Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/teigland/dlm
[pandora-kernel.git] / fs / cifs / file.c
1 /*
2  *   fs/cifs/file.c
3  *
4  *   vfs operations that deal with files
5  *
6  *   Copyright (C) International Business Machines  Corp., 2002,2010
7  *   Author(s): Steve French (sfrench@us.ibm.com)
8  *              Jeremy Allison (jra@samba.org)
9  *
10  *   This library is free software; you can redistribute it and/or modify
11  *   it under the terms of the GNU Lesser General Public License as published
12  *   by the Free Software Foundation; either version 2.1 of the License, or
13  *   (at your option) any later version.
14  *
15  *   This library is distributed in the hope that it will be useful,
16  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
17  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
18  *   the GNU Lesser General Public License for more details.
19  *
20  *   You should have received a copy of the GNU Lesser General Public License
21  *   along with this library; if not, write to the Free Software
22  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23  */
24 #include <linux/fs.h>
25 #include <linux/backing-dev.h>
26 #include <linux/stat.h>
27 #include <linux/fcntl.h>
28 #include <linux/pagemap.h>
29 #include <linux/pagevec.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/delay.h>
33 #include <linux/mount.h>
34 #include <linux/slab.h>
35 #include <asm/div64.h>
36 #include "cifsfs.h"
37 #include "cifspdu.h"
38 #include "cifsglob.h"
39 #include "cifsproto.h"
40 #include "cifs_unicode.h"
41 #include "cifs_debug.h"
42 #include "cifs_fs_sb.h"
43 #include "fscache.h"
44
45 static inline int cifs_convert_flags(unsigned int flags)
46 {
47         if ((flags & O_ACCMODE) == O_RDONLY)
48                 return GENERIC_READ;
49         else if ((flags & O_ACCMODE) == O_WRONLY)
50                 return GENERIC_WRITE;
51         else if ((flags & O_ACCMODE) == O_RDWR) {
52                 /* GENERIC_ALL is too much permission to request
53                    can cause unnecessary access denied on create */
54                 /* return GENERIC_ALL; */
55                 return (GENERIC_READ | GENERIC_WRITE);
56         }
57
58         return (READ_CONTROL | FILE_WRITE_ATTRIBUTES | FILE_READ_ATTRIBUTES |
59                 FILE_WRITE_EA | FILE_APPEND_DATA | FILE_WRITE_DATA |
60                 FILE_READ_DATA);
61 }
62
63 static u32 cifs_posix_convert_flags(unsigned int flags)
64 {
65         u32 posix_flags = 0;
66
67         if ((flags & O_ACCMODE) == O_RDONLY)
68                 posix_flags = SMB_O_RDONLY;
69         else if ((flags & O_ACCMODE) == O_WRONLY)
70                 posix_flags = SMB_O_WRONLY;
71         else if ((flags & O_ACCMODE) == O_RDWR)
72                 posix_flags = SMB_O_RDWR;
73
74         if (flags & O_CREAT)
75                 posix_flags |= SMB_O_CREAT;
76         if (flags & O_EXCL)
77                 posix_flags |= SMB_O_EXCL;
78         if (flags & O_TRUNC)
79                 posix_flags |= SMB_O_TRUNC;
80         /* be safe and imply O_SYNC for O_DSYNC */
81         if (flags & O_DSYNC)
82                 posix_flags |= SMB_O_SYNC;
83         if (flags & O_DIRECTORY)
84                 posix_flags |= SMB_O_DIRECTORY;
85         if (flags & O_NOFOLLOW)
86                 posix_flags |= SMB_O_NOFOLLOW;
87         if (flags & O_DIRECT)
88                 posix_flags |= SMB_O_DIRECT;
89
90         return posix_flags;
91 }
92
93 static inline int cifs_get_disposition(unsigned int flags)
94 {
95         if ((flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
96                 return FILE_CREATE;
97         else if ((flags & (O_CREAT | O_TRUNC)) == (O_CREAT | O_TRUNC))
98                 return FILE_OVERWRITE_IF;
99         else if ((flags & O_CREAT) == O_CREAT)
100                 return FILE_OPEN_IF;
101         else if ((flags & O_TRUNC) == O_TRUNC)
102                 return FILE_OVERWRITE;
103         else
104                 return FILE_OPEN;
105 }
106
107 int cifs_posix_open(char *full_path, struct inode **pinode,
108                         struct super_block *sb, int mode, unsigned int f_flags,
109                         __u32 *poplock, __u16 *pnetfid, int xid)
110 {
111         int rc;
112         FILE_UNIX_BASIC_INFO *presp_data;
113         __u32 posix_flags = 0;
114         struct cifs_sb_info *cifs_sb = CIFS_SB(sb);
115         struct cifs_fattr fattr;
116         struct tcon_link *tlink;
117         struct cifs_tcon *tcon;
118
119         cFYI(1, "posix open %s", full_path);
120
121         presp_data = kzalloc(sizeof(FILE_UNIX_BASIC_INFO), GFP_KERNEL);
122         if (presp_data == NULL)
123                 return -ENOMEM;
124
125         tlink = cifs_sb_tlink(cifs_sb);
126         if (IS_ERR(tlink)) {
127                 rc = PTR_ERR(tlink);
128                 goto posix_open_ret;
129         }
130
131         tcon = tlink_tcon(tlink);
132         mode &= ~current_umask();
133
134         posix_flags = cifs_posix_convert_flags(f_flags);
135         rc = CIFSPOSIXCreate(xid, tcon, posix_flags, mode, pnetfid, presp_data,
136                              poplock, full_path, cifs_sb->local_nls,
137                              cifs_sb->mnt_cifs_flags &
138                                         CIFS_MOUNT_MAP_SPECIAL_CHR);
139         cifs_put_tlink(tlink);
140
141         if (rc)
142                 goto posix_open_ret;
143
144         if (presp_data->Type == cpu_to_le32(-1))
145                 goto posix_open_ret; /* open ok, caller does qpathinfo */
146
147         if (!pinode)
148                 goto posix_open_ret; /* caller does not need info */
149
150         cifs_unix_basic_to_fattr(&fattr, presp_data, cifs_sb);
151
152         /* get new inode and set it up */
153         if (*pinode == NULL) {
154                 cifs_fill_uniqueid(sb, &fattr);
155                 *pinode = cifs_iget(sb, &fattr);
156                 if (!*pinode) {
157                         rc = -ENOMEM;
158                         goto posix_open_ret;
159                 }
160         } else {
161                 cifs_fattr_to_inode(*pinode, &fattr);
162         }
163
164 posix_open_ret:
165         kfree(presp_data);
166         return rc;
167 }
168
169 static int
170 cifs_nt_open(char *full_path, struct inode *inode, struct cifs_sb_info *cifs_sb,
171              struct cifs_tcon *tcon, unsigned int f_flags, __u32 *poplock,
172              __u16 *pnetfid, int xid)
173 {
174         int rc;
175         int desiredAccess;
176         int disposition;
177         FILE_ALL_INFO *buf;
178
179         desiredAccess = cifs_convert_flags(f_flags);
180
181 /*********************************************************************
182  *  open flag mapping table:
183  *
184  *      POSIX Flag            CIFS Disposition
185  *      ----------            ----------------
186  *      O_CREAT               FILE_OPEN_IF
187  *      O_CREAT | O_EXCL      FILE_CREATE
188  *      O_CREAT | O_TRUNC     FILE_OVERWRITE_IF
189  *      O_TRUNC               FILE_OVERWRITE
190  *      none of the above     FILE_OPEN
191  *
192  *      Note that there is not a direct match between disposition
193  *      FILE_SUPERSEDE (ie create whether or not file exists although
194  *      O_CREAT | O_TRUNC is similar but truncates the existing
195  *      file rather than creating a new file as FILE_SUPERSEDE does
196  *      (which uses the attributes / metadata passed in on open call)
197  *?
198  *?  O_SYNC is a reasonable match to CIFS writethrough flag
199  *?  and the read write flags match reasonably.  O_LARGEFILE
200  *?  is irrelevant because largefile support is always used
201  *?  by this client. Flags O_APPEND, O_DIRECT, O_DIRECTORY,
202  *       O_FASYNC, O_NOFOLLOW, O_NONBLOCK need further investigation
203  *********************************************************************/
204
205         disposition = cifs_get_disposition(f_flags);
206
207         /* BB pass O_SYNC flag through on file attributes .. BB */
208
209         buf = kmalloc(sizeof(FILE_ALL_INFO), GFP_KERNEL);
210         if (!buf)
211                 return -ENOMEM;
212
213         if (tcon->ses->capabilities & CAP_NT_SMBS)
214                 rc = CIFSSMBOpen(xid, tcon, full_path, disposition,
215                          desiredAccess, CREATE_NOT_DIR, pnetfid, poplock, buf,
216                          cifs_sb->local_nls, cifs_sb->mnt_cifs_flags
217                                  & CIFS_MOUNT_MAP_SPECIAL_CHR);
218         else
219                 rc = SMBLegacyOpen(xid, tcon, full_path, disposition,
220                         desiredAccess, CREATE_NOT_DIR, pnetfid, poplock, buf,
221                         cifs_sb->local_nls, cifs_sb->mnt_cifs_flags
222                                 & CIFS_MOUNT_MAP_SPECIAL_CHR);
223
224         if (rc)
225                 goto out;
226
227         if (tcon->unix_ext)
228                 rc = cifs_get_inode_info_unix(&inode, full_path, inode->i_sb,
229                                               xid);
230         else
231                 rc = cifs_get_inode_info(&inode, full_path, buf, inode->i_sb,
232                                          xid, pnetfid);
233
234 out:
235         kfree(buf);
236         return rc;
237 }
238
239 struct cifsFileInfo *
240 cifs_new_fileinfo(__u16 fileHandle, struct file *file,
241                   struct tcon_link *tlink, __u32 oplock)
242 {
243         struct dentry *dentry = file->f_path.dentry;
244         struct inode *inode = dentry->d_inode;
245         struct cifsInodeInfo *pCifsInode = CIFS_I(inode);
246         struct cifsFileInfo *pCifsFile;
247
248         pCifsFile = kzalloc(sizeof(struct cifsFileInfo), GFP_KERNEL);
249         if (pCifsFile == NULL)
250                 return pCifsFile;
251
252         pCifsFile->count = 1;
253         pCifsFile->netfid = fileHandle;
254         pCifsFile->pid = current->tgid;
255         pCifsFile->uid = current_fsuid();
256         pCifsFile->dentry = dget(dentry);
257         pCifsFile->f_flags = file->f_flags;
258         pCifsFile->invalidHandle = false;
259         pCifsFile->tlink = cifs_get_tlink(tlink);
260         mutex_init(&pCifsFile->fh_mutex);
261         mutex_init(&pCifsFile->lock_mutex);
262         INIT_LIST_HEAD(&pCifsFile->llist);
263         INIT_WORK(&pCifsFile->oplock_break, cifs_oplock_break);
264
265         spin_lock(&cifs_file_list_lock);
266         list_add(&pCifsFile->tlist, &(tlink_tcon(tlink)->openFileList));
267         /* if readable file instance put first in list*/
268         if (file->f_mode & FMODE_READ)
269                 list_add(&pCifsFile->flist, &pCifsInode->openFileList);
270         else
271                 list_add_tail(&pCifsFile->flist, &pCifsInode->openFileList);
272         spin_unlock(&cifs_file_list_lock);
273
274         cifs_set_oplock_level(pCifsInode, oplock);
275
276         file->private_data = pCifsFile;
277         return pCifsFile;
278 }
279
280 /*
281  * Release a reference on the file private data. This may involve closing
282  * the filehandle out on the server. Must be called without holding
283  * cifs_file_list_lock.
284  */
285 void cifsFileInfo_put(struct cifsFileInfo *cifs_file)
286 {
287         struct inode *inode = cifs_file->dentry->d_inode;
288         struct cifs_tcon *tcon = tlink_tcon(cifs_file->tlink);
289         struct cifsInodeInfo *cifsi = CIFS_I(inode);
290         struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
291         struct cifsLockInfo *li, *tmp;
292
293         spin_lock(&cifs_file_list_lock);
294         if (--cifs_file->count > 0) {
295                 spin_unlock(&cifs_file_list_lock);
296                 return;
297         }
298
299         /* remove it from the lists */
300         list_del(&cifs_file->flist);
301         list_del(&cifs_file->tlist);
302
303         if (list_empty(&cifsi->openFileList)) {
304                 cFYI(1, "closing last open instance for inode %p",
305                         cifs_file->dentry->d_inode);
306
307                 /* in strict cache mode we need invalidate mapping on the last
308                    close  because it may cause a error when we open this file
309                    again and get at least level II oplock */
310                 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_STRICT_IO)
311                         CIFS_I(inode)->invalid_mapping = true;
312
313                 cifs_set_oplock_level(cifsi, 0);
314         }
315         spin_unlock(&cifs_file_list_lock);
316
317         if (!tcon->need_reconnect && !cifs_file->invalidHandle) {
318                 int xid, rc;
319
320                 xid = GetXid();
321                 rc = CIFSSMBClose(xid, tcon, cifs_file->netfid);
322                 FreeXid(xid);
323         }
324
325         /* Delete any outstanding lock records. We'll lose them when the file
326          * is closed anyway.
327          */
328         mutex_lock(&cifs_file->lock_mutex);
329         list_for_each_entry_safe(li, tmp, &cifs_file->llist, llist) {
330                 list_del(&li->llist);
331                 kfree(li);
332         }
333         mutex_unlock(&cifs_file->lock_mutex);
334
335         cifs_put_tlink(cifs_file->tlink);
336         dput(cifs_file->dentry);
337         kfree(cifs_file);
338 }
339
340 int cifs_open(struct inode *inode, struct file *file)
341 {
342         int rc = -EACCES;
343         int xid;
344         __u32 oplock;
345         struct cifs_sb_info *cifs_sb;
346         struct cifs_tcon *tcon;
347         struct tcon_link *tlink;
348         struct cifsFileInfo *pCifsFile = NULL;
349         char *full_path = NULL;
350         bool posix_open_ok = false;
351         __u16 netfid;
352
353         xid = GetXid();
354
355         cifs_sb = CIFS_SB(inode->i_sb);
356         tlink = cifs_sb_tlink(cifs_sb);
357         if (IS_ERR(tlink)) {
358                 FreeXid(xid);
359                 return PTR_ERR(tlink);
360         }
361         tcon = tlink_tcon(tlink);
362
363         full_path = build_path_from_dentry(file->f_path.dentry);
364         if (full_path == NULL) {
365                 rc = -ENOMEM;
366                 goto out;
367         }
368
369         cFYI(1, "inode = 0x%p file flags are 0x%x for %s",
370                  inode, file->f_flags, full_path);
371
372         if (oplockEnabled)
373                 oplock = REQ_OPLOCK;
374         else
375                 oplock = 0;
376
377         if (!tcon->broken_posix_open && tcon->unix_ext &&
378             (tcon->ses->capabilities & CAP_UNIX) &&
379             (CIFS_UNIX_POSIX_PATH_OPS_CAP &
380                         le64_to_cpu(tcon->fsUnixInfo.Capability))) {
381                 /* can not refresh inode info since size could be stale */
382                 rc = cifs_posix_open(full_path, &inode, inode->i_sb,
383                                 cifs_sb->mnt_file_mode /* ignored */,
384                                 file->f_flags, &oplock, &netfid, xid);
385                 if (rc == 0) {
386                         cFYI(1, "posix open succeeded");
387                         posix_open_ok = true;
388                 } else if ((rc == -EINVAL) || (rc == -EOPNOTSUPP)) {
389                         if (tcon->ses->serverNOS)
390                                 cERROR(1, "server %s of type %s returned"
391                                            " unexpected error on SMB posix open"
392                                            ", disabling posix open support."
393                                            " Check if server update available.",
394                                            tcon->ses->serverName,
395                                            tcon->ses->serverNOS);
396                         tcon->broken_posix_open = true;
397                 } else if ((rc != -EIO) && (rc != -EREMOTE) &&
398                          (rc != -EOPNOTSUPP)) /* path not found or net err */
399                         goto out;
400                 /* else fallthrough to retry open the old way on network i/o
401                    or DFS errors */
402         }
403
404         if (!posix_open_ok) {
405                 rc = cifs_nt_open(full_path, inode, cifs_sb, tcon,
406                                   file->f_flags, &oplock, &netfid, xid);
407                 if (rc)
408                         goto out;
409         }
410
411         pCifsFile = cifs_new_fileinfo(netfid, file, tlink, oplock);
412         if (pCifsFile == NULL) {
413                 CIFSSMBClose(xid, tcon, netfid);
414                 rc = -ENOMEM;
415                 goto out;
416         }
417
418         cifs_fscache_set_inode_cookie(inode, file);
419
420         if ((oplock & CIFS_CREATE_ACTION) && !posix_open_ok && tcon->unix_ext) {
421                 /* time to set mode which we can not set earlier due to
422                    problems creating new read-only files */
423                 struct cifs_unix_set_info_args args = {
424                         .mode   = inode->i_mode,
425                         .uid    = NO_CHANGE_64,
426                         .gid    = NO_CHANGE_64,
427                         .ctime  = NO_CHANGE_64,
428                         .atime  = NO_CHANGE_64,
429                         .mtime  = NO_CHANGE_64,
430                         .device = 0,
431                 };
432                 CIFSSMBUnixSetFileInfo(xid, tcon, &args, netfid,
433                                         pCifsFile->pid);
434         }
435
436 out:
437         kfree(full_path);
438         FreeXid(xid);
439         cifs_put_tlink(tlink);
440         return rc;
441 }
442
443 /* Try to reacquire byte range locks that were released when session */
444 /* to server was lost */
445 static int cifs_relock_file(struct cifsFileInfo *cifsFile)
446 {
447         int rc = 0;
448
449 /* BB list all locks open on this file and relock */
450
451         return rc;
452 }
453
454 static int cifs_reopen_file(struct cifsFileInfo *pCifsFile, bool can_flush)
455 {
456         int rc = -EACCES;
457         int xid;
458         __u32 oplock;
459         struct cifs_sb_info *cifs_sb;
460         struct cifs_tcon *tcon;
461         struct cifsInodeInfo *pCifsInode;
462         struct inode *inode;
463         char *full_path = NULL;
464         int desiredAccess;
465         int disposition = FILE_OPEN;
466         __u16 netfid;
467
468         xid = GetXid();
469         mutex_lock(&pCifsFile->fh_mutex);
470         if (!pCifsFile->invalidHandle) {
471                 mutex_unlock(&pCifsFile->fh_mutex);
472                 rc = 0;
473                 FreeXid(xid);
474                 return rc;
475         }
476
477         inode = pCifsFile->dentry->d_inode;
478         cifs_sb = CIFS_SB(inode->i_sb);
479         tcon = tlink_tcon(pCifsFile->tlink);
480
481 /* can not grab rename sem here because various ops, including
482    those that already have the rename sem can end up causing writepage
483    to get called and if the server was down that means we end up here,
484    and we can never tell if the caller already has the rename_sem */
485         full_path = build_path_from_dentry(pCifsFile->dentry);
486         if (full_path == NULL) {
487                 rc = -ENOMEM;
488                 mutex_unlock(&pCifsFile->fh_mutex);
489                 FreeXid(xid);
490                 return rc;
491         }
492
493         cFYI(1, "inode = 0x%p file flags 0x%x for %s",
494                  inode, pCifsFile->f_flags, full_path);
495
496         if (oplockEnabled)
497                 oplock = REQ_OPLOCK;
498         else
499                 oplock = 0;
500
501         if (tcon->unix_ext && (tcon->ses->capabilities & CAP_UNIX) &&
502             (CIFS_UNIX_POSIX_PATH_OPS_CAP &
503                         le64_to_cpu(tcon->fsUnixInfo.Capability))) {
504
505                 /*
506                  * O_CREAT, O_EXCL and O_TRUNC already had their effect on the
507                  * original open. Must mask them off for a reopen.
508                  */
509                 unsigned int oflags = pCifsFile->f_flags &
510                                                 ~(O_CREAT | O_EXCL | O_TRUNC);
511
512                 rc = cifs_posix_open(full_path, NULL, inode->i_sb,
513                                 cifs_sb->mnt_file_mode /* ignored */,
514                                 oflags, &oplock, &netfid, xid);
515                 if (rc == 0) {
516                         cFYI(1, "posix reopen succeeded");
517                         goto reopen_success;
518                 }
519                 /* fallthrough to retry open the old way on errors, especially
520                    in the reconnect path it is important to retry hard */
521         }
522
523         desiredAccess = cifs_convert_flags(pCifsFile->f_flags);
524
525         /* Can not refresh inode by passing in file_info buf to be returned
526            by SMBOpen and then calling get_inode_info with returned buf
527            since file might have write behind data that needs to be flushed
528            and server version of file size can be stale. If we knew for sure
529            that inode was not dirty locally we could do this */
530
531         rc = CIFSSMBOpen(xid, tcon, full_path, disposition, desiredAccess,
532                          CREATE_NOT_DIR, &netfid, &oplock, NULL,
533                          cifs_sb->local_nls, cifs_sb->mnt_cifs_flags &
534                                 CIFS_MOUNT_MAP_SPECIAL_CHR);
535         if (rc) {
536                 mutex_unlock(&pCifsFile->fh_mutex);
537                 cFYI(1, "cifs_open returned 0x%x", rc);
538                 cFYI(1, "oplock: %d", oplock);
539                 goto reopen_error_exit;
540         }
541
542 reopen_success:
543         pCifsFile->netfid = netfid;
544         pCifsFile->invalidHandle = false;
545         mutex_unlock(&pCifsFile->fh_mutex);
546         pCifsInode = CIFS_I(inode);
547
548         if (can_flush) {
549                 rc = filemap_write_and_wait(inode->i_mapping);
550                 mapping_set_error(inode->i_mapping, rc);
551
552                 if (tcon->unix_ext)
553                         rc = cifs_get_inode_info_unix(&inode,
554                                 full_path, inode->i_sb, xid);
555                 else
556                         rc = cifs_get_inode_info(&inode,
557                                 full_path, NULL, inode->i_sb,
558                                 xid, NULL);
559         } /* else we are writing out data to server already
560              and could deadlock if we tried to flush data, and
561              since we do not know if we have data that would
562              invalidate the current end of file on the server
563              we can not go to the server to get the new inod
564              info */
565
566         cifs_set_oplock_level(pCifsInode, oplock);
567
568         cifs_relock_file(pCifsFile);
569
570 reopen_error_exit:
571         kfree(full_path);
572         FreeXid(xid);
573         return rc;
574 }
575
576 int cifs_close(struct inode *inode, struct file *file)
577 {
578         if (file->private_data != NULL) {
579                 cifsFileInfo_put(file->private_data);
580                 file->private_data = NULL;
581         }
582
583         /* return code from the ->release op is always ignored */
584         return 0;
585 }
586
587 int cifs_closedir(struct inode *inode, struct file *file)
588 {
589         int rc = 0;
590         int xid;
591         struct cifsFileInfo *pCFileStruct = file->private_data;
592         char *ptmp;
593
594         cFYI(1, "Closedir inode = 0x%p", inode);
595
596         xid = GetXid();
597
598         if (pCFileStruct) {
599                 struct cifs_tcon *pTcon = tlink_tcon(pCFileStruct->tlink);
600
601                 cFYI(1, "Freeing private data in close dir");
602                 spin_lock(&cifs_file_list_lock);
603                 if (!pCFileStruct->srch_inf.endOfSearch &&
604                     !pCFileStruct->invalidHandle) {
605                         pCFileStruct->invalidHandle = true;
606                         spin_unlock(&cifs_file_list_lock);
607                         rc = CIFSFindClose(xid, pTcon, pCFileStruct->netfid);
608                         cFYI(1, "Closing uncompleted readdir with rc %d",
609                                  rc);
610                         /* not much we can do if it fails anyway, ignore rc */
611                         rc = 0;
612                 } else
613                         spin_unlock(&cifs_file_list_lock);
614                 ptmp = pCFileStruct->srch_inf.ntwrk_buf_start;
615                 if (ptmp) {
616                         cFYI(1, "closedir free smb buf in srch struct");
617                         pCFileStruct->srch_inf.ntwrk_buf_start = NULL;
618                         if (pCFileStruct->srch_inf.smallBuf)
619                                 cifs_small_buf_release(ptmp);
620                         else
621                                 cifs_buf_release(ptmp);
622                 }
623                 cifs_put_tlink(pCFileStruct->tlink);
624                 kfree(file->private_data);
625                 file->private_data = NULL;
626         }
627         /* BB can we lock the filestruct while this is going on? */
628         FreeXid(xid);
629         return rc;
630 }
631
632 static int store_file_lock(struct cifsFileInfo *fid, __u64 len,
633                                 __u64 offset, __u8 lockType)
634 {
635         struct cifsLockInfo *li =
636                 kmalloc(sizeof(struct cifsLockInfo), GFP_KERNEL);
637         if (li == NULL)
638                 return -ENOMEM;
639         li->offset = offset;
640         li->length = len;
641         li->type = lockType;
642         mutex_lock(&fid->lock_mutex);
643         list_add(&li->llist, &fid->llist);
644         mutex_unlock(&fid->lock_mutex);
645         return 0;
646 }
647
648 int cifs_lock(struct file *file, int cmd, struct file_lock *pfLock)
649 {
650         int rc, xid;
651         __u32 numLock = 0;
652         __u32 numUnlock = 0;
653         __u64 length;
654         bool wait_flag = false;
655         struct cifs_sb_info *cifs_sb;
656         struct cifs_tcon *tcon;
657         __u16 netfid;
658         __u8 lockType = LOCKING_ANDX_LARGE_FILES;
659         bool posix_locking = 0;
660
661         length = 1 + pfLock->fl_end - pfLock->fl_start;
662         rc = -EACCES;
663         xid = GetXid();
664
665         cFYI(1, "Lock parm: 0x%x flockflags: "
666                  "0x%x flocktype: 0x%x start: %lld end: %lld",
667                 cmd, pfLock->fl_flags, pfLock->fl_type, pfLock->fl_start,
668                 pfLock->fl_end);
669
670         if (pfLock->fl_flags & FL_POSIX)
671                 cFYI(1, "Posix");
672         if (pfLock->fl_flags & FL_FLOCK)
673                 cFYI(1, "Flock");
674         if (pfLock->fl_flags & FL_SLEEP) {
675                 cFYI(1, "Blocking lock");
676                 wait_flag = true;
677         }
678         if (pfLock->fl_flags & FL_ACCESS)
679                 cFYI(1, "Process suspended by mandatory locking - "
680                          "not implemented yet");
681         if (pfLock->fl_flags & FL_LEASE)
682                 cFYI(1, "Lease on file - not implemented yet");
683         if (pfLock->fl_flags &
684             (~(FL_POSIX | FL_FLOCK | FL_SLEEP | FL_ACCESS | FL_LEASE)))
685                 cFYI(1, "Unknown lock flags 0x%x", pfLock->fl_flags);
686
687         if (pfLock->fl_type == F_WRLCK) {
688                 cFYI(1, "F_WRLCK ");
689                 numLock = 1;
690         } else if (pfLock->fl_type == F_UNLCK) {
691                 cFYI(1, "F_UNLCK");
692                 numUnlock = 1;
693                 /* Check if unlock includes more than
694                 one lock range */
695         } else if (pfLock->fl_type == F_RDLCK) {
696                 cFYI(1, "F_RDLCK");
697                 lockType |= LOCKING_ANDX_SHARED_LOCK;
698                 numLock = 1;
699         } else if (pfLock->fl_type == F_EXLCK) {
700                 cFYI(1, "F_EXLCK");
701                 numLock = 1;
702         } else if (pfLock->fl_type == F_SHLCK) {
703                 cFYI(1, "F_SHLCK");
704                 lockType |= LOCKING_ANDX_SHARED_LOCK;
705                 numLock = 1;
706         } else
707                 cFYI(1, "Unknown type of lock");
708
709         cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
710         tcon = tlink_tcon(((struct cifsFileInfo *)file->private_data)->tlink);
711         netfid = ((struct cifsFileInfo *)file->private_data)->netfid;
712
713         if ((tcon->ses->capabilities & CAP_UNIX) &&
714             (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
715             ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
716                 posix_locking = 1;
717         /* BB add code here to normalize offset and length to
718         account for negative length which we can not accept over the
719         wire */
720         if (IS_GETLK(cmd)) {
721                 if (posix_locking) {
722                         int posix_lock_type;
723                         if (lockType & LOCKING_ANDX_SHARED_LOCK)
724                                 posix_lock_type = CIFS_RDLCK;
725                         else
726                                 posix_lock_type = CIFS_WRLCK;
727                         rc = CIFSSMBPosixLock(xid, tcon, netfid, 1 /* get */,
728                                         length, pfLock, posix_lock_type,
729                                         wait_flag);
730                         FreeXid(xid);
731                         return rc;
732                 }
733
734                 /* BB we could chain these into one lock request BB */
735                 rc = CIFSSMBLock(xid, tcon, netfid, length, pfLock->fl_start,
736                                  0, 1, lockType, 0 /* wait flag */, 0);
737                 if (rc == 0) {
738                         rc = CIFSSMBLock(xid, tcon, netfid, length,
739                                          pfLock->fl_start, 1 /* numUnlock */ ,
740                                          0 /* numLock */ , lockType,
741                                          0 /* wait flag */, 0);
742                         pfLock->fl_type = F_UNLCK;
743                         if (rc != 0)
744                                 cERROR(1, "Error unlocking previously locked "
745                                            "range %d during test of lock", rc);
746                         rc = 0;
747
748                 } else {
749                         /* if rc == ERR_SHARING_VIOLATION ? */
750                         rc = 0;
751
752                         if (lockType & LOCKING_ANDX_SHARED_LOCK) {
753                                 pfLock->fl_type = F_WRLCK;
754                         } else {
755                                 rc = CIFSSMBLock(xid, tcon, netfid, length,
756                                         pfLock->fl_start, 0, 1,
757                                         lockType | LOCKING_ANDX_SHARED_LOCK,
758                                         0 /* wait flag */, 0);
759                                 if (rc == 0) {
760                                         rc = CIFSSMBLock(xid, tcon, netfid,
761                                                 length, pfLock->fl_start, 1, 0,
762                                                 lockType |
763                                                 LOCKING_ANDX_SHARED_LOCK,
764                                                 0 /* wait flag */, 0);
765                                         pfLock->fl_type = F_RDLCK;
766                                         if (rc != 0)
767                                                 cERROR(1, "Error unlocking "
768                                                 "previously locked range %d "
769                                                 "during test of lock", rc);
770                                         rc = 0;
771                                 } else {
772                                         pfLock->fl_type = F_WRLCK;
773                                         rc = 0;
774                                 }
775                         }
776                 }
777
778                 FreeXid(xid);
779                 return rc;
780         }
781
782         if (!numLock && !numUnlock) {
783                 /* if no lock or unlock then nothing
784                 to do since we do not know what it is */
785                 FreeXid(xid);
786                 return -EOPNOTSUPP;
787         }
788
789         if (posix_locking) {
790                 int posix_lock_type;
791                 if (lockType & LOCKING_ANDX_SHARED_LOCK)
792                         posix_lock_type = CIFS_RDLCK;
793                 else
794                         posix_lock_type = CIFS_WRLCK;
795
796                 if (numUnlock == 1)
797                         posix_lock_type = CIFS_UNLCK;
798
799                 rc = CIFSSMBPosixLock(xid, tcon, netfid, 0 /* set */,
800                                       length, pfLock, posix_lock_type,
801                                       wait_flag);
802         } else {
803                 struct cifsFileInfo *fid = file->private_data;
804
805                 if (numLock) {
806                         rc = CIFSSMBLock(xid, tcon, netfid, length,
807                                          pfLock->fl_start, 0, numLock, lockType,
808                                          wait_flag, 0);
809
810                         if (rc == 0) {
811                                 /* For Windows locks we must store them. */
812                                 rc = store_file_lock(fid, length,
813                                                 pfLock->fl_start, lockType);
814                         }
815                 } else if (numUnlock) {
816                         /* For each stored lock that this unlock overlaps
817                            completely, unlock it. */
818                         int stored_rc = 0;
819                         struct cifsLockInfo *li, *tmp;
820
821                         rc = 0;
822                         mutex_lock(&fid->lock_mutex);
823                         list_for_each_entry_safe(li, tmp, &fid->llist, llist) {
824                                 if (pfLock->fl_start <= li->offset &&
825                                                 (pfLock->fl_start + length) >=
826                                                 (li->offset + li->length)) {
827                                         stored_rc = CIFSSMBLock(xid, tcon,
828                                                         netfid, li->length,
829                                                         li->offset, 1, 0,
830                                                         li->type, false, 0);
831                                         if (stored_rc)
832                                                 rc = stored_rc;
833                                         else {
834                                                 list_del(&li->llist);
835                                                 kfree(li);
836                                         }
837                                 }
838                         }
839                         mutex_unlock(&fid->lock_mutex);
840                 }
841         }
842
843         if (pfLock->fl_flags & FL_POSIX)
844                 posix_lock_file_wait(file, pfLock);
845         FreeXid(xid);
846         return rc;
847 }
848
849 /* update the file size (if needed) after a write */
850 void
851 cifs_update_eof(struct cifsInodeInfo *cifsi, loff_t offset,
852                       unsigned int bytes_written)
853 {
854         loff_t end_of_write = offset + bytes_written;
855
856         if (end_of_write > cifsi->server_eof)
857                 cifsi->server_eof = end_of_write;
858 }
859
860 static ssize_t cifs_write(struct cifsFileInfo *open_file, __u32 pid,
861                           const char *write_data, size_t write_size,
862                           loff_t *poffset)
863 {
864         int rc = 0;
865         unsigned int bytes_written = 0;
866         unsigned int total_written;
867         struct cifs_sb_info *cifs_sb;
868         struct cifs_tcon *pTcon;
869         int xid;
870         struct dentry *dentry = open_file->dentry;
871         struct cifsInodeInfo *cifsi = CIFS_I(dentry->d_inode);
872         struct cifs_io_parms io_parms;
873
874         cifs_sb = CIFS_SB(dentry->d_sb);
875
876         cFYI(1, "write %zd bytes to offset %lld of %s", write_size,
877            *poffset, dentry->d_name.name);
878
879         pTcon = tlink_tcon(open_file->tlink);
880
881         xid = GetXid();
882
883         for (total_written = 0; write_size > total_written;
884              total_written += bytes_written) {
885                 rc = -EAGAIN;
886                 while (rc == -EAGAIN) {
887                         struct kvec iov[2];
888                         unsigned int len;
889
890                         if (open_file->invalidHandle) {
891                                 /* we could deadlock if we called
892                                    filemap_fdatawait from here so tell
893                                    reopen_file not to flush data to
894                                    server now */
895                                 rc = cifs_reopen_file(open_file, false);
896                                 if (rc != 0)
897                                         break;
898                         }
899
900                         len = min((size_t)cifs_sb->wsize,
901                                   write_size - total_written);
902                         /* iov[0] is reserved for smb header */
903                         iov[1].iov_base = (char *)write_data + total_written;
904                         iov[1].iov_len = len;
905                         io_parms.netfid = open_file->netfid;
906                         io_parms.pid = pid;
907                         io_parms.tcon = pTcon;
908                         io_parms.offset = *poffset;
909                         io_parms.length = len;
910                         rc = CIFSSMBWrite2(xid, &io_parms, &bytes_written, iov,
911                                            1, 0);
912                 }
913                 if (rc || (bytes_written == 0)) {
914                         if (total_written)
915                                 break;
916                         else {
917                                 FreeXid(xid);
918                                 return rc;
919                         }
920                 } else {
921                         cifs_update_eof(cifsi, *poffset, bytes_written);
922                         *poffset += bytes_written;
923                 }
924         }
925
926         cifs_stats_bytes_written(pTcon, total_written);
927
928         if (total_written > 0) {
929                 spin_lock(&dentry->d_inode->i_lock);
930                 if (*poffset > dentry->d_inode->i_size)
931                         i_size_write(dentry->d_inode, *poffset);
932                 spin_unlock(&dentry->d_inode->i_lock);
933         }
934         mark_inode_dirty_sync(dentry->d_inode);
935         FreeXid(xid);
936         return total_written;
937 }
938
939 struct cifsFileInfo *find_readable_file(struct cifsInodeInfo *cifs_inode,
940                                         bool fsuid_only)
941 {
942         struct cifsFileInfo *open_file = NULL;
943         struct cifs_sb_info *cifs_sb = CIFS_SB(cifs_inode->vfs_inode.i_sb);
944
945         /* only filter by fsuid on multiuser mounts */
946         if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
947                 fsuid_only = false;
948
949         spin_lock(&cifs_file_list_lock);
950         /* we could simply get the first_list_entry since write-only entries
951            are always at the end of the list but since the first entry might
952            have a close pending, we go through the whole list */
953         list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
954                 if (fsuid_only && open_file->uid != current_fsuid())
955                         continue;
956                 if (OPEN_FMODE(open_file->f_flags) & FMODE_READ) {
957                         if (!open_file->invalidHandle) {
958                                 /* found a good file */
959                                 /* lock it so it will not be closed on us */
960                                 cifsFileInfo_get(open_file);
961                                 spin_unlock(&cifs_file_list_lock);
962                                 return open_file;
963                         } /* else might as well continue, and look for
964                              another, or simply have the caller reopen it
965                              again rather than trying to fix this handle */
966                 } else /* write only file */
967                         break; /* write only files are last so must be done */
968         }
969         spin_unlock(&cifs_file_list_lock);
970         return NULL;
971 }
972
973 struct cifsFileInfo *find_writable_file(struct cifsInodeInfo *cifs_inode,
974                                         bool fsuid_only)
975 {
976         struct cifsFileInfo *open_file;
977         struct cifs_sb_info *cifs_sb;
978         bool any_available = false;
979         int rc;
980
981         /* Having a null inode here (because mapping->host was set to zero by
982         the VFS or MM) should not happen but we had reports of on oops (due to
983         it being zero) during stress testcases so we need to check for it */
984
985         if (cifs_inode == NULL) {
986                 cERROR(1, "Null inode passed to cifs_writeable_file");
987                 dump_stack();
988                 return NULL;
989         }
990
991         cifs_sb = CIFS_SB(cifs_inode->vfs_inode.i_sb);
992
993         /* only filter by fsuid on multiuser mounts */
994         if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
995                 fsuid_only = false;
996
997         spin_lock(&cifs_file_list_lock);
998 refind_writable:
999         list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1000                 if (!any_available && open_file->pid != current->tgid)
1001                         continue;
1002                 if (fsuid_only && open_file->uid != current_fsuid())
1003                         continue;
1004                 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
1005                         cifsFileInfo_get(open_file);
1006
1007                         if (!open_file->invalidHandle) {
1008                                 /* found a good writable file */
1009                                 spin_unlock(&cifs_file_list_lock);
1010                                 return open_file;
1011                         }
1012
1013                         spin_unlock(&cifs_file_list_lock);
1014
1015                         /* Had to unlock since following call can block */
1016                         rc = cifs_reopen_file(open_file, false);
1017                         if (!rc)
1018                                 return open_file;
1019
1020                         /* if it fails, try another handle if possible */
1021                         cFYI(1, "wp failed on reopen file");
1022                         cifsFileInfo_put(open_file);
1023
1024                         spin_lock(&cifs_file_list_lock);
1025
1026                         /* else we simply continue to the next entry. Thus
1027                            we do not loop on reopen errors.  If we
1028                            can not reopen the file, for example if we
1029                            reconnected to a server with another client
1030                            racing to delete or lock the file we would not
1031                            make progress if we restarted before the beginning
1032                            of the loop here. */
1033                 }
1034         }
1035         /* couldn't find useable FH with same pid, try any available */
1036         if (!any_available) {
1037                 any_available = true;
1038                 goto refind_writable;
1039         }
1040         spin_unlock(&cifs_file_list_lock);
1041         return NULL;
1042 }
1043
1044 static int cifs_partialpagewrite(struct page *page, unsigned from, unsigned to)
1045 {
1046         struct address_space *mapping = page->mapping;
1047         loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
1048         char *write_data;
1049         int rc = -EFAULT;
1050         int bytes_written = 0;
1051         struct inode *inode;
1052         struct cifsFileInfo *open_file;
1053
1054         if (!mapping || !mapping->host)
1055                 return -EFAULT;
1056
1057         inode = page->mapping->host;
1058
1059         offset += (loff_t)from;
1060         write_data = kmap(page);
1061         write_data += from;
1062
1063         if ((to > PAGE_CACHE_SIZE) || (from > to)) {
1064                 kunmap(page);
1065                 return -EIO;
1066         }
1067
1068         /* racing with truncate? */
1069         if (offset > mapping->host->i_size) {
1070                 kunmap(page);
1071                 return 0; /* don't care */
1072         }
1073
1074         /* check to make sure that we are not extending the file */
1075         if (mapping->host->i_size - offset < (loff_t)to)
1076                 to = (unsigned)(mapping->host->i_size - offset);
1077
1078         open_file = find_writable_file(CIFS_I(mapping->host), false);
1079         if (open_file) {
1080                 bytes_written = cifs_write(open_file, open_file->pid,
1081                                            write_data, to - from, &offset);
1082                 cifsFileInfo_put(open_file);
1083                 /* Does mm or vfs already set times? */
1084                 inode->i_atime = inode->i_mtime = current_fs_time(inode->i_sb);
1085                 if ((bytes_written > 0) && (offset))
1086                         rc = 0;
1087                 else if (bytes_written < 0)
1088                         rc = bytes_written;
1089         } else {
1090                 cFYI(1, "No writeable filehandles for inode");
1091                 rc = -EIO;
1092         }
1093
1094         kunmap(page);
1095         return rc;
1096 }
1097
1098 static int cifs_writepages(struct address_space *mapping,
1099                            struct writeback_control *wbc)
1100 {
1101         struct cifs_sb_info *cifs_sb = CIFS_SB(mapping->host->i_sb);
1102         bool done = false, scanned = false, range_whole = false;
1103         pgoff_t end, index;
1104         struct cifs_writedata *wdata;
1105         struct page *page;
1106         int rc = 0;
1107
1108         /*
1109          * If wsize is smaller than the page cache size, default to writing
1110          * one page at a time via cifs_writepage
1111          */
1112         if (cifs_sb->wsize < PAGE_CACHE_SIZE)
1113                 return generic_writepages(mapping, wbc);
1114
1115         if (wbc->range_cyclic) {
1116                 index = mapping->writeback_index; /* Start from prev offset */
1117                 end = -1;
1118         } else {
1119                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1120                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1121                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1122                         range_whole = true;
1123                 scanned = true;
1124         }
1125 retry:
1126         while (!done && index <= end) {
1127                 unsigned int i, nr_pages, found_pages;
1128                 pgoff_t next = 0, tofind;
1129                 struct page **pages;
1130
1131                 tofind = min((cifs_sb->wsize / PAGE_CACHE_SIZE) - 1,
1132                                 end - index) + 1;
1133
1134                 wdata = cifs_writedata_alloc((unsigned int)tofind);
1135                 if (!wdata) {
1136                         rc = -ENOMEM;
1137                         break;
1138                 }
1139
1140                 /*
1141                  * find_get_pages_tag seems to return a max of 256 on each
1142                  * iteration, so we must call it several times in order to
1143                  * fill the array or the wsize is effectively limited to
1144                  * 256 * PAGE_CACHE_SIZE.
1145                  */
1146                 found_pages = 0;
1147                 pages = wdata->pages;
1148                 do {
1149                         nr_pages = find_get_pages_tag(mapping, &index,
1150                                                         PAGECACHE_TAG_DIRTY,
1151                                                         tofind, pages);
1152                         found_pages += nr_pages;
1153                         tofind -= nr_pages;
1154                         pages += nr_pages;
1155                 } while (nr_pages && tofind && index <= end);
1156
1157                 if (found_pages == 0) {
1158                         kref_put(&wdata->refcount, cifs_writedata_release);
1159                         break;
1160                 }
1161
1162                 nr_pages = 0;
1163                 for (i = 0; i < found_pages; i++) {
1164                         page = wdata->pages[i];
1165                         /*
1166                          * At this point we hold neither mapping->tree_lock nor
1167                          * lock on the page itself: the page may be truncated or
1168                          * invalidated (changing page->mapping to NULL), or even
1169                          * swizzled back from swapper_space to tmpfs file
1170                          * mapping
1171                          */
1172
1173                         if (nr_pages == 0)
1174                                 lock_page(page);
1175                         else if (!trylock_page(page))
1176                                 break;
1177
1178                         if (unlikely(page->mapping != mapping)) {
1179                                 unlock_page(page);
1180                                 break;
1181                         }
1182
1183                         if (!wbc->range_cyclic && page->index > end) {
1184                                 done = true;
1185                                 unlock_page(page);
1186                                 break;
1187                         }
1188
1189                         if (next && (page->index != next)) {
1190                                 /* Not next consecutive page */
1191                                 unlock_page(page);
1192                                 break;
1193                         }
1194
1195                         if (wbc->sync_mode != WB_SYNC_NONE)
1196                                 wait_on_page_writeback(page);
1197
1198                         if (PageWriteback(page) ||
1199                                         !clear_page_dirty_for_io(page)) {
1200                                 unlock_page(page);
1201                                 break;
1202                         }
1203
1204                         /*
1205                          * This actually clears the dirty bit in the radix tree.
1206                          * See cifs_writepage() for more commentary.
1207                          */
1208                         set_page_writeback(page);
1209
1210                         if (page_offset(page) >= mapping->host->i_size) {
1211                                 done = true;
1212                                 unlock_page(page);
1213                                 end_page_writeback(page);
1214                                 break;
1215                         }
1216
1217                         wdata->pages[i] = page;
1218                         next = page->index + 1;
1219                         ++nr_pages;
1220                 }
1221
1222                 /* reset index to refind any pages skipped */
1223                 if (nr_pages == 0)
1224                         index = wdata->pages[0]->index + 1;
1225
1226                 /* put any pages we aren't going to use */
1227                 for (i = nr_pages; i < found_pages; i++) {
1228                         page_cache_release(wdata->pages[i]);
1229                         wdata->pages[i] = NULL;
1230                 }
1231
1232                 /* nothing to write? */
1233                 if (nr_pages == 0) {
1234                         kref_put(&wdata->refcount, cifs_writedata_release);
1235                         continue;
1236                 }
1237
1238                 wdata->sync_mode = wbc->sync_mode;
1239                 wdata->nr_pages = nr_pages;
1240                 wdata->offset = page_offset(wdata->pages[0]);
1241
1242                 do {
1243                         if (wdata->cfile != NULL)
1244                                 cifsFileInfo_put(wdata->cfile);
1245                         wdata->cfile = find_writable_file(CIFS_I(mapping->host),
1246                                                           false);
1247                         if (!wdata->cfile) {
1248                                 cERROR(1, "No writable handles for inode");
1249                                 rc = -EBADF;
1250                                 break;
1251                         }
1252                         rc = cifs_async_writev(wdata);
1253                 } while (wbc->sync_mode == WB_SYNC_ALL && rc == -EAGAIN);
1254
1255                 for (i = 0; i < nr_pages; ++i)
1256                         unlock_page(wdata->pages[i]);
1257
1258                 /* send failure -- clean up the mess */
1259                 if (rc != 0) {
1260                         for (i = 0; i < nr_pages; ++i) {
1261                                 if (rc == -EAGAIN)
1262                                         redirty_page_for_writepage(wbc,
1263                                                            wdata->pages[i]);
1264                                 else
1265                                         SetPageError(wdata->pages[i]);
1266                                 end_page_writeback(wdata->pages[i]);
1267                                 page_cache_release(wdata->pages[i]);
1268                         }
1269                         if (rc != -EAGAIN)
1270                                 mapping_set_error(mapping, rc);
1271                 }
1272                 kref_put(&wdata->refcount, cifs_writedata_release);
1273
1274                 wbc->nr_to_write -= nr_pages;
1275                 if (wbc->nr_to_write <= 0)
1276                         done = true;
1277
1278                 index = next;
1279         }
1280
1281         if (!scanned && !done) {
1282                 /*
1283                  * We hit the last page and there is more work to be done: wrap
1284                  * back to the start of the file
1285                  */
1286                 scanned = true;
1287                 index = 0;
1288                 goto retry;
1289         }
1290
1291         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1292                 mapping->writeback_index = index;
1293
1294         return rc;
1295 }
1296
1297 static int
1298 cifs_writepage_locked(struct page *page, struct writeback_control *wbc)
1299 {
1300         int rc;
1301         int xid;
1302
1303         xid = GetXid();
1304 /* BB add check for wbc flags */
1305         page_cache_get(page);
1306         if (!PageUptodate(page))
1307                 cFYI(1, "ppw - page not up to date");
1308
1309         /*
1310          * Set the "writeback" flag, and clear "dirty" in the radix tree.
1311          *
1312          * A writepage() implementation always needs to do either this,
1313          * or re-dirty the page with "redirty_page_for_writepage()" in
1314          * the case of a failure.
1315          *
1316          * Just unlocking the page will cause the radix tree tag-bits
1317          * to fail to update with the state of the page correctly.
1318          */
1319         set_page_writeback(page);
1320 retry_write:
1321         rc = cifs_partialpagewrite(page, 0, PAGE_CACHE_SIZE);
1322         if (rc == -EAGAIN && wbc->sync_mode == WB_SYNC_ALL)
1323                 goto retry_write;
1324         else if (rc == -EAGAIN)
1325                 redirty_page_for_writepage(wbc, page);
1326         else if (rc != 0)
1327                 SetPageError(page);
1328         else
1329                 SetPageUptodate(page);
1330         end_page_writeback(page);
1331         page_cache_release(page);
1332         FreeXid(xid);
1333         return rc;
1334 }
1335
1336 static int cifs_writepage(struct page *page, struct writeback_control *wbc)
1337 {
1338         int rc = cifs_writepage_locked(page, wbc);
1339         unlock_page(page);
1340         return rc;
1341 }
1342
1343 static int cifs_write_end(struct file *file, struct address_space *mapping,
1344                         loff_t pos, unsigned len, unsigned copied,
1345                         struct page *page, void *fsdata)
1346 {
1347         int rc;
1348         struct inode *inode = mapping->host;
1349         struct cifsFileInfo *cfile = file->private_data;
1350         struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
1351         __u32 pid;
1352
1353         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
1354                 pid = cfile->pid;
1355         else
1356                 pid = current->tgid;
1357
1358         cFYI(1, "write_end for page %p from pos %lld with %d bytes",
1359                  page, pos, copied);
1360
1361         if (PageChecked(page)) {
1362                 if (copied == len)
1363                         SetPageUptodate(page);
1364                 ClearPageChecked(page);
1365         } else if (!PageUptodate(page) && copied == PAGE_CACHE_SIZE)
1366                 SetPageUptodate(page);
1367
1368         if (!PageUptodate(page)) {
1369                 char *page_data;
1370                 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1371                 int xid;
1372
1373                 xid = GetXid();
1374                 /* this is probably better than directly calling
1375                    partialpage_write since in this function the file handle is
1376                    known which we might as well leverage */
1377                 /* BB check if anything else missing out of ppw
1378                    such as updating last write time */
1379                 page_data = kmap(page);
1380                 rc = cifs_write(cfile, pid, page_data + offset, copied, &pos);
1381                 /* if (rc < 0) should we set writebehind rc? */
1382                 kunmap(page);
1383
1384                 FreeXid(xid);
1385         } else {
1386                 rc = copied;
1387                 pos += copied;
1388                 set_page_dirty(page);
1389         }
1390
1391         if (rc > 0) {
1392                 spin_lock(&inode->i_lock);
1393                 if (pos > inode->i_size)
1394                         i_size_write(inode, pos);
1395                 spin_unlock(&inode->i_lock);
1396         }
1397
1398         unlock_page(page);
1399         page_cache_release(page);
1400
1401         return rc;
1402 }
1403
1404 int cifs_strict_fsync(struct file *file, int datasync)
1405 {
1406         int xid;
1407         int rc = 0;
1408         struct cifs_tcon *tcon;
1409         struct cifsFileInfo *smbfile = file->private_data;
1410         struct inode *inode = file->f_path.dentry->d_inode;
1411         struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
1412
1413         xid = GetXid();
1414
1415         cFYI(1, "Sync file - name: %s datasync: 0x%x",
1416                 file->f_path.dentry->d_name.name, datasync);
1417
1418         if (!CIFS_I(inode)->clientCanCacheRead) {
1419                 rc = cifs_invalidate_mapping(inode);
1420                 if (rc) {
1421                         cFYI(1, "rc: %d during invalidate phase", rc);
1422                         rc = 0; /* don't care about it in fsync */
1423                 }
1424         }
1425
1426         tcon = tlink_tcon(smbfile->tlink);
1427         if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC))
1428                 rc = CIFSSMBFlush(xid, tcon, smbfile->netfid);
1429
1430         FreeXid(xid);
1431         return rc;
1432 }
1433
1434 int cifs_fsync(struct file *file, int datasync)
1435 {
1436         int xid;
1437         int rc = 0;
1438         struct cifs_tcon *tcon;
1439         struct cifsFileInfo *smbfile = file->private_data;
1440         struct cifs_sb_info *cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1441
1442         xid = GetXid();
1443
1444         cFYI(1, "Sync file - name: %s datasync: 0x%x",
1445                 file->f_path.dentry->d_name.name, datasync);
1446
1447         tcon = tlink_tcon(smbfile->tlink);
1448         if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC))
1449                 rc = CIFSSMBFlush(xid, tcon, smbfile->netfid);
1450
1451         FreeXid(xid);
1452         return rc;
1453 }
1454
1455 /*
1456  * As file closes, flush all cached write data for this inode checking
1457  * for write behind errors.
1458  */
1459 int cifs_flush(struct file *file, fl_owner_t id)
1460 {
1461         struct inode *inode = file->f_path.dentry->d_inode;
1462         int rc = 0;
1463
1464         if (file->f_mode & FMODE_WRITE)
1465                 rc = filemap_write_and_wait(inode->i_mapping);
1466
1467         cFYI(1, "Flush inode %p file %p rc %d", inode, file, rc);
1468
1469         return rc;
1470 }
1471
1472 static int
1473 cifs_write_allocate_pages(struct page **pages, unsigned long num_pages)
1474 {
1475         int rc = 0;
1476         unsigned long i;
1477
1478         for (i = 0; i < num_pages; i++) {
1479                 pages[i] = alloc_page(__GFP_HIGHMEM);
1480                 if (!pages[i]) {
1481                         /*
1482                          * save number of pages we have already allocated and
1483                          * return with ENOMEM error
1484                          */
1485                         num_pages = i;
1486                         rc = -ENOMEM;
1487                         goto error;
1488                 }
1489         }
1490
1491         return rc;
1492
1493 error:
1494         for (i = 0; i < num_pages; i++)
1495                 put_page(pages[i]);
1496         return rc;
1497 }
1498
1499 static inline
1500 size_t get_numpages(const size_t wsize, const size_t len, size_t *cur_len)
1501 {
1502         size_t num_pages;
1503         size_t clen;
1504
1505         clen = min_t(const size_t, len, wsize);
1506         num_pages = clen / PAGE_CACHE_SIZE;
1507         if (clen % PAGE_CACHE_SIZE)
1508                 num_pages++;
1509
1510         if (cur_len)
1511                 *cur_len = clen;
1512
1513         return num_pages;
1514 }
1515
1516 static ssize_t
1517 cifs_iovec_write(struct file *file, const struct iovec *iov,
1518                  unsigned long nr_segs, loff_t *poffset)
1519 {
1520         unsigned int written;
1521         unsigned long num_pages, npages, i;
1522         size_t copied, len, cur_len;
1523         ssize_t total_written = 0;
1524         struct kvec *to_send;
1525         struct page **pages;
1526         struct iov_iter it;
1527         struct inode *inode;
1528         struct cifsFileInfo *open_file;
1529         struct cifs_tcon *pTcon;
1530         struct cifs_sb_info *cifs_sb;
1531         struct cifs_io_parms io_parms;
1532         int xid, rc;
1533         __u32 pid;
1534
1535         len = iov_length(iov, nr_segs);
1536         if (!len)
1537                 return 0;
1538
1539         rc = generic_write_checks(file, poffset, &len, 0);
1540         if (rc)
1541                 return rc;
1542
1543         cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1544         num_pages = get_numpages(cifs_sb->wsize, len, &cur_len);
1545
1546         pages = kmalloc(sizeof(struct pages *)*num_pages, GFP_KERNEL);
1547         if (!pages)
1548                 return -ENOMEM;
1549
1550         to_send = kmalloc(sizeof(struct kvec)*(num_pages + 1), GFP_KERNEL);
1551         if (!to_send) {
1552                 kfree(pages);
1553                 return -ENOMEM;
1554         }
1555
1556         rc = cifs_write_allocate_pages(pages, num_pages);
1557         if (rc) {
1558                 kfree(pages);
1559                 kfree(to_send);
1560                 return rc;
1561         }
1562
1563         xid = GetXid();
1564         open_file = file->private_data;
1565
1566         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
1567                 pid = open_file->pid;
1568         else
1569                 pid = current->tgid;
1570
1571         pTcon = tlink_tcon(open_file->tlink);
1572         inode = file->f_path.dentry->d_inode;
1573
1574         iov_iter_init(&it, iov, nr_segs, len, 0);
1575         npages = num_pages;
1576
1577         do {
1578                 size_t save_len = cur_len;
1579                 for (i = 0; i < npages; i++) {
1580                         copied = min_t(const size_t, cur_len, PAGE_CACHE_SIZE);
1581                         copied = iov_iter_copy_from_user(pages[i], &it, 0,
1582                                                          copied);
1583                         cur_len -= copied;
1584                         iov_iter_advance(&it, copied);
1585                         to_send[i+1].iov_base = kmap(pages[i]);
1586                         to_send[i+1].iov_len = copied;
1587                 }
1588
1589                 cur_len = save_len - cur_len;
1590
1591                 do {
1592                         if (open_file->invalidHandle) {
1593                                 rc = cifs_reopen_file(open_file, false);
1594                                 if (rc != 0)
1595                                         break;
1596                         }
1597                         io_parms.netfid = open_file->netfid;
1598                         io_parms.pid = pid;
1599                         io_parms.tcon = pTcon;
1600                         io_parms.offset = *poffset;
1601                         io_parms.length = cur_len;
1602                         rc = CIFSSMBWrite2(xid, &io_parms, &written, to_send,
1603                                            npages, 0);
1604                 } while (rc == -EAGAIN);
1605
1606                 for (i = 0; i < npages; i++)
1607                         kunmap(pages[i]);
1608
1609                 if (written) {
1610                         len -= written;
1611                         total_written += written;
1612                         cifs_update_eof(CIFS_I(inode), *poffset, written);
1613                         *poffset += written;
1614                 } else if (rc < 0) {
1615                         if (!total_written)
1616                                 total_written = rc;
1617                         break;
1618                 }
1619
1620                 /* get length and number of kvecs of the next write */
1621                 npages = get_numpages(cifs_sb->wsize, len, &cur_len);
1622         } while (len > 0);
1623
1624         if (total_written > 0) {
1625                 spin_lock(&inode->i_lock);
1626                 if (*poffset > inode->i_size)
1627                         i_size_write(inode, *poffset);
1628                 spin_unlock(&inode->i_lock);
1629         }
1630
1631         cifs_stats_bytes_written(pTcon, total_written);
1632         mark_inode_dirty_sync(inode);
1633
1634         for (i = 0; i < num_pages; i++)
1635                 put_page(pages[i]);
1636         kfree(to_send);
1637         kfree(pages);
1638         FreeXid(xid);
1639         return total_written;
1640 }
1641
1642 ssize_t cifs_user_writev(struct kiocb *iocb, const struct iovec *iov,
1643                                 unsigned long nr_segs, loff_t pos)
1644 {
1645         ssize_t written;
1646         struct inode *inode;
1647
1648         inode = iocb->ki_filp->f_path.dentry->d_inode;
1649
1650         /*
1651          * BB - optimize the way when signing is disabled. We can drop this
1652          * extra memory-to-memory copying and use iovec buffers for constructing
1653          * write request.
1654          */
1655
1656         written = cifs_iovec_write(iocb->ki_filp, iov, nr_segs, &pos);
1657         if (written > 0) {
1658                 CIFS_I(inode)->invalid_mapping = true;
1659                 iocb->ki_pos = pos;
1660         }
1661
1662         return written;
1663 }
1664
1665 ssize_t cifs_strict_writev(struct kiocb *iocb, const struct iovec *iov,
1666                            unsigned long nr_segs, loff_t pos)
1667 {
1668         struct inode *inode;
1669
1670         inode = iocb->ki_filp->f_path.dentry->d_inode;
1671
1672         if (CIFS_I(inode)->clientCanCacheAll)
1673                 return generic_file_aio_write(iocb, iov, nr_segs, pos);
1674
1675         /*
1676          * In strict cache mode we need to write the data to the server exactly
1677          * from the pos to pos+len-1 rather than flush all affected pages
1678          * because it may cause a error with mandatory locks on these pages but
1679          * not on the region from pos to ppos+len-1.
1680          */
1681
1682         return cifs_user_writev(iocb, iov, nr_segs, pos);
1683 }
1684
1685 static ssize_t
1686 cifs_iovec_read(struct file *file, const struct iovec *iov,
1687                  unsigned long nr_segs, loff_t *poffset)
1688 {
1689         int rc;
1690         int xid;
1691         ssize_t total_read;
1692         unsigned int bytes_read = 0;
1693         size_t len, cur_len;
1694         int iov_offset = 0;
1695         struct cifs_sb_info *cifs_sb;
1696         struct cifs_tcon *pTcon;
1697         struct cifsFileInfo *open_file;
1698         struct smb_com_read_rsp *pSMBr;
1699         struct cifs_io_parms io_parms;
1700         char *read_data;
1701         __u32 pid;
1702
1703         if (!nr_segs)
1704                 return 0;
1705
1706         len = iov_length(iov, nr_segs);
1707         if (!len)
1708                 return 0;
1709
1710         xid = GetXid();
1711         cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1712
1713         open_file = file->private_data;
1714         pTcon = tlink_tcon(open_file->tlink);
1715
1716         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
1717                 pid = open_file->pid;
1718         else
1719                 pid = current->tgid;
1720
1721         if ((file->f_flags & O_ACCMODE) == O_WRONLY)
1722                 cFYI(1, "attempting read on write only file instance");
1723
1724         for (total_read = 0; total_read < len; total_read += bytes_read) {
1725                 cur_len = min_t(const size_t, len - total_read, cifs_sb->rsize);
1726                 rc = -EAGAIN;
1727                 read_data = NULL;
1728
1729                 while (rc == -EAGAIN) {
1730                         int buf_type = CIFS_NO_BUFFER;
1731                         if (open_file->invalidHandle) {
1732                                 rc = cifs_reopen_file(open_file, true);
1733                                 if (rc != 0)
1734                                         break;
1735                         }
1736                         io_parms.netfid = open_file->netfid;
1737                         io_parms.pid = pid;
1738                         io_parms.tcon = pTcon;
1739                         io_parms.offset = *poffset;
1740                         io_parms.length = cur_len;
1741                         rc = CIFSSMBRead(xid, &io_parms, &bytes_read,
1742                                          &read_data, &buf_type);
1743                         pSMBr = (struct smb_com_read_rsp *)read_data;
1744                         if (read_data) {
1745                                 char *data_offset = read_data + 4 +
1746                                                 le16_to_cpu(pSMBr->DataOffset);
1747                                 if (memcpy_toiovecend(iov, data_offset,
1748                                                       iov_offset, bytes_read))
1749                                         rc = -EFAULT;
1750                                 if (buf_type == CIFS_SMALL_BUFFER)
1751                                         cifs_small_buf_release(read_data);
1752                                 else if (buf_type == CIFS_LARGE_BUFFER)
1753                                         cifs_buf_release(read_data);
1754                                 read_data = NULL;
1755                                 iov_offset += bytes_read;
1756                         }
1757                 }
1758
1759                 if (rc || (bytes_read == 0)) {
1760                         if (total_read) {
1761                                 break;
1762                         } else {
1763                                 FreeXid(xid);
1764                                 return rc;
1765                         }
1766                 } else {
1767                         cifs_stats_bytes_read(pTcon, bytes_read);
1768                         *poffset += bytes_read;
1769                 }
1770         }
1771
1772         FreeXid(xid);
1773         return total_read;
1774 }
1775
1776 ssize_t cifs_user_readv(struct kiocb *iocb, const struct iovec *iov,
1777                                unsigned long nr_segs, loff_t pos)
1778 {
1779         ssize_t read;
1780
1781         read = cifs_iovec_read(iocb->ki_filp, iov, nr_segs, &pos);
1782         if (read > 0)
1783                 iocb->ki_pos = pos;
1784
1785         return read;
1786 }
1787
1788 ssize_t cifs_strict_readv(struct kiocb *iocb, const struct iovec *iov,
1789                           unsigned long nr_segs, loff_t pos)
1790 {
1791         struct inode *inode;
1792
1793         inode = iocb->ki_filp->f_path.dentry->d_inode;
1794
1795         if (CIFS_I(inode)->clientCanCacheRead)
1796                 return generic_file_aio_read(iocb, iov, nr_segs, pos);
1797
1798         /*
1799          * In strict cache mode we need to read from the server all the time
1800          * if we don't have level II oplock because the server can delay mtime
1801          * change - so we can't make a decision about inode invalidating.
1802          * And we can also fail with pagereading if there are mandatory locks
1803          * on pages affected by this read but not on the region from pos to
1804          * pos+len-1.
1805          */
1806
1807         return cifs_user_readv(iocb, iov, nr_segs, pos);
1808 }
1809
1810 static ssize_t cifs_read(struct file *file, char *read_data, size_t read_size,
1811                          loff_t *poffset)
1812 {
1813         int rc = -EACCES;
1814         unsigned int bytes_read = 0;
1815         unsigned int total_read;
1816         unsigned int current_read_size;
1817         struct cifs_sb_info *cifs_sb;
1818         struct cifs_tcon *pTcon;
1819         int xid;
1820         char *current_offset;
1821         struct cifsFileInfo *open_file;
1822         struct cifs_io_parms io_parms;
1823         int buf_type = CIFS_NO_BUFFER;
1824         __u32 pid;
1825
1826         xid = GetXid();
1827         cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1828
1829         if (file->private_data == NULL) {
1830                 rc = -EBADF;
1831                 FreeXid(xid);
1832                 return rc;
1833         }
1834         open_file = file->private_data;
1835         pTcon = tlink_tcon(open_file->tlink);
1836
1837         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
1838                 pid = open_file->pid;
1839         else
1840                 pid = current->tgid;
1841
1842         if ((file->f_flags & O_ACCMODE) == O_WRONLY)
1843                 cFYI(1, "attempting read on write only file instance");
1844
1845         for (total_read = 0, current_offset = read_data;
1846              read_size > total_read;
1847              total_read += bytes_read, current_offset += bytes_read) {
1848                 current_read_size = min_t(const int, read_size - total_read,
1849                                           cifs_sb->rsize);
1850                 /* For windows me and 9x we do not want to request more
1851                 than it negotiated since it will refuse the read then */
1852                 if ((pTcon->ses) &&
1853                         !(pTcon->ses->capabilities & CAP_LARGE_FILES)) {
1854                         current_read_size = min_t(const int, current_read_size,
1855                                         pTcon->ses->server->maxBuf - 128);
1856                 }
1857                 rc = -EAGAIN;
1858                 while (rc == -EAGAIN) {
1859                         if (open_file->invalidHandle) {
1860                                 rc = cifs_reopen_file(open_file, true);
1861                                 if (rc != 0)
1862                                         break;
1863                         }
1864                         io_parms.netfid = open_file->netfid;
1865                         io_parms.pid = pid;
1866                         io_parms.tcon = pTcon;
1867                         io_parms.offset = *poffset;
1868                         io_parms.length = current_read_size;
1869                         rc = CIFSSMBRead(xid, &io_parms, &bytes_read,
1870                                          &current_offset, &buf_type);
1871                 }
1872                 if (rc || (bytes_read == 0)) {
1873                         if (total_read) {
1874                                 break;
1875                         } else {
1876                                 FreeXid(xid);
1877                                 return rc;
1878                         }
1879                 } else {
1880                         cifs_stats_bytes_read(pTcon, total_read);
1881                         *poffset += bytes_read;
1882                 }
1883         }
1884         FreeXid(xid);
1885         return total_read;
1886 }
1887
1888 /*
1889  * If the page is mmap'ed into a process' page tables, then we need to make
1890  * sure that it doesn't change while being written back.
1891  */
1892 static int
1893 cifs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1894 {
1895         struct page *page = vmf->page;
1896
1897         lock_page(page);
1898         return VM_FAULT_LOCKED;
1899 }
1900
1901 static struct vm_operations_struct cifs_file_vm_ops = {
1902         .fault = filemap_fault,
1903         .page_mkwrite = cifs_page_mkwrite,
1904 };
1905
1906 int cifs_file_strict_mmap(struct file *file, struct vm_area_struct *vma)
1907 {
1908         int rc, xid;
1909         struct inode *inode = file->f_path.dentry->d_inode;
1910
1911         xid = GetXid();
1912
1913         if (!CIFS_I(inode)->clientCanCacheRead) {
1914                 rc = cifs_invalidate_mapping(inode);
1915                 if (rc)
1916                         return rc;
1917         }
1918
1919         rc = generic_file_mmap(file, vma);
1920         if (rc == 0)
1921                 vma->vm_ops = &cifs_file_vm_ops;
1922         FreeXid(xid);
1923         return rc;
1924 }
1925
1926 int cifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1927 {
1928         int rc, xid;
1929
1930         xid = GetXid();
1931         rc = cifs_revalidate_file(file);
1932         if (rc) {
1933                 cFYI(1, "Validation prior to mmap failed, error=%d", rc);
1934                 FreeXid(xid);
1935                 return rc;
1936         }
1937         rc = generic_file_mmap(file, vma);
1938         if (rc == 0)
1939                 vma->vm_ops = &cifs_file_vm_ops;
1940         FreeXid(xid);
1941         return rc;
1942 }
1943
1944
1945 static void cifs_copy_cache_pages(struct address_space *mapping,
1946         struct list_head *pages, int bytes_read, char *data)
1947 {
1948         struct page *page;
1949         char *target;
1950
1951         while (bytes_read > 0) {
1952                 if (list_empty(pages))
1953                         break;
1954
1955                 page = list_entry(pages->prev, struct page, lru);
1956                 list_del(&page->lru);
1957
1958                 if (add_to_page_cache_lru(page, mapping, page->index,
1959                                       GFP_KERNEL)) {
1960                         page_cache_release(page);
1961                         cFYI(1, "Add page cache failed");
1962                         data += PAGE_CACHE_SIZE;
1963                         bytes_read -= PAGE_CACHE_SIZE;
1964                         continue;
1965                 }
1966                 page_cache_release(page);
1967
1968                 target = kmap_atomic(page, KM_USER0);
1969
1970                 if (PAGE_CACHE_SIZE > bytes_read) {
1971                         memcpy(target, data, bytes_read);
1972                         /* zero the tail end of this partial page */
1973                         memset(target + bytes_read, 0,
1974                                PAGE_CACHE_SIZE - bytes_read);
1975                         bytes_read = 0;
1976                 } else {
1977                         memcpy(target, data, PAGE_CACHE_SIZE);
1978                         bytes_read -= PAGE_CACHE_SIZE;
1979                 }
1980                 kunmap_atomic(target, KM_USER0);
1981
1982                 flush_dcache_page(page);
1983                 SetPageUptodate(page);
1984                 unlock_page(page);
1985                 data += PAGE_CACHE_SIZE;
1986
1987                 /* add page to FS-Cache */
1988                 cifs_readpage_to_fscache(mapping->host, page);
1989         }
1990         return;
1991 }
1992
1993 static int cifs_readpages(struct file *file, struct address_space *mapping,
1994         struct list_head *page_list, unsigned num_pages)
1995 {
1996         int rc = -EACCES;
1997         int xid;
1998         loff_t offset;
1999         struct page *page;
2000         struct cifs_sb_info *cifs_sb;
2001         struct cifs_tcon *pTcon;
2002         unsigned int bytes_read = 0;
2003         unsigned int read_size, i;
2004         char *smb_read_data = NULL;
2005         struct smb_com_read_rsp *pSMBr;
2006         struct cifsFileInfo *open_file;
2007         struct cifs_io_parms io_parms;
2008         int buf_type = CIFS_NO_BUFFER;
2009         __u32 pid;
2010
2011         xid = GetXid();
2012         if (file->private_data == NULL) {
2013                 rc = -EBADF;
2014                 FreeXid(xid);
2015                 return rc;
2016         }
2017         open_file = file->private_data;
2018         cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2019         pTcon = tlink_tcon(open_file->tlink);
2020
2021         /*
2022          * Reads as many pages as possible from fscache. Returns -ENOBUFS
2023          * immediately if the cookie is negative
2024          */
2025         rc = cifs_readpages_from_fscache(mapping->host, mapping, page_list,
2026                                          &num_pages);
2027         if (rc == 0)
2028                 goto read_complete;
2029
2030         cFYI(DBG2, "rpages: num pages %d", num_pages);
2031         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2032                 pid = open_file->pid;
2033         else
2034                 pid = current->tgid;
2035
2036         for (i = 0; i < num_pages; ) {
2037                 unsigned contig_pages;
2038                 struct page *tmp_page;
2039                 unsigned long expected_index;
2040
2041                 if (list_empty(page_list))
2042                         break;
2043
2044                 page = list_entry(page_list->prev, struct page, lru);
2045                 offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
2046
2047                 /* count adjacent pages that we will read into */
2048                 contig_pages = 0;
2049                 expected_index =
2050                         list_entry(page_list->prev, struct page, lru)->index;
2051                 list_for_each_entry_reverse(tmp_page, page_list, lru) {
2052                         if (tmp_page->index == expected_index) {
2053                                 contig_pages++;
2054                                 expected_index++;
2055                         } else
2056                                 break;
2057                 }
2058                 if (contig_pages + i >  num_pages)
2059                         contig_pages = num_pages - i;
2060
2061                 /* for reads over a certain size could initiate async
2062                    read ahead */
2063
2064                 read_size = contig_pages * PAGE_CACHE_SIZE;
2065                 /* Read size needs to be in multiples of one page */
2066                 read_size = min_t(const unsigned int, read_size,
2067                                   cifs_sb->rsize & PAGE_CACHE_MASK);
2068                 cFYI(DBG2, "rpages: read size 0x%x  contiguous pages %d",
2069                                 read_size, contig_pages);
2070                 rc = -EAGAIN;
2071                 while (rc == -EAGAIN) {
2072                         if (open_file->invalidHandle) {
2073                                 rc = cifs_reopen_file(open_file, true);
2074                                 if (rc != 0)
2075                                         break;
2076                         }
2077                         io_parms.netfid = open_file->netfid;
2078                         io_parms.pid = pid;
2079                         io_parms.tcon = pTcon;
2080                         io_parms.offset = offset;
2081                         io_parms.length = read_size;
2082                         rc = CIFSSMBRead(xid, &io_parms, &bytes_read,
2083                                          &smb_read_data, &buf_type);
2084                         /* BB more RC checks ? */
2085                         if (rc == -EAGAIN) {
2086                                 if (smb_read_data) {
2087                                         if (buf_type == CIFS_SMALL_BUFFER)
2088                                                 cifs_small_buf_release(smb_read_data);
2089                                         else if (buf_type == CIFS_LARGE_BUFFER)
2090                                                 cifs_buf_release(smb_read_data);
2091                                         smb_read_data = NULL;
2092                                 }
2093                         }
2094                 }
2095                 if ((rc < 0) || (smb_read_data == NULL)) {
2096                         cFYI(1, "Read error in readpages: %d", rc);
2097                         break;
2098                 } else if (bytes_read > 0) {
2099                         task_io_account_read(bytes_read);
2100                         pSMBr = (struct smb_com_read_rsp *)smb_read_data;
2101                         cifs_copy_cache_pages(mapping, page_list, bytes_read,
2102                                 smb_read_data + 4 /* RFC1001 hdr */ +
2103                                 le16_to_cpu(pSMBr->DataOffset));
2104
2105                         i +=  bytes_read >> PAGE_CACHE_SHIFT;
2106                         cifs_stats_bytes_read(pTcon, bytes_read);
2107                         if ((bytes_read & PAGE_CACHE_MASK) != bytes_read) {
2108                                 i++; /* account for partial page */
2109
2110                                 /* server copy of file can have smaller size
2111                                    than client */
2112                                 /* BB do we need to verify this common case ?
2113                                    this case is ok - if we are at server EOF
2114                                    we will hit it on next read */
2115
2116                                 /* break; */
2117                         }
2118                 } else {
2119                         cFYI(1, "No bytes read (%d) at offset %lld . "
2120                                 "Cleaning remaining pages from readahead list",
2121                                 bytes_read, offset);
2122                         /* BB turn off caching and do new lookup on
2123                            file size at server? */
2124                         break;
2125                 }
2126                 if (smb_read_data) {
2127                         if (buf_type == CIFS_SMALL_BUFFER)
2128                                 cifs_small_buf_release(smb_read_data);
2129                         else if (buf_type == CIFS_LARGE_BUFFER)
2130                                 cifs_buf_release(smb_read_data);
2131                         smb_read_data = NULL;
2132                 }
2133                 bytes_read = 0;
2134         }
2135
2136 /* need to free smb_read_data buf before exit */
2137         if (smb_read_data) {
2138                 if (buf_type == CIFS_SMALL_BUFFER)
2139                         cifs_small_buf_release(smb_read_data);
2140                 else if (buf_type == CIFS_LARGE_BUFFER)
2141                         cifs_buf_release(smb_read_data);
2142                 smb_read_data = NULL;
2143         }
2144
2145 read_complete:
2146         FreeXid(xid);
2147         return rc;
2148 }
2149
2150 static int cifs_readpage_worker(struct file *file, struct page *page,
2151         loff_t *poffset)
2152 {
2153         char *read_data;
2154         int rc;
2155
2156         /* Is the page cached? */
2157         rc = cifs_readpage_from_fscache(file->f_path.dentry->d_inode, page);
2158         if (rc == 0)
2159                 goto read_complete;
2160
2161         page_cache_get(page);
2162         read_data = kmap(page);
2163         /* for reads over a certain size could initiate async read ahead */
2164
2165         rc = cifs_read(file, read_data, PAGE_CACHE_SIZE, poffset);
2166
2167         if (rc < 0)
2168                 goto io_error;
2169         else
2170                 cFYI(1, "Bytes read %d", rc);
2171
2172         file->f_path.dentry->d_inode->i_atime =
2173                 current_fs_time(file->f_path.dentry->d_inode->i_sb);
2174
2175         if (PAGE_CACHE_SIZE > rc)
2176                 memset(read_data + rc, 0, PAGE_CACHE_SIZE - rc);
2177
2178         flush_dcache_page(page);
2179         SetPageUptodate(page);
2180
2181         /* send this page to the cache */
2182         cifs_readpage_to_fscache(file->f_path.dentry->d_inode, page);
2183
2184         rc = 0;
2185
2186 io_error:
2187         kunmap(page);
2188         page_cache_release(page);
2189
2190 read_complete:
2191         return rc;
2192 }
2193
2194 static int cifs_readpage(struct file *file, struct page *page)
2195 {
2196         loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
2197         int rc = -EACCES;
2198         int xid;
2199
2200         xid = GetXid();
2201
2202         if (file->private_data == NULL) {
2203                 rc = -EBADF;
2204                 FreeXid(xid);
2205                 return rc;
2206         }
2207
2208         cFYI(1, "readpage %p at offset %d 0x%x\n",
2209                  page, (int)offset, (int)offset);
2210
2211         rc = cifs_readpage_worker(file, page, &offset);
2212
2213         unlock_page(page);
2214
2215         FreeXid(xid);
2216         return rc;
2217 }
2218
2219 static int is_inode_writable(struct cifsInodeInfo *cifs_inode)
2220 {
2221         struct cifsFileInfo *open_file;
2222
2223         spin_lock(&cifs_file_list_lock);
2224         list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
2225                 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
2226                         spin_unlock(&cifs_file_list_lock);
2227                         return 1;
2228                 }
2229         }
2230         spin_unlock(&cifs_file_list_lock);
2231         return 0;
2232 }
2233
2234 /* We do not want to update the file size from server for inodes
2235    open for write - to avoid races with writepage extending
2236    the file - in the future we could consider allowing
2237    refreshing the inode only on increases in the file size
2238    but this is tricky to do without racing with writebehind
2239    page caching in the current Linux kernel design */
2240 bool is_size_safe_to_change(struct cifsInodeInfo *cifsInode, __u64 end_of_file)
2241 {
2242         if (!cifsInode)
2243                 return true;
2244
2245         if (is_inode_writable(cifsInode)) {
2246                 /* This inode is open for write at least once */
2247                 struct cifs_sb_info *cifs_sb;
2248
2249                 cifs_sb = CIFS_SB(cifsInode->vfs_inode.i_sb);
2250                 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_DIRECT_IO) {
2251                         /* since no page cache to corrupt on directio
2252                         we can change size safely */
2253                         return true;
2254                 }
2255
2256                 if (i_size_read(&cifsInode->vfs_inode) < end_of_file)
2257                         return true;
2258
2259                 return false;
2260         } else
2261                 return true;
2262 }
2263
2264 static int cifs_write_begin(struct file *file, struct address_space *mapping,
2265                         loff_t pos, unsigned len, unsigned flags,
2266                         struct page **pagep, void **fsdata)
2267 {
2268         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2269         loff_t offset = pos & (PAGE_CACHE_SIZE - 1);
2270         loff_t page_start = pos & PAGE_MASK;
2271         loff_t i_size;
2272         struct page *page;
2273         int rc = 0;
2274
2275         cFYI(1, "write_begin from %lld len %d", (long long)pos, len);
2276
2277         page = grab_cache_page_write_begin(mapping, index, flags);
2278         if (!page) {
2279                 rc = -ENOMEM;
2280                 goto out;
2281         }
2282
2283         if (PageUptodate(page))
2284                 goto out;
2285
2286         /*
2287          * If we write a full page it will be up to date, no need to read from
2288          * the server. If the write is short, we'll end up doing a sync write
2289          * instead.
2290          */
2291         if (len == PAGE_CACHE_SIZE)
2292                 goto out;
2293
2294         /*
2295          * optimize away the read when we have an oplock, and we're not
2296          * expecting to use any of the data we'd be reading in. That
2297          * is, when the page lies beyond the EOF, or straddles the EOF
2298          * and the write will cover all of the existing data.
2299          */
2300         if (CIFS_I(mapping->host)->clientCanCacheRead) {
2301                 i_size = i_size_read(mapping->host);
2302                 if (page_start >= i_size ||
2303                     (offset == 0 && (pos + len) >= i_size)) {
2304                         zero_user_segments(page, 0, offset,
2305                                            offset + len,
2306                                            PAGE_CACHE_SIZE);
2307                         /*
2308                          * PageChecked means that the parts of the page
2309                          * to which we're not writing are considered up
2310                          * to date. Once the data is copied to the
2311                          * page, it can be set uptodate.
2312                          */
2313                         SetPageChecked(page);
2314                         goto out;
2315                 }
2316         }
2317
2318         if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
2319                 /*
2320                  * might as well read a page, it is fast enough. If we get
2321                  * an error, we don't need to return it. cifs_write_end will
2322                  * do a sync write instead since PG_uptodate isn't set.
2323                  */
2324                 cifs_readpage_worker(file, page, &page_start);
2325         } else {
2326                 /* we could try using another file handle if there is one -
2327                    but how would we lock it to prevent close of that handle
2328                    racing with this read? In any case
2329                    this will be written out by write_end so is fine */
2330         }
2331 out:
2332         *pagep = page;
2333         return rc;
2334 }
2335
2336 static int cifs_release_page(struct page *page, gfp_t gfp)
2337 {
2338         if (PagePrivate(page))
2339                 return 0;
2340
2341         return cifs_fscache_release_page(page, gfp);
2342 }
2343
2344 static void cifs_invalidate_page(struct page *page, unsigned long offset)
2345 {
2346         struct cifsInodeInfo *cifsi = CIFS_I(page->mapping->host);
2347
2348         if (offset == 0)
2349                 cifs_fscache_invalidate_page(page, &cifsi->vfs_inode);
2350 }
2351
2352 static int cifs_launder_page(struct page *page)
2353 {
2354         int rc = 0;
2355         loff_t range_start = page_offset(page);
2356         loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
2357         struct writeback_control wbc = {
2358                 .sync_mode = WB_SYNC_ALL,
2359                 .nr_to_write = 0,
2360                 .range_start = range_start,
2361                 .range_end = range_end,
2362         };
2363
2364         cFYI(1, "Launder page: %p", page);
2365
2366         if (clear_page_dirty_for_io(page))
2367                 rc = cifs_writepage_locked(page, &wbc);
2368
2369         cifs_fscache_invalidate_page(page, page->mapping->host);
2370         return rc;
2371 }
2372
2373 void cifs_oplock_break(struct work_struct *work)
2374 {
2375         struct cifsFileInfo *cfile = container_of(work, struct cifsFileInfo,
2376                                                   oplock_break);
2377         struct inode *inode = cfile->dentry->d_inode;
2378         struct cifsInodeInfo *cinode = CIFS_I(inode);
2379         int rc = 0;
2380
2381         if (inode && S_ISREG(inode->i_mode)) {
2382                 if (cinode->clientCanCacheRead)
2383                         break_lease(inode, O_RDONLY);
2384                 else
2385                         break_lease(inode, O_WRONLY);
2386                 rc = filemap_fdatawrite(inode->i_mapping);
2387                 if (cinode->clientCanCacheRead == 0) {
2388                         rc = filemap_fdatawait(inode->i_mapping);
2389                         mapping_set_error(inode->i_mapping, rc);
2390                         invalidate_remote_inode(inode);
2391                 }
2392                 cFYI(1, "Oplock flush inode %p rc %d", inode, rc);
2393         }
2394
2395         /*
2396          * releasing stale oplock after recent reconnect of smb session using
2397          * a now incorrect file handle is not a data integrity issue but do
2398          * not bother sending an oplock release if session to server still is
2399          * disconnected since oplock already released by the server
2400          */
2401         if (!cfile->oplock_break_cancelled) {
2402                 rc = CIFSSMBLock(0, tlink_tcon(cfile->tlink), cfile->netfid, 0,
2403                                  0, 0, 0, LOCKING_ANDX_OPLOCK_RELEASE, false,
2404                                  cinode->clientCanCacheRead ? 1 : 0);
2405                 cFYI(1, "Oplock release rc = %d", rc);
2406         }
2407
2408         /*
2409          * We might have kicked in before is_valid_oplock_break()
2410          * finished grabbing reference for us.  Make sure it's done by
2411          * waiting for cifs_file_list_lock.
2412          */
2413         spin_lock(&cifs_file_list_lock);
2414         spin_unlock(&cifs_file_list_lock);
2415
2416         cifs_oplock_break_put(cfile);
2417 }
2418
2419 /* must be called while holding cifs_file_list_lock */
2420 void cifs_oplock_break_get(struct cifsFileInfo *cfile)
2421 {
2422         cifs_sb_active(cfile->dentry->d_sb);
2423         cifsFileInfo_get(cfile);
2424 }
2425
2426 void cifs_oplock_break_put(struct cifsFileInfo *cfile)
2427 {
2428         struct super_block *sb = cfile->dentry->d_sb;
2429
2430         cifsFileInfo_put(cfile);
2431         cifs_sb_deactive(sb);
2432 }
2433
2434 const struct address_space_operations cifs_addr_ops = {
2435         .readpage = cifs_readpage,
2436         .readpages = cifs_readpages,
2437         .writepage = cifs_writepage,
2438         .writepages = cifs_writepages,
2439         .write_begin = cifs_write_begin,
2440         .write_end = cifs_write_end,
2441         .set_page_dirty = __set_page_dirty_nobuffers,
2442         .releasepage = cifs_release_page,
2443         .invalidatepage = cifs_invalidate_page,
2444         .launder_page = cifs_launder_page,
2445 };
2446
2447 /*
2448  * cifs_readpages requires the server to support a buffer large enough to
2449  * contain the header plus one complete page of data.  Otherwise, we need
2450  * to leave cifs_readpages out of the address space operations.
2451  */
2452 const struct address_space_operations cifs_addr_ops_smallbuf = {
2453         .readpage = cifs_readpage,
2454         .writepage = cifs_writepage,
2455         .writepages = cifs_writepages,
2456         .write_begin = cifs_write_begin,
2457         .write_end = cifs_write_end,
2458         .set_page_dirty = __set_page_dirty_nobuffers,
2459         .releasepage = cifs_release_page,
2460         .invalidatepage = cifs_invalidate_page,
2461         .launder_page = cifs_launder_page,
2462 };