Reset current->pdeath_signal on SUID binary execution
[pandora-kernel.git] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats. 
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/a.out.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/init.h>
33 #include <linux/pagemap.h>
34 #include <linux/highmem.h>
35 #include <linux/spinlock.h>
36 #include <linux/key.h>
37 #include <linux/personality.h>
38 #include <linux/binfmts.h>
39 #include <linux/swap.h>
40 #include <linux/utsname.h>
41 #include <linux/pid_namespace.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/rmap.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 #include <linux/signalfd.h>
54
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
57 #include <asm/tlb.h>
58
59 #ifdef CONFIG_KMOD
60 #include <linux/kmod.h>
61 #endif
62
63 int core_uses_pid;
64 char core_pattern[CORENAME_MAX_SIZE] = "core";
65 int suid_dumpable = 0;
66
67 EXPORT_SYMBOL(suid_dumpable);
68 /* The maximal length of core_pattern is also specified in sysctl.c */
69
70 static struct linux_binfmt *formats;
71 static DEFINE_RWLOCK(binfmt_lock);
72
73 int register_binfmt(struct linux_binfmt * fmt)
74 {
75         struct linux_binfmt ** tmp = &formats;
76
77         if (!fmt)
78                 return -EINVAL;
79         if (fmt->next)
80                 return -EBUSY;
81         write_lock(&binfmt_lock);
82         while (*tmp) {
83                 if (fmt == *tmp) {
84                         write_unlock(&binfmt_lock);
85                         return -EBUSY;
86                 }
87                 tmp = &(*tmp)->next;
88         }
89         fmt->next = formats;
90         formats = fmt;
91         write_unlock(&binfmt_lock);
92         return 0;       
93 }
94
95 EXPORT_SYMBOL(register_binfmt);
96
97 int unregister_binfmt(struct linux_binfmt * fmt)
98 {
99         struct linux_binfmt ** tmp = &formats;
100
101         write_lock(&binfmt_lock);
102         while (*tmp) {
103                 if (fmt == *tmp) {
104                         *tmp = fmt->next;
105                         fmt->next = NULL;
106                         write_unlock(&binfmt_lock);
107                         return 0;
108                 }
109                 tmp = &(*tmp)->next;
110         }
111         write_unlock(&binfmt_lock);
112         return -EINVAL;
113 }
114
115 EXPORT_SYMBOL(unregister_binfmt);
116
117 static inline void put_binfmt(struct linux_binfmt * fmt)
118 {
119         module_put(fmt->module);
120 }
121
122 /*
123  * Note that a shared library must be both readable and executable due to
124  * security reasons.
125  *
126  * Also note that we take the address to load from from the file itself.
127  */
128 asmlinkage long sys_uselib(const char __user * library)
129 {
130         struct file * file;
131         struct nameidata nd;
132         int error;
133
134         error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
135         if (error)
136                 goto out;
137
138         error = -EACCES;
139         if (nd.mnt->mnt_flags & MNT_NOEXEC)
140                 goto exit;
141         error = -EINVAL;
142         if (!S_ISREG(nd.dentry->d_inode->i_mode))
143                 goto exit;
144
145         error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
146         if (error)
147                 goto exit;
148
149         file = nameidata_to_filp(&nd, O_RDONLY);
150         error = PTR_ERR(file);
151         if (IS_ERR(file))
152                 goto out;
153
154         error = -ENOEXEC;
155         if(file->f_op) {
156                 struct linux_binfmt * fmt;
157
158                 read_lock(&binfmt_lock);
159                 for (fmt = formats ; fmt ; fmt = fmt->next) {
160                         if (!fmt->load_shlib)
161                                 continue;
162                         if (!try_module_get(fmt->module))
163                                 continue;
164                         read_unlock(&binfmt_lock);
165                         error = fmt->load_shlib(file);
166                         read_lock(&binfmt_lock);
167                         put_binfmt(fmt);
168                         if (error != -ENOEXEC)
169                                 break;
170                 }
171                 read_unlock(&binfmt_lock);
172         }
173         fput(file);
174 out:
175         return error;
176 exit:
177         release_open_intent(&nd);
178         path_release(&nd);
179         goto out;
180 }
181
182 #ifdef CONFIG_MMU
183
184 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
185                 int write)
186 {
187         struct page *page;
188         int ret;
189
190 #ifdef CONFIG_STACK_GROWSUP
191         if (write) {
192                 ret = expand_stack_downwards(bprm->vma, pos);
193                 if (ret < 0)
194                         return NULL;
195         }
196 #endif
197         ret = get_user_pages(current, bprm->mm, pos,
198                         1, write, 1, &page, NULL);
199         if (ret <= 0)
200                 return NULL;
201
202         if (write) {
203                 struct rlimit *rlim = current->signal->rlim;
204                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
205
206                 /*
207                  * Limit to 1/4-th the stack size for the argv+env strings.
208                  * This ensures that:
209                  *  - the remaining binfmt code will not run out of stack space,
210                  *  - the program will have a reasonable amount of stack left
211                  *    to work from.
212                  */
213                 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
214                         put_page(page);
215                         return NULL;
216                 }
217         }
218
219         return page;
220 }
221
222 static void put_arg_page(struct page *page)
223 {
224         put_page(page);
225 }
226
227 static void free_arg_page(struct linux_binprm *bprm, int i)
228 {
229 }
230
231 static void free_arg_pages(struct linux_binprm *bprm)
232 {
233 }
234
235 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
236                 struct page *page)
237 {
238         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
239 }
240
241 static int __bprm_mm_init(struct linux_binprm *bprm)
242 {
243         int err = -ENOMEM;
244         struct vm_area_struct *vma = NULL;
245         struct mm_struct *mm = bprm->mm;
246
247         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
248         if (!vma)
249                 goto err;
250
251         down_write(&mm->mmap_sem);
252         vma->vm_mm = mm;
253
254         /*
255          * Place the stack at the largest stack address the architecture
256          * supports. Later, we'll move this to an appropriate place. We don't
257          * use STACK_TOP because that can depend on attributes which aren't
258          * configured yet.
259          */
260         vma->vm_end = STACK_TOP_MAX;
261         vma->vm_start = vma->vm_end - PAGE_SIZE;
262
263         vma->vm_flags = VM_STACK_FLAGS;
264         vma->vm_page_prot = protection_map[vma->vm_flags & 0x7];
265         err = insert_vm_struct(mm, vma);
266         if (err) {
267                 up_write(&mm->mmap_sem);
268                 goto err;
269         }
270
271         mm->stack_vm = mm->total_vm = 1;
272         up_write(&mm->mmap_sem);
273
274         bprm->p = vma->vm_end - sizeof(void *);
275
276         return 0;
277
278 err:
279         if (vma) {
280                 bprm->vma = NULL;
281                 kmem_cache_free(vm_area_cachep, vma);
282         }
283
284         return err;
285 }
286
287 static bool valid_arg_len(struct linux_binprm *bprm, long len)
288 {
289         return len <= MAX_ARG_STRLEN;
290 }
291
292 #else
293
294 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
295                 int write)
296 {
297         struct page *page;
298
299         page = bprm->page[pos / PAGE_SIZE];
300         if (!page && write) {
301                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
302                 if (!page)
303                         return NULL;
304                 bprm->page[pos / PAGE_SIZE] = page;
305         }
306
307         return page;
308 }
309
310 static void put_arg_page(struct page *page)
311 {
312 }
313
314 static void free_arg_page(struct linux_binprm *bprm, int i)
315 {
316         if (bprm->page[i]) {
317                 __free_page(bprm->page[i]);
318                 bprm->page[i] = NULL;
319         }
320 }
321
322 static void free_arg_pages(struct linux_binprm *bprm)
323 {
324         int i;
325
326         for (i = 0; i < MAX_ARG_PAGES; i++)
327                 free_arg_page(bprm, i);
328 }
329
330 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
331                 struct page *page)
332 {
333 }
334
335 static int __bprm_mm_init(struct linux_binprm *bprm)
336 {
337         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
338         return 0;
339 }
340
341 static bool valid_arg_len(struct linux_binprm *bprm, long len)
342 {
343         return len <= bprm->p;
344 }
345
346 #endif /* CONFIG_MMU */
347
348 /*
349  * Create a new mm_struct and populate it with a temporary stack
350  * vm_area_struct.  We don't have enough context at this point to set the stack
351  * flags, permissions, and offset, so we use temporary values.  We'll update
352  * them later in setup_arg_pages().
353  */
354 int bprm_mm_init(struct linux_binprm *bprm)
355 {
356         int err;
357         struct mm_struct *mm = NULL;
358
359         bprm->mm = mm = mm_alloc();
360         err = -ENOMEM;
361         if (!mm)
362                 goto err;
363
364         err = init_new_context(current, mm);
365         if (err)
366                 goto err;
367
368         err = __bprm_mm_init(bprm);
369         if (err)
370                 goto err;
371
372         return 0;
373
374 err:
375         if (mm) {
376                 bprm->mm = NULL;
377                 mmdrop(mm);
378         }
379
380         return err;
381 }
382
383 /*
384  * count() counts the number of strings in array ARGV.
385  */
386 static int count(char __user * __user * argv, int max)
387 {
388         int i = 0;
389
390         if (argv != NULL) {
391                 for (;;) {
392                         char __user * p;
393
394                         if (get_user(p, argv))
395                                 return -EFAULT;
396                         if (!p)
397                                 break;
398                         argv++;
399                         if(++i > max)
400                                 return -E2BIG;
401                         cond_resched();
402                 }
403         }
404         return i;
405 }
406
407 /*
408  * 'copy_strings()' copies argument/environment strings from the old
409  * processes's memory to the new process's stack.  The call to get_user_pages()
410  * ensures the destination page is created and not swapped out.
411  */
412 static int copy_strings(int argc, char __user * __user * argv,
413                         struct linux_binprm *bprm)
414 {
415         struct page *kmapped_page = NULL;
416         char *kaddr = NULL;
417         unsigned long kpos = 0;
418         int ret;
419
420         while (argc-- > 0) {
421                 char __user *str;
422                 int len;
423                 unsigned long pos;
424
425                 if (get_user(str, argv+argc) ||
426                                 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
427                         ret = -EFAULT;
428                         goto out;
429                 }
430
431                 if (!valid_arg_len(bprm, len)) {
432                         ret = -E2BIG;
433                         goto out;
434                 }
435
436                 /* We're going to work our way backwords. */
437                 pos = bprm->p;
438                 str += len;
439                 bprm->p -= len;
440
441                 while (len > 0) {
442                         int offset, bytes_to_copy;
443
444                         offset = pos % PAGE_SIZE;
445                         if (offset == 0)
446                                 offset = PAGE_SIZE;
447
448                         bytes_to_copy = offset;
449                         if (bytes_to_copy > len)
450                                 bytes_to_copy = len;
451
452                         offset -= bytes_to_copy;
453                         pos -= bytes_to_copy;
454                         str -= bytes_to_copy;
455                         len -= bytes_to_copy;
456
457                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
458                                 struct page *page;
459
460                                 page = get_arg_page(bprm, pos, 1);
461                                 if (!page) {
462                                         ret = -E2BIG;
463                                         goto out;
464                                 }
465
466                                 if (kmapped_page) {
467                                         flush_kernel_dcache_page(kmapped_page);
468                                         kunmap(kmapped_page);
469                                         put_arg_page(kmapped_page);
470                                 }
471                                 kmapped_page = page;
472                                 kaddr = kmap(kmapped_page);
473                                 kpos = pos & PAGE_MASK;
474                                 flush_arg_page(bprm, kpos, kmapped_page);
475                         }
476                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
477                                 ret = -EFAULT;
478                                 goto out;
479                         }
480                 }
481         }
482         ret = 0;
483 out:
484         if (kmapped_page) {
485                 flush_kernel_dcache_page(kmapped_page);
486                 kunmap(kmapped_page);
487                 put_arg_page(kmapped_page);
488         }
489         return ret;
490 }
491
492 /*
493  * Like copy_strings, but get argv and its values from kernel memory.
494  */
495 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
496 {
497         int r;
498         mm_segment_t oldfs = get_fs();
499         set_fs(KERNEL_DS);
500         r = copy_strings(argc, (char __user * __user *)argv, bprm);
501         set_fs(oldfs);
502         return r;
503 }
504 EXPORT_SYMBOL(copy_strings_kernel);
505
506 #ifdef CONFIG_MMU
507
508 /*
509  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
510  * the binfmt code determines where the new stack should reside, we shift it to
511  * its final location.  The process proceeds as follows:
512  *
513  * 1) Use shift to calculate the new vma endpoints.
514  * 2) Extend vma to cover both the old and new ranges.  This ensures the
515  *    arguments passed to subsequent functions are consistent.
516  * 3) Move vma's page tables to the new range.
517  * 4) Free up any cleared pgd range.
518  * 5) Shrink the vma to cover only the new range.
519  */
520 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
521 {
522         struct mm_struct *mm = vma->vm_mm;
523         unsigned long old_start = vma->vm_start;
524         unsigned long old_end = vma->vm_end;
525         unsigned long length = old_end - old_start;
526         unsigned long new_start = old_start - shift;
527         unsigned long new_end = old_end - shift;
528         struct mmu_gather *tlb;
529
530         BUG_ON(new_start > new_end);
531
532         /*
533          * ensure there are no vmas between where we want to go
534          * and where we are
535          */
536         if (vma != find_vma(mm, new_start))
537                 return -EFAULT;
538
539         /*
540          * cover the whole range: [new_start, old_end)
541          */
542         vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
543
544         /*
545          * move the page tables downwards, on failure we rely on
546          * process cleanup to remove whatever mess we made.
547          */
548         if (length != move_page_tables(vma, old_start,
549                                        vma, new_start, length))
550                 return -ENOMEM;
551
552         lru_add_drain();
553         tlb = tlb_gather_mmu(mm, 0);
554         if (new_end > old_start) {
555                 /*
556                  * when the old and new regions overlap clear from new_end.
557                  */
558                 free_pgd_range(&tlb, new_end, old_end, new_end,
559                         vma->vm_next ? vma->vm_next->vm_start : 0);
560         } else {
561                 /*
562                  * otherwise, clean from old_start; this is done to not touch
563                  * the address space in [new_end, old_start) some architectures
564                  * have constraints on va-space that make this illegal (IA64) -
565                  * for the others its just a little faster.
566                  */
567                 free_pgd_range(&tlb, old_start, old_end, new_end,
568                         vma->vm_next ? vma->vm_next->vm_start : 0);
569         }
570         tlb_finish_mmu(tlb, new_end, old_end);
571
572         /*
573          * shrink the vma to just the new range.
574          */
575         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
576
577         return 0;
578 }
579
580 #define EXTRA_STACK_VM_PAGES    20      /* random */
581
582 /*
583  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
584  * the stack is optionally relocated, and some extra space is added.
585  */
586 int setup_arg_pages(struct linux_binprm *bprm,
587                     unsigned long stack_top,
588                     int executable_stack)
589 {
590         unsigned long ret;
591         unsigned long stack_shift;
592         struct mm_struct *mm = current->mm;
593         struct vm_area_struct *vma = bprm->vma;
594         struct vm_area_struct *prev = NULL;
595         unsigned long vm_flags;
596         unsigned long stack_base;
597
598 #ifdef CONFIG_STACK_GROWSUP
599         /* Limit stack size to 1GB */
600         stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
601         if (stack_base > (1 << 30))
602                 stack_base = 1 << 30;
603
604         /* Make sure we didn't let the argument array grow too large. */
605         if (vma->vm_end - vma->vm_start > stack_base)
606                 return -ENOMEM;
607
608         stack_base = PAGE_ALIGN(stack_top - stack_base);
609
610         stack_shift = vma->vm_start - stack_base;
611         mm->arg_start = bprm->p - stack_shift;
612         bprm->p = vma->vm_end - stack_shift;
613 #else
614         stack_top = arch_align_stack(stack_top);
615         stack_top = PAGE_ALIGN(stack_top);
616         stack_shift = vma->vm_end - stack_top;
617
618         bprm->p -= stack_shift;
619         mm->arg_start = bprm->p;
620 #endif
621
622         if (bprm->loader)
623                 bprm->loader -= stack_shift;
624         bprm->exec -= stack_shift;
625
626         down_write(&mm->mmap_sem);
627         vm_flags = vma->vm_flags;
628
629         /*
630          * Adjust stack execute permissions; explicitly enable for
631          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
632          * (arch default) otherwise.
633          */
634         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
635                 vm_flags |= VM_EXEC;
636         else if (executable_stack == EXSTACK_DISABLE_X)
637                 vm_flags &= ~VM_EXEC;
638         vm_flags |= mm->def_flags;
639
640         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
641                         vm_flags);
642         if (ret)
643                 goto out_unlock;
644         BUG_ON(prev != vma);
645
646         /* Move stack pages down in memory. */
647         if (stack_shift) {
648                 ret = shift_arg_pages(vma, stack_shift);
649                 if (ret) {
650                         up_write(&mm->mmap_sem);
651                         return ret;
652                 }
653         }
654
655 #ifdef CONFIG_STACK_GROWSUP
656         stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
657 #else
658         stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
659 #endif
660         ret = expand_stack(vma, stack_base);
661         if (ret)
662                 ret = -EFAULT;
663
664 out_unlock:
665         up_write(&mm->mmap_sem);
666         return 0;
667 }
668 EXPORT_SYMBOL(setup_arg_pages);
669
670 #endif /* CONFIG_MMU */
671
672 struct file *open_exec(const char *name)
673 {
674         struct nameidata nd;
675         int err;
676         struct file *file;
677
678         err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
679         file = ERR_PTR(err);
680
681         if (!err) {
682                 struct inode *inode = nd.dentry->d_inode;
683                 file = ERR_PTR(-EACCES);
684                 if (!(nd.mnt->mnt_flags & MNT_NOEXEC) &&
685                     S_ISREG(inode->i_mode)) {
686                         int err = vfs_permission(&nd, MAY_EXEC);
687                         file = ERR_PTR(err);
688                         if (!err) {
689                                 file = nameidata_to_filp(&nd, O_RDONLY);
690                                 if (!IS_ERR(file)) {
691                                         err = deny_write_access(file);
692                                         if (err) {
693                                                 fput(file);
694                                                 file = ERR_PTR(err);
695                                         }
696                                 }
697 out:
698                                 return file;
699                         }
700                 }
701                 release_open_intent(&nd);
702                 path_release(&nd);
703         }
704         goto out;
705 }
706
707 EXPORT_SYMBOL(open_exec);
708
709 int kernel_read(struct file *file, unsigned long offset,
710         char *addr, unsigned long count)
711 {
712         mm_segment_t old_fs;
713         loff_t pos = offset;
714         int result;
715
716         old_fs = get_fs();
717         set_fs(get_ds());
718         /* The cast to a user pointer is valid due to the set_fs() */
719         result = vfs_read(file, (void __user *)addr, count, &pos);
720         set_fs(old_fs);
721         return result;
722 }
723
724 EXPORT_SYMBOL(kernel_read);
725
726 static int exec_mmap(struct mm_struct *mm)
727 {
728         struct task_struct *tsk;
729         struct mm_struct * old_mm, *active_mm;
730
731         /* Notify parent that we're no longer interested in the old VM */
732         tsk = current;
733         old_mm = current->mm;
734         mm_release(tsk, old_mm);
735
736         if (old_mm) {
737                 /*
738                  * Make sure that if there is a core dump in progress
739                  * for the old mm, we get out and die instead of going
740                  * through with the exec.  We must hold mmap_sem around
741                  * checking core_waiters and changing tsk->mm.  The
742                  * core-inducing thread will increment core_waiters for
743                  * each thread whose ->mm == old_mm.
744                  */
745                 down_read(&old_mm->mmap_sem);
746                 if (unlikely(old_mm->core_waiters)) {
747                         up_read(&old_mm->mmap_sem);
748                         return -EINTR;
749                 }
750         }
751         task_lock(tsk);
752         active_mm = tsk->active_mm;
753         tsk->mm = mm;
754         tsk->active_mm = mm;
755         activate_mm(active_mm, mm);
756         task_unlock(tsk);
757         arch_pick_mmap_layout(mm);
758         if (old_mm) {
759                 up_read(&old_mm->mmap_sem);
760                 BUG_ON(active_mm != old_mm);
761                 mmput(old_mm);
762                 return 0;
763         }
764         mmdrop(active_mm);
765         return 0;
766 }
767
768 /*
769  * This function makes sure the current process has its own signal table,
770  * so that flush_signal_handlers can later reset the handlers without
771  * disturbing other processes.  (Other processes might share the signal
772  * table via the CLONE_SIGHAND option to clone().)
773  */
774 static int de_thread(struct task_struct *tsk)
775 {
776         struct signal_struct *sig = tsk->signal;
777         struct sighand_struct *newsighand, *oldsighand = tsk->sighand;
778         spinlock_t *lock = &oldsighand->siglock;
779         struct task_struct *leader = NULL;
780         int count;
781
782         /*
783          * Tell all the sighand listeners that this sighand has
784          * been detached. The signalfd_detach() function grabs the
785          * sighand lock, if signal listeners are present on the sighand.
786          */
787         signalfd_detach(tsk);
788
789         /*
790          * If we don't share sighandlers, then we aren't sharing anything
791          * and we can just re-use it all.
792          */
793         if (atomic_read(&oldsighand->count) <= 1) {
794                 BUG_ON(atomic_read(&sig->count) != 1);
795                 exit_itimers(sig);
796                 return 0;
797         }
798
799         newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
800         if (!newsighand)
801                 return -ENOMEM;
802
803         if (thread_group_empty(tsk))
804                 goto no_thread_group;
805
806         /*
807          * Kill all other threads in the thread group.
808          * We must hold tasklist_lock to call zap_other_threads.
809          */
810         read_lock(&tasklist_lock);
811         spin_lock_irq(lock);
812         if (sig->flags & SIGNAL_GROUP_EXIT) {
813                 /*
814                  * Another group action in progress, just
815                  * return so that the signal is processed.
816                  */
817                 spin_unlock_irq(lock);
818                 read_unlock(&tasklist_lock);
819                 kmem_cache_free(sighand_cachep, newsighand);
820                 return -EAGAIN;
821         }
822
823         /*
824          * child_reaper ignores SIGKILL, change it now.
825          * Reparenting needs write_lock on tasklist_lock,
826          * so it is safe to do it under read_lock.
827          */
828         if (unlikely(tsk->group_leader == child_reaper(tsk)))
829                 tsk->nsproxy->pid_ns->child_reaper = tsk;
830
831         zap_other_threads(tsk);
832         read_unlock(&tasklist_lock);
833
834         /*
835          * Account for the thread group leader hanging around:
836          */
837         count = 1;
838         if (!thread_group_leader(tsk)) {
839                 count = 2;
840                 /*
841                  * The SIGALRM timer survives the exec, but needs to point
842                  * at us as the new group leader now.  We have a race with
843                  * a timer firing now getting the old leader, so we need to
844                  * synchronize with any firing (by calling del_timer_sync)
845                  * before we can safely let the old group leader die.
846                  */
847                 sig->tsk = tsk;
848                 spin_unlock_irq(lock);
849                 if (hrtimer_cancel(&sig->real_timer))
850                         hrtimer_restart(&sig->real_timer);
851                 spin_lock_irq(lock);
852         }
853         while (atomic_read(&sig->count) > count) {
854                 sig->group_exit_task = tsk;
855                 sig->notify_count = count;
856                 __set_current_state(TASK_UNINTERRUPTIBLE);
857                 spin_unlock_irq(lock);
858                 schedule();
859                 spin_lock_irq(lock);
860         }
861         sig->group_exit_task = NULL;
862         sig->notify_count = 0;
863         spin_unlock_irq(lock);
864
865         /*
866          * At this point all other threads have exited, all we have to
867          * do is to wait for the thread group leader to become inactive,
868          * and to assume its PID:
869          */
870         if (!thread_group_leader(tsk)) {
871                 /*
872                  * Wait for the thread group leader to be a zombie.
873                  * It should already be zombie at this point, most
874                  * of the time.
875                  */
876                 leader = tsk->group_leader;
877                 while (leader->exit_state != EXIT_ZOMBIE)
878                         yield();
879
880                 /*
881                  * The only record we have of the real-time age of a
882                  * process, regardless of execs it's done, is start_time.
883                  * All the past CPU time is accumulated in signal_struct
884                  * from sister threads now dead.  But in this non-leader
885                  * exec, nothing survives from the original leader thread,
886                  * whose birth marks the true age of this process now.
887                  * When we take on its identity by switching to its PID, we
888                  * also take its birthdate (always earlier than our own).
889                  */
890                 tsk->start_time = leader->start_time;
891
892                 write_lock_irq(&tasklist_lock);
893
894                 BUG_ON(leader->tgid != tsk->tgid);
895                 BUG_ON(tsk->pid == tsk->tgid);
896                 /*
897                  * An exec() starts a new thread group with the
898                  * TGID of the previous thread group. Rehash the
899                  * two threads with a switched PID, and release
900                  * the former thread group leader:
901                  */
902
903                 /* Become a process group leader with the old leader's pid.
904                  * The old leader becomes a thread of the this thread group.
905                  * Note: The old leader also uses this pid until release_task
906                  *       is called.  Odd but simple and correct.
907                  */
908                 detach_pid(tsk, PIDTYPE_PID);
909                 tsk->pid = leader->pid;
910                 attach_pid(tsk, PIDTYPE_PID,  find_pid(tsk->pid));
911                 transfer_pid(leader, tsk, PIDTYPE_PGID);
912                 transfer_pid(leader, tsk, PIDTYPE_SID);
913                 list_replace_rcu(&leader->tasks, &tsk->tasks);
914
915                 tsk->group_leader = tsk;
916                 leader->group_leader = tsk;
917
918                 tsk->exit_signal = SIGCHLD;
919
920                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
921                 leader->exit_state = EXIT_DEAD;
922
923                 write_unlock_irq(&tasklist_lock);
924         }
925
926         /*
927          * There may be one thread left which is just exiting,
928          * but it's safe to stop telling the group to kill themselves.
929          */
930         sig->flags = 0;
931
932 no_thread_group:
933         exit_itimers(sig);
934         if (leader)
935                 release_task(leader);
936
937         BUG_ON(atomic_read(&sig->count) != 1);
938
939         if (atomic_read(&oldsighand->count) == 1) {
940                 /*
941                  * Now that we nuked the rest of the thread group,
942                  * it turns out we are not sharing sighand any more either.
943                  * So we can just keep it.
944                  */
945                 kmem_cache_free(sighand_cachep, newsighand);
946         } else {
947                 /*
948                  * Move our state over to newsighand and switch it in.
949                  */
950                 atomic_set(&newsighand->count, 1);
951                 memcpy(newsighand->action, oldsighand->action,
952                        sizeof(newsighand->action));
953
954                 write_lock_irq(&tasklist_lock);
955                 spin_lock(&oldsighand->siglock);
956                 spin_lock_nested(&newsighand->siglock, SINGLE_DEPTH_NESTING);
957
958                 rcu_assign_pointer(tsk->sighand, newsighand);
959                 recalc_sigpending();
960
961                 spin_unlock(&newsighand->siglock);
962                 spin_unlock(&oldsighand->siglock);
963                 write_unlock_irq(&tasklist_lock);
964
965                 __cleanup_sighand(oldsighand);
966         }
967
968         BUG_ON(!thread_group_leader(tsk));
969         return 0;
970 }
971         
972 /*
973  * These functions flushes out all traces of the currently running executable
974  * so that a new one can be started
975  */
976
977 static void flush_old_files(struct files_struct * files)
978 {
979         long j = -1;
980         struct fdtable *fdt;
981
982         spin_lock(&files->file_lock);
983         for (;;) {
984                 unsigned long set, i;
985
986                 j++;
987                 i = j * __NFDBITS;
988                 fdt = files_fdtable(files);
989                 if (i >= fdt->max_fds)
990                         break;
991                 set = fdt->close_on_exec->fds_bits[j];
992                 if (!set)
993                         continue;
994                 fdt->close_on_exec->fds_bits[j] = 0;
995                 spin_unlock(&files->file_lock);
996                 for ( ; set ; i++,set >>= 1) {
997                         if (set & 1) {
998                                 sys_close(i);
999                         }
1000                 }
1001                 spin_lock(&files->file_lock);
1002
1003         }
1004         spin_unlock(&files->file_lock);
1005 }
1006
1007 void get_task_comm(char *buf, struct task_struct *tsk)
1008 {
1009         /* buf must be at least sizeof(tsk->comm) in size */
1010         task_lock(tsk);
1011         strncpy(buf, tsk->comm, sizeof(tsk->comm));
1012         task_unlock(tsk);
1013 }
1014
1015 void set_task_comm(struct task_struct *tsk, char *buf)
1016 {
1017         task_lock(tsk);
1018         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1019         task_unlock(tsk);
1020 }
1021
1022 int flush_old_exec(struct linux_binprm * bprm)
1023 {
1024         char * name;
1025         int i, ch, retval;
1026         struct files_struct *files;
1027         char tcomm[sizeof(current->comm)];
1028
1029         /*
1030          * Make sure we have a private signal table and that
1031          * we are unassociated from the previous thread group.
1032          */
1033         retval = de_thread(current);
1034         if (retval)
1035                 goto out;
1036
1037         /*
1038          * Make sure we have private file handles. Ask the
1039          * fork helper to do the work for us and the exit
1040          * helper to do the cleanup of the old one.
1041          */
1042         files = current->files;         /* refcounted so safe to hold */
1043         retval = unshare_files();
1044         if (retval)
1045                 goto out;
1046         /*
1047          * Release all of the old mmap stuff
1048          */
1049         retval = exec_mmap(bprm->mm);
1050         if (retval)
1051                 goto mmap_failed;
1052
1053         bprm->mm = NULL;                /* We're using it now */
1054
1055         /* This is the point of no return */
1056         put_files_struct(files);
1057
1058         current->sas_ss_sp = current->sas_ss_size = 0;
1059
1060         if (current->euid == current->uid && current->egid == current->gid)
1061                 set_dumpable(current->mm, 1);
1062         else
1063                 set_dumpable(current->mm, suid_dumpable);
1064
1065         name = bprm->filename;
1066
1067         /* Copies the binary name from after last slash */
1068         for (i=0; (ch = *(name++)) != '\0';) {
1069                 if (ch == '/')
1070                         i = 0; /* overwrite what we wrote */
1071                 else
1072                         if (i < (sizeof(tcomm) - 1))
1073                                 tcomm[i++] = ch;
1074         }
1075         tcomm[i] = '\0';
1076         set_task_comm(current, tcomm);
1077
1078         current->flags &= ~PF_RANDOMIZE;
1079         flush_thread();
1080
1081         /* Set the new mm task size. We have to do that late because it may
1082          * depend on TIF_32BIT which is only updated in flush_thread() on
1083          * some architectures like powerpc
1084          */
1085         current->mm->task_size = TASK_SIZE;
1086
1087         if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
1088                 suid_keys(current);
1089                 set_dumpable(current->mm, suid_dumpable);
1090                 current->pdeath_signal = 0;
1091         } else if (file_permission(bprm->file, MAY_READ) ||
1092                         (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1093                 suid_keys(current);
1094                 set_dumpable(current->mm, suid_dumpable);
1095         }
1096
1097         /* An exec changes our domain. We are no longer part of the thread
1098            group */
1099
1100         current->self_exec_id++;
1101                         
1102         flush_signal_handlers(current, 0);
1103         flush_old_files(current->files);
1104
1105         return 0;
1106
1107 mmap_failed:
1108         reset_files_struct(current, files);
1109 out:
1110         return retval;
1111 }
1112
1113 EXPORT_SYMBOL(flush_old_exec);
1114
1115 /* 
1116  * Fill the binprm structure from the inode. 
1117  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1118  */
1119 int prepare_binprm(struct linux_binprm *bprm)
1120 {
1121         int mode;
1122         struct inode * inode = bprm->file->f_path.dentry->d_inode;
1123         int retval;
1124
1125         mode = inode->i_mode;
1126         if (bprm->file->f_op == NULL)
1127                 return -EACCES;
1128
1129         bprm->e_uid = current->euid;
1130         bprm->e_gid = current->egid;
1131
1132         if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1133                 /* Set-uid? */
1134                 if (mode & S_ISUID) {
1135                         current->personality &= ~PER_CLEAR_ON_SETID;
1136                         bprm->e_uid = inode->i_uid;
1137                 }
1138
1139                 /* Set-gid? */
1140                 /*
1141                  * If setgid is set but no group execute bit then this
1142                  * is a candidate for mandatory locking, not a setgid
1143                  * executable.
1144                  */
1145                 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1146                         current->personality &= ~PER_CLEAR_ON_SETID;
1147                         bprm->e_gid = inode->i_gid;
1148                 }
1149         }
1150
1151         /* fill in binprm security blob */
1152         retval = security_bprm_set(bprm);
1153         if (retval)
1154                 return retval;
1155
1156         memset(bprm->buf,0,BINPRM_BUF_SIZE);
1157         return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1158 }
1159
1160 EXPORT_SYMBOL(prepare_binprm);
1161
1162 static int unsafe_exec(struct task_struct *p)
1163 {
1164         int unsafe = 0;
1165         if (p->ptrace & PT_PTRACED) {
1166                 if (p->ptrace & PT_PTRACE_CAP)
1167                         unsafe |= LSM_UNSAFE_PTRACE_CAP;
1168                 else
1169                         unsafe |= LSM_UNSAFE_PTRACE;
1170         }
1171         if (atomic_read(&p->fs->count) > 1 ||
1172             atomic_read(&p->files->count) > 1 ||
1173             atomic_read(&p->sighand->count) > 1)
1174                 unsafe |= LSM_UNSAFE_SHARE;
1175
1176         return unsafe;
1177 }
1178
1179 void compute_creds(struct linux_binprm *bprm)
1180 {
1181         int unsafe;
1182
1183         if (bprm->e_uid != current->uid) {
1184                 suid_keys(current);
1185                 current->pdeath_signal = 0;
1186         }
1187         exec_keys(current);
1188
1189         task_lock(current);
1190         unsafe = unsafe_exec(current);
1191         security_bprm_apply_creds(bprm, unsafe);
1192         task_unlock(current);
1193         security_bprm_post_apply_creds(bprm);
1194 }
1195 EXPORT_SYMBOL(compute_creds);
1196
1197 /*
1198  * Arguments are '\0' separated strings found at the location bprm->p
1199  * points to; chop off the first by relocating brpm->p to right after
1200  * the first '\0' encountered.
1201  */
1202 int remove_arg_zero(struct linux_binprm *bprm)
1203 {
1204         int ret = 0;
1205         unsigned long offset;
1206         char *kaddr;
1207         struct page *page;
1208
1209         if (!bprm->argc)
1210                 return 0;
1211
1212         do {
1213                 offset = bprm->p & ~PAGE_MASK;
1214                 page = get_arg_page(bprm, bprm->p, 0);
1215                 if (!page) {
1216                         ret = -EFAULT;
1217                         goto out;
1218                 }
1219                 kaddr = kmap_atomic(page, KM_USER0);
1220
1221                 for (; offset < PAGE_SIZE && kaddr[offset];
1222                                 offset++, bprm->p++)
1223                         ;
1224
1225                 kunmap_atomic(kaddr, KM_USER0);
1226                 put_arg_page(page);
1227
1228                 if (offset == PAGE_SIZE)
1229                         free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1230         } while (offset == PAGE_SIZE);
1231
1232         bprm->p++;
1233         bprm->argc--;
1234         ret = 0;
1235
1236 out:
1237         return ret;
1238 }
1239 EXPORT_SYMBOL(remove_arg_zero);
1240
1241 /*
1242  * cycle the list of binary formats handler, until one recognizes the image
1243  */
1244 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1245 {
1246         int try,retval;
1247         struct linux_binfmt *fmt;
1248 #ifdef __alpha__
1249         /* handle /sbin/loader.. */
1250         {
1251             struct exec * eh = (struct exec *) bprm->buf;
1252
1253             if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1254                 (eh->fh.f_flags & 0x3000) == 0x3000)
1255             {
1256                 struct file * file;
1257                 unsigned long loader;
1258
1259                 allow_write_access(bprm->file);
1260                 fput(bprm->file);
1261                 bprm->file = NULL;
1262
1263                 loader = bprm->vma->vm_end - sizeof(void *);
1264
1265                 file = open_exec("/sbin/loader");
1266                 retval = PTR_ERR(file);
1267                 if (IS_ERR(file))
1268                         return retval;
1269
1270                 /* Remember if the application is TASO.  */
1271                 bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1272
1273                 bprm->file = file;
1274                 bprm->loader = loader;
1275                 retval = prepare_binprm(bprm);
1276                 if (retval<0)
1277                         return retval;
1278                 /* should call search_binary_handler recursively here,
1279                    but it does not matter */
1280             }
1281         }
1282 #endif
1283         retval = security_bprm_check(bprm);
1284         if (retval)
1285                 return retval;
1286
1287         /* kernel module loader fixup */
1288         /* so we don't try to load run modprobe in kernel space. */
1289         set_fs(USER_DS);
1290
1291         retval = audit_bprm(bprm);
1292         if (retval)
1293                 return retval;
1294
1295         retval = -ENOENT;
1296         for (try=0; try<2; try++) {
1297                 read_lock(&binfmt_lock);
1298                 for (fmt = formats ; fmt ; fmt = fmt->next) {
1299                         int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1300                         if (!fn)
1301                                 continue;
1302                         if (!try_module_get(fmt->module))
1303                                 continue;
1304                         read_unlock(&binfmt_lock);
1305                         retval = fn(bprm, regs);
1306                         if (retval >= 0) {
1307                                 put_binfmt(fmt);
1308                                 allow_write_access(bprm->file);
1309                                 if (bprm->file)
1310                                         fput(bprm->file);
1311                                 bprm->file = NULL;
1312                                 current->did_exec = 1;
1313                                 proc_exec_connector(current);
1314                                 return retval;
1315                         }
1316                         read_lock(&binfmt_lock);
1317                         put_binfmt(fmt);
1318                         if (retval != -ENOEXEC || bprm->mm == NULL)
1319                                 break;
1320                         if (!bprm->file) {
1321                                 read_unlock(&binfmt_lock);
1322                                 return retval;
1323                         }
1324                 }
1325                 read_unlock(&binfmt_lock);
1326                 if (retval != -ENOEXEC || bprm->mm == NULL) {
1327                         break;
1328 #ifdef CONFIG_KMOD
1329                 }else{
1330 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1331                         if (printable(bprm->buf[0]) &&
1332                             printable(bprm->buf[1]) &&
1333                             printable(bprm->buf[2]) &&
1334                             printable(bprm->buf[3]))
1335                                 break; /* -ENOEXEC */
1336                         request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1337 #endif
1338                 }
1339         }
1340         return retval;
1341 }
1342
1343 EXPORT_SYMBOL(search_binary_handler);
1344
1345 /*
1346  * sys_execve() executes a new program.
1347  */
1348 int do_execve(char * filename,
1349         char __user *__user *argv,
1350         char __user *__user *envp,
1351         struct pt_regs * regs)
1352 {
1353         struct linux_binprm *bprm;
1354         struct file *file;
1355         unsigned long env_p;
1356         int retval;
1357
1358         retval = -ENOMEM;
1359         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1360         if (!bprm)
1361                 goto out_ret;
1362
1363         file = open_exec(filename);
1364         retval = PTR_ERR(file);
1365         if (IS_ERR(file))
1366                 goto out_kfree;
1367
1368         sched_exec();
1369
1370         bprm->file = file;
1371         bprm->filename = filename;
1372         bprm->interp = filename;
1373
1374         retval = bprm_mm_init(bprm);
1375         if (retval)
1376                 goto out_file;
1377
1378         bprm->argc = count(argv, MAX_ARG_STRINGS);
1379         if ((retval = bprm->argc) < 0)
1380                 goto out_mm;
1381
1382         bprm->envc = count(envp, MAX_ARG_STRINGS);
1383         if ((retval = bprm->envc) < 0)
1384                 goto out_mm;
1385
1386         retval = security_bprm_alloc(bprm);
1387         if (retval)
1388                 goto out;
1389
1390         retval = prepare_binprm(bprm);
1391         if (retval < 0)
1392                 goto out;
1393
1394         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1395         if (retval < 0)
1396                 goto out;
1397
1398         bprm->exec = bprm->p;
1399         retval = copy_strings(bprm->envc, envp, bprm);
1400         if (retval < 0)
1401                 goto out;
1402
1403         env_p = bprm->p;
1404         retval = copy_strings(bprm->argc, argv, bprm);
1405         if (retval < 0)
1406                 goto out;
1407         bprm->argv_len = env_p - bprm->p;
1408
1409         retval = search_binary_handler(bprm,regs);
1410         if (retval >= 0) {
1411                 /* execve success */
1412                 free_arg_pages(bprm);
1413                 security_bprm_free(bprm);
1414                 acct_update_integrals(current);
1415                 kfree(bprm);
1416                 return retval;
1417         }
1418
1419 out:
1420         free_arg_pages(bprm);
1421         if (bprm->security)
1422                 security_bprm_free(bprm);
1423
1424 out_mm:
1425         if (bprm->mm)
1426                 mmput (bprm->mm);
1427
1428 out_file:
1429         if (bprm->file) {
1430                 allow_write_access(bprm->file);
1431                 fput(bprm->file);
1432         }
1433 out_kfree:
1434         kfree(bprm);
1435
1436 out_ret:
1437         return retval;
1438 }
1439
1440 int set_binfmt(struct linux_binfmt *new)
1441 {
1442         struct linux_binfmt *old = current->binfmt;
1443
1444         if (new) {
1445                 if (!try_module_get(new->module))
1446                         return -1;
1447         }
1448         current->binfmt = new;
1449         if (old)
1450                 module_put(old->module);
1451         return 0;
1452 }
1453
1454 EXPORT_SYMBOL(set_binfmt);
1455
1456 /* format_corename will inspect the pattern parameter, and output a
1457  * name into corename, which must have space for at least
1458  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1459  */
1460 static int format_corename(char *corename, const char *pattern, long signr)
1461 {
1462         const char *pat_ptr = pattern;
1463         char *out_ptr = corename;
1464         char *const out_end = corename + CORENAME_MAX_SIZE;
1465         int rc;
1466         int pid_in_pattern = 0;
1467         int ispipe = 0;
1468
1469         if (*pattern == '|')
1470                 ispipe = 1;
1471
1472         /* Repeat as long as we have more pattern to process and more output
1473            space */
1474         while (*pat_ptr) {
1475                 if (*pat_ptr != '%') {
1476                         if (out_ptr == out_end)
1477                                 goto out;
1478                         *out_ptr++ = *pat_ptr++;
1479                 } else {
1480                         switch (*++pat_ptr) {
1481                         case 0:
1482                                 goto out;
1483                         /* Double percent, output one percent */
1484                         case '%':
1485                                 if (out_ptr == out_end)
1486                                         goto out;
1487                                 *out_ptr++ = '%';
1488                                 break;
1489                         /* pid */
1490                         case 'p':
1491                                 pid_in_pattern = 1;
1492                                 rc = snprintf(out_ptr, out_end - out_ptr,
1493                                               "%d", current->tgid);
1494                                 if (rc > out_end - out_ptr)
1495                                         goto out;
1496                                 out_ptr += rc;
1497                                 break;
1498                         /* uid */
1499                         case 'u':
1500                                 rc = snprintf(out_ptr, out_end - out_ptr,
1501                                               "%d", current->uid);
1502                                 if (rc > out_end - out_ptr)
1503                                         goto out;
1504                                 out_ptr += rc;
1505                                 break;
1506                         /* gid */
1507                         case 'g':
1508                                 rc = snprintf(out_ptr, out_end - out_ptr,
1509                                               "%d", current->gid);
1510                                 if (rc > out_end - out_ptr)
1511                                         goto out;
1512                                 out_ptr += rc;
1513                                 break;
1514                         /* signal that caused the coredump */
1515                         case 's':
1516                                 rc = snprintf(out_ptr, out_end - out_ptr,
1517                                               "%ld", signr);
1518                                 if (rc > out_end - out_ptr)
1519                                         goto out;
1520                                 out_ptr += rc;
1521                                 break;
1522                         /* UNIX time of coredump */
1523                         case 't': {
1524                                 struct timeval tv;
1525                                 do_gettimeofday(&tv);
1526                                 rc = snprintf(out_ptr, out_end - out_ptr,
1527                                               "%lu", tv.tv_sec);
1528                                 if (rc > out_end - out_ptr)
1529                                         goto out;
1530                                 out_ptr += rc;
1531                                 break;
1532                         }
1533                         /* hostname */
1534                         case 'h':
1535                                 down_read(&uts_sem);
1536                                 rc = snprintf(out_ptr, out_end - out_ptr,
1537                                               "%s", utsname()->nodename);
1538                                 up_read(&uts_sem);
1539                                 if (rc > out_end - out_ptr)
1540                                         goto out;
1541                                 out_ptr += rc;
1542                                 break;
1543                         /* executable */
1544                         case 'e':
1545                                 rc = snprintf(out_ptr, out_end - out_ptr,
1546                                               "%s", current->comm);
1547                                 if (rc > out_end - out_ptr)
1548                                         goto out;
1549                                 out_ptr += rc;
1550                                 break;
1551                         default:
1552                                 break;
1553                         }
1554                         ++pat_ptr;
1555                 }
1556         }
1557         /* Backward compatibility with core_uses_pid:
1558          *
1559          * If core_pattern does not include a %p (as is the default)
1560          * and core_uses_pid is set, then .%pid will be appended to
1561          * the filename. Do not do this for piped commands. */
1562         if (!ispipe && !pid_in_pattern
1563             && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1564                 rc = snprintf(out_ptr, out_end - out_ptr,
1565                               ".%d", current->tgid);
1566                 if (rc > out_end - out_ptr)
1567                         goto out;
1568                 out_ptr += rc;
1569         }
1570 out:
1571         *out_ptr = 0;
1572         return ispipe;
1573 }
1574
1575 static void zap_process(struct task_struct *start)
1576 {
1577         struct task_struct *t;
1578
1579         start->signal->flags = SIGNAL_GROUP_EXIT;
1580         start->signal->group_stop_count = 0;
1581
1582         t = start;
1583         do {
1584                 if (t != current && t->mm) {
1585                         t->mm->core_waiters++;
1586                         sigaddset(&t->pending.signal, SIGKILL);
1587                         signal_wake_up(t, 1);
1588                 }
1589         } while ((t = next_thread(t)) != start);
1590 }
1591
1592 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1593                                 int exit_code)
1594 {
1595         struct task_struct *g, *p;
1596         unsigned long flags;
1597         int err = -EAGAIN;
1598
1599         spin_lock_irq(&tsk->sighand->siglock);
1600         if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
1601                 tsk->signal->group_exit_code = exit_code;
1602                 zap_process(tsk);
1603                 err = 0;
1604         }
1605         spin_unlock_irq(&tsk->sighand->siglock);
1606         if (err)
1607                 return err;
1608
1609         if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1610                 goto done;
1611
1612         rcu_read_lock();
1613         for_each_process(g) {
1614                 if (g == tsk->group_leader)
1615                         continue;
1616
1617                 p = g;
1618                 do {
1619                         if (p->mm) {
1620                                 if (p->mm == mm) {
1621                                         /*
1622                                          * p->sighand can't disappear, but
1623                                          * may be changed by de_thread()
1624                                          */
1625                                         lock_task_sighand(p, &flags);
1626                                         zap_process(p);
1627                                         unlock_task_sighand(p, &flags);
1628                                 }
1629                                 break;
1630                         }
1631                 } while ((p = next_thread(p)) != g);
1632         }
1633         rcu_read_unlock();
1634 done:
1635         return mm->core_waiters;
1636 }
1637
1638 static int coredump_wait(int exit_code)
1639 {
1640         struct task_struct *tsk = current;
1641         struct mm_struct *mm = tsk->mm;
1642         struct completion startup_done;
1643         struct completion *vfork_done;
1644         int core_waiters;
1645
1646         init_completion(&mm->core_done);
1647         init_completion(&startup_done);
1648         mm->core_startup_done = &startup_done;
1649
1650         core_waiters = zap_threads(tsk, mm, exit_code);
1651         up_write(&mm->mmap_sem);
1652
1653         if (unlikely(core_waiters < 0))
1654                 goto fail;
1655
1656         /*
1657          * Make sure nobody is waiting for us to release the VM,
1658          * otherwise we can deadlock when we wait on each other
1659          */
1660         vfork_done = tsk->vfork_done;
1661         if (vfork_done) {
1662                 tsk->vfork_done = NULL;
1663                 complete(vfork_done);
1664         }
1665
1666         if (core_waiters)
1667                 wait_for_completion(&startup_done);
1668 fail:
1669         BUG_ON(mm->core_waiters);
1670         return core_waiters;
1671 }
1672
1673 /*
1674  * set_dumpable converts traditional three-value dumpable to two flags and
1675  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1676  * these bits are not changed atomically.  So get_dumpable can observe the
1677  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1678  * return either old dumpable or new one by paying attention to the order of
1679  * modifying the bits.
1680  *
1681  * dumpable |   mm->flags (binary)
1682  * old  new | initial interim  final
1683  * ---------+-----------------------
1684  *  0    1  |   00      01      01
1685  *  0    2  |   00      10(*)   11
1686  *  1    0  |   01      00      00
1687  *  1    2  |   01      11      11
1688  *  2    0  |   11      10(*)   00
1689  *  2    1  |   11      11      01
1690  *
1691  * (*) get_dumpable regards interim value of 10 as 11.
1692  */
1693 void set_dumpable(struct mm_struct *mm, int value)
1694 {
1695         switch (value) {
1696         case 0:
1697                 clear_bit(MMF_DUMPABLE, &mm->flags);
1698                 smp_wmb();
1699                 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1700                 break;
1701         case 1:
1702                 set_bit(MMF_DUMPABLE, &mm->flags);
1703                 smp_wmb();
1704                 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1705                 break;
1706         case 2:
1707                 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1708                 smp_wmb();
1709                 set_bit(MMF_DUMPABLE, &mm->flags);
1710                 break;
1711         }
1712 }
1713 EXPORT_SYMBOL_GPL(set_dumpable);
1714
1715 int get_dumpable(struct mm_struct *mm)
1716 {
1717         int ret;
1718
1719         ret = mm->flags & 0x3;
1720         return (ret >= 2) ? 2 : ret;
1721 }
1722
1723 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1724 {
1725         char corename[CORENAME_MAX_SIZE + 1];
1726         struct mm_struct *mm = current->mm;
1727         struct linux_binfmt * binfmt;
1728         struct inode * inode;
1729         struct file * file;
1730         int retval = 0;
1731         int fsuid = current->fsuid;
1732         int flag = 0;
1733         int ispipe = 0;
1734
1735         audit_core_dumps(signr);
1736
1737         binfmt = current->binfmt;
1738         if (!binfmt || !binfmt->core_dump)
1739                 goto fail;
1740         down_write(&mm->mmap_sem);
1741         if (!get_dumpable(mm)) {
1742                 up_write(&mm->mmap_sem);
1743                 goto fail;
1744         }
1745
1746         /*
1747          *      We cannot trust fsuid as being the "true" uid of the
1748          *      process nor do we know its entire history. We only know it
1749          *      was tainted so we dump it as root in mode 2.
1750          */
1751         if (get_dumpable(mm) == 2) {    /* Setuid core dump mode */
1752                 flag = O_EXCL;          /* Stop rewrite attacks */
1753                 current->fsuid = 0;     /* Dump root private */
1754         }
1755         set_dumpable(mm, 0);
1756
1757         retval = coredump_wait(exit_code);
1758         if (retval < 0)
1759                 goto fail;
1760
1761         /*
1762          * Clear any false indication of pending signals that might
1763          * be seen by the filesystem code called to write the core file.
1764          */
1765         clear_thread_flag(TIF_SIGPENDING);
1766
1767         if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump)
1768                 goto fail_unlock;
1769
1770         /*
1771          * lock_kernel() because format_corename() is controlled by sysctl, which
1772          * uses lock_kernel()
1773          */
1774         lock_kernel();
1775         ispipe = format_corename(corename, core_pattern, signr);
1776         unlock_kernel();
1777         if (ispipe) {
1778                 /* SIGPIPE can happen, but it's just never processed */
1779                 if(call_usermodehelper_pipe(corename+1, NULL, NULL, &file)) {
1780                         printk(KERN_INFO "Core dump to %s pipe failed\n",
1781                                corename);
1782                         goto fail_unlock;
1783                 }
1784         } else
1785                 file = filp_open(corename,
1786                                  O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1787                                  0600);
1788         if (IS_ERR(file))
1789                 goto fail_unlock;
1790         inode = file->f_path.dentry->d_inode;
1791         if (inode->i_nlink > 1)
1792                 goto close_fail;        /* multiple links - don't dump */
1793         if (!ispipe && d_unhashed(file->f_path.dentry))
1794                 goto close_fail;
1795
1796         /* AK: actually i see no reason to not allow this for named pipes etc.,
1797            but keep the previous behaviour for now. */
1798         if (!ispipe && !S_ISREG(inode->i_mode))
1799                 goto close_fail;
1800         if (!file->f_op)
1801                 goto close_fail;
1802         if (!file->f_op->write)
1803                 goto close_fail;
1804         if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1805                 goto close_fail;
1806
1807         retval = binfmt->core_dump(signr, regs, file);
1808
1809         if (retval)
1810                 current->signal->group_exit_code |= 0x80;
1811 close_fail:
1812         filp_close(file, NULL);
1813 fail_unlock:
1814         current->fsuid = fsuid;
1815         complete_all(&mm->core_done);
1816 fail:
1817         return retval;
1818 }