a few blocks
1490                  * outside i_size.  Trim these off again. Don't need
1491                  * i_size_read because we hold i_mutex.
1492                  */
1493                 if (pos + len > inode->i_size)
1494                         vmtruncate(inode, inode->i_size);
1495         }
1496
1497         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1498                 goto retry;
1499 out:
1500         return ret;
1501 }
1502
1503 /* For write_end() in data=journal mode */
1504 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1505 {
1506         if (!buffer_mapped(bh) || buffer_freed(bh))
1507                 return 0;
1508         set_buffer_uptodate(bh);
1509         return ext4_handle_dirty_metadata(handle, NULL, bh);
1510 }
1511
1512 /*
1513  * We need to pick up the new inode size which generic_commit_write gave us
1514  * `file' can be NULL - eg, when called from page_symlink().
1515  *
1516  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1517  * buffers are managed internally.
1518  */
1519 static int ext4_ordered_write_end(struct file *file,
1520                                 struct address_space *mapping,
1521                                 loff_t pos, unsigned len, unsigned copied,
1522                                 struct page *page, void *fsdata)
1523 {
1524         handle_t *handle = ext4_journal_current_handle();
1525         struct inode *inode = mapping->host;
1526         int ret = 0, ret2;
1527
1528         trace_mark(ext4_ordered_write_end,
1529                    "dev %s ino %lu pos %llu len %u copied %u",
1530                    inode->i_sb->s_id, inode->i_ino,
1531                    (unsigned long long) pos, len, copied);
1532         ret = ext4_jbd2_file_inode(handle, inode);
1533
1534         if (ret == 0) {
1535                 loff_t new_i_size;
1536
1537                 new_i_size = pos + copied;
1538                 if (new_i_size > EXT4_I(inode)->i_disksize) {
1539                         ext4_update_i_disksize(inode, new_i_size);
1540                         /* We need to mark inode dirty even if
1541                          * new_i_size is less that inode->i_size
1542                          * bu greater than i_disksize.(hint delalloc)
1543                          */
1544                         ext4_mark_inode_dirty(handle, inode);
1545                 }
1546
1547                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1548                                                         page, fsdata);
1549                 copied = ret2;
1550                 if (ret2 < 0)
1551                         ret = ret2;
1552         }
1553         ret2 = ext4_journal_stop(handle);
1554         if (!ret)
1555                 ret = ret2;
1556
1557         return ret ? ret : copied;
1558 }
1559
1560 static int ext4_writeback_write_end(struct file *file,
1561                                 struct address_space *mapping,
1562                                 loff_t pos, unsigned len, unsigned copied,
1563                                 struct page *page, void *fsdata)
1564 {
1565         handle_t *handle = ext4_journal_current_handle();
1566         struct inode *inode = mapping->host;
1567         int ret = 0, ret2;
1568         loff_t new_i_size;
1569
1570         trace_mark(ext4_writeback_write_end,
1571                    "dev %s ino %lu pos %llu len %u copied %u",
1572                    inode->i_sb->s_id, inode->i_ino,
1573                    (unsigned long long) pos, len, copied);
1574         new_i_size = pos + copied;
1575         if (new_i_size > EXT4_I(inode)->i_disksize) {
1576                 ext4_update_i_disksize(inode, new_i_size);
1577                 /* We need to mark inode dirty even if
1578                  * new_i_size is less that inode->i_size
1579                  * bu greater than i_disksize.(hint delalloc)
1580                  */
1581                 ext4_mark_inode_dirty(handle, inode);
1582         }
1583
1584         ret2 = generic_write_end(file, mapping, pos, len, copied,
1585                                                         page, fsdata);
1586         copied = ret2;
1587         if (ret2 < 0)
1588                 ret = ret2;
1589
1590         ret2 = ext4_journal_stop(handle);
1591         if (!ret)
1592                 ret = ret2;
1593
1594         return ret ? ret : copied;
1595 }
1596
1597 static int ext4_journalled_write_end(struct file *file,
1598                                 struct address_space *mapping,
1599                                 loff_t pos, unsigned len, unsigned copied,
1600                                 struct page *page, void *fsdata)
1601 {
1602         handle_t *handle = ext4_journal_current_handle();
1603         struct inode *inode = mapping->host;
1604         int ret = 0, ret2;
1605         int partial = 0;
1606         unsigned from, to;
1607         loff_t new_i_size;
1608
1609         trace_mark(ext4_journalled_write_end,
1610                    "dev %s ino %lu pos %llu len %u copied %u",
1611                    inode->i_sb->s_id, inode->i_ino,
1612                    (unsigned long long) pos, len, copied);
1613         from = pos & (PAGE_CACHE_SIZE - 1);
1614         to = from + len;
1615
1616         if (copied < len) {
1617                 if (!PageUptodate(page))
1618                         copied = 0;
1619                 page_zero_new_buffers(page, from+copied, to);
1620         }
1621
1622         ret = walk_page_buffers(handle, page_buffers(page), from,
1623                                 to, &partial, write_end_fn);
1624         if (!partial)
1625                 SetPageUptodate(page);
1626         new_i_size = pos + copied;
1627         if (new_i_size > inode->i_size)
1628                 i_size_write(inode, pos+copied);
1629         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1630         if (new_i_size > EXT4_I(inode)->i_disksize) {
1631                 ext4_update_i_disksize(inode, new_i_size);
1632                 ret2 = ext4_mark_inode_dirty(handle, inode);
1633                 if (!ret)
1634                         ret = ret2;
1635         }
1636
1637         unlock_page(page);
1638         ret2 = ext4_journal_stop(handle);
1639         if (!ret)
1640                 ret = ret2;
1641         page_cache_release(page);
1642
1643         return ret ? ret : copied;
1644 }
1645
1646 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1647 {
1648         int retries = 0;
1649         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1650         unsigned long md_needed, mdblocks, total = 0;
1651
1652         /*
1653          * recalculate the amount of metadata blocks to reserve
1654          * in order to allocate nrblocks
1655          * worse case is one extent per block
1656          */
1657 repeat:
1658         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1659         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1660         mdblocks = ext4_calc_metadata_amount(inode, total);
1661         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1662
1663         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1664         total = md_needed + nrblocks;
1665
1666         /*
1667          * Make quota reservation here to prevent quota overflow
1668          * later. Real quota accounting is done at pages writeout
1669          * time.
1670          */
1671         if (vfs_dq_reserve_block(inode, total)) {
1672                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1673                 return -EDQUOT;
1674         }
1675
1676         if (ext4_claim_free_blocks(sbi, total)) {
1677                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1678                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1679                         yield();
1680                         goto repeat;
1681                 }
1682                 vfs_dq_release_reservation_block(inode, total);
1683                 return -ENOSPC;
1684         }
1685         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1686         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1687
1688         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1689         return 0;       /* success */
1690 }
1691
1692 static void ext4_da_release_space(struct inode *inode, int to_free)
1693 {
1694         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1695         int total, mdb, mdb_free, release;
1696
1697         if (!to_free)
1698                 return;         /* Nothing to release, exit */
1699
1700         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1701
1702         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1703                 /*
1704                  * if there is no reserved blocks, but we try to free some
1705                  * then the counter is messed up somewhere.
1706                  * but since this function is called from invalidate
1707                  * page, it's harmless to return without any action
1708                  */
1709                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1710                             "blocks for inode %lu, but there is no reserved "
1711                             "data blocks\n", to_free, inode->i_ino);
1712                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1713                 return;
1714         }
1715
1716         /* recalculate the number of metablocks still need to be reserved */
1717         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1718         mdb = ext4_calc_metadata_amount(inode, total);
1719
1720         /* figure out how many metablocks to release */
1721         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1722         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1723
1724         release = to_free + mdb_free;
1725
1726         /* update fs dirty blocks counter for truncate case */
1727         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1728
1729         /* update per-inode reservations */
1730         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1731         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1732
1733         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1734         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1735         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1736
1737         vfs_dq_release_reservation_block(inode, release);
1738 }
1739
1740 static void ext4_da_page_release_reservation(struct page *page,
1741                                                 unsigned long offset)
1742 {
1743         int to_release = 0;
1744         struct buffer_head *head, *bh;
1745         unsigned int curr_off = 0;
1746
1747         head = page_buffers(page);
1748         bh = head;
1749         do {
1750                 unsigned int next_off = curr_off + bh->b_size;
1751
1752                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1753                         to_release++;
1754                         clear_buffer_delay(bh);
1755                 }
1756                 curr_off = next_off;
1757         } while ((bh = bh->b_this_page) != head);
1758         ext4_da_release_space(page->mapping->host, to_release);
1759 }
1760
1761 /*
1762  * Delayed allocation stuff
1763  */
1764
1765 struct mpage_da_data {
1766         struct inode *inode;
1767         sector_t b_blocknr;             /* start block number of extent */
1768         size_t b_size;                  /* size of extent */
1769         unsigned long b_state;          /* state of the extent */
1770         unsigned long first_page, next_page;    /* extent of pages */
1771         struct writeback_control *wbc;
1772         int io_done;
1773         int pages_written;
1774         int retval;
1775 };
1776
1777 /*
1778  * mpage_da_submit_io - walks through extent of pages and try to write
1779  * them with writepage() call back
1780  *
1781  * @mpd->inode: inode
1782  * @mpd->first_page: first page of the extent
1783  * @mpd->next_page: page after the last page of the extent
1784  *
1785  * By the time mpage_da_submit_io() is called we expect all blocks
1786  * to be allocated. this may be wrong if allocation failed.
1787  *
1788  * As pages are already locked by write_cache_pages(), we can't use it
1789  */
1790 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1791 {
1792         long pages_skipped;
1793         struct pagevec pvec;
1794         unsigned long index, end;
1795         int ret = 0, err, nr_pages, i;
1796         struct inode *inode = mpd->inode;
1797         struct address_space *mapping = inode->i_mapping;
1798
1799         BUG_ON(mpd->next_page <= mpd->first_page);
1800         /*
1801          * We need to start from the first_page to the next_page - 1
1802          * to make sure we also write the mapped dirty buffer_heads.
1803          * If we look at mpd->b_blocknr we would only be looking
1804          * at the currently mapped buffer_heads.
1805          */
1806         index = mpd->first_page;
1807         end = mpd->next_page - 1;
1808
1809         pagevec_init(&pvec, 0);
1810         while (index <= end) {
1811                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1812                 if (nr_pages == 0)
1813                         break;
1814                 for (i = 0; i < nr_pages; i++) {
1815                         struct page *page = pvec.pages[i];
1816
1817                         index = page->index;
1818                         if (index > end)
1819                                 break;
1820                         index++;
1821
1822                         BUG_ON(!PageLocked(page));
1823                         BUG_ON(PageWriteback(page));
1824
1825                         pages_skipped = mpd->wbc->pages_skipped;
1826                         err = mapping->a_ops->writepage(page, mpd->wbc);
1827                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1828                                 /*
1829                                  * have successfully written the page
1830                                  * without skipping the same
1831                                  */
1832                                 mpd->pages_written++;
1833                         /*
1834                          * In error case, we have to continue because
1835                          * remaining pages are still locked
1836                          * XXX: unlock and re-dirty them?
1837                          */
1838                         if (ret == 0)
1839                                 ret = err;
1840                 }
1841                 pagevec_release(&pvec);
1842         }
1843         return ret;
1844 }
1845
1846 /*
1847  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1848  *
1849  * @mpd->inode - inode to walk through
1850  * @exbh->b_blocknr - first block on a disk
1851  * @exbh->b_size - amount of space in bytes
1852  * @logical - first logical block to start assignment with
1853  *
1854  * the function goes through all passed space and put actual disk
1855  * block numbers into buffer heads, dropping BH_Delay
1856  */
1857 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1858                                  struct buffer_head *exbh)
1859 {
1860         struct inode *inode = mpd->inode;
1861         struct address_space *mapping = inode->i_mapping;
1862         int blocks = exbh->b_size >> inode->i_blkbits;
1863         sector_t pblock = exbh->b_blocknr, cur_logical;
1864         struct buffer_head *head, *bh;
1865         pgoff_t index, end;
1866         struct pagevec pvec;
1867         int nr_pages, i;
1868
1869         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1870         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1871         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1872
1873         pagevec_init(&pvec, 0);
1874
1875         while (index <= end) {
1876                 /* XXX: optimize tail */
1877                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1878                 if (nr_pages == 0)
1879                         break;
1880                 for (i = 0; i < nr_pages; i++) {
1881                         struct page *page = pvec.pages[i];
1882
1883                         index = page->index;
1884                         if (index > end)
1885                                 break;
1886                         index++;
1887
1888                         BUG_ON(!PageLocked(page));
1889                         BUG_ON(PageWriteback(page));
1890                         BUG_ON(!page_has_buffers(page));
1891
1892                         bh = page_buffers(page);
1893                         head = bh;
1894
1895                         /* skip blocks out of the range */
1896                         do {
1897                                 if (cur_logical >= logical)
1898                                         break;
1899                                 cur_logical++;
1900                         } while ((bh = bh->b_this_page) != head);
1901
1902                         do {
1903                                 if (cur_logical >= logical + blocks)
1904                                         break;
1905                                 if (buffer_delay(bh)) {
1906                                         bh->b_blocknr = pblock;
1907                                         clear_buffer_delay(bh);
1908                                         bh->b_bdev = inode->i_sb->s_bdev;
1909                                 } else if (buffer_unwritten(bh)) {
1910                                         bh->b_blocknr = pblock;
1911                                         clear_buffer_unwritten(bh);
1912                                         set_buffer_mapped(bh);
1913                                         set_buffer_new(bh);
1914                                         bh->b_bdev = inode->i_sb->s_bdev;
1915                                 } else if (buffer_mapped(bh))
1916                                         BUG_ON(bh->b_blocknr != pblock);
1917
1918                                 cur_logical++;
1919                                 pblock++;
1920                         } while ((bh = bh->b_this_page) != head);
1921                 }
1922                 pagevec_release(&pvec);
1923         }
1924 }
1925
1926
1927 /*
1928  * __unmap_underlying_blocks - just a helper function to unmap
1929  * set of blocks described by @bh
1930  */
1931 static inline void __unmap_underlying_blocks(struct inode *inode,
1932                                              struct buffer_head *bh)
1933 {
1934         struct block_device *bdev = inode->i_sb->s_bdev;
1935         int blocks, i;
1936
1937         blocks = bh->b_size >> inode->i_blkbits;
1938         for (i = 0; i < blocks; i++)
1939                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1940 }
1941
1942 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1943                                         sector_t logical, long blk_cnt)
1944 {
1945         int nr_pages, i;
1946         pgoff_t index, end;
1947         struct pagevec pvec;
1948         struct inode *inode = mpd->inode;
1949         struct address_space *mapping = inode->i_mapping;
1950
1951         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1952         end   = (logical + blk_cnt - 1) >>
1953                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1954         while (index <= end) {
1955                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1956                 if (nr_pages == 0)
1957                         break;
1958                 for (i = 0; i < nr_pages; i++) {
1959                         struct page *page = pvec.pages[i];
1960                         index = page->index;
1961                         if (index > end)
1962                                 break;
1963                         index++;
1964
1965                         BUG_ON(!PageLocked(page));
1966                         BUG_ON(PageWriteback(page));
1967                         block_invalidatepage(page, 0);
1968                         ClearPageUptodate(page);
1969                         unlock_page(page);
1970                 }
1971         }
1972         return;
1973 }
1974
1975 static void ext4_print_free_blocks(struct inode *inode)
1976 {
1977         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1978         printk(KERN_EMERG "Total free blocks count %lld\n",
1979                         ext4_count_free_blocks(inode->i_sb));
1980         printk(KERN_EMERG "Free/Dirty block details\n");
1981         printk(KERN_EMERG "free_blocks=%lld\n",
1982                         (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1983         printk(KERN_EMERG "dirty_blocks=%lld\n",
1984                         (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1985         printk(KERN_EMERG "Block reservation details\n");
1986         printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
1987                         EXT4_I(inode)->i_reserved_data_blocks);
1988         printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
1989                         EXT4_I(inode)->i_reserved_meta_blocks);
1990         return;
1991 }
1992
1993 #define         EXT4_DELALLOC_RSVED     1
1994 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
1995                                    struct buffer_head *bh_result, int create)
1996 {
1997         int ret;
1998         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1999         loff_t disksize = EXT4_I(inode)->i_disksize;
2000         handle_t *handle = NULL;
2001
2002         handle = ext4_journal_current_handle();
2003         BUG_ON(!handle);
2004         ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2005                                    bh_result, create, 0, EXT4_DELALLOC_RSVED);
2006         if (ret <= 0)
2007                 return ret;
2008
2009         bh_result->b_size = (ret << inode->i_blkbits);
2010
2011         if (ext4_should_order_data(inode)) {
2012                 int retval;
2013                 retval = ext4_jbd2_file_inode(handle, inode);
2014                 if (retval)
2015                         /*
2016                          * Failed to add inode for ordered mode. Don't
2017                          * update file size
2018                          */
2019                         return retval;
2020         }
2021
2022         /*
2023          * Update on-disk size along with block allocation we don't
2024          * use 'extend_disksize' as size may change within already
2025          * allocated block -bzzz
2026          */
2027         disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2028         if (disksize > i_size_read(inode))
2029                 disksize = i_size_read(inode);
2030         if (disksize > EXT4_I(inode)->i_disksize) {
2031                 ext4_update_i_disksize(inode, disksize);
2032                 ret = ext4_mark_inode_dirty(handle, inode);
2033                 return ret;
2034         }
2035         return 0;
2036 }
2037
2038 /*
2039  * mpage_da_map_blocks - go through given space
2040  *
2041  * @mpd - bh describing space
2042  *
2043  * The function skips space we know is already mapped to disk blocks.
2044  *
2045  */
2046 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2047 {
2048         int err = 0;
2049         struct buffer_head new;
2050         sector_t next;
2051
2052         /*
2053          * We consider only non-mapped and non-allocated blocks
2054          */
2055         if ((mpd->b_state  & (1 << BH_Mapped)) &&
2056             !(mpd->b_state & (1 << BH_Delay)))
2057                 return 0;
2058         new.b_state = mpd->b_state;
2059         new.b_blocknr = 0;
2060         new.b_size = mpd->b_size;
2061         next = mpd->b_blocknr;
2062         /*
2063          * If we didn't accumulate anything
2064          * to write simply return
2065          */
2066         if (!new.b_size)
2067                 return 0;
2068
2069         err = ext4_da_get_block_write(mpd->inode, next, &new, 1);
2070         if (err) {
2071                 /*
2072                  * If get block returns with error we simply
2073                  * return. Later writepage will redirty the page and
2074                  * writepages will find the dirty page again
2075                  */
2076                 if (err == -EAGAIN)
2077                         return 0;
2078
2079                 if (err == -ENOSPC &&
2080                     ext4_count_free_blocks(mpd->inode->i_sb)) {
2081                         mpd->retval = err;
2082                         return 0;
2083                 }
2084
2085                 /*
2086                  * get block failure will cause us to loop in
2087                  * writepages, because a_ops->writepage won't be able
2088                  * to make progress. The page will be redirtied by
2089                  * writepage and writepages will again try to write
2090                  * the same.
2091                  */
2092                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2093                                   "at logical offset %llu with max blocks "
2094                                   "%zd with error %d\n",
2095                                   __func__, mpd->inode->i_ino,
2096                                   (unsigned long long)next,
2097                                   mpd->b_size >> mpd->inode->i_blkbits, err);
2098                 printk(KERN_EMERG "This should not happen.!! "
2099                                         "Data will be lost\n");
2100                 if (err == -ENOSPC) {
2101                         ext4_print_free_blocks(mpd->inode);
2102                 }
2103                 /* invlaidate all the pages */
2104                 ext4_da_block_invalidatepages(mpd, next,
2105                                 mpd->b_size >> mpd->inode->i_blkbits);
2106                 return err;
2107         }
2108         BUG_ON(new.b_size == 0);
2109
2110         if (buffer_new(&new))
2111                 __unmap_underlying_blocks(mpd->inode, &new);
2112
2113         /*
2114          * If blocks are delayed marked, we need to
2115          * put actual blocknr and drop delayed bit
2116          */
2117         if ((mpd->b_state & (1 << BH_Delay)) ||
2118             (mpd->b_state & (1 << BH_Unwritten)))
2119                 mpage_put_bnr_to_bhs(mpd, next, &new);
2120
2121         return 0;
2122 }
2123
2124 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2125                 (1 << BH_Delay) | (1 << BH_Unwritten))
2126
2127 /*
2128  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2129  *
2130  * @mpd->lbh - extent of blocks
2131  * @logical - logical number of the block in the file
2132  * @bh - bh of the block (used to access block's state)
2133  *
2134  * the function is used to collect contig. blocks in same state
2135  */
2136 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2137                                    sector_t logical, size_t b_size,
2138                                    unsigned long b_state)
2139 {
2140         sector_t next;
2141         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2142
2143         /* check if thereserved journal credits might overflow */
2144         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2145                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2146                         /*
2147                          * With non-extent format we are limited by the journal
2148                          * credit available.  Total credit needed to insert
2149                          * nrblocks contiguous blocks is dependent on the
2150                          * nrblocks.  So limit nrblocks.
2151                          */
2152                         goto flush_it;
2153                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2154                                 EXT4_MAX_TRANS_DATA) {
2155                         /*
2156                          * Adding the new buffer_head would make it cross the
2157                          * allowed limit for which we have journal credit
2158                          * reserved. So limit the new bh->b_size
2159                          */
2160                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2161                                                 mpd->inode->i_blkbits;
2162                         /* we will do mpage_da_submit_io in the next loop */
2163                 }
2164         }
2165         /*
2166          * First block in the extent
2167          */
2168         if (mpd->b_size == 0) {
2169                 mpd->b_blocknr = logical;
2170                 mpd->b_size = b_size;
2171                 mpd->b_state = b_state & BH_FLAGS;
2172                 return;
2173         }
2174
2175         next = mpd->b_blocknr + nrblocks;
2176         /*
2177          * Can we merge the block to our big extent?
2178          */
2179         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2180                 mpd->b_size += b_size;
2181                 return;
2182         }
2183
2184 flush_it:
2185         /*
2186          * We couldn't merge the block to our extent, so we
2187          * need to flush current  extent and start new one
2188          */
2189         if (mpage_da_map_blocks(mpd) == 0)
2190                 mpage_da_submit_io(mpd);
2191         mpd->io_done = 1;
2192         return;
2193 }
2194
2195 /*
2196  * __mpage_da_writepage - finds extent of pages and blocks
2197  *
2198  * @page: page to consider
2199  * @wbc: not used, we just follow rules
2200  * @data: context
2201  *
2202  * The function finds extents of pages and scan them for all blocks.
2203  */
2204 static int __mpage_da_writepage(struct page *page,
2205                                 struct writeback_control *wbc, void *data)
2206 {
2207         struct mpage_da_data *mpd = data;
2208         struct inode *inode = mpd->inode;
2209         struct buffer_head *bh, *head;
2210         sector_t logical;
2211
2212         if (mpd->io_done) {
2213                 /*
2214                  * Rest of the page in the page_vec
2215                  * redirty then and skip then. We will
2216                  * try to to write them again after
2217                  * starting a new transaction
2218                  */
2219                 redirty_page_for_writepage(wbc, page);
2220                 unlock_page(page);
2221                 return MPAGE_DA_EXTENT_TAIL;
2222         }
2223         /*
2224          * Can we merge this page to current extent?
2225          */
2226         if (mpd->next_page != page->index) {
2227                 /*
2228                  * Nope, we can't. So, we map non-allocated blocks
2229                  * and start IO on them using writepage()
2230                  */
2231                 if (mpd->next_page != mpd->first_page) {
2232                         if (mpage_da_map_blocks(mpd) == 0)
2233                                 mpage_da_submit_io(mpd);
2234                         /*
2235                          * skip rest of the page in the page_vec
2236                          */
2237                         mpd->io_done = 1;
2238                         redirty_page_for_writepage(wbc, page);
2239                         unlock_page(page);
2240                         return MPAGE_DA_EXTENT_TAIL;
2241                 }
2242
2243                 /*
2244                  * Start next extent of pages ...
2245                  */
2246                 mpd->first_page = page->index;
2247
2248                 /*
2249                  * ... and blocks
2250                  */
2251                 mpd->b_size = 0;
2252                 mpd->b_state = 0;
2253                 mpd->b_blocknr = 0;
2254         }
2255
2256         mpd->next_page = page->index + 1;
2257         logical = (sector_t) page->index <<
2258                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2259
2260         if (!page_has_buffers(page)) {
2261                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2262                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2263                 if (mpd->io_done)
2264                         return MPAGE_DA_EXTENT_TAIL;
2265         } else {
2266                 /*
2267                  * Page with regular buffer heads, just add all dirty ones
2268                  */
2269                 head = page_buffers(page);
2270                 bh = head;
2271                 do {
2272                         BUG_ON(buffer_locked(bh));
2273                         /*
2274                          * We need to try to allocate
2275                          * unmapped blocks in the same page.
2276                          * Otherwise we won't make progress
2277                          * with the page in ext4_da_writepage
2278                          */
2279                         if (buffer_dirty(bh) &&
2280                             (!buffer_mapped(bh) || buffer_delay(bh))) {
2281                                 mpage_add_bh_to_extent(mpd, logical,
2282                                                        bh->b_size,
2283                                                        bh->b_state);
2284                                 if (mpd->io_done)
2285                                         return MPAGE_DA_EXTENT_TAIL;
2286                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2287                                 /*
2288                                  * mapped dirty buffer. We need to update
2289                                  * the b_state because we look at
2290                                  * b_state in mpage_da_map_blocks. We don't
2291                                  * update b_size because if we find an
2292                                  * unmapped buffer_head later we need to
2293                                  * use the b_state flag of that buffer_head.
2294                                  */
2295                                 if (mpd->b_size == 0)
2296                                         mpd->b_state = bh->b_state & BH_FLAGS;
2297                         }
2298                         logical++;
2299                 } while ((bh = bh->b_this_page) != head);
2300         }
2301
2302         return 0;
2303 }
2304
2305 /*
2306  * this is a special callback for ->write_begin() only
2307  * it's intention is to return mapped block or reserve space
2308  */
2309 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2310                                   struct buffer_head *bh_result, int create)
2311 {
2312         int ret = 0;
2313         sector_t invalid_block = ~((sector_t) 0xffff);
2314
2315         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2316                 invalid_block = ~0;
2317
2318         BUG_ON(create == 0);
2319         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2320
2321         /*
2322          * first, we need to know whether the block is allocated already
2323          * preallocated blocks are unmapped but should treated
2324          * the same as allocated blocks.
2325          */
2326         ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2327         if ((ret == 0) && !buffer_delay(bh_result)) {
2328                 /* the block isn't (pre)allocated yet, let's reserve space */
2329                 /*
2330                  * XXX: __block_prepare_write() unmaps passed block,
2331                  * is it OK?
2332                  */
2333                 ret = ext4_da_reserve_space(inode, 1);
2334                 if (ret)
2335                         /* not enough space to reserve */
2336                         return ret;
2337
2338                 map_bh(bh_result, inode->i_sb, invalid_block);
2339                 set_buffer_new(bh_result);
2340                 set_buffer_delay(bh_result);
2341         } else if (ret > 0) {
2342                 bh_result->b_size = (ret << inode->i_blkbits);
2343                 /*
2344                  * With sub-block writes into unwritten extents
2345                  * we also need to mark the buffer as new so that
2346                  * the unwritten parts of the buffer gets correctly zeroed.
2347                  */
2348                 if (buffer_unwritten(bh_result))
2349                         set_buffer_new(bh_result);
2350                 ret = 0;
2351         }
2352
2353         return ret;
2354 }
2355
2356 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2357 {
2358         /*
2359          * unmapped buffer is possible for holes.
2360          * delay buffer is possible with delayed allocation
2361          */
2362         return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2363 }
2364
2365 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2366                                    struct buffer_head *bh_result, int create)
2367 {
2368         int ret = 0;
2369         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2370
2371         /*
2372          * we don't want to do block allocation in writepage
2373          * so call get_block_wrap with create = 0
2374          */
2375         ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2376                                    bh_result, 0, 0, 0);
2377         if (ret > 0) {
2378                 bh_result->b_size = (ret << inode->i_blkbits);
2379                 ret = 0;
2380         }
2381         return ret;
2382 }
2383
2384 /*
2385  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2386  * get called via journal_submit_inode_data_buffers (no journal handle)
2387  * get called via shrink_page_list via pdflush (no journal handle)
2388  * or grab_page_cache when doing write_begin (have journal handle)
2389  */
2390 static int ext4_da_writepage(struct page *page,
2391                                 struct writeback_control *wbc)
2392 {
2393         int ret = 0;
2394         loff_t size;
2395         unsigned int len;
2396         struct buffer_head *page_bufs;
2397         struct inode *inode = page->mapping->host;
2398
2399         trace_mark(ext4_da_writepage,
2400                    "dev %s ino %lu page_index %lu",
2401                    inode->i_sb->s_id, inode->i_ino, page->index);
2402         size = i_size_read(inode);
2403         if (page->index == size >> PAGE_CACHE_SHIFT)
2404                 len = size & ~PAGE_CACHE_MASK;
2405         else
2406                 len = PAGE_CACHE_SIZE;
2407
2408         if (page_has_buffers(page)) {
2409                 page_bufs = page_buffers(page);
2410                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2411                                         ext4_bh_unmapped_or_delay)) {
2412                         /*
2413                          * We don't want to do  block allocation
2414                          * So redirty the page and return
2415                          * We may reach here when we do a journal commit
2416                          * via journal_submit_inode_data_buffers.
2417                          * If we don't have mapping block we just ignore
2418                          * them. We can also reach here via shrink_page_list
2419                          */
2420                         redirty_page_for_writepage(wbc, page);
2421                         unlock_page(page);
2422                         return 0;
2423                 }
2424         } else {
2425                 /*
2426                  * The test for page_has_buffers() is subtle:
2427                  * We know the page is dirty but it lost buffers. That means
2428                  * that at some moment in time after write_begin()/write_end()
2429                  * has been called all buffers have been clean and thus they
2430                  * must have been written at least once. So they are all
2431                  * mapped and we can happily proceed with mapping them
2432                  * and writing the page.
2433                  *
2434                  * Try to initialize the buffer_heads and check whether
2435                  * all are mapped and non delay. We don't want to
2436                  * do block allocation here.
2437                  */
2438                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2439                                                 ext4_normal_get_block_write);
2440                 if (!ret) {
2441                         page_bufs = page_buffers(page);
2442                         /* check whether all are mapped and non delay */
2443                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2444                                                 ext4_bh_unmapped_or_delay)) {
2445                                 redirty_page_for_writepage(wbc, page);
2446                                 unlock_page(page);
2447                                 return 0;
2448                         }
2449                 } else {
2450                         /*
2451                          * We can't do block allocation here
2452                          * so just redity the page and unlock
2453                          * and return
2454                          */
2455                         redirty_page_for_writepage(wbc, page);
2456                         unlock_page(page);
2457                         return 0;
2458                 }
2459                 /* now mark the buffer_heads as dirty and uptodate */
2460                 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2461         }
2462
2463         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2464                 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2465         else
2466                 ret = block_write_full_page(page,
2467                                                 ext4_normal_get_block_write,
2468                                                 wbc);
2469
2470         return ret;
2471 }
2472
2473 /*
2474  * This is called via ext4_da_writepages() to
2475  * calulate the total number of credits to reserve to fit
2476  * a single extent allocation into a single transaction,
2477  * ext4_da_writpeages() will loop calling this before
2478  * the block allocation.
2479  */
2480
2481 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2482 {
2483         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2484
2485         /*
2486          * With non-extent format the journal credit needed to
2487          * insert nrblocks contiguous block is dependent on
2488          * number of contiguous block. So we will limit
2489          * number of contiguous block to a sane value
2490          */
2491         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2492             (max_blocks > EXT4_MAX_TRANS_DATA))
2493                 max_blocks = EXT4_MAX_TRANS_DATA;
2494
2495         return ext4_chunk_trans_blocks(inode, max_blocks);
2496 }
2497
2498 static int ext4_da_writepages(struct address_space *mapping,
2499                               struct writeback_control *wbc)
2500 {
2501         pgoff_t index;
2502         int range_whole = 0;
2503         handle_t *handle = NULL;
2504         struct mpage_da_data mpd;
2505         struct inode *inode = mapping->host;
2506         int no_nrwrite_index_update;
2507         int pages_written = 0;
2508         long pages_skipped;
2509         int range_cyclic, cycled = 1, io_done = 0;
2510         int needed_blocks, ret = 0, nr_to_writebump = 0;
2511         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2512
2513         trace_mark(ext4_da_writepages,
2514                    "dev %s ino %lu nr_t_write %ld "
2515                    "pages_skipped %ld range_start %llu "
2516                    "range_end %llu nonblocking %d "
2517                    "for_kupdate %d for_reclaim %d "
2518                    "for_writepages %d range_cyclic %d",
2519                    inode->i_sb->s_id, inode->i_ino,
2520                    wbc->nr_to_write, wbc->pages_skipped,
2521                    (unsigned long long) wbc->range_start,
2522                    (unsigned long long) wbc->range_end,
2523                    wbc->nonblocking, wbc->for_kupdate,
2524                    wbc->for_reclaim, wbc->for_writepages,
2525                    wbc->range_cyclic);
2526
2527         /*
2528          * No pages to write? This is mainly a kludge to avoid starting
2529          * a transaction for special inodes like journal inode on last iput()
2530          * because that could violate lock ordering on umount
2531          */
2532         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2533                 return 0;
2534
2535         /*
2536          * If the filesystem has aborted, it is read-only, so return
2537          * right away instead of dumping stack traces later on that
2538          * will obscure the real source of the problem.  We test
2539          * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2540          * the latter could be true if the filesystem is mounted
2541          * read-only, and in that case, ext4_da_writepages should
2542          * *never* be called, so if that ever happens, we would want
2543          * the stack trace.
2544          */
2545         if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2546                 return -EROFS;
2547
2548         /*
2549          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2550          * This make sure small files blocks are allocated in
2551          * single attempt. This ensure that small files
2552          * get less fragmented.
2553          */
2554         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2555                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2556                 wbc->nr_to_write = sbi->s_mb_stream_request;
2557         }
2558         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2559                 range_whole = 1;
2560
2561         range_cyclic = wbc->range_cyclic;
2562         if (wbc->range_cyclic) {
2563                 index = mapping->writeback_index;
2564                 if (index)
2565                         cycled = 0;
2566                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2567                 wbc->range_end  = LLONG_MAX;
2568                 wbc->range_cyclic = 0;
2569         } else
2570                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2571
2572         mpd.wbc = wbc;
2573         mpd.inode = mapping->host;
2574
2575         /*
2576          * we don't want write_cache_pages to update
2577          * nr_to_write and writeback_index
2578          */
2579         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2580         wbc->no_nrwrite_index_update = 1;
2581         pages_skipped = wbc->pages_skipped;
2582
2583 retry:
2584         while (!ret && wbc->nr_to_write > 0) {
2585
2586                 /*
2587                  * we  insert one extent at a time. So we need
2588                  * credit needed for single extent allocation.
2589                  * journalled mode is currently not supported
2590                  * by delalloc
2591                  */
2592                 BUG_ON(ext4_should_journal_data(inode));
2593                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2594
2595                 /* start a new transaction*/
2596                 handle = ext4_journal_start(inode, needed_blocks);
2597                 if (IS_ERR(handle)) {
2598                         ret = PTR_ERR(handle);
2599                         printk(KERN_CRIT "%s: jbd2_start: "
2600                                "%ld pages, ino %lu; err %d\n", __func__,
2601                                 wbc->nr_to_write, inode->i_ino, ret);
2602                         dump_stack();
2603                         goto out_writepages;
2604                 }
2605
2606                 /*
2607                  * Now call __mpage_da_writepage to find the next
2608                  * contiguous region of logical blocks that need
2609                  * blocks to be allocated by ext4.  We don't actually
2610                  * submit the blocks for I/O here, even though
2611                  * write_cache_pages thinks it will, and will set the
2612                  * pages as clean for write before calling
2613                  * __mpage_da_writepage().
2614                  */
2615                 mpd.b_size = 0;
2616                 mpd.b_state = 0;
2617                 mpd.b_blocknr = 0;
2618                 mpd.first_page = 0;
2619                 mpd.next_page = 0;
2620                 mpd.io_done = 0;
2621                 mpd.pages_written = 0;
2622                 mpd.retval = 0;
2623                 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2624                                         &mpd);
2625                 /*
2626                  * If we have a contigous extent of pages and we
2627                  * haven't done the I/O yet, map the blocks and submit
2628                  * them for I/O.
2629                  */
2630                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2631                         if (mpage_da_map_blocks(&mpd) == 0)
2632                                 mpage_da_submit_io(&mpd);
2633                         mpd.io_done = 1;
2634                         ret = MPAGE_DA_EXTENT_TAIL;
2635                 }
2636                 wbc->nr_to_write -= mpd.pages_written;
2637
2638                 ext4_journal_stop(handle);
2639
2640                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2641                         /* commit the transaction which would
2642                          * free blocks released in the transaction
2643                          * and try again
2644                          */
2645                         jbd2_journal_force_commit_nested(sbi->s_journal);
2646                         wbc->pages_skipped = pages_skipped;
2647                         ret = 0;
2648                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2649                         /*
2650                          * got one extent now try with
2651                          * rest of the pages
2652                          */
2653                         pages_written += mpd.pages_written;
2654                         wbc->pages_skipped = pages_skipped;
2655                         ret = 0;
2656                         io_done = 1;
2657                 } else if (wbc->nr_to_write)
2658                         /*
2659                          * There is no more writeout needed
2660                          * or we requested for a noblocking writeout
2661                          * and we found the device congested
2662                          */
2663                         break;
2664         }
2665         if (!io_done && !cycled) {
2666                 cycled = 1;
2667                 index = 0;
2668                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2669                 wbc->range_end  = mapping->writeback_index - 1;
2670                 goto retry;
2671         }
2672         if (pages_skipped != wbc->pages_skipped)
2673                 printk(KERN_EMERG "This should not happen leaving %s "
2674                                 "with nr_to_write = %ld ret = %d\n",
2675                                 __func__, wbc->nr_to_write, ret);
2676
2677         /* Update index */
2678         index += pages_written;
2679         wbc->range_cyclic = range_cyclic;
2680         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2681                 /*
2682                  * set the writeback_index so that range_cyclic
2683                  * mode will write it back later
2684                  */
2685                 mapping->writeback_index = index;
2686
2687 out_writepages:
2688         if (!no_nrwrite_index_update)
2689                 wbc->no_nrwrite_index_update = 0;
2690         wbc->nr_to_write -= nr_to_writebump;
2691         trace_mark(ext4_da_writepage_result,
2692                    "dev %s ino %lu ret %d pages_written %d "
2693                    "pages_skipped %ld congestion %d "
2694                    "more_io %d no_nrwrite_index_update %d",
2695                    inode->i_sb->s_id, inode->i_ino, ret,
2696                    pages_written, wbc->pages_skipped,
2697                    wbc->encountered_congestion, wbc->more_io,
2698                    wbc->no_nrwrite_index_update);
2699         return ret;
2700 }
2701
2702 #define FALL_BACK_TO_NONDELALLOC 1
2703 static int ext4_nonda_switch(struct super_block *sb)
2704 {
2705         s64 free_blocks, dirty_blocks;
2706         struct ext4_sb_info *sbi = EXT4_SB(sb);
2707
2708         /*
2709          * switch to non delalloc mode if we are running low
2710          * on free block. The free block accounting via percpu
2711          * counters can get slightly wrong with percpu_counter_batch getting
2712          * accumulated on each CPU without updating global counters
2713          * Delalloc need an accurate free block accounting. So switch
2714          * to non delalloc when we are near to error range.
2715          */
2716         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2717         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2718         if (2 * free_blocks < 3 * dirty_blocks ||
2719                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2720                 /*
2721                  * free block count is less that 150% of dirty blocks
2722                  * or free blocks is less that watermark
2723                  */
2724                 return 1;
2725         }
2726         return 0;
2727 }
2728
2729 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2730                                 loff_t pos, unsigned len, unsigned flags,
2731                                 struct page **pagep, void **fsdata)
2732 {
2733         int ret, retries = 0;
2734         struct page *page;
2735         pgoff_t index;
2736         unsigned from, to;
2737         struct inode *inode = mapping->host;
2738         handle_t *handle;
2739
2740         index = pos >> PAGE_CACHE_SHIFT;
2741         from = pos & (PAGE_CACHE_SIZE - 1);
2742         to = from + len;
2743
2744         if (ext4_nonda_switch(inode->i_sb)) {
2745                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2746                 return ext4_write_begin(file, mapping, pos,
2747                                         len, flags, pagep, fsdata);
2748         }
2749         *fsdata = (void *)0;
2750
2751         trace_mark(ext4_da_write_begin,
2752                    "dev %s ino %lu pos %llu len %u flags %u",
2753                    inode->i_sb->s_id, inode->i_ino,
2754                    (unsigned long long) pos, len, flags);
2755 retry:
2756         /*
2757          * With delayed allocation, we don't log the i_disksize update
2758          * if there is delayed block allocation. But we still need
2759          * to journalling the i_disksize update if writes to the end
2760          * of file which has an already mapped buffer.
2761          */
2762         handle = ext4_journal_start(inode, 1);
2763         if (IS_ERR(handle)) {
2764                 ret = PTR_ERR(handle);
2765                 goto out;
2766         }
2767         /* We cannot recurse into the filesystem as the transaction is already
2768          * started */
2769         flags |= AOP_FLAG_NOFS;
2770
2771         page = grab_cache_page_write_begin(mapping, index, flags);
2772         if (!page) {
2773                 ext4_journal_stop(handle);
2774                 ret = -ENOMEM;
2775                 goto out;
2776         }
2777         *pagep = page;
2778
2779         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2780                                                         ext4_da_get_block_prep);
2781         if (ret < 0) {
2782                 unlock_page(page);
2783                 ext4_journal_stop(handle);
2784                 page_cache_release(page);
2785                 /*
2786                  * block_write_begin may have instantiated a few blocks
2787                  * outside i_size.  Trim these off again. Don't need
2788                  * i_size_read because we hold i_mutex.
2789                  */
2790                 if (pos + len > inode->i_size)
2791                         vmtruncate(inode, inode->i_size);
2792         }
2793
2794         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2795                 goto retry;
2796 out:
2797         return ret;
2798 }
2799
2800 /*
2801  * Check if we should update i_disksize
2802  * when write to the end of file but not require block allocation
2803  */
2804 static int ext4_da_should_update_i_disksize(struct page *page,
2805                                          unsigned long offset)
2806 {
2807         struct buffer_head *bh;
2808         struct inode *inode = page->mapping->host;
2809         unsigned int idx;
2810         int i;
2811
2812         bh = page_buffers(page);
2813         idx = offset >> inode->i_blkbits;
2814
2815         for (i = 0; i < idx; i++)
2816                 bh = bh->b_this_page;
2817
2818         if (!buffer_mapped(bh) || (buffer_delay(bh)))
2819                 return 0;
2820         return 1;
2821 }
2822
2823 static int ext4_da_write_end(struct file *file,
2824                                 struct address_space *mapping,
2825                                 loff_t pos, unsigned len, unsigned copied,
2826                                 struct page *page, void *fsdata)
2827 {
2828         struct inode *inode = mapping->host;
2829         int ret = 0, ret2;
2830         handle_t *handle = ext4_journal_current_handle();
2831         loff_t new_i_size;
2832         unsigned long start, end;
2833         int write_mode = (int)(unsigned long)fsdata;
2834
2835         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2836                 if (ext4_should_order_data(inode)) {
2837                         return ext4_ordered_write_end(file, mapping, pos,
2838                                         len, copied, page, fsdata);
2839                 } else if (ext4_should_writeback_data(inode)) {
2840                         return ext4_writeback_write_end(file, mapping, pos,
2841                                         len, copied, page, fsdata);
2842                 } else {
2843                         BUG();
2844                 }
2845         }
2846
2847         trace_mark(ext4_da_write_end,
2848                    "dev %s ino %lu pos %llu len %u copied %u",
2849                    inode->i_sb->s_id, inode->i_ino,
2850                    (unsigned long long) pos, len, copied);
2851         start = pos & (PAGE_CACHE_SIZE - 1);
2852         end = start + copied - 1;
2853
2854         /*
2855          * generic_write_end() will run mark_inode_dirty() if i_size
2856          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2857          * into that.
2858          */
2859
2860         new_i_size = pos + copied;
2861         if (new_i_size > EXT4_I(inode)->i_disksize) {
2862                 if (ext4_da_should_update_i_disksize(page, end)) {
2863                         down_write(&EXT4_I(inode)->i_data_sem);
2864                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2865                                 /*
2866                                  * Updating i_disksize when extending file
2867                                  * without needing block allocation
2868                                  */
2869                                 if (ext4_should_order_data(inode))
2870                                         ret = ext4_jbd2_file_inode(handle,
2871                                                                    inode);
2872
2873                                 EXT4_I(inode)->i_disksize = new_i_size;
2874                         }
2875                         up_write(&EXT4_I(inode)->i_data_sem);
2876                         /* We need to mark inode dirty even if
2877                          * new_i_size is less that inode->i_size
2878                          * bu greater than i_disksize.(hint delalloc)
2879                          */
2880                         ext4_mark_inode_dirty(handle, inode);
2881                 }
2882         }
2883         ret2 = generic_write_end(file, mapping, pos, len, copied,
2884                                                         page, fsdata);
2885         copied = ret2;
2886         if (ret2 < 0)
2887                 ret = ret2;
2888         ret2 = ext4_journal_stop(handle);
2889         if (!ret)
2890                 ret = ret2;
2891
2892         return ret ? ret : copied;
2893 }
2894
2895 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2896 {
2897         /*
2898          * Drop reserved blocks
2899          */
2900         BUG_ON(!PageLocked(page));
2901         if (!page_has_buffers(page))
2902                 goto out;
2903
2904         ext4_da_page_release_reservation(page, offset);
2905
2906 out:
2907         ext4_invalidatepage(page, offset);
2908
2909         return;
2910 }
2911
2912 /*
2913  * Force all delayed allocation blocks to be allocated for a given inode.
2914  */
2915 int ext4_alloc_da_blocks(struct inode *inode)
2916 {
2917         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2918             !EXT4_I(inode)->i_reserved_meta_blocks)
2919                 return 0;
2920
2921         /*
2922          * We do something simple for now.  The filemap_flush() will
2923          * also start triggering a write of the data blocks, which is
2924          * not strictly speaking necessary (and for users of
2925          * laptop_mode, not even desirable).  However, to do otherwise
2926          * would require replicating code paths in:
2927          * 
2928          * ext4_da_writepages() ->
2929          *    write_cache_pages() ---> (via passed in callback function)
2930          *        __mpage_da_writepage() -->
2931          *           mpage_add_bh_to_extent()
2932          *           mpage_da_map_blocks()
2933          *
2934          * The problem is that write_cache_pages(), located in
2935          * mm/page-writeback.c, marks pages clean in preparation for
2936          * doing I/O, which is not desirable if we're not planning on
2937          * doing I/O at all.
2938          *
2939          * We could call write_cache_pages(), and then redirty all of
2940          * the pages by calling redirty_page_for_writeback() but that
2941          * would be ugly in the extreme.  So instead we would need to
2942          * replicate parts of the code in the above functions,
2943          * simplifying them becuase we wouldn't actually intend to
2944          * write out the pages, but rather only collect contiguous
2945          * logical block extents, call the multi-block allocator, and
2946          * then update the buffer heads with the block allocations.
2947          * 
2948          * For now, though, we'll cheat by calling filemap_flush(),
2949          * which will map the blocks, and start the I/O, but not
2950          * actually wait for the I/O to complete.
2951          */
2952         return filemap_flush(inode->i_mapping);
2953 }
2954
2955 /*
2956  * bmap() is special.  It gets used by applications such as lilo and by
2957  * the swapper to find the on-disk block of a specific piece of data.
2958  *
2959  * Naturally, this is dangerous if the block concerned is still in the
2960  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2961  * filesystem and enables swap, then they may get a nasty shock when the
2962  * data getting swapped to that swapfile suddenly gets overwritten by
2963  * the original zero's written out previously to the journal and
2964  * awaiting writeback in the kernel's buffer cache.
2965  *
2966  * So, if we see any bmap calls here on a modified, data-journaled file,
2967  * take extra steps to flush any blocks which might be in the cache.
2968  */
2969 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2970 {
2971         struct inode *inode = mapping->host;
2972         journal_t *journal;
2973         int err;
2974
2975         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2976                         test_opt(inode->i_sb, DELALLOC)) {
2977                 /*
2978                  * With delalloc we want to sync the file
2979                  * so that we can make sure we allocate
2980                  * blocks for file
2981                  */
2982                 filemap_write_and_wait(mapping);
2983         }
2984
2985         if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2986                 /*
2987                  * This is a REALLY heavyweight approach, but the use of
2988                  * bmap on dirty files is expected to be extremely rare:
2989                  * only if we run lilo or swapon on a freshly made file
2990                  * do we expect this to happen.
2991                  *
2992                  * (bmap requires CAP_SYS_RAWIO so this does not
2993                  * represent an unprivileged user DOS attack --- we'd be
2994                  * in trouble if mortal users could trigger this path at
2995                  * will.)
2996                  *
2997                  * NB. EXT4_STATE_JDATA is not set on files other than
2998                  * regular files.  If somebody wants to bmap a directory
2999                  * or symlink and gets confused because the buffer
3000                  * hasn't yet been flushed to disk, they deserve
3001                  * everything they get.
3002                  */
3003
3004                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3005                 journal = EXT4_JOURNAL(inode);
3006                 jbd2_journal_lock_updates(journal);
3007                 err = jbd2_journal_flush(journal);
3008                 jbd2_journal_unlock_updates(journal);
3009
3010                 if (err)
3011                         return 0;
3012         }
3013
3014         return generic_block_bmap(mapping, block, ext4_get_block);
3015 }
3016
3017 static int bget_one(handle_t *handle, struct buffer_head *bh)
3018 {
3019         get_bh(bh);
3020         return 0;
3021 }
3022
3023 static int bput_one(handle_t *handle, struct buffer_head *bh)
3024 {
3025         put_bh(bh);
3026         return 0;
3027 }
3028
3029 /*
3030  * Note that we don't need to start a transaction unless we're journaling data
3031  * because we should have holes filled from ext4_page_mkwrite(). We even don't
3032  * need to file the inode to the transaction's list in ordered mode because if
3033  * we are writing back data added by write(), the inode is already there and if
3034  * we are writing back data modified via mmap(), noone guarantees in which
3035  * transaction the data will hit the disk. In case we are journaling data, we
3036  * cannot start transaction directly because transaction start ranks above page
3037  * lock so we have to do some magic.
3038  *
3039  * In all journaling modes block_write_full_page() will start the I/O.
3040  *
3041  * Problem:
3042  *
3043  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
3044  *              ext4_writepage()
3045  *
3046  * Similar for:
3047  *
3048  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
3049  *
3050  * Same applies to ext4_get_block().  We will deadlock on various things like
3051  * lock_journal and i_data_sem
3052  *
3053  * Setting PF_MEMALLOC here doesn't work - too many internal memory
3054  * allocations fail.
3055  *
3056  * 16May01: If we're reentered then journal_current_handle() will be
3057  *          non-zero. We simply *return*.
3058  *
3059  * 1 July 2001: @@@ FIXME:
3060  *   In journalled data mode, a data buffer may be metadata against the
3061  *   current transaction.  But the same file is part of a shared mapping
3062  *   and someone does a writepage() on it.
3063  *
3064  *   We will move the buffer onto the async_data list, but *after* it has
3065  *   been dirtied. So there's a small window where we have dirty data on
3066  *   BJ_Metadata.
3067  *
3068  *   Note that this only applies to the last partial page in the file.  The
3069  *   bit which block_write_full_page() uses prepare/commit for.  (That's
3070  *   broken code anyway: it's wrong for msync()).
3071  *
3072  *   It's a rare case: affects the final partial page, for journalled data
3073  *   where the file is subject to bith write() and writepage() in the same
3074  *   transction.  To fix it we'll need a custom block_write_full_page().
3075  *   We'll probably need that anyway for journalling writepage() output.
3076  *
3077  * We don't honour synchronous mounts for writepage().  That would be
3078  * disastrous.  Any write() or metadata operation will sync the fs for
3079  * us.
3080  *
3081  */
3082 static int __ext4_normal_writepage(struct page *page,
3083                                 struct writeback_control *wbc)
3084 {
3085         struct inode *inode = page->mapping->host;
3086
3087         if (test_opt(inode->i_sb, NOBH))
3088                 return nobh_writepage(page,
3089                                         ext4_normal_get_block_write, wbc);
3090         else
3091                 return block_write_full_page(page,
3092                                                 ext4_normal_get_block_write,
3093                                                 wbc);
3094 }
3095
3096 static int ext4_normal_writepage(struct page *page,
3097                                 struct writeback_control *wbc)
3098 {
3099         struct inode *inode = page->mapping->host;
3100         loff_t size = i_size_read(inode);
3101         loff_t len;
3102
3103         trace_mark(ext4_normal_writepage,
3104                    "dev %s ino %lu page_index %lu",
3105                    inode->i_sb->s_id, inode->i_ino, page->index);
3106         J_ASSERT(PageLocked(page));
3107         if (page->index == size >> PAGE_CACHE_SHIFT)
3108                 len = size & ~PAGE_CACHE_MASK;
3109         else
3110                 len = PAGE_CACHE_SIZE;
3111
3112         if (page_has_buffers(page)) {
3113                 /* if page has buffers it should all be mapped
3114                  * and allocated. If there are not buffers attached
3115                  * to the page we know the page is dirty but it lost
3116                  * buffers. That means that at some moment in time
3117                  * after write_begin() / write_end() has been called
3118                  * all buffers have been clean and thus they must have been
3119                  * written at least once. So they are all mapped and we can
3120                  * happily proceed with mapping them and writing the page.
3121                  */
3122                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3123                                         ext4_bh_unmapped_or_delay));
3124         }
3125
3126         if (!ext4_journal_current_handle())
3127                 return __ext4_normal_writepage(page, wbc);
3128
3129         redirty_page_for_writepage(wbc, page);
3130         unlock_page(page);
3131         return 0;
3132 }
3133
3134 static int __ext4_journalled_writepage(struct page *page,
3135                                 struct writeback_control *wbc)
3136 {
3137         struct address_space *mapping = page->mapping;
3138         struct inode *inode = mapping->host;
3139         struct buffer_head *page_bufs;
3140         handle_t *handle = NULL;
3141         int ret = 0;
3142         int err;
3143
3144         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3145                                         ext4_normal_get_block_write);
3146         if (ret != 0)
3147                 goto out_unlock;
3148
3149         page_bufs = page_buffers(page);
3150         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3151                                                                 bget_one);
3152         /* As soon as we unlock the page, it can go away, but we have
3153          * references to buffers so we are safe */
3154         unlock_page(page);
3155
3156         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3157         if (IS_ERR(handle)) {
3158                 ret = PTR_ERR(handle);
3159                 goto out;
3160         }
3161
3162         ret = walk_page_buffers(handle, page_bufs, 0,
3163                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3164
3165         err = walk_page_buffers(handle, page_bufs, 0,
3166                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
3167         if (ret == 0)
3168                 ret = err;
3169         err = ext4_journal_stop(handle);
3170         if (!ret)
3171                 ret = err;
3172
3173         walk_page_buffers(handle, page_bufs, 0,
3174                                 PAGE_CACHE_SIZE, NULL, bput_one);
3175         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3176         goto out;
3177
3178 out_unlock:
3179         unlock_page(page);
3180 out:
3181         return ret;
3182 }
3183
3184 static int ext4_journalled_writepage(struct page *page,
3185                                 struct writeback_control *wbc)
3186 {
3187         struct inode *inode = page->mapping->host;
3188         loff_t size = i_size_read(inode);
3189         loff_t len;
3190
3191         trace_mark(ext4_journalled_writepage,
3192                    "dev %s ino %lu page_index %lu",
3193                    inode->i_sb->s_id, inode->i_ino, page->index);
3194         J_ASSERT(PageLocked(page));
3195         if (page->index == size >> PAGE_CACHE_SHIFT)
3196                 len = size & ~PAGE_CACHE_MASK;
3197         else
3198                 len = PAGE_CACHE_SIZE;
3199
3200         if (page_has_buffers(page)) {
3201                 /* if page has buffers it should all be mapped
3202                  * and allocated. If there are not buffers attached
3203                  * to the page we know the page is dirty but it lost
3204                  * buffers. That means that at some moment in time
3205                  * after write_begin() / write_end() has been called
3206                  * all buffers have been clean and thus they must have been
3207                  * written at least once. So they are all mapped and we can
3208                  * happily proceed with mapping them and writing the page.
3209                  */
3210                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3211                                         ext4_bh_unmapped_or_delay));
3212         }
3213
3214         if (ext4_journal_current_handle())
3215                 goto no_write;
3216
3217         if (PageChecked(page)) {
3218                 /*
3219                  * It's mmapped pagecache.  Add buffers and journal it.  There
3220                  * doesn't seem much point in redirtying the page here.
3221                  */
3222                 ClearPageChecked(page);
3223                 return __ext4_journalled_writepage(page, wbc);
3224         } else {
3225                 /*
3226                  * It may be a page full of checkpoint-mode buffers.  We don't
3227                  * really know unless we go poke around in the buffer_heads.
3228                  * But block_write_full_page will do the right thing.
3229                  */
3230                 return block_write_full_page(page,
3231                                                 ext4_normal_get_block_write,
3232                                                 wbc);
3233         }
3234 no_write:
3235         redirty_page_for_writepage(wbc, page);
3236         unlock_page(page);
3237         return 0;
3238 }
3239
3240 static int ext4_readpage(struct file *file, struct page *page)
3241 {
3242         return mpage_readpage(page, ext4_get_block);
3243 }
3244
3245 static int
3246 ext4_readpages(struct file *file, struct address_space *mapping,
3247                 struct list_head *pages, unsigned nr_pages)
3248 {
3249         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3250 }
3251
3252 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3253 {
3254         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3255
3256         /*
3257          * If it's a full truncate we just forget about the pending dirtying
3258          */
3259         if (offset == 0)
3260                 ClearPageChecked(page);
3261
3262         if (journal)
3263                 jbd2_journal_invalidatepage(journal, page, offset);
3264         else
3265                 block_invalidatepage(page, offset);
3266 }
3267
3268 static int ext4_releasepage(struct page *page, gfp_t wait)
3269 {
3270         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3271
3272         WARN_ON(PageChecked(page));
3273         if (!page_has_buffers(page))
3274                 return 0;
3275         if (journal)
3276                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3277         else
3278                 return try_to_free_buffers(page);
3279 }
3280
3281 /*
3282  * If the O_DIRECT write will extend the file then add this inode to the
3283  * orphan list.  So recovery will truncate it back to the original size
3284  * if the machine crashes during the write.
3285  *
3286  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3287  * crashes then stale disk data _may_ be exposed inside the file. But current
3288  * VFS code falls back into buffered path in that case so we are safe.
3289  */
3290 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3291                         const struct iovec *iov, loff_t offset,
3292                         unsigned long nr_segs)
3293 {
3294         struct file *file = iocb->ki_filp;
3295         struct inode *inode = file->f_mapping->host;
3296         struct ext4_inode_info *ei = EXT4_I(inode);
3297         handle_t *handle;
3298         ssize_t ret;
3299         int orphan = 0;
3300         size_t count = iov_length(iov, nr_segs);
3301
3302         if (rw == WRITE) {
3303                 loff_t final_size = offset + count;
3304
3305                 if (final_size > inode->i_size) {
3306                         /* Credits for sb + inode write */
3307                         handle = ext4_journal_start(inode, 2);
3308                         if (IS_ERR(handle)) {
3309                                 ret = PTR_ERR(handle);
3310                                 goto out;
3311                         }
3312                         ret = ext4_orphan_add(handle, inode);
3313                         if (ret) {
3314                                 ext4_journal_stop(handle);
3315                                 goto out;
3316                         }
3317                         orphan = 1;
3318                         ei->i_disksize = inode->i_size;
3319                         ext4_journal_stop(handle);
3320                 }
3321         }
3322
3323         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3324                                  offset, nr_segs,
3325                                  ext4_get_block, NULL);
3326
3327         if (orphan) {
3328                 int err;
3329
3330                 /* Credits for sb + inode write */
3331                 handle = ext4_journal_start(inode, 2);
3332                 if (IS_ERR(handle)) {
3333                         /* This is really bad luck. We've written the data
3334                          * but cannot extend i_size. Bail out and pretend
3335                          * the write failed... */
3336                         ret = PTR_ERR(handle);
3337                         goto out;
3338                 }
3339                 if (inode->i_nlink)
3340                         ext4_orphan_del(handle, inode);
3341                 if (ret > 0) {
3342                         loff_t end = offset + ret;
3343                         if (end > inode->i_size) {
3344                                 ei->i_disksize = end;
3345                                 i_size_write(inode, end);
3346                                 /*
3347                                  * We're going to return a positive `ret'
3348                                  * here due to non-zero-length I/O, so there's
3349                                  * no way of reporting error returns from
3350                                  * ext4_mark_inode_dirty() to userspace.  So
3351                                  * ignore it.
3352                                  */
3353                                 ext4_mark_inode_dirty(handle, inode);
3354                         }
3355                 }
3356                 err = ext4_journal_stop(handle);
3357                 if (ret == 0)
3358                         ret = err;
3359         }
3360 out:
3361         return ret;
3362 }
3363
3364 /*
3365  * Pages can be marked dirty completely asynchronously from ext4's journalling
3366  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3367  * much here because ->set_page_dirty is called under VFS locks.  The page is
3368  * not necessarily locked.
3369  *
3370  * We cannot just dirty the page and leave attached buffers clean, because the
3371  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3372  * or jbddirty because all the journalling code will explode.
3373  *
3374  * So what we do is to mark the page "pending dirty" and next time writepage
3375  * is called, propagate that into the buffers appropriately.
3376  */
3377 static int ext4_journalled_set_page_dirty(struct page *page)
3378 {
3379         SetPageChecked(page);
3380         return __set_page_dirty_nobuffers(page);
3381 }
3382
3383 static const struct address_space_operations ext4_ordered_aops = {
3384         .readpage               = ext4_readpage,
3385         .readpages              = ext4_readpages,
3386         .writepage              = ext4_normal_writepage,
3387         .sync_page              = block_sync_page,
3388         .write_begin            = ext4_write_begin,
3389         .write_end              = ext4_ordered_write_end,
3390         .bmap                   = ext4_bmap,
3391         .invalidatepage         = ext4_invalidatepage,
3392         .releasepage            = ext4_releasepage,
3393         .direct_IO              = ext4_direct_IO,
3394         .migratepage            = buffer_migrate_page,
3395         .is_partially_uptodate  = block_is_partially_uptodate,
3396 };
3397
3398 static const struct address_space_operations ext4_writeback_aops = {
3399         .readpage               = ext4_readpage,
3400         .readpages              = ext4_readpages,
3401         .writepage              = ext4_normal_writepage,
3402         .sync_page              = block_sync_page,
3403         .write_begin            = ext4_write_begin,
3404         .write_end              = ext4_writeback_write_end,
3405         .bmap                   = ext4_bmap,
3406         .invalidatepage         = ext4_invalidatepage,
3407         .releasepage            = ext4_releasepage,
3408         .direct_IO              = ext4_direct_IO,
3409         .migratepage            = buffer_migrate_page,
3410         .is_partially_uptodate  = block_is_partially_uptodate,
3411 };
3412
3413 static const struct address_space_operations ext4_journalled_aops = {
3414         .readpage               = ext4_readpage,
3415         .readpages              = ext4_readpages,
3416         .writepage              = ext4_journalled_writepage,
3417         .sync_page              = block_sync_page,
3418         .write_begin            = ext4_write_begin,
3419         .write_end              = ext4_journalled_write_end,
3420         .set_page_dirty         = ext4_journalled_set_page_dirty,
3421         .bmap                   = ext4_bmap,
3422         .invalidatepage         = ext4_invalidatepage,
3423         .releasepage            = ext4_releasepage,
3424         .is_partially_uptodate  = block_is_partially_uptodate,
3425 };
3426
3427 static const struct address_space_operations ext4_da_aops = {
3428         .readpage               = ext4_readpage,
3429         .readpages              = ext4_readpages,
3430         .writepage              = ext4_da_writepage,
3431         .writepages             = ext4_da_writepages,
3432         .sync_page              = block_sync_page,
3433         .write_begin            = ext4_da_write_begin,
3434         .write_end              = ext4_da_write_end,
3435         .bmap                   = ext4_bmap,
3436         .invalidatepage         = ext4_da_invalidatepage,
3437         .releasepage            = ext4_releasepage,
3438         .direct_IO              = ext4_direct_IO,
3439         .migratepage            = buffer_migrate_page,
3440         .is_partially_uptodate  = block_is_partially_uptodate,
3441 };
3442
3443 void ext4_set_aops(struct inode *inode)
3444 {
3445         if (ext4_should_order_data(inode) &&
3446                 test_opt(inode->i_sb, DELALLOC))
3447                 inode->i_mapping->a_ops = &ext4_da_aops;
3448         else if (ext4_should_order_data(inode))
3449                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3450         else if (ext4_should_writeback_data(inode) &&
3451                  test_opt(inode->i_sb, DELALLOC))
3452                 inode->i_mapping->a_ops = &ext4_da_aops;
3453         else if (ext4_should_writeback_data(inode))
3454                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3455         else
3456                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3457 }
3458
3459 /*
3460  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3461  * up to the end of the block which corresponds to `from'.
3462  * This required during truncate. We need to physically zero the tail end
3463  * of that block so it doesn't yield old data if the file is later grown.
3464  */
3465 int ext4_block_truncate_page(handle_t *handle,
3466                 struct address_space *mapping, loff_t from)
3467 {
3468         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3469         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3470         unsigned blocksize, length, pos;
3471         ext4_lblk_t iblock;
3472         struct inode *inode = mapping->host;
3473         struct buffer_head *bh;
3474         struct page *page;
3475         int err = 0;
3476
3477         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3478         if (!page)
3479                 return -EINVAL;
3480
3481         blocksize = inode->i_sb->s_blocksize;
3482         length = blocksize - (offset & (blocksize - 1));
3483         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3484
3485         /*
3486          * For "nobh" option,  we can only work if we don't need to
3487          * read-in the page - otherwise we create buffers to do the IO.
3488          */
3489         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3490              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3491                 zero_user(page, offset, length);
3492                 set_page_dirty(page);
3493                 goto unlock;
3494         }
3495
3496         if (!page_has_buffers(page))
3497                 create_empty_buffers(page, blocksize, 0);
3498
3499         /* Find the buffer that contains "offset" */
3500         bh = page_buffers(page);
3501         pos = blocksize;
3502         while (offset >= pos) {
3503                 bh = bh->b_this_page;
3504                 iblock++;
3505                 pos += blocksize;
3506         }
3507
3508         err = 0;
3509         if (buffer_freed(bh)) {
3510                 BUFFER_TRACE(bh, "freed: skip");
3511                 goto unlock;
3512         }
3513
3514         if (!buffer_mapped(bh)) {
3515                 BUFFER_TRACE(bh, "unmapped");
3516                 ext4_get_block(inode, iblock, bh, 0);
3517                 /* unmapped? It's a hole - nothing to do */
3518                 if (!buffer_mapped(bh)) {
3519                         BUFFER_TRACE(bh, "still unmapped");
3520                         goto unlock;
3521                 }
3522         }
3523
3524         /* Ok, it's mapped. Make sure it's up-to-date */
3525         if (PageUptodate(page))
3526                 set_buffer_uptodate(bh);
3527
3528         if (!buffer_uptodate(bh)) {
3529                 err = -EIO;
3530                 ll_rw_block(READ, 1, &bh);
3531                 wait_on_buffer(bh);
3532                 /* Uhhuh. Read error. Complain and punt. */
3533                 if (!buffer_uptodate(bh))
3534                         goto unlock;
3535         }
3536
3537         if (ext4_should_journal_data(inode)) {
3538                 BUFFER_TRACE(bh, "get write access");
3539                 err = ext4_journal_get_write_access(handle, bh);
3540                 if (err)
3541                         goto unlock;
3542         }
3543
3544         zero_user(page, offset, length);
3545
3546         BUFFER_TRACE(bh, "zeroed end of block");
3547
3548         err = 0;
3549         if (ext4_should_journal_data(inode)) {
3550                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3551         } else {
3552                 if (ext4_should_order_data(inode))
3553                         err = ext4_jbd2_file_inode(handle, inode);
3554                 mark_buffer_dirty(bh);
3555         }
3556
3557 unlock:
3558         unlock_page(page);
3559         page_cache_release(page);
3560         return err;
3561 }
3562
3563 /*
3564  * Probably it should be a library function... search for first non-zero word
3565  * or memcmp with zero_page, whatever is better for particular architecture.
3566  * Linus?
3567  */
3568 static inline int all_zeroes(__le32 *p, __le32 *q)
3569 {
3570         while (p < q)
3571                 if (*p++)
3572                         return 0;
3573         return 1;
3574 }
3575
3576 /**
3577  *      ext4_find_shared - find the indirect blocks for partial truncation.
3578  *      @inode:   inode in question
3579  *      @depth:   depth of the affected branch
3580  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3581  *      @chain:   place to store the pointers to partial indirect blocks
3582  *      @top:     place to the (detached) top of branch
3583  *
3584  *      This is a helper function used by ext4_truncate().
3585  *
3586  *      When we do truncate() we may have to clean the ends of several
3587  *      indirect blocks but leave the blocks themselves alive. Block is
3588  *      partially truncated if some data below the new i_size is refered
3589  *      from it (and it is on the path to the first completely truncated
3590  *      data block, indeed).  We have to free the top of that path along
3591  *      with everything to the right of the path. Since no allocation
3592  *      past the truncation point is possible until ext4_truncate()
3593  *      finishes, we may safely do the latter, but top of branch may
3594  *      require special attention - pageout below the truncation point
3595  *      might try to populate it.
3596  *
3597  *      We atomically detach the top of branch from the tree, store the
3598  *      block number of its root in *@top, pointers to buffer_heads of
3599  *      partially truncated blocks - in @chain[].bh and pointers to
3600  *      their last elements that should not be removed - in
3601  *      @chain[].p. Return value is the pointer to last filled element
3602  *      of @chain.
3603  *
3604  *      The work left to caller to do the actual freeing of subtrees:
3605  *              a) free the subtree starting from *@top
3606  *              b) free the subtrees whose roots are stored in
3607  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3608  *              c) free the subtrees growing from the inode past the @chain[0].
3609  *                      (no partially truncated stuff there).  */
3610
3611 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3612                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3613 {
3614         Indirect *partial, *p;
3615         int k, err;
3616
3617         *top = 0;
3618         /* Make k index the deepest non-null offest + 1 */
3619         for (k = depth; k > 1 && !offsets[k-1]; k--)
3620                 ;
3621         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3622         /* Writer: pointers */
3623         if (!partial)
3624                 partial = chain + k-1;
3625         /*
3626          * If the branch acquired continuation since we've looked at it -
3627          * fine, it should all survive and (new) top doesn't belong to us.
3628          */
3629         if (!partial->key && *partial->p)
3630                 /* Writer: end */
3631                 goto no_top;
3632         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3633                 ;
3634         /*
3635          * OK, we've found the last block that must survive. The rest of our
3636          * branch should be detached before unlocking. However, if that rest
3637          * of branch is all ours and does not grow immediately from the inode
3638          * it's easier to cheat and just decrement partial->p.
3639          */
3640         if (p == chain + k - 1 && p > chain) {
3641                 p->p--;
3642         } else {
3643                 *top = *p->p;
3644                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3645 #if 0
3646                 *p->p = 0;
3647 #endif
3648         }
3649         /* Writer: end */
3650
3651         while (partial > p) {
3652                 brelse(partial->bh);
3653                 partial--;
3654         }
3655 no_top:
3656         return partial;
3657 }
3658
3659 /*
3660  * Zero a number of block pointers in either an inode or an indirect block.
3661  * If we restart the transaction we must again get write access to the
3662  * indirect block for further modification.
3663  *
3664  * We release `count' blocks on disk, but (last - first) may be greater
3665  * than `count' because there can be holes in there.
3666  */
3667 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3668                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3669                 unsigned long count, __le32 *first, __le32 *last)
3670 {
3671         __le32 *p;
3672         if (try_to_extend_transaction(handle, inode)) {
3673                 if (bh) {
3674                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3675                         ext4_handle_dirty_metadata(handle, inode, bh);
3676                 }
3677                 ext4_mark_inode_dirty(handle, inode);
3678                 ext4_journal_test_restart(handle, inode);
3679                 if (bh) {
3680                         BUFFER_TRACE(bh, "retaking write access");
3681                         ext4_journal_get_write_access(handle, bh);
3682                 }
3683         }
3684
3685         /*
3686          * Any buffers which are on the journal will be in memory. We find
3687          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3688          * on them.  We've already detached each block from the file, so
3689          * bforget() in jbd2_journal_forget() should be safe.
3690          *
3691          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3692          */
3693         for (p = first; p < last; p++) {
3694                 u32 nr = le32_to_cpu(*p);
3695                 if (nr) {
3696                         struct buffer_head *tbh;
3697
3698                         *p = 0;
3699                         tbh = sb_find_get_block(inode->i_sb, nr);
3700                         ext4_forget(handle, 0, inode, tbh, nr);
3701                 }
3702         }
3703
3704         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3705 }
3706
3707 /**
3708  * ext4_free_data - free a list of data blocks
3709  * @handle:     handle for this transaction
3710  * @inode:      inode we are dealing with
3711  * @this_bh:    indirect buffer_head which contains *@first and *@last
3712  * @first:      array of block numbers
3713  * @last:       points immediately past the end of array
3714  *
3715  * We are freeing all blocks refered from that array (numbers are stored as
3716  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3717  *
3718  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3719  * blocks are contiguous then releasing them at one time will only affect one
3720  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3721  * actually use a lot of journal space.
3722  *
3723  * @this_bh will be %NULL if @first and @last point into the inode's direct
3724  * block pointers.
3725  */
3726 static void ext4_free_data(handle_t *handle, struct inode *inode,
3727                            struct buffer_head *this_bh,
3728                            __le32 *first, __le32 *last)
3729 {
3730         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3731         unsigned long count = 0;            /* Number of blocks in the run */
3732         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3733                                                corresponding to
3734                                                block_to_free */
3735         ext4_fsblk_t nr;                    /* Current block # */
3736         __le32 *p;                          /* Pointer into inode/ind
3737                                                for current block */
3738         int err;
3739
3740         if (this_bh) {                          /* For indirect block */
3741                 BUFFER_TRACE(this_bh, "get_write_access");
3742                 err = ext4_journal_get_write_access(handle, this_bh);
3743                 /* Important: if we can't update the indirect pointers
3744                  * to the blocks, we can't free them. */
3745                 if (err)
3746                         return;
3747         }
3748
3749         for (p = first; p < last; p++) {
3750                 nr = le32_to_cpu(*p);
3751                 if (nr) {
3752                         /* accumulate blocks to free if they're contiguous */
3753                         if (count == 0) {
3754                                 block_to_free = nr;
3755                                 block_to_free_p = p;
3756                                 count = 1;
3757                         } else if (nr == block_to_free + count) {
3758                                 count++;
3759                         } else {
3760                                 ext4_clear_blocks(handle, inode, this_bh,
3761                                                   block_to_free,
3762                                                   count, block_to_free_p, p);
3763                                 block_to_free = nr;
3764                                 block_to_free_p = p;
3765                                 count = 1;
3766                         }
3767                 }
3768         }
3769
3770         if (count > 0)
3771                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3772                                   count, block_to_free_p, p);
3773
3774         if (this_bh) {
3775                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3776
3777                 /*
3778                  * The buffer head should have an attached journal head at this
3779                  * point. However, if the data is corrupted and an indirect
3780                  * block pointed to itself, it would have been detached when
3781                  * the block was cleared. Check for this instead of OOPSing.
3782                  */
3783                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3784                         ext4_handle_dirty_metadata(handle, inode, this_bh);
3785                 else
3786                         ext4_error(inode->i_sb, __func__,
3787                                    "circular indirect block detected, "
3788                                    "inode=%lu, block=%llu",
3789                                    inode->i_ino,
3790                                    (unsigned long long) this_bh->b_blocknr);
3791         }
3792 }
3793
3794 /**
3795  *      ext4_free_branches - free an array of branches
3796  *      @handle: JBD handle for this transaction
3797  *      @inode: inode we are dealing with
3798  *      @parent_bh: the buffer_head which contains *@first and *@last
3799  *      @first: array of block numbers
3800  *      @last:  pointer immediately past the end of array
3801  *      @depth: depth of the branches to free
3802  *
3803  *      We are freeing all blocks refered from these branches (numbers are
3804  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3805  *      appropriately.
3806  */
3807 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3808                                struct buffer_head *parent_bh,
3809                                __le32 *first, __le32 *last, int depth)
3810 {
3811         ext4_fsblk_t nr;
3812         __le32 *p;
3813
3814         if (ext4_handle_is_aborted(handle))
3815                 return;
3816
3817         if (depth--) {
3818                 struct buffer_head *bh;
3819                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3820                 p = last;
3821                 while (--p >= first) {
3822                         nr = le32_to_cpu(*p);
3823                         if (!nr)
3824                                 continue;               /* A hole */
3825
3826                         /* Go read the buffer for the next level down */
3827                         bh = sb_bread(inode->i_sb, nr);
3828
3829                         /*
3830                          * A read failure? Report error and clear slot
3831                          * (should be rare).
3832                          */
3833                         if (!bh) {
3834                                 ext4_error(inode->i_sb, "ext4_free_branches",
3835                                            "Read failure, inode=%lu, block=%llu",
3836                                            inode->i_ino, nr);
3837                                 continue;
3838                         }
3839
3840                         /* This zaps the entire block.  Bottom up. */
3841                         BUFFER_TRACE(bh, "free child branches");
3842                         ext4_free_branches(handle, inode, bh,
3843                                         (__le32 *) bh->b_data,
3844                                         (__le32 *) bh->b_data + addr_per_block,
3845                                         depth);
3846
3847                         /*
3848                          * We've probably journalled the indirect block several
3849                          * times during the truncate.  But it's no longer
3850                          * needed and we now drop it from the transaction via
3851                          * jbd2_journal_revoke().
3852                          *
3853                          * That's easy if it's exclusively part of this
3854                          * transaction.  But if it's part of the committing
3855                          * transaction then jbd2_journal_forget() will simply
3856                          * brelse() it.  That means that if the underlying
3857                          * block is reallocated in ext4_get_block(),
3858                          * unmap_underlying_metadata() will find this block
3859                          * and will try to get rid of it.  damn, damn.
3860                          *
3861                          * If this block has already been committed to the
3862                          * journal, a revoke record will be written.  And
3863                          * revoke records must be emitted *before* clearing
3864                          * this block's bit in the bitmaps.
3865                          */
3866                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3867
3868                         /*
3869                          * Everything below this this pointer has been
3870                          * released.  Now let this top-of-subtree go.
3871                          *
3872                          * We want the freeing of this indirect block to be
3873                          * atomic in the journal with the updating of the
3874                          * bitmap block which owns it.  So make some room in
3875                          * the journal.
3876                          *
3877                          * We zero the parent pointer *after* freeing its
3878                          * pointee in the bitmaps, so if extend_transaction()
3879                          * for some reason fails to put the bitmap changes and
3880                          * the release into the same transaction, recovery
3881                          * will merely complain about releasing a free block,
3882                          * rather than leaking blocks.
3883                          */
3884                         if (ext4_handle_is_aborted(handle))
3885                                 return;
3886                         if (try_to_extend_transaction(handle, inode)) {
3887                                 ext4_mark_inode_dirty(handle, inode);
3888                                 ext4_journal_test_restart(handle, inode);
3889                         }
3890
3891                         ext4_free_blocks(handle, inode, nr, 1, 1);
3892
3893                         if (parent_bh) {
3894                                 /*
3895                                  * The block which we have just freed is
3896                                  * pointed to by an indirect block: journal it
3897                                  */
3898                                 BUFFER_TRACE(parent_bh, "get_write_access");
3899                                 if (!ext4_journal_get_write_access(handle,
3900                                                                    parent_bh)){
3901                                         *p = 0;
3902                                         BUFFER_TRACE(parent_bh,
3903                                         "call ext4_handle_dirty_metadata");
3904                                         ext4_handle_dirty_metadata(handle,
3905                                                                    inode,
3906                                                                    parent_bh);
3907                                 }
3908                         }
3909                 }
3910         } else {
3911                 /* We have reached the bottom of the tree. */
3912                 BUFFER_TRACE(parent_bh, "free data blocks");
3913                 ext4_free_data(handle, inode, parent_bh, first, last);
3914         }
3915 }
3916
3917 int ext4_can_truncate(struct inode *inode)
3918 {
3919         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3920                 return 0;
3921         if (S_ISREG(inode->i_mode))
3922                 return 1;
3923         if (S_ISDIR(inode->i_mode))
3924                 return 1;
3925         if (S_ISLNK(inode->i_mode))
3926                 return !ext4_inode_is_fast_symlink(inode);
3927         return 0;
3928 }
3929
3930 /*
3931  * ext4_truncate()
3932  *
3933  * We block out ext4_get_block() block instantiations across the entire
3934  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3935  * simultaneously on behalf of the same inode.
3936  *
3937  * As we work through the truncate and commmit bits of it to the journal there
3938  * is one core, guiding principle: the file's tree must always be consistent on
3939  * disk.  We must be able to restart the truncate after a crash.
3940  *
3941  * The file's tree may be transiently inconsistent in memory (although it
3942  * probably isn't), but whenever we close off and commit a journal transaction,
3943  * the contents of (the filesystem + the journal) must be consistent and
3944  * restartable.  It's pretty simple, really: bottom up, right to left (although
3945  * left-to-right works OK too).
3946  *
3947  * Note that at recovery time, journal replay occurs *before* the restart of
3948  * truncate against the orphan inode list.
3949  *
3950  * The committed inode has the new, desired i_size (which is the same as
3951  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3952  * that this inode's truncate did not complete and it will again call
3953  * ext4_truncate() to have another go.  So there will be instantiated blocks
3954  * to the right of the truncation point in a crashed ext4 filesystem.  But
3955  * that's fine - as long as they are linked from the inode, the post-crash
3956  * ext4_truncate() run will find them and release them.
3957  */
3958 void ext4_truncate(struct inode *inode)
3959 {
3960         handle_t *handle;
3961         struct ext4_inode_info *ei = EXT4_I(inode);
3962         __le32 *i_data = ei->i_data;
3963         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3964         struct address_space *mapping = inode->i_mapping;
3965         ext4_lblk_t offsets[4];
3966         Indirect chain[4];
3967         Indirect *partial;
3968         __le32 nr = 0;
3969         int n;
3970         ext4_lblk_t last_block;
3971         unsigned blocksize = inode->i_sb->s_blocksize;
3972
3973         if (!ext4_can_truncate(inode))
3974                 return;
3975
3976         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3977                 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
3978
3979         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3980                 ext4_ext_truncate(inode);
3981                 return;
3982         }
3983
3984         handle = start_transaction(inode);
3985         if (IS_ERR(handle))
3986                 return;         /* AKPM: return what? */
3987
3988         last_block = (inode->i_size + blocksize-1)
3989                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3990
3991         if (inode->i_size & (blocksize - 1))
3992                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3993                         goto out_stop;
3994
3995         n = ext4_block_to_path(inode, last_block, offsets, NULL);
3996         if (n == 0)
3997                 goto out_stop;  /* error */
3998
3999         /*
4000          * OK.  This truncate is going to happen.  We add the inode to the
4001          * orphan list, so that if this truncate spans multiple transactions,
4002          * and we crash, we will resume the truncate when the filesystem
4003          * recovers.  It also marks the inode dirty, to catch the new size.
4004          *
4005          * Implication: the file must always be in a sane, consistent
4006          * truncatable state while each transaction commits.
4007          */
4008         if (ext4_orphan_add(handle, inode))
4009                 goto out_stop;
4010
4011         /*
4012          * From here we block out all ext4_get_block() callers who want to
4013          * modify the block allocation tree.
4014          */
4015         down_write(&ei->i_data_sem);
4016
4017         ext4_discard_preallocations(inode);
4018
4019         /*
4020          * The orphan list entry will now protect us from any crash which
4021          * occurs before the truncate completes, so it is now safe to propagate
4022          * the new, shorter inode size (held for now in i_size) into the
4023          * on-disk inode. We do this via i_disksize, which is the value which
4024          * ext4 *really* writes onto the disk inode.
4025          */
4026         ei->i_disksize = inode->i_size;
4027
4028         if (n == 1) {           /* direct blocks */
4029                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4030                                i_data + EXT4_NDIR_BLOCKS);
4031                 goto do_indirects;
4032         }
4033
4034         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4035         /* Kill the top of shared branch (not detached) */
4036         if (nr) {
4037                 if (partial == chain) {
4038                         /* Shared branch grows from the inode */
4039                         ext4_free_branches(handle, inode, NULL,
4040                                            &nr, &nr+1, (chain+n-1) - partial);
4041                         *partial->p = 0;
4042                         /*
4043                          * We mark the inode dirty prior to restart,
4044                          * and prior to stop.  No need for it here.
4045                          */
4046                 } else {
4047                         /* Shared branch grows from an indirect block */
4048                         BUFFER_TRACE(partial->bh, "get_write_access");
4049                         ext4_free_branches(handle, inode, partial->bh,
4050                                         partial->p,
4051                                         partial->p+1, (chain+n-1) - partial);
4052                 }
4053         }
4054         /* Clear the ends of indirect blocks on the shared branch */
4055         while (partial > chain) {
4056                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4057                                    (__le32*)partial->bh->b_data+addr_per_block,
4058                                    (chain+n-1) - partial);
4059                 BUFFER_TRACE(partial->bh, "call brelse");
4060                 brelse (partial->bh);
4061                 partial--;
4062         }
4063 do_indirects:
4064         /* Kill the remaining (whole) subtrees */
4065         switch (offsets[0]) {
4066         default:
4067                 nr = i_data[EXT4_IND_BLOCK];
4068                 if (nr) {
4069                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4070                         i_data[EXT4_IND_BLOCK] = 0;
4071                 }
4072         case EXT4_IND_BLOCK:
4073                 nr = i_data[EXT4_DIND_BLOCK];
4074                 if (nr) {
4075                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4076                         i_data[EXT4_DIND_BLOCK] = 0;
4077                 }
4078         case EXT4_DIND_BLOCK:
4079                 nr = i_data[EXT4_TIND_BLOCK];
4080                 if (nr) {
4081                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4082                         i_data[EXT4_TIND_BLOCK] = 0;
4083                 }
4084         case EXT4_TIND_BLOCK:
4085                 ;
4086         }
4087
4088         up_write(&ei->i_data_sem);
4089         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4090         ext4_mark_inode_dirty(handle, inode);
4091
4092         /*
4093          * In a multi-transaction truncate, we only make the final transaction
4094          * synchronous
4095          */
4096         if (IS_SYNC(inode))
4097                 ext4_handle_sync(handle);
4098 out_stop:
4099         /*
4100          * If this was a simple ftruncate(), and the file will remain alive
4101          * then we need to clear up the orphan record which we created above.
4102          * However, if this was a real unlink then we were called by
4103          * ext4_delete_inode(), and we allow that function to clean up the
4104          * orphan info for us.
4105          */
4106         if (inode->i_nlink)
4107                 ext4_orphan_del(handle, inode);
4108
4109         ext4_journal_stop(handle);
4110 }
4111
4112 /*
4113  * ext4_get_inode_loc returns with an extra refcount against the inode's
4114  * underlying buffer_head on success. If 'in_mem' is true, we have all
4115  * data in memory that is needed to recreate the on-disk version of this
4116  * inode.
4117  */
4118 static int __ext4_get_inode_loc(struct inode *inode,
4119                                 struct ext4_iloc *iloc, int in_mem)
4120 {
4121         struct ext4_group_desc  *gdp;
4122         struct buffer_head      *bh;
4123         struct super_block      *sb = inode->i_sb;
4124         ext4_fsblk_t            block;
4125         int                     inodes_per_block, inode_offset;
4126
4127         iloc->bh = NULL;
4128         if (!ext4_valid_inum(sb, inode->i_ino))
4129                 return -EIO;
4130
4131         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4132         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4133         if (!gdp)
4134                 return -EIO;
4135
4136         /*
4137          * Figure out the offset within the block group inode table
4138          */
4139         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4140         inode_offset = ((inode->i_ino - 1) %
4141                         EXT4_INODES_PER_GROUP(sb));
4142         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4143         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4144
4145         bh = sb_getblk(sb, block);
4146         if (!bh) {
4147                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4148                            "inode block - inode=%lu, block=%llu",
4149                            inode->i_ino, block);
4150                 return -EIO;
4151         }
4152         if (!buffer_uptodate(bh)) {
4153                 lock_buffer(bh);
4154
4155                 /*
4156                  * If the buffer has the write error flag, we have failed
4157                  * to write out another inode in the same block.  In this
4158                  * case, we don't have to read the block because we may
4159                  * read the old inode data successfully.
4160                  */
4161                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4162                         set_buffer_uptodate(bh);
4163
4164                 if (buffer_uptodate(bh)) {
4165                         /* someone brought it uptodate while we waited */
4166                         unlock_buffer(bh);
4167                         goto has_buffer;
4168                 }
4169
4170                 /*
4171                  * If we have all information of the inode in memory and this
4172                  * is the only valid inode in the block, we need not read the
4173                  * block.
4174                  */
4175                 if (in_mem) {
4176                         struct buffer_head *bitmap_bh;
4177                         int i, start;
4178
4179                         start = inode_offset & ~(inodes_per_block - 1);
4180
4181                         /* Is the inode bitmap in cache? */
4182                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4183                         if (!bitmap_bh)
4184                                 goto make_io;
4185
4186                         /*
4187                          * If the inode bitmap isn't in cache then the
4188                          * optimisation may end up performing two reads instead
4189                          * of one, so skip it.
4190                          */
4191                         if (!buffer_uptodate(bitmap_bh)) {
4192                                 brelse(bitmap_bh);
4193                                 goto make_io;
4194                         }
4195                         for (i = start; i < start + inodes_per_block; i++) {
4196                                 if (i == inode_offset)
4197                                         continue;
4198                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4199                                         break;
4200                         }
4201                         brelse(bitmap_bh);
4202                         if (i == start + inodes_per_block) {
4203                                 /* all other inodes are free, so skip I/O */
4204                                 memset(bh->b_data, 0, bh->b_size);
4205                                 set_buffer_uptodate(bh);
4206                                 unlock_buffer(bh);
4207                                 goto has_buffer;
4208                         }
4209                 }
4210
4211 make_io:
4212                 /*
4213                  * If we need to do any I/O, try to pre-readahead extra
4214                  * blocks from the inode table.
4215                  */
4216                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4217                         ext4_fsblk_t b, end, table;
4218                         unsigned num;
4219
4220                         table = ext4_inode_table(sb, gdp);
4221                         /* s_inode_readahead_blks is always a power of 2 */
4222                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4223                         if (table > b)
4224                                 b = table;
4225                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4226                         num = EXT4_INODES_PER_GROUP(sb);
4227                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4228                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4229                                 num -= ext4_itable_unused_count(sb, gdp);
4230                         table += num / inodes_per_block;
4231                         if (end > table)
4232                                 end = table;
4233                         while (b <= end)
4234                                 sb_breadahead(sb, b++);
4235                 }
4236
4237                 /*
4238                  * There are other valid inodes in the buffer, this inode
4239                  * has in-inode xattrs, or we don't have this inode in memory.
4240                  * Read the block from disk.
4241                  */
4242                 get_bh(bh);
4243                 bh->b_end_io = end_buffer_read_sync;
4244                 submit_bh(READ_META, bh);
4245                 wait_on_buffer(bh);
4246                 if (!buffer_uptodate(bh)) {
4247                         ext4_error(sb, __func__,
4248                                    "unable to read inode block - inode=%lu, "
4249                                    "block=%llu", inode->i_ino, block);
4250                         brelse(bh);
4251                         return -EIO;
4252                 }
4253         }
4254 has_buffer:
4255         iloc->bh = bh;
4256         return 0;
4257 }
4258
4259 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4260 {
4261         /* We have all inode data except xattrs in memory here. */
4262         return __ext4_get_inode_loc(inode, iloc,
4263                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4264 }
4265
4266 void ext4_set_inode_flags(struct inode *inode)
4267 {
4268         unsigned int flags = EXT4_I(inode)->i_flags;
4269
4270         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4271         if (flags & EXT4_SYNC_FL)
4272                 inode->i_flags |= S_SYNC;
4273         if (flags & EXT4_APPEND_FL)
4274                 inode->i_flags |= S_APPEND;
4275         if (flags & EXT4_IMMUTABLE_FL)
4276                 inode->i_flags |= S_IMMUTABLE;
4277         if (flags & EXT4_NOATIME_FL)
4278                 inode->i_flags |= S_NOATIME;
4279         if (flags & EXT4_DIRSYNC_FL)
4280                 inode->i_flags |= S_DIRSYNC;
4281 }
4282
4283 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4284 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4285 {
4286         unsigned int flags = ei->vfs_inode.i_flags;
4287
4288         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4289                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4290         if (flags & S_SYNC)
4291                 ei->i_flags |= EXT4_SYNC_FL;
4292         if (flags & S_APPEND)
4293                 ei->i_flags |= EXT4_APPEND_FL;
4294         if (flags & S_IMMUTABLE)
4295                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4296         if (flags & S_NOATIME)
4297                 ei->i_flags |= EXT4_NOATIME_FL;
4298         if (flags & S_DIRSYNC)
4299                 ei->i_flags |= EXT4_DIRSYNC_FL;
4300 }
4301 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4302                                         struct ext4_inode_info *ei)
4303 {
4304         blkcnt_t i_blocks ;
4305         struct inode *inode = &(ei->vfs_inode);
4306         struct super_block *sb = inode->i_sb;
4307
4308         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4309                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4310                 /* we are using combined 48 bit field */
4311                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4312                                         le32_to_cpu(raw_inode->i_blocks_lo);
4313                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4314                         /* i_blocks represent file system block size */
4315                         return i_blocks  << (inode->i_blkbits - 9);
4316                 } else {
4317                         return i_blocks;
4318                 }
4319         } else {
4320                 return le32_to_cpu(raw_inode->i_blocks_lo);
4321         }
4322 }
4323
4324 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4325 {
4326         struct ext4_iloc iloc;
4327         struct ext4_inode *raw_inode;
4328         struct ext4_inode_info *ei;
4329         struct buffer_head *bh;
4330         struct inode *inode;
4331         long ret;
4332         int block;
4333
4334         inode = iget_locked(sb, ino);
4335         if (!inode)
4336                 return ERR_PTR(-ENOMEM);
4337         if (!(inode->i_state & I_NEW))
4338                 return inode;
4339
4340         ei = EXT4_I(inode);
4341 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4342         ei->i_acl = EXT4_ACL_NOT_CACHED;
4343         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4344 #endif
4345
4346         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4347         if (ret < 0)
4348                 goto bad_inode;
4349         bh = iloc.bh;
4350         raw_inode = ext4_raw_inode(&iloc);
4351         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4352         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4353         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4354         if (!(test_opt(inode->i_sb, NO_UID32))) {
4355                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4356                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4357         }
4358         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4359
4360         ei->i_state = 0;
4361         ei->i_dir_start_lookup = 0;
4362         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4363         /* We now have enough fields to check if the inode was active or not.
4364          * This is needed because nfsd might try to access dead inodes
4365          * the test is that same one that e2fsck uses
4366          * NeilBrown 1999oct15
4367          */
4368         if (inode->i_nlink == 0) {
4369                 if (inode->i_mode == 0 ||
4370                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4371                         /* this inode is deleted */
4372                         brelse(bh);
4373                         ret = -ESTALE;
4374                         goto bad_inode;
4375                 }
4376                 /* The only unlinked inodes we let through here have
4377                  * valid i_mode and are being read by the orphan
4378                  * recovery code: that's fine, we're about to complete
4379                  * the process of deleting those. */
4380         }
4381         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4382         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4383         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4384         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4385                 ei->i_file_acl |=
4386                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4387         inode->i_size = ext4_isize(raw_inode);
4388         ei->i_disksize = inode->i_size;
4389         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4390         ei->i_block_group = iloc.block_group;
4391         ei->i_last_alloc_group = ~0;
4392         /*
4393          * NOTE! The in-memory inode i_data array is in little-endian order
4394          * even on big-endian machines: we do NOT byteswap the block numbers!
4395          */
4396         for (block = 0; block < EXT4_N_BLOCKS; block++)
4397                 ei->i_data[block] = raw_inode->i_block[block];
4398         INIT_LIST_HEAD(&ei->i_orphan);
4399
4400         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4401                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4402                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4403                     EXT4_INODE_SIZE(inode->i_sb)) {
4404                         brelse(bh);
4405                         ret = -EIO;
4406                         goto bad_inode;
4407                 }
4408                 if (ei->i_extra_isize == 0) {
4409                         /* The extra space is currently unused. Use it. */
4410                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4411                                             EXT4_GOOD_OLD_INODE_SIZE;
4412                 } else {
4413                         __le32 *magic = (void *)raw_inode +
4414                                         EXT4_GOOD_OLD_INODE_SIZE +
4415                                         ei->i_extra_isize;
4416                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4417                                  ei->i_state |= EXT4_STATE_XATTR;
4418                 }
4419         } else
4420                 ei->i_extra_isize = 0;
4421
4422         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4423         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4424         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4425         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4426
4427         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4428         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4429                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4430                         inode->i_version |=
4431                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4432         }
4433
4434         ret = 0;
4435         if (ei->i_file_acl &&
4436             ((ei->i_file_acl < 
4437               (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4438                EXT4_SB(sb)->s_gdb_count)) ||
4439              (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4440                 ext4_error(sb, __func__,
4441                            "bad extended attribute block %llu in inode #%lu",
4442                            ei->i_file_acl, inode->i_ino);
4443                 ret = -EIO;
4444                 goto bad_inode;
4445         } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4446                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4447                     (S_ISLNK(inode->i_mode) &&
4448                      !ext4_inode_is_fast_symlink(inode)))
4449                         /* Validate extent which is part of inode */
4450                         ret = ext4_ext_check_inode(inode);
4451         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4452                    (S_ISLNK(inode->i_mode) &&
4453                     !ext4_inode_is_fast_symlink(inode))) {
4454                 /* Validate block references which are part of inode */
4455                 ret = ext4_check_inode_blockref(inode);
4456         }
4457         if (ret) {
4458                 brelse(bh);
4459                 goto bad_inode;
4460         }
4461
4462         if (S_ISREG(inode->i_mode)) {
4463                 inode->i_op = &ext4_file_inode_operations;
4464                 inode->i_fop = &ext4_file_operations;
4465                 ext4_set_aops(inode);
4466         } else if (S_ISDIR(inode->i_mode)) {
4467                 inode->i_op = &ext4_dir_inode_operations;
4468                 inode->i_fop = &ext4_dir_operations;
4469         } else if (S_ISLNK(inode->i_mode)) {
4470                 if (ext4_inode_is_fast_symlink(inode)) {
4471                         inode->i_op = &ext4_fast_symlink_inode_operations;
4472                         nd_terminate_link(ei->i_data, inode->i_size,
4473                                 sizeof(ei->i_data) - 1);
4474                 } else {
4475                         inode->i_op = &ext4_symlink_inode_operations;
4476                         ext4_set_aops(inode);
4477                 }
4478         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4479               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4480                 inode->i_op = &ext4_special_inode_operations;
4481                 if (raw_inode->i_block[0])
4482                         init_special_inode(inode, inode->i_mode,
4483                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4484                 else
4485                         init_special_inode(inode, inode->i_mode,
4486                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4487         } else {
4488                 brelse(bh);
4489                 ret = -EIO;
4490                 ext4_error(inode->i_sb, __func__, 
4491                            "bogus i_mode (%o) for inode=%lu",
4492                            inode->i_mode, inode->i_ino);
4493                 goto bad_inode;
4494         }
4495         brelse(iloc.bh);
4496         ext4_set_inode_flags(inode);
4497         unlock_new_inode(inode);
4498         return inode;
4499
4500 bad_inode:
4501         iget_failed(inode);
4502         return ERR_PTR(ret);
4503 }
4504
4505 static int ext4_inode_blocks_set(handle_t *handle,
4506                                 struct ext4_inode *raw_inode,
4507                                 struct ext4_inode_info *ei)
4508 {
4509         struct inode *inode = &(ei->vfs_inode);
4510         u64 i_blocks = inode->i_blocks;
4511         struct super_block *sb = inode->i_sb;
4512
4513         if (i_blocks <= ~0U) {
4514                 /*
4515                  * i_blocks can be represnted in a 32 bit variable
4516                  * as multiple of 512 bytes
4517                  */
4518                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4519                 raw_inode->i_blocks_high = 0;
4520                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4521                 return 0;
4522         }
4523         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4524                 return -EFBIG;
4525
4526         if (i_blocks <= 0xffffffffffffULL) {
4527                 /*
4528                  * i_blocks can be represented in a 48 bit variable
4529                  * as multiple of 512 bytes
4530                  */
4531                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4532                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4533                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4534         } else {
4535                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4536                 /* i_block is stored in file system block size */
4537                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4538                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4539                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4540         }
4541         return 0;
4542 }
4543
4544 /*
4545  * Post the struct inode info into an on-disk inode location in the
4546  * buffer-cache.  This gobbles the caller's reference to the
4547  * buffer_head in the inode location struct.
4548  *
4549  * The caller must have write access to iloc->bh.
4550  */
4551 static int ext4_do_update_inode(handle_t *handle,
4552                                 struct inode *inode,
4553                                 struct ext4_iloc *iloc)
4554 {
4555         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4556         struct ext4_inode_info *ei = EXT4_I(inode);
4557         struct buffer_head *bh = iloc->bh;
4558         int err = 0, rc, block;
4559
4560         /* For fields not not tracking in the in-memory inode,
4561          * initialise them to zero for new inodes. */
4562         if (ei->i_state & EXT4_STATE_NEW)
4563                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4564
4565         ext4_get_inode_flags(ei);
4566         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4567         if (!(test_opt(inode->i_sb, NO_UID32))) {
4568                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4569                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4570 /*
4571  * Fix up interoperability with old kernels. Otherwise, old inodes get
4572  * re-used with the upper 16 bits of the uid/gid intact
4573  */
4574                 if (!ei->i_dtime) {
4575                         raw_inode->i_uid_high =
4576                                 cpu_to_le16(high_16_bits(inode->i_uid));
4577                         raw_inode->i_gid_high =
4578                                 cpu_to_le16(high_16_bits(inode->i_gid));
4579                 } else {
4580                         raw_inode->i_uid_high = 0;
4581                         raw_inode->i_gid_high = 0;
4582                 }
4583         } else {
4584                 raw_inode->i_uid_low =
4585                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4586                 raw_inode->i_gid_low =
4587                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4588                 raw_inode->i_uid_high = 0;
4589                 raw_inode->i_gid_high = 0;
4590         }
4591         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4592
4593         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4594         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4595         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4596         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4597
4598         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4599                 goto out_brelse;
4600         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4601         /* clear the migrate flag in the raw_inode */
4602         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4603         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4604             cpu_to_le32(EXT4_OS_HURD))
4605                 raw_inode->i_file_acl_high =
4606                         cpu_to_le16(ei->i_file_acl >> 32);
4607         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4608         ext4_isize_set(raw_inode, ei->i_disksize);
4609         if (ei->i_disksize > 0x7fffffffULL) {
4610                 struct super_block *sb = inode->i_sb;
4611                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4612                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4613                                 EXT4_SB(sb)->s_es->s_rev_level ==
4614                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4615                         /* If this is the first large file
4616                          * created, add a flag to the superblock.
4617                          */
4618                         err = ext4_journal_get_write_access(handle,
4619                                         EXT4_SB(sb)->s_sbh);
4620                         if (err)
4621                                 goto out_brelse;
4622                         ext4_update_dynamic_rev(sb);
4623                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4624                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4625                         sb->s_dirt = 1;
4626                         ext4_handle_sync(handle);
4627                         err = ext4_handle_dirty_metadata(handle, inode,
4628                                         EXT4_SB(sb)->s_sbh);
4629                 }
4630         }
4631         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4632         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4633                 if (old_valid_dev(inode->i_rdev)) {
4634                         raw_inode->i_block[0] =
4635                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4636                         raw_inode->i_block[1] = 0;
4637                 } else {
4638                         raw_inode->i_block[0] = 0;
4639                         raw_inode->i_block[1] =
4640                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4641                         raw_inode->i_block[2] = 0;
4642                 }
4643         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4644                 raw_inode->i_block[block] = ei->i_data[block];
4645
4646         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4647         if (ei->i_extra_isize) {
4648                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4649                         raw_inode->i_version_hi =
4650                         cpu_to_le32(inode->i_version >> 32);
4651                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4652         }
4653
4654         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4655         rc = ext4_handle_dirty_metadata(handle, inode, bh);
4656         if (!err)
4657                 err = rc;
4658         ei->i_state &= ~EXT4_STATE_NEW;
4659
4660 out_brelse:
4661         brelse(bh);
4662         ext4_std_error(inode->i_sb, err);
4663         return err;
4664 }
4665
4666 /*
4667  * ext4_write_inode()
4668  *
4669  * We are called from a few places:
4670  *
4671  * - Within generic_file_write() for O_SYNC files.
4672  *   Here, there will be no transaction running. We wait for any running
4673  *   trasnaction to commit.
4674  *
4675  * - Within sys_sync(), kupdate and such.
4676  *   We wait on commit, if tol to.
4677  *
4678  * - Within prune_icache() (PF_MEMALLOC == true)
4679  *   Here we simply return.  We can't afford to block kswapd on the
4680  *   journal commit.
4681  *
4682  * In all cases it is actually safe for us to return without doing anything,
4683  * because the inode has been copied into a raw inode buffer in
4684  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4685  * knfsd.
4686  *
4687  * Note that we are absolutely dependent upon all inode dirtiers doing the
4688  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4689  * which we are interested.
4690  *
4691  * It would be a bug for them to not do this.  The code:
4692  *
4693  *      mark_inode_dirty(inode)
4694  *      stuff();
4695  *      inode->i_size = expr;
4696  *
4697  * is in error because a kswapd-driven write_inode() could occur while
4698  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4699  * will no longer be on the superblock's dirty inode list.
4700  */
4701 int ext4_write_inode(struct inode *inode, int wait)
4702 {
4703         if (current->flags & PF_MEMALLOC)
4704                 return 0;
4705
4706         if (ext4_journal_current_handle()) {
4707                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4708                 dump_stack();
4709                 return -EIO;
4710         }
4711
4712         if (!wait)
4713                 return 0;
4714
4715         return ext4_force_commit(inode->i_sb);
4716 }
4717
4718 int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4719 {
4720         int err = 0;
4721
4722         mark_buffer_dirty(bh);
4723         if (inode && inode_needs_sync(inode)) {
4724                 sync_dirty_buffer(bh);
4725                 if (buffer_req(bh) && !buffer_uptodate(bh)) {
4726                         ext4_error(inode->i_sb, __func__,
4727                                    "IO error syncing inode, "
4728                                    "inode=%lu, block=%llu",
4729                                    inode->i_ino,
4730                                    (unsigned long long)bh->b_blocknr);
4731                         err = -EIO;
4732                 }
4733         }
4734         return err;
4735 }
4736
4737 /*
4738  * ext4_setattr()
4739  *
4740  * Called from notify_change.
4741  *
4742  * We want to trap VFS attempts to truncate the file as soon as
4743  * possible.  In particular, we want to make sure that when the VFS
4744  * shrinks i_size, we put the inode on the orphan list and modify
4745  * i_disksize immediately, so that during the subsequent flushing of
4746  * dirty pages and freeing of disk blocks, we can guarantee that any
4747  * commit will leave the blocks being flushed in an unused state on
4748  * disk.  (On recovery, the inode will get truncated and the blocks will
4749  * be freed, so we have a strong guarantee that no future commit will
4750  * leave these blocks visible to the user.)
4751  *
4752  * Another thing we have to assure is that if we are in ordered mode
4753  * and inode is still attached to the committing transaction, we must
4754  * we start writeout of all the dirty pages which are being truncated.
4755  * This way we are sure that all the data written in the previous
4756  * transaction are already on disk (truncate waits for pages under
4757  * writeback).
4758  *
4759  * Called with inode->i_mutex down.
4760  */
4761 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4762 {
4763         struct inode *inode = dentry->d_inode;
4764         int error, rc = 0;
4765         const unsigned int ia_valid = attr->ia_valid;
4766
4767         error = inode_change_ok(inode, attr);
4768         if (error)
4769                 return error;
4770
4771         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4772                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4773                 handle_t *handle;
4774
4775                 /* (user+group)*(old+new) structure, inode write (sb,
4776                  * inode block, ? - but truncate inode update has it) */
4777                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4778                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4779                 if (IS_ERR(handle)) {
4780                         error = PTR_ERR(handle);
4781                         goto err_out;
4782                 }
4783                 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4784                 if (error) {
4785                         ext4_journal_stop(handle);
4786                         return error;
4787                 }
4788                 /* Update corresponding info in inode so that everything is in
4789                  * one transaction */
4790                 if (attr->ia_valid & ATTR_UID)
4791                         inode->i_uid = attr->ia_uid;
4792                 if (attr->ia_valid & ATTR_GID)
4793                         inode->i_gid = attr->ia_gid;
4794                 error = ext4_mark_inode_dirty(handle, inode);
4795                 ext4_journal_stop(handle);
4796         }
4797
4798         if (attr->ia_valid & ATTR_SIZE) {
4799                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4800                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4801
4802                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4803                                 error = -EFBIG;
4804                                 goto err_out;
4805                         }
4806                 }
4807         }
4808
4809         if (S_ISREG(inode->i_mode) &&
4810             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4811                 handle_t *handle;
4812
4813                 handle = ext4_journal_start(inode, 3);
4814                 if (IS_ERR(handle)) {
4815                         error = PTR_ERR(handle);
4816                         goto err_out;
4817                 }
4818
4819                 error = ext4_orphan_add(handle, inode);
4820                 EXT4_I(inode)->i_disksize = attr->ia_size;
4821                 rc = ext4_mark_inode_dirty(handle, inode);
4822                 if (!error)
4823                         error = rc;
4824                 ext4_journal_stop(handle);
4825
4826                 if (ext4_should_order_data(inode)) {
4827                         error = ext4_begin_ordered_truncate(inode,
4828                                                             attr->ia_size);
4829                         if (error) {
4830                                 /* Do as much error cleanup as possible */
4831                                 handle = ext4_journal_start(inode, 3);
4832                                 if (IS_ERR(handle)) {
4833                                         ext4_orphan_del(NULL, inode);
4834                                         goto err_out;
4835                                 }
4836                                 ext4_orphan_del(handle, inode);
4837                                 ext4_journal_stop(handle);
4838                                 goto err_out;
4839                         }
4840                 }
4841         }
4842
4843         rc = inode_setattr(inode, attr);
4844
4845         /* If inode_setattr's call to ext4_truncate failed to get a
4846          * transaction handle at all, we need to clean up the in-core
4847          * orphan list manually. */
4848         if (inode->i_nlink)
4849                 ext4_orphan_del(NULL, inode);
4850
4851         if (!rc && (ia_valid & ATTR_MODE))
4852                 rc = ext4_acl_chmod(inode);
4853
4854 err_out:
4855         ext4_std_error(inode->i_sb, error);
4856         if (!error)
4857                 error = rc;
4858         return error;
4859 }
4860
4861 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4862                  struct kstat *stat)
4863 {
4864         struct inode *inode;
4865         unsigned long delalloc_blocks;
4866
4867         inode = dentry->d_inode;
4868         generic_fillattr(inode, stat);
4869
4870         /*
4871          * We can't update i_blocks if the block allocation is delayed
4872          * otherwise in the case of system crash before the real block
4873          * allocation is done, we will have i_blocks inconsistent with
4874          * on-disk file blocks.
4875          * We always keep i_blocks updated together with real
4876          * allocation. But to not confuse with user, stat
4877          * will return the blocks that include the delayed allocation
4878          * blocks for this file.
4879          */
4880         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4881         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4882         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4883
4884         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4885         return 0;
4886 }
4887
4888 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4889                                       int chunk)
4890 {
4891         int indirects;
4892
4893         /* if nrblocks are contiguous */
4894         if (chunk) {
4895                 /*
4896                  * With N contiguous data blocks, it need at most
4897                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4898                  * 2 dindirect blocks
4899                  * 1 tindirect block
4900                  */
4901                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4902                 return indirects + 3;
4903         }
4904         /*
4905          * if nrblocks are not contiguous, worse case, each block touch
4906          * a indirect block, and each indirect block touch a double indirect
4907          * block, plus a triple indirect block
4908          */
4909         indirects = nrblocks * 2 + 1;
4910         return indirects;
4911 }
4912
4913 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4914 {
4915         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4916                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4917         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4918 }
4919
4920 /*
4921  * Account for index blocks, block groups bitmaps and block group
4922  * descriptor blocks if modify datablocks and index blocks
4923  * worse case, the indexs blocks spread over different block groups
4924  *
4925  * If datablocks are discontiguous, they are possible to spread over
4926  * different block groups too. If they are contiugous, with flexbg,
4927  * they could still across block group boundary.
4928  *
4929  * Also account for superblock, inode, quota and xattr blocks
4930  */
4931 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4932 {
4933         int groups, gdpblocks;
4934         int idxblocks;
4935         int ret = 0;
4936
4937         /*
4938          * How many index blocks need to touch to modify nrblocks?
4939          * The "Chunk" flag indicating whether the nrblocks is
4940          * physically contiguous on disk
4941          *
4942          * For Direct IO and fallocate, they calls get_block to allocate
4943          * one single extent at a time, so they could set the "Chunk" flag
4944          */
4945         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4946
4947         ret = idxblocks;
4948
4949         /*
4950          * Now let's see how many group bitmaps and group descriptors need
4951          * to account
4952          */
4953         groups = idxblocks;
4954         if (chunk)
4955                 groups += 1;
4956         else
4957                 groups += nrblocks;
4958
4959         gdpblocks = groups;
4960         if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4961                 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4962         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4963                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4964
4965         /* bitmaps and block group descriptor blocks */
4966         ret += groups + gdpblocks;
4967
4968         /* Blocks for super block, inode, quota and xattr blocks */
4969         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4970
4971         return ret;
4972 }
4973
4974 /*
4975  * Calulate the total number of credits to reserve to fit
4976  * the modification of a single pages into a single transaction,
4977  * which may include multiple chunks of block allocations.
4978  *
4979  * This could be called via ext4_write_begin()
4980  *
4981  * We need to consider the worse case, when
4982  * one new block per extent.
4983  */
4984 int ext4_writepage_trans_blocks(struct inode *inode)
4985 {
4986         int bpp = ext4_journal_blocks_per_page(inode);
4987         int ret;
4988
4989         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4990
4991         /* Account for data blocks for journalled mode */
4992         if (ext4_should_journal_data(inode))
4993                 ret += bpp;
4994         return ret;
4995 }
4996
4997 /*
4998  * Calculate the journal credits for a chunk of data modification.
4999  *
5000  * This is called from DIO, fallocate or whoever calling
5001  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
5002  *
5003  * journal buffers for data blocks are not included here, as DIO
5004  * and fallocate do no need to journal data buffers.
5005  */
5006 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5007 {
5008         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5009 }
5010
5011 /*
5012  * The caller must have previously called ext4_reserve_inode_write().
5013  * Give this, we know that the caller already has write access to iloc->bh.
5014  */
5015 int ext4_mark_iloc_dirty(handle_t *handle,
5016                 struct inode *inode, struct ext4_iloc *iloc)
5017 {
5018         int err = 0;
5019
5020         if (test_opt(inode->i_sb, I_VERSION))
5021                 inode_inc_iversion(inode);
5022
5023         /* the do_update_inode consumes one bh->b_count */
5024         get_bh(iloc->bh);
5025
5026         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5027         err = ext4_do_update_inode(handle, inode, iloc);
5028         put_bh(iloc->bh);
5029         return err;
5030 }
5031
5032 /*
5033  * On success, We end up with an outstanding reference count against
5034  * iloc->bh.  This _must_ be cleaned up later.
5035  */
5036
5037 int
5038 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5039                          struct ext4_iloc *iloc)
5040 {
5041         int err;
5042
5043         err = ext4_get_inode_loc(inode, iloc);
5044         if (!err) {
5045                 BUFFER_TRACE(iloc->bh, "get_write_access");
5046                 err = ext4_journal_get_write_access(handle, iloc->bh);
5047                 if (err) {
5048                         brelse(iloc->bh);
5049                         iloc->bh = NULL;
5050                 }
5051         }
5052         ext4_std_error(inode->i_sb, err);
5053         return err;
5054 }
5055
5056 /*
5057  * Expand an inode by new_extra_isize bytes.
5058  * Returns 0 on success or negative error number on failure.
5059  */
5060 static int ext4_expand_extra_isize(struct inode *inode,
5061                                    unsigned int new_extra_isize,
5062                                    struct ext4_iloc iloc,
5063                                    handle_t *handle)
5064 {
5065         struct ext4_inode *raw_inode;
5066         struct ext4_xattr_ibody_header *header;
5067         struct ext4_xattr_entry *entry;
5068
5069         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5070                 return 0;
5071
5072         raw_inode = ext4_raw_inode(&iloc);
5073
5074         header = IHDR(inode, raw_inode);
5075         entry = IFIRST(header);
5076
5077         /* No extended attributes present */
5078         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5079                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5080                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5081                         new_extra_isize);
5082                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5083                 return 0;
5084         }
5085
5086         /* try to expand with EAs present */
5087         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5088                                           raw_inode, handle);
5089 }
5090
5091 /*
5092  * What we do here is to mark the in-core inode as clean with respect to inode
5093  * dirtiness (it may still be data-dirty).
5094  * This means that the in-core inode may be reaped by prune_icache
5095  * without having to perform any I/O.  This is a very good thing,
5096  * because *any* task may call prune_icache - even ones which
5097  * have a transaction open against a different journal.
5098  *
5099  * Is this cheating?  Not really.  Sure, we haven't written the
5100  * inode out, but prune_icache isn't a user-visible syncing function.
5101  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5102  * we start and wait on commits.
5103  *
5104  * Is this efficient/effective?  Well, we're being nice to the system
5105  * by cleaning up our inodes proactively so they can be reaped
5106  * without I/O.  But we are potentially leaving up to five seconds'
5107  * worth of inodes floating about which prune_icache wants us to
5108  * write out.  One way to fix that would be to get prune_icache()
5109  * to do a write_super() to free up some memory.  It has the desired
5110  * effect.
5111  */
5112 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5113 {
5114         struct ext4_iloc iloc;
5115         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5116         static unsigned int mnt_count;
5117         int err, ret;
5118
5119         might_sleep();
5120         err = ext4_reserve_inode_write(handle, inode, &iloc);
5121         if (ext4_handle_valid(handle) &&
5122             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5123             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5124                 /*
5125                  * We need extra buffer credits since we may write into EA block
5126                  * with this same handle. If journal_extend fails, then it will
5127                  * only result in a minor loss of functionality for that inode.
5128                  * If this is felt to be critical, then e2fsck should be run to
5129                  * force a large enough s_min_extra_isize.
5130                  */
5131                 if ((jbd2_journal_extend(handle,
5132                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5133                         ret = ext4_expand_extra_isize(inode,
5134                                                       sbi->s_want_extra_isize,
5135                                                       iloc, handle);
5136                         if (ret) {
5137                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5138                                 if (mnt_count !=
5139                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5140                                         ext4_warning(inode->i_sb, __func__,
5141                                         "Unable to expand inode %lu. Delete"
5142                                         " some EAs or run e2fsck.",
5143                                         inode->i_ino);
5144                                         mnt_count =
5145                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5146                                 }
5147                         }
5148                 }
5149         }
5150         if (!err)
5151                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5152         return err;
5153 }
5154
5155 /*
5156  * ext4_dirty_inode() is called from __mark_inode_dirty()
5157  *
5158  * We're really interested in the case where a file is being extended.
5159  * i_size has been changed by generic_commit_write() and we thus need
5160  * to include the updated inode in the current transaction.
5161  *
5162  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5163  * are allocated to the file.
5164  *
5165  * If the inode is marked synchronous, we don't honour that here - doing
5166  * so would cause a commit on atime updates, which we don't bother doing.
5167  * We handle synchronous inodes at the highest possible level.
5168  */
5169 void ext4_dirty_inode(struct inode *inode)
5170 {
5171         handle_t *current_handle = ext4_journal_current_handle();
5172         handle_t *handle;
5173
5174         if (!ext4_handle_valid(current_handle)) {
5175                 ext4_mark_inode_dirty(current_handle, inode);
5176                 return;
5177         }
5178
5179         handle = ext4_journal_start(inode, 2);
5180         if (IS_ERR(handle))
5181                 goto out;
5182         if (current_handle &&
5183                 current_handle->h_transaction != handle->h_transaction) {
5184                 /* This task has a transaction open against a different fs */
5185                 printk(KERN_EMERG "%s: transactions do not match!\n",
5186                        __func__);
5187         } else {
5188                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
5189                                 current_handle);
5190                 ext4_mark_inode_dirty(handle, inode);
5191         }
5192         ext4_journal_stop(handle);
5193 out:
5194         return;
5195 }
5196
5197 #if 0
5198 /*
5199  * Bind an inode's backing buffer_head into this transaction, to prevent
5200  * it from being flushed to disk early.  Unlike
5201  * ext4_reserve_inode_write, this leaves behind no bh reference and
5202  * returns no iloc structure, so the caller needs to repeat the iloc
5203  * lookup to mark the inode dirty later.
5204  */
5205 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5206 {
5207         struct ext4_iloc iloc;
5208
5209         int err = 0;
5210         if (handle) {
5211                 err = ext4_get_inode_loc(inode, &iloc);
5212                 if (!err) {
5213                         BUFFER_TRACE(iloc.bh, "get_write_access");
5214                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5215                         if (!err)
5216                                 err = ext4_handle_dirty_metadata(handle,
5217                                                                  inode,
5218                                                                  iloc.bh);
5219                         brelse(iloc.bh);
5220                 }
5221         }
5222         ext4_std_error(inode->i_sb, err);
5223         return err;
5224 }
5225 #endif
5226
5227 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5228 {
5229         journal_t *journal;
5230         handle_t *handle;
5231         int err;
5232
5233         /*
5234          * We have to be very careful here: changing a data block's
5235          * journaling status dynamically is dangerous.  If we write a
5236          * data block to the journal, change the status and then delete
5237          * that block, we risk forgetting to revoke the old log record
5238          * from the journal and so a subsequent replay can corrupt data.
5239          * So, first we make sure that the journal is empty and that
5240          * nobody is changing anything.
5241          */
5242
5243         journal = EXT4_JOURNAL(inode);
5244         if (!journal)
5245                 return 0;
5246         if (is_journal_aborted(journal))
5247                 return -EROFS;
5248
5249         jbd2_journal_lock_updates(journal);
5250         jbd2_journal_flush(journal);
5251
5252         /*
5253          * OK, there are no updates running now, and all cached data is
5254          * synced to disk.  We are now in a completely consistent state
5255          * which doesn't have anything in the journal, and we know that
5256          * no filesystem updates are running, so it is safe to modify
5257          * the inode's in-core data-journaling state flag now.
5258          */
5259
5260         if (val)
5261                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5262         else
5263                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5264         ext4_set_aops(inode);
5265
5266         jbd2_journal_unlock_updates(journal);
5267
5268         /* Finally we can mark the inode as dirty. */
5269
5270         handle = ext4_journal_start(inode, 1);
5271         if (IS_ERR(handle))
5272                 return PTR_ERR(handle);
5273
5274         err = ext4_mark_inode_dirty(handle, inode);
5275         ext4_handle_sync(handle);
5276         ext4_journal_stop(handle);
5277         ext4_std_error(inode->i_sb, err);
5278
5279         return err;
5280 }
5281
5282 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5283 {
5284         return !buffer_mapped(bh);
5285 }
5286
5287 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5288 {
5289         struct page *page = vmf->page;
5290         loff_t size;
5291         unsigned long len;
5292         int ret = -EINVAL;
5293         void *fsdata;
5294         struct file *file = vma->vm_file;
5295         struct inode *inode = file->f_path.dentry->d_inode;
5296         struct address_space *mapping = inode->i_mapping;
5297
5298         /*
5299          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5300          * get i_mutex because we are already holding mmap_sem.
5301          */
5302         down_read(&inode->i_alloc_sem);
5303         size = i_size_read(inode);
5304         if (page->mapping != mapping || size <= page_offset(page)
5305             || !PageUptodate(page)) {
5306                 /* page got truncated from under us? */
5307                 goto out_unlock;
5308         }
5309         ret = 0;
5310         if (PageMappedToDisk(page))
5311                 goto out_unlock;
5312
5313         if (page->index == size >> PAGE_CACHE_SHIFT)
5314                 len = size & ~PAGE_CACHE_MASK;
5315         else
5316                 len = PAGE_CACHE_SIZE;
5317
5318         if (page_has_buffers(page)) {
5319                 /* return if we have all the buffers mapped */
5320                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5321                                        ext4_bh_unmapped))
5322                         goto out_unlock;
5323         }
5324         /*
5325          * OK, we need to fill the hole... Do write_begin write_end
5326          * to do block allocation/reservation.We are not holding
5327          * inode.i__mutex here. That allow * parallel write_begin,
5328          * write_end call. lock_page prevent this from happening
5329          * on the same page though
5330          */
5331         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5332                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5333         if (ret < 0)
5334                 goto out_unlock;
5335         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5336                         len, len, page, fsdata);
5337         if (ret < 0)
5338                 goto out_unlock;
5339         ret = 0;
5340 out_unlock:
5341         if (ret)
5342                 ret = VM_FAULT_SIGBUS;
5343         up_read(&inode->i_alloc_sem);
5344         return ret;
5345 }