pandora: defconfig: update
[pandora-kernel.git] / fs / ecryptfs / keystore.c
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  * In-kernel key management code.  Includes functions to parse and
4  * write authentication token-related packets with the underlying
5  * file.
6  *
7  * Copyright (C) 2004-2006 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
9  *              Michael C. Thompson <mcthomps@us.ibm.com>
10  *              Trevor S. Highland <trevor.highland@gmail.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25  * 02111-1307, USA.
26  */
27
28 #include <linux/string.h>
29 #include <linux/syscalls.h>
30 #include <linux/pagemap.h>
31 #include <linux/key.h>
32 #include <linux/random.h>
33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h>
35 #include <linux/slab.h>
36 #include "ecryptfs_kernel.h"
37
38 /**
39  * request_key returned an error instead of a valid key address;
40  * determine the type of error, make appropriate log entries, and
41  * return an error code.
42  */
43 static int process_request_key_err(long err_code)
44 {
45         int rc = 0;
46
47         switch (err_code) {
48         case -ENOKEY:
49                 ecryptfs_printk(KERN_WARNING, "No key\n");
50                 rc = -ENOENT;
51                 break;
52         case -EKEYEXPIRED:
53                 ecryptfs_printk(KERN_WARNING, "Key expired\n");
54                 rc = -ETIME;
55                 break;
56         case -EKEYREVOKED:
57                 ecryptfs_printk(KERN_WARNING, "Key revoked\n");
58                 rc = -EINVAL;
59                 break;
60         default:
61                 ecryptfs_printk(KERN_WARNING, "Unknown error code: "
62                                 "[0x%.16lx]\n", err_code);
63                 rc = -EINVAL;
64         }
65         return rc;
66 }
67
68 static int process_find_global_auth_tok_for_sig_err(int err_code)
69 {
70         int rc = err_code;
71
72         switch (err_code) {
73         case -ENOENT:
74                 ecryptfs_printk(KERN_WARNING, "Missing auth tok\n");
75                 break;
76         case -EINVAL:
77                 ecryptfs_printk(KERN_WARNING, "Invalid auth tok\n");
78                 break;
79         default:
80                 rc = process_request_key_err(err_code);
81                 break;
82         }
83         return rc;
84 }
85
86 /**
87  * ecryptfs_parse_packet_length
88  * @data: Pointer to memory containing length at offset
89  * @size: This function writes the decoded size to this memory
90  *        address; zero on error
91  * @length_size: The number of bytes occupied by the encoded length
92  *
93  * Returns zero on success; non-zero on error
94  */
95 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
96                                  size_t *length_size)
97 {
98         int rc = 0;
99
100         (*length_size) = 0;
101         (*size) = 0;
102         if (data[0] < 192) {
103                 /* One-byte length */
104                 (*size) = (unsigned char)data[0];
105                 (*length_size) = 1;
106         } else if (data[0] < 224) {
107                 /* Two-byte length */
108                 (*size) = (((unsigned char)(data[0]) - 192) * 256);
109                 (*size) += ((unsigned char)(data[1]) + 192);
110                 (*length_size) = 2;
111         } else if (data[0] == 255) {
112                 /* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
113                 ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
114                                 "supported\n");
115                 rc = -EINVAL;
116                 goto out;
117         } else {
118                 ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
119                 rc = -EINVAL;
120                 goto out;
121         }
122 out:
123         return rc;
124 }
125
126 /**
127  * ecryptfs_write_packet_length
128  * @dest: The byte array target into which to write the length. Must
129  *        have at least ECRYPTFS_MAX_PKT_LEN_SIZE bytes allocated.
130  * @size: The length to write.
131  * @packet_size_length: The number of bytes used to encode the packet
132  *                      length is written to this address.
133  *
134  * Returns zero on success; non-zero on error.
135  */
136 int ecryptfs_write_packet_length(char *dest, size_t size,
137                                  size_t *packet_size_length)
138 {
139         int rc = 0;
140
141         if (size < 192) {
142                 dest[0] = size;
143                 (*packet_size_length) = 1;
144         } else if (size < 65536) {
145                 dest[0] = (((size - 192) / 256) + 192);
146                 dest[1] = ((size - 192) % 256);
147                 (*packet_size_length) = 2;
148         } else {
149                 /* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
150                 rc = -EINVAL;
151                 ecryptfs_printk(KERN_WARNING,
152                                 "Unsupported packet size: [%zd]\n", size);
153         }
154         return rc;
155 }
156
157 static int
158 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
159                     char **packet, size_t *packet_len)
160 {
161         size_t i = 0;
162         size_t data_len;
163         size_t packet_size_len;
164         char *message;
165         int rc;
166
167         /*
168          *              ***** TAG 64 Packet Format *****
169          *    | Content Type                       | 1 byte       |
170          *    | Key Identifier Size                | 1 or 2 bytes |
171          *    | Key Identifier                     | arbitrary    |
172          *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
173          *    | Encrypted File Encryption Key      | arbitrary    |
174          */
175         data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
176                     + session_key->encrypted_key_size);
177         *packet = kmalloc(data_len, GFP_KERNEL);
178         message = *packet;
179         if (!message) {
180                 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
181                 rc = -ENOMEM;
182                 goto out;
183         }
184         message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
185         rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
186                                           &packet_size_len);
187         if (rc) {
188                 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
189                                 "header; cannot generate packet length\n");
190                 goto out;
191         }
192         i += packet_size_len;
193         memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
194         i += ECRYPTFS_SIG_SIZE_HEX;
195         rc = ecryptfs_write_packet_length(&message[i],
196                                           session_key->encrypted_key_size,
197                                           &packet_size_len);
198         if (rc) {
199                 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
200                                 "header; cannot generate packet length\n");
201                 goto out;
202         }
203         i += packet_size_len;
204         memcpy(&message[i], session_key->encrypted_key,
205                session_key->encrypted_key_size);
206         i += session_key->encrypted_key_size;
207         *packet_len = i;
208 out:
209         return rc;
210 }
211
212 static int
213 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
214                     struct ecryptfs_message *msg)
215 {
216         size_t i = 0;
217         char *data;
218         size_t data_len;
219         size_t m_size;
220         size_t message_len;
221         u16 checksum = 0;
222         u16 expected_checksum = 0;
223         int rc;
224
225         /*
226          *              ***** TAG 65 Packet Format *****
227          *         | Content Type             | 1 byte       |
228          *         | Status Indicator         | 1 byte       |
229          *         | File Encryption Key Size | 1 or 2 bytes |
230          *         | File Encryption Key      | arbitrary    |
231          */
232         message_len = msg->data_len;
233         data = msg->data;
234         if (message_len < 4) {
235                 rc = -EIO;
236                 goto out;
237         }
238         if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
239                 ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
240                 rc = -EIO;
241                 goto out;
242         }
243         if (data[i++]) {
244                 ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
245                                 "[%d]\n", data[i-1]);
246                 rc = -EIO;
247                 goto out;
248         }
249         rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
250         if (rc) {
251                 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
252                                 "rc = [%d]\n", rc);
253                 goto out;
254         }
255         i += data_len;
256         if (message_len < (i + m_size)) {
257                 ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
258                                 "is shorter than expected\n");
259                 rc = -EIO;
260                 goto out;
261         }
262         if (m_size < 3) {
263                 ecryptfs_printk(KERN_ERR,
264                                 "The decrypted key is not long enough to "
265                                 "include a cipher code and checksum\n");
266                 rc = -EIO;
267                 goto out;
268         }
269         *cipher_code = data[i++];
270         /* The decrypted key includes 1 byte cipher code and 2 byte checksum */
271         session_key->decrypted_key_size = m_size - 3;
272         if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
273                 ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
274                                 "the maximum key size [%d]\n",
275                                 session_key->decrypted_key_size,
276                                 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
277                 rc = -EIO;
278                 goto out;
279         }
280         memcpy(session_key->decrypted_key, &data[i],
281                session_key->decrypted_key_size);
282         i += session_key->decrypted_key_size;
283         expected_checksum += (unsigned char)(data[i++]) << 8;
284         expected_checksum += (unsigned char)(data[i++]);
285         for (i = 0; i < session_key->decrypted_key_size; i++)
286                 checksum += session_key->decrypted_key[i];
287         if (expected_checksum != checksum) {
288                 ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
289                                 "encryption  key; expected [%x]; calculated "
290                                 "[%x]\n", expected_checksum, checksum);
291                 rc = -EIO;
292         }
293 out:
294         return rc;
295 }
296
297
298 static int
299 write_tag_66_packet(char *signature, u8 cipher_code,
300                     struct ecryptfs_crypt_stat *crypt_stat, char **packet,
301                     size_t *packet_len)
302 {
303         size_t i = 0;
304         size_t j;
305         size_t data_len;
306         size_t checksum = 0;
307         size_t packet_size_len;
308         char *message;
309         int rc;
310
311         /*
312          *              ***** TAG 66 Packet Format *****
313          *         | Content Type             | 1 byte       |
314          *         | Key Identifier Size      | 1 or 2 bytes |
315          *         | Key Identifier           | arbitrary    |
316          *         | File Encryption Key Size | 1 or 2 bytes |
317          *         | File Encryption Key      | arbitrary    |
318          */
319         data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
320         *packet = kmalloc(data_len, GFP_KERNEL);
321         message = *packet;
322         if (!message) {
323                 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
324                 rc = -ENOMEM;
325                 goto out;
326         }
327         message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
328         rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
329                                           &packet_size_len);
330         if (rc) {
331                 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
332                                 "header; cannot generate packet length\n");
333                 goto out;
334         }
335         i += packet_size_len;
336         memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
337         i += ECRYPTFS_SIG_SIZE_HEX;
338         /* The encrypted key includes 1 byte cipher code and 2 byte checksum */
339         rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
340                                           &packet_size_len);
341         if (rc) {
342                 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
343                                 "header; cannot generate packet length\n");
344                 goto out;
345         }
346         i += packet_size_len;
347         message[i++] = cipher_code;
348         memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
349         i += crypt_stat->key_size;
350         for (j = 0; j < crypt_stat->key_size; j++)
351                 checksum += crypt_stat->key[j];
352         message[i++] = (checksum / 256) % 256;
353         message[i++] = (checksum % 256);
354         *packet_len = i;
355 out:
356         return rc;
357 }
358
359 static int
360 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
361                     struct ecryptfs_message *msg)
362 {
363         size_t i = 0;
364         char *data;
365         size_t data_len;
366         size_t message_len;
367         int rc;
368
369         /*
370          *              ***** TAG 65 Packet Format *****
371          *    | Content Type                       | 1 byte       |
372          *    | Status Indicator                   | 1 byte       |
373          *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
374          *    | Encrypted File Encryption Key      | arbitrary    |
375          */
376         message_len = msg->data_len;
377         data = msg->data;
378         /* verify that everything through the encrypted FEK size is present */
379         if (message_len < 4) {
380                 rc = -EIO;
381                 printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
382                        "message length is [%d]\n", __func__, message_len, 4);
383                 goto out;
384         }
385         if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
386                 rc = -EIO;
387                 printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
388                        __func__);
389                 goto out;
390         }
391         if (data[i++]) {
392                 rc = -EIO;
393                 printk(KERN_ERR "%s: Status indicator has non zero "
394                        "value [%d]\n", __func__, data[i-1]);
395
396                 goto out;
397         }
398         rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
399                                           &data_len);
400         if (rc) {
401                 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
402                                 "rc = [%d]\n", rc);
403                 goto out;
404         }
405         i += data_len;
406         if (message_len < (i + key_rec->enc_key_size)) {
407                 rc = -EIO;
408                 printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
409                        __func__, message_len, (i + key_rec->enc_key_size));
410                 goto out;
411         }
412         if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
413                 rc = -EIO;
414                 printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
415                        "the maximum key size [%d]\n", __func__,
416                        key_rec->enc_key_size,
417                        ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
418                 goto out;
419         }
420         memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
421 out:
422         return rc;
423 }
424
425 /**
426  * ecryptfs_verify_version
427  * @version: The version number to confirm
428  *
429  * Returns zero on good version; non-zero otherwise
430  */
431 static int ecryptfs_verify_version(u16 version)
432 {
433         int rc = 0;
434         unsigned char major;
435         unsigned char minor;
436
437         major = ((version >> 8) & 0xFF);
438         minor = (version & 0xFF);
439         if (major != ECRYPTFS_VERSION_MAJOR) {
440                 ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
441                                 "Expected [%d]; got [%d]\n",
442                                 ECRYPTFS_VERSION_MAJOR, major);
443                 rc = -EINVAL;
444                 goto out;
445         }
446         if (minor != ECRYPTFS_VERSION_MINOR) {
447                 ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
448                                 "Expected [%d]; got [%d]\n",
449                                 ECRYPTFS_VERSION_MINOR, minor);
450                 rc = -EINVAL;
451                 goto out;
452         }
453 out:
454         return rc;
455 }
456
457 /**
458  * ecryptfs_verify_auth_tok_from_key
459  * @auth_tok_key: key containing the authentication token
460  * @auth_tok: authentication token
461  *
462  * Returns zero on valid auth tok; -EINVAL if the payload is invalid; or
463  * -EKEYREVOKED if the key was revoked before we acquired its semaphore.
464  */
465 static int
466 ecryptfs_verify_auth_tok_from_key(struct key *auth_tok_key,
467                                   struct ecryptfs_auth_tok **auth_tok)
468 {
469         int rc = 0;
470
471         (*auth_tok) = ecryptfs_get_key_payload_data(auth_tok_key);
472         if (IS_ERR(*auth_tok)) {
473                 rc = PTR_ERR(*auth_tok);
474                 *auth_tok = NULL;
475                 goto out;
476         }
477
478         if (ecryptfs_verify_version((*auth_tok)->version)) {
479                 printk(KERN_ERR "Data structure version mismatch. Userspace "
480                        "tools must match eCryptfs kernel module with major "
481                        "version [%d] and minor version [%d]\n",
482                        ECRYPTFS_VERSION_MAJOR, ECRYPTFS_VERSION_MINOR);
483                 rc = -EINVAL;
484                 goto out;
485         }
486         if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
487             && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
488                 printk(KERN_ERR "Invalid auth_tok structure "
489                        "returned from key query\n");
490                 rc = -EINVAL;
491                 goto out;
492         }
493 out:
494         return rc;
495 }
496
497 static int
498 ecryptfs_find_global_auth_tok_for_sig(
499         struct key **auth_tok_key,
500         struct ecryptfs_auth_tok **auth_tok,
501         struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
502 {
503         struct ecryptfs_global_auth_tok *walker;
504         int rc = 0;
505
506         (*auth_tok_key) = NULL;
507         (*auth_tok) = NULL;
508         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
509         list_for_each_entry(walker,
510                             &mount_crypt_stat->global_auth_tok_list,
511                             mount_crypt_stat_list) {
512                 if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX))
513                         continue;
514
515                 if (walker->flags & ECRYPTFS_AUTH_TOK_INVALID) {
516                         rc = -EINVAL;
517                         goto out;
518                 }
519
520                 rc = key_validate(walker->global_auth_tok_key);
521                 if (rc) {
522                         if (rc == -EKEYEXPIRED)
523                                 goto out;
524                         goto out_invalid_auth_tok;
525                 }
526
527                 down_write(&(walker->global_auth_tok_key->sem));
528                 rc = ecryptfs_verify_auth_tok_from_key(
529                                 walker->global_auth_tok_key, auth_tok);
530                 if (rc)
531                         goto out_invalid_auth_tok_unlock;
532
533                 (*auth_tok_key) = walker->global_auth_tok_key;
534                 key_get(*auth_tok_key);
535                 goto out;
536         }
537         rc = -ENOENT;
538         goto out;
539 out_invalid_auth_tok_unlock:
540         up_write(&(walker->global_auth_tok_key->sem));
541 out_invalid_auth_tok:
542         printk(KERN_WARNING "Invalidating auth tok with sig = [%s]\n", sig);
543         walker->flags |= ECRYPTFS_AUTH_TOK_INVALID;
544         key_put(walker->global_auth_tok_key);
545         walker->global_auth_tok_key = NULL;
546 out:
547         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
548         return rc;
549 }
550
551 /**
552  * ecryptfs_find_auth_tok_for_sig
553  * @auth_tok: Set to the matching auth_tok; NULL if not found
554  * @crypt_stat: inode crypt_stat crypto context
555  * @sig: Sig of auth_tok to find
556  *
557  * For now, this function simply looks at the registered auth_tok's
558  * linked off the mount_crypt_stat, so all the auth_toks that can be
559  * used must be registered at mount time. This function could
560  * potentially try a lot harder to find auth_tok's (e.g., by calling
561  * out to ecryptfsd to dynamically retrieve an auth_tok object) so
562  * that static registration of auth_tok's will no longer be necessary.
563  *
564  * Returns zero on no error; non-zero on error
565  */
566 static int
567 ecryptfs_find_auth_tok_for_sig(
568         struct key **auth_tok_key,
569         struct ecryptfs_auth_tok **auth_tok,
570         struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
571         char *sig)
572 {
573         int rc = 0;
574
575         rc = ecryptfs_find_global_auth_tok_for_sig(auth_tok_key, auth_tok,
576                                                    mount_crypt_stat, sig);
577         if (rc == -ENOENT) {
578                 /* if the flag ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY is set in the
579                  * mount_crypt_stat structure, we prevent to use auth toks that
580                  * are not inserted through the ecryptfs_add_global_auth_tok
581                  * function.
582                  */
583                 if (mount_crypt_stat->flags
584                                 & ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY)
585                         return -EINVAL;
586
587                 rc = ecryptfs_keyring_auth_tok_for_sig(auth_tok_key, auth_tok,
588                                                        sig);
589         }
590         return rc;
591 }
592
593 /**
594  * write_tag_70_packet can gobble a lot of stack space. We stuff most
595  * of the function's parameters in a kmalloc'd struct to help reduce
596  * eCryptfs' overall stack usage.
597  */
598 struct ecryptfs_write_tag_70_packet_silly_stack {
599         u8 cipher_code;
600         size_t max_packet_size;
601         size_t packet_size_len;
602         size_t block_aligned_filename_size;
603         size_t block_size;
604         size_t i;
605         size_t j;
606         size_t num_rand_bytes;
607         struct mutex *tfm_mutex;
608         char *block_aligned_filename;
609         struct ecryptfs_auth_tok *auth_tok;
610         struct scatterlist src_sg[2];
611         struct scatterlist dst_sg[2];
612         struct blkcipher_desc desc;
613         char iv[ECRYPTFS_MAX_IV_BYTES];
614         char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
615         char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
616         struct hash_desc hash_desc;
617         struct scatterlist hash_sg;
618 };
619
620 /**
621  * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
622  * @filename: NULL-terminated filename string
623  *
624  * This is the simplest mechanism for achieving filename encryption in
625  * eCryptfs. It encrypts the given filename with the mount-wide
626  * filename encryption key (FNEK) and stores it in a packet to @dest,
627  * which the callee will encode and write directly into the dentry
628  * name.
629  */
630 int
631 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
632                              size_t *packet_size,
633                              struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
634                              char *filename, size_t filename_size)
635 {
636         struct ecryptfs_write_tag_70_packet_silly_stack *s;
637         struct key *auth_tok_key = NULL;
638         int rc = 0;
639
640         s = kmalloc(sizeof(*s), GFP_KERNEL);
641         if (!s) {
642                 printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
643                        "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
644                 rc = -ENOMEM;
645                 goto out;
646         }
647         s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
648         (*packet_size) = 0;
649         rc = ecryptfs_find_auth_tok_for_sig(
650                 &auth_tok_key,
651                 &s->auth_tok, mount_crypt_stat,
652                 mount_crypt_stat->global_default_fnek_sig);
653         if (rc) {
654                 printk(KERN_ERR "%s: Error attempting to find auth tok for "
655                        "fnek sig [%s]; rc = [%d]\n", __func__,
656                        mount_crypt_stat->global_default_fnek_sig, rc);
657                 goto out;
658         }
659         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
660                 &s->desc.tfm,
661                 &s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
662         if (unlikely(rc)) {
663                 printk(KERN_ERR "Internal error whilst attempting to get "
664                        "tfm and mutex for cipher name [%s]; rc = [%d]\n",
665                        mount_crypt_stat->global_default_fn_cipher_name, rc);
666                 goto out;
667         }
668         mutex_lock(s->tfm_mutex);
669         s->block_size = crypto_blkcipher_blocksize(s->desc.tfm);
670         /* Plus one for the \0 separator between the random prefix
671          * and the plaintext filename */
672         s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
673         s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
674         if ((s->block_aligned_filename_size % s->block_size) != 0) {
675                 s->num_rand_bytes += (s->block_size
676                                       - (s->block_aligned_filename_size
677                                          % s->block_size));
678                 s->block_aligned_filename_size = (s->num_rand_bytes
679                                                   + filename_size);
680         }
681         /* Octet 0: Tag 70 identifier
682          * Octets 1-N1: Tag 70 packet size (includes cipher identifier
683          *              and block-aligned encrypted filename size)
684          * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
685          * Octet N2-N3: Cipher identifier (1 octet)
686          * Octets N3-N4: Block-aligned encrypted filename
687          *  - Consists of a minimum number of random characters, a \0
688          *    separator, and then the filename */
689         s->max_packet_size = (1                   /* Tag 70 identifier */
690                               + 3                 /* Max Tag 70 packet size */
691                               + ECRYPTFS_SIG_SIZE /* FNEK sig */
692                               + 1                 /* Cipher identifier */
693                               + s->block_aligned_filename_size);
694         if (dest == NULL) {
695                 (*packet_size) = s->max_packet_size;
696                 goto out_unlock;
697         }
698         if (s->max_packet_size > (*remaining_bytes)) {
699                 printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
700                        "[%zd] available\n", __func__, s->max_packet_size,
701                        (*remaining_bytes));
702                 rc = -EINVAL;
703                 goto out_unlock;
704         }
705         s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
706                                             GFP_KERNEL);
707         if (!s->block_aligned_filename) {
708                 printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
709                        "kzalloc [%zd] bytes\n", __func__,
710                        s->block_aligned_filename_size);
711                 rc = -ENOMEM;
712                 goto out_unlock;
713         }
714         s->i = 0;
715         dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
716         rc = ecryptfs_write_packet_length(&dest[s->i],
717                                           (ECRYPTFS_SIG_SIZE
718                                            + 1 /* Cipher code */
719                                            + s->block_aligned_filename_size),
720                                           &s->packet_size_len);
721         if (rc) {
722                 printk(KERN_ERR "%s: Error generating tag 70 packet "
723                        "header; cannot generate packet length; rc = [%d]\n",
724                        __func__, rc);
725                 goto out_free_unlock;
726         }
727         s->i += s->packet_size_len;
728         ecryptfs_from_hex(&dest[s->i],
729                           mount_crypt_stat->global_default_fnek_sig,
730                           ECRYPTFS_SIG_SIZE);
731         s->i += ECRYPTFS_SIG_SIZE;
732         s->cipher_code = ecryptfs_code_for_cipher_string(
733                 mount_crypt_stat->global_default_fn_cipher_name,
734                 mount_crypt_stat->global_default_fn_cipher_key_bytes);
735         if (s->cipher_code == 0) {
736                 printk(KERN_WARNING "%s: Unable to generate code for "
737                        "cipher [%s] with key bytes [%zd]\n", __func__,
738                        mount_crypt_stat->global_default_fn_cipher_name,
739                        mount_crypt_stat->global_default_fn_cipher_key_bytes);
740                 rc = -EINVAL;
741                 goto out_free_unlock;
742         }
743         dest[s->i++] = s->cipher_code;
744         /* TODO: Support other key modules than passphrase for
745          * filename encryption */
746         if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
747                 rc = -EOPNOTSUPP;
748                 printk(KERN_INFO "%s: Filename encryption only supports "
749                        "password tokens\n", __func__);
750                 goto out_free_unlock;
751         }
752         sg_init_one(
753                 &s->hash_sg,
754                 (u8 *)s->auth_tok->token.password.session_key_encryption_key,
755                 s->auth_tok->token.password.session_key_encryption_key_bytes);
756         s->hash_desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
757         s->hash_desc.tfm = crypto_alloc_hash(ECRYPTFS_TAG_70_DIGEST, 0,
758                                              CRYPTO_ALG_ASYNC);
759         if (IS_ERR(s->hash_desc.tfm)) {
760                         rc = PTR_ERR(s->hash_desc.tfm);
761                         printk(KERN_ERR "%s: Error attempting to "
762                                "allocate hash crypto context; rc = [%d]\n",
763                                __func__, rc);
764                         goto out_free_unlock;
765         }
766         rc = crypto_hash_init(&s->hash_desc);
767         if (rc) {
768                 printk(KERN_ERR
769                        "%s: Error initializing crypto hash; rc = [%d]\n",
770                        __func__, rc);
771                 goto out_release_free_unlock;
772         }
773         rc = crypto_hash_update(
774                 &s->hash_desc, &s->hash_sg,
775                 s->auth_tok->token.password.session_key_encryption_key_bytes);
776         if (rc) {
777                 printk(KERN_ERR
778                        "%s: Error updating crypto hash; rc = [%d]\n",
779                        __func__, rc);
780                 goto out_release_free_unlock;
781         }
782         rc = crypto_hash_final(&s->hash_desc, s->hash);
783         if (rc) {
784                 printk(KERN_ERR
785                        "%s: Error finalizing crypto hash; rc = [%d]\n",
786                        __func__, rc);
787                 goto out_release_free_unlock;
788         }
789         for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
790                 s->block_aligned_filename[s->j] =
791                         s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
792                 if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
793                     == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
794                         sg_init_one(&s->hash_sg, (u8 *)s->hash,
795                                     ECRYPTFS_TAG_70_DIGEST_SIZE);
796                         rc = crypto_hash_init(&s->hash_desc);
797                         if (rc) {
798                                 printk(KERN_ERR
799                                        "%s: Error initializing crypto hash; "
800                                        "rc = [%d]\n", __func__, rc);
801                                 goto out_release_free_unlock;
802                         }
803                         rc = crypto_hash_update(&s->hash_desc, &s->hash_sg,
804                                                 ECRYPTFS_TAG_70_DIGEST_SIZE);
805                         if (rc) {
806                                 printk(KERN_ERR
807                                        "%s: Error updating crypto hash; "
808                                        "rc = [%d]\n", __func__, rc);
809                                 goto out_release_free_unlock;
810                         }
811                         rc = crypto_hash_final(&s->hash_desc, s->tmp_hash);
812                         if (rc) {
813                                 printk(KERN_ERR
814                                        "%s: Error finalizing crypto hash; "
815                                        "rc = [%d]\n", __func__, rc);
816                                 goto out_release_free_unlock;
817                         }
818                         memcpy(s->hash, s->tmp_hash,
819                                ECRYPTFS_TAG_70_DIGEST_SIZE);
820                 }
821                 if (s->block_aligned_filename[s->j] == '\0')
822                         s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
823         }
824         memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
825                filename_size);
826         rc = virt_to_scatterlist(s->block_aligned_filename,
827                                  s->block_aligned_filename_size, s->src_sg, 2);
828         if (rc < 1) {
829                 printk(KERN_ERR "%s: Internal error whilst attempting to "
830                        "convert filename memory to scatterlist; rc = [%d]. "
831                        "block_aligned_filename_size = [%zd]\n", __func__, rc,
832                        s->block_aligned_filename_size);
833                 goto out_release_free_unlock;
834         }
835         rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
836                                  s->dst_sg, 2);
837         if (rc < 1) {
838                 printk(KERN_ERR "%s: Internal error whilst attempting to "
839                        "convert encrypted filename memory to scatterlist; "
840                        "rc = [%d]. block_aligned_filename_size = [%zd]\n",
841                        __func__, rc, s->block_aligned_filename_size);
842                 goto out_release_free_unlock;
843         }
844         /* The characters in the first block effectively do the job
845          * of the IV here, so we just use 0's for the IV. Note the
846          * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
847          * >= ECRYPTFS_MAX_IV_BYTES. */
848         memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
849         s->desc.info = s->iv;
850         rc = crypto_blkcipher_setkey(
851                 s->desc.tfm,
852                 s->auth_tok->token.password.session_key_encryption_key,
853                 mount_crypt_stat->global_default_fn_cipher_key_bytes);
854         if (rc < 0) {
855                 printk(KERN_ERR "%s: Error setting key for crypto context; "
856                        "rc = [%d]. s->auth_tok->token.password.session_key_"
857                        "encryption_key = [0x%p]; mount_crypt_stat->"
858                        "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
859                        rc,
860                        s->auth_tok->token.password.session_key_encryption_key,
861                        mount_crypt_stat->global_default_fn_cipher_key_bytes);
862                 goto out_release_free_unlock;
863         }
864         rc = crypto_blkcipher_encrypt_iv(&s->desc, s->dst_sg, s->src_sg,
865                                          s->block_aligned_filename_size);
866         if (rc) {
867                 printk(KERN_ERR "%s: Error attempting to encrypt filename; "
868                        "rc = [%d]\n", __func__, rc);
869                 goto out_release_free_unlock;
870         }
871         s->i += s->block_aligned_filename_size;
872         (*packet_size) = s->i;
873         (*remaining_bytes) -= (*packet_size);
874 out_release_free_unlock:
875         crypto_free_hash(s->hash_desc.tfm);
876 out_free_unlock:
877         kzfree(s->block_aligned_filename);
878 out_unlock:
879         mutex_unlock(s->tfm_mutex);
880 out:
881         if (auth_tok_key) {
882                 up_write(&(auth_tok_key->sem));
883                 key_put(auth_tok_key);
884         }
885         kfree(s);
886         return rc;
887 }
888
889 struct ecryptfs_parse_tag_70_packet_silly_stack {
890         u8 cipher_code;
891         size_t max_packet_size;
892         size_t packet_size_len;
893         size_t parsed_tag_70_packet_size;
894         size_t block_aligned_filename_size;
895         size_t block_size;
896         size_t i;
897         struct mutex *tfm_mutex;
898         char *decrypted_filename;
899         struct ecryptfs_auth_tok *auth_tok;
900         struct scatterlist src_sg[2];
901         struct scatterlist dst_sg[2];
902         struct blkcipher_desc desc;
903         char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
904         char iv[ECRYPTFS_MAX_IV_BYTES];
905         char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE];
906 };
907
908 /**
909  * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
910  * @filename: This function kmalloc's the memory for the filename
911  * @filename_size: This function sets this to the amount of memory
912  *                 kmalloc'd for the filename
913  * @packet_size: This function sets this to the the number of octets
914  *               in the packet parsed
915  * @mount_crypt_stat: The mount-wide cryptographic context
916  * @data: The memory location containing the start of the tag 70
917  *        packet
918  * @max_packet_size: The maximum legal size of the packet to be parsed
919  *                   from @data
920  *
921  * Returns zero on success; non-zero otherwise
922  */
923 int
924 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
925                              size_t *packet_size,
926                              struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
927                              char *data, size_t max_packet_size)
928 {
929         struct ecryptfs_parse_tag_70_packet_silly_stack *s;
930         struct key *auth_tok_key = NULL;
931         int rc = 0;
932
933         (*packet_size) = 0;
934         (*filename_size) = 0;
935         (*filename) = NULL;
936         s = kmalloc(sizeof(*s), GFP_KERNEL);
937         if (!s) {
938                 printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
939                        "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
940                 rc = -ENOMEM;
941                 goto out;
942         }
943         s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
944         if (max_packet_size < (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1)) {
945                 printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
946                        "at least [%d]\n", __func__, max_packet_size,
947                         (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1));
948                 rc = -EINVAL;
949                 goto out;
950         }
951         /* Octet 0: Tag 70 identifier
952          * Octets 1-N1: Tag 70 packet size (includes cipher identifier
953          *              and block-aligned encrypted filename size)
954          * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
955          * Octet N2-N3: Cipher identifier (1 octet)
956          * Octets N3-N4: Block-aligned encrypted filename
957          *  - Consists of a minimum number of random numbers, a \0
958          *    separator, and then the filename */
959         if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
960                 printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
961                        "tag [0x%.2x]\n", __func__,
962                        data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
963                 rc = -EINVAL;
964                 goto out;
965         }
966         rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
967                                           &s->parsed_tag_70_packet_size,
968                                           &s->packet_size_len);
969         if (rc) {
970                 printk(KERN_WARNING "%s: Error parsing packet length; "
971                        "rc = [%d]\n", __func__, rc);
972                 goto out;
973         }
974         s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
975                                           - ECRYPTFS_SIG_SIZE - 1);
976         if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
977             > max_packet_size) {
978                 printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
979                        "size is [%zd]\n", __func__, max_packet_size,
980                        (1 + s->packet_size_len + 1
981                         + s->block_aligned_filename_size));
982                 rc = -EINVAL;
983                 goto out;
984         }
985         (*packet_size) += s->packet_size_len;
986         ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
987                         ECRYPTFS_SIG_SIZE);
988         s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
989         (*packet_size) += ECRYPTFS_SIG_SIZE;
990         s->cipher_code = data[(*packet_size)++];
991         rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
992         if (rc) {
993                 printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
994                        __func__, s->cipher_code);
995                 goto out;
996         }
997         rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
998                                             &s->auth_tok, mount_crypt_stat,
999                                             s->fnek_sig_hex);
1000         if (rc) {
1001                 printk(KERN_ERR "%s: Error attempting to find auth tok for "
1002                        "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
1003                        rc);
1004                 goto out;
1005         }
1006         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->desc.tfm,
1007                                                         &s->tfm_mutex,
1008                                                         s->cipher_string);
1009         if (unlikely(rc)) {
1010                 printk(KERN_ERR "Internal error whilst attempting to get "
1011                        "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1012                        s->cipher_string, rc);
1013                 goto out;
1014         }
1015         mutex_lock(s->tfm_mutex);
1016         rc = virt_to_scatterlist(&data[(*packet_size)],
1017                                  s->block_aligned_filename_size, s->src_sg, 2);
1018         if (rc < 1) {
1019                 printk(KERN_ERR "%s: Internal error whilst attempting to "
1020                        "convert encrypted filename memory to scatterlist; "
1021                        "rc = [%d]. block_aligned_filename_size = [%zd]\n",
1022                        __func__, rc, s->block_aligned_filename_size);
1023                 goto out_unlock;
1024         }
1025         (*packet_size) += s->block_aligned_filename_size;
1026         s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
1027                                         GFP_KERNEL);
1028         if (!s->decrypted_filename) {
1029                 printk(KERN_ERR "%s: Out of memory whilst attempting to "
1030                        "kmalloc [%zd] bytes\n", __func__,
1031                        s->block_aligned_filename_size);
1032                 rc = -ENOMEM;
1033                 goto out_unlock;
1034         }
1035         rc = virt_to_scatterlist(s->decrypted_filename,
1036                                  s->block_aligned_filename_size, s->dst_sg, 2);
1037         if (rc < 1) {
1038                 printk(KERN_ERR "%s: Internal error whilst attempting to "
1039                        "convert decrypted filename memory to scatterlist; "
1040                        "rc = [%d]. block_aligned_filename_size = [%zd]\n",
1041                        __func__, rc, s->block_aligned_filename_size);
1042                 goto out_free_unlock;
1043         }
1044         /* The characters in the first block effectively do the job of
1045          * the IV here, so we just use 0's for the IV. Note the
1046          * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
1047          * >= ECRYPTFS_MAX_IV_BYTES. */
1048         memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
1049         s->desc.info = s->iv;
1050         /* TODO: Support other key modules than passphrase for
1051          * filename encryption */
1052         if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
1053                 rc = -EOPNOTSUPP;
1054                 printk(KERN_INFO "%s: Filename encryption only supports "
1055                        "password tokens\n", __func__);
1056                 goto out_free_unlock;
1057         }
1058         rc = crypto_blkcipher_setkey(
1059                 s->desc.tfm,
1060                 s->auth_tok->token.password.session_key_encryption_key,
1061                 mount_crypt_stat->global_default_fn_cipher_key_bytes);
1062         if (rc < 0) {
1063                 printk(KERN_ERR "%s: Error setting key for crypto context; "
1064                        "rc = [%d]. s->auth_tok->token.password.session_key_"
1065                        "encryption_key = [0x%p]; mount_crypt_stat->"
1066                        "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
1067                        rc,
1068                        s->auth_tok->token.password.session_key_encryption_key,
1069                        mount_crypt_stat->global_default_fn_cipher_key_bytes);
1070                 goto out_free_unlock;
1071         }
1072         rc = crypto_blkcipher_decrypt_iv(&s->desc, s->dst_sg, s->src_sg,
1073                                          s->block_aligned_filename_size);
1074         if (rc) {
1075                 printk(KERN_ERR "%s: Error attempting to decrypt filename; "
1076                        "rc = [%d]\n", __func__, rc);
1077                 goto out_free_unlock;
1078         }
1079         s->i = 0;
1080         while (s->decrypted_filename[s->i] != '\0'
1081                && s->i < s->block_aligned_filename_size)
1082                 s->i++;
1083         if (s->i == s->block_aligned_filename_size) {
1084                 printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
1085                        "find valid separator between random characters and "
1086                        "the filename\n", __func__);
1087                 rc = -EINVAL;
1088                 goto out_free_unlock;
1089         }
1090         s->i++;
1091         (*filename_size) = (s->block_aligned_filename_size - s->i);
1092         if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
1093                 printk(KERN_WARNING "%s: Filename size is [%zd], which is "
1094                        "invalid\n", __func__, (*filename_size));
1095                 rc = -EINVAL;
1096                 goto out_free_unlock;
1097         }
1098         (*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
1099         if (!(*filename)) {
1100                 printk(KERN_ERR "%s: Out of memory whilst attempting to "
1101                        "kmalloc [%zd] bytes\n", __func__,
1102                        ((*filename_size) + 1));
1103                 rc = -ENOMEM;
1104                 goto out_free_unlock;
1105         }
1106         memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
1107         (*filename)[(*filename_size)] = '\0';
1108 out_free_unlock:
1109         kfree(s->decrypted_filename);
1110 out_unlock:
1111         mutex_unlock(s->tfm_mutex);
1112 out:
1113         if (rc) {
1114                 (*packet_size) = 0;
1115                 (*filename_size) = 0;
1116                 (*filename) = NULL;
1117         }
1118         if (auth_tok_key) {
1119                 up_write(&(auth_tok_key->sem));
1120                 key_put(auth_tok_key);
1121         }
1122         kfree(s);
1123         return rc;
1124 }
1125
1126 static int
1127 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
1128 {
1129         int rc = 0;
1130
1131         (*sig) = NULL;
1132         switch (auth_tok->token_type) {
1133         case ECRYPTFS_PASSWORD:
1134                 (*sig) = auth_tok->token.password.signature;
1135                 break;
1136         case ECRYPTFS_PRIVATE_KEY:
1137                 (*sig) = auth_tok->token.private_key.signature;
1138                 break;
1139         default:
1140                 printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1141                        auth_tok->token_type);
1142                 rc = -EINVAL;
1143         }
1144         return rc;
1145 }
1146
1147 /**
1148  * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1149  * @auth_tok: The key authentication token used to decrypt the session key
1150  * @crypt_stat: The cryptographic context
1151  *
1152  * Returns zero on success; non-zero error otherwise.
1153  */
1154 static int
1155 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1156                                   struct ecryptfs_crypt_stat *crypt_stat)
1157 {
1158         u8 cipher_code = 0;
1159         struct ecryptfs_msg_ctx *msg_ctx;
1160         struct ecryptfs_message *msg = NULL;
1161         char *auth_tok_sig;
1162         char *payload = NULL;
1163         size_t payload_len = 0;
1164         int rc;
1165
1166         rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1167         if (rc) {
1168                 printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1169                        auth_tok->token_type);
1170                 goto out;
1171         }
1172         rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1173                                  &payload, &payload_len);
1174         if (rc) {
1175                 ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1176                 goto out;
1177         }
1178         rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1179         if (rc) {
1180                 ecryptfs_printk(KERN_ERR, "Error sending message to "
1181                                 "ecryptfsd\n");
1182                 goto out;
1183         }
1184         rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1185         if (rc) {
1186                 ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1187                                 "from the user space daemon\n");
1188                 rc = -EIO;
1189                 goto out;
1190         }
1191         rc = parse_tag_65_packet(&(auth_tok->session_key),
1192                                  &cipher_code, msg);
1193         if (rc) {
1194                 printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1195                        rc);
1196                 goto out;
1197         }
1198         auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1199         memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1200                auth_tok->session_key.decrypted_key_size);
1201         crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1202         rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1203         if (rc) {
1204                 ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1205                                 cipher_code)
1206                 goto out;
1207         }
1208         crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1209         if (ecryptfs_verbosity > 0) {
1210                 ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1211                 ecryptfs_dump_hex(crypt_stat->key,
1212                                   crypt_stat->key_size);
1213         }
1214 out:
1215         if (msg)
1216                 kfree(msg);
1217         kfree(payload);
1218         return rc;
1219 }
1220
1221 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1222 {
1223         struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1224         struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1225
1226         list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1227                                  auth_tok_list_head, list) {
1228                 list_del(&auth_tok_list_item->list);
1229                 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1230                                 auth_tok_list_item);
1231         }
1232 }
1233
1234 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1235
1236 /**
1237  * parse_tag_1_packet
1238  * @crypt_stat: The cryptographic context to modify based on packet contents
1239  * @data: The raw bytes of the packet.
1240  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1241  *                 a new authentication token will be placed at the
1242  *                 end of this list for this packet.
1243  * @new_auth_tok: Pointer to a pointer to memory that this function
1244  *                allocates; sets the memory address of the pointer to
1245  *                NULL on error. This object is added to the
1246  *                auth_tok_list.
1247  * @packet_size: This function writes the size of the parsed packet
1248  *               into this memory location; zero on error.
1249  * @max_packet_size: The maximum allowable packet size
1250  *
1251  * Returns zero on success; non-zero on error.
1252  */
1253 static int
1254 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1255                    unsigned char *data, struct list_head *auth_tok_list,
1256                    struct ecryptfs_auth_tok **new_auth_tok,
1257                    size_t *packet_size, size_t max_packet_size)
1258 {
1259         size_t body_size;
1260         struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1261         size_t length_size;
1262         int rc = 0;
1263
1264         (*packet_size) = 0;
1265         (*new_auth_tok) = NULL;
1266         /**
1267          * This format is inspired by OpenPGP; see RFC 2440
1268          * packet tag 1
1269          *
1270          * Tag 1 identifier (1 byte)
1271          * Max Tag 1 packet size (max 3 bytes)
1272          * Version (1 byte)
1273          * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1274          * Cipher identifier (1 byte)
1275          * Encrypted key size (arbitrary)
1276          *
1277          * 12 bytes minimum packet size
1278          */
1279         if (unlikely(max_packet_size < 12)) {
1280                 printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1281                 rc = -EINVAL;
1282                 goto out;
1283         }
1284         if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1285                 printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1286                        ECRYPTFS_TAG_1_PACKET_TYPE);
1287                 rc = -EINVAL;
1288                 goto out;
1289         }
1290         /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1291          * at end of function upon failure */
1292         auth_tok_list_item =
1293                 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1294                                   GFP_KERNEL);
1295         if (!auth_tok_list_item) {
1296                 printk(KERN_ERR "Unable to allocate memory\n");
1297                 rc = -ENOMEM;
1298                 goto out;
1299         }
1300         (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1301         rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1302                                           &length_size);
1303         if (rc) {
1304                 printk(KERN_WARNING "Error parsing packet length; "
1305                        "rc = [%d]\n", rc);
1306                 goto out_free;
1307         }
1308         if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1309                 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1310                 rc = -EINVAL;
1311                 goto out_free;
1312         }
1313         (*packet_size) += length_size;
1314         if (unlikely((*packet_size) + body_size > max_packet_size)) {
1315                 printk(KERN_WARNING "Packet size exceeds max\n");
1316                 rc = -EINVAL;
1317                 goto out_free;
1318         }
1319         if (unlikely(data[(*packet_size)++] != 0x03)) {
1320                 printk(KERN_WARNING "Unknown version number [%d]\n",
1321                        data[(*packet_size) - 1]);
1322                 rc = -EINVAL;
1323                 goto out_free;
1324         }
1325         ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1326                         &data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1327         *packet_size += ECRYPTFS_SIG_SIZE;
1328         /* This byte is skipped because the kernel does not need to
1329          * know which public key encryption algorithm was used */
1330         (*packet_size)++;
1331         (*new_auth_tok)->session_key.encrypted_key_size =
1332                 body_size - (ECRYPTFS_SIG_SIZE + 2);
1333         if ((*new_auth_tok)->session_key.encrypted_key_size
1334             > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1335                 printk(KERN_WARNING "Tag 1 packet contains key larger "
1336                        "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES");
1337                 rc = -EINVAL;
1338                 goto out;
1339         }
1340         memcpy((*new_auth_tok)->session_key.encrypted_key,
1341                &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1342         (*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1343         (*new_auth_tok)->session_key.flags &=
1344                 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1345         (*new_auth_tok)->session_key.flags |=
1346                 ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1347         (*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1348         (*new_auth_tok)->flags = 0;
1349         (*new_auth_tok)->session_key.flags &=
1350                 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1351         (*new_auth_tok)->session_key.flags &=
1352                 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1353         list_add(&auth_tok_list_item->list, auth_tok_list);
1354         goto out;
1355 out_free:
1356         (*new_auth_tok) = NULL;
1357         memset(auth_tok_list_item, 0,
1358                sizeof(struct ecryptfs_auth_tok_list_item));
1359         kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1360                         auth_tok_list_item);
1361 out:
1362         if (rc)
1363                 (*packet_size) = 0;
1364         return rc;
1365 }
1366
1367 /**
1368  * parse_tag_3_packet
1369  * @crypt_stat: The cryptographic context to modify based on packet
1370  *              contents.
1371  * @data: The raw bytes of the packet.
1372  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1373  *                 a new authentication token will be placed at the end
1374  *                 of this list for this packet.
1375  * @new_auth_tok: Pointer to a pointer to memory that this function
1376  *                allocates; sets the memory address of the pointer to
1377  *                NULL on error. This object is added to the
1378  *                auth_tok_list.
1379  * @packet_size: This function writes the size of the parsed packet
1380  *               into this memory location; zero on error.
1381  * @max_packet_size: maximum number of bytes to parse
1382  *
1383  * Returns zero on success; non-zero on error.
1384  */
1385 static int
1386 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1387                    unsigned char *data, struct list_head *auth_tok_list,
1388                    struct ecryptfs_auth_tok **new_auth_tok,
1389                    size_t *packet_size, size_t max_packet_size)
1390 {
1391         size_t body_size;
1392         struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1393         size_t length_size;
1394         int rc = 0;
1395
1396         (*packet_size) = 0;
1397         (*new_auth_tok) = NULL;
1398         /**
1399          *This format is inspired by OpenPGP; see RFC 2440
1400          * packet tag 3
1401          *
1402          * Tag 3 identifier (1 byte)
1403          * Max Tag 3 packet size (max 3 bytes)
1404          * Version (1 byte)
1405          * Cipher code (1 byte)
1406          * S2K specifier (1 byte)
1407          * Hash identifier (1 byte)
1408          * Salt (ECRYPTFS_SALT_SIZE)
1409          * Hash iterations (1 byte)
1410          * Encrypted key (arbitrary)
1411          *
1412          * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1413          */
1414         if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1415                 printk(KERN_ERR "Max packet size too large\n");
1416                 rc = -EINVAL;
1417                 goto out;
1418         }
1419         if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1420                 printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1421                        ECRYPTFS_TAG_3_PACKET_TYPE);
1422                 rc = -EINVAL;
1423                 goto out;
1424         }
1425         /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1426          * at end of function upon failure */
1427         auth_tok_list_item =
1428             kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1429         if (!auth_tok_list_item) {
1430                 printk(KERN_ERR "Unable to allocate memory\n");
1431                 rc = -ENOMEM;
1432                 goto out;
1433         }
1434         (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1435         rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1436                                           &length_size);
1437         if (rc) {
1438                 printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1439                        rc);
1440                 goto out_free;
1441         }
1442         if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1443                 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1444                 rc = -EINVAL;
1445                 goto out_free;
1446         }
1447         (*packet_size) += length_size;
1448         if (unlikely((*packet_size) + body_size > max_packet_size)) {
1449                 printk(KERN_ERR "Packet size exceeds max\n");
1450                 rc = -EINVAL;
1451                 goto out_free;
1452         }
1453         (*new_auth_tok)->session_key.encrypted_key_size =
1454                 (body_size - (ECRYPTFS_SALT_SIZE + 5));
1455         if ((*new_auth_tok)->session_key.encrypted_key_size
1456             > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1457                 printk(KERN_WARNING "Tag 3 packet contains key larger "
1458                        "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1459                 rc = -EINVAL;
1460                 goto out_free;
1461         }
1462         if (unlikely(data[(*packet_size)++] != 0x04)) {
1463                 printk(KERN_WARNING "Unknown version number [%d]\n",
1464                        data[(*packet_size) - 1]);
1465                 rc = -EINVAL;
1466                 goto out_free;
1467         }
1468         rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1469                                             (u16)data[(*packet_size)]);
1470         if (rc)
1471                 goto out_free;
1472         /* A little extra work to differentiate among the AES key
1473          * sizes; see RFC2440 */
1474         switch(data[(*packet_size)++]) {
1475         case RFC2440_CIPHER_AES_192:
1476                 crypt_stat->key_size = 24;
1477                 break;
1478         default:
1479                 crypt_stat->key_size =
1480                         (*new_auth_tok)->session_key.encrypted_key_size;
1481         }
1482         rc = ecryptfs_init_crypt_ctx(crypt_stat);
1483         if (rc)
1484                 goto out_free;
1485         if (unlikely(data[(*packet_size)++] != 0x03)) {
1486                 printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1487                 rc = -ENOSYS;
1488                 goto out_free;
1489         }
1490         /* TODO: finish the hash mapping */
1491         switch (data[(*packet_size)++]) {
1492         case 0x01: /* See RFC2440 for these numbers and their mappings */
1493                 /* Choose MD5 */
1494                 memcpy((*new_auth_tok)->token.password.salt,
1495                        &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1496                 (*packet_size) += ECRYPTFS_SALT_SIZE;
1497                 /* This conversion was taken straight from RFC2440 */
1498                 (*new_auth_tok)->token.password.hash_iterations =
1499                         ((u32) 16 + (data[(*packet_size)] & 15))
1500                                 << ((data[(*packet_size)] >> 4) + 6);
1501                 (*packet_size)++;
1502                 /* Friendly reminder:
1503                  * (*new_auth_tok)->session_key.encrypted_key_size =
1504                  *         (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1505                 memcpy((*new_auth_tok)->session_key.encrypted_key,
1506                        &data[(*packet_size)],
1507                        (*new_auth_tok)->session_key.encrypted_key_size);
1508                 (*packet_size) +=
1509                         (*new_auth_tok)->session_key.encrypted_key_size;
1510                 (*new_auth_tok)->session_key.flags &=
1511                         ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1512                 (*new_auth_tok)->session_key.flags |=
1513                         ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1514                 (*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1515                 break;
1516         default:
1517                 ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1518                                 "[%d]\n", data[(*packet_size) - 1]);
1519                 rc = -ENOSYS;
1520                 goto out_free;
1521         }
1522         (*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1523         /* TODO: Parametarize; we might actually want userspace to
1524          * decrypt the session key. */
1525         (*new_auth_tok)->session_key.flags &=
1526                             ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1527         (*new_auth_tok)->session_key.flags &=
1528                             ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1529         list_add(&auth_tok_list_item->list, auth_tok_list);
1530         goto out;
1531 out_free:
1532         (*new_auth_tok) = NULL;
1533         memset(auth_tok_list_item, 0,
1534                sizeof(struct ecryptfs_auth_tok_list_item));
1535         kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1536                         auth_tok_list_item);
1537 out:
1538         if (rc)
1539                 (*packet_size) = 0;
1540         return rc;
1541 }
1542
1543 /**
1544  * parse_tag_11_packet
1545  * @data: The raw bytes of the packet
1546  * @contents: This function writes the data contents of the literal
1547  *            packet into this memory location
1548  * @max_contents_bytes: The maximum number of bytes that this function
1549  *                      is allowed to write into contents
1550  * @tag_11_contents_size: This function writes the size of the parsed
1551  *                        contents into this memory location; zero on
1552  *                        error
1553  * @packet_size: This function writes the size of the parsed packet
1554  *               into this memory location; zero on error
1555  * @max_packet_size: maximum number of bytes to parse
1556  *
1557  * Returns zero on success; non-zero on error.
1558  */
1559 static int
1560 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1561                     size_t max_contents_bytes, size_t *tag_11_contents_size,
1562                     size_t *packet_size, size_t max_packet_size)
1563 {
1564         size_t body_size;
1565         size_t length_size;
1566         int rc = 0;
1567
1568         (*packet_size) = 0;
1569         (*tag_11_contents_size) = 0;
1570         /* This format is inspired by OpenPGP; see RFC 2440
1571          * packet tag 11
1572          *
1573          * Tag 11 identifier (1 byte)
1574          * Max Tag 11 packet size (max 3 bytes)
1575          * Binary format specifier (1 byte)
1576          * Filename length (1 byte)
1577          * Filename ("_CONSOLE") (8 bytes)
1578          * Modification date (4 bytes)
1579          * Literal data (arbitrary)
1580          *
1581          * We need at least 16 bytes of data for the packet to even be
1582          * valid.
1583          */
1584         if (max_packet_size < 16) {
1585                 printk(KERN_ERR "Maximum packet size too small\n");
1586                 rc = -EINVAL;
1587                 goto out;
1588         }
1589         if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1590                 printk(KERN_WARNING "Invalid tag 11 packet format\n");
1591                 rc = -EINVAL;
1592                 goto out;
1593         }
1594         rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1595                                           &length_size);
1596         if (rc) {
1597                 printk(KERN_WARNING "Invalid tag 11 packet format\n");
1598                 goto out;
1599         }
1600         if (body_size < 14) {
1601                 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1602                 rc = -EINVAL;
1603                 goto out;
1604         }
1605         (*packet_size) += length_size;
1606         (*tag_11_contents_size) = (body_size - 14);
1607         if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1608                 printk(KERN_ERR "Packet size exceeds max\n");
1609                 rc = -EINVAL;
1610                 goto out;
1611         }
1612         if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1613                 printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1614                        "expected size\n");
1615                 rc = -EINVAL;
1616                 goto out;
1617         }
1618         if (data[(*packet_size)++] != 0x62) {
1619                 printk(KERN_WARNING "Unrecognizable packet\n");
1620                 rc = -EINVAL;
1621                 goto out;
1622         }
1623         if (data[(*packet_size)++] != 0x08) {
1624                 printk(KERN_WARNING "Unrecognizable packet\n");
1625                 rc = -EINVAL;
1626                 goto out;
1627         }
1628         (*packet_size) += 12; /* Ignore filename and modification date */
1629         memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1630         (*packet_size) += (*tag_11_contents_size);
1631 out:
1632         if (rc) {
1633                 (*packet_size) = 0;
1634                 (*tag_11_contents_size) = 0;
1635         }
1636         return rc;
1637 }
1638
1639 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1640                                       struct ecryptfs_auth_tok **auth_tok,
1641                                       char *sig)
1642 {
1643         int rc = 0;
1644
1645         (*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1646         if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1647                 (*auth_tok_key) = ecryptfs_get_encrypted_key(sig);
1648                 if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1649                         printk(KERN_ERR "Could not find key with description: [%s]\n",
1650                               sig);
1651                         rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1652                         (*auth_tok_key) = NULL;
1653                         goto out;
1654                 }
1655         }
1656         down_write(&(*auth_tok_key)->sem);
1657         rc = ecryptfs_verify_auth_tok_from_key(*auth_tok_key, auth_tok);
1658         if (rc) {
1659                 up_write(&(*auth_tok_key)->sem);
1660                 key_put(*auth_tok_key);
1661                 (*auth_tok_key) = NULL;
1662                 goto out;
1663         }
1664 out:
1665         return rc;
1666 }
1667
1668 /**
1669  * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1670  * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1671  * @crypt_stat: The cryptographic context
1672  *
1673  * Returns zero on success; non-zero error otherwise
1674  */
1675 static int
1676 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1677                                          struct ecryptfs_crypt_stat *crypt_stat)
1678 {
1679         struct scatterlist dst_sg[2];
1680         struct scatterlist src_sg[2];
1681         struct mutex *tfm_mutex;
1682         struct blkcipher_desc desc = {
1683                 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
1684         };
1685         int rc = 0;
1686
1687         if (unlikely(ecryptfs_verbosity > 0)) {
1688                 ecryptfs_printk(
1689                         KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1690                         auth_tok->token.password.session_key_encryption_key_bytes);
1691                 ecryptfs_dump_hex(
1692                         auth_tok->token.password.session_key_encryption_key,
1693                         auth_tok->token.password.session_key_encryption_key_bytes);
1694         }
1695         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
1696                                                         crypt_stat->cipher);
1697         if (unlikely(rc)) {
1698                 printk(KERN_ERR "Internal error whilst attempting to get "
1699                        "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1700                        crypt_stat->cipher, rc);
1701                 goto out;
1702         }
1703         rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1704                                  auth_tok->session_key.encrypted_key_size,
1705                                  src_sg, 2);
1706         if (rc < 1 || rc > 2) {
1707                 printk(KERN_ERR "Internal error whilst attempting to convert "
1708                         "auth_tok->session_key.encrypted_key to scatterlist; "
1709                         "expected rc = 1; got rc = [%d]. "
1710                        "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1711                         auth_tok->session_key.encrypted_key_size);
1712                 goto out;
1713         }
1714         auth_tok->session_key.decrypted_key_size =
1715                 auth_tok->session_key.encrypted_key_size;
1716         rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1717                                  auth_tok->session_key.decrypted_key_size,
1718                                  dst_sg, 2);
1719         if (rc < 1 || rc > 2) {
1720                 printk(KERN_ERR "Internal error whilst attempting to convert "
1721                         "auth_tok->session_key.decrypted_key to scatterlist; "
1722                         "expected rc = 1; got rc = [%d]\n", rc);
1723                 goto out;
1724         }
1725         mutex_lock(tfm_mutex);
1726         rc = crypto_blkcipher_setkey(
1727                 desc.tfm, auth_tok->token.password.session_key_encryption_key,
1728                 crypt_stat->key_size);
1729         if (unlikely(rc < 0)) {
1730                 mutex_unlock(tfm_mutex);
1731                 printk(KERN_ERR "Error setting key for crypto context\n");
1732                 rc = -EINVAL;
1733                 goto out;
1734         }
1735         rc = crypto_blkcipher_decrypt(&desc, dst_sg, src_sg,
1736                                       auth_tok->session_key.encrypted_key_size);
1737         mutex_unlock(tfm_mutex);
1738         if (unlikely(rc)) {
1739                 printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1740                 goto out;
1741         }
1742         auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1743         memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1744                auth_tok->session_key.decrypted_key_size);
1745         crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1746         if (unlikely(ecryptfs_verbosity > 0)) {
1747                 ecryptfs_printk(KERN_DEBUG, "FEK of size [%zd]:\n",
1748                                 crypt_stat->key_size);
1749                 ecryptfs_dump_hex(crypt_stat->key,
1750                                   crypt_stat->key_size);
1751         }
1752 out:
1753         return rc;
1754 }
1755
1756 /**
1757  * ecryptfs_parse_packet_set
1758  * @crypt_stat: The cryptographic context
1759  * @src: Virtual address of region of memory containing the packets
1760  * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1761  *
1762  * Get crypt_stat to have the file's session key if the requisite key
1763  * is available to decrypt the session key.
1764  *
1765  * Returns Zero if a valid authentication token was retrieved and
1766  * processed; negative value for file not encrypted or for error
1767  * conditions.
1768  */
1769 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1770                               unsigned char *src,
1771                               struct dentry *ecryptfs_dentry)
1772 {
1773         size_t i = 0;
1774         size_t found_auth_tok;
1775         size_t next_packet_is_auth_tok_packet;
1776         struct list_head auth_tok_list;
1777         struct ecryptfs_auth_tok *matching_auth_tok;
1778         struct ecryptfs_auth_tok *candidate_auth_tok;
1779         char *candidate_auth_tok_sig;
1780         size_t packet_size;
1781         struct ecryptfs_auth_tok *new_auth_tok;
1782         unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1783         struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1784         size_t tag_11_contents_size;
1785         size_t tag_11_packet_size;
1786         struct key *auth_tok_key = NULL;
1787         int rc = 0;
1788
1789         INIT_LIST_HEAD(&auth_tok_list);
1790         /* Parse the header to find as many packets as we can; these will be
1791          * added the our &auth_tok_list */
1792         next_packet_is_auth_tok_packet = 1;
1793         while (next_packet_is_auth_tok_packet) {
1794                 size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i);
1795
1796                 switch (src[i]) {
1797                 case ECRYPTFS_TAG_3_PACKET_TYPE:
1798                         rc = parse_tag_3_packet(crypt_stat,
1799                                                 (unsigned char *)&src[i],
1800                                                 &auth_tok_list, &new_auth_tok,
1801                                                 &packet_size, max_packet_size);
1802                         if (rc) {
1803                                 ecryptfs_printk(KERN_ERR, "Error parsing "
1804                                                 "tag 3 packet\n");
1805                                 rc = -EIO;
1806                                 goto out_wipe_list;
1807                         }
1808                         i += packet_size;
1809                         rc = parse_tag_11_packet((unsigned char *)&src[i],
1810                                                  sig_tmp_space,
1811                                                  ECRYPTFS_SIG_SIZE,
1812                                                  &tag_11_contents_size,
1813                                                  &tag_11_packet_size,
1814                                                  max_packet_size);
1815                         if (rc) {
1816                                 ecryptfs_printk(KERN_ERR, "No valid "
1817                                                 "(ecryptfs-specific) literal "
1818                                                 "packet containing "
1819                                                 "authentication token "
1820                                                 "signature found after "
1821                                                 "tag 3 packet\n");
1822                                 rc = -EIO;
1823                                 goto out_wipe_list;
1824                         }
1825                         i += tag_11_packet_size;
1826                         if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1827                                 ecryptfs_printk(KERN_ERR, "Expected "
1828                                                 "signature of size [%d]; "
1829                                                 "read size [%zd]\n",
1830                                                 ECRYPTFS_SIG_SIZE,
1831                                                 tag_11_contents_size);
1832                                 rc = -EIO;
1833                                 goto out_wipe_list;
1834                         }
1835                         ecryptfs_to_hex(new_auth_tok->token.password.signature,
1836                                         sig_tmp_space, tag_11_contents_size);
1837                         new_auth_tok->token.password.signature[
1838                                 ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1839                         crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1840                         break;
1841                 case ECRYPTFS_TAG_1_PACKET_TYPE:
1842                         rc = parse_tag_1_packet(crypt_stat,
1843                                                 (unsigned char *)&src[i],
1844                                                 &auth_tok_list, &new_auth_tok,
1845                                                 &packet_size, max_packet_size);
1846                         if (rc) {
1847                                 ecryptfs_printk(KERN_ERR, "Error parsing "
1848                                                 "tag 1 packet\n");
1849                                 rc = -EIO;
1850                                 goto out_wipe_list;
1851                         }
1852                         i += packet_size;
1853                         crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1854                         break;
1855                 case ECRYPTFS_TAG_11_PACKET_TYPE:
1856                         ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1857                                         "(Tag 11 not allowed by itself)\n");
1858                         rc = -EIO;
1859                         goto out_wipe_list;
1860                         break;
1861                 default:
1862                         ecryptfs_printk(KERN_DEBUG, "No packet at offset [%zd] "
1863                                         "of the file header; hex value of "
1864                                         "character is [0x%.2x]\n", i, src[i]);
1865                         next_packet_is_auth_tok_packet = 0;
1866                 }
1867         }
1868         if (list_empty(&auth_tok_list)) {
1869                 printk(KERN_ERR "The lower file appears to be a non-encrypted "
1870                        "eCryptfs file; this is not supported in this version "
1871                        "of the eCryptfs kernel module\n");
1872                 rc = -EINVAL;
1873                 goto out;
1874         }
1875         /* auth_tok_list contains the set of authentication tokens
1876          * parsed from the metadata. We need to find a matching
1877          * authentication token that has the secret component(s)
1878          * necessary to decrypt the EFEK in the auth_tok parsed from
1879          * the metadata. There may be several potential matches, but
1880          * just one will be sufficient to decrypt to get the FEK. */
1881 find_next_matching_auth_tok:
1882         found_auth_tok = 0;
1883         list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1884                 candidate_auth_tok = &auth_tok_list_item->auth_tok;
1885                 if (unlikely(ecryptfs_verbosity > 0)) {
1886                         ecryptfs_printk(KERN_DEBUG,
1887                                         "Considering cadidate auth tok:\n");
1888                         ecryptfs_dump_auth_tok(candidate_auth_tok);
1889                 }
1890                 rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1891                                                candidate_auth_tok);
1892                 if (rc) {
1893                         printk(KERN_ERR
1894                                "Unrecognized candidate auth tok type: [%d]\n",
1895                                candidate_auth_tok->token_type);
1896                         rc = -EINVAL;
1897                         goto out_wipe_list;
1898                 }
1899                 rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
1900                                                &matching_auth_tok,
1901                                                crypt_stat->mount_crypt_stat,
1902                                                candidate_auth_tok_sig);
1903                 if (!rc) {
1904                         found_auth_tok = 1;
1905                         goto found_matching_auth_tok;
1906                 }
1907         }
1908         if (!found_auth_tok) {
1909                 ecryptfs_printk(KERN_ERR, "Could not find a usable "
1910                                 "authentication token\n");
1911                 rc = -EIO;
1912                 goto out_wipe_list;
1913         }
1914 found_matching_auth_tok:
1915         if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1916                 memcpy(&(candidate_auth_tok->token.private_key),
1917                        &(matching_auth_tok->token.private_key),
1918                        sizeof(struct ecryptfs_private_key));
1919                 up_write(&(auth_tok_key->sem));
1920                 key_put(auth_tok_key);
1921                 rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1922                                                        crypt_stat);
1923         } else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1924                 memcpy(&(candidate_auth_tok->token.password),
1925                        &(matching_auth_tok->token.password),
1926                        sizeof(struct ecryptfs_password));
1927                 up_write(&(auth_tok_key->sem));
1928                 key_put(auth_tok_key);
1929                 rc = decrypt_passphrase_encrypted_session_key(
1930                         candidate_auth_tok, crypt_stat);
1931         } else {
1932                 up_write(&(auth_tok_key->sem));
1933                 key_put(auth_tok_key);
1934                 rc = -EINVAL;
1935         }
1936         if (rc) {
1937                 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1938
1939                 ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1940                                 "session key for authentication token with sig "
1941                                 "[%.*s]; rc = [%d]. Removing auth tok "
1942                                 "candidate from the list and searching for "
1943                                 "the next match.\n", ECRYPTFS_SIG_SIZE_HEX,
1944                                 candidate_auth_tok_sig, rc);
1945                 list_for_each_entry_safe(auth_tok_list_item,
1946                                          auth_tok_list_item_tmp,
1947                                          &auth_tok_list, list) {
1948                         if (candidate_auth_tok
1949                             == &auth_tok_list_item->auth_tok) {
1950                                 list_del(&auth_tok_list_item->list);
1951                                 kmem_cache_free(
1952                                         ecryptfs_auth_tok_list_item_cache,
1953                                         auth_tok_list_item);
1954                                 goto find_next_matching_auth_tok;
1955                         }
1956                 }
1957                 BUG();
1958         }
1959         rc = ecryptfs_compute_root_iv(crypt_stat);
1960         if (rc) {
1961                 ecryptfs_printk(KERN_ERR, "Error computing "
1962                                 "the root IV\n");
1963                 goto out_wipe_list;
1964         }
1965         rc = ecryptfs_init_crypt_ctx(crypt_stat);
1966         if (rc) {
1967                 ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1968                                 "context for cipher [%s]; rc = [%d]\n",
1969                                 crypt_stat->cipher, rc);
1970         }
1971 out_wipe_list:
1972         wipe_auth_tok_list(&auth_tok_list);
1973 out:
1974         return rc;
1975 }
1976
1977 static int
1978 pki_encrypt_session_key(struct key *auth_tok_key,
1979                         struct ecryptfs_auth_tok *auth_tok,
1980                         struct ecryptfs_crypt_stat *crypt_stat,
1981                         struct ecryptfs_key_record *key_rec)
1982 {
1983         struct ecryptfs_msg_ctx *msg_ctx = NULL;
1984         char *payload = NULL;
1985         size_t payload_len = 0;
1986         struct ecryptfs_message *msg;
1987         int rc;
1988
1989         rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1990                                  ecryptfs_code_for_cipher_string(
1991                                          crypt_stat->cipher,
1992                                          crypt_stat->key_size),
1993                                  crypt_stat, &payload, &payload_len);
1994         up_write(&(auth_tok_key->sem));
1995         key_put(auth_tok_key);
1996         if (rc) {
1997                 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1998                 goto out;
1999         }
2000         rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
2001         if (rc) {
2002                 ecryptfs_printk(KERN_ERR, "Error sending message to "
2003                                 "ecryptfsd\n");
2004                 goto out;
2005         }
2006         rc = ecryptfs_wait_for_response(msg_ctx, &msg);
2007         if (rc) {
2008                 ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
2009                                 "from the user space daemon\n");
2010                 rc = -EIO;
2011                 goto out;
2012         }
2013         rc = parse_tag_67_packet(key_rec, msg);
2014         if (rc)
2015                 ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
2016         kfree(msg);
2017 out:
2018         kfree(payload);
2019         return rc;
2020 }
2021 /**
2022  * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
2023  * @dest: Buffer into which to write the packet
2024  * @remaining_bytes: Maximum number of bytes that can be writtn
2025  * @auth_tok_key: The authentication token key to unlock and put when done with
2026  *                @auth_tok
2027  * @auth_tok: The authentication token used for generating the tag 1 packet
2028  * @crypt_stat: The cryptographic context
2029  * @key_rec: The key record struct for the tag 1 packet
2030  * @packet_size: This function will write the number of bytes that end
2031  *               up constituting the packet; set to zero on error
2032  *
2033  * Returns zero on success; non-zero on error.
2034  */
2035 static int
2036 write_tag_1_packet(char *dest, size_t *remaining_bytes,
2037                    struct key *auth_tok_key, struct ecryptfs_auth_tok *auth_tok,
2038                    struct ecryptfs_crypt_stat *crypt_stat,
2039                    struct ecryptfs_key_record *key_rec, size_t *packet_size)
2040 {
2041         size_t i;
2042         size_t encrypted_session_key_valid = 0;
2043         size_t packet_size_length;
2044         size_t max_packet_size;
2045         int rc = 0;
2046
2047         (*packet_size) = 0;
2048         ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
2049                           ECRYPTFS_SIG_SIZE);
2050         encrypted_session_key_valid = 0;
2051         for (i = 0; i < crypt_stat->key_size; i++)
2052                 encrypted_session_key_valid |=
2053                         auth_tok->session_key.encrypted_key[i];
2054         if (encrypted_session_key_valid) {
2055                 memcpy(key_rec->enc_key,
2056                        auth_tok->session_key.encrypted_key,
2057                        auth_tok->session_key.encrypted_key_size);
2058                 up_write(&(auth_tok_key->sem));
2059                 key_put(auth_tok_key);
2060                 goto encrypted_session_key_set;
2061         }
2062         if (auth_tok->session_key.encrypted_key_size == 0)
2063                 auth_tok->session_key.encrypted_key_size =
2064                         auth_tok->token.private_key.key_size;
2065         rc = pki_encrypt_session_key(auth_tok_key, auth_tok, crypt_stat,
2066                                      key_rec);
2067         if (rc) {
2068                 printk(KERN_ERR "Failed to encrypt session key via a key "
2069                        "module; rc = [%d]\n", rc);
2070                 goto out;
2071         }
2072         if (ecryptfs_verbosity > 0) {
2073                 ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
2074                 ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
2075         }
2076 encrypted_session_key_set:
2077         /* This format is inspired by OpenPGP; see RFC 2440
2078          * packet tag 1 */
2079         max_packet_size = (1                         /* Tag 1 identifier */
2080                            + 3                       /* Max Tag 1 packet size */
2081                            + 1                       /* Version */
2082                            + ECRYPTFS_SIG_SIZE       /* Key identifier */
2083                            + 1                       /* Cipher identifier */
2084                            + key_rec->enc_key_size); /* Encrypted key size */
2085         if (max_packet_size > (*remaining_bytes)) {
2086                 printk(KERN_ERR "Packet length larger than maximum allowable; "
2087                        "need up to [%td] bytes, but there are only [%td] "
2088                        "available\n", max_packet_size, (*remaining_bytes));
2089                 rc = -EINVAL;
2090                 goto out;
2091         }
2092         dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
2093         rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2094                                           (max_packet_size - 4),
2095                                           &packet_size_length);
2096         if (rc) {
2097                 ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
2098                                 "header; cannot generate packet length\n");
2099                 goto out;
2100         }
2101         (*packet_size) += packet_size_length;
2102         dest[(*packet_size)++] = 0x03; /* version 3 */
2103         memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
2104         (*packet_size) += ECRYPTFS_SIG_SIZE;
2105         dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
2106         memcpy(&dest[(*packet_size)], key_rec->enc_key,
2107                key_rec->enc_key_size);
2108         (*packet_size) += key_rec->enc_key_size;
2109 out:
2110         if (rc)
2111                 (*packet_size) = 0;
2112         else
2113                 (*remaining_bytes) -= (*packet_size);
2114         return rc;
2115 }
2116
2117 /**
2118  * write_tag_11_packet
2119  * @dest: Target into which Tag 11 packet is to be written
2120  * @remaining_bytes: Maximum packet length
2121  * @contents: Byte array of contents to copy in
2122  * @contents_length: Number of bytes in contents
2123  * @packet_length: Length of the Tag 11 packet written; zero on error
2124  *
2125  * Returns zero on success; non-zero on error.
2126  */
2127 static int
2128 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2129                     size_t contents_length, size_t *packet_length)
2130 {
2131         size_t packet_size_length;
2132         size_t max_packet_size;
2133         int rc = 0;
2134
2135         (*packet_length) = 0;
2136         /* This format is inspired by OpenPGP; see RFC 2440
2137          * packet tag 11 */
2138         max_packet_size = (1                   /* Tag 11 identifier */
2139                            + 3                 /* Max Tag 11 packet size */
2140                            + 1                 /* Binary format specifier */
2141                            + 1                 /* Filename length */
2142                            + 8                 /* Filename ("_CONSOLE") */
2143                            + 4                 /* Modification date */
2144                            + contents_length); /* Literal data */
2145         if (max_packet_size > (*remaining_bytes)) {
2146                 printk(KERN_ERR "Packet length larger than maximum allowable; "
2147                        "need up to [%td] bytes, but there are only [%td] "
2148                        "available\n", max_packet_size, (*remaining_bytes));
2149                 rc = -EINVAL;
2150                 goto out;
2151         }
2152         dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2153         rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2154                                           (max_packet_size - 4),
2155                                           &packet_size_length);
2156         if (rc) {
2157                 printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2158                        "generate packet length. rc = [%d]\n", rc);
2159                 goto out;
2160         }
2161         (*packet_length) += packet_size_length;
2162         dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2163         dest[(*packet_length)++] = 8;
2164         memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2165         (*packet_length) += 8;
2166         memset(&dest[(*packet_length)], 0x00, 4);
2167         (*packet_length) += 4;
2168         memcpy(&dest[(*packet_length)], contents, contents_length);
2169         (*packet_length) += contents_length;
2170  out:
2171         if (rc)
2172                 (*packet_length) = 0;
2173         else
2174                 (*remaining_bytes) -= (*packet_length);
2175         return rc;
2176 }
2177
2178 /**
2179  * write_tag_3_packet
2180  * @dest: Buffer into which to write the packet
2181  * @remaining_bytes: Maximum number of bytes that can be written
2182  * @auth_tok: Authentication token
2183  * @crypt_stat: The cryptographic context
2184  * @key_rec: encrypted key
2185  * @packet_size: This function will write the number of bytes that end
2186  *               up constituting the packet; set to zero on error
2187  *
2188  * Returns zero on success; non-zero on error.
2189  */
2190 static int
2191 write_tag_3_packet(char *dest, size_t *remaining_bytes,
2192                    struct ecryptfs_auth_tok *auth_tok,
2193                    struct ecryptfs_crypt_stat *crypt_stat,
2194                    struct ecryptfs_key_record *key_rec, size_t *packet_size)
2195 {
2196         size_t i;
2197         size_t encrypted_session_key_valid = 0;
2198         char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2199         struct scatterlist dst_sg[2];
2200         struct scatterlist src_sg[2];
2201         struct mutex *tfm_mutex = NULL;
2202         u8 cipher_code;
2203         size_t packet_size_length;
2204         size_t max_packet_size;
2205         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2206                 crypt_stat->mount_crypt_stat;
2207         struct blkcipher_desc desc = {
2208                 .tfm = NULL,
2209                 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
2210         };
2211         int rc = 0;
2212
2213         (*packet_size) = 0;
2214         ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2215                           ECRYPTFS_SIG_SIZE);
2216         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2217                                                         crypt_stat->cipher);
2218         if (unlikely(rc)) {
2219                 printk(KERN_ERR "Internal error whilst attempting to get "
2220                        "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2221                        crypt_stat->cipher, rc);
2222                 goto out;
2223         }
2224         if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2225                 struct blkcipher_alg *alg = crypto_blkcipher_alg(desc.tfm);
2226
2227                 printk(KERN_WARNING "No key size specified at mount; "
2228                        "defaulting to [%d]\n", alg->max_keysize);
2229                 mount_crypt_stat->global_default_cipher_key_size =
2230                         alg->max_keysize;
2231         }
2232         if (crypt_stat->key_size == 0)
2233                 crypt_stat->key_size =
2234                         mount_crypt_stat->global_default_cipher_key_size;
2235         if (auth_tok->session_key.encrypted_key_size == 0)
2236                 auth_tok->session_key.encrypted_key_size =
2237                         crypt_stat->key_size;
2238         if (crypt_stat->key_size == 24
2239             && strcmp("aes", crypt_stat->cipher) == 0) {
2240                 memset((crypt_stat->key + 24), 0, 8);
2241                 auth_tok->session_key.encrypted_key_size = 32;
2242         } else
2243                 auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2244         key_rec->enc_key_size =
2245                 auth_tok->session_key.encrypted_key_size;
2246         encrypted_session_key_valid = 0;
2247         for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2248                 encrypted_session_key_valid |=
2249                         auth_tok->session_key.encrypted_key[i];
2250         if (encrypted_session_key_valid) {
2251                 ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2252                                 "using auth_tok->session_key.encrypted_key, "
2253                                 "where key_rec->enc_key_size = [%zd]\n",
2254                                 key_rec->enc_key_size);
2255                 memcpy(key_rec->enc_key,
2256                        auth_tok->session_key.encrypted_key,
2257                        key_rec->enc_key_size);
2258                 goto encrypted_session_key_set;
2259         }
2260         if (auth_tok->token.password.flags &
2261             ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2262                 ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2263                                 "session key encryption key of size [%d]\n",
2264                                 auth_tok->token.password.
2265                                 session_key_encryption_key_bytes);
2266                 memcpy(session_key_encryption_key,
2267                        auth_tok->token.password.session_key_encryption_key,
2268                        crypt_stat->key_size);
2269                 ecryptfs_printk(KERN_DEBUG,
2270                                 "Cached session key encryption key:\n");
2271                 if (ecryptfs_verbosity > 0)
2272                         ecryptfs_dump_hex(session_key_encryption_key, 16);
2273         }
2274         if (unlikely(ecryptfs_verbosity > 0)) {
2275                 ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2276                 ecryptfs_dump_hex(session_key_encryption_key, 16);
2277         }
2278         rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2279                                  src_sg, 2);
2280         if (rc < 1 || rc > 2) {
2281                 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2282                                 "for crypt_stat session key; expected rc = 1; "
2283                                 "got rc = [%d]. key_rec->enc_key_size = [%zd]\n",
2284                                 rc, key_rec->enc_key_size);
2285                 rc = -ENOMEM;
2286                 goto out;
2287         }
2288         rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2289                                  dst_sg, 2);
2290         if (rc < 1 || rc > 2) {
2291                 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2292                                 "for crypt_stat encrypted session key; "
2293                                 "expected rc = 1; got rc = [%d]. "
2294                                 "key_rec->enc_key_size = [%zd]\n", rc,
2295                                 key_rec->enc_key_size);
2296                 rc = -ENOMEM;
2297                 goto out;
2298         }
2299         mutex_lock(tfm_mutex);
2300         rc = crypto_blkcipher_setkey(desc.tfm, session_key_encryption_key,
2301                                      crypt_stat->key_size);
2302         if (rc < 0) {
2303                 mutex_unlock(tfm_mutex);
2304                 ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2305                                 "context; rc = [%d]\n", rc);
2306                 goto out;
2307         }
2308         rc = 0;
2309         ecryptfs_printk(KERN_DEBUG, "Encrypting [%zd] bytes of the key\n",
2310                         crypt_stat->key_size);
2311         rc = crypto_blkcipher_encrypt(&desc, dst_sg, src_sg,
2312                                       (*key_rec).enc_key_size);
2313         mutex_unlock(tfm_mutex);
2314         if (rc) {
2315                 printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2316                 goto out;
2317         }
2318         ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2319         if (ecryptfs_verbosity > 0) {
2320                 ecryptfs_printk(KERN_DEBUG, "EFEK of size [%zd]:\n",
2321                                 key_rec->enc_key_size);
2322                 ecryptfs_dump_hex(key_rec->enc_key,
2323                                   key_rec->enc_key_size);
2324         }
2325 encrypted_session_key_set:
2326         /* This format is inspired by OpenPGP; see RFC 2440
2327          * packet tag 3 */
2328         max_packet_size = (1                         /* Tag 3 identifier */
2329                            + 3                       /* Max Tag 3 packet size */
2330                            + 1                       /* Version */
2331                            + 1                       /* Cipher code */
2332                            + 1                       /* S2K specifier */
2333                            + 1                       /* Hash identifier */
2334                            + ECRYPTFS_SALT_SIZE      /* Salt */
2335                            + 1                       /* Hash iterations */
2336                            + key_rec->enc_key_size); /* Encrypted key size */
2337         if (max_packet_size > (*remaining_bytes)) {
2338                 printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2339                        "there are only [%td] available\n", max_packet_size,
2340                        (*remaining_bytes));
2341                 rc = -EINVAL;
2342                 goto out;
2343         }
2344         dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2345         /* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2346          * to get the number of octets in the actual Tag 3 packet */
2347         rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2348                                           (max_packet_size - 4),
2349                                           &packet_size_length);
2350         if (rc) {
2351                 printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2352                        "generate packet length. rc = [%d]\n", rc);
2353                 goto out;
2354         }
2355         (*packet_size) += packet_size_length;
2356         dest[(*packet_size)++] = 0x04; /* version 4 */
2357         /* TODO: Break from RFC2440 so that arbitrary ciphers can be
2358          * specified with strings */
2359         cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2360                                                       crypt_stat->key_size);
2361         if (cipher_code == 0) {
2362                 ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2363                                 "cipher [%s]\n", crypt_stat->cipher);
2364                 rc = -EINVAL;
2365                 goto out;
2366         }
2367         dest[(*packet_size)++] = cipher_code;
2368         dest[(*packet_size)++] = 0x03;  /* S2K */
2369         dest[(*packet_size)++] = 0x01;  /* MD5 (TODO: parameterize) */
2370         memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2371                ECRYPTFS_SALT_SIZE);
2372         (*packet_size) += ECRYPTFS_SALT_SIZE;   /* salt */
2373         dest[(*packet_size)++] = 0x60;  /* hash iterations (65536) */
2374         memcpy(&dest[(*packet_size)], key_rec->enc_key,
2375                key_rec->enc_key_size);
2376         (*packet_size) += key_rec->enc_key_size;
2377 out:
2378         if (rc)
2379                 (*packet_size) = 0;
2380         else
2381                 (*remaining_bytes) -= (*packet_size);
2382         return rc;
2383 }
2384
2385 struct kmem_cache *ecryptfs_key_record_cache;
2386
2387 /**
2388  * ecryptfs_generate_key_packet_set
2389  * @dest_base: Virtual address from which to write the key record set
2390  * @crypt_stat: The cryptographic context from which the
2391  *              authentication tokens will be retrieved
2392  * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2393  *                   for the global parameters
2394  * @len: The amount written
2395  * @max: The maximum amount of data allowed to be written
2396  *
2397  * Generates a key packet set and writes it to the virtual address
2398  * passed in.
2399  *
2400  * Returns zero on success; non-zero on error.
2401  */
2402 int
2403 ecryptfs_generate_key_packet_set(char *dest_base,
2404                                  struct ecryptfs_crypt_stat *crypt_stat,
2405                                  struct dentry *ecryptfs_dentry, size_t *len,
2406                                  size_t max)
2407 {
2408         struct ecryptfs_auth_tok *auth_tok;
2409         struct key *auth_tok_key = NULL;
2410         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2411                 &ecryptfs_superblock_to_private(
2412                         ecryptfs_dentry->d_sb)->mount_crypt_stat;
2413         size_t written;
2414         struct ecryptfs_key_record *key_rec;
2415         struct ecryptfs_key_sig *key_sig;
2416         int rc = 0;
2417
2418         (*len) = 0;
2419         mutex_lock(&crypt_stat->keysig_list_mutex);
2420         key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2421         if (!key_rec) {
2422                 rc = -ENOMEM;
2423                 goto out;
2424         }
2425         list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2426                             crypt_stat_list) {
2427                 memset(key_rec, 0, sizeof(*key_rec));
2428                 rc = ecryptfs_find_global_auth_tok_for_sig(&auth_tok_key,
2429                                                            &auth_tok,
2430                                                            mount_crypt_stat,
2431                                                            key_sig->keysig);
2432                 if (rc) {
2433                         printk(KERN_WARNING "Unable to retrieve auth tok with "
2434                                "sig = [%s]\n", key_sig->keysig);
2435                         rc = process_find_global_auth_tok_for_sig_err(rc);
2436                         goto out_free;
2437                 }
2438                 if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2439                         rc = write_tag_3_packet((dest_base + (*len)),
2440                                                 &max, auth_tok,
2441                                                 crypt_stat, key_rec,
2442                                                 &written);
2443                         up_write(&(auth_tok_key->sem));
2444                         key_put(auth_tok_key);
2445                         if (rc) {
2446                                 ecryptfs_printk(KERN_WARNING, "Error "
2447                                                 "writing tag 3 packet\n");
2448                                 goto out_free;
2449                         }
2450                         (*len) += written;
2451                         /* Write auth tok signature packet */
2452                         rc = write_tag_11_packet((dest_base + (*len)), &max,
2453                                                  key_rec->sig,
2454                                                  ECRYPTFS_SIG_SIZE, &written);
2455                         if (rc) {
2456                                 ecryptfs_printk(KERN_ERR, "Error writing "
2457                                                 "auth tok signature packet\n");
2458                                 goto out_free;
2459                         }
2460                         (*len) += written;
2461                 } else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2462                         rc = write_tag_1_packet(dest_base + (*len), &max,
2463                                                 auth_tok_key, auth_tok,
2464                                                 crypt_stat, key_rec, &written);
2465                         if (rc) {
2466                                 ecryptfs_printk(KERN_WARNING, "Error "
2467                                                 "writing tag 1 packet\n");
2468                                 goto out_free;
2469                         }
2470                         (*len) += written;
2471                 } else {
2472                         up_write(&(auth_tok_key->sem));
2473                         key_put(auth_tok_key);
2474                         ecryptfs_printk(KERN_WARNING, "Unsupported "
2475                                         "authentication token type\n");
2476                         rc = -EINVAL;
2477                         goto out_free;
2478                 }
2479         }
2480         if (likely(max > 0)) {
2481                 dest_base[(*len)] = 0x00;
2482         } else {
2483                 ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2484                 rc = -EIO;
2485         }
2486 out_free:
2487         kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2488 out:
2489         if (rc)
2490                 (*len) = 0;
2491         mutex_unlock(&crypt_stat->keysig_list_mutex);
2492         return rc;
2493 }
2494
2495 struct kmem_cache *ecryptfs_key_sig_cache;
2496
2497 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2498 {
2499         struct ecryptfs_key_sig *new_key_sig;
2500
2501         new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2502         if (!new_key_sig) {
2503                 printk(KERN_ERR
2504                        "Error allocating from ecryptfs_key_sig_cache\n");
2505                 return -ENOMEM;
2506         }
2507         memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2508         new_key_sig->keysig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2509         /* Caller must hold keysig_list_mutex */
2510         list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2511
2512         return 0;
2513 }
2514
2515 struct kmem_cache *ecryptfs_global_auth_tok_cache;
2516
2517 int
2518 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2519                              char *sig, u32 global_auth_tok_flags)
2520 {
2521         struct ecryptfs_global_auth_tok *new_auth_tok;
2522         int rc = 0;
2523
2524         new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2525                                         GFP_KERNEL);
2526         if (!new_auth_tok) {
2527                 rc = -ENOMEM;
2528                 printk(KERN_ERR "Error allocating from "
2529                        "ecryptfs_global_auth_tok_cache\n");
2530                 goto out;
2531         }
2532         memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2533         new_auth_tok->flags = global_auth_tok_flags;
2534         new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2535         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2536         list_add(&new_auth_tok->mount_crypt_stat_list,
2537                  &mount_crypt_stat->global_auth_tok_list);
2538         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2539 out:
2540         return rc;
2541 }
2542