Merge git://git.linux-nfs.org/pub/linux/nfs-2.6
[pandora-kernel.git] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats. 
23  */
24
25 #include <linux/config.h>
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/mman.h>
29 #include <linux/a.out.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/smp_lock.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/swap.h>
41 #include <linux/utsname.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/rmap.h>
50 #include <linux/acct.h>
51 #include <linux/cn_proc.h>
52
53 #include <asm/uaccess.h>
54 #include <asm/mmu_context.h>
55
56 #ifdef CONFIG_KMOD
57 #include <linux/kmod.h>
58 #endif
59
60 int core_uses_pid;
61 char core_pattern[65] = "core";
62 int suid_dumpable = 0;
63
64 EXPORT_SYMBOL(suid_dumpable);
65 /* The maximal length of core_pattern is also specified in sysctl.c */
66
67 static struct linux_binfmt *formats;
68 static DEFINE_RWLOCK(binfmt_lock);
69
70 int register_binfmt(struct linux_binfmt * fmt)
71 {
72         struct linux_binfmt ** tmp = &formats;
73
74         if (!fmt)
75                 return -EINVAL;
76         if (fmt->next)
77                 return -EBUSY;
78         write_lock(&binfmt_lock);
79         while (*tmp) {
80                 if (fmt == *tmp) {
81                         write_unlock(&binfmt_lock);
82                         return -EBUSY;
83                 }
84                 tmp = &(*tmp)->next;
85         }
86         fmt->next = formats;
87         formats = fmt;
88         write_unlock(&binfmt_lock);
89         return 0;       
90 }
91
92 EXPORT_SYMBOL(register_binfmt);
93
94 int unregister_binfmt(struct linux_binfmt * fmt)
95 {
96         struct linux_binfmt ** tmp = &formats;
97
98         write_lock(&binfmt_lock);
99         while (*tmp) {
100                 if (fmt == *tmp) {
101                         *tmp = fmt->next;
102                         write_unlock(&binfmt_lock);
103                         return 0;
104                 }
105                 tmp = &(*tmp)->next;
106         }
107         write_unlock(&binfmt_lock);
108         return -EINVAL;
109 }
110
111 EXPORT_SYMBOL(unregister_binfmt);
112
113 static inline void put_binfmt(struct linux_binfmt * fmt)
114 {
115         module_put(fmt->module);
116 }
117
118 /*
119  * Note that a shared library must be both readable and executable due to
120  * security reasons.
121  *
122  * Also note that we take the address to load from from the file itself.
123  */
124 asmlinkage long sys_uselib(const char __user * library)
125 {
126         struct file * file;
127         struct nameidata nd;
128         int error;
129
130         error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
131         if (error)
132                 goto out;
133
134         error = -EINVAL;
135         if (!S_ISREG(nd.dentry->d_inode->i_mode))
136                 goto exit;
137
138         error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
139         if (error)
140                 goto exit;
141
142         file = nameidata_to_filp(&nd, O_RDONLY);
143         error = PTR_ERR(file);
144         if (IS_ERR(file))
145                 goto out;
146
147         error = -ENOEXEC;
148         if(file->f_op) {
149                 struct linux_binfmt * fmt;
150
151                 read_lock(&binfmt_lock);
152                 for (fmt = formats ; fmt ; fmt = fmt->next) {
153                         if (!fmt->load_shlib)
154                                 continue;
155                         if (!try_module_get(fmt->module))
156                                 continue;
157                         read_unlock(&binfmt_lock);
158                         error = fmt->load_shlib(file);
159                         read_lock(&binfmt_lock);
160                         put_binfmt(fmt);
161                         if (error != -ENOEXEC)
162                                 break;
163                 }
164                 read_unlock(&binfmt_lock);
165         }
166         fput(file);
167 out:
168         return error;
169 exit:
170         release_open_intent(&nd);
171         path_release(&nd);
172         goto out;
173 }
174
175 /*
176  * count() counts the number of strings in array ARGV.
177  */
178 static int count(char __user * __user * argv, int max)
179 {
180         int i = 0;
181
182         if (argv != NULL) {
183                 for (;;) {
184                         char __user * p;
185
186                         if (get_user(p, argv))
187                                 return -EFAULT;
188                         if (!p)
189                                 break;
190                         argv++;
191                         if(++i > max)
192                                 return -E2BIG;
193                         cond_resched();
194                 }
195         }
196         return i;
197 }
198
199 /*
200  * 'copy_strings()' copies argument/environment strings from user
201  * memory to free pages in kernel mem. These are in a format ready
202  * to be put directly into the top of new user memory.
203  */
204 static int copy_strings(int argc, char __user * __user * argv,
205                         struct linux_binprm *bprm)
206 {
207         struct page *kmapped_page = NULL;
208         char *kaddr = NULL;
209         int ret;
210
211         while (argc-- > 0) {
212                 char __user *str;
213                 int len;
214                 unsigned long pos;
215
216                 if (get_user(str, argv+argc) ||
217                                 !(len = strnlen_user(str, bprm->p))) {
218                         ret = -EFAULT;
219                         goto out;
220                 }
221
222                 if (bprm->p < len)  {
223                         ret = -E2BIG;
224                         goto out;
225                 }
226
227                 bprm->p -= len;
228                 /* XXX: add architecture specific overflow check here. */
229                 pos = bprm->p;
230
231                 while (len > 0) {
232                         int i, new, err;
233                         int offset, bytes_to_copy;
234                         struct page *page;
235
236                         offset = pos % PAGE_SIZE;
237                         i = pos/PAGE_SIZE;
238                         page = bprm->page[i];
239                         new = 0;
240                         if (!page) {
241                                 page = alloc_page(GFP_HIGHUSER);
242                                 bprm->page[i] = page;
243                                 if (!page) {
244                                         ret = -ENOMEM;
245                                         goto out;
246                                 }
247                                 new = 1;
248                         }
249
250                         if (page != kmapped_page) {
251                                 if (kmapped_page)
252                                         kunmap(kmapped_page);
253                                 kmapped_page = page;
254                                 kaddr = kmap(kmapped_page);
255                         }
256                         if (new && offset)
257                                 memset(kaddr, 0, offset);
258                         bytes_to_copy = PAGE_SIZE - offset;
259                         if (bytes_to_copy > len) {
260                                 bytes_to_copy = len;
261                                 if (new)
262                                         memset(kaddr+offset+len, 0,
263                                                 PAGE_SIZE-offset-len);
264                         }
265                         err = copy_from_user(kaddr+offset, str, bytes_to_copy);
266                         if (err) {
267                                 ret = -EFAULT;
268                                 goto out;
269                         }
270
271                         pos += bytes_to_copy;
272                         str += bytes_to_copy;
273                         len -= bytes_to_copy;
274                 }
275         }
276         ret = 0;
277 out:
278         if (kmapped_page)
279                 kunmap(kmapped_page);
280         return ret;
281 }
282
283 /*
284  * Like copy_strings, but get argv and its values from kernel memory.
285  */
286 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
287 {
288         int r;
289         mm_segment_t oldfs = get_fs();
290         set_fs(KERNEL_DS);
291         r = copy_strings(argc, (char __user * __user *)argv, bprm);
292         set_fs(oldfs);
293         return r;
294 }
295
296 EXPORT_SYMBOL(copy_strings_kernel);
297
298 #ifdef CONFIG_MMU
299 /*
300  * This routine is used to map in a page into an address space: needed by
301  * execve() for the initial stack and environment pages.
302  *
303  * vma->vm_mm->mmap_sem is held for writing.
304  */
305 void install_arg_page(struct vm_area_struct *vma,
306                         struct page *page, unsigned long address)
307 {
308         struct mm_struct *mm = vma->vm_mm;
309         pte_t * pte;
310         spinlock_t *ptl;
311
312         if (unlikely(anon_vma_prepare(vma)))
313                 goto out;
314
315         flush_dcache_page(page);
316         pte = get_locked_pte(mm, address, &ptl);
317         if (!pte)
318                 goto out;
319         if (!pte_none(*pte)) {
320                 pte_unmap_unlock(pte, ptl);
321                 goto out;
322         }
323         inc_mm_counter(mm, anon_rss);
324         lru_cache_add_active(page);
325         set_pte_at(mm, address, pte, pte_mkdirty(pte_mkwrite(mk_pte(
326                                         page, vma->vm_page_prot))));
327         page_add_new_anon_rmap(page, vma, address);
328         pte_unmap_unlock(pte, ptl);
329
330         /* no need for flush_tlb */
331         return;
332 out:
333         __free_page(page);
334         force_sig(SIGKILL, current);
335 }
336
337 #define EXTRA_STACK_VM_PAGES    20      /* random */
338
339 int setup_arg_pages(struct linux_binprm *bprm,
340                     unsigned long stack_top,
341                     int executable_stack)
342 {
343         unsigned long stack_base;
344         struct vm_area_struct *mpnt;
345         struct mm_struct *mm = current->mm;
346         int i, ret;
347         long arg_size;
348
349 #ifdef CONFIG_STACK_GROWSUP
350         /* Move the argument and environment strings to the bottom of the
351          * stack space.
352          */
353         int offset, j;
354         char *to, *from;
355
356         /* Start by shifting all the pages down */
357         i = 0;
358         for (j = 0; j < MAX_ARG_PAGES; j++) {
359                 struct page *page = bprm->page[j];
360                 if (!page)
361                         continue;
362                 bprm->page[i++] = page;
363         }
364
365         /* Now move them within their pages */
366         offset = bprm->p % PAGE_SIZE;
367         to = kmap(bprm->page[0]);
368         for (j = 1; j < i; j++) {
369                 memmove(to, to + offset, PAGE_SIZE - offset);
370                 from = kmap(bprm->page[j]);
371                 memcpy(to + PAGE_SIZE - offset, from, offset);
372                 kunmap(bprm->page[j - 1]);
373                 to = from;
374         }
375         memmove(to, to + offset, PAGE_SIZE - offset);
376         kunmap(bprm->page[j - 1]);
377
378         /* Limit stack size to 1GB */
379         stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
380         if (stack_base > (1 << 30))
381                 stack_base = 1 << 30;
382         stack_base = PAGE_ALIGN(stack_top - stack_base);
383
384         /* Adjust bprm->p to point to the end of the strings. */
385         bprm->p = stack_base + PAGE_SIZE * i - offset;
386
387         mm->arg_start = stack_base;
388         arg_size = i << PAGE_SHIFT;
389
390         /* zero pages that were copied above */
391         while (i < MAX_ARG_PAGES)
392                 bprm->page[i++] = NULL;
393 #else
394         stack_base = arch_align_stack(stack_top - MAX_ARG_PAGES*PAGE_SIZE);
395         stack_base = PAGE_ALIGN(stack_base);
396         bprm->p += stack_base;
397         mm->arg_start = bprm->p;
398         arg_size = stack_top - (PAGE_MASK & (unsigned long) mm->arg_start);
399 #endif
400
401         arg_size += EXTRA_STACK_VM_PAGES * PAGE_SIZE;
402
403         if (bprm->loader)
404                 bprm->loader += stack_base;
405         bprm->exec += stack_base;
406
407         mpnt = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
408         if (!mpnt)
409                 return -ENOMEM;
410
411         memset(mpnt, 0, sizeof(*mpnt));
412
413         down_write(&mm->mmap_sem);
414         {
415                 mpnt->vm_mm = mm;
416 #ifdef CONFIG_STACK_GROWSUP
417                 mpnt->vm_start = stack_base;
418                 mpnt->vm_end = stack_base + arg_size;
419 #else
420                 mpnt->vm_end = stack_top;
421                 mpnt->vm_start = mpnt->vm_end - arg_size;
422 #endif
423                 /* Adjust stack execute permissions; explicitly enable
424                  * for EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X
425                  * and leave alone (arch default) otherwise. */
426                 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
427                         mpnt->vm_flags = VM_STACK_FLAGS |  VM_EXEC;
428                 else if (executable_stack == EXSTACK_DISABLE_X)
429                         mpnt->vm_flags = VM_STACK_FLAGS & ~VM_EXEC;
430                 else
431                         mpnt->vm_flags = VM_STACK_FLAGS;
432                 mpnt->vm_flags |= mm->def_flags;
433                 mpnt->vm_page_prot = protection_map[mpnt->vm_flags & 0x7];
434                 if ((ret = insert_vm_struct(mm, mpnt))) {
435                         up_write(&mm->mmap_sem);
436                         kmem_cache_free(vm_area_cachep, mpnt);
437                         return ret;
438                 }
439                 mm->stack_vm = mm->total_vm = vma_pages(mpnt);
440         }
441
442         for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
443                 struct page *page = bprm->page[i];
444                 if (page) {
445                         bprm->page[i] = NULL;
446                         install_arg_page(mpnt, page, stack_base);
447                 }
448                 stack_base += PAGE_SIZE;
449         }
450         up_write(&mm->mmap_sem);
451         
452         return 0;
453 }
454
455 EXPORT_SYMBOL(setup_arg_pages);
456
457 #define free_arg_pages(bprm) do { } while (0)
458
459 #else
460
461 static inline void free_arg_pages(struct linux_binprm *bprm)
462 {
463         int i;
464
465         for (i = 0; i < MAX_ARG_PAGES; i++) {
466                 if (bprm->page[i])
467                         __free_page(bprm->page[i]);
468                 bprm->page[i] = NULL;
469         }
470 }
471
472 #endif /* CONFIG_MMU */
473
474 struct file *open_exec(const char *name)
475 {
476         struct nameidata nd;
477         int err;
478         struct file *file;
479
480         err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
481         file = ERR_PTR(err);
482
483         if (!err) {
484                 struct inode *inode = nd.dentry->d_inode;
485                 file = ERR_PTR(-EACCES);
486                 if (!(nd.mnt->mnt_flags & MNT_NOEXEC) &&
487                     S_ISREG(inode->i_mode)) {
488                         int err = vfs_permission(&nd, MAY_EXEC);
489                         if (!err && !(inode->i_mode & 0111))
490                                 err = -EACCES;
491                         file = ERR_PTR(err);
492                         if (!err) {
493                                 file = nameidata_to_filp(&nd, O_RDONLY);
494                                 if (!IS_ERR(file)) {
495                                         err = deny_write_access(file);
496                                         if (err) {
497                                                 fput(file);
498                                                 file = ERR_PTR(err);
499                                         }
500                                 }
501 out:
502                                 return file;
503                         }
504                 }
505                 release_open_intent(&nd);
506                 path_release(&nd);
507         }
508         goto out;
509 }
510
511 EXPORT_SYMBOL(open_exec);
512
513 int kernel_read(struct file *file, unsigned long offset,
514         char *addr, unsigned long count)
515 {
516         mm_segment_t old_fs;
517         loff_t pos = offset;
518         int result;
519
520         old_fs = get_fs();
521         set_fs(get_ds());
522         /* The cast to a user pointer is valid due to the set_fs() */
523         result = vfs_read(file, (void __user *)addr, count, &pos);
524         set_fs(old_fs);
525         return result;
526 }
527
528 EXPORT_SYMBOL(kernel_read);
529
530 static int exec_mmap(struct mm_struct *mm)
531 {
532         struct task_struct *tsk;
533         struct mm_struct * old_mm, *active_mm;
534
535         /* Notify parent that we're no longer interested in the old VM */
536         tsk = current;
537         old_mm = current->mm;
538         mm_release(tsk, old_mm);
539
540         if (old_mm) {
541                 /*
542                  * Make sure that if there is a core dump in progress
543                  * for the old mm, we get out and die instead of going
544                  * through with the exec.  We must hold mmap_sem around
545                  * checking core_waiters and changing tsk->mm.  The
546                  * core-inducing thread will increment core_waiters for
547                  * each thread whose ->mm == old_mm.
548                  */
549                 down_read(&old_mm->mmap_sem);
550                 if (unlikely(old_mm->core_waiters)) {
551                         up_read(&old_mm->mmap_sem);
552                         return -EINTR;
553                 }
554         }
555         task_lock(tsk);
556         active_mm = tsk->active_mm;
557         tsk->mm = mm;
558         tsk->active_mm = mm;
559         activate_mm(active_mm, mm);
560         task_unlock(tsk);
561         arch_pick_mmap_layout(mm);
562         if (old_mm) {
563                 up_read(&old_mm->mmap_sem);
564                 BUG_ON(active_mm != old_mm);
565                 mmput(old_mm);
566                 return 0;
567         }
568         mmdrop(active_mm);
569         return 0;
570 }
571
572 /*
573  * This function makes sure the current process has its own signal table,
574  * so that flush_signal_handlers can later reset the handlers without
575  * disturbing other processes.  (Other processes might share the signal
576  * table via the CLONE_SIGHAND option to clone().)
577  */
578 static int de_thread(struct task_struct *tsk)
579 {
580         struct signal_struct *sig = tsk->signal;
581         struct sighand_struct *newsighand, *oldsighand = tsk->sighand;
582         spinlock_t *lock = &oldsighand->siglock;
583         struct task_struct *leader = NULL;
584         int count;
585
586         /*
587          * If we don't share sighandlers, then we aren't sharing anything
588          * and we can just re-use it all.
589          */
590         if (atomic_read(&oldsighand->count) <= 1) {
591                 BUG_ON(atomic_read(&sig->count) != 1);
592                 exit_itimers(sig);
593                 return 0;
594         }
595
596         newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
597         if (!newsighand)
598                 return -ENOMEM;
599
600         if (thread_group_empty(current))
601                 goto no_thread_group;
602
603         /*
604          * Kill all other threads in the thread group.
605          * We must hold tasklist_lock to call zap_other_threads.
606          */
607         read_lock(&tasklist_lock);
608         spin_lock_irq(lock);
609         if (sig->flags & SIGNAL_GROUP_EXIT) {
610                 /*
611                  * Another group action in progress, just
612                  * return so that the signal is processed.
613                  */
614                 spin_unlock_irq(lock);
615                 read_unlock(&tasklist_lock);
616                 kmem_cache_free(sighand_cachep, newsighand);
617                 return -EAGAIN;
618         }
619
620         /*
621          * child_reaper ignores SIGKILL, change it now.
622          * Reparenting needs write_lock on tasklist_lock,
623          * so it is safe to do it under read_lock.
624          */
625         if (unlikely(current->group_leader == child_reaper))
626                 child_reaper = current;
627
628         zap_other_threads(current);
629         read_unlock(&tasklist_lock);
630
631         /*
632          * Account for the thread group leader hanging around:
633          */
634         count = 1;
635         if (!thread_group_leader(current)) {
636                 count = 2;
637                 /*
638                  * The SIGALRM timer survives the exec, but needs to point
639                  * at us as the new group leader now.  We have a race with
640                  * a timer firing now getting the old leader, so we need to
641                  * synchronize with any firing (by calling del_timer_sync)
642                  * before we can safely let the old group leader die.
643                  */
644                 sig->tsk = current;
645                 spin_unlock_irq(lock);
646                 if (hrtimer_cancel(&sig->real_timer))
647                         hrtimer_restart(&sig->real_timer);
648                 spin_lock_irq(lock);
649         }
650         while (atomic_read(&sig->count) > count) {
651                 sig->group_exit_task = current;
652                 sig->notify_count = count;
653                 __set_current_state(TASK_UNINTERRUPTIBLE);
654                 spin_unlock_irq(lock);
655                 schedule();
656                 spin_lock_irq(lock);
657         }
658         sig->group_exit_task = NULL;
659         sig->notify_count = 0;
660         spin_unlock_irq(lock);
661
662         /*
663          * At this point all other threads have exited, all we have to
664          * do is to wait for the thread group leader to become inactive,
665          * and to assume its PID:
666          */
667         if (!thread_group_leader(current)) {
668                 struct dentry *proc_dentry1, *proc_dentry2;
669
670                 /*
671                  * Wait for the thread group leader to be a zombie.
672                  * It should already be zombie at this point, most
673                  * of the time.
674                  */
675                 leader = current->group_leader;
676                 while (leader->exit_state != EXIT_ZOMBIE)
677                         yield();
678
679                 /*
680                  * The only record we have of the real-time age of a
681                  * process, regardless of execs it's done, is start_time.
682                  * All the past CPU time is accumulated in signal_struct
683                  * from sister threads now dead.  But in this non-leader
684                  * exec, nothing survives from the original leader thread,
685                  * whose birth marks the true age of this process now.
686                  * When we take on its identity by switching to its PID, we
687                  * also take its birthdate (always earlier than our own).
688                  */
689                 current->start_time = leader->start_time;
690
691                 spin_lock(&leader->proc_lock);
692                 spin_lock(&current->proc_lock);
693                 proc_dentry1 = proc_pid_unhash(current);
694                 proc_dentry2 = proc_pid_unhash(leader);
695                 write_lock_irq(&tasklist_lock);
696
697                 BUG_ON(leader->tgid != current->tgid);
698                 BUG_ON(current->pid == current->tgid);
699                 /*
700                  * An exec() starts a new thread group with the
701                  * TGID of the previous thread group. Rehash the
702                  * two threads with a switched PID, and release
703                  * the former thread group leader:
704                  */
705
706                 /* Become a process group leader with the old leader's pid.
707                  * Note: The old leader also uses thispid until release_task
708                  *       is called.  Odd but simple and correct.
709                  */
710                 detach_pid(current, PIDTYPE_PID);
711                 current->pid = leader->pid;
712                 attach_pid(current, PIDTYPE_PID,  current->pid);
713                 attach_pid(current, PIDTYPE_PGID, current->signal->pgrp);
714                 attach_pid(current, PIDTYPE_SID,  current->signal->session);
715                 list_add_tail_rcu(&current->tasks, &init_task.tasks);
716
717                 current->group_leader = current;
718                 leader->group_leader = current;
719
720                 /* Reduce leader to a thread */
721                 detach_pid(leader, PIDTYPE_PGID);
722                 detach_pid(leader, PIDTYPE_SID);
723                 list_del_init(&leader->tasks);
724
725                 current->exit_signal = SIGCHLD;
726
727                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
728                 leader->exit_state = EXIT_DEAD;
729
730                 write_unlock_irq(&tasklist_lock);
731                 spin_unlock(&leader->proc_lock);
732                 spin_unlock(&current->proc_lock);
733                 proc_pid_flush(proc_dentry1);
734                 proc_pid_flush(proc_dentry2);
735         }
736
737         /*
738          * There may be one thread left which is just exiting,
739          * but it's safe to stop telling the group to kill themselves.
740          */
741         sig->flags = 0;
742
743 no_thread_group:
744         exit_itimers(sig);
745         if (leader)
746                 release_task(leader);
747
748         BUG_ON(atomic_read(&sig->count) != 1);
749
750         if (atomic_read(&oldsighand->count) == 1) {
751                 /*
752                  * Now that we nuked the rest of the thread group,
753                  * it turns out we are not sharing sighand any more either.
754                  * So we can just keep it.
755                  */
756                 kmem_cache_free(sighand_cachep, newsighand);
757         } else {
758                 /*
759                  * Move our state over to newsighand and switch it in.
760                  */
761                 atomic_set(&newsighand->count, 1);
762                 memcpy(newsighand->action, oldsighand->action,
763                        sizeof(newsighand->action));
764
765                 write_lock_irq(&tasklist_lock);
766                 spin_lock(&oldsighand->siglock);
767                 spin_lock(&newsighand->siglock);
768
769                 rcu_assign_pointer(current->sighand, newsighand);
770                 recalc_sigpending();
771
772                 spin_unlock(&newsighand->siglock);
773                 spin_unlock(&oldsighand->siglock);
774                 write_unlock_irq(&tasklist_lock);
775
776                 if (atomic_dec_and_test(&oldsighand->count))
777                         kmem_cache_free(sighand_cachep, oldsighand);
778         }
779
780         BUG_ON(!thread_group_leader(current));
781         return 0;
782 }
783         
784 /*
785  * These functions flushes out all traces of the currently running executable
786  * so that a new one can be started
787  */
788
789 static void flush_old_files(struct files_struct * files)
790 {
791         long j = -1;
792         struct fdtable *fdt;
793
794         spin_lock(&files->file_lock);
795         for (;;) {
796                 unsigned long set, i;
797
798                 j++;
799                 i = j * __NFDBITS;
800                 fdt = files_fdtable(files);
801                 if (i >= fdt->max_fds || i >= fdt->max_fdset)
802                         break;
803                 set = fdt->close_on_exec->fds_bits[j];
804                 if (!set)
805                         continue;
806                 fdt->close_on_exec->fds_bits[j] = 0;
807                 spin_unlock(&files->file_lock);
808                 for ( ; set ; i++,set >>= 1) {
809                         if (set & 1) {
810                                 sys_close(i);
811                         }
812                 }
813                 spin_lock(&files->file_lock);
814
815         }
816         spin_unlock(&files->file_lock);
817 }
818
819 void get_task_comm(char *buf, struct task_struct *tsk)
820 {
821         /* buf must be at least sizeof(tsk->comm) in size */
822         task_lock(tsk);
823         strncpy(buf, tsk->comm, sizeof(tsk->comm));
824         task_unlock(tsk);
825 }
826
827 void set_task_comm(struct task_struct *tsk, char *buf)
828 {
829         task_lock(tsk);
830         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
831         task_unlock(tsk);
832 }
833
834 int flush_old_exec(struct linux_binprm * bprm)
835 {
836         char * name;
837         int i, ch, retval;
838         struct files_struct *files;
839         char tcomm[sizeof(current->comm)];
840
841         /*
842          * Make sure we have a private signal table and that
843          * we are unassociated from the previous thread group.
844          */
845         retval = de_thread(current);
846         if (retval)
847                 goto out;
848
849         /*
850          * Make sure we have private file handles. Ask the
851          * fork helper to do the work for us and the exit
852          * helper to do the cleanup of the old one.
853          */
854         files = current->files;         /* refcounted so safe to hold */
855         retval = unshare_files();
856         if (retval)
857                 goto out;
858         /*
859          * Release all of the old mmap stuff
860          */
861         retval = exec_mmap(bprm->mm);
862         if (retval)
863                 goto mmap_failed;
864
865         bprm->mm = NULL;                /* We're using it now */
866
867         /* This is the point of no return */
868         steal_locks(files);
869         put_files_struct(files);
870
871         current->sas_ss_sp = current->sas_ss_size = 0;
872
873         if (current->euid == current->uid && current->egid == current->gid)
874                 current->mm->dumpable = 1;
875         else
876                 current->mm->dumpable = suid_dumpable;
877
878         name = bprm->filename;
879
880         /* Copies the binary name from after last slash */
881         for (i=0; (ch = *(name++)) != '\0';) {
882                 if (ch == '/')
883                         i = 0; /* overwrite what we wrote */
884                 else
885                         if (i < (sizeof(tcomm) - 1))
886                                 tcomm[i++] = ch;
887         }
888         tcomm[i] = '\0';
889         set_task_comm(current, tcomm);
890
891         current->flags &= ~PF_RANDOMIZE;
892         flush_thread();
893
894         /* Set the new mm task size. We have to do that late because it may
895          * depend on TIF_32BIT which is only updated in flush_thread() on
896          * some architectures like powerpc
897          */
898         current->mm->task_size = TASK_SIZE;
899
900         if (bprm->e_uid != current->euid || bprm->e_gid != current->egid || 
901             file_permission(bprm->file, MAY_READ) ||
902             (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
903                 suid_keys(current);
904                 current->mm->dumpable = suid_dumpable;
905         }
906
907         /* An exec changes our domain. We are no longer part of the thread
908            group */
909
910         current->self_exec_id++;
911                         
912         flush_signal_handlers(current, 0);
913         flush_old_files(current->files);
914
915         return 0;
916
917 mmap_failed:
918         put_files_struct(current->files);
919         current->files = files;
920 out:
921         return retval;
922 }
923
924 EXPORT_SYMBOL(flush_old_exec);
925
926 /* 
927  * Fill the binprm structure from the inode. 
928  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
929  */
930 int prepare_binprm(struct linux_binprm *bprm)
931 {
932         int mode;
933         struct inode * inode = bprm->file->f_dentry->d_inode;
934         int retval;
935
936         mode = inode->i_mode;
937         /*
938          * Check execute perms again - if the caller has CAP_DAC_OVERRIDE,
939          * generic_permission lets a non-executable through
940          */
941         if (!(mode & 0111))     /* with at least _one_ execute bit set */
942                 return -EACCES;
943         if (bprm->file->f_op == NULL)
944                 return -EACCES;
945
946         bprm->e_uid = current->euid;
947         bprm->e_gid = current->egid;
948
949         if(!(bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)) {
950                 /* Set-uid? */
951                 if (mode & S_ISUID) {
952                         current->personality &= ~PER_CLEAR_ON_SETID;
953                         bprm->e_uid = inode->i_uid;
954                 }
955
956                 /* Set-gid? */
957                 /*
958                  * If setgid is set but no group execute bit then this
959                  * is a candidate for mandatory locking, not a setgid
960                  * executable.
961                  */
962                 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
963                         current->personality &= ~PER_CLEAR_ON_SETID;
964                         bprm->e_gid = inode->i_gid;
965                 }
966         }
967
968         /* fill in binprm security blob */
969         retval = security_bprm_set(bprm);
970         if (retval)
971                 return retval;
972
973         memset(bprm->buf,0,BINPRM_BUF_SIZE);
974         return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
975 }
976
977 EXPORT_SYMBOL(prepare_binprm);
978
979 static int unsafe_exec(struct task_struct *p)
980 {
981         int unsafe = 0;
982         if (p->ptrace & PT_PTRACED) {
983                 if (p->ptrace & PT_PTRACE_CAP)
984                         unsafe |= LSM_UNSAFE_PTRACE_CAP;
985                 else
986                         unsafe |= LSM_UNSAFE_PTRACE;
987         }
988         if (atomic_read(&p->fs->count) > 1 ||
989             atomic_read(&p->files->count) > 1 ||
990             atomic_read(&p->sighand->count) > 1)
991                 unsafe |= LSM_UNSAFE_SHARE;
992
993         return unsafe;
994 }
995
996 void compute_creds(struct linux_binprm *bprm)
997 {
998         int unsafe;
999
1000         if (bprm->e_uid != current->uid)
1001                 suid_keys(current);
1002         exec_keys(current);
1003
1004         task_lock(current);
1005         unsafe = unsafe_exec(current);
1006         security_bprm_apply_creds(bprm, unsafe);
1007         task_unlock(current);
1008         security_bprm_post_apply_creds(bprm);
1009 }
1010
1011 EXPORT_SYMBOL(compute_creds);
1012
1013 void remove_arg_zero(struct linux_binprm *bprm)
1014 {
1015         if (bprm->argc) {
1016                 unsigned long offset;
1017                 char * kaddr;
1018                 struct page *page;
1019
1020                 offset = bprm->p % PAGE_SIZE;
1021                 goto inside;
1022
1023                 while (bprm->p++, *(kaddr+offset++)) {
1024                         if (offset != PAGE_SIZE)
1025                                 continue;
1026                         offset = 0;
1027                         kunmap_atomic(kaddr, KM_USER0);
1028 inside:
1029                         page = bprm->page[bprm->p/PAGE_SIZE];
1030                         kaddr = kmap_atomic(page, KM_USER0);
1031                 }
1032                 kunmap_atomic(kaddr, KM_USER0);
1033                 bprm->argc--;
1034         }
1035 }
1036
1037 EXPORT_SYMBOL(remove_arg_zero);
1038
1039 /*
1040  * cycle the list of binary formats handler, until one recognizes the image
1041  */
1042 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1043 {
1044         int try,retval;
1045         struct linux_binfmt *fmt;
1046 #ifdef __alpha__
1047         /* handle /sbin/loader.. */
1048         {
1049             struct exec * eh = (struct exec *) bprm->buf;
1050
1051             if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1052                 (eh->fh.f_flags & 0x3000) == 0x3000)
1053             {
1054                 struct file * file;
1055                 unsigned long loader;
1056
1057                 allow_write_access(bprm->file);
1058                 fput(bprm->file);
1059                 bprm->file = NULL;
1060
1061                 loader = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1062
1063                 file = open_exec("/sbin/loader");
1064                 retval = PTR_ERR(file);
1065                 if (IS_ERR(file))
1066                         return retval;
1067
1068                 /* Remember if the application is TASO.  */
1069                 bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1070
1071                 bprm->file = file;
1072                 bprm->loader = loader;
1073                 retval = prepare_binprm(bprm);
1074                 if (retval<0)
1075                         return retval;
1076                 /* should call search_binary_handler recursively here,
1077                    but it does not matter */
1078             }
1079         }
1080 #endif
1081         retval = security_bprm_check(bprm);
1082         if (retval)
1083                 return retval;
1084
1085         /* kernel module loader fixup */
1086         /* so we don't try to load run modprobe in kernel space. */
1087         set_fs(USER_DS);
1088         retval = -ENOENT;
1089         for (try=0; try<2; try++) {
1090                 read_lock(&binfmt_lock);
1091                 for (fmt = formats ; fmt ; fmt = fmt->next) {
1092                         int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1093                         if (!fn)
1094                                 continue;
1095                         if (!try_module_get(fmt->module))
1096                                 continue;
1097                         read_unlock(&binfmt_lock);
1098                         retval = fn(bprm, regs);
1099                         if (retval >= 0) {
1100                                 put_binfmt(fmt);
1101                                 allow_write_access(bprm->file);
1102                                 if (bprm->file)
1103                                         fput(bprm->file);
1104                                 bprm->file = NULL;
1105                                 current->did_exec = 1;
1106                                 proc_exec_connector(current);
1107                                 return retval;
1108                         }
1109                         read_lock(&binfmt_lock);
1110                         put_binfmt(fmt);
1111                         if (retval != -ENOEXEC || bprm->mm == NULL)
1112                                 break;
1113                         if (!bprm->file) {
1114                                 read_unlock(&binfmt_lock);
1115                                 return retval;
1116                         }
1117                 }
1118                 read_unlock(&binfmt_lock);
1119                 if (retval != -ENOEXEC || bprm->mm == NULL) {
1120                         break;
1121 #ifdef CONFIG_KMOD
1122                 }else{
1123 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1124                         if (printable(bprm->buf[0]) &&
1125                             printable(bprm->buf[1]) &&
1126                             printable(bprm->buf[2]) &&
1127                             printable(bprm->buf[3]))
1128                                 break; /* -ENOEXEC */
1129                         request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1130 #endif
1131                 }
1132         }
1133         return retval;
1134 }
1135
1136 EXPORT_SYMBOL(search_binary_handler);
1137
1138 /*
1139  * sys_execve() executes a new program.
1140  */
1141 int do_execve(char * filename,
1142         char __user *__user *argv,
1143         char __user *__user *envp,
1144         struct pt_regs * regs)
1145 {
1146         struct linux_binprm *bprm;
1147         struct file *file;
1148         int retval;
1149         int i;
1150
1151         retval = -ENOMEM;
1152         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1153         if (!bprm)
1154                 goto out_ret;
1155
1156         file = open_exec(filename);
1157         retval = PTR_ERR(file);
1158         if (IS_ERR(file))
1159                 goto out_kfree;
1160
1161         sched_exec();
1162
1163         bprm->p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1164
1165         bprm->file = file;
1166         bprm->filename = filename;
1167         bprm->interp = filename;
1168         bprm->mm = mm_alloc();
1169         retval = -ENOMEM;
1170         if (!bprm->mm)
1171                 goto out_file;
1172
1173         retval = init_new_context(current, bprm->mm);
1174         if (retval < 0)
1175                 goto out_mm;
1176
1177         bprm->argc = count(argv, bprm->p / sizeof(void *));
1178         if ((retval = bprm->argc) < 0)
1179                 goto out_mm;
1180
1181         bprm->envc = count(envp, bprm->p / sizeof(void *));
1182         if ((retval = bprm->envc) < 0)
1183                 goto out_mm;
1184
1185         retval = security_bprm_alloc(bprm);
1186         if (retval)
1187                 goto out;
1188
1189         retval = prepare_binprm(bprm);
1190         if (retval < 0)
1191                 goto out;
1192
1193         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1194         if (retval < 0)
1195                 goto out;
1196
1197         bprm->exec = bprm->p;
1198         retval = copy_strings(bprm->envc, envp, bprm);
1199         if (retval < 0)
1200                 goto out;
1201
1202         retval = copy_strings(bprm->argc, argv, bprm);
1203         if (retval < 0)
1204                 goto out;
1205
1206         retval = search_binary_handler(bprm,regs);
1207         if (retval >= 0) {
1208                 free_arg_pages(bprm);
1209
1210                 /* execve success */
1211                 security_bprm_free(bprm);
1212                 acct_update_integrals(current);
1213                 kfree(bprm);
1214                 return retval;
1215         }
1216
1217 out:
1218         /* Something went wrong, return the inode and free the argument pages*/
1219         for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1220                 struct page * page = bprm->page[i];
1221                 if (page)
1222                         __free_page(page);
1223         }
1224
1225         if (bprm->security)
1226                 security_bprm_free(bprm);
1227
1228 out_mm:
1229         if (bprm->mm)
1230                 mmdrop(bprm->mm);
1231
1232 out_file:
1233         if (bprm->file) {
1234                 allow_write_access(bprm->file);
1235                 fput(bprm->file);
1236         }
1237
1238 out_kfree:
1239         kfree(bprm);
1240
1241 out_ret:
1242         return retval;
1243 }
1244
1245 int set_binfmt(struct linux_binfmt *new)
1246 {
1247         struct linux_binfmt *old = current->binfmt;
1248
1249         if (new) {
1250                 if (!try_module_get(new->module))
1251                         return -1;
1252         }
1253         current->binfmt = new;
1254         if (old)
1255                 module_put(old->module);
1256         return 0;
1257 }
1258
1259 EXPORT_SYMBOL(set_binfmt);
1260
1261 #define CORENAME_MAX_SIZE 64
1262
1263 /* format_corename will inspect the pattern parameter, and output a
1264  * name into corename, which must have space for at least
1265  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1266  */
1267 static void format_corename(char *corename, const char *pattern, long signr)
1268 {
1269         const char *pat_ptr = pattern;
1270         char *out_ptr = corename;
1271         char *const out_end = corename + CORENAME_MAX_SIZE;
1272         int rc;
1273         int pid_in_pattern = 0;
1274
1275         /* Repeat as long as we have more pattern to process and more output
1276            space */
1277         while (*pat_ptr) {
1278                 if (*pat_ptr != '%') {
1279                         if (out_ptr == out_end)
1280                                 goto out;
1281                         *out_ptr++ = *pat_ptr++;
1282                 } else {
1283                         switch (*++pat_ptr) {
1284                         case 0:
1285                                 goto out;
1286                         /* Double percent, output one percent */
1287                         case '%':
1288                                 if (out_ptr == out_end)
1289                                         goto out;
1290                                 *out_ptr++ = '%';
1291                                 break;
1292                         /* pid */
1293                         case 'p':
1294                                 pid_in_pattern = 1;
1295                                 rc = snprintf(out_ptr, out_end - out_ptr,
1296                                               "%d", current->tgid);
1297                                 if (rc > out_end - out_ptr)
1298                                         goto out;
1299                                 out_ptr += rc;
1300                                 break;
1301                         /* uid */
1302                         case 'u':
1303                                 rc = snprintf(out_ptr, out_end - out_ptr,
1304                                               "%d", current->uid);
1305                                 if (rc > out_end - out_ptr)
1306                                         goto out;
1307                                 out_ptr += rc;
1308                                 break;
1309                         /* gid */
1310                         case 'g':
1311                                 rc = snprintf(out_ptr, out_end - out_ptr,
1312                                               "%d", current->gid);
1313                                 if (rc > out_end - out_ptr)
1314                                         goto out;
1315                                 out_ptr += rc;
1316                                 break;
1317                         /* signal that caused the coredump */
1318                         case 's':
1319                                 rc = snprintf(out_ptr, out_end - out_ptr,
1320                                               "%ld", signr);
1321                                 if (rc > out_end - out_ptr)
1322                                         goto out;
1323                                 out_ptr += rc;
1324                                 break;
1325                         /* UNIX time of coredump */
1326                         case 't': {
1327                                 struct timeval tv;
1328                                 do_gettimeofday(&tv);
1329                                 rc = snprintf(out_ptr, out_end - out_ptr,
1330                                               "%lu", tv.tv_sec);
1331                                 if (rc > out_end - out_ptr)
1332                                         goto out;
1333                                 out_ptr += rc;
1334                                 break;
1335                         }
1336                         /* hostname */
1337                         case 'h':
1338                                 down_read(&uts_sem);
1339                                 rc = snprintf(out_ptr, out_end - out_ptr,
1340                                               "%s", system_utsname.nodename);
1341                                 up_read(&uts_sem);
1342                                 if (rc > out_end - out_ptr)
1343                                         goto out;
1344                                 out_ptr += rc;
1345                                 break;
1346                         /* executable */
1347                         case 'e':
1348                                 rc = snprintf(out_ptr, out_end - out_ptr,
1349                                               "%s", current->comm);
1350                                 if (rc > out_end - out_ptr)
1351                                         goto out;
1352                                 out_ptr += rc;
1353                                 break;
1354                         default:
1355                                 break;
1356                         }
1357                         ++pat_ptr;
1358                 }
1359         }
1360         /* Backward compatibility with core_uses_pid:
1361          *
1362          * If core_pattern does not include a %p (as is the default)
1363          * and core_uses_pid is set, then .%pid will be appended to
1364          * the filename */
1365         if (!pid_in_pattern
1366             && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1367                 rc = snprintf(out_ptr, out_end - out_ptr,
1368                               ".%d", current->tgid);
1369                 if (rc > out_end - out_ptr)
1370                         goto out;
1371                 out_ptr += rc;
1372         }
1373       out:
1374         *out_ptr = 0;
1375 }
1376
1377 static void zap_threads (struct mm_struct *mm)
1378 {
1379         struct task_struct *g, *p;
1380         struct task_struct *tsk = current;
1381         struct completion *vfork_done = tsk->vfork_done;
1382         int traced = 0;
1383
1384         /*
1385          * Make sure nobody is waiting for us to release the VM,
1386          * otherwise we can deadlock when we wait on each other
1387          */
1388         if (vfork_done) {
1389                 tsk->vfork_done = NULL;
1390                 complete(vfork_done);
1391         }
1392
1393         read_lock(&tasklist_lock);
1394         do_each_thread(g,p)
1395                 if (mm == p->mm && p != tsk) {
1396                         force_sig_specific(SIGKILL, p);
1397                         mm->core_waiters++;
1398                         if (unlikely(p->ptrace) &&
1399                             unlikely(p->parent->mm == mm))
1400                                 traced = 1;
1401                 }
1402         while_each_thread(g,p);
1403
1404         read_unlock(&tasklist_lock);
1405
1406         if (unlikely(traced)) {
1407                 /*
1408                  * We are zapping a thread and the thread it ptraces.
1409                  * If the tracee went into a ptrace stop for exit tracing,
1410                  * we could deadlock since the tracer is waiting for this
1411                  * coredump to finish.  Detach them so they can both die.
1412                  */
1413                 write_lock_irq(&tasklist_lock);
1414                 do_each_thread(g,p) {
1415                         if (mm == p->mm && p != tsk &&
1416                             p->ptrace && p->parent->mm == mm) {
1417                                 __ptrace_detach(p, 0);
1418                         }
1419                 } while_each_thread(g,p);
1420                 write_unlock_irq(&tasklist_lock);
1421         }
1422 }
1423
1424 static void coredump_wait(struct mm_struct *mm)
1425 {
1426         DECLARE_COMPLETION(startup_done);
1427         int core_waiters;
1428
1429         mm->core_startup_done = &startup_done;
1430
1431         zap_threads(mm);
1432         core_waiters = mm->core_waiters;
1433         up_write(&mm->mmap_sem);
1434
1435         if (core_waiters)
1436                 wait_for_completion(&startup_done);
1437         BUG_ON(mm->core_waiters);
1438 }
1439
1440 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1441 {
1442         char corename[CORENAME_MAX_SIZE + 1];
1443         struct mm_struct *mm = current->mm;
1444         struct linux_binfmt * binfmt;
1445         struct inode * inode;
1446         struct file * file;
1447         int retval = 0;
1448         int fsuid = current->fsuid;
1449         int flag = 0;
1450
1451         binfmt = current->binfmt;
1452         if (!binfmt || !binfmt->core_dump)
1453                 goto fail;
1454         down_write(&mm->mmap_sem);
1455         if (!mm->dumpable) {
1456                 up_write(&mm->mmap_sem);
1457                 goto fail;
1458         }
1459
1460         /*
1461          *      We cannot trust fsuid as being the "true" uid of the
1462          *      process nor do we know its entire history. We only know it
1463          *      was tainted so we dump it as root in mode 2.
1464          */
1465         if (mm->dumpable == 2) {        /* Setuid core dump mode */
1466                 flag = O_EXCL;          /* Stop rewrite attacks */
1467                 current->fsuid = 0;     /* Dump root private */
1468         }
1469         mm->dumpable = 0;
1470
1471         retval = -EAGAIN;
1472         spin_lock_irq(&current->sighand->siglock);
1473         if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
1474                 current->signal->flags = SIGNAL_GROUP_EXIT;
1475                 current->signal->group_exit_code = exit_code;
1476                 current->signal->group_stop_count = 0;
1477                 retval = 0;
1478         }
1479         spin_unlock_irq(&current->sighand->siglock);
1480         if (retval) {
1481                 up_write(&mm->mmap_sem);
1482                 goto fail;
1483         }
1484
1485         init_completion(&mm->core_done);
1486         coredump_wait(mm);
1487
1488         /*
1489          * Clear any false indication of pending signals that might
1490          * be seen by the filesystem code called to write the core file.
1491          */
1492         clear_thread_flag(TIF_SIGPENDING);
1493
1494         if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump)
1495                 goto fail_unlock;
1496
1497         /*
1498          * lock_kernel() because format_corename() is controlled by sysctl, which
1499          * uses lock_kernel()
1500          */
1501         lock_kernel();
1502         format_corename(corename, core_pattern, signr);
1503         unlock_kernel();
1504         file = filp_open(corename, O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 0600);
1505         if (IS_ERR(file))
1506                 goto fail_unlock;
1507         inode = file->f_dentry->d_inode;
1508         if (inode->i_nlink > 1)
1509                 goto close_fail;        /* multiple links - don't dump */
1510         if (d_unhashed(file->f_dentry))
1511                 goto close_fail;
1512
1513         if (!S_ISREG(inode->i_mode))
1514                 goto close_fail;
1515         if (!file->f_op)
1516                 goto close_fail;
1517         if (!file->f_op->write)
1518                 goto close_fail;
1519         if (do_truncate(file->f_dentry, 0, 0, file) != 0)
1520                 goto close_fail;
1521
1522         retval = binfmt->core_dump(signr, regs, file);
1523
1524         if (retval)
1525                 current->signal->group_exit_code |= 0x80;
1526 close_fail:
1527         filp_close(file, NULL);
1528 fail_unlock:
1529         current->fsuid = fsuid;
1530         complete_all(&mm->core_done);
1531 fail:
1532         return retval;
1533 }