ext4: rewrite punch hole to use ext4_ext_remove_space()
[pandora-kernel.git] / fs / ext4 / extents.c
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
45
46 #include <trace/events/ext4.h>
47
48 /*
49  * used by extent splitting.
50  */
51 #define EXT4_EXT_MAY_ZEROOUT    0x1  /* safe to zeroout if split fails \
52                                         due to ENOSPC */
53 #define EXT4_EXT_MARK_UNINIT1   0x2  /* mark first half uninitialized */
54 #define EXT4_EXT_MARK_UNINIT2   0x4  /* mark second half uninitialized */
55
56 #define EXT4_EXT_DATA_VALID1    0x8  /* first half contains valid data */
57 #define EXT4_EXT_DATA_VALID2    0x10 /* second half contains valid data */
58
59 static int ext4_split_extent(handle_t *handle,
60                                 struct inode *inode,
61                                 struct ext4_ext_path *path,
62                                 struct ext4_map_blocks *map,
63                                 int split_flag,
64                                 int flags);
65
66 static int ext4_split_extent_at(handle_t *handle,
67                              struct inode *inode,
68                              struct ext4_ext_path *path,
69                              ext4_lblk_t split,
70                              int split_flag,
71                              int flags);
72
73 static int ext4_ext_truncate_extend_restart(handle_t *handle,
74                                             struct inode *inode,
75                                             int needed)
76 {
77         int err;
78
79         if (!ext4_handle_valid(handle))
80                 return 0;
81         if (handle->h_buffer_credits > needed)
82                 return 0;
83         err = ext4_journal_extend(handle, needed);
84         if (err <= 0)
85                 return err;
86         err = ext4_truncate_restart_trans(handle, inode, needed);
87         if (err == 0)
88                 err = -EAGAIN;
89
90         return err;
91 }
92
93 /*
94  * could return:
95  *  - EROFS
96  *  - ENOMEM
97  */
98 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
99                                 struct ext4_ext_path *path)
100 {
101         if (path->p_bh) {
102                 /* path points to block */
103                 return ext4_journal_get_write_access(handle, path->p_bh);
104         }
105         /* path points to leaf/index in inode body */
106         /* we use in-core data, no need to protect them */
107         return 0;
108 }
109
110 /*
111  * could return:
112  *  - EROFS
113  *  - ENOMEM
114  *  - EIO
115  */
116 #define ext4_ext_dirty(handle, inode, path) \
117                 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
118 static int __ext4_ext_dirty(const char *where, unsigned int line,
119                             handle_t *handle, struct inode *inode,
120                             struct ext4_ext_path *path)
121 {
122         int err;
123         if (path->p_bh) {
124                 /* path points to block */
125                 err = __ext4_handle_dirty_metadata(where, line, handle,
126                                                    inode, path->p_bh);
127         } else {
128                 /* path points to leaf/index in inode body */
129                 err = ext4_mark_inode_dirty(handle, inode);
130         }
131         return err;
132 }
133
134 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
135                               struct ext4_ext_path *path,
136                               ext4_lblk_t block)
137 {
138         if (path) {
139                 int depth = path->p_depth;
140                 struct ext4_extent *ex;
141
142                 /*
143                  * Try to predict block placement assuming that we are
144                  * filling in a file which will eventually be
145                  * non-sparse --- i.e., in the case of libbfd writing
146                  * an ELF object sections out-of-order but in a way
147                  * the eventually results in a contiguous object or
148                  * executable file, or some database extending a table
149                  * space file.  However, this is actually somewhat
150                  * non-ideal if we are writing a sparse file such as
151                  * qemu or KVM writing a raw image file that is going
152                  * to stay fairly sparse, since it will end up
153                  * fragmenting the file system's free space.  Maybe we
154                  * should have some hueristics or some way to allow
155                  * userspace to pass a hint to file system,
156                  * especially if the latter case turns out to be
157                  * common.
158                  */
159                 ex = path[depth].p_ext;
160                 if (ex) {
161                         ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
162                         ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
163
164                         if (block > ext_block)
165                                 return ext_pblk + (block - ext_block);
166                         else
167                                 return ext_pblk - (ext_block - block);
168                 }
169
170                 /* it looks like index is empty;
171                  * try to find starting block from index itself */
172                 if (path[depth].p_bh)
173                         return path[depth].p_bh->b_blocknr;
174         }
175
176         /* OK. use inode's group */
177         return ext4_inode_to_goal_block(inode);
178 }
179
180 /*
181  * Allocation for a meta data block
182  */
183 static ext4_fsblk_t
184 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
185                         struct ext4_ext_path *path,
186                         struct ext4_extent *ex, int *err, unsigned int flags)
187 {
188         ext4_fsblk_t goal, newblock;
189
190         goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
191         newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
192                                         NULL, err);
193         return newblock;
194 }
195
196 static inline int ext4_ext_space_block(struct inode *inode, int check)
197 {
198         int size;
199
200         size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
201                         / sizeof(struct ext4_extent);
202 #ifdef AGGRESSIVE_TEST
203         if (!check && size > 6)
204                 size = 6;
205 #endif
206         return size;
207 }
208
209 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
210 {
211         int size;
212
213         size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
214                         / sizeof(struct ext4_extent_idx);
215 #ifdef AGGRESSIVE_TEST
216         if (!check && size > 5)
217                 size = 5;
218 #endif
219         return size;
220 }
221
222 static inline int ext4_ext_space_root(struct inode *inode, int check)
223 {
224         int size;
225
226         size = sizeof(EXT4_I(inode)->i_data);
227         size -= sizeof(struct ext4_extent_header);
228         size /= sizeof(struct ext4_extent);
229 #ifdef AGGRESSIVE_TEST
230         if (!check && size > 3)
231                 size = 3;
232 #endif
233         return size;
234 }
235
236 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
237 {
238         int size;
239
240         size = sizeof(EXT4_I(inode)->i_data);
241         size -= sizeof(struct ext4_extent_header);
242         size /= sizeof(struct ext4_extent_idx);
243 #ifdef AGGRESSIVE_TEST
244         if (!check && size > 4)
245                 size = 4;
246 #endif
247         return size;
248 }
249
250 /*
251  * Calculate the number of metadata blocks needed
252  * to allocate @blocks
253  * Worse case is one block per extent
254  */
255 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
256 {
257         struct ext4_inode_info *ei = EXT4_I(inode);
258         int idxs;
259
260         idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
261                 / sizeof(struct ext4_extent_idx));
262
263         /*
264          * If the new delayed allocation block is contiguous with the
265          * previous da block, it can share index blocks with the
266          * previous block, so we only need to allocate a new index
267          * block every idxs leaf blocks.  At ldxs**2 blocks, we need
268          * an additional index block, and at ldxs**3 blocks, yet
269          * another index blocks.
270          */
271         if (ei->i_da_metadata_calc_len &&
272             ei->i_da_metadata_calc_last_lblock+1 == lblock) {
273                 int num = 0;
274
275                 if ((ei->i_da_metadata_calc_len % idxs) == 0)
276                         num++;
277                 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
278                         num++;
279                 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
280                         num++;
281                         ei->i_da_metadata_calc_len = 0;
282                 } else
283                         ei->i_da_metadata_calc_len++;
284                 ei->i_da_metadata_calc_last_lblock++;
285                 return num;
286         }
287
288         /*
289          * In the worst case we need a new set of index blocks at
290          * every level of the inode's extent tree.
291          */
292         ei->i_da_metadata_calc_len = 1;
293         ei->i_da_metadata_calc_last_lblock = lblock;
294         return ext_depth(inode) + 1;
295 }
296
297 static int
298 ext4_ext_max_entries(struct inode *inode, int depth)
299 {
300         int max;
301
302         if (depth == ext_depth(inode)) {
303                 if (depth == 0)
304                         max = ext4_ext_space_root(inode, 1);
305                 else
306                         max = ext4_ext_space_root_idx(inode, 1);
307         } else {
308                 if (depth == 0)
309                         max = ext4_ext_space_block(inode, 1);
310                 else
311                         max = ext4_ext_space_block_idx(inode, 1);
312         }
313
314         return max;
315 }
316
317 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
318 {
319         ext4_fsblk_t block = ext4_ext_pblock(ext);
320         int len = ext4_ext_get_actual_len(ext);
321
322         if (len == 0)
323                 return 0;
324         return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
325 }
326
327 static int ext4_valid_extent_idx(struct inode *inode,
328                                 struct ext4_extent_idx *ext_idx)
329 {
330         ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
331
332         return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
333 }
334
335 static int ext4_valid_extent_entries(struct inode *inode,
336                                 struct ext4_extent_header *eh,
337                                 int depth)
338 {
339         unsigned short entries;
340         if (eh->eh_entries == 0)
341                 return 1;
342
343         entries = le16_to_cpu(eh->eh_entries);
344
345         if (depth == 0) {
346                 /* leaf entries */
347                 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
348                 while (entries) {
349                         if (!ext4_valid_extent(inode, ext))
350                                 return 0;
351                         ext++;
352                         entries--;
353                 }
354         } else {
355                 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
356                 while (entries) {
357                         if (!ext4_valid_extent_idx(inode, ext_idx))
358                                 return 0;
359                         ext_idx++;
360                         entries--;
361                 }
362         }
363         return 1;
364 }
365
366 static int __ext4_ext_check(const char *function, unsigned int line,
367                             struct inode *inode, struct ext4_extent_header *eh,
368                             int depth)
369 {
370         const char *error_msg;
371         int max = 0;
372
373         if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
374                 error_msg = "invalid magic";
375                 goto corrupted;
376         }
377         if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
378                 error_msg = "unexpected eh_depth";
379                 goto corrupted;
380         }
381         if (unlikely(eh->eh_max == 0)) {
382                 error_msg = "invalid eh_max";
383                 goto corrupted;
384         }
385         max = ext4_ext_max_entries(inode, depth);
386         if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
387                 error_msg = "too large eh_max";
388                 goto corrupted;
389         }
390         if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
391                 error_msg = "invalid eh_entries";
392                 goto corrupted;
393         }
394         if (!ext4_valid_extent_entries(inode, eh, depth)) {
395                 error_msg = "invalid extent entries";
396                 goto corrupted;
397         }
398         return 0;
399
400 corrupted:
401         ext4_error_inode(inode, function, line, 0,
402                         "bad header/extent: %s - magic %x, "
403                         "entries %u, max %u(%u), depth %u(%u)",
404                         error_msg, le16_to_cpu(eh->eh_magic),
405                         le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
406                         max, le16_to_cpu(eh->eh_depth), depth);
407
408         return -EIO;
409 }
410
411 #define ext4_ext_check(inode, eh, depth)        \
412         __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
413
414 int ext4_ext_check_inode(struct inode *inode)
415 {
416         return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
417 }
418
419 #ifdef EXT_DEBUG
420 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
421 {
422         int k, l = path->p_depth;
423
424         ext_debug("path:");
425         for (k = 0; k <= l; k++, path++) {
426                 if (path->p_idx) {
427                   ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
428                             ext4_idx_pblock(path->p_idx));
429                 } else if (path->p_ext) {
430                         ext_debug("  %d:[%d]%d:%llu ",
431                                   le32_to_cpu(path->p_ext->ee_block),
432                                   ext4_ext_is_uninitialized(path->p_ext),
433                                   ext4_ext_get_actual_len(path->p_ext),
434                                   ext4_ext_pblock(path->p_ext));
435                 } else
436                         ext_debug("  []");
437         }
438         ext_debug("\n");
439 }
440
441 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
442 {
443         int depth = ext_depth(inode);
444         struct ext4_extent_header *eh;
445         struct ext4_extent *ex;
446         int i;
447
448         if (!path)
449                 return;
450
451         eh = path[depth].p_hdr;
452         ex = EXT_FIRST_EXTENT(eh);
453
454         ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
455
456         for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
457                 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
458                           ext4_ext_is_uninitialized(ex),
459                           ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
460         }
461         ext_debug("\n");
462 }
463
464 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
465                         ext4_fsblk_t newblock, int level)
466 {
467         int depth = ext_depth(inode);
468         struct ext4_extent *ex;
469
470         if (depth != level) {
471                 struct ext4_extent_idx *idx;
472                 idx = path[level].p_idx;
473                 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
474                         ext_debug("%d: move %d:%llu in new index %llu\n", level,
475                                         le32_to_cpu(idx->ei_block),
476                                         ext4_idx_pblock(idx),
477                                         newblock);
478                         idx++;
479                 }
480
481                 return;
482         }
483
484         ex = path[depth].p_ext;
485         while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
486                 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
487                                 le32_to_cpu(ex->ee_block),
488                                 ext4_ext_pblock(ex),
489                                 ext4_ext_is_uninitialized(ex),
490                                 ext4_ext_get_actual_len(ex),
491                                 newblock);
492                 ex++;
493         }
494 }
495
496 #else
497 #define ext4_ext_show_path(inode, path)
498 #define ext4_ext_show_leaf(inode, path)
499 #define ext4_ext_show_move(inode, path, newblock, level)
500 #endif
501
502 void ext4_ext_drop_refs(struct ext4_ext_path *path)
503 {
504         int depth = path->p_depth;
505         int i;
506
507         for (i = 0; i <= depth; i++, path++)
508                 if (path->p_bh) {
509                         brelse(path->p_bh);
510                         path->p_bh = NULL;
511                 }
512 }
513
514 /*
515  * ext4_ext_binsearch_idx:
516  * binary search for the closest index of the given block
517  * the header must be checked before calling this
518  */
519 static void
520 ext4_ext_binsearch_idx(struct inode *inode,
521                         struct ext4_ext_path *path, ext4_lblk_t block)
522 {
523         struct ext4_extent_header *eh = path->p_hdr;
524         struct ext4_extent_idx *r, *l, *m;
525
526
527         ext_debug("binsearch for %u(idx):  ", block);
528
529         l = EXT_FIRST_INDEX(eh) + 1;
530         r = EXT_LAST_INDEX(eh);
531         while (l <= r) {
532                 m = l + (r - l) / 2;
533                 if (block < le32_to_cpu(m->ei_block))
534                         r = m - 1;
535                 else
536                         l = m + 1;
537                 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
538                                 m, le32_to_cpu(m->ei_block),
539                                 r, le32_to_cpu(r->ei_block));
540         }
541
542         path->p_idx = l - 1;
543         ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
544                   ext4_idx_pblock(path->p_idx));
545
546 #ifdef CHECK_BINSEARCH
547         {
548                 struct ext4_extent_idx *chix, *ix;
549                 int k;
550
551                 chix = ix = EXT_FIRST_INDEX(eh);
552                 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
553                   if (k != 0 &&
554                       le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
555                                 printk(KERN_DEBUG "k=%d, ix=0x%p, "
556                                        "first=0x%p\n", k,
557                                        ix, EXT_FIRST_INDEX(eh));
558                                 printk(KERN_DEBUG "%u <= %u\n",
559                                        le32_to_cpu(ix->ei_block),
560                                        le32_to_cpu(ix[-1].ei_block));
561                         }
562                         BUG_ON(k && le32_to_cpu(ix->ei_block)
563                                            <= le32_to_cpu(ix[-1].ei_block));
564                         if (block < le32_to_cpu(ix->ei_block))
565                                 break;
566                         chix = ix;
567                 }
568                 BUG_ON(chix != path->p_idx);
569         }
570 #endif
571
572 }
573
574 /*
575  * ext4_ext_binsearch:
576  * binary search for closest extent of the given block
577  * the header must be checked before calling this
578  */
579 static void
580 ext4_ext_binsearch(struct inode *inode,
581                 struct ext4_ext_path *path, ext4_lblk_t block)
582 {
583         struct ext4_extent_header *eh = path->p_hdr;
584         struct ext4_extent *r, *l, *m;
585
586         if (eh->eh_entries == 0) {
587                 /*
588                  * this leaf is empty:
589                  * we get such a leaf in split/add case
590                  */
591                 return;
592         }
593
594         ext_debug("binsearch for %u:  ", block);
595
596         l = EXT_FIRST_EXTENT(eh) + 1;
597         r = EXT_LAST_EXTENT(eh);
598
599         while (l <= r) {
600                 m = l + (r - l) / 2;
601                 if (block < le32_to_cpu(m->ee_block))
602                         r = m - 1;
603                 else
604                         l = m + 1;
605                 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
606                                 m, le32_to_cpu(m->ee_block),
607                                 r, le32_to_cpu(r->ee_block));
608         }
609
610         path->p_ext = l - 1;
611         ext_debug("  -> %d:%llu:[%d]%d ",
612                         le32_to_cpu(path->p_ext->ee_block),
613                         ext4_ext_pblock(path->p_ext),
614                         ext4_ext_is_uninitialized(path->p_ext),
615                         ext4_ext_get_actual_len(path->p_ext));
616
617 #ifdef CHECK_BINSEARCH
618         {
619                 struct ext4_extent *chex, *ex;
620                 int k;
621
622                 chex = ex = EXT_FIRST_EXTENT(eh);
623                 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
624                         BUG_ON(k && le32_to_cpu(ex->ee_block)
625                                           <= le32_to_cpu(ex[-1].ee_block));
626                         if (block < le32_to_cpu(ex->ee_block))
627                                 break;
628                         chex = ex;
629                 }
630                 BUG_ON(chex != path->p_ext);
631         }
632 #endif
633
634 }
635
636 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
637 {
638         struct ext4_extent_header *eh;
639
640         eh = ext_inode_hdr(inode);
641         eh->eh_depth = 0;
642         eh->eh_entries = 0;
643         eh->eh_magic = EXT4_EXT_MAGIC;
644         eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
645         ext4_mark_inode_dirty(handle, inode);
646         ext4_ext_invalidate_cache(inode);
647         return 0;
648 }
649
650 struct ext4_ext_path *
651 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
652                                         struct ext4_ext_path *path)
653 {
654         struct ext4_extent_header *eh;
655         struct buffer_head *bh;
656         short int depth, i, ppos = 0, alloc = 0;
657         int ret;
658
659         eh = ext_inode_hdr(inode);
660         depth = ext_depth(inode);
661
662         /* account possible depth increase */
663         if (!path) {
664                 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
665                                 GFP_NOFS);
666                 if (!path)
667                         return ERR_PTR(-ENOMEM);
668                 alloc = 1;
669         }
670         path[0].p_hdr = eh;
671         path[0].p_bh = NULL;
672
673         i = depth;
674         /* walk through the tree */
675         while (i) {
676                 int need_to_validate = 0;
677
678                 ext_debug("depth %d: num %d, max %d\n",
679                           ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
680
681                 ext4_ext_binsearch_idx(inode, path + ppos, block);
682                 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
683                 path[ppos].p_depth = i;
684                 path[ppos].p_ext = NULL;
685
686                 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
687                 if (unlikely(!bh)) {
688                         ret = -ENOMEM;
689                         goto err;
690                 }
691                 if (!bh_uptodate_or_lock(bh)) {
692                         trace_ext4_ext_load_extent(inode, block,
693                                                 path[ppos].p_block);
694                         ret = bh_submit_read(bh);
695                         if (ret < 0) {
696                                 put_bh(bh);
697                                 goto err;
698                         }
699                         /* validate the extent entries */
700                         need_to_validate = 1;
701                 }
702                 eh = ext_block_hdr(bh);
703                 ppos++;
704                 if (unlikely(ppos > depth)) {
705                         put_bh(bh);
706                         EXT4_ERROR_INODE(inode,
707                                          "ppos %d > depth %d", ppos, depth);
708                         ret = -EIO;
709                         goto err;
710                 }
711                 path[ppos].p_bh = bh;
712                 path[ppos].p_hdr = eh;
713                 i--;
714
715                 ret = need_to_validate ? ext4_ext_check(inode, eh, i) : 0;
716                 if (ret < 0)
717                         goto err;
718         }
719
720         path[ppos].p_depth = i;
721         path[ppos].p_ext = NULL;
722         path[ppos].p_idx = NULL;
723
724         /* find extent */
725         ext4_ext_binsearch(inode, path + ppos, block);
726         /* if not an empty leaf */
727         if (path[ppos].p_ext)
728                 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
729
730         ext4_ext_show_path(inode, path);
731
732         return path;
733
734 err:
735         ext4_ext_drop_refs(path);
736         if (alloc)
737                 kfree(path);
738         return ERR_PTR(ret);
739 }
740
741 /*
742  * ext4_ext_insert_index:
743  * insert new index [@logical;@ptr] into the block at @curp;
744  * check where to insert: before @curp or after @curp
745  */
746 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
747                                  struct ext4_ext_path *curp,
748                                  int logical, ext4_fsblk_t ptr)
749 {
750         struct ext4_extent_idx *ix;
751         int len, err;
752
753         err = ext4_ext_get_access(handle, inode, curp);
754         if (err)
755                 return err;
756
757         if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
758                 EXT4_ERROR_INODE(inode,
759                                  "logical %d == ei_block %d!",
760                                  logical, le32_to_cpu(curp->p_idx->ei_block));
761                 return -EIO;
762         }
763
764         if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
765                              >= le16_to_cpu(curp->p_hdr->eh_max))) {
766                 EXT4_ERROR_INODE(inode,
767                                  "eh_entries %d >= eh_max %d!",
768                                  le16_to_cpu(curp->p_hdr->eh_entries),
769                                  le16_to_cpu(curp->p_hdr->eh_max));
770                 return -EIO;
771         }
772
773         if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
774                 /* insert after */
775                 ext_debug("insert new index %d after: %llu\n", logical, ptr);
776                 ix = curp->p_idx + 1;
777         } else {
778                 /* insert before */
779                 ext_debug("insert new index %d before: %llu\n", logical, ptr);
780                 ix = curp->p_idx;
781         }
782
783         len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
784         BUG_ON(len < 0);
785         if (len > 0) {
786                 ext_debug("insert new index %d: "
787                                 "move %d indices from 0x%p to 0x%p\n",
788                                 logical, len, ix, ix + 1);
789                 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
790         }
791
792         if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
793                 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
794                 return -EIO;
795         }
796
797         ix->ei_block = cpu_to_le32(logical);
798         ext4_idx_store_pblock(ix, ptr);
799         le16_add_cpu(&curp->p_hdr->eh_entries, 1);
800
801         if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
802                 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
803                 return -EIO;
804         }
805
806         err = ext4_ext_dirty(handle, inode, curp);
807         ext4_std_error(inode->i_sb, err);
808
809         return err;
810 }
811
812 /*
813  * ext4_ext_split:
814  * inserts new subtree into the path, using free index entry
815  * at depth @at:
816  * - allocates all needed blocks (new leaf and all intermediate index blocks)
817  * - makes decision where to split
818  * - moves remaining extents and index entries (right to the split point)
819  *   into the newly allocated blocks
820  * - initializes subtree
821  */
822 static int ext4_ext_split(handle_t *handle, struct inode *inode,
823                           unsigned int flags,
824                           struct ext4_ext_path *path,
825                           struct ext4_extent *newext, int at)
826 {
827         struct buffer_head *bh = NULL;
828         int depth = ext_depth(inode);
829         struct ext4_extent_header *neh;
830         struct ext4_extent_idx *fidx;
831         int i = at, k, m, a;
832         ext4_fsblk_t newblock, oldblock;
833         __le32 border;
834         ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
835         int err = 0;
836
837         /* make decision: where to split? */
838         /* FIXME: now decision is simplest: at current extent */
839
840         /* if current leaf will be split, then we should use
841          * border from split point */
842         if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
843                 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
844                 return -EIO;
845         }
846         if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
847                 border = path[depth].p_ext[1].ee_block;
848                 ext_debug("leaf will be split."
849                                 " next leaf starts at %d\n",
850                                   le32_to_cpu(border));
851         } else {
852                 border = newext->ee_block;
853                 ext_debug("leaf will be added."
854                                 " next leaf starts at %d\n",
855                                 le32_to_cpu(border));
856         }
857
858         /*
859          * If error occurs, then we break processing
860          * and mark filesystem read-only. index won't
861          * be inserted and tree will be in consistent
862          * state. Next mount will repair buffers too.
863          */
864
865         /*
866          * Get array to track all allocated blocks.
867          * We need this to handle errors and free blocks
868          * upon them.
869          */
870         ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
871         if (!ablocks)
872                 return -ENOMEM;
873
874         /* allocate all needed blocks */
875         ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
876         for (a = 0; a < depth - at; a++) {
877                 newblock = ext4_ext_new_meta_block(handle, inode, path,
878                                                    newext, &err, flags);
879                 if (newblock == 0)
880                         goto cleanup;
881                 ablocks[a] = newblock;
882         }
883
884         /* initialize new leaf */
885         newblock = ablocks[--a];
886         if (unlikely(newblock == 0)) {
887                 EXT4_ERROR_INODE(inode, "newblock == 0!");
888                 err = -EIO;
889                 goto cleanup;
890         }
891         bh = sb_getblk(inode->i_sb, newblock);
892         if (!bh) {
893                 err = -ENOMEM;
894                 goto cleanup;
895         }
896         lock_buffer(bh);
897
898         err = ext4_journal_get_create_access(handle, bh);
899         if (err)
900                 goto cleanup;
901
902         neh = ext_block_hdr(bh);
903         neh->eh_entries = 0;
904         neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
905         neh->eh_magic = EXT4_EXT_MAGIC;
906         neh->eh_depth = 0;
907
908         /* move remainder of path[depth] to the new leaf */
909         if (unlikely(path[depth].p_hdr->eh_entries !=
910                      path[depth].p_hdr->eh_max)) {
911                 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
912                                  path[depth].p_hdr->eh_entries,
913                                  path[depth].p_hdr->eh_max);
914                 err = -EIO;
915                 goto cleanup;
916         }
917         /* start copy from next extent */
918         m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
919         ext4_ext_show_move(inode, path, newblock, depth);
920         if (m) {
921                 struct ext4_extent *ex;
922                 ex = EXT_FIRST_EXTENT(neh);
923                 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
924                 le16_add_cpu(&neh->eh_entries, m);
925         }
926
927         set_buffer_uptodate(bh);
928         unlock_buffer(bh);
929
930         err = ext4_handle_dirty_metadata(handle, inode, bh);
931         if (err)
932                 goto cleanup;
933         brelse(bh);
934         bh = NULL;
935
936         /* correct old leaf */
937         if (m) {
938                 err = ext4_ext_get_access(handle, inode, path + depth);
939                 if (err)
940                         goto cleanup;
941                 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
942                 err = ext4_ext_dirty(handle, inode, path + depth);
943                 if (err)
944                         goto cleanup;
945
946         }
947
948         /* create intermediate indexes */
949         k = depth - at - 1;
950         if (unlikely(k < 0)) {
951                 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
952                 err = -EIO;
953                 goto cleanup;
954         }
955         if (k)
956                 ext_debug("create %d intermediate indices\n", k);
957         /* insert new index into current index block */
958         /* current depth stored in i var */
959         i = depth - 1;
960         while (k--) {
961                 oldblock = newblock;
962                 newblock = ablocks[--a];
963                 bh = sb_getblk(inode->i_sb, newblock);
964                 if (!bh) {
965                         err = -ENOMEM;
966                         goto cleanup;
967                 }
968                 lock_buffer(bh);
969
970                 err = ext4_journal_get_create_access(handle, bh);
971                 if (err)
972                         goto cleanup;
973
974                 neh = ext_block_hdr(bh);
975                 neh->eh_entries = cpu_to_le16(1);
976                 neh->eh_magic = EXT4_EXT_MAGIC;
977                 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
978                 neh->eh_depth = cpu_to_le16(depth - i);
979                 fidx = EXT_FIRST_INDEX(neh);
980                 fidx->ei_block = border;
981                 ext4_idx_store_pblock(fidx, oldblock);
982
983                 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
984                                 i, newblock, le32_to_cpu(border), oldblock);
985
986                 /* move remainder of path[i] to the new index block */
987                 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
988                                         EXT_LAST_INDEX(path[i].p_hdr))) {
989                         EXT4_ERROR_INODE(inode,
990                                          "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
991                                          le32_to_cpu(path[i].p_ext->ee_block));
992                         err = -EIO;
993                         goto cleanup;
994                 }
995                 /* start copy indexes */
996                 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
997                 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
998                                 EXT_MAX_INDEX(path[i].p_hdr));
999                 ext4_ext_show_move(inode, path, newblock, i);
1000                 if (m) {
1001                         memmove(++fidx, path[i].p_idx,
1002                                 sizeof(struct ext4_extent_idx) * m);
1003                         le16_add_cpu(&neh->eh_entries, m);
1004                 }
1005                 set_buffer_uptodate(bh);
1006                 unlock_buffer(bh);
1007
1008                 err = ext4_handle_dirty_metadata(handle, inode, bh);
1009                 if (err)
1010                         goto cleanup;
1011                 brelse(bh);
1012                 bh = NULL;
1013
1014                 /* correct old index */
1015                 if (m) {
1016                         err = ext4_ext_get_access(handle, inode, path + i);
1017                         if (err)
1018                                 goto cleanup;
1019                         le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1020                         err = ext4_ext_dirty(handle, inode, path + i);
1021                         if (err)
1022                                 goto cleanup;
1023                 }
1024
1025                 i--;
1026         }
1027
1028         /* insert new index */
1029         err = ext4_ext_insert_index(handle, inode, path + at,
1030                                     le32_to_cpu(border), newblock);
1031
1032 cleanup:
1033         if (bh) {
1034                 if (buffer_locked(bh))
1035                         unlock_buffer(bh);
1036                 brelse(bh);
1037         }
1038
1039         if (err) {
1040                 /* free all allocated blocks in error case */
1041                 for (i = 0; i < depth; i++) {
1042                         if (!ablocks[i])
1043                                 continue;
1044                         ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1045                                          EXT4_FREE_BLOCKS_METADATA);
1046                 }
1047         }
1048         kfree(ablocks);
1049
1050         return err;
1051 }
1052
1053 /*
1054  * ext4_ext_grow_indepth:
1055  * implements tree growing procedure:
1056  * - allocates new block
1057  * - moves top-level data (index block or leaf) into the new block
1058  * - initializes new top-level, creating index that points to the
1059  *   just created block
1060  */
1061 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1062                                  unsigned int flags,
1063                                  struct ext4_extent *newext)
1064 {
1065         struct ext4_extent_header *neh;
1066         struct buffer_head *bh;
1067         ext4_fsblk_t newblock;
1068         int err = 0;
1069
1070         newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1071                 newext, &err, flags);
1072         if (newblock == 0)
1073                 return err;
1074
1075         bh = sb_getblk(inode->i_sb, newblock);
1076         if (!bh)
1077                 return -ENOMEM;
1078         lock_buffer(bh);
1079
1080         err = ext4_journal_get_create_access(handle, bh);
1081         if (err) {
1082                 unlock_buffer(bh);
1083                 goto out;
1084         }
1085
1086         /* move top-level index/leaf into new block */
1087         memmove(bh->b_data, EXT4_I(inode)->i_data,
1088                 sizeof(EXT4_I(inode)->i_data));
1089
1090         /* set size of new block */
1091         neh = ext_block_hdr(bh);
1092         /* old root could have indexes or leaves
1093          * so calculate e_max right way */
1094         if (ext_depth(inode))
1095                 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1096         else
1097                 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1098         neh->eh_magic = EXT4_EXT_MAGIC;
1099         set_buffer_uptodate(bh);
1100         unlock_buffer(bh);
1101
1102         err = ext4_handle_dirty_metadata(handle, inode, bh);
1103         if (err)
1104                 goto out;
1105
1106         /* Update top-level index: num,max,pointer */
1107         neh = ext_inode_hdr(inode);
1108         neh->eh_entries = cpu_to_le16(1);
1109         ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1110         if (neh->eh_depth == 0) {
1111                 /* Root extent block becomes index block */
1112                 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1113                 EXT_FIRST_INDEX(neh)->ei_block =
1114                         EXT_FIRST_EXTENT(neh)->ee_block;
1115         }
1116         ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1117                   le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1118                   le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1119                   ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1120
1121         neh->eh_depth = cpu_to_le16(le16_to_cpu(neh->eh_depth) + 1);
1122         ext4_mark_inode_dirty(handle, inode);
1123 out:
1124         brelse(bh);
1125
1126         return err;
1127 }
1128
1129 /*
1130  * ext4_ext_create_new_leaf:
1131  * finds empty index and adds new leaf.
1132  * if no free index is found, then it requests in-depth growing.
1133  */
1134 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1135                                     unsigned int flags,
1136                                     struct ext4_ext_path *path,
1137                                     struct ext4_extent *newext)
1138 {
1139         struct ext4_ext_path *curp;
1140         int depth, i, err = 0;
1141
1142 repeat:
1143         i = depth = ext_depth(inode);
1144
1145         /* walk up to the tree and look for free index entry */
1146         curp = path + depth;
1147         while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1148                 i--;
1149                 curp--;
1150         }
1151
1152         /* we use already allocated block for index block,
1153          * so subsequent data blocks should be contiguous */
1154         if (EXT_HAS_FREE_INDEX(curp)) {
1155                 /* if we found index with free entry, then use that
1156                  * entry: create all needed subtree and add new leaf */
1157                 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1158                 if (err)
1159                         goto out;
1160
1161                 /* refill path */
1162                 ext4_ext_drop_refs(path);
1163                 path = ext4_ext_find_extent(inode,
1164                                     (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1165                                     path);
1166                 if (IS_ERR(path))
1167                         err = PTR_ERR(path);
1168         } else {
1169                 /* tree is full, time to grow in depth */
1170                 err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1171                 if (err)
1172                         goto out;
1173
1174                 /* refill path */
1175                 ext4_ext_drop_refs(path);
1176                 path = ext4_ext_find_extent(inode,
1177                                    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1178                                     path);
1179                 if (IS_ERR(path)) {
1180                         err = PTR_ERR(path);
1181                         goto out;
1182                 }
1183
1184                 /*
1185                  * only first (depth 0 -> 1) produces free space;
1186                  * in all other cases we have to split the grown tree
1187                  */
1188                 depth = ext_depth(inode);
1189                 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1190                         /* now we need to split */
1191                         goto repeat;
1192                 }
1193         }
1194
1195 out:
1196         return err;
1197 }
1198
1199 /*
1200  * search the closest allocated block to the left for *logical
1201  * and returns it at @logical + it's physical address at @phys
1202  * if *logical is the smallest allocated block, the function
1203  * returns 0 at @phys
1204  * return value contains 0 (success) or error code
1205  */
1206 static int ext4_ext_search_left(struct inode *inode,
1207                                 struct ext4_ext_path *path,
1208                                 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1209 {
1210         struct ext4_extent_idx *ix;
1211         struct ext4_extent *ex;
1212         int depth, ee_len;
1213
1214         if (unlikely(path == NULL)) {
1215                 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1216                 return -EIO;
1217         }
1218         depth = path->p_depth;
1219         *phys = 0;
1220
1221         if (depth == 0 && path->p_ext == NULL)
1222                 return 0;
1223
1224         /* usually extent in the path covers blocks smaller
1225          * then *logical, but it can be that extent is the
1226          * first one in the file */
1227
1228         ex = path[depth].p_ext;
1229         ee_len = ext4_ext_get_actual_len(ex);
1230         if (*logical < le32_to_cpu(ex->ee_block)) {
1231                 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1232                         EXT4_ERROR_INODE(inode,
1233                                          "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1234                                          *logical, le32_to_cpu(ex->ee_block));
1235                         return -EIO;
1236                 }
1237                 while (--depth >= 0) {
1238                         ix = path[depth].p_idx;
1239                         if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1240                                 EXT4_ERROR_INODE(inode,
1241                                   "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1242                                   ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1243                                   EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1244                 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1245                                   depth);
1246                                 return -EIO;
1247                         }
1248                 }
1249                 return 0;
1250         }
1251
1252         if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1253                 EXT4_ERROR_INODE(inode,
1254                                  "logical %d < ee_block %d + ee_len %d!",
1255                                  *logical, le32_to_cpu(ex->ee_block), ee_len);
1256                 return -EIO;
1257         }
1258
1259         *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1260         *phys = ext4_ext_pblock(ex) + ee_len - 1;
1261         return 0;
1262 }
1263
1264 /*
1265  * search the closest allocated block to the right for *logical
1266  * and returns it at @logical + it's physical address at @phys
1267  * if *logical is the largest allocated block, the function
1268  * returns 0 at @phys
1269  * return value contains 0 (success) or error code
1270  */
1271 static int ext4_ext_search_right(struct inode *inode,
1272                                  struct ext4_ext_path *path,
1273                                  ext4_lblk_t *logical, ext4_fsblk_t *phys,
1274                                  struct ext4_extent **ret_ex)
1275 {
1276         struct buffer_head *bh = NULL;
1277         struct ext4_extent_header *eh;
1278         struct ext4_extent_idx *ix;
1279         struct ext4_extent *ex;
1280         ext4_fsblk_t block;
1281         int depth;      /* Note, NOT eh_depth; depth from top of tree */
1282         int ee_len;
1283
1284         if (unlikely(path == NULL)) {
1285                 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1286                 return -EIO;
1287         }
1288         depth = path->p_depth;
1289         *phys = 0;
1290
1291         if (depth == 0 && path->p_ext == NULL)
1292                 return 0;
1293
1294         /* usually extent in the path covers blocks smaller
1295          * then *logical, but it can be that extent is the
1296          * first one in the file */
1297
1298         ex = path[depth].p_ext;
1299         ee_len = ext4_ext_get_actual_len(ex);
1300         if (*logical < le32_to_cpu(ex->ee_block)) {
1301                 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1302                         EXT4_ERROR_INODE(inode,
1303                                          "first_extent(path[%d].p_hdr) != ex",
1304                                          depth);
1305                         return -EIO;
1306                 }
1307                 while (--depth >= 0) {
1308                         ix = path[depth].p_idx;
1309                         if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1310                                 EXT4_ERROR_INODE(inode,
1311                                                  "ix != EXT_FIRST_INDEX *logical %d!",
1312                                                  *logical);
1313                                 return -EIO;
1314                         }
1315                 }
1316                 goto found_extent;
1317         }
1318
1319         if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1320                 EXT4_ERROR_INODE(inode,
1321                                  "logical %d < ee_block %d + ee_len %d!",
1322                                  *logical, le32_to_cpu(ex->ee_block), ee_len);
1323                 return -EIO;
1324         }
1325
1326         if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1327                 /* next allocated block in this leaf */
1328                 ex++;
1329                 goto found_extent;
1330         }
1331
1332         /* go up and search for index to the right */
1333         while (--depth >= 0) {
1334                 ix = path[depth].p_idx;
1335                 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1336                         goto got_index;
1337         }
1338
1339         /* we've gone up to the root and found no index to the right */
1340         return 0;
1341
1342 got_index:
1343         /* we've found index to the right, let's
1344          * follow it and find the closest allocated
1345          * block to the right */
1346         ix++;
1347         block = ext4_idx_pblock(ix);
1348         while (++depth < path->p_depth) {
1349                 bh = sb_bread(inode->i_sb, block);
1350                 if (bh == NULL)
1351                         return -EIO;
1352                 eh = ext_block_hdr(bh);
1353                 /* subtract from p_depth to get proper eh_depth */
1354                 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1355                         put_bh(bh);
1356                         return -EIO;
1357                 }
1358                 ix = EXT_FIRST_INDEX(eh);
1359                 block = ext4_idx_pblock(ix);
1360                 put_bh(bh);
1361         }
1362
1363         bh = sb_bread(inode->i_sb, block);
1364         if (bh == NULL)
1365                 return -EIO;
1366         eh = ext_block_hdr(bh);
1367         if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1368                 put_bh(bh);
1369                 return -EIO;
1370         }
1371         ex = EXT_FIRST_EXTENT(eh);
1372 found_extent:
1373         *logical = le32_to_cpu(ex->ee_block);
1374         *phys = ext4_ext_pblock(ex);
1375         *ret_ex = ex;
1376         if (bh)
1377                 put_bh(bh);
1378         return 0;
1379 }
1380
1381 /*
1382  * ext4_ext_next_allocated_block:
1383  * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1384  * NOTE: it considers block number from index entry as
1385  * allocated block. Thus, index entries have to be consistent
1386  * with leaves.
1387  */
1388 static ext4_lblk_t
1389 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1390 {
1391         int depth;
1392
1393         BUG_ON(path == NULL);
1394         depth = path->p_depth;
1395
1396         if (depth == 0 && path->p_ext == NULL)
1397                 return EXT_MAX_BLOCKS;
1398
1399         while (depth >= 0) {
1400                 if (depth == path->p_depth) {
1401                         /* leaf */
1402                         if (path[depth].p_ext &&
1403                                 path[depth].p_ext !=
1404                                         EXT_LAST_EXTENT(path[depth].p_hdr))
1405                           return le32_to_cpu(path[depth].p_ext[1].ee_block);
1406                 } else {
1407                         /* index */
1408                         if (path[depth].p_idx !=
1409                                         EXT_LAST_INDEX(path[depth].p_hdr))
1410                           return le32_to_cpu(path[depth].p_idx[1].ei_block);
1411                 }
1412                 depth--;
1413         }
1414
1415         return EXT_MAX_BLOCKS;
1416 }
1417
1418 /*
1419  * ext4_ext_next_leaf_block:
1420  * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1421  */
1422 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1423 {
1424         int depth;
1425
1426         BUG_ON(path == NULL);
1427         depth = path->p_depth;
1428
1429         /* zero-tree has no leaf blocks at all */
1430         if (depth == 0)
1431                 return EXT_MAX_BLOCKS;
1432
1433         /* go to index block */
1434         depth--;
1435
1436         while (depth >= 0) {
1437                 if (path[depth].p_idx !=
1438                                 EXT_LAST_INDEX(path[depth].p_hdr))
1439                         return (ext4_lblk_t)
1440                                 le32_to_cpu(path[depth].p_idx[1].ei_block);
1441                 depth--;
1442         }
1443
1444         return EXT_MAX_BLOCKS;
1445 }
1446
1447 /*
1448  * ext4_ext_correct_indexes:
1449  * if leaf gets modified and modified extent is first in the leaf,
1450  * then we have to correct all indexes above.
1451  * TODO: do we need to correct tree in all cases?
1452  */
1453 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1454                                 struct ext4_ext_path *path)
1455 {
1456         struct ext4_extent_header *eh;
1457         int depth = ext_depth(inode);
1458         struct ext4_extent *ex;
1459         __le32 border;
1460         int k, err = 0;
1461
1462         eh = path[depth].p_hdr;
1463         ex = path[depth].p_ext;
1464
1465         if (unlikely(ex == NULL || eh == NULL)) {
1466                 EXT4_ERROR_INODE(inode,
1467                                  "ex %p == NULL or eh %p == NULL", ex, eh);
1468                 return -EIO;
1469         }
1470
1471         if (depth == 0) {
1472                 /* there is no tree at all */
1473                 return 0;
1474         }
1475
1476         if (ex != EXT_FIRST_EXTENT(eh)) {
1477                 /* we correct tree if first leaf got modified only */
1478                 return 0;
1479         }
1480
1481         /*
1482          * TODO: we need correction if border is smaller than current one
1483          */
1484         k = depth - 1;
1485         border = path[depth].p_ext->ee_block;
1486         err = ext4_ext_get_access(handle, inode, path + k);
1487         if (err)
1488                 return err;
1489         path[k].p_idx->ei_block = border;
1490         err = ext4_ext_dirty(handle, inode, path + k);
1491         if (err)
1492                 return err;
1493
1494         while (k--) {
1495                 /* change all left-side indexes */
1496                 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1497                         break;
1498                 err = ext4_ext_get_access(handle, inode, path + k);
1499                 if (err)
1500                         break;
1501                 path[k].p_idx->ei_block = border;
1502                 err = ext4_ext_dirty(handle, inode, path + k);
1503                 if (err)
1504                         break;
1505         }
1506
1507         return err;
1508 }
1509
1510 int
1511 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1512                                 struct ext4_extent *ex2)
1513 {
1514         unsigned short ext1_ee_len, ext2_ee_len, max_len;
1515
1516         /*
1517          * Make sure that either both extents are uninitialized, or
1518          * both are _not_.
1519          */
1520         if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1521                 return 0;
1522
1523         if (ext4_ext_is_uninitialized(ex1))
1524                 max_len = EXT_UNINIT_MAX_LEN;
1525         else
1526                 max_len = EXT_INIT_MAX_LEN;
1527
1528         ext1_ee_len = ext4_ext_get_actual_len(ex1);
1529         ext2_ee_len = ext4_ext_get_actual_len(ex2);
1530
1531         if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1532                         le32_to_cpu(ex2->ee_block))
1533                 return 0;
1534
1535         /*
1536          * To allow future support for preallocated extents to be added
1537          * as an RO_COMPAT feature, refuse to merge to extents if
1538          * this can result in the top bit of ee_len being set.
1539          */
1540         if (ext1_ee_len + ext2_ee_len > max_len)
1541                 return 0;
1542 #ifdef AGGRESSIVE_TEST
1543         if (ext1_ee_len >= 4)
1544                 return 0;
1545 #endif
1546
1547         if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1548                 return 1;
1549         return 0;
1550 }
1551
1552 /*
1553  * This function tries to merge the "ex" extent to the next extent in the tree.
1554  * It always tries to merge towards right. If you want to merge towards
1555  * left, pass "ex - 1" as argument instead of "ex".
1556  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1557  * 1 if they got merged.
1558  */
1559 static int ext4_ext_try_to_merge_right(struct inode *inode,
1560                                  struct ext4_ext_path *path,
1561                                  struct ext4_extent *ex)
1562 {
1563         struct ext4_extent_header *eh;
1564         unsigned int depth, len;
1565         int merge_done = 0;
1566         int uninitialized = 0;
1567
1568         depth = ext_depth(inode);
1569         BUG_ON(path[depth].p_hdr == NULL);
1570         eh = path[depth].p_hdr;
1571
1572         while (ex < EXT_LAST_EXTENT(eh)) {
1573                 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1574                         break;
1575                 /* merge with next extent! */
1576                 if (ext4_ext_is_uninitialized(ex))
1577                         uninitialized = 1;
1578                 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1579                                 + ext4_ext_get_actual_len(ex + 1));
1580                 if (uninitialized)
1581                         ext4_ext_mark_uninitialized(ex);
1582
1583                 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1584                         len = (EXT_LAST_EXTENT(eh) - ex - 1)
1585                                 * sizeof(struct ext4_extent);
1586                         memmove(ex + 1, ex + 2, len);
1587                 }
1588                 le16_add_cpu(&eh->eh_entries, -1);
1589                 merge_done = 1;
1590                 WARN_ON(eh->eh_entries == 0);
1591                 if (!eh->eh_entries)
1592                         EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1593         }
1594
1595         return merge_done;
1596 }
1597
1598 /*
1599  * This function tries to merge the @ex extent to neighbours in the tree.
1600  * return 1 if merge left else 0.
1601  */
1602 static int ext4_ext_try_to_merge(struct inode *inode,
1603                                   struct ext4_ext_path *path,
1604                                   struct ext4_extent *ex) {
1605         struct ext4_extent_header *eh;
1606         unsigned int depth;
1607         int merge_done = 0;
1608         int ret = 0;
1609
1610         depth = ext_depth(inode);
1611         BUG_ON(path[depth].p_hdr == NULL);
1612         eh = path[depth].p_hdr;
1613
1614         if (ex > EXT_FIRST_EXTENT(eh))
1615                 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1616
1617         if (!merge_done)
1618                 ret = ext4_ext_try_to_merge_right(inode, path, ex);
1619
1620         return ret;
1621 }
1622
1623 /*
1624  * check if a portion of the "newext" extent overlaps with an
1625  * existing extent.
1626  *
1627  * If there is an overlap discovered, it updates the length of the newext
1628  * such that there will be no overlap, and then returns 1.
1629  * If there is no overlap found, it returns 0.
1630  */
1631 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1632                                            struct inode *inode,
1633                                            struct ext4_extent *newext,
1634                                            struct ext4_ext_path *path)
1635 {
1636         ext4_lblk_t b1, b2;
1637         unsigned int depth, len1;
1638         unsigned int ret = 0;
1639
1640         b1 = le32_to_cpu(newext->ee_block);
1641         len1 = ext4_ext_get_actual_len(newext);
1642         depth = ext_depth(inode);
1643         if (!path[depth].p_ext)
1644                 goto out;
1645         b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1646         b2 &= ~(sbi->s_cluster_ratio - 1);
1647
1648         /*
1649          * get the next allocated block if the extent in the path
1650          * is before the requested block(s)
1651          */
1652         if (b2 < b1) {
1653                 b2 = ext4_ext_next_allocated_block(path);
1654                 if (b2 == EXT_MAX_BLOCKS)
1655                         goto out;
1656                 b2 &= ~(sbi->s_cluster_ratio - 1);
1657         }
1658
1659         /* check for wrap through zero on extent logical start block*/
1660         if (b1 + len1 < b1) {
1661                 len1 = EXT_MAX_BLOCKS - b1;
1662                 newext->ee_len = cpu_to_le16(len1);
1663                 ret = 1;
1664         }
1665
1666         /* check for overlap */
1667         if (b1 + len1 > b2) {
1668                 newext->ee_len = cpu_to_le16(b2 - b1);
1669                 ret = 1;
1670         }
1671 out:
1672         return ret;
1673 }
1674
1675 /*
1676  * ext4_ext_insert_extent:
1677  * tries to merge requsted extent into the existing extent or
1678  * inserts requested extent as new one into the tree,
1679  * creating new leaf in the no-space case.
1680  */
1681 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1682                                 struct ext4_ext_path *path,
1683                                 struct ext4_extent *newext, int flag)
1684 {
1685         struct ext4_extent_header *eh;
1686         struct ext4_extent *ex, *fex;
1687         struct ext4_extent *nearex; /* nearest extent */
1688         struct ext4_ext_path *npath = NULL;
1689         int depth, len, err;
1690         ext4_lblk_t next;
1691         unsigned uninitialized = 0;
1692         int flags = 0;
1693
1694         if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1695                 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1696                 return -EIO;
1697         }
1698         depth = ext_depth(inode);
1699         ex = path[depth].p_ext;
1700         if (unlikely(path[depth].p_hdr == NULL)) {
1701                 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1702                 return -EIO;
1703         }
1704
1705         /* try to insert block into found extent and return */
1706         if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1707                 && ext4_can_extents_be_merged(inode, ex, newext)) {
1708                 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1709                           ext4_ext_is_uninitialized(newext),
1710                           ext4_ext_get_actual_len(newext),
1711                           le32_to_cpu(ex->ee_block),
1712                           ext4_ext_is_uninitialized(ex),
1713                           ext4_ext_get_actual_len(ex),
1714                           ext4_ext_pblock(ex));
1715                 err = ext4_ext_get_access(handle, inode, path + depth);
1716                 if (err)
1717                         return err;
1718
1719                 /*
1720                  * ext4_can_extents_be_merged should have checked that either
1721                  * both extents are uninitialized, or both aren't. Thus we
1722                  * need to check only one of them here.
1723                  */
1724                 if (ext4_ext_is_uninitialized(ex))
1725                         uninitialized = 1;
1726                 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1727                                         + ext4_ext_get_actual_len(newext));
1728                 if (uninitialized)
1729                         ext4_ext_mark_uninitialized(ex);
1730                 eh = path[depth].p_hdr;
1731                 nearex = ex;
1732                 goto merge;
1733         }
1734
1735         depth = ext_depth(inode);
1736         eh = path[depth].p_hdr;
1737         if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1738                 goto has_space;
1739
1740         /* probably next leaf has space for us? */
1741         fex = EXT_LAST_EXTENT(eh);
1742         next = EXT_MAX_BLOCKS;
1743         if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1744                 next = ext4_ext_next_leaf_block(path);
1745         if (next != EXT_MAX_BLOCKS) {
1746                 ext_debug("next leaf block - %u\n", next);
1747                 BUG_ON(npath != NULL);
1748                 npath = ext4_ext_find_extent(inode, next, NULL);
1749                 if (IS_ERR(npath))
1750                         return PTR_ERR(npath);
1751                 BUG_ON(npath->p_depth != path->p_depth);
1752                 eh = npath[depth].p_hdr;
1753                 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1754                         ext_debug("next leaf isn't full(%d)\n",
1755                                   le16_to_cpu(eh->eh_entries));
1756                         path = npath;
1757                         goto has_space;
1758                 }
1759                 ext_debug("next leaf has no free space(%d,%d)\n",
1760                           le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1761         }
1762
1763         /*
1764          * There is no free space in the found leaf.
1765          * We're gonna add a new leaf in the tree.
1766          */
1767         if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1768                 flags = EXT4_MB_USE_ROOT_BLOCKS;
1769         err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1770         if (err)
1771                 goto cleanup;
1772         depth = ext_depth(inode);
1773         eh = path[depth].p_hdr;
1774
1775 has_space:
1776         nearex = path[depth].p_ext;
1777
1778         err = ext4_ext_get_access(handle, inode, path + depth);
1779         if (err)
1780                 goto cleanup;
1781
1782         if (!nearex) {
1783                 /* there is no extent in this leaf, create first one */
1784                 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1785                                 le32_to_cpu(newext->ee_block),
1786                                 ext4_ext_pblock(newext),
1787                                 ext4_ext_is_uninitialized(newext),
1788                                 ext4_ext_get_actual_len(newext));
1789                 nearex = EXT_FIRST_EXTENT(eh);
1790         } else {
1791                 if (le32_to_cpu(newext->ee_block)
1792                            > le32_to_cpu(nearex->ee_block)) {
1793                         /* Insert after */
1794                         ext_debug("insert %u:%llu:[%d]%d before: "
1795                                         "nearest %p\n",
1796                                         le32_to_cpu(newext->ee_block),
1797                                         ext4_ext_pblock(newext),
1798                                         ext4_ext_is_uninitialized(newext),
1799                                         ext4_ext_get_actual_len(newext),
1800                                         nearex);
1801                         nearex++;
1802                 } else {
1803                         /* Insert before */
1804                         BUG_ON(newext->ee_block == nearex->ee_block);
1805                         ext_debug("insert %u:%llu:[%d]%d after: "
1806                                         "nearest %p\n",
1807                                         le32_to_cpu(newext->ee_block),
1808                                         ext4_ext_pblock(newext),
1809                                         ext4_ext_is_uninitialized(newext),
1810                                         ext4_ext_get_actual_len(newext),
1811                                         nearex);
1812                 }
1813                 len = EXT_LAST_EXTENT(eh) - nearex + 1;
1814                 if (len > 0) {
1815                         ext_debug("insert %u:%llu:[%d]%d: "
1816                                         "move %d extents from 0x%p to 0x%p\n",
1817                                         le32_to_cpu(newext->ee_block),
1818                                         ext4_ext_pblock(newext),
1819                                         ext4_ext_is_uninitialized(newext),
1820                                         ext4_ext_get_actual_len(newext),
1821                                         len, nearex, nearex + 1);
1822                         memmove(nearex + 1, nearex,
1823                                 len * sizeof(struct ext4_extent));
1824                 }
1825         }
1826
1827         le16_add_cpu(&eh->eh_entries, 1);
1828         path[depth].p_ext = nearex;
1829         nearex->ee_block = newext->ee_block;
1830         ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1831         nearex->ee_len = newext->ee_len;
1832
1833 merge:
1834         /* try to merge extents to the right */
1835         if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1836                 ext4_ext_try_to_merge(inode, path, nearex);
1837
1838         /* try to merge extents to the left */
1839
1840         /* time to correct all indexes above */
1841         err = ext4_ext_correct_indexes(handle, inode, path);
1842         if (err)
1843                 goto cleanup;
1844
1845         err = ext4_ext_dirty(handle, inode, path + depth);
1846
1847 cleanup:
1848         if (npath) {
1849                 ext4_ext_drop_refs(npath);
1850                 kfree(npath);
1851         }
1852         ext4_ext_invalidate_cache(inode);
1853         return err;
1854 }
1855
1856 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1857                                ext4_lblk_t num, ext_prepare_callback func,
1858                                void *cbdata)
1859 {
1860         struct ext4_ext_path *path = NULL;
1861         struct ext4_ext_cache cbex;
1862         struct ext4_extent *ex;
1863         ext4_lblk_t next, start = 0, end = 0;
1864         ext4_lblk_t last = block + num;
1865         int depth, exists, err = 0;
1866
1867         BUG_ON(func == NULL);
1868         BUG_ON(inode == NULL);
1869
1870         while (block < last && block != EXT_MAX_BLOCKS) {
1871                 num = last - block;
1872                 /* find extent for this block */
1873                 down_read(&EXT4_I(inode)->i_data_sem);
1874                 path = ext4_ext_find_extent(inode, block, path);
1875                 up_read(&EXT4_I(inode)->i_data_sem);
1876                 if (IS_ERR(path)) {
1877                         err = PTR_ERR(path);
1878                         path = NULL;
1879                         break;
1880                 }
1881
1882                 depth = ext_depth(inode);
1883                 if (unlikely(path[depth].p_hdr == NULL)) {
1884                         EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1885                         err = -EIO;
1886                         break;
1887                 }
1888                 ex = path[depth].p_ext;
1889                 next = ext4_ext_next_allocated_block(path);
1890
1891                 exists = 0;
1892                 if (!ex) {
1893                         /* there is no extent yet, so try to allocate
1894                          * all requested space */
1895                         start = block;
1896                         end = block + num;
1897                 } else if (le32_to_cpu(ex->ee_block) > block) {
1898                         /* need to allocate space before found extent */
1899                         start = block;
1900                         end = le32_to_cpu(ex->ee_block);
1901                         if (block + num < end)
1902                                 end = block + num;
1903                 } else if (block >= le32_to_cpu(ex->ee_block)
1904                                         + ext4_ext_get_actual_len(ex)) {
1905                         /* need to allocate space after found extent */
1906                         start = block;
1907                         end = block + num;
1908                         if (end >= next)
1909                                 end = next;
1910                 } else if (block >= le32_to_cpu(ex->ee_block)) {
1911                         /*
1912                          * some part of requested space is covered
1913                          * by found extent
1914                          */
1915                         start = block;
1916                         end = le32_to_cpu(ex->ee_block)
1917                                 + ext4_ext_get_actual_len(ex);
1918                         if (block + num < end)
1919                                 end = block + num;
1920                         exists = 1;
1921                 } else {
1922                         BUG();
1923                 }
1924                 BUG_ON(end <= start);
1925
1926                 if (!exists) {
1927                         cbex.ec_block = start;
1928                         cbex.ec_len = end - start;
1929                         cbex.ec_start = 0;
1930                 } else {
1931                         cbex.ec_block = le32_to_cpu(ex->ee_block);
1932                         cbex.ec_len = ext4_ext_get_actual_len(ex);
1933                         cbex.ec_start = ext4_ext_pblock(ex);
1934                 }
1935
1936                 if (unlikely(cbex.ec_len == 0)) {
1937                         EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1938                         err = -EIO;
1939                         break;
1940                 }
1941                 err = func(inode, next, &cbex, ex, cbdata);
1942                 ext4_ext_drop_refs(path);
1943
1944                 if (err < 0)
1945                         break;
1946
1947                 if (err == EXT_REPEAT)
1948                         continue;
1949                 else if (err == EXT_BREAK) {
1950                         err = 0;
1951                         break;
1952                 }
1953
1954                 if (ext_depth(inode) != depth) {
1955                         /* depth was changed. we have to realloc path */
1956                         kfree(path);
1957                         path = NULL;
1958                 }
1959
1960                 block = cbex.ec_block + cbex.ec_len;
1961         }
1962
1963         if (path) {
1964                 ext4_ext_drop_refs(path);
1965                 kfree(path);
1966         }
1967
1968         return err;
1969 }
1970
1971 static void
1972 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1973                         __u32 len, ext4_fsblk_t start)
1974 {
1975         struct ext4_ext_cache *cex;
1976         BUG_ON(len == 0);
1977         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1978         trace_ext4_ext_put_in_cache(inode, block, len, start);
1979         cex = &EXT4_I(inode)->i_cached_extent;
1980         cex->ec_block = block;
1981         cex->ec_len = len;
1982         cex->ec_start = start;
1983         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1984 }
1985
1986 /*
1987  * ext4_ext_put_gap_in_cache:
1988  * calculate boundaries of the gap that the requested block fits into
1989  * and cache this gap
1990  */
1991 static void
1992 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1993                                 ext4_lblk_t block)
1994 {
1995         int depth = ext_depth(inode);
1996         unsigned long len;
1997         ext4_lblk_t lblock;
1998         struct ext4_extent *ex;
1999
2000         ex = path[depth].p_ext;
2001         if (ex == NULL) {
2002                 /* there is no extent yet, so gap is [0;-] */
2003                 lblock = 0;
2004                 len = EXT_MAX_BLOCKS;
2005                 ext_debug("cache gap(whole file):");
2006         } else if (block < le32_to_cpu(ex->ee_block)) {
2007                 lblock = block;
2008                 len = le32_to_cpu(ex->ee_block) - block;
2009                 ext_debug("cache gap(before): %u [%u:%u]",
2010                                 block,
2011                                 le32_to_cpu(ex->ee_block),
2012                                  ext4_ext_get_actual_len(ex));
2013         } else if (block >= le32_to_cpu(ex->ee_block)
2014                         + ext4_ext_get_actual_len(ex)) {
2015                 ext4_lblk_t next;
2016                 lblock = le32_to_cpu(ex->ee_block)
2017                         + ext4_ext_get_actual_len(ex);
2018
2019                 next = ext4_ext_next_allocated_block(path);
2020                 ext_debug("cache gap(after): [%u:%u] %u",
2021                                 le32_to_cpu(ex->ee_block),
2022                                 ext4_ext_get_actual_len(ex),
2023                                 block);
2024                 BUG_ON(next == lblock);
2025                 len = next - lblock;
2026         } else {
2027                 lblock = len = 0;
2028                 BUG();
2029         }
2030
2031         ext_debug(" -> %u:%lu\n", lblock, len);
2032         ext4_ext_put_in_cache(inode, lblock, len, 0);
2033 }
2034
2035 /*
2036  * ext4_ext_check_cache()
2037  * Checks to see if the given block is in the cache.
2038  * If it is, the cached extent is stored in the given
2039  * cache extent pointer.  If the cached extent is a hole,
2040  * this routine should be used instead of
2041  * ext4_ext_in_cache if the calling function needs to
2042  * know the size of the hole.
2043  *
2044  * @inode: The files inode
2045  * @block: The block to look for in the cache
2046  * @ex:    Pointer where the cached extent will be stored
2047  *         if it contains block
2048  *
2049  * Return 0 if cache is invalid; 1 if the cache is valid
2050  */
2051 static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block,
2052         struct ext4_ext_cache *ex){
2053         struct ext4_ext_cache *cex;
2054         struct ext4_sb_info *sbi;
2055         int ret = 0;
2056
2057         /*
2058          * We borrow i_block_reservation_lock to protect i_cached_extent
2059          */
2060         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2061         cex = &EXT4_I(inode)->i_cached_extent;
2062         sbi = EXT4_SB(inode->i_sb);
2063
2064         /* has cache valid data? */
2065         if (cex->ec_len == 0)
2066                 goto errout;
2067
2068         if (in_range(block, cex->ec_block, cex->ec_len)) {
2069                 memcpy(ex, cex, sizeof(struct ext4_ext_cache));
2070                 ext_debug("%u cached by %u:%u:%llu\n",
2071                                 block,
2072                                 cex->ec_block, cex->ec_len, cex->ec_start);
2073                 ret = 1;
2074         }
2075 errout:
2076         trace_ext4_ext_in_cache(inode, block, ret);
2077         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2078         return ret;
2079 }
2080
2081 /*
2082  * ext4_ext_in_cache()
2083  * Checks to see if the given block is in the cache.
2084  * If it is, the cached extent is stored in the given
2085  * extent pointer.
2086  *
2087  * @inode: The files inode
2088  * @block: The block to look for in the cache
2089  * @ex:    Pointer where the cached extent will be stored
2090  *         if it contains block
2091  *
2092  * Return 0 if cache is invalid; 1 if the cache is valid
2093  */
2094 static int
2095 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2096                         struct ext4_extent *ex)
2097 {
2098         struct ext4_ext_cache cex;
2099         int ret = 0;
2100
2101         if (ext4_ext_check_cache(inode, block, &cex)) {
2102                 ex->ee_block = cpu_to_le32(cex.ec_block);
2103                 ext4_ext_store_pblock(ex, cex.ec_start);
2104                 ex->ee_len = cpu_to_le16(cex.ec_len);
2105                 ret = 1;
2106         }
2107
2108         return ret;
2109 }
2110
2111
2112 /*
2113  * ext4_ext_rm_idx:
2114  * removes index from the index block.
2115  */
2116 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2117                         struct ext4_ext_path *path, int depth)
2118 {
2119         int err;
2120         ext4_fsblk_t leaf;
2121
2122         /* free index block */
2123         depth--;
2124         path = path + depth;
2125         leaf = ext4_idx_pblock(path->p_idx);
2126         if (unlikely(path->p_hdr->eh_entries == 0)) {
2127                 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2128                 return -EIO;
2129         }
2130         err = ext4_ext_get_access(handle, inode, path);
2131         if (err)
2132                 return err;
2133
2134         if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2135                 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2136                 len *= sizeof(struct ext4_extent_idx);
2137                 memmove(path->p_idx, path->p_idx + 1, len);
2138         }
2139
2140         le16_add_cpu(&path->p_hdr->eh_entries, -1);
2141         err = ext4_ext_dirty(handle, inode, path);
2142         if (err)
2143                 return err;
2144         ext_debug("index is empty, remove it, free block %llu\n", leaf);
2145         trace_ext4_ext_rm_idx(inode, leaf);
2146
2147         ext4_free_blocks(handle, inode, NULL, leaf, 1,
2148                          EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2149
2150         while (--depth >= 0) {
2151                 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2152                         break;
2153                 path--;
2154                 err = ext4_ext_get_access(handle, inode, path);
2155                 if (err)
2156                         break;
2157                 path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2158                 err = ext4_ext_dirty(handle, inode, path);
2159                 if (err)
2160                         break;
2161         }
2162         return err;
2163 }
2164
2165 /*
2166  * ext4_ext_calc_credits_for_single_extent:
2167  * This routine returns max. credits that needed to insert an extent
2168  * to the extent tree.
2169  * When pass the actual path, the caller should calculate credits
2170  * under i_data_sem.
2171  */
2172 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2173                                                 struct ext4_ext_path *path)
2174 {
2175         if (path) {
2176                 int depth = ext_depth(inode);
2177                 int ret = 0;
2178
2179                 /* probably there is space in leaf? */
2180                 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2181                                 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2182
2183                         /*
2184                          *  There are some space in the leaf tree, no
2185                          *  need to account for leaf block credit
2186                          *
2187                          *  bitmaps and block group descriptor blocks
2188                          *  and other metadata blocks still need to be
2189                          *  accounted.
2190                          */
2191                         /* 1 bitmap, 1 block group descriptor */
2192                         ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2193                         return ret;
2194                 }
2195         }
2196
2197         return ext4_chunk_trans_blocks(inode, nrblocks);
2198 }
2199
2200 /*
2201  * How many index/leaf blocks need to change/allocate to modify nrblocks?
2202  *
2203  * if nrblocks are fit in a single extent (chunk flag is 1), then
2204  * in the worse case, each tree level index/leaf need to be changed
2205  * if the tree split due to insert a new extent, then the old tree
2206  * index/leaf need to be updated too
2207  *
2208  * If the nrblocks are discontiguous, they could cause
2209  * the whole tree split more than once, but this is really rare.
2210  */
2211 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2212 {
2213         int index;
2214         int depth = ext_depth(inode);
2215
2216         if (chunk)
2217                 index = depth * 2;
2218         else
2219                 index = depth * 3;
2220
2221         return index;
2222 }
2223
2224 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2225                               struct ext4_extent *ex,
2226                               ext4_fsblk_t *partial_cluster,
2227                               ext4_lblk_t from, ext4_lblk_t to)
2228 {
2229         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2230         unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2231         ext4_fsblk_t pblk;
2232         int flags = EXT4_FREE_BLOCKS_FORGET;
2233
2234         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2235                 flags |= EXT4_FREE_BLOCKS_METADATA;
2236         /*
2237          * For bigalloc file systems, we never free a partial cluster
2238          * at the beginning of the extent.  Instead, we make a note
2239          * that we tried freeing the cluster, and check to see if we
2240          * need to free it on a subsequent call to ext4_remove_blocks,
2241          * or at the end of the ext4_truncate() operation.
2242          */
2243         flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2244
2245         trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2246         /*
2247          * If we have a partial cluster, and it's different from the
2248          * cluster of the last block, we need to explicitly free the
2249          * partial cluster here.
2250          */
2251         pblk = ext4_ext_pblock(ex) + ee_len - 1;
2252         if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2253                 ext4_free_blocks(handle, inode, NULL,
2254                                  EXT4_C2B(sbi, *partial_cluster),
2255                                  sbi->s_cluster_ratio, flags);
2256                 *partial_cluster = 0;
2257         }
2258
2259 #ifdef EXTENTS_STATS
2260         {
2261                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2262                 spin_lock(&sbi->s_ext_stats_lock);
2263                 sbi->s_ext_blocks += ee_len;
2264                 sbi->s_ext_extents++;
2265                 if (ee_len < sbi->s_ext_min)
2266                         sbi->s_ext_min = ee_len;
2267                 if (ee_len > sbi->s_ext_max)
2268                         sbi->s_ext_max = ee_len;
2269                 if (ext_depth(inode) > sbi->s_depth_max)
2270                         sbi->s_depth_max = ext_depth(inode);
2271                 spin_unlock(&sbi->s_ext_stats_lock);
2272         }
2273 #endif
2274         if (from >= le32_to_cpu(ex->ee_block)
2275             && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2276                 /* tail removal */
2277                 ext4_lblk_t num;
2278
2279                 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2280                 pblk = ext4_ext_pblock(ex) + ee_len - num;
2281                 ext_debug("free last %u blocks starting %llu\n", num, pblk);
2282                 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2283                 /*
2284                  * If the block range to be freed didn't start at the
2285                  * beginning of a cluster, and we removed the entire
2286                  * extent, save the partial cluster here, since we
2287                  * might need to delete if we determine that the
2288                  * truncate operation has removed all of the blocks in
2289                  * the cluster.
2290                  */
2291                 if (pblk & (sbi->s_cluster_ratio - 1) &&
2292                     (ee_len == num))
2293                         *partial_cluster = EXT4_B2C(sbi, pblk);
2294                 else
2295                         *partial_cluster = 0;
2296         } else if (from == le32_to_cpu(ex->ee_block)
2297                    && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2298                 /* head removal */
2299                 ext4_lblk_t num;
2300                 ext4_fsblk_t start;
2301
2302                 num = to - from;
2303                 start = ext4_ext_pblock(ex);
2304
2305                 ext_debug("free first %u blocks starting %llu\n", num, start);
2306                 ext4_free_blocks(handle, inode, NULL, start, num, flags);
2307
2308         } else {
2309                 printk(KERN_INFO "strange request: removal(2) "
2310                                 "%u-%u from %u:%u\n",
2311                                 from, to, le32_to_cpu(ex->ee_block), ee_len);
2312         }
2313         return 0;
2314 }
2315
2316
2317 /*
2318  * ext4_ext_rm_leaf() Removes the extents associated with the
2319  * blocks appearing between "start" and "end", and splits the extents
2320  * if "start" and "end" appear in the same extent
2321  *
2322  * @handle: The journal handle
2323  * @inode:  The files inode
2324  * @path:   The path to the leaf
2325  * @start:  The first block to remove
2326  * @end:   The last block to remove
2327  */
2328 static int
2329 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2330                  struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2331                  ext4_lblk_t start, ext4_lblk_t end)
2332 {
2333         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2334         int err = 0, correct_index = 0;
2335         int depth = ext_depth(inode), credits;
2336         struct ext4_extent_header *eh;
2337         ext4_lblk_t a, b;
2338         unsigned num;
2339         ext4_lblk_t ex_ee_block;
2340         unsigned short ex_ee_len;
2341         unsigned uninitialized = 0;
2342         struct ext4_extent *ex;
2343
2344         /* the header must be checked already in ext4_ext_remove_space() */
2345         ext_debug("truncate since %u in leaf to %u\n", start, end);
2346         if (!path[depth].p_hdr)
2347                 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2348         eh = path[depth].p_hdr;
2349         if (unlikely(path[depth].p_hdr == NULL)) {
2350                 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2351                 return -EIO;
2352         }
2353         /* find where to start removing */
2354         ex = EXT_LAST_EXTENT(eh);
2355
2356         ex_ee_block = le32_to_cpu(ex->ee_block);
2357         ex_ee_len = ext4_ext_get_actual_len(ex);
2358
2359         trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2360
2361         while (ex >= EXT_FIRST_EXTENT(eh) &&
2362                         ex_ee_block + ex_ee_len > start) {
2363
2364                 if (ext4_ext_is_uninitialized(ex))
2365                         uninitialized = 1;
2366                 else
2367                         uninitialized = 0;
2368
2369                 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2370                          uninitialized, ex_ee_len);
2371                 path[depth].p_ext = ex;
2372
2373                 a = ex_ee_block > start ? ex_ee_block : start;
2374                 b = ex_ee_block+ex_ee_len - 1 < end ?
2375                         ex_ee_block+ex_ee_len - 1 : end;
2376
2377                 ext_debug("  border %u:%u\n", a, b);
2378
2379                 /* If this extent is beyond the end of the hole, skip it */
2380                 if (end < ex_ee_block) {
2381                         ex--;
2382                         ex_ee_block = le32_to_cpu(ex->ee_block);
2383                         ex_ee_len = ext4_ext_get_actual_len(ex);
2384                         continue;
2385                 } else if (b != ex_ee_block + ex_ee_len - 1) {
2386                         EXT4_ERROR_INODE(inode,"  bad truncate %u:%u\n",
2387                                          start, end);
2388                         err = -EIO;
2389                         goto out;
2390                 } else if (a != ex_ee_block) {
2391                         /* remove tail of the extent */
2392                         num = a - ex_ee_block;
2393                 } else {
2394                         /* remove whole extent: excellent! */
2395                         num = 0;
2396                 }
2397                 /*
2398                  * 3 for leaf, sb, and inode plus 2 (bmap and group
2399                  * descriptor) for each block group; assume two block
2400                  * groups plus ex_ee_len/blocks_per_block_group for
2401                  * the worst case
2402                  */
2403                 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2404                 if (ex == EXT_FIRST_EXTENT(eh)) {
2405                         correct_index = 1;
2406                         credits += (ext_depth(inode)) + 1;
2407                 }
2408                 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2409
2410                 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2411                 if (err)
2412                         goto out;
2413
2414                 err = ext4_ext_get_access(handle, inode, path + depth);
2415                 if (err)
2416                         goto out;
2417
2418                 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2419                                          a, b);
2420                 if (err)
2421                         goto out;
2422
2423                 if (num == 0)
2424                         /* this extent is removed; mark slot entirely unused */
2425                         ext4_ext_store_pblock(ex, 0);
2426
2427                 ex->ee_len = cpu_to_le16(num);
2428                 /*
2429                  * Do not mark uninitialized if all the blocks in the
2430                  * extent have been removed.
2431                  */
2432                 if (uninitialized && num)
2433                         ext4_ext_mark_uninitialized(ex);
2434                 /*
2435                  * If the extent was completely released,
2436                  * we need to remove it from the leaf
2437                  */
2438                 if (num == 0) {
2439                         if (end != EXT_MAX_BLOCKS - 1) {
2440                                 /*
2441                                  * For hole punching, we need to scoot all the
2442                                  * extents up when an extent is removed so that
2443                                  * we dont have blank extents in the middle
2444                                  */
2445                                 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2446                                         sizeof(struct ext4_extent));
2447
2448                                 /* Now get rid of the one at the end */
2449                                 memset(EXT_LAST_EXTENT(eh), 0,
2450                                         sizeof(struct ext4_extent));
2451                         }
2452                         le16_add_cpu(&eh->eh_entries, -1);
2453                 } else
2454                         *partial_cluster = 0;
2455
2456                 err = ext4_ext_dirty(handle, inode, path + depth);
2457                 if (err)
2458                         goto out;
2459
2460                 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2461                                 ext4_ext_pblock(ex));
2462                 ex--;
2463                 ex_ee_block = le32_to_cpu(ex->ee_block);
2464                 ex_ee_len = ext4_ext_get_actual_len(ex);
2465         }
2466
2467         if (correct_index && eh->eh_entries)
2468                 err = ext4_ext_correct_indexes(handle, inode, path);
2469
2470         /*
2471          * If there is still a entry in the leaf node, check to see if
2472          * it references the partial cluster.  This is the only place
2473          * where it could; if it doesn't, we can free the cluster.
2474          */
2475         if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2476             (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2477              *partial_cluster)) {
2478                 int flags = EXT4_FREE_BLOCKS_FORGET;
2479
2480                 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2481                         flags |= EXT4_FREE_BLOCKS_METADATA;
2482
2483                 ext4_free_blocks(handle, inode, NULL,
2484                                  EXT4_C2B(sbi, *partial_cluster),
2485                                  sbi->s_cluster_ratio, flags);
2486                 *partial_cluster = 0;
2487         }
2488
2489         /* if this leaf is free, then we should
2490          * remove it from index block above */
2491         if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2492                 err = ext4_ext_rm_idx(handle, inode, path, depth);
2493
2494 out:
2495         return err;
2496 }
2497
2498 /*
2499  * ext4_ext_more_to_rm:
2500  * returns 1 if current index has to be freed (even partial)
2501  */
2502 static int
2503 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2504 {
2505         BUG_ON(path->p_idx == NULL);
2506
2507         if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2508                 return 0;
2509
2510         /*
2511          * if truncate on deeper level happened, it wasn't partial,
2512          * so we have to consider current index for truncation
2513          */
2514         if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2515                 return 0;
2516         return 1;
2517 }
2518
2519 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2520                                  ext4_lblk_t end)
2521 {
2522         struct super_block *sb = inode->i_sb;
2523         int depth = ext_depth(inode);
2524         struct ext4_ext_path *path;
2525         ext4_fsblk_t partial_cluster = 0;
2526         handle_t *handle;
2527         int i, err;
2528
2529         ext_debug("truncate since %u to %u\n", start, end);
2530
2531         /* probably first extent we're gonna free will be last in block */
2532         handle = ext4_journal_start(inode, depth + 1);
2533         if (IS_ERR(handle))
2534                 return PTR_ERR(handle);
2535
2536 again:
2537         ext4_ext_invalidate_cache(inode);
2538
2539         trace_ext4_ext_remove_space(inode, start, depth);
2540
2541         /*
2542          * Check if we are removing extents inside the extent tree. If that
2543          * is the case, we are going to punch a hole inside the extent tree
2544          * so we have to check whether we need to split the extent covering
2545          * the last block to remove so we can easily remove the part of it
2546          * in ext4_ext_rm_leaf().
2547          */
2548         if (end < EXT_MAX_BLOCKS - 1) {
2549                 struct ext4_extent *ex;
2550                 ext4_lblk_t ee_block;
2551
2552                 /* find extent for this block */
2553                 path = ext4_ext_find_extent(inode, end, NULL);
2554                 if (IS_ERR(path)) {
2555                         ext4_journal_stop(handle);
2556                         return PTR_ERR(path);
2557                 }
2558                 depth = ext_depth(inode);
2559                 ex = path[depth].p_ext;
2560                 if (!ex)
2561                         goto cont;
2562
2563                 ee_block = le32_to_cpu(ex->ee_block);
2564
2565                 /*
2566                  * See if the last block is inside the extent, if so split
2567                  * the extent at 'end' block so we can easily remove the
2568                  * tail of the first part of the split extent in
2569                  * ext4_ext_rm_leaf().
2570                  */
2571                 if (end >= ee_block &&
2572                     end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2573                         int split_flag = 0;
2574
2575                         if (ext4_ext_is_uninitialized(ex))
2576                                 split_flag = EXT4_EXT_MARK_UNINIT1 |
2577                                              EXT4_EXT_MARK_UNINIT2;
2578
2579                         /*
2580                          * Split the extent in two so that 'end' is the last
2581                          * block in the first new extent
2582                          */
2583                         err = ext4_split_extent_at(handle, inode, path,
2584                                                 end + 1, split_flag,
2585                                                 EXT4_GET_BLOCKS_PRE_IO |
2586                                                 EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
2587
2588                         if (err < 0)
2589                                 goto out;
2590                 }
2591                 ext4_ext_drop_refs(path);
2592                 kfree(path);
2593         }
2594 cont:
2595
2596         /*
2597          * We start scanning from right side, freeing all the blocks
2598          * after i_size and walking into the tree depth-wise.
2599          */
2600         depth = ext_depth(inode);
2601         path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2602         if (path == NULL) {
2603                 ext4_journal_stop(handle);
2604                 return -ENOMEM;
2605         }
2606         path[0].p_depth = depth;
2607         path[0].p_hdr = ext_inode_hdr(inode);
2608
2609         if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2610                 err = -EIO;
2611                 goto out;
2612         }
2613         i = err = 0;
2614
2615         while (i >= 0 && err == 0) {
2616                 if (i == depth) {
2617                         /* this is leaf block */
2618                         err = ext4_ext_rm_leaf(handle, inode, path,
2619                                                &partial_cluster, start,
2620                                                end);
2621                         /* root level has p_bh == NULL, brelse() eats this */
2622                         brelse(path[i].p_bh);
2623                         path[i].p_bh = NULL;
2624                         i--;
2625                         continue;
2626                 }
2627
2628                 /* this is index block */
2629                 if (!path[i].p_hdr) {
2630                         ext_debug("initialize header\n");
2631                         path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2632                 }
2633
2634                 if (!path[i].p_idx) {
2635                         /* this level hasn't been touched yet */
2636                         path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2637                         path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2638                         ext_debug("init index ptr: hdr 0x%p, num %d\n",
2639                                   path[i].p_hdr,
2640                                   le16_to_cpu(path[i].p_hdr->eh_entries));
2641                 } else {
2642                         /* we were already here, see at next index */
2643                         path[i].p_idx--;
2644                 }
2645
2646                 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2647                                 i, EXT_FIRST_INDEX(path[i].p_hdr),
2648                                 path[i].p_idx);
2649                 if (ext4_ext_more_to_rm(path + i)) {
2650                         struct buffer_head *bh;
2651                         /* go to the next level */
2652                         ext_debug("move to level %d (block %llu)\n",
2653                                   i + 1, ext4_idx_pblock(path[i].p_idx));
2654                         memset(path + i + 1, 0, sizeof(*path));
2655                         bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2656                         if (!bh) {
2657                                 /* should we reset i_size? */
2658                                 err = -EIO;
2659                                 break;
2660                         }
2661                         if (WARN_ON(i + 1 > depth)) {
2662                                 err = -EIO;
2663                                 break;
2664                         }
2665                         if (ext4_ext_check(inode, ext_block_hdr(bh),
2666                                                         depth - i - 1)) {
2667                                 err = -EIO;
2668                                 break;
2669                         }
2670                         path[i + 1].p_bh = bh;
2671
2672                         /* save actual number of indexes since this
2673                          * number is changed at the next iteration */
2674                         path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2675                         i++;
2676                 } else {
2677                         /* we finished processing this index, go up */
2678                         if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2679                                 /* index is empty, remove it;
2680                                  * handle must be already prepared by the
2681                                  * truncatei_leaf() */
2682                                 err = ext4_ext_rm_idx(handle, inode, path, i);
2683                         }
2684                         /* root level has p_bh == NULL, brelse() eats this */
2685                         brelse(path[i].p_bh);
2686                         path[i].p_bh = NULL;
2687                         i--;
2688                         ext_debug("return to level %d\n", i);
2689                 }
2690         }
2691
2692         trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2693                         path->p_hdr->eh_entries);
2694
2695         /* If we still have something in the partial cluster and we have removed
2696          * even the first extent, then we should free the blocks in the partial
2697          * cluster as well. */
2698         if (partial_cluster && path->p_hdr->eh_entries == 0) {
2699                 int flags = EXT4_FREE_BLOCKS_FORGET;
2700
2701                 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2702                         flags |= EXT4_FREE_BLOCKS_METADATA;
2703
2704                 ext4_free_blocks(handle, inode, NULL,
2705                                  EXT4_C2B(EXT4_SB(sb), partial_cluster),
2706                                  EXT4_SB(sb)->s_cluster_ratio, flags);
2707                 partial_cluster = 0;
2708         }
2709
2710         /* TODO: flexible tree reduction should be here */
2711         if (path->p_hdr->eh_entries == 0) {
2712                 /*
2713                  * truncate to zero freed all the tree,
2714                  * so we need to correct eh_depth
2715                  */
2716                 err = ext4_ext_get_access(handle, inode, path);
2717                 if (err == 0) {
2718                         ext_inode_hdr(inode)->eh_depth = 0;
2719                         ext_inode_hdr(inode)->eh_max =
2720                                 cpu_to_le16(ext4_ext_space_root(inode, 0));
2721                         err = ext4_ext_dirty(handle, inode, path);
2722                 }
2723         }
2724 out:
2725         ext4_ext_drop_refs(path);
2726         kfree(path);
2727         if (err == -EAGAIN)
2728                 goto again;
2729         ext4_journal_stop(handle);
2730
2731         return err;
2732 }
2733
2734 /*
2735  * called at mount time
2736  */
2737 void ext4_ext_init(struct super_block *sb)
2738 {
2739         /*
2740          * possible initialization would be here
2741          */
2742
2743         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2744 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2745                 printk(KERN_INFO "EXT4-fs: file extents enabled");
2746 #ifdef AGGRESSIVE_TEST
2747                 printk(", aggressive tests");
2748 #endif
2749 #ifdef CHECK_BINSEARCH
2750                 printk(", check binsearch");
2751 #endif
2752 #ifdef EXTENTS_STATS
2753                 printk(", stats");
2754 #endif
2755                 printk("\n");
2756 #endif
2757 #ifdef EXTENTS_STATS
2758                 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2759                 EXT4_SB(sb)->s_ext_min = 1 << 30;
2760                 EXT4_SB(sb)->s_ext_max = 0;
2761 #endif
2762         }
2763 }
2764
2765 /*
2766  * called at umount time
2767  */
2768 void ext4_ext_release(struct super_block *sb)
2769 {
2770         if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2771                 return;
2772
2773 #ifdef EXTENTS_STATS
2774         if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2775                 struct ext4_sb_info *sbi = EXT4_SB(sb);
2776                 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2777                         sbi->s_ext_blocks, sbi->s_ext_extents,
2778                         sbi->s_ext_blocks / sbi->s_ext_extents);
2779                 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2780                         sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2781         }
2782 #endif
2783 }
2784
2785 /* FIXME!! we need to try to merge to left or right after zero-out  */
2786 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2787 {
2788         ext4_fsblk_t ee_pblock;
2789         unsigned int ee_len;
2790         int ret;
2791
2792         ee_len    = ext4_ext_get_actual_len(ex);
2793         ee_pblock = ext4_ext_pblock(ex);
2794
2795         ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2796         if (ret > 0)
2797                 ret = 0;
2798
2799         return ret;
2800 }
2801
2802 /*
2803  * ext4_split_extent_at() splits an extent at given block.
2804  *
2805  * @handle: the journal handle
2806  * @inode: the file inode
2807  * @path: the path to the extent
2808  * @split: the logical block where the extent is splitted.
2809  * @split_flags: indicates if the extent could be zeroout if split fails, and
2810  *               the states(init or uninit) of new extents.
2811  * @flags: flags used to insert new extent to extent tree.
2812  *
2813  *
2814  * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2815  * of which are deterimined by split_flag.
2816  *
2817  * There are two cases:
2818  *  a> the extent are splitted into two extent.
2819  *  b> split is not needed, and just mark the extent.
2820  *
2821  * return 0 on success.
2822  */
2823 static int ext4_split_extent_at(handle_t *handle,
2824                              struct inode *inode,
2825                              struct ext4_ext_path *path,
2826                              ext4_lblk_t split,
2827                              int split_flag,
2828                              int flags)
2829 {
2830         ext4_fsblk_t newblock;
2831         ext4_lblk_t ee_block;
2832         struct ext4_extent *ex, newex, orig_ex;
2833         struct ext4_extent *ex2 = NULL;
2834         unsigned int ee_len, depth;
2835         int err = 0;
2836
2837         BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
2838                (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
2839
2840         ext_debug("ext4_split_extents_at: inode %lu, logical"
2841                 "block %llu\n", inode->i_ino, (unsigned long long)split);
2842
2843         ext4_ext_show_leaf(inode, path);
2844
2845         depth = ext_depth(inode);
2846         ex = path[depth].p_ext;
2847         ee_block = le32_to_cpu(ex->ee_block);
2848         ee_len = ext4_ext_get_actual_len(ex);
2849         newblock = split - ee_block + ext4_ext_pblock(ex);
2850
2851         BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2852
2853         err = ext4_ext_get_access(handle, inode, path + depth);
2854         if (err)
2855                 goto out;
2856
2857         if (split == ee_block) {
2858                 /*
2859                  * case b: block @split is the block that the extent begins with
2860                  * then we just change the state of the extent, and splitting
2861                  * is not needed.
2862                  */
2863                 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2864                         ext4_ext_mark_uninitialized(ex);
2865                 else
2866                         ext4_ext_mark_initialized(ex);
2867
2868                 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2869                         ext4_ext_try_to_merge(inode, path, ex);
2870
2871                 err = ext4_ext_dirty(handle, inode, path + depth);
2872                 goto out;
2873         }
2874
2875         /* case a */
2876         memcpy(&orig_ex, ex, sizeof(orig_ex));
2877         ex->ee_len = cpu_to_le16(split - ee_block);
2878         if (split_flag & EXT4_EXT_MARK_UNINIT1)
2879                 ext4_ext_mark_uninitialized(ex);
2880
2881         /*
2882          * path may lead to new leaf, not to original leaf any more
2883          * after ext4_ext_insert_extent() returns,
2884          */
2885         err = ext4_ext_dirty(handle, inode, path + depth);
2886         if (err)
2887                 goto fix_extent_len;
2888
2889         ex2 = &newex;
2890         ex2->ee_block = cpu_to_le32(split);
2891         ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
2892         ext4_ext_store_pblock(ex2, newblock);
2893         if (split_flag & EXT4_EXT_MARK_UNINIT2)
2894                 ext4_ext_mark_uninitialized(ex2);
2895
2896         err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2897         if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2898                 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
2899                         if (split_flag & EXT4_EXT_DATA_VALID1)
2900                                 err = ext4_ext_zeroout(inode, ex2);
2901                         else
2902                                 err = ext4_ext_zeroout(inode, ex);
2903                 } else
2904                         err = ext4_ext_zeroout(inode, &orig_ex);
2905
2906                 if (err)
2907                         goto fix_extent_len;
2908                 /* update the extent length and mark as initialized */
2909                 ex->ee_len = cpu_to_le16(ee_len);
2910                 ext4_ext_try_to_merge(inode, path, ex);
2911                 err = ext4_ext_dirty(handle, inode, path + depth);
2912                 goto out;
2913         } else if (err)
2914                 goto fix_extent_len;
2915
2916 out:
2917         ext4_ext_show_leaf(inode, path);
2918         return err;
2919
2920 fix_extent_len:
2921         ex->ee_len = orig_ex.ee_len;
2922         ext4_ext_dirty(handle, inode, path + depth);
2923         return err;
2924 }
2925
2926 /*
2927  * ext4_split_extents() splits an extent and mark extent which is covered
2928  * by @map as split_flags indicates
2929  *
2930  * It may result in splitting the extent into multiple extents (upto three)
2931  * There are three possibilities:
2932  *   a> There is no split required
2933  *   b> Splits in two extents: Split is happening at either end of the extent
2934  *   c> Splits in three extents: Somone is splitting in middle of the extent
2935  *
2936  */
2937 static int ext4_split_extent(handle_t *handle,
2938                               struct inode *inode,
2939                               struct ext4_ext_path *path,
2940                               struct ext4_map_blocks *map,
2941                               int split_flag,
2942                               int flags)
2943 {
2944         ext4_lblk_t ee_block;
2945         struct ext4_extent *ex;
2946         unsigned int ee_len, depth;
2947         int err = 0;
2948         int uninitialized;
2949         int split_flag1, flags1;
2950
2951         depth = ext_depth(inode);
2952         ex = path[depth].p_ext;
2953         ee_block = le32_to_cpu(ex->ee_block);
2954         ee_len = ext4_ext_get_actual_len(ex);
2955         uninitialized = ext4_ext_is_uninitialized(ex);
2956
2957         if (map->m_lblk + map->m_len < ee_block + ee_len) {
2958                 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
2959                 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
2960                 if (uninitialized)
2961                         split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
2962                                        EXT4_EXT_MARK_UNINIT2;
2963                 if (split_flag & EXT4_EXT_DATA_VALID2)
2964                         split_flag1 |= EXT4_EXT_DATA_VALID1;
2965                 err = ext4_split_extent_at(handle, inode, path,
2966                                 map->m_lblk + map->m_len, split_flag1, flags1);
2967                 if (err)
2968                         goto out;
2969         }
2970
2971         ext4_ext_drop_refs(path);
2972         path = ext4_ext_find_extent(inode, map->m_lblk, path);
2973         if (IS_ERR(path))
2974                 return PTR_ERR(path);
2975
2976         if (map->m_lblk >= ee_block) {
2977                 split_flag1 = split_flag & (EXT4_EXT_MAY_ZEROOUT |
2978                                             EXT4_EXT_DATA_VALID2);
2979                 if (uninitialized)
2980                         split_flag1 |= EXT4_EXT_MARK_UNINIT1;
2981                 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2982                         split_flag1 |= EXT4_EXT_MARK_UNINIT2;
2983                 err = ext4_split_extent_at(handle, inode, path,
2984                                 map->m_lblk, split_flag1, flags);
2985                 if (err)
2986                         goto out;
2987         }
2988
2989         ext4_ext_show_leaf(inode, path);
2990 out:
2991         return err ? err : map->m_len;
2992 }
2993
2994 #define EXT4_EXT_ZERO_LEN 7
2995 /*
2996  * This function is called by ext4_ext_map_blocks() if someone tries to write
2997  * to an uninitialized extent. It may result in splitting the uninitialized
2998  * extent into multiple extents (up to three - one initialized and two
2999  * uninitialized).
3000  * There are three possibilities:
3001  *   a> There is no split required: Entire extent should be initialized
3002  *   b> Splits in two extents: Write is happening at either end of the extent
3003  *   c> Splits in three extents: Somone is writing in middle of the extent
3004  *
3005  * Pre-conditions:
3006  *  - The extent pointed to by 'path' is uninitialized.
3007  *  - The extent pointed to by 'path' contains a superset
3008  *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3009  *
3010  * Post-conditions on success:
3011  *  - the returned value is the number of blocks beyond map->l_lblk
3012  *    that are allocated and initialized.
3013  *    It is guaranteed to be >= map->m_len.
3014  */
3015 static int ext4_ext_convert_to_initialized(handle_t *handle,
3016                                            struct inode *inode,
3017                                            struct ext4_map_blocks *map,
3018                                            struct ext4_ext_path *path)
3019 {
3020         struct ext4_extent_header *eh;
3021         struct ext4_map_blocks split_map;
3022         struct ext4_extent zero_ex;
3023         struct ext4_extent *ex;
3024         ext4_lblk_t ee_block, eof_block;
3025         unsigned int ee_len, depth;
3026         int allocated;
3027         int err = 0;
3028         int split_flag = 0;
3029
3030         ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3031                 "block %llu, max_blocks %u\n", inode->i_ino,
3032                 (unsigned long long)map->m_lblk, map->m_len);
3033
3034         eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3035                 inode->i_sb->s_blocksize_bits;
3036         if (eof_block < map->m_lblk + map->m_len)
3037                 eof_block = map->m_lblk + map->m_len;
3038
3039         depth = ext_depth(inode);
3040         eh = path[depth].p_hdr;
3041         ex = path[depth].p_ext;
3042         ee_block = le32_to_cpu(ex->ee_block);
3043         ee_len = ext4_ext_get_actual_len(ex);
3044         allocated = ee_len - (map->m_lblk - ee_block);
3045
3046         trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3047
3048         /* Pre-conditions */
3049         BUG_ON(!ext4_ext_is_uninitialized(ex));
3050         BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3051
3052         /*
3053          * Attempt to transfer newly initialized blocks from the currently
3054          * uninitialized extent to its left neighbor. This is much cheaper
3055          * than an insertion followed by a merge as those involve costly
3056          * memmove() calls. This is the common case in steady state for
3057          * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3058          * writes.
3059          *
3060          * Limitations of the current logic:
3061          *  - L1: we only deal with writes at the start of the extent.
3062          *    The approach could be extended to writes at the end
3063          *    of the extent but this scenario was deemed less common.
3064          *  - L2: we do not deal with writes covering the whole extent.
3065          *    This would require removing the extent if the transfer
3066          *    is possible.
3067          *  - L3: we only attempt to merge with an extent stored in the
3068          *    same extent tree node.
3069          */
3070         if ((map->m_lblk == ee_block) &&        /*L1*/
3071                 (map->m_len < ee_len) &&        /*L2*/
3072                 (ex > EXT_FIRST_EXTENT(eh))) {  /*L3*/
3073                 struct ext4_extent *prev_ex;
3074                 ext4_lblk_t prev_lblk;
3075                 ext4_fsblk_t prev_pblk, ee_pblk;
3076                 unsigned int prev_len, write_len;
3077
3078                 prev_ex = ex - 1;
3079                 prev_lblk = le32_to_cpu(prev_ex->ee_block);
3080                 prev_len = ext4_ext_get_actual_len(prev_ex);
3081                 prev_pblk = ext4_ext_pblock(prev_ex);
3082                 ee_pblk = ext4_ext_pblock(ex);
3083                 write_len = map->m_len;
3084
3085                 /*
3086                  * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3087                  * upon those conditions:
3088                  * - C1: prev_ex is initialized,
3089                  * - C2: prev_ex is logically abutting ex,
3090                  * - C3: prev_ex is physically abutting ex,
3091                  * - C4: prev_ex can receive the additional blocks without
3092                  *   overflowing the (initialized) length limit.
3093                  */
3094                 if ((!ext4_ext_is_uninitialized(prev_ex)) &&            /*C1*/
3095                         ((prev_lblk + prev_len) == ee_block) &&         /*C2*/
3096                         ((prev_pblk + prev_len) == ee_pblk) &&          /*C3*/
3097                         (prev_len < (EXT_INIT_MAX_LEN - write_len))) {  /*C4*/
3098                         err = ext4_ext_get_access(handle, inode, path + depth);
3099                         if (err)
3100                                 goto out;
3101
3102                         trace_ext4_ext_convert_to_initialized_fastpath(inode,
3103                                 map, ex, prev_ex);
3104
3105                         /* Shift the start of ex by 'write_len' blocks */
3106                         ex->ee_block = cpu_to_le32(ee_block + write_len);
3107                         ext4_ext_store_pblock(ex, ee_pblk + write_len);
3108                         ex->ee_len = cpu_to_le16(ee_len - write_len);
3109                         ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3110
3111                         /* Extend prev_ex by 'write_len' blocks */
3112                         prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3113
3114                         /* Mark the block containing both extents as dirty */
3115                         ext4_ext_dirty(handle, inode, path + depth);
3116
3117                         /* Update path to point to the right extent */
3118                         path[depth].p_ext = prev_ex;
3119
3120                         /* Result: number of initialized blocks past m_lblk */
3121                         allocated = write_len;
3122                         goto out;
3123                 }
3124         }
3125
3126         WARN_ON(map->m_lblk < ee_block);
3127         /*
3128          * It is safe to convert extent to initialized via explicit
3129          * zeroout only if extent is fully insde i_size or new_size.
3130          */
3131         split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3132
3133         /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
3134         if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
3135             (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3136                 err = ext4_ext_zeroout(inode, ex);
3137                 if (err)
3138                         goto out;
3139
3140                 err = ext4_ext_get_access(handle, inode, path + depth);
3141                 if (err)
3142                         goto out;
3143                 ext4_ext_mark_initialized(ex);
3144                 ext4_ext_try_to_merge(inode, path, ex);
3145                 err = ext4_ext_dirty(handle, inode, path + depth);
3146                 goto out;
3147         }
3148
3149         /*
3150          * four cases:
3151          * 1. split the extent into three extents.
3152          * 2. split the extent into two extents, zeroout the first half.
3153          * 3. split the extent into two extents, zeroout the second half.
3154          * 4. split the extent into two extents with out zeroout.
3155          */
3156         split_map.m_lblk = map->m_lblk;
3157         split_map.m_len = map->m_len;
3158
3159         if (allocated > map->m_len) {
3160                 if (allocated <= EXT4_EXT_ZERO_LEN &&
3161                     (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3162                         /* case 3 */
3163                         zero_ex.ee_block =
3164                                          cpu_to_le32(map->m_lblk);
3165                         zero_ex.ee_len = cpu_to_le16(allocated);
3166                         ext4_ext_store_pblock(&zero_ex,
3167                                 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3168                         err = ext4_ext_zeroout(inode, &zero_ex);
3169                         if (err)
3170                                 goto out;
3171                         split_map.m_lblk = map->m_lblk;
3172                         split_map.m_len = allocated;
3173                 } else if ((map->m_lblk - ee_block + map->m_len <
3174                            EXT4_EXT_ZERO_LEN) &&
3175                            (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3176                         /* case 2 */
3177                         if (map->m_lblk != ee_block) {
3178                                 zero_ex.ee_block = ex->ee_block;
3179                                 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3180                                                         ee_block);
3181                                 ext4_ext_store_pblock(&zero_ex,
3182                                                       ext4_ext_pblock(ex));
3183                                 err = ext4_ext_zeroout(inode, &zero_ex);
3184                                 if (err)
3185                                         goto out;
3186                         }
3187
3188                         split_map.m_lblk = ee_block;
3189                         split_map.m_len = map->m_lblk - ee_block + map->m_len;
3190                         allocated = map->m_len;
3191                 }
3192         }
3193
3194         allocated = ext4_split_extent(handle, inode, path,
3195                                        &split_map, split_flag, 0);
3196         if (allocated < 0)
3197                 err = allocated;
3198
3199 out:
3200         return err ? err : allocated;
3201 }
3202
3203 /*
3204  * This function is called by ext4_ext_map_blocks() from
3205  * ext4_get_blocks_dio_write() when DIO to write
3206  * to an uninitialized extent.
3207  *
3208  * Writing to an uninitialized extent may result in splitting the uninitialized
3209  * extent into multiple /initialized uninitialized extents (up to three)
3210  * There are three possibilities:
3211  *   a> There is no split required: Entire extent should be uninitialized
3212  *   b> Splits in two extents: Write is happening at either end of the extent
3213  *   c> Splits in three extents: Somone is writing in middle of the extent
3214  *
3215  * One of more index blocks maybe needed if the extent tree grow after
3216  * the uninitialized extent split. To prevent ENOSPC occur at the IO
3217  * complete, we need to split the uninitialized extent before DIO submit
3218  * the IO. The uninitialized extent called at this time will be split
3219  * into three uninitialized extent(at most). After IO complete, the part
3220  * being filled will be convert to initialized by the end_io callback function
3221  * via ext4_convert_unwritten_extents().
3222  *
3223  * Returns the size of uninitialized extent to be written on success.
3224  */
3225 static int ext4_split_unwritten_extents(handle_t *handle,
3226                                         struct inode *inode,
3227                                         struct ext4_map_blocks *map,
3228                                         struct ext4_ext_path *path,
3229                                         int flags)
3230 {
3231         ext4_lblk_t eof_block;
3232         ext4_lblk_t ee_block;
3233         struct ext4_extent *ex;
3234         unsigned int ee_len;
3235         int split_flag = 0, depth;
3236
3237         ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3238                 "block %llu, max_blocks %u\n", inode->i_ino,
3239                 (unsigned long long)map->m_lblk, map->m_len);
3240
3241         eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3242                 inode->i_sb->s_blocksize_bits;
3243         if (eof_block < map->m_lblk + map->m_len)
3244                 eof_block = map->m_lblk + map->m_len;
3245         /*
3246          * It is safe to convert extent to initialized via explicit
3247          * zeroout only if extent is fully insde i_size or new_size.
3248          */
3249         depth = ext_depth(inode);
3250         ex = path[depth].p_ext;
3251         ee_block = le32_to_cpu(ex->ee_block);
3252         ee_len = ext4_ext_get_actual_len(ex);
3253
3254         split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3255         split_flag |= EXT4_EXT_MARK_UNINIT2;
3256         if (flags & EXT4_GET_BLOCKS_CONVERT)
3257                 split_flag |= EXT4_EXT_DATA_VALID2;
3258         flags |= EXT4_GET_BLOCKS_PRE_IO;
3259         return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3260 }
3261
3262 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3263                                                 struct inode *inode,
3264                                                 struct ext4_map_blocks *map,
3265                                                 struct ext4_ext_path *path)
3266 {
3267         struct ext4_extent *ex;
3268         ext4_lblk_t ee_block;
3269         unsigned int ee_len;
3270         int depth;
3271         int err = 0;
3272
3273         depth = ext_depth(inode);
3274         ex = path[depth].p_ext;
3275         ee_block = le32_to_cpu(ex->ee_block);
3276         ee_len = ext4_ext_get_actual_len(ex);
3277
3278         ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3279                 "block %llu, max_blocks %u\n", inode->i_ino,
3280                   (unsigned long long)ee_block, ee_len);
3281
3282         /* If extent is larger than requested then split is required */
3283         if (ee_block != map->m_lblk || ee_len > map->m_len) {
3284                 err = ext4_split_unwritten_extents(handle, inode, map, path,
3285                                                    EXT4_GET_BLOCKS_CONVERT);
3286                 if (err < 0)
3287                         goto out;
3288                 ext4_ext_drop_refs(path);
3289                 path = ext4_ext_find_extent(inode, map->m_lblk, path);
3290                 if (IS_ERR(path)) {
3291                         err = PTR_ERR(path);
3292                         goto out;
3293                 }
3294                 depth = ext_depth(inode);
3295                 ex = path[depth].p_ext;
3296         }
3297
3298         err = ext4_ext_get_access(handle, inode, path + depth);
3299         if (err)
3300                 goto out;
3301         /* first mark the extent as initialized */
3302         ext4_ext_mark_initialized(ex);
3303
3304         /* note: ext4_ext_correct_indexes() isn't needed here because
3305          * borders are not changed
3306          */
3307         ext4_ext_try_to_merge(inode, path, ex);
3308
3309         /* Mark modified extent as dirty */
3310         err = ext4_ext_dirty(handle, inode, path + depth);
3311 out:
3312         ext4_ext_show_leaf(inode, path);
3313         return err;
3314 }
3315
3316 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3317                         sector_t block, int count)
3318 {
3319         int i;
3320         for (i = 0; i < count; i++)
3321                 unmap_underlying_metadata(bdev, block + i);
3322 }
3323
3324 /*
3325  * Handle EOFBLOCKS_FL flag, clearing it if necessary
3326  */
3327 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3328                               ext4_lblk_t lblk,
3329                               struct ext4_ext_path *path,
3330                               unsigned int len)
3331 {
3332         int i, depth;
3333         struct ext4_extent_header *eh;
3334         struct ext4_extent *last_ex;
3335
3336         if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3337                 return 0;
3338
3339         depth = ext_depth(inode);
3340         eh = path[depth].p_hdr;
3341
3342         if (unlikely(!eh->eh_entries)) {
3343                 EXT4_ERROR_INODE(inode, "eh->eh_entries == 0 and "
3344                                  "EOFBLOCKS_FL set");
3345                 return -EIO;
3346         }
3347         last_ex = EXT_LAST_EXTENT(eh);
3348         /*
3349          * We should clear the EOFBLOCKS_FL flag if we are writing the
3350          * last block in the last extent in the file.  We test this by
3351          * first checking to see if the caller to
3352          * ext4_ext_get_blocks() was interested in the last block (or
3353          * a block beyond the last block) in the current extent.  If
3354          * this turns out to be false, we can bail out from this
3355          * function immediately.
3356          */
3357         if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3358             ext4_ext_get_actual_len(last_ex))
3359                 return 0;
3360         /*
3361          * If the caller does appear to be planning to write at or
3362          * beyond the end of the current extent, we then test to see
3363          * if the current extent is the last extent in the file, by
3364          * checking to make sure it was reached via the rightmost node
3365          * at each level of the tree.
3366          */
3367         for (i = depth-1; i >= 0; i--)
3368                 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3369                         return 0;
3370         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3371         return ext4_mark_inode_dirty(handle, inode);
3372 }
3373
3374 /**
3375  * ext4_find_delalloc_range: find delayed allocated block in the given range.
3376  *
3377  * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns
3378  * whether there are any buffers marked for delayed allocation. It returns '1'
3379  * on the first delalloc'ed buffer head found. If no buffer head in the given
3380  * range is marked for delalloc, it returns 0.
3381  * lblk_start should always be <= lblk_end.
3382  * search_hint_reverse is to indicate that searching in reverse from lblk_end to
3383  * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed
3384  * block sooner). This is useful when blocks are truncated sequentially from
3385  * lblk_start towards lblk_end.
3386  */
3387 static int ext4_find_delalloc_range(struct inode *inode,
3388                                     ext4_lblk_t lblk_start,
3389                                     ext4_lblk_t lblk_end,
3390                                     int search_hint_reverse)
3391 {
3392         struct address_space *mapping = inode->i_mapping;
3393         struct buffer_head *head, *bh = NULL;
3394         struct page *page;
3395         ext4_lblk_t i, pg_lblk;
3396         pgoff_t index;
3397
3398         /* reverse search wont work if fs block size is less than page size */
3399         if (inode->i_blkbits < PAGE_CACHE_SHIFT)
3400                 search_hint_reverse = 0;
3401
3402         if (search_hint_reverse)
3403                 i = lblk_end;
3404         else
3405                 i = lblk_start;
3406
3407         index = i >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
3408
3409         while ((i >= lblk_start) && (i <= lblk_end)) {
3410                 page = find_get_page(mapping, index);
3411                 if (!page)
3412                         goto nextpage;
3413
3414                 if (!page_has_buffers(page))
3415                         goto nextpage;
3416
3417                 head = page_buffers(page);
3418                 if (!head)
3419                         goto nextpage;
3420
3421                 bh = head;
3422                 pg_lblk = index << (PAGE_CACHE_SHIFT -
3423                                                 inode->i_blkbits);
3424                 do {
3425                         if (unlikely(pg_lblk < lblk_start)) {
3426                                 /*
3427                                  * This is possible when fs block size is less
3428                                  * than page size and our cluster starts/ends in
3429                                  * middle of the page. So we need to skip the
3430                                  * initial few blocks till we reach the 'lblk'
3431                                  */
3432                                 pg_lblk++;
3433                                 continue;
3434                         }
3435
3436                         /* Check if the buffer is delayed allocated and that it
3437                          * is not yet mapped. (when da-buffers are mapped during
3438                          * their writeout, their da_mapped bit is set.)
3439                          */
3440                         if (buffer_delay(bh) && !buffer_da_mapped(bh)) {
3441                                 page_cache_release(page);
3442                                 trace_ext4_find_delalloc_range(inode,
3443                                                 lblk_start, lblk_end,
3444                                                 search_hint_reverse,
3445                                                 1, i);
3446                                 return 1;
3447                         }
3448                         if (search_hint_reverse)
3449                                 i--;
3450                         else
3451                                 i++;
3452                 } while ((i >= lblk_start) && (i <= lblk_end) &&
3453                                 ((bh = bh->b_this_page) != head));
3454 nextpage:
3455                 if (page)
3456                         page_cache_release(page);
3457                 /*
3458                  * Move to next page. 'i' will be the first lblk in the next
3459                  * page.
3460                  */
3461                 if (search_hint_reverse)
3462                         index--;
3463                 else
3464                         index++;
3465                 i = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
3466         }
3467
3468         trace_ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3469                                         search_hint_reverse, 0, 0);
3470         return 0;
3471 }
3472
3473 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk,
3474                                int search_hint_reverse)
3475 {
3476         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3477         ext4_lblk_t lblk_start, lblk_end;
3478         lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3479         lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3480
3481         return ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3482                                         search_hint_reverse);
3483 }
3484
3485 /**
3486  * Determines how many complete clusters (out of those specified by the 'map')
3487  * are under delalloc and were reserved quota for.
3488  * This function is called when we are writing out the blocks that were
3489  * originally written with their allocation delayed, but then the space was
3490  * allocated using fallocate() before the delayed allocation could be resolved.
3491  * The cases to look for are:
3492  * ('=' indicated delayed allocated blocks
3493  *  '-' indicates non-delayed allocated blocks)
3494  * (a) partial clusters towards beginning and/or end outside of allocated range
3495  *     are not delalloc'ed.
3496  *      Ex:
3497  *      |----c---=|====c====|====c====|===-c----|
3498  *               |++++++ allocated ++++++|
3499  *      ==> 4 complete clusters in above example
3500  *
3501  * (b) partial cluster (outside of allocated range) towards either end is
3502  *     marked for delayed allocation. In this case, we will exclude that
3503  *     cluster.
3504  *      Ex:
3505  *      |----====c========|========c========|
3506  *           |++++++ allocated ++++++|
3507  *      ==> 1 complete clusters in above example
3508  *
3509  *      Ex:
3510  *      |================c================|
3511  *            |++++++ allocated ++++++|
3512  *      ==> 0 complete clusters in above example
3513  *
3514  * The ext4_da_update_reserve_space will be called only if we
3515  * determine here that there were some "entire" clusters that span
3516  * this 'allocated' range.
3517  * In the non-bigalloc case, this function will just end up returning num_blks
3518  * without ever calling ext4_find_delalloc_range.
3519  */
3520 static unsigned int
3521 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3522                            unsigned int num_blks)
3523 {
3524         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3525         ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3526         ext4_lblk_t lblk_from, lblk_to, c_offset;
3527         unsigned int allocated_clusters = 0;
3528
3529         alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3530         alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3531
3532         /* max possible clusters for this allocation */
3533         allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3534
3535         trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3536
3537         /* Check towards left side */
3538         c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3539         if (c_offset) {
3540                 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3541                 lblk_to = lblk_from + c_offset - 1;
3542
3543                 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3544                         allocated_clusters--;
3545         }
3546
3547         /* Now check towards right. */
3548         c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3549         if (allocated_clusters && c_offset) {
3550                 lblk_from = lblk_start + num_blks;
3551                 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3552
3553                 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3554                         allocated_clusters--;
3555         }
3556
3557         return allocated_clusters;
3558 }
3559
3560 static int
3561 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3562                         struct ext4_map_blocks *map,
3563                         struct ext4_ext_path *path, int flags,
3564                         unsigned int allocated, ext4_fsblk_t newblock)
3565 {
3566         int ret = 0;
3567         int err = 0;
3568         ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3569
3570         ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
3571                   "block %llu, max_blocks %u, flags %d, allocated %u",
3572                   inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3573                   flags, allocated);
3574         ext4_ext_show_leaf(inode, path);
3575
3576         trace_ext4_ext_handle_uninitialized_extents(inode, map, allocated,
3577                                                     newblock);
3578
3579         /* get_block() before submit the IO, split the extent */
3580         if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3581                 ret = ext4_split_unwritten_extents(handle, inode, map,
3582                                                    path, flags);
3583                 /*
3584                  * Flag the inode(non aio case) or end_io struct (aio case)
3585                  * that this IO needs to conversion to written when IO is
3586                  * completed
3587                  */
3588                 if (io)
3589                         ext4_set_io_unwritten_flag(inode, io);
3590                 else
3591                         ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3592                 if (ext4_should_dioread_nolock(inode))
3593                         map->m_flags |= EXT4_MAP_UNINIT;
3594                 goto out;
3595         }
3596         /* IO end_io complete, convert the filled extent to written */
3597         if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3598                 ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3599                                                         path);
3600                 if (ret >= 0) {
3601                         ext4_update_inode_fsync_trans(handle, inode, 1);
3602                         err = check_eofblocks_fl(handle, inode, map->m_lblk,
3603                                                  path, map->m_len);
3604                 } else
3605                         err = ret;
3606                 goto out2;
3607         }
3608         /* buffered IO case */
3609         /*
3610          * repeat fallocate creation request
3611          * we already have an unwritten extent
3612          */
3613         if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3614                 goto map_out;
3615
3616         /* buffered READ or buffered write_begin() lookup */
3617         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3618                 /*
3619                  * We have blocks reserved already.  We
3620                  * return allocated blocks so that delalloc
3621                  * won't do block reservation for us.  But
3622                  * the buffer head will be unmapped so that
3623                  * a read from the block returns 0s.
3624                  */
3625                 map->m_flags |= EXT4_MAP_UNWRITTEN;
3626                 goto out1;
3627         }
3628
3629         /* buffered write, writepage time, convert*/
3630         ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3631         if (ret >= 0)
3632                 ext4_update_inode_fsync_trans(handle, inode, 1);
3633 out:
3634         if (ret <= 0) {
3635                 err = ret;
3636                 goto out2;
3637         } else
3638                 allocated = ret;
3639         map->m_flags |= EXT4_MAP_NEW;
3640         /*
3641          * if we allocated more blocks than requested
3642          * we need to make sure we unmap the extra block
3643          * allocated. The actual needed block will get
3644          * unmapped later when we find the buffer_head marked
3645          * new.
3646          */
3647         if (allocated > map->m_len) {
3648                 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3649                                         newblock + map->m_len,
3650                                         allocated - map->m_len);
3651                 allocated = map->m_len;
3652         }
3653
3654         /*
3655          * If we have done fallocate with the offset that is already
3656          * delayed allocated, we would have block reservation
3657          * and quota reservation done in the delayed write path.
3658          * But fallocate would have already updated quota and block
3659          * count for this offset. So cancel these reservation
3660          */
3661         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3662                 unsigned int reserved_clusters;
3663                 reserved_clusters = get_reserved_cluster_alloc(inode,
3664                                 map->m_lblk, map->m_len);
3665                 if (reserved_clusters)
3666                         ext4_da_update_reserve_space(inode,
3667                                                      reserved_clusters,
3668                                                      0);
3669         }
3670
3671 map_out:
3672         map->m_flags |= EXT4_MAP_MAPPED;
3673         if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3674                 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3675                                          map->m_len);
3676                 if (err < 0)
3677                         goto out2;
3678         }
3679 out1:
3680         if (allocated > map->m_len)
3681                 allocated = map->m_len;
3682         ext4_ext_show_leaf(inode, path);
3683         map->m_pblk = newblock;
3684         map->m_len = allocated;
3685 out2:
3686         if (path) {
3687                 ext4_ext_drop_refs(path);
3688                 kfree(path);
3689         }
3690         return err ? err : allocated;
3691 }
3692
3693 /*
3694  * get_implied_cluster_alloc - check to see if the requested
3695  * allocation (in the map structure) overlaps with a cluster already
3696  * allocated in an extent.
3697  *      @sb     The filesystem superblock structure
3698  *      @map    The requested lblk->pblk mapping
3699  *      @ex     The extent structure which might contain an implied
3700  *                      cluster allocation
3701  *
3702  * This function is called by ext4_ext_map_blocks() after we failed to
3703  * find blocks that were already in the inode's extent tree.  Hence,
3704  * we know that the beginning of the requested region cannot overlap
3705  * the extent from the inode's extent tree.  There are three cases we
3706  * want to catch.  The first is this case:
3707  *
3708  *               |--- cluster # N--|
3709  *    |--- extent ---|  |---- requested region ---|
3710  *                      |==========|
3711  *
3712  * The second case that we need to test for is this one:
3713  *
3714  *   |--------- cluster # N ----------------|
3715  *         |--- requested region --|   |------- extent ----|
3716  *         |=======================|
3717  *
3718  * The third case is when the requested region lies between two extents
3719  * within the same cluster:
3720  *          |------------- cluster # N-------------|
3721  * |----- ex -----|                  |---- ex_right ----|
3722  *                  |------ requested region ------|
3723  *                  |================|
3724  *
3725  * In each of the above cases, we need to set the map->m_pblk and
3726  * map->m_len so it corresponds to the return the extent labelled as
3727  * "|====|" from cluster #N, since it is already in use for data in
3728  * cluster EXT4_B2C(sbi, map->m_lblk).  We will then return 1 to
3729  * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3730  * as a new "allocated" block region.  Otherwise, we will return 0 and
3731  * ext4_ext_map_blocks() will then allocate one or more new clusters
3732  * by calling ext4_mb_new_blocks().
3733  */
3734 static int get_implied_cluster_alloc(struct super_block *sb,
3735                                      struct ext4_map_blocks *map,
3736                                      struct ext4_extent *ex,
3737                                      struct ext4_ext_path *path)
3738 {
3739         struct ext4_sb_info *sbi = EXT4_SB(sb);
3740         ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3741         ext4_lblk_t ex_cluster_start, ex_cluster_end;
3742         ext4_lblk_t rr_cluster_start, rr_cluster_end;
3743         ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3744         ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3745         unsigned short ee_len = ext4_ext_get_actual_len(ex);
3746
3747         /* The extent passed in that we are trying to match */
3748         ex_cluster_start = EXT4_B2C(sbi, ee_block);
3749         ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3750
3751         /* The requested region passed into ext4_map_blocks() */
3752         rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3753         rr_cluster_end = EXT4_B2C(sbi, map->m_lblk + map->m_len - 1);
3754
3755         if ((rr_cluster_start == ex_cluster_end) ||
3756             (rr_cluster_start == ex_cluster_start)) {
3757                 if (rr_cluster_start == ex_cluster_end)
3758                         ee_start += ee_len - 1;
3759                 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3760                         c_offset;
3761                 map->m_len = min(map->m_len,
3762                                  (unsigned) sbi->s_cluster_ratio - c_offset);
3763                 /*
3764                  * Check for and handle this case:
3765                  *
3766                  *   |--------- cluster # N-------------|
3767                  *                     |------- extent ----|
3768                  *         |--- requested region ---|
3769                  *         |===========|
3770                  */
3771
3772                 if (map->m_lblk < ee_block)
3773                         map->m_len = min(map->m_len, ee_block - map->m_lblk);
3774
3775                 /*
3776                  * Check for the case where there is already another allocated
3777                  * block to the right of 'ex' but before the end of the cluster.
3778                  *
3779                  *          |------------- cluster # N-------------|
3780                  * |----- ex -----|                  |---- ex_right ----|
3781                  *                  |------ requested region ------|
3782                  *                  |================|
3783                  */
3784                 if (map->m_lblk > ee_block) {
3785                         ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3786                         map->m_len = min(map->m_len, next - map->m_lblk);
3787                 }
3788
3789                 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3790                 return 1;
3791         }
3792
3793         trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3794         return 0;
3795 }
3796
3797
3798 /*
3799  * Block allocation/map/preallocation routine for extents based files
3800  *
3801  *
3802  * Need to be called with
3803  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3804  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3805  *
3806  * return > 0, number of of blocks already mapped/allocated
3807  *          if create == 0 and these are pre-allocated blocks
3808  *              buffer head is unmapped
3809  *          otherwise blocks are mapped
3810  *
3811  * return = 0, if plain look up failed (blocks have not been allocated)
3812  *          buffer head is unmapped
3813  *
3814  * return < 0, error case.
3815  */
3816 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3817                         struct ext4_map_blocks *map, int flags)
3818 {
3819         struct ext4_ext_path *path = NULL;
3820         struct ext4_extent newex, *ex, *ex2;
3821         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3822         ext4_fsblk_t newblock = 0;
3823         int free_on_err = 0, err = 0, depth, ret;
3824         unsigned int allocated = 0, offset = 0;
3825         unsigned int allocated_clusters = 0;
3826         unsigned int punched_out = 0;
3827         unsigned int result = 0;
3828         struct ext4_allocation_request ar;
3829         ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3830         ext4_lblk_t cluster_offset;
3831
3832         ext_debug("blocks %u/%u requested for inode %lu\n",
3833                   map->m_lblk, map->m_len, inode->i_ino);
3834         trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3835
3836         /* check in cache */
3837         if (!(flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) &&
3838                 ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3839                 if (!newex.ee_start_lo && !newex.ee_start_hi) {
3840                         if ((sbi->s_cluster_ratio > 1) &&
3841                             ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3842                                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3843
3844                         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3845                                 /*
3846                                  * block isn't allocated yet and
3847                                  * user doesn't want to allocate it
3848                                  */
3849                                 goto out2;
3850                         }
3851                         /* we should allocate requested block */
3852                 } else {
3853                         /* block is already allocated */
3854                         if (sbi->s_cluster_ratio > 1)
3855                                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3856                         newblock = map->m_lblk
3857                                    - le32_to_cpu(newex.ee_block)
3858                                    + ext4_ext_pblock(&newex);
3859                         /* number of remaining blocks in the extent */
3860                         allocated = ext4_ext_get_actual_len(&newex) -
3861                                 (map->m_lblk - le32_to_cpu(newex.ee_block));
3862                         goto out;
3863                 }
3864         }
3865
3866         /* find extent for this block */
3867         path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3868         if (IS_ERR(path)) {
3869                 err = PTR_ERR(path);
3870                 path = NULL;
3871                 goto out2;
3872         }
3873
3874         depth = ext_depth(inode);
3875
3876         /*
3877          * consistent leaf must not be empty;
3878          * this situation is possible, though, _during_ tree modification;
3879          * this is why assert can't be put in ext4_ext_find_extent()
3880          */
3881         if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3882                 EXT4_ERROR_INODE(inode, "bad extent address "
3883                                  "lblock: %lu, depth: %d pblock %lld",
3884                                  (unsigned long) map->m_lblk, depth,
3885                                  path[depth].p_block);
3886                 err = -EIO;
3887                 goto out2;
3888         }
3889
3890         ex = path[depth].p_ext;
3891         if (ex) {
3892                 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3893                 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3894                 unsigned short ee_len;
3895
3896                 /*
3897                  * Uninitialized extents are treated as holes, except that
3898                  * we split out initialized portions during a write.
3899                  */
3900                 ee_len = ext4_ext_get_actual_len(ex);
3901
3902                 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3903
3904                 /* if found extent covers block, simply return it */
3905                 if (in_range(map->m_lblk, ee_block, ee_len)) {
3906                         struct ext4_map_blocks punch_map;
3907                         ext4_fsblk_t partial_cluster = 0;
3908
3909                         newblock = map->m_lblk - ee_block + ee_start;
3910                         /* number of remaining blocks in the extent */
3911                         allocated = ee_len - (map->m_lblk - ee_block);
3912                         ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3913                                   ee_block, ee_len, newblock);
3914
3915                         if ((flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) == 0) {
3916                                 /*
3917                                  * Do not put uninitialized extent
3918                                  * in the cache
3919                                  */
3920                                 if (!ext4_ext_is_uninitialized(ex)) {
3921                                         ext4_ext_put_in_cache(inode, ee_block,
3922                                                 ee_len, ee_start);
3923                                         goto out;
3924                                 }
3925                                 ret = ext4_ext_handle_uninitialized_extents(
3926                                         handle, inode, map, path, flags,
3927                                         allocated, newblock);
3928                                 return ret;
3929                         }
3930
3931                         /*
3932                          * Punch out the map length, but only to the
3933                          * end of the extent
3934                          */
3935                         punched_out = allocated < map->m_len ?
3936                                 allocated : map->m_len;
3937
3938                         /*
3939                          * Sense extents need to be converted to
3940                          * uninitialized, they must fit in an
3941                          * uninitialized extent
3942                          */
3943                         if (punched_out > EXT_UNINIT_MAX_LEN)
3944                                 punched_out = EXT_UNINIT_MAX_LEN;
3945
3946                         punch_map.m_lblk = map->m_lblk;
3947                         punch_map.m_pblk = newblock;
3948                         punch_map.m_len = punched_out;
3949                         punch_map.m_flags = 0;
3950
3951                         /* Check to see if the extent needs to be split */
3952                         if (punch_map.m_len != ee_len ||
3953                                 punch_map.m_lblk != ee_block) {
3954
3955                                 ret = ext4_split_extent(handle, inode,
3956                                 path, &punch_map, 0,
3957                                 EXT4_GET_BLOCKS_PUNCH_OUT_EXT |
3958                                 EXT4_GET_BLOCKS_PRE_IO);
3959
3960                                 if (ret < 0) {
3961                                         err = ret;
3962                                         goto out2;
3963                                 }
3964                                 /*
3965                                  * find extent for the block at
3966                                  * the start of the hole
3967                                  */
3968                                 ext4_ext_drop_refs(path);
3969                                 kfree(path);
3970
3971                                 path = ext4_ext_find_extent(inode,
3972                                 map->m_lblk, NULL);
3973                                 if (IS_ERR(path)) {
3974                                         err = PTR_ERR(path);
3975                                         path = NULL;
3976                                         goto out2;
3977                                 }
3978
3979                                 depth = ext_depth(inode);
3980                                 ex = path[depth].p_ext;
3981                                 ee_len = ext4_ext_get_actual_len(ex);
3982                                 ee_block = le32_to_cpu(ex->ee_block);
3983                                 ee_start = ext4_ext_pblock(ex);
3984
3985                         }
3986
3987                         ext4_ext_mark_uninitialized(ex);
3988
3989                         ext4_ext_invalidate_cache(inode);
3990
3991                         err = ext4_ext_rm_leaf(handle, inode, path,
3992                                                &partial_cluster, map->m_lblk,
3993                                                map->m_lblk + punched_out);
3994
3995                         if (!err && path->p_hdr->eh_entries == 0) {
3996                                 /*
3997                                  * Punch hole freed all of this sub tree,
3998                                  * so we need to correct eh_depth
3999                                  */
4000                                 err = ext4_ext_get_access(handle, inode, path);
4001                                 if (err == 0) {
4002                                         ext_inode_hdr(inode)->eh_depth = 0;
4003                                         ext_inode_hdr(inode)->eh_max =
4004                                         cpu_to_le16(ext4_ext_space_root(
4005                                                 inode, 0));
4006
4007                                         err = ext4_ext_dirty(
4008                                                 handle, inode, path);
4009                                 }
4010                         }
4011
4012                         goto out2;
4013                 }
4014         }
4015
4016         if ((sbi->s_cluster_ratio > 1) &&
4017             ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
4018                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4019
4020         /*
4021          * requested block isn't allocated yet;
4022          * we couldn't try to create block if create flag is zero
4023          */
4024         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4025                 /*
4026                  * put just found gap into cache to speed up
4027                  * subsequent requests
4028                  */
4029                 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4030                 goto out2;
4031         }
4032
4033         /*
4034          * Okay, we need to do block allocation.
4035          */
4036         map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4037         newex.ee_block = cpu_to_le32(map->m_lblk);
4038         cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
4039
4040         /*
4041          * If we are doing bigalloc, check to see if the extent returned
4042          * by ext4_ext_find_extent() implies a cluster we can use.
4043          */
4044         if (cluster_offset && ex &&
4045             get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4046                 ar.len = allocated = map->m_len;
4047                 newblock = map->m_pblk;
4048                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4049                 goto got_allocated_blocks;
4050         }
4051
4052         /* find neighbour allocated blocks */
4053         ar.lleft = map->m_lblk;
4054         err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4055         if (err)
4056                 goto out2;
4057         ar.lright = map->m_lblk;
4058         ex2 = NULL;
4059         err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4060         if (err)
4061                 goto out2;
4062
4063         /* Check if the extent after searching to the right implies a
4064          * cluster we can use. */
4065         if ((sbi->s_cluster_ratio > 1) && ex2 &&
4066             get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4067                 ar.len = allocated = map->m_len;
4068                 newblock = map->m_pblk;
4069                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4070                 goto got_allocated_blocks;
4071         }
4072
4073         /*
4074          * See if request is beyond maximum number of blocks we can have in
4075          * a single extent. For an initialized extent this limit is
4076          * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4077          * EXT_UNINIT_MAX_LEN.
4078          */
4079         if (map->m_len > EXT_INIT_MAX_LEN &&
4080             !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4081                 map->m_len = EXT_INIT_MAX_LEN;
4082         else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4083                  (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4084                 map->m_len = EXT_UNINIT_MAX_LEN;
4085
4086         /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4087         newex.ee_len = cpu_to_le16(map->m_len);
4088         err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4089         if (err)
4090                 allocated = ext4_ext_get_actual_len(&newex);
4091         else
4092                 allocated = map->m_len;
4093
4094         /* allocate new block */
4095         ar.inode = inode;
4096         ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4097         ar.logical = map->m_lblk;
4098         /*
4099          * We calculate the offset from the beginning of the cluster
4100          * for the logical block number, since when we allocate a
4101          * physical cluster, the physical block should start at the
4102          * same offset from the beginning of the cluster.  This is
4103          * needed so that future calls to get_implied_cluster_alloc()
4104          * work correctly.
4105          */
4106         offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4107         ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4108         ar.goal -= offset;
4109         ar.logical -= offset;
4110         if (S_ISREG(inode->i_mode))
4111                 ar.flags = EXT4_MB_HINT_DATA;
4112         else
4113                 /* disable in-core preallocation for non-regular files */
4114                 ar.flags = 0;
4115         if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4116                 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4117         newblock = ext4_mb_new_blocks(handle, &ar, &err);
4118         if (!newblock)
4119                 goto out2;
4120         ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4121                   ar.goal, newblock, allocated);
4122         free_on_err = 1;
4123         allocated_clusters = ar.len;
4124         ar.len = EXT4_C2B(sbi, ar.len) - offset;
4125         if (ar.len > allocated)
4126                 ar.len = allocated;
4127
4128 got_allocated_blocks:
4129         /* try to insert new extent into found leaf and return */
4130         ext4_ext_store_pblock(&newex, newblock + offset);
4131         newex.ee_len = cpu_to_le16(ar.len);
4132         /* Mark uninitialized */
4133         if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4134                 ext4_ext_mark_uninitialized(&newex);
4135                 /*
4136                  * io_end structure was created for every IO write to an
4137                  * uninitialized extent. To avoid unnecessary conversion,
4138                  * here we flag the IO that really needs the conversion.
4139                  * For non asycn direct IO case, flag the inode state
4140                  * that we need to perform conversion when IO is done.
4141                  */
4142                 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
4143                         if (io)
4144                                 ext4_set_io_unwritten_flag(inode, io);
4145                         else
4146                                 ext4_set_inode_state(inode,
4147                                                      EXT4_STATE_DIO_UNWRITTEN);
4148                 }
4149                 if (ext4_should_dioread_nolock(inode))
4150                         map->m_flags |= EXT4_MAP_UNINIT;
4151         }
4152
4153         err = 0;
4154         if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4155                 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4156                                          path, ar.len);
4157         if (!err)
4158                 err = ext4_ext_insert_extent(handle, inode, path,
4159                                              &newex, flags);
4160         if (err && free_on_err) {
4161                 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4162                         EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4163                 /* free data blocks we just allocated */
4164                 /* not a good idea to call discard here directly,
4165                  * but otherwise we'd need to call it every free() */
4166                 ext4_discard_preallocations(inode);
4167                 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4168                                  ext4_ext_get_actual_len(&newex), fb_flags);
4169                 goto out2;
4170         }
4171
4172         /* previous routine could use block we allocated */
4173         newblock = ext4_ext_pblock(&newex);
4174         allocated = ext4_ext_get_actual_len(&newex);
4175         if (allocated > map->m_len)
4176                 allocated = map->m_len;
4177         map->m_flags |= EXT4_MAP_NEW;
4178
4179         /*
4180          * Update reserved blocks/metadata blocks after successful
4181          * block allocation which had been deferred till now.
4182          */
4183         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4184                 unsigned int reserved_clusters;
4185                 /*
4186                  * Check how many clusters we had reserved this allocated range
4187                  */
4188                 reserved_clusters = get_reserved_cluster_alloc(inode,
4189                                                 map->m_lblk, allocated);
4190                 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4191                         if (reserved_clusters) {
4192                                 /*
4193                                  * We have clusters reserved for this range.
4194                                  * But since we are not doing actual allocation
4195                                  * and are simply using blocks from previously
4196                                  * allocated cluster, we should release the
4197                                  * reservation and not claim quota.
4198                                  */
4199                                 ext4_da_update_reserve_space(inode,
4200                                                 reserved_clusters, 0);
4201                         }
4202                 } else {
4203                         BUG_ON(allocated_clusters < reserved_clusters);
4204                         /* We will claim quota for all newly allocated blocks.*/
4205                         ext4_da_update_reserve_space(inode, allocated_clusters,
4206                                                         1);
4207                         if (reserved_clusters < allocated_clusters) {
4208                                 struct ext4_inode_info *ei = EXT4_I(inode);
4209                                 int reservation = allocated_clusters -
4210                                                   reserved_clusters;
4211                                 /*
4212                                  * It seems we claimed few clusters outside of
4213                                  * the range of this allocation. We should give
4214                                  * it back to the reservation pool. This can
4215                                  * happen in the following case:
4216                                  *
4217                                  * * Suppose s_cluster_ratio is 4 (i.e., each
4218                                  *   cluster has 4 blocks. Thus, the clusters
4219                                  *   are [0-3],[4-7],[8-11]...
4220                                  * * First comes delayed allocation write for
4221                                  *   logical blocks 10 & 11. Since there were no
4222                                  *   previous delayed allocated blocks in the
4223                                  *   range [8-11], we would reserve 1 cluster
4224                                  *   for this write.
4225                                  * * Next comes write for logical blocks 3 to 8.
4226                                  *   In this case, we will reserve 2 clusters
4227                                  *   (for [0-3] and [4-7]; and not for [8-11] as
4228                                  *   that range has a delayed allocated blocks.
4229                                  *   Thus total reserved clusters now becomes 3.
4230                                  * * Now, during the delayed allocation writeout
4231                                  *   time, we will first write blocks [3-8] and
4232                                  *   allocate 3 clusters for writing these
4233                                  *   blocks. Also, we would claim all these
4234                                  *   three clusters above.
4235                                  * * Now when we come here to writeout the
4236                                  *   blocks [10-11], we would expect to claim
4237                                  *   the reservation of 1 cluster we had made
4238                                  *   (and we would claim it since there are no
4239                                  *   more delayed allocated blocks in the range
4240                                  *   [8-11]. But our reserved cluster count had
4241                                  *   already gone to 0.
4242                                  *
4243                                  *   Thus, at the step 4 above when we determine
4244                                  *   that there are still some unwritten delayed
4245                                  *   allocated blocks outside of our current
4246                                  *   block range, we should increment the
4247                                  *   reserved clusters count so that when the
4248                                  *   remaining blocks finally gets written, we
4249                                  *   could claim them.
4250                                  */
4251                                 dquot_reserve_block(inode,
4252                                                 EXT4_C2B(sbi, reservation));
4253                                 spin_lock(&ei->i_block_reservation_lock);
4254                                 ei->i_reserved_data_blocks += reservation;
4255                                 spin_unlock(&ei->i_block_reservation_lock);
4256                         }
4257                 }
4258         }
4259
4260         /*
4261          * Cache the extent and update transaction to commit on fdatasync only
4262          * when it is _not_ an uninitialized extent.
4263          */
4264         if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4265                 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4266                 ext4_update_inode_fsync_trans(handle, inode, 1);
4267         } else
4268                 ext4_update_inode_fsync_trans(handle, inode, 0);
4269 out:
4270         if (allocated > map->m_len)
4271                 allocated = map->m_len;
4272         ext4_ext_show_leaf(inode, path);
4273         map->m_flags |= EXT4_MAP_MAPPED;
4274         map->m_pblk = newblock;
4275         map->m_len = allocated;
4276 out2:
4277         if (path) {
4278                 ext4_ext_drop_refs(path);
4279                 kfree(path);
4280         }
4281         result = (flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) ?
4282                         punched_out : allocated;
4283
4284         trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
4285                 newblock, map->m_len, err ? err : result);
4286
4287         return err ? err : result;
4288 }
4289
4290 void ext4_ext_truncate(struct inode *inode)
4291 {
4292         struct address_space *mapping = inode->i_mapping;
4293         struct super_block *sb = inode->i_sb;
4294         ext4_lblk_t last_block;
4295         handle_t *handle;
4296         loff_t page_len;
4297         int err = 0;
4298
4299         /*
4300          * finish any pending end_io work so we won't run the risk of
4301          * converting any truncated blocks to initialized later
4302          */
4303         ext4_flush_completed_IO(inode);
4304
4305         /*
4306          * probably first extent we're gonna free will be last in block
4307          */
4308         err = ext4_writepage_trans_blocks(inode);
4309         handle = ext4_journal_start(inode, err);
4310         if (IS_ERR(handle))
4311                 return;
4312
4313         if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4314                 page_len = PAGE_CACHE_SIZE -
4315                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
4316
4317                 err = ext4_discard_partial_page_buffers(handle,
4318                         mapping, inode->i_size, page_len, 0);
4319
4320                 if (err)
4321                         goto out_stop;
4322         }
4323
4324         if (ext4_orphan_add(handle, inode))
4325                 goto out_stop;
4326
4327         down_write(&EXT4_I(inode)->i_data_sem);
4328         ext4_ext_invalidate_cache(inode);
4329
4330         ext4_discard_preallocations(inode);
4331
4332         /*
4333          * TODO: optimization is possible here.
4334          * Probably we need not scan at all,
4335          * because page truncation is enough.
4336          */
4337
4338         /* we have to know where to truncate from in crash case */
4339         EXT4_I(inode)->i_disksize = inode->i_size;
4340         ext4_mark_inode_dirty(handle, inode);
4341
4342         last_block = (inode->i_size + sb->s_blocksize - 1)
4343                         >> EXT4_BLOCK_SIZE_BITS(sb);
4344         err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4345
4346         /* In a multi-transaction truncate, we only make the final
4347          * transaction synchronous.
4348          */
4349         if (IS_SYNC(inode))
4350                 ext4_handle_sync(handle);
4351
4352         up_write(&EXT4_I(inode)->i_data_sem);
4353
4354 out_stop:
4355         /*
4356          * If this was a simple ftruncate() and the file will remain alive,
4357          * then we need to clear up the orphan record which we created above.
4358          * However, if this was a real unlink then we were called by
4359          * ext4_delete_inode(), and we allow that function to clean up the
4360          * orphan info for us.
4361          */
4362         if (inode->i_nlink)
4363                 ext4_orphan_del(handle, inode);
4364
4365         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4366         ext4_mark_inode_dirty(handle, inode);
4367         ext4_journal_stop(handle);
4368 }
4369
4370 static void ext4_falloc_update_inode(struct inode *inode,
4371                                 int mode, loff_t new_size, int update_ctime)
4372 {
4373         struct timespec now;
4374
4375         if (update_ctime) {
4376                 now = current_fs_time(inode->i_sb);
4377                 if (!timespec_equal(&inode->i_ctime, &now))
4378                         inode->i_ctime = now;
4379         }
4380         /*
4381          * Update only when preallocation was requested beyond
4382          * the file size.
4383          */
4384         if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4385                 if (new_size > i_size_read(inode))
4386                         i_size_write(inode, new_size);
4387                 if (new_size > EXT4_I(inode)->i_disksize)
4388                         ext4_update_i_disksize(inode, new_size);
4389         } else {
4390                 /*
4391                  * Mark that we allocate beyond EOF so the subsequent truncate
4392                  * can proceed even if the new size is the same as i_size.
4393                  */
4394                 if (new_size > i_size_read(inode))
4395                         ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4396         }
4397
4398 }
4399
4400 /*
4401  * preallocate space for a file. This implements ext4's fallocate file
4402  * operation, which gets called from sys_fallocate system call.
4403  * For block-mapped files, posix_fallocate should fall back to the method
4404  * of writing zeroes to the required new blocks (the same behavior which is
4405  * expected for file systems which do not support fallocate() system call).
4406  */
4407 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4408 {
4409         struct inode *inode = file->f_path.dentry->d_inode;
4410         handle_t *handle;
4411         loff_t new_size;
4412         unsigned int max_blocks;
4413         int ret = 0;
4414         int ret2 = 0;
4415         int retries = 0;
4416         int flags;
4417         struct ext4_map_blocks map;
4418         unsigned int credits, blkbits = inode->i_blkbits;
4419
4420         /*
4421          * currently supporting (pre)allocate mode for extent-based
4422          * files _only_
4423          */
4424         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4425                 return -EOPNOTSUPP;
4426
4427         /* Return error if mode is not supported */
4428         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4429                 return -EOPNOTSUPP;
4430
4431         if (mode & FALLOC_FL_PUNCH_HOLE)
4432                 return ext4_punch_hole(file, offset, len);
4433
4434         trace_ext4_fallocate_enter(inode, offset, len, mode);
4435         map.m_lblk = offset >> blkbits;
4436         /*
4437          * We can't just convert len to max_blocks because
4438          * If blocksize = 4096 offset = 3072 and len = 2048
4439          */
4440         max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4441                 - map.m_lblk;
4442         /*
4443          * credits to insert 1 extent into extent tree
4444          */
4445         credits = ext4_chunk_trans_blocks(inode, max_blocks);
4446         mutex_lock(&inode->i_mutex);
4447         ret = inode_newsize_ok(inode, (len + offset));
4448         if (ret) {
4449                 mutex_unlock(&inode->i_mutex);
4450                 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4451                 return ret;
4452         }
4453         flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4454         if (mode & FALLOC_FL_KEEP_SIZE)
4455                 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4456         /*
4457          * Don't normalize the request if it can fit in one extent so
4458          * that it doesn't get unnecessarily split into multiple
4459          * extents.
4460          */
4461         if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4462                 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4463 retry:
4464         while (ret >= 0 && ret < max_blocks) {
4465                 map.m_lblk = map.m_lblk + ret;
4466                 map.m_len = max_blocks = max_blocks - ret;
4467                 handle = ext4_journal_start(inode, credits);
4468                 if (IS_ERR(handle)) {
4469                         ret = PTR_ERR(handle);
4470                         break;
4471                 }
4472                 ret = ext4_map_blocks(handle, inode, &map, flags);
4473                 if (ret <= 0) {
4474 #ifdef EXT4FS_DEBUG
4475                         WARN_ON(ret <= 0);
4476                         printk(KERN_ERR "%s: ext4_ext_map_blocks "
4477                                     "returned error inode#%lu, block=%u, "
4478                                     "max_blocks=%u", __func__,
4479                                     inode->i_ino, map.m_lblk, max_blocks);
4480 #endif
4481                         ext4_mark_inode_dirty(handle, inode);
4482                         ret2 = ext4_journal_stop(handle);
4483                         break;
4484                 }
4485                 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4486                                                 blkbits) >> blkbits))
4487                         new_size = offset + len;
4488                 else
4489                         new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4490
4491                 ext4_falloc_update_inode(inode, mode, new_size,
4492                                          (map.m_flags & EXT4_MAP_NEW));
4493                 ext4_mark_inode_dirty(handle, inode);
4494                 ret2 = ext4_journal_stop(handle);
4495                 if (ret2)
4496                         break;
4497         }
4498         if (ret == -ENOSPC &&
4499                         ext4_should_retry_alloc(inode->i_sb, &retries)) {
4500                 ret = 0;
4501                 goto retry;
4502         }
4503         mutex_unlock(&inode->i_mutex);
4504         trace_ext4_fallocate_exit(inode, offset, max_blocks,
4505                                 ret > 0 ? ret2 : ret);
4506         return ret > 0 ? ret2 : ret;
4507 }
4508
4509 /*
4510  * This function convert a range of blocks to written extents
4511  * The caller of this function will pass the start offset and the size.
4512  * all unwritten extents within this range will be converted to
4513  * written extents.
4514  *
4515  * This function is called from the direct IO end io call back
4516  * function, to convert the fallocated extents after IO is completed.
4517  * Returns 0 on success.
4518  */
4519 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4520                                     ssize_t len)
4521 {
4522         handle_t *handle;
4523         unsigned int max_blocks;
4524         int ret = 0;
4525         int ret2 = 0;
4526         struct ext4_map_blocks map;
4527         unsigned int credits, blkbits = inode->i_blkbits;
4528
4529         map.m_lblk = offset >> blkbits;
4530         /*
4531          * We can't just convert len to max_blocks because
4532          * If blocksize = 4096 offset = 3072 and len = 2048
4533          */
4534         max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4535                       map.m_lblk);
4536         /*
4537          * credits to insert 1 extent into extent tree
4538          */
4539         credits = ext4_chunk_trans_blocks(inode, max_blocks);
4540         while (ret >= 0 && ret < max_blocks) {
4541                 map.m_lblk += ret;
4542                 map.m_len = (max_blocks -= ret);
4543                 handle = ext4_journal_start(inode, credits);
4544                 if (IS_ERR(handle)) {
4545                         ret = PTR_ERR(handle);
4546                         break;
4547                 }
4548                 ret = ext4_map_blocks(handle, inode, &map,
4549                                       EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4550                 if (ret <= 0) {
4551                         WARN_ON(ret <= 0);
4552                         printk(KERN_ERR "%s: ext4_ext_map_blocks "
4553                                     "returned error inode#%lu, block=%u, "
4554                                     "max_blocks=%u", __func__,
4555                                     inode->i_ino, map.m_lblk, map.m_len);
4556                 }
4557                 ext4_mark_inode_dirty(handle, inode);
4558                 ret2 = ext4_journal_stop(handle);
4559                 if (ret <= 0 || ret2 )
4560                         break;
4561         }
4562         return ret > 0 ? ret2 : ret;
4563 }
4564
4565 /*
4566  * Callback function called for each extent to gather FIEMAP information.
4567  */
4568 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
4569                        struct ext4_ext_cache *newex, struct ext4_extent *ex,
4570                        void *data)
4571 {
4572         __u64   logical;
4573         __u64   physical;
4574         __u64   length;
4575         __u32   flags = 0;
4576         int             ret = 0;
4577         struct fiemap_extent_info *fieinfo = data;
4578         unsigned char blksize_bits;
4579
4580         blksize_bits = inode->i_sb->s_blocksize_bits;
4581         logical = (__u64)newex->ec_block << blksize_bits;
4582
4583         if (newex->ec_start == 0) {
4584                 /*
4585                  * No extent in extent-tree contains block @newex->ec_start,
4586                  * then the block may stay in 1)a hole or 2)delayed-extent.
4587                  *
4588                  * Holes or delayed-extents are processed as follows.
4589                  * 1. lookup dirty pages with specified range in pagecache.
4590                  *    If no page is got, then there is no delayed-extent and
4591                  *    return with EXT_CONTINUE.
4592                  * 2. find the 1st mapped buffer,
4593                  * 3. check if the mapped buffer is both in the request range
4594                  *    and a delayed buffer. If not, there is no delayed-extent,
4595                  *    then return.
4596                  * 4. a delayed-extent is found, the extent will be collected.
4597                  */
4598                 ext4_lblk_t     end = 0;
4599                 pgoff_t         last_offset;
4600                 pgoff_t         offset;
4601                 pgoff_t         index;
4602                 pgoff_t         start_index = 0;
4603                 struct page     **pages = NULL;
4604                 struct buffer_head *bh = NULL;
4605                 struct buffer_head *head = NULL;
4606                 unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
4607
4608                 pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
4609                 if (pages == NULL)
4610                         return -ENOMEM;
4611
4612                 offset = logical >> PAGE_SHIFT;
4613 repeat:
4614                 last_offset = offset;
4615                 head = NULL;
4616                 ret = find_get_pages_tag(inode->i_mapping, &offset,
4617                                         PAGECACHE_TAG_DIRTY, nr_pages, pages);
4618
4619                 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4620                         /* First time, try to find a mapped buffer. */
4621                         if (ret == 0) {
4622 out:
4623                                 for (index = 0; index < ret; index++)
4624                                         page_cache_release(pages[index]);
4625                                 /* just a hole. */
4626                                 kfree(pages);
4627                                 return EXT_CONTINUE;
4628                         }
4629                         index = 0;
4630
4631 next_page:
4632                         /* Try to find the 1st mapped buffer. */
4633                         end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
4634                                   blksize_bits;
4635                         if (!page_has_buffers(pages[index]))
4636                                 goto out;
4637                         head = page_buffers(pages[index]);
4638                         if (!head)
4639                                 goto out;
4640
4641                         index++;
4642                         bh = head;
4643                         do {
4644                                 if (end >= newex->ec_block +
4645                                         newex->ec_len)
4646                                         /* The buffer is out of
4647                                          * the request range.
4648                                          */
4649                                         goto out;
4650
4651                                 if (buffer_mapped(bh) &&
4652                                     end >= newex->ec_block) {
4653                                         start_index = index - 1;
4654                                         /* get the 1st mapped buffer. */
4655                                         goto found_mapped_buffer;
4656                                 }
4657
4658                                 bh = bh->b_this_page;
4659                                 end++;
4660                         } while (bh != head);
4661
4662                         /* No mapped buffer in the range found in this page,
4663                          * We need to look up next page.
4664                          */
4665                         if (index >= ret) {
4666                                 /* There is no page left, but we need to limit
4667                                  * newex->ec_len.
4668                                  */
4669                                 newex->ec_len = end - newex->ec_block;
4670                                 goto out;
4671                         }
4672                         goto next_page;
4673                 } else {
4674                         /*Find contiguous delayed buffers. */
4675                         if (ret > 0 && pages[0]->index == last_offset)
4676                                 head = page_buffers(pages[0]);
4677                         bh = head;
4678                         index = 1;
4679                         start_index = 0;
4680                 }
4681
4682 found_mapped_buffer:
4683                 if (bh != NULL && buffer_delay(bh)) {
4684                         /* 1st or contiguous delayed buffer found. */
4685                         if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4686                                 /*
4687                                  * 1st delayed buffer found, record
4688                                  * the start of extent.
4689                                  */
4690                                 flags |= FIEMAP_EXTENT_DELALLOC;
4691                                 newex->ec_block = end;
4692                                 logical = (__u64)end << blksize_bits;
4693                         }
4694                         /* Find contiguous delayed buffers. */
4695                         do {
4696                                 if (!buffer_delay(bh))
4697                                         goto found_delayed_extent;
4698                                 bh = bh->b_this_page;
4699                                 end++;
4700                         } while (bh != head);
4701
4702                         for (; index < ret; index++) {
4703                                 if (!page_has_buffers(pages[index])) {
4704                                         bh = NULL;
4705                                         break;
4706                                 }
4707                                 head = page_buffers(pages[index]);
4708                                 if (!head) {
4709                                         bh = NULL;
4710                                         break;
4711                                 }
4712
4713                                 if (pages[index]->index !=
4714                                     pages[start_index]->index + index
4715                                     - start_index) {
4716                                         /* Blocks are not contiguous. */
4717                                         bh = NULL;
4718                                         break;
4719                                 }
4720                                 bh = head;
4721                                 do {
4722                                         if (!buffer_delay(bh))
4723                                                 /* Delayed-extent ends. */
4724                                                 goto found_delayed_extent;
4725                                         bh = bh->b_this_page;
4726                                         end++;
4727                                 } while (bh != head);
4728                         }
4729                 } else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4730                         /* a hole found. */
4731                         goto out;
4732
4733 found_delayed_extent:
4734                 newex->ec_len = min(end - newex->ec_block,
4735                                                 (ext4_lblk_t)EXT_INIT_MAX_LEN);
4736                 if (ret == nr_pages && bh != NULL &&
4737                         newex->ec_len < EXT_INIT_MAX_LEN &&
4738                         buffer_delay(bh)) {
4739                         /* Have not collected an extent and continue. */
4740                         for (index = 0; index < ret; index++)
4741                                 page_cache_release(pages[index]);
4742                         goto repeat;
4743                 }
4744
4745                 for (index = 0; index < ret; index++)
4746                         page_cache_release(pages[index]);
4747                 kfree(pages);
4748         }
4749
4750         physical = (__u64)newex->ec_start << blksize_bits;
4751         length =   (__u64)newex->ec_len << blksize_bits;
4752
4753         if (ex && ext4_ext_is_uninitialized(ex))
4754                 flags |= FIEMAP_EXTENT_UNWRITTEN;
4755
4756         if (next == EXT_MAX_BLOCKS)
4757                 flags |= FIEMAP_EXTENT_LAST;
4758
4759         ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4760                                         length, flags);
4761         if (ret < 0)
4762                 return ret;
4763         if (ret == 1)
4764                 return EXT_BREAK;
4765         return EXT_CONTINUE;
4766 }
4767 /* fiemap flags we can handle specified here */
4768 #define EXT4_FIEMAP_FLAGS       (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4769
4770 static int ext4_xattr_fiemap(struct inode *inode,
4771                                 struct fiemap_extent_info *fieinfo)
4772 {
4773         __u64 physical = 0;
4774         __u64 length;
4775         __u32 flags = FIEMAP_EXTENT_LAST;
4776         int blockbits = inode->i_sb->s_blocksize_bits;
4777         int error = 0;
4778
4779         /* in-inode? */
4780         if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4781                 struct ext4_iloc iloc;
4782                 int offset;     /* offset of xattr in inode */
4783
4784                 error = ext4_get_inode_loc(inode, &iloc);
4785                 if (error)
4786                         return error;
4787                 physical = iloc.bh->b_blocknr << blockbits;
4788                 offset = EXT4_GOOD_OLD_INODE_SIZE +
4789                                 EXT4_I(inode)->i_extra_isize;
4790                 physical += offset;
4791                 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4792                 flags |= FIEMAP_EXTENT_DATA_INLINE;
4793                 brelse(iloc.bh);
4794         } else { /* external block */
4795                 physical = EXT4_I(inode)->i_file_acl << blockbits;
4796                 length = inode->i_sb->s_blocksize;
4797         }
4798
4799         if (physical)
4800                 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4801                                                 length, flags);
4802         return (error < 0 ? error : 0);
4803 }
4804
4805 /*
4806  * ext4_ext_punch_hole
4807  *
4808  * Punches a hole of "length" bytes in a file starting
4809  * at byte "offset"
4810  *
4811  * @inode:  The inode of the file to punch a hole in
4812  * @offset: The starting byte offset of the hole
4813  * @length: The length of the hole
4814  *
4815  * Returns the number of blocks removed or negative on err
4816  */
4817 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4818 {
4819         struct inode *inode = file->f_path.dentry->d_inode;
4820         struct super_block *sb = inode->i_sb;
4821         ext4_lblk_t first_block, stop_block;
4822         struct address_space *mapping = inode->i_mapping;
4823         handle_t *handle;
4824         loff_t first_page, last_page, page_len;
4825         loff_t first_page_offset, last_page_offset;
4826         int credits, err = 0;
4827
4828         /* No need to punch hole beyond i_size */
4829         if (offset >= inode->i_size)
4830                 return 0;
4831
4832         /*
4833          * If the hole extends beyond i_size, set the hole
4834          * to end after the page that contains i_size
4835          */
4836         if (offset + length > inode->i_size) {
4837                 length = inode->i_size +
4838                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4839                    offset;
4840         }
4841
4842         first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4843         last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4844
4845         first_page_offset = first_page << PAGE_CACHE_SHIFT;
4846         last_page_offset = last_page << PAGE_CACHE_SHIFT;
4847
4848         /*
4849          * Write out all dirty pages to avoid race conditions
4850          * Then release them.
4851          */
4852         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4853                 err = filemap_write_and_wait_range(mapping,
4854                         offset, offset + length - 1);
4855
4856                 if (err)
4857                         return err;
4858         }
4859
4860         /* Now release the pages */
4861         if (last_page_offset > first_page_offset) {
4862                 truncate_inode_pages_range(mapping, first_page_offset,
4863                                            last_page_offset-1);
4864         }
4865
4866         /* finish any pending end_io work */
4867         ext4_flush_completed_IO(inode);
4868
4869         credits = ext4_writepage_trans_blocks(inode);
4870         handle = ext4_journal_start(inode, credits);
4871         if (IS_ERR(handle))
4872                 return PTR_ERR(handle);
4873
4874         err = ext4_orphan_add(handle, inode);
4875         if (err)
4876                 goto out;
4877
4878         /*
4879          * Now we need to zero out the non-page-aligned data in the
4880          * pages at the start and tail of the hole, and unmap the buffer
4881          * heads for the block aligned regions of the page that were
4882          * completely zeroed.
4883          */
4884         if (first_page > last_page) {
4885                 /*
4886                  * If the file space being truncated is contained within a page
4887                  * just zero out and unmap the middle of that page
4888                  */
4889                 err = ext4_discard_partial_page_buffers(handle,
4890                         mapping, offset, length, 0);
4891
4892                 if (err)
4893                         goto out;
4894         } else {
4895                 /*
4896                  * zero out and unmap the partial page that contains
4897                  * the start of the hole
4898                  */
4899                 page_len  = first_page_offset - offset;
4900                 if (page_len > 0) {
4901                         err = ext4_discard_partial_page_buffers(handle, mapping,
4902                                                    offset, page_len, 0);
4903                         if (err)
4904                                 goto out;
4905                 }
4906
4907                 /*
4908                  * zero out and unmap the partial page that contains
4909                  * the end of the hole
4910                  */
4911                 page_len = offset + length - last_page_offset;
4912                 if (page_len > 0) {
4913                         err = ext4_discard_partial_page_buffers(handle, mapping,
4914                                         last_page_offset, page_len, 0);
4915                         if (err)
4916                                 goto out;
4917                 }
4918         }
4919
4920         /*
4921          * If i_size is contained in the last page, we need to
4922          * unmap and zero the partial page after i_size
4923          */
4924         if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4925            inode->i_size % PAGE_CACHE_SIZE != 0) {
4926
4927                 page_len = PAGE_CACHE_SIZE -
4928                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
4929
4930                 if (page_len > 0) {
4931                         err = ext4_discard_partial_page_buffers(handle,
4932                           mapping, inode->i_size, page_len, 0);
4933
4934                         if (err)
4935                                 goto out;
4936                 }
4937         }
4938
4939         first_block = (offset + sb->s_blocksize - 1) >>
4940                 EXT4_BLOCK_SIZE_BITS(sb);
4941         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4942
4943         /* If there are no blocks to remove, return now */
4944         if (first_block >= stop_block)
4945                 goto out;
4946
4947         down_write(&EXT4_I(inode)->i_data_sem);
4948         ext4_ext_invalidate_cache(inode);
4949         ext4_discard_preallocations(inode);
4950
4951         err = ext4_ext_remove_space(inode, first_block, stop_block - 1);
4952
4953         ext4_ext_invalidate_cache(inode);
4954         ext4_discard_preallocations(inode);
4955
4956         if (IS_SYNC(inode))
4957                 ext4_handle_sync(handle);
4958
4959         up_write(&EXT4_I(inode)->i_data_sem);
4960
4961 out:
4962         ext4_orphan_del(handle, inode);
4963         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4964         ext4_mark_inode_dirty(handle, inode);
4965         ext4_journal_stop(handle);
4966         return err;
4967 }
4968 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4969                 __u64 start, __u64 len)
4970 {
4971         ext4_lblk_t start_blk;
4972         int error = 0;
4973
4974         /* fallback to generic here if not in extents fmt */
4975         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4976                 return generic_block_fiemap(inode, fieinfo, start, len,
4977                         ext4_get_block);
4978
4979         if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4980                 return -EBADR;
4981
4982         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4983                 error = ext4_xattr_fiemap(inode, fieinfo);
4984         } else {
4985                 ext4_lblk_t len_blks;
4986                 __u64 last_blk;
4987
4988                 start_blk = start >> inode->i_sb->s_blocksize_bits;
4989                 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4990                 if (last_blk >= EXT_MAX_BLOCKS)
4991                         last_blk = EXT_MAX_BLOCKS-1;
4992                 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4993
4994                 /*
4995                  * Walk the extent tree gathering extent information.
4996                  * ext4_ext_fiemap_cb will push extents back to user.
4997                  */
4998                 error = ext4_ext_walk_space(inode, start_blk, len_blks,
4999                                           ext4_ext_fiemap_cb, fieinfo);
5000         }
5001
5002         return error;
5003 }