5f4bde20839a821aac3efe3d1c247677eeb1d4b8
[pandora-kernel.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/cleancache.h>
45
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50 inline void
51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 {
53         bh->b_end_io = handler;
54         bh->b_private = private;
55 }
56 EXPORT_SYMBOL(init_buffer);
57
58 static int sleep_on_buffer(void *word)
59 {
60         io_schedule();
61         return 0;
62 }
63
64 void __lock_buffer(struct buffer_head *bh)
65 {
66         wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
67                                                         TASK_UNINTERRUPTIBLE);
68 }
69 EXPORT_SYMBOL(__lock_buffer);
70
71 void unlock_buffer(struct buffer_head *bh)
72 {
73         clear_bit_unlock(BH_Lock, &bh->b_state);
74         smp_mb__after_clear_bit();
75         wake_up_bit(&bh->b_state, BH_Lock);
76 }
77 EXPORT_SYMBOL(unlock_buffer);
78
79 /*
80  * Block until a buffer comes unlocked.  This doesn't stop it
81  * from becoming locked again - you have to lock it yourself
82  * if you want to preserve its state.
83  */
84 void __wait_on_buffer(struct buffer_head * bh)
85 {
86         wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
87 }
88 EXPORT_SYMBOL(__wait_on_buffer);
89
90 static void
91 __clear_page_buffers(struct page *page)
92 {
93         ClearPagePrivate(page);
94         set_page_private(page, 0);
95         page_cache_release(page);
96 }
97
98
99 static int quiet_error(struct buffer_head *bh)
100 {
101         if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
102                 return 0;
103         return 1;
104 }
105
106
107 static void buffer_io_error(struct buffer_head *bh)
108 {
109         char b[BDEVNAME_SIZE];
110         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
111                         bdevname(bh->b_bdev, b),
112                         (unsigned long long)bh->b_blocknr);
113 }
114
115 /*
116  * End-of-IO handler helper function which does not touch the bh after
117  * unlocking it.
118  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
119  * a race there is benign: unlock_buffer() only use the bh's address for
120  * hashing after unlocking the buffer, so it doesn't actually touch the bh
121  * itself.
122  */
123 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
124 {
125         if (uptodate) {
126                 set_buffer_uptodate(bh);
127         } else {
128                 /* This happens, due to failed READA attempts. */
129                 clear_buffer_uptodate(bh);
130         }
131         unlock_buffer(bh);
132 }
133
134 /*
135  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
136  * unlock the buffer. This is what ll_rw_block uses too.
137  */
138 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
139 {
140         __end_buffer_read_notouch(bh, uptodate);
141         put_bh(bh);
142 }
143 EXPORT_SYMBOL(end_buffer_read_sync);
144
145 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
146 {
147         char b[BDEVNAME_SIZE];
148
149         if (uptodate) {
150                 set_buffer_uptodate(bh);
151         } else {
152                 if (!quiet_error(bh)) {
153                         buffer_io_error(bh);
154                         printk(KERN_WARNING "lost page write due to "
155                                         "I/O error on %s\n",
156                                        bdevname(bh->b_bdev, b));
157                 }
158                 set_buffer_write_io_error(bh);
159                 clear_buffer_uptodate(bh);
160         }
161         unlock_buffer(bh);
162         put_bh(bh);
163 }
164 EXPORT_SYMBOL(end_buffer_write_sync);
165
166 /*
167  * Various filesystems appear to want __find_get_block to be non-blocking.
168  * But it's the page lock which protects the buffers.  To get around this,
169  * we get exclusion from try_to_free_buffers with the blockdev mapping's
170  * private_lock.
171  *
172  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
173  * may be quite high.  This code could TryLock the page, and if that
174  * succeeds, there is no need to take private_lock. (But if
175  * private_lock is contended then so is mapping->tree_lock).
176  */
177 static struct buffer_head *
178 __find_get_block_slow(struct block_device *bdev, sector_t block)
179 {
180         struct inode *bd_inode = bdev->bd_inode;
181         struct address_space *bd_mapping = bd_inode->i_mapping;
182         struct buffer_head *ret = NULL;
183         pgoff_t index;
184         struct buffer_head *bh;
185         struct buffer_head *head;
186         struct page *page;
187         int all_mapped = 1;
188
189         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
190         page = find_get_page(bd_mapping, index);
191         if (!page)
192                 goto out;
193
194         spin_lock(&bd_mapping->private_lock);
195         if (!page_has_buffers(page))
196                 goto out_unlock;
197         head = page_buffers(page);
198         bh = head;
199         do {
200                 if (!buffer_mapped(bh))
201                         all_mapped = 0;
202                 else if (bh->b_blocknr == block) {
203                         ret = bh;
204                         get_bh(bh);
205                         goto out_unlock;
206                 }
207                 bh = bh->b_this_page;
208         } while (bh != head);
209
210         /* we might be here because some of the buffers on this page are
211          * not mapped.  This is due to various races between
212          * file io on the block device and getblk.  It gets dealt with
213          * elsewhere, don't buffer_error if we had some unmapped buffers
214          */
215         if (all_mapped) {
216                 char b[BDEVNAME_SIZE];
217
218                 printk("__find_get_block_slow() failed. "
219                         "block=%llu, b_blocknr=%llu\n",
220                         (unsigned long long)block,
221                         (unsigned long long)bh->b_blocknr);
222                 printk("b_state=0x%08lx, b_size=%zu\n",
223                         bh->b_state, bh->b_size);
224                 printk("device %s blocksize: %d\n", bdevname(bdev, b),
225                         1 << bd_inode->i_blkbits);
226         }
227 out_unlock:
228         spin_unlock(&bd_mapping->private_lock);
229         page_cache_release(page);
230 out:
231         return ret;
232 }
233
234 /* If invalidate_buffers() will trash dirty buffers, it means some kind
235    of fs corruption is going on. Trashing dirty data always imply losing
236    information that was supposed to be just stored on the physical layer
237    by the user.
238
239    Thus invalidate_buffers in general usage is not allwowed to trash
240    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
241    be preserved.  These buffers are simply skipped.
242   
243    We also skip buffers which are still in use.  For example this can
244    happen if a userspace program is reading the block device.
245
246    NOTE: In the case where the user removed a removable-media-disk even if
247    there's still dirty data not synced on disk (due a bug in the device driver
248    or due an error of the user), by not destroying the dirty buffers we could
249    generate corruption also on the next media inserted, thus a parameter is
250    necessary to handle this case in the most safe way possible (trying
251    to not corrupt also the new disk inserted with the data belonging to
252    the old now corrupted disk). Also for the ramdisk the natural thing
253    to do in order to release the ramdisk memory is to destroy dirty buffers.
254
255    These are two special cases. Normal usage imply the device driver
256    to issue a sync on the device (without waiting I/O completion) and
257    then an invalidate_buffers call that doesn't trash dirty buffers.
258
259    For handling cache coherency with the blkdev pagecache the 'update' case
260    is been introduced. It is needed to re-read from disk any pinned
261    buffer. NOTE: re-reading from disk is destructive so we can do it only
262    when we assume nobody is changing the buffercache under our I/O and when
263    we think the disk contains more recent information than the buffercache.
264    The update == 1 pass marks the buffers we need to update, the update == 2
265    pass does the actual I/O. */
266 void invalidate_bdev(struct block_device *bdev)
267 {
268         struct address_space *mapping = bdev->bd_inode->i_mapping;
269
270         if (mapping->nrpages == 0)
271                 return;
272
273         invalidate_bh_lrus();
274         lru_add_drain_all();    /* make sure all lru add caches are flushed */
275         invalidate_mapping_pages(mapping, 0, -1);
276         /* 99% of the time, we don't need to flush the cleancache on the bdev.
277          * But, for the strange corners, lets be cautious
278          */
279         cleancache_flush_inode(mapping);
280 }
281 EXPORT_SYMBOL(invalidate_bdev);
282
283 /*
284  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
285  */
286 static void free_more_memory(void)
287 {
288         struct zone *zone;
289         int nid;
290
291         wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
292         yield();
293
294         for_each_online_node(nid) {
295                 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
296                                                 gfp_zone(GFP_NOFS), NULL,
297                                                 &zone);
298                 if (zone)
299                         try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
300                                                 GFP_NOFS, NULL);
301         }
302 }
303
304 /*
305  * I/O completion handler for block_read_full_page() - pages
306  * which come unlocked at the end of I/O.
307  */
308 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
309 {
310         unsigned long flags;
311         struct buffer_head *first;
312         struct buffer_head *tmp;
313         struct page *page;
314         int page_uptodate = 1;
315
316         BUG_ON(!buffer_async_read(bh));
317
318         page = bh->b_page;
319         if (uptodate) {
320                 set_buffer_uptodate(bh);
321         } else {
322                 clear_buffer_uptodate(bh);
323                 if (!quiet_error(bh))
324                         buffer_io_error(bh);
325                 SetPageError(page);
326         }
327
328         /*
329          * Be _very_ careful from here on. Bad things can happen if
330          * two buffer heads end IO at almost the same time and both
331          * decide that the page is now completely done.
332          */
333         first = page_buffers(page);
334         local_irq_save(flags);
335         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
336         clear_buffer_async_read(bh);
337         unlock_buffer(bh);
338         tmp = bh;
339         do {
340                 if (!buffer_uptodate(tmp))
341                         page_uptodate = 0;
342                 if (buffer_async_read(tmp)) {
343                         BUG_ON(!buffer_locked(tmp));
344                         goto still_busy;
345                 }
346                 tmp = tmp->b_this_page;
347         } while (tmp != bh);
348         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
349         local_irq_restore(flags);
350
351         /*
352          * If none of the buffers had errors and they are all
353          * uptodate then we can set the page uptodate.
354          */
355         if (page_uptodate && !PageError(page))
356                 SetPageUptodate(page);
357         unlock_page(page);
358         return;
359
360 still_busy:
361         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
362         local_irq_restore(flags);
363         return;
364 }
365
366 /*
367  * Completion handler for block_write_full_page() - pages which are unlocked
368  * during I/O, and which have PageWriteback cleared upon I/O completion.
369  */
370 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
371 {
372         char b[BDEVNAME_SIZE];
373         unsigned long flags;
374         struct buffer_head *first;
375         struct buffer_head *tmp;
376         struct page *page;
377
378         BUG_ON(!buffer_async_write(bh));
379
380         page = bh->b_page;
381         if (uptodate) {
382                 set_buffer_uptodate(bh);
383         } else {
384                 if (!quiet_error(bh)) {
385                         buffer_io_error(bh);
386                         printk(KERN_WARNING "lost page write due to "
387                                         "I/O error on %s\n",
388                                bdevname(bh->b_bdev, b));
389                 }
390                 set_bit(AS_EIO, &page->mapping->flags);
391                 set_buffer_write_io_error(bh);
392                 clear_buffer_uptodate(bh);
393                 SetPageError(page);
394         }
395
396         first = page_buffers(page);
397         local_irq_save(flags);
398         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
399
400         clear_buffer_async_write(bh);
401         unlock_buffer(bh);
402         tmp = bh->b_this_page;
403         while (tmp != bh) {
404                 if (buffer_async_write(tmp)) {
405                         BUG_ON(!buffer_locked(tmp));
406                         goto still_busy;
407                 }
408                 tmp = tmp->b_this_page;
409         }
410         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
411         local_irq_restore(flags);
412         end_page_writeback(page);
413         return;
414
415 still_busy:
416         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
417         local_irq_restore(flags);
418         return;
419 }
420 EXPORT_SYMBOL(end_buffer_async_write);
421
422 /*
423  * If a page's buffers are under async readin (end_buffer_async_read
424  * completion) then there is a possibility that another thread of
425  * control could lock one of the buffers after it has completed
426  * but while some of the other buffers have not completed.  This
427  * locked buffer would confuse end_buffer_async_read() into not unlocking
428  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
429  * that this buffer is not under async I/O.
430  *
431  * The page comes unlocked when it has no locked buffer_async buffers
432  * left.
433  *
434  * PageLocked prevents anyone starting new async I/O reads any of
435  * the buffers.
436  *
437  * PageWriteback is used to prevent simultaneous writeout of the same
438  * page.
439  *
440  * PageLocked prevents anyone from starting writeback of a page which is
441  * under read I/O (PageWriteback is only ever set against a locked page).
442  */
443 static void mark_buffer_async_read(struct buffer_head *bh)
444 {
445         bh->b_end_io = end_buffer_async_read;
446         set_buffer_async_read(bh);
447 }
448
449 static void mark_buffer_async_write_endio(struct buffer_head *bh,
450                                           bh_end_io_t *handler)
451 {
452         bh->b_end_io = handler;
453         set_buffer_async_write(bh);
454 }
455
456 void mark_buffer_async_write(struct buffer_head *bh)
457 {
458         mark_buffer_async_write_endio(bh, end_buffer_async_write);
459 }
460 EXPORT_SYMBOL(mark_buffer_async_write);
461
462
463 /*
464  * fs/buffer.c contains helper functions for buffer-backed address space's
465  * fsync functions.  A common requirement for buffer-based filesystems is
466  * that certain data from the backing blockdev needs to be written out for
467  * a successful fsync().  For example, ext2 indirect blocks need to be
468  * written back and waited upon before fsync() returns.
469  *
470  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
471  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
472  * management of a list of dependent buffers at ->i_mapping->private_list.
473  *
474  * Locking is a little subtle: try_to_free_buffers() will remove buffers
475  * from their controlling inode's queue when they are being freed.  But
476  * try_to_free_buffers() will be operating against the *blockdev* mapping
477  * at the time, not against the S_ISREG file which depends on those buffers.
478  * So the locking for private_list is via the private_lock in the address_space
479  * which backs the buffers.  Which is different from the address_space 
480  * against which the buffers are listed.  So for a particular address_space,
481  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
482  * mapping->private_list will always be protected by the backing blockdev's
483  * ->private_lock.
484  *
485  * Which introduces a requirement: all buffers on an address_space's
486  * ->private_list must be from the same address_space: the blockdev's.
487  *
488  * address_spaces which do not place buffers at ->private_list via these
489  * utility functions are free to use private_lock and private_list for
490  * whatever they want.  The only requirement is that list_empty(private_list)
491  * be true at clear_inode() time.
492  *
493  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
494  * filesystems should do that.  invalidate_inode_buffers() should just go
495  * BUG_ON(!list_empty).
496  *
497  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
498  * take an address_space, not an inode.  And it should be called
499  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
500  * queued up.
501  *
502  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
503  * list if it is already on a list.  Because if the buffer is on a list,
504  * it *must* already be on the right one.  If not, the filesystem is being
505  * silly.  This will save a ton of locking.  But first we have to ensure
506  * that buffers are taken *off* the old inode's list when they are freed
507  * (presumably in truncate).  That requires careful auditing of all
508  * filesystems (do it inside bforget()).  It could also be done by bringing
509  * b_inode back.
510  */
511
512 /*
513  * The buffer's backing address_space's private_lock must be held
514  */
515 static void __remove_assoc_queue(struct buffer_head *bh)
516 {
517         list_del_init(&bh->b_assoc_buffers);
518         WARN_ON(!bh->b_assoc_map);
519         if (buffer_write_io_error(bh))
520                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
521         bh->b_assoc_map = NULL;
522 }
523
524 int inode_has_buffers(struct inode *inode)
525 {
526         return !list_empty(&inode->i_data.private_list);
527 }
528
529 /*
530  * osync is designed to support O_SYNC io.  It waits synchronously for
531  * all already-submitted IO to complete, but does not queue any new
532  * writes to the disk.
533  *
534  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
535  * you dirty the buffers, and then use osync_inode_buffers to wait for
536  * completion.  Any other dirty buffers which are not yet queued for
537  * write will not be flushed to disk by the osync.
538  */
539 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
540 {
541         struct buffer_head *bh;
542         struct list_head *p;
543         int err = 0;
544
545         spin_lock(lock);
546 repeat:
547         list_for_each_prev(p, list) {
548                 bh = BH_ENTRY(p);
549                 if (buffer_locked(bh)) {
550                         get_bh(bh);
551                         spin_unlock(lock);
552                         wait_on_buffer(bh);
553                         if (!buffer_uptodate(bh))
554                                 err = -EIO;
555                         brelse(bh);
556                         spin_lock(lock);
557                         goto repeat;
558                 }
559         }
560         spin_unlock(lock);
561         return err;
562 }
563
564 static void do_thaw_one(struct super_block *sb, void *unused)
565 {
566         char b[BDEVNAME_SIZE];
567         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
568                 printk(KERN_WARNING "Emergency Thaw on %s\n",
569                        bdevname(sb->s_bdev, b));
570 }
571
572 static void do_thaw_all(struct work_struct *work)
573 {
574         iterate_supers(do_thaw_one, NULL);
575         kfree(work);
576         printk(KERN_WARNING "Emergency Thaw complete\n");
577 }
578
579 /**
580  * emergency_thaw_all -- forcibly thaw every frozen filesystem
581  *
582  * Used for emergency unfreeze of all filesystems via SysRq
583  */
584 void emergency_thaw_all(void)
585 {
586         struct work_struct *work;
587
588         work = kmalloc(sizeof(*work), GFP_ATOMIC);
589         if (work) {
590                 INIT_WORK(work, do_thaw_all);
591                 schedule_work(work);
592         }
593 }
594
595 /**
596  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
597  * @mapping: the mapping which wants those buffers written
598  *
599  * Starts I/O against the buffers at mapping->private_list, and waits upon
600  * that I/O.
601  *
602  * Basically, this is a convenience function for fsync().
603  * @mapping is a file or directory which needs those buffers to be written for
604  * a successful fsync().
605  */
606 int sync_mapping_buffers(struct address_space *mapping)
607 {
608         struct address_space *buffer_mapping = mapping->assoc_mapping;
609
610         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
611                 return 0;
612
613         return fsync_buffers_list(&buffer_mapping->private_lock,
614                                         &mapping->private_list);
615 }
616 EXPORT_SYMBOL(sync_mapping_buffers);
617
618 /*
619  * Called when we've recently written block `bblock', and it is known that
620  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
621  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
622  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
623  */
624 void write_boundary_block(struct block_device *bdev,
625                         sector_t bblock, unsigned blocksize)
626 {
627         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
628         if (bh) {
629                 if (buffer_dirty(bh))
630                         ll_rw_block(WRITE, 1, &bh);
631                 put_bh(bh);
632         }
633 }
634
635 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
636 {
637         struct address_space *mapping = inode->i_mapping;
638         struct address_space *buffer_mapping = bh->b_page->mapping;
639
640         mark_buffer_dirty(bh);
641         if (!mapping->assoc_mapping) {
642                 mapping->assoc_mapping = buffer_mapping;
643         } else {
644                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
645         }
646         if (!bh->b_assoc_map) {
647                 spin_lock(&buffer_mapping->private_lock);
648                 list_move_tail(&bh->b_assoc_buffers,
649                                 &mapping->private_list);
650                 bh->b_assoc_map = mapping;
651                 spin_unlock(&buffer_mapping->private_lock);
652         }
653 }
654 EXPORT_SYMBOL(mark_buffer_dirty_inode);
655
656 /*
657  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
658  * dirty.
659  *
660  * If warn is true, then emit a warning if the page is not uptodate and has
661  * not been truncated.
662  */
663 static void __set_page_dirty(struct page *page,
664                 struct address_space *mapping, int warn)
665 {
666         unsigned long flags;
667
668         spin_lock_irqsave(&mapping->tree_lock, flags);
669         if (page->mapping) {    /* Race with truncate? */
670                 WARN_ON_ONCE(warn && !PageUptodate(page));
671                 account_page_dirtied(page, mapping);
672                 radix_tree_tag_set(&mapping->page_tree,
673                                 page_index(page), PAGECACHE_TAG_DIRTY);
674         }
675         spin_unlock_irqrestore(&mapping->tree_lock, flags);
676         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
677 }
678
679 /*
680  * Add a page to the dirty page list.
681  *
682  * It is a sad fact of life that this function is called from several places
683  * deeply under spinlocking.  It may not sleep.
684  *
685  * If the page has buffers, the uptodate buffers are set dirty, to preserve
686  * dirty-state coherency between the page and the buffers.  It the page does
687  * not have buffers then when they are later attached they will all be set
688  * dirty.
689  *
690  * The buffers are dirtied before the page is dirtied.  There's a small race
691  * window in which a writepage caller may see the page cleanness but not the
692  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
693  * before the buffers, a concurrent writepage caller could clear the page dirty
694  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
695  * page on the dirty page list.
696  *
697  * We use private_lock to lock against try_to_free_buffers while using the
698  * page's buffer list.  Also use this to protect against clean buffers being
699  * added to the page after it was set dirty.
700  *
701  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
702  * address_space though.
703  */
704 int __set_page_dirty_buffers(struct page *page)
705 {
706         int newly_dirty;
707         struct address_space *mapping = page_mapping(page);
708
709         if (unlikely(!mapping))
710                 return !TestSetPageDirty(page);
711
712         spin_lock(&mapping->private_lock);
713         if (page_has_buffers(page)) {
714                 struct buffer_head *head = page_buffers(page);
715                 struct buffer_head *bh = head;
716
717                 do {
718                         set_buffer_dirty(bh);
719                         bh = bh->b_this_page;
720                 } while (bh != head);
721         }
722         newly_dirty = !TestSetPageDirty(page);
723         spin_unlock(&mapping->private_lock);
724
725         if (newly_dirty)
726                 __set_page_dirty(page, mapping, 1);
727         return newly_dirty;
728 }
729 EXPORT_SYMBOL(__set_page_dirty_buffers);
730
731 /*
732  * Write out and wait upon a list of buffers.
733  *
734  * We have conflicting pressures: we want to make sure that all
735  * initially dirty buffers get waited on, but that any subsequently
736  * dirtied buffers don't.  After all, we don't want fsync to last
737  * forever if somebody is actively writing to the file.
738  *
739  * Do this in two main stages: first we copy dirty buffers to a
740  * temporary inode list, queueing the writes as we go.  Then we clean
741  * up, waiting for those writes to complete.
742  * 
743  * During this second stage, any subsequent updates to the file may end
744  * up refiling the buffer on the original inode's dirty list again, so
745  * there is a chance we will end up with a buffer queued for write but
746  * not yet completed on that list.  So, as a final cleanup we go through
747  * the osync code to catch these locked, dirty buffers without requeuing
748  * any newly dirty buffers for write.
749  */
750 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
751 {
752         struct buffer_head *bh;
753         struct list_head tmp;
754         struct address_space *mapping;
755         int err = 0, err2;
756         struct blk_plug plug;
757
758         INIT_LIST_HEAD(&tmp);
759         blk_start_plug(&plug);
760
761         spin_lock(lock);
762         while (!list_empty(list)) {
763                 bh = BH_ENTRY(list->next);
764                 mapping = bh->b_assoc_map;
765                 __remove_assoc_queue(bh);
766                 /* Avoid race with mark_buffer_dirty_inode() which does
767                  * a lockless check and we rely on seeing the dirty bit */
768                 smp_mb();
769                 if (buffer_dirty(bh) || buffer_locked(bh)) {
770                         list_add(&bh->b_assoc_buffers, &tmp);
771                         bh->b_assoc_map = mapping;
772                         if (buffer_dirty(bh)) {
773                                 get_bh(bh);
774                                 spin_unlock(lock);
775                                 /*
776                                  * Ensure any pending I/O completes so that
777                                  * write_dirty_buffer() actually writes the
778                                  * current contents - it is a noop if I/O is
779                                  * still in flight on potentially older
780                                  * contents.
781                                  */
782                                 write_dirty_buffer(bh, WRITE_SYNC);
783
784                                 /*
785                                  * Kick off IO for the previous mapping. Note
786                                  * that we will not run the very last mapping,
787                                  * wait_on_buffer() will do that for us
788                                  * through sync_buffer().
789                                  */
790                                 brelse(bh);
791                                 spin_lock(lock);
792                         }
793                 }
794         }
795
796         spin_unlock(lock);
797         blk_finish_plug(&plug);
798         spin_lock(lock);
799
800         while (!list_empty(&tmp)) {
801                 bh = BH_ENTRY(tmp.prev);
802                 get_bh(bh);
803                 mapping = bh->b_assoc_map;
804                 __remove_assoc_queue(bh);
805                 /* Avoid race with mark_buffer_dirty_inode() which does
806                  * a lockless check and we rely on seeing the dirty bit */
807                 smp_mb();
808                 if (buffer_dirty(bh)) {
809                         list_add(&bh->b_assoc_buffers,
810                                  &mapping->private_list);
811                         bh->b_assoc_map = mapping;
812                 }
813                 spin_unlock(lock);
814                 wait_on_buffer(bh);
815                 if (!buffer_uptodate(bh))
816                         err = -EIO;
817                 brelse(bh);
818                 spin_lock(lock);
819         }
820         
821         spin_unlock(lock);
822         err2 = osync_buffers_list(lock, list);
823         if (err)
824                 return err;
825         else
826                 return err2;
827 }
828
829 /*
830  * Invalidate any and all dirty buffers on a given inode.  We are
831  * probably unmounting the fs, but that doesn't mean we have already
832  * done a sync().  Just drop the buffers from the inode list.
833  *
834  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
835  * assumes that all the buffers are against the blockdev.  Not true
836  * for reiserfs.
837  */
838 void invalidate_inode_buffers(struct inode *inode)
839 {
840         if (inode_has_buffers(inode)) {
841                 struct address_space *mapping = &inode->i_data;
842                 struct list_head *list = &mapping->private_list;
843                 struct address_space *buffer_mapping = mapping->assoc_mapping;
844
845                 spin_lock(&buffer_mapping->private_lock);
846                 while (!list_empty(list))
847                         __remove_assoc_queue(BH_ENTRY(list->next));
848                 spin_unlock(&buffer_mapping->private_lock);
849         }
850 }
851 EXPORT_SYMBOL(invalidate_inode_buffers);
852
853 /*
854  * Remove any clean buffers from the inode's buffer list.  This is called
855  * when we're trying to free the inode itself.  Those buffers can pin it.
856  *
857  * Returns true if all buffers were removed.
858  */
859 int remove_inode_buffers(struct inode *inode)
860 {
861         int ret = 1;
862
863         if (inode_has_buffers(inode)) {
864                 struct address_space *mapping = &inode->i_data;
865                 struct list_head *list = &mapping->private_list;
866                 struct address_space *buffer_mapping = mapping->assoc_mapping;
867
868                 spin_lock(&buffer_mapping->private_lock);
869                 while (!list_empty(list)) {
870                         struct buffer_head *bh = BH_ENTRY(list->next);
871                         if (buffer_dirty(bh)) {
872                                 ret = 0;
873                                 break;
874                         }
875                         __remove_assoc_queue(bh);
876                 }
877                 spin_unlock(&buffer_mapping->private_lock);
878         }
879         return ret;
880 }
881
882 /*
883  * Create the appropriate buffers when given a page for data area and
884  * the size of each buffer.. Use the bh->b_this_page linked list to
885  * follow the buffers created.  Return NULL if unable to create more
886  * buffers.
887  *
888  * The retry flag is used to differentiate async IO (paging, swapping)
889  * which may not fail from ordinary buffer allocations.
890  */
891 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
892                 int retry)
893 {
894         struct buffer_head *bh, *head;
895         long offset;
896
897 try_again:
898         head = NULL;
899         offset = PAGE_SIZE;
900         while ((offset -= size) >= 0) {
901                 bh = alloc_buffer_head(GFP_NOFS);
902                 if (!bh)
903                         goto no_grow;
904
905                 bh->b_bdev = NULL;
906                 bh->b_this_page = head;
907                 bh->b_blocknr = -1;
908                 head = bh;
909
910                 bh->b_state = 0;
911                 atomic_set(&bh->b_count, 0);
912                 bh->b_size = size;
913
914                 /* Link the buffer to its page */
915                 set_bh_page(bh, page, offset);
916
917                 init_buffer(bh, NULL, NULL);
918         }
919         return head;
920 /*
921  * In case anything failed, we just free everything we got.
922  */
923 no_grow:
924         if (head) {
925                 do {
926                         bh = head;
927                         head = head->b_this_page;
928                         free_buffer_head(bh);
929                 } while (head);
930         }
931
932         /*
933          * Return failure for non-async IO requests.  Async IO requests
934          * are not allowed to fail, so we have to wait until buffer heads
935          * become available.  But we don't want tasks sleeping with 
936          * partially complete buffers, so all were released above.
937          */
938         if (!retry)
939                 return NULL;
940
941         /* We're _really_ low on memory. Now we just
942          * wait for old buffer heads to become free due to
943          * finishing IO.  Since this is an async request and
944          * the reserve list is empty, we're sure there are 
945          * async buffer heads in use.
946          */
947         free_more_memory();
948         goto try_again;
949 }
950 EXPORT_SYMBOL_GPL(alloc_page_buffers);
951
952 static inline void
953 link_dev_buffers(struct page *page, struct buffer_head *head)
954 {
955         struct buffer_head *bh, *tail;
956
957         bh = head;
958         do {
959                 tail = bh;
960                 bh = bh->b_this_page;
961         } while (bh);
962         tail->b_this_page = head;
963         attach_page_buffers(page, head);
964 }
965
966 /*
967  * Initialise the state of a blockdev page's buffers.
968  */ 
969 static sector_t
970 init_page_buffers(struct page *page, struct block_device *bdev,
971                         sector_t block, int size)
972 {
973         struct buffer_head *head = page_buffers(page);
974         struct buffer_head *bh = head;
975         int uptodate = PageUptodate(page);
976         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode));
977
978         do {
979                 if (!buffer_mapped(bh)) {
980                         init_buffer(bh, NULL, NULL);
981                         bh->b_bdev = bdev;
982                         bh->b_blocknr = block;
983                         if (uptodate)
984                                 set_buffer_uptodate(bh);
985                         if (block < end_block)
986                                 set_buffer_mapped(bh);
987                 }
988                 block++;
989                 bh = bh->b_this_page;
990         } while (bh != head);
991
992         /*
993          * Caller needs to validate requested block against end of device.
994          */
995         return end_block;
996 }
997
998 /*
999  * Create the page-cache page that contains the requested block.
1000  *
1001  * This is used purely for blockdev mappings.
1002  */
1003 static int
1004 grow_dev_page(struct block_device *bdev, sector_t block,
1005                 pgoff_t index, int size, int sizebits)
1006 {
1007         struct inode *inode = bdev->bd_inode;
1008         struct page *page;
1009         struct buffer_head *bh;
1010         sector_t end_block;
1011         int ret = 0;            /* Will call free_more_memory() */
1012
1013         page = find_or_create_page(inode->i_mapping, index,
1014                 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1015         if (!page)
1016                 return ret;
1017
1018         BUG_ON(!PageLocked(page));
1019
1020         if (page_has_buffers(page)) {
1021                 bh = page_buffers(page);
1022                 if (bh->b_size == size) {
1023                         end_block = init_page_buffers(page, bdev,
1024                                                 index << sizebits, size);
1025                         goto done;
1026                 }
1027                 if (!try_to_free_buffers(page))
1028                         goto failed;
1029         }
1030
1031         /*
1032          * Allocate some buffers for this page
1033          */
1034         bh = alloc_page_buffers(page, size, 0);
1035         if (!bh)
1036                 goto failed;
1037
1038         /*
1039          * Link the page to the buffers and initialise them.  Take the
1040          * lock to be atomic wrt __find_get_block(), which does not
1041          * run under the page lock.
1042          */
1043         spin_lock(&inode->i_mapping->private_lock);
1044         link_dev_buffers(page, bh);
1045         end_block = init_page_buffers(page, bdev, index << sizebits, size);
1046         spin_unlock(&inode->i_mapping->private_lock);
1047 done:
1048         ret = (block < end_block) ? 1 : -ENXIO;
1049 failed:
1050         unlock_page(page);
1051         page_cache_release(page);
1052         return ret;
1053 }
1054
1055 /*
1056  * Create buffers for the specified block device block's page.  If
1057  * that page was dirty, the buffers are set dirty also.
1058  */
1059 static int
1060 grow_buffers(struct block_device *bdev, sector_t block, int size)
1061 {
1062         pgoff_t index;
1063         int sizebits;
1064
1065         sizebits = -1;
1066         do {
1067                 sizebits++;
1068         } while ((size << sizebits) < PAGE_SIZE);
1069
1070         index = block >> sizebits;
1071
1072         /*
1073          * Check for a block which wants to lie outside our maximum possible
1074          * pagecache index.  (this comparison is done using sector_t types).
1075          */
1076         if (unlikely(index != block >> sizebits)) {
1077                 char b[BDEVNAME_SIZE];
1078
1079                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1080                         "device %s\n",
1081                         __func__, (unsigned long long)block,
1082                         bdevname(bdev, b));
1083                 return -EIO;
1084         }
1085
1086         /* Create a page with the proper size buffers.. */
1087         return grow_dev_page(bdev, block, index, size, sizebits);
1088 }
1089
1090 static struct buffer_head *
1091 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1092 {
1093         /* Size must be multiple of hard sectorsize */
1094         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1095                         (size < 512 || size > PAGE_SIZE))) {
1096                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1097                                         size);
1098                 printk(KERN_ERR "logical block size: %d\n",
1099                                         bdev_logical_block_size(bdev));
1100
1101                 dump_stack();
1102                 return NULL;
1103         }
1104
1105         for (;;) {
1106                 struct buffer_head *bh;
1107                 int ret;
1108
1109                 bh = __find_get_block(bdev, block, size);
1110                 if (bh)
1111                         return bh;
1112
1113                 ret = grow_buffers(bdev, block, size);
1114                 if (ret < 0)
1115                         return NULL;
1116                 if (ret == 0)
1117                         free_more_memory();
1118         }
1119 }
1120
1121 /*
1122  * The relationship between dirty buffers and dirty pages:
1123  *
1124  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1125  * the page is tagged dirty in its radix tree.
1126  *
1127  * At all times, the dirtiness of the buffers represents the dirtiness of
1128  * subsections of the page.  If the page has buffers, the page dirty bit is
1129  * merely a hint about the true dirty state.
1130  *
1131  * When a page is set dirty in its entirety, all its buffers are marked dirty
1132  * (if the page has buffers).
1133  *
1134  * When a buffer is marked dirty, its page is dirtied, but the page's other
1135  * buffers are not.
1136  *
1137  * Also.  When blockdev buffers are explicitly read with bread(), they
1138  * individually become uptodate.  But their backing page remains not
1139  * uptodate - even if all of its buffers are uptodate.  A subsequent
1140  * block_read_full_page() against that page will discover all the uptodate
1141  * buffers, will set the page uptodate and will perform no I/O.
1142  */
1143
1144 /**
1145  * mark_buffer_dirty - mark a buffer_head as needing writeout
1146  * @bh: the buffer_head to mark dirty
1147  *
1148  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1149  * backing page dirty, then tag the page as dirty in its address_space's radix
1150  * tree and then attach the address_space's inode to its superblock's dirty
1151  * inode list.
1152  *
1153  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1154  * mapping->tree_lock and mapping->host->i_lock.
1155  */
1156 void mark_buffer_dirty(struct buffer_head *bh)
1157 {
1158         WARN_ON_ONCE(!buffer_uptodate(bh));
1159
1160         /*
1161          * Very *carefully* optimize the it-is-already-dirty case.
1162          *
1163          * Don't let the final "is it dirty" escape to before we
1164          * perhaps modified the buffer.
1165          */
1166         if (buffer_dirty(bh)) {
1167                 smp_mb();
1168                 if (buffer_dirty(bh))
1169                         return;
1170         }
1171
1172         if (!test_set_buffer_dirty(bh)) {
1173                 struct page *page = bh->b_page;
1174                 if (!TestSetPageDirty(page)) {
1175                         struct address_space *mapping = page_mapping(page);
1176                         if (mapping)
1177                                 __set_page_dirty(page, mapping, 0);
1178                 }
1179         }
1180 }
1181 EXPORT_SYMBOL(mark_buffer_dirty);
1182
1183 /*
1184  * Decrement a buffer_head's reference count.  If all buffers against a page
1185  * have zero reference count, are clean and unlocked, and if the page is clean
1186  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1187  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1188  * a page but it ends up not being freed, and buffers may later be reattached).
1189  */
1190 void __brelse(struct buffer_head * buf)
1191 {
1192         if (atomic_read(&buf->b_count)) {
1193                 put_bh(buf);
1194                 return;
1195         }
1196         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1197 }
1198 EXPORT_SYMBOL(__brelse);
1199
1200 /*
1201  * bforget() is like brelse(), except it discards any
1202  * potentially dirty data.
1203  */
1204 void __bforget(struct buffer_head *bh)
1205 {
1206         clear_buffer_dirty(bh);
1207         if (bh->b_assoc_map) {
1208                 struct address_space *buffer_mapping = bh->b_page->mapping;
1209
1210                 spin_lock(&buffer_mapping->private_lock);
1211                 list_del_init(&bh->b_assoc_buffers);
1212                 bh->b_assoc_map = NULL;
1213                 spin_unlock(&buffer_mapping->private_lock);
1214         }
1215         __brelse(bh);
1216 }
1217 EXPORT_SYMBOL(__bforget);
1218
1219 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1220 {
1221         lock_buffer(bh);
1222         if (buffer_uptodate(bh)) {
1223                 unlock_buffer(bh);
1224                 return bh;
1225         } else {
1226                 get_bh(bh);
1227                 bh->b_end_io = end_buffer_read_sync;
1228                 submit_bh(READ, bh);
1229                 wait_on_buffer(bh);
1230                 if (buffer_uptodate(bh))
1231                         return bh;
1232         }
1233         brelse(bh);
1234         return NULL;
1235 }
1236
1237 /*
1238  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1239  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1240  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1241  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1242  * CPU's LRUs at the same time.
1243  *
1244  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1245  * sb_find_get_block().
1246  *
1247  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1248  * a local interrupt disable for that.
1249  */
1250
1251 #define BH_LRU_SIZE     8
1252
1253 struct bh_lru {
1254         struct buffer_head *bhs[BH_LRU_SIZE];
1255 };
1256
1257 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1258
1259 #ifdef CONFIG_SMP
1260 #define bh_lru_lock()   local_irq_disable()
1261 #define bh_lru_unlock() local_irq_enable()
1262 #else
1263 #define bh_lru_lock()   preempt_disable()
1264 #define bh_lru_unlock() preempt_enable()
1265 #endif
1266
1267 static inline void check_irqs_on(void)
1268 {
1269 #ifdef irqs_disabled
1270         BUG_ON(irqs_disabled());
1271 #endif
1272 }
1273
1274 /*
1275  * The LRU management algorithm is dopey-but-simple.  Sorry.
1276  */
1277 static void bh_lru_install(struct buffer_head *bh)
1278 {
1279         struct buffer_head *evictee = NULL;
1280
1281         check_irqs_on();
1282         bh_lru_lock();
1283         if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1284                 struct buffer_head *bhs[BH_LRU_SIZE];
1285                 int in;
1286                 int out = 0;
1287
1288                 get_bh(bh);
1289                 bhs[out++] = bh;
1290                 for (in = 0; in < BH_LRU_SIZE; in++) {
1291                         struct buffer_head *bh2 =
1292                                 __this_cpu_read(bh_lrus.bhs[in]);
1293
1294                         if (bh2 == bh) {
1295                                 __brelse(bh2);
1296                         } else {
1297                                 if (out >= BH_LRU_SIZE) {
1298                                         BUG_ON(evictee != NULL);
1299                                         evictee = bh2;
1300                                 } else {
1301                                         bhs[out++] = bh2;
1302                                 }
1303                         }
1304                 }
1305                 while (out < BH_LRU_SIZE)
1306                         bhs[out++] = NULL;
1307                 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1308         }
1309         bh_lru_unlock();
1310
1311         if (evictee)
1312                 __brelse(evictee);
1313 }
1314
1315 /*
1316  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1317  */
1318 static struct buffer_head *
1319 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1320 {
1321         struct buffer_head *ret = NULL;
1322         unsigned int i;
1323
1324         check_irqs_on();
1325         bh_lru_lock();
1326         for (i = 0; i < BH_LRU_SIZE; i++) {
1327                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1328
1329                 if (bh && bh->b_bdev == bdev &&
1330                                 bh->b_blocknr == block && bh->b_size == size) {
1331                         if (i) {
1332                                 while (i) {
1333                                         __this_cpu_write(bh_lrus.bhs[i],
1334                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1335                                         i--;
1336                                 }
1337                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1338                         }
1339                         get_bh(bh);
1340                         ret = bh;
1341                         break;
1342                 }
1343         }
1344         bh_lru_unlock();
1345         return ret;
1346 }
1347
1348 /*
1349  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1350  * it in the LRU and mark it as accessed.  If it is not present then return
1351  * NULL
1352  */
1353 struct buffer_head *
1354 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1355 {
1356         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1357
1358         if (bh == NULL) {
1359                 bh = __find_get_block_slow(bdev, block);
1360                 if (bh)
1361                         bh_lru_install(bh);
1362         }
1363         if (bh)
1364                 touch_buffer(bh);
1365         return bh;
1366 }
1367 EXPORT_SYMBOL(__find_get_block);
1368
1369 /*
1370  * __getblk will locate (and, if necessary, create) the buffer_head
1371  * which corresponds to the passed block_device, block and size. The
1372  * returned buffer has its reference count incremented.
1373  *
1374  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1375  * attempt is failing.  FIXME, perhaps?
1376  */
1377 struct buffer_head *
1378 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1379 {
1380         struct buffer_head *bh = __find_get_block(bdev, block, size);
1381
1382         might_sleep();
1383         if (bh == NULL)
1384                 bh = __getblk_slow(bdev, block, size);
1385         return bh;
1386 }
1387 EXPORT_SYMBOL(__getblk);
1388
1389 /*
1390  * Do async read-ahead on a buffer..
1391  */
1392 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1393 {
1394         struct buffer_head *bh = __getblk(bdev, block, size);
1395         if (likely(bh)) {
1396                 ll_rw_block(READA, 1, &bh);
1397                 brelse(bh);
1398         }
1399 }
1400 EXPORT_SYMBOL(__breadahead);
1401
1402 /**
1403  *  __bread() - reads a specified block and returns the bh
1404  *  @bdev: the block_device to read from
1405  *  @block: number of block
1406  *  @size: size (in bytes) to read
1407  * 
1408  *  Reads a specified block, and returns buffer head that contains it.
1409  *  It returns NULL if the block was unreadable.
1410  */
1411 struct buffer_head *
1412 __bread(struct block_device *bdev, sector_t block, unsigned size)
1413 {
1414         struct buffer_head *bh = __getblk(bdev, block, size);
1415
1416         if (likely(bh) && !buffer_uptodate(bh))
1417                 bh = __bread_slow(bh);
1418         return bh;
1419 }
1420 EXPORT_SYMBOL(__bread);
1421
1422 /*
1423  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1424  * This doesn't race because it runs in each cpu either in irq
1425  * or with preempt disabled.
1426  */
1427 static void invalidate_bh_lru(void *arg)
1428 {
1429         struct bh_lru *b = &get_cpu_var(bh_lrus);
1430         int i;
1431
1432         for (i = 0; i < BH_LRU_SIZE; i++) {
1433                 brelse(b->bhs[i]);
1434                 b->bhs[i] = NULL;
1435         }
1436         put_cpu_var(bh_lrus);
1437 }
1438         
1439 void invalidate_bh_lrus(void)
1440 {
1441         on_each_cpu(invalidate_bh_lru, NULL, 1);
1442 }
1443 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1444
1445 void set_bh_page(struct buffer_head *bh,
1446                 struct page *page, unsigned long offset)
1447 {
1448         bh->b_page = page;
1449         BUG_ON(offset >= PAGE_SIZE);
1450         if (PageHighMem(page))
1451                 /*
1452                  * This catches illegal uses and preserves the offset:
1453                  */
1454                 bh->b_data = (char *)(0 + offset);
1455         else
1456                 bh->b_data = page_address(page) + offset;
1457 }
1458 EXPORT_SYMBOL(set_bh_page);
1459
1460 /*
1461  * Called when truncating a buffer on a page completely.
1462  */
1463 static void discard_buffer(struct buffer_head * bh)
1464 {
1465         lock_buffer(bh);
1466         clear_buffer_dirty(bh);
1467         bh->b_bdev = NULL;
1468         clear_buffer_mapped(bh);
1469         clear_buffer_req(bh);
1470         clear_buffer_new(bh);
1471         clear_buffer_delay(bh);
1472         clear_buffer_unwritten(bh);
1473         unlock_buffer(bh);
1474 }
1475
1476 /**
1477  * block_invalidatepage - invalidate part or all of a buffer-backed page
1478  *
1479  * @page: the page which is affected
1480  * @offset: the index of the truncation point
1481  *
1482  * block_invalidatepage() is called when all or part of the page has become
1483  * invalidated by a truncate operation.
1484  *
1485  * block_invalidatepage() does not have to release all buffers, but it must
1486  * ensure that no dirty buffer is left outside @offset and that no I/O
1487  * is underway against any of the blocks which are outside the truncation
1488  * point.  Because the caller is about to free (and possibly reuse) those
1489  * blocks on-disk.
1490  */
1491 void block_invalidatepage(struct page *page, unsigned long offset)
1492 {
1493         struct buffer_head *head, *bh, *next;
1494         unsigned int curr_off = 0;
1495
1496         BUG_ON(!PageLocked(page));
1497         if (!page_has_buffers(page))
1498                 goto out;
1499
1500         head = page_buffers(page);
1501         bh = head;
1502         do {
1503                 unsigned int next_off = curr_off + bh->b_size;
1504                 next = bh->b_this_page;
1505
1506                 /*
1507                  * is this block fully invalidated?
1508                  */
1509                 if (offset <= curr_off)
1510                         discard_buffer(bh);
1511                 curr_off = next_off;
1512                 bh = next;
1513         } while (bh != head);
1514
1515         /*
1516          * We release buffers only if the entire page is being invalidated.
1517          * The get_block cached value has been unconditionally invalidated,
1518          * so real IO is not possible anymore.
1519          */
1520         if (offset == 0)
1521                 try_to_release_page(page, 0);
1522 out:
1523         return;
1524 }
1525 EXPORT_SYMBOL(block_invalidatepage);
1526
1527 /*
1528  * We attach and possibly dirty the buffers atomically wrt
1529  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1530  * is already excluded via the page lock.
1531  */
1532 void create_empty_buffers(struct page *page,
1533                         unsigned long blocksize, unsigned long b_state)
1534 {
1535         struct buffer_head *bh, *head, *tail;
1536
1537         head = alloc_page_buffers(page, blocksize, 1);
1538         bh = head;
1539         do {
1540                 bh->b_state |= b_state;
1541                 tail = bh;
1542                 bh = bh->b_this_page;
1543         } while (bh);
1544         tail->b_this_page = head;
1545
1546         spin_lock(&page->mapping->private_lock);
1547         if (PageUptodate(page) || PageDirty(page)) {
1548                 bh = head;
1549                 do {
1550                         if (PageDirty(page))
1551                                 set_buffer_dirty(bh);
1552                         if (PageUptodate(page))
1553                                 set_buffer_uptodate(bh);
1554                         bh = bh->b_this_page;
1555                 } while (bh != head);
1556         }
1557         attach_page_buffers(page, head);
1558         spin_unlock(&page->mapping->private_lock);
1559 }
1560 EXPORT_SYMBOL(create_empty_buffers);
1561
1562 /*
1563  * We are taking a block for data and we don't want any output from any
1564  * buffer-cache aliases starting from return from that function and
1565  * until the moment when something will explicitly mark the buffer
1566  * dirty (hopefully that will not happen until we will free that block ;-)
1567  * We don't even need to mark it not-uptodate - nobody can expect
1568  * anything from a newly allocated buffer anyway. We used to used
1569  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1570  * don't want to mark the alias unmapped, for example - it would confuse
1571  * anyone who might pick it with bread() afterwards...
1572  *
1573  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1574  * be writeout I/O going on against recently-freed buffers.  We don't
1575  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1576  * only if we really need to.  That happens here.
1577  */
1578 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1579 {
1580         struct buffer_head *old_bh;
1581
1582         might_sleep();
1583
1584         old_bh = __find_get_block_slow(bdev, block);
1585         if (old_bh) {
1586                 clear_buffer_dirty(old_bh);
1587                 wait_on_buffer(old_bh);
1588                 clear_buffer_req(old_bh);
1589                 __brelse(old_bh);
1590         }
1591 }
1592 EXPORT_SYMBOL(unmap_underlying_metadata);
1593
1594 /*
1595  * NOTE! All mapped/uptodate combinations are valid:
1596  *
1597  *      Mapped  Uptodate        Meaning
1598  *
1599  *      No      No              "unknown" - must do get_block()
1600  *      No      Yes             "hole" - zero-filled
1601  *      Yes     No              "allocated" - allocated on disk, not read in
1602  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1603  *
1604  * "Dirty" is valid only with the last case (mapped+uptodate).
1605  */
1606
1607 /*
1608  * While block_write_full_page is writing back the dirty buffers under
1609  * the page lock, whoever dirtied the buffers may decide to clean them
1610  * again at any time.  We handle that by only looking at the buffer
1611  * state inside lock_buffer().
1612  *
1613  * If block_write_full_page() is called for regular writeback
1614  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1615  * locked buffer.   This only can happen if someone has written the buffer
1616  * directly, with submit_bh().  At the address_space level PageWriteback
1617  * prevents this contention from occurring.
1618  *
1619  * If block_write_full_page() is called with wbc->sync_mode ==
1620  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1621  * causes the writes to be flagged as synchronous writes.
1622  */
1623 static int __block_write_full_page(struct inode *inode, struct page *page,
1624                         get_block_t *get_block, struct writeback_control *wbc,
1625                         bh_end_io_t *handler)
1626 {
1627         int err;
1628         sector_t block;
1629         sector_t last_block;
1630         struct buffer_head *bh, *head;
1631         const unsigned blocksize = 1 << inode->i_blkbits;
1632         int nr_underway = 0;
1633         int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1634                         WRITE_SYNC : WRITE);
1635
1636         BUG_ON(!PageLocked(page));
1637
1638         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1639
1640         if (!page_has_buffers(page)) {
1641                 create_empty_buffers(page, blocksize,
1642                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1643         }
1644
1645         /*
1646          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1647          * here, and the (potentially unmapped) buffers may become dirty at
1648          * any time.  If a buffer becomes dirty here after we've inspected it
1649          * then we just miss that fact, and the page stays dirty.
1650          *
1651          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1652          * handle that here by just cleaning them.
1653          */
1654
1655         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1656         head = page_buffers(page);
1657         bh = head;
1658
1659         /*
1660          * Get all the dirty buffers mapped to disk addresses and
1661          * handle any aliases from the underlying blockdev's mapping.
1662          */
1663         do {
1664                 if (block > last_block) {
1665                         /*
1666                          * mapped buffers outside i_size will occur, because
1667                          * this page can be outside i_size when there is a
1668                          * truncate in progress.
1669                          */
1670                         /*
1671                          * The buffer was zeroed by block_write_full_page()
1672                          */
1673                         clear_buffer_dirty(bh);
1674                         set_buffer_uptodate(bh);
1675                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1676                            buffer_dirty(bh)) {
1677                         WARN_ON(bh->b_size != blocksize);
1678                         err = get_block(inode, block, bh, 1);
1679                         if (err)
1680                                 goto recover;
1681                         clear_buffer_delay(bh);
1682                         if (buffer_new(bh)) {
1683                                 /* blockdev mappings never come here */
1684                                 clear_buffer_new(bh);
1685                                 unmap_underlying_metadata(bh->b_bdev,
1686                                                         bh->b_blocknr);
1687                         }
1688                 }
1689                 bh = bh->b_this_page;
1690                 block++;
1691         } while (bh != head);
1692
1693         do {
1694                 if (!buffer_mapped(bh))
1695                         continue;
1696                 /*
1697                  * If it's a fully non-blocking write attempt and we cannot
1698                  * lock the buffer then redirty the page.  Note that this can
1699                  * potentially cause a busy-wait loop from writeback threads
1700                  * and kswapd activity, but those code paths have their own
1701                  * higher-level throttling.
1702                  */
1703                 if (wbc->sync_mode != WB_SYNC_NONE) {
1704                         lock_buffer(bh);
1705                 } else if (!trylock_buffer(bh)) {
1706                         redirty_page_for_writepage(wbc, page);
1707                         continue;
1708                 }
1709                 if (test_clear_buffer_dirty(bh)) {
1710                         mark_buffer_async_write_endio(bh, handler);
1711                 } else {
1712                         unlock_buffer(bh);
1713                 }
1714         } while ((bh = bh->b_this_page) != head);
1715
1716         /*
1717          * The page and its buffers are protected by PageWriteback(), so we can
1718          * drop the bh refcounts early.
1719          */
1720         BUG_ON(PageWriteback(page));
1721         set_page_writeback(page);
1722
1723         do {
1724                 struct buffer_head *next = bh->b_this_page;
1725                 if (buffer_async_write(bh)) {
1726                         submit_bh(write_op, bh);
1727                         nr_underway++;
1728                 }
1729                 bh = next;
1730         } while (bh != head);
1731         unlock_page(page);
1732
1733         err = 0;
1734 done:
1735         if (nr_underway == 0) {
1736                 /*
1737                  * The page was marked dirty, but the buffers were
1738                  * clean.  Someone wrote them back by hand with
1739                  * ll_rw_block/submit_bh.  A rare case.
1740                  */
1741                 end_page_writeback(page);
1742
1743                 /*
1744                  * The page and buffer_heads can be released at any time from
1745                  * here on.
1746                  */
1747         }
1748         return err;
1749
1750 recover:
1751         /*
1752          * ENOSPC, or some other error.  We may already have added some
1753          * blocks to the file, so we need to write these out to avoid
1754          * exposing stale data.
1755          * The page is currently locked and not marked for writeback
1756          */
1757         bh = head;
1758         /* Recovery: lock and submit the mapped buffers */
1759         do {
1760                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1761                     !buffer_delay(bh)) {
1762                         lock_buffer(bh);
1763                         mark_buffer_async_write_endio(bh, handler);
1764                 } else {
1765                         /*
1766                          * The buffer may have been set dirty during
1767                          * attachment to a dirty page.
1768                          */
1769                         clear_buffer_dirty(bh);
1770                 }
1771         } while ((bh = bh->b_this_page) != head);
1772         SetPageError(page);
1773         BUG_ON(PageWriteback(page));
1774         mapping_set_error(page->mapping, err);
1775         set_page_writeback(page);
1776         do {
1777                 struct buffer_head *next = bh->b_this_page;
1778                 if (buffer_async_write(bh)) {
1779                         clear_buffer_dirty(bh);
1780                         submit_bh(write_op, bh);
1781                         nr_underway++;
1782                 }
1783                 bh = next;
1784         } while (bh != head);
1785         unlock_page(page);
1786         goto done;
1787 }
1788
1789 /*
1790  * If a page has any new buffers, zero them out here, and mark them uptodate
1791  * and dirty so they'll be written out (in order to prevent uninitialised
1792  * block data from leaking). And clear the new bit.
1793  */
1794 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1795 {
1796         unsigned int block_start, block_end;
1797         struct buffer_head *head, *bh;
1798
1799         BUG_ON(!PageLocked(page));
1800         if (!page_has_buffers(page))
1801                 return;
1802
1803         bh = head = page_buffers(page);
1804         block_start = 0;
1805         do {
1806                 block_end = block_start + bh->b_size;
1807
1808                 if (buffer_new(bh)) {
1809                         if (block_end > from && block_start < to) {
1810                                 if (!PageUptodate(page)) {
1811                                         unsigned start, size;
1812
1813                                         start = max(from, block_start);
1814                                         size = min(to, block_end) - start;
1815
1816                                         zero_user(page, start, size);
1817                                         set_buffer_uptodate(bh);
1818                                 }
1819
1820                                 clear_buffer_new(bh);
1821                                 mark_buffer_dirty(bh);
1822                         }
1823                 }
1824
1825                 block_start = block_end;
1826                 bh = bh->b_this_page;
1827         } while (bh != head);
1828 }
1829 EXPORT_SYMBOL(page_zero_new_buffers);
1830
1831 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1832                 get_block_t *get_block)
1833 {
1834         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1835         unsigned to = from + len;
1836         struct inode *inode = page->mapping->host;
1837         unsigned block_start, block_end;
1838         sector_t block;
1839         int err = 0;
1840         unsigned blocksize, bbits;
1841         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1842
1843         BUG_ON(!PageLocked(page));
1844         BUG_ON(from > PAGE_CACHE_SIZE);
1845         BUG_ON(to > PAGE_CACHE_SIZE);
1846         BUG_ON(from > to);
1847
1848         blocksize = 1 << inode->i_blkbits;
1849         if (!page_has_buffers(page))
1850                 create_empty_buffers(page, blocksize, 0);
1851         head = page_buffers(page);
1852
1853         bbits = inode->i_blkbits;
1854         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1855
1856         for(bh = head, block_start = 0; bh != head || !block_start;
1857             block++, block_start=block_end, bh = bh->b_this_page) {
1858                 block_end = block_start + blocksize;
1859                 if (block_end <= from || block_start >= to) {
1860                         if (PageUptodate(page)) {
1861                                 if (!buffer_uptodate(bh))
1862                                         set_buffer_uptodate(bh);
1863                         }
1864                         continue;
1865                 }
1866                 if (buffer_new(bh))
1867                         clear_buffer_new(bh);
1868                 if (!buffer_mapped(bh)) {
1869                         WARN_ON(bh->b_size != blocksize);
1870                         err = get_block(inode, block, bh, 1);
1871                         if (err)
1872                                 break;
1873                         if (buffer_new(bh)) {
1874                                 unmap_underlying_metadata(bh->b_bdev,
1875                                                         bh->b_blocknr);
1876                                 if (PageUptodate(page)) {
1877                                         clear_buffer_new(bh);
1878                                         set_buffer_uptodate(bh);
1879                                         mark_buffer_dirty(bh);
1880                                         continue;
1881                                 }
1882                                 if (block_end > to || block_start < from)
1883                                         zero_user_segments(page,
1884                                                 to, block_end,
1885                                                 block_start, from);
1886                                 continue;
1887                         }
1888                 }
1889                 if (PageUptodate(page)) {
1890                         if (!buffer_uptodate(bh))
1891                                 set_buffer_uptodate(bh);
1892                         continue; 
1893                 }
1894                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1895                     !buffer_unwritten(bh) &&
1896                      (block_start < from || block_end > to)) {
1897                         ll_rw_block(READ, 1, &bh);
1898                         *wait_bh++=bh;
1899                 }
1900         }
1901         /*
1902          * If we issued read requests - let them complete.
1903          */
1904         while(wait_bh > wait) {
1905                 wait_on_buffer(*--wait_bh);
1906                 if (!buffer_uptodate(*wait_bh))
1907                         err = -EIO;
1908         }
1909         if (unlikely(err))
1910                 page_zero_new_buffers(page, from, to);
1911         return err;
1912 }
1913 EXPORT_SYMBOL(__block_write_begin);
1914
1915 static int __block_commit_write(struct inode *inode, struct page *page,
1916                 unsigned from, unsigned to)
1917 {
1918         unsigned block_start, block_end;
1919         int partial = 0;
1920         unsigned blocksize;
1921         struct buffer_head *bh, *head;
1922
1923         blocksize = 1 << inode->i_blkbits;
1924
1925         for(bh = head = page_buffers(page), block_start = 0;
1926             bh != head || !block_start;
1927             block_start=block_end, bh = bh->b_this_page) {
1928                 block_end = block_start + blocksize;
1929                 if (block_end <= from || block_start >= to) {
1930                         if (!buffer_uptodate(bh))
1931                                 partial = 1;
1932                 } else {
1933                         set_buffer_uptodate(bh);
1934                         mark_buffer_dirty(bh);
1935                 }
1936                 clear_buffer_new(bh);
1937         }
1938
1939         /*
1940          * If this is a partial write which happened to make all buffers
1941          * uptodate then we can optimize away a bogus readpage() for
1942          * the next read(). Here we 'discover' whether the page went
1943          * uptodate as a result of this (potentially partial) write.
1944          */
1945         if (!partial)
1946                 SetPageUptodate(page);
1947         return 0;
1948 }
1949
1950 /*
1951  * block_write_begin takes care of the basic task of block allocation and
1952  * bringing partial write blocks uptodate first.
1953  *
1954  * The filesystem needs to handle block truncation upon failure.
1955  */
1956 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1957                 unsigned flags, struct page **pagep, get_block_t *get_block)
1958 {
1959         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1960         struct page *page;
1961         int status;
1962
1963         page = grab_cache_page_write_begin(mapping, index, flags);
1964         if (!page)
1965                 return -ENOMEM;
1966
1967         status = __block_write_begin(page, pos, len, get_block);
1968         if (unlikely(status)) {
1969                 unlock_page(page);
1970                 page_cache_release(page);
1971                 page = NULL;
1972         }
1973
1974         *pagep = page;
1975         return status;
1976 }
1977 EXPORT_SYMBOL(block_write_begin);
1978
1979 int block_write_end(struct file *file, struct address_space *mapping,
1980                         loff_t pos, unsigned len, unsigned copied,
1981                         struct page *page, void *fsdata)
1982 {
1983         struct inode *inode = mapping->host;
1984         unsigned start;
1985
1986         start = pos & (PAGE_CACHE_SIZE - 1);
1987
1988         if (unlikely(copied < len)) {
1989                 /*
1990                  * The buffers that were written will now be uptodate, so we
1991                  * don't have to worry about a readpage reading them and
1992                  * overwriting a partial write. However if we have encountered
1993                  * a short write and only partially written into a buffer, it
1994                  * will not be marked uptodate, so a readpage might come in and
1995                  * destroy our partial write.
1996                  *
1997                  * Do the simplest thing, and just treat any short write to a
1998                  * non uptodate page as a zero-length write, and force the
1999                  * caller to redo the whole thing.
2000                  */
2001                 if (!PageUptodate(page))
2002                         copied = 0;
2003
2004                 page_zero_new_buffers(page, start+copied, start+len);
2005         }
2006         flush_dcache_page(page);
2007
2008         /* This could be a short (even 0-length) commit */
2009         __block_commit_write(inode, page, start, start+copied);
2010
2011         return copied;
2012 }
2013 EXPORT_SYMBOL(block_write_end);
2014
2015 int generic_write_end(struct file *file, struct address_space *mapping,
2016                         loff_t pos, unsigned len, unsigned copied,
2017                         struct page *page, void *fsdata)
2018 {
2019         struct inode *inode = mapping->host;
2020         int i_size_changed = 0;
2021
2022         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2023
2024         /*
2025          * No need to use i_size_read() here, the i_size
2026          * cannot change under us because we hold i_mutex.
2027          *
2028          * But it's important to update i_size while still holding page lock:
2029          * page writeout could otherwise come in and zero beyond i_size.
2030          */
2031         if (pos+copied > inode->i_size) {
2032                 i_size_write(inode, pos+copied);
2033                 i_size_changed = 1;
2034         }
2035
2036         unlock_page(page);
2037         page_cache_release(page);
2038
2039         /*
2040          * Don't mark the inode dirty under page lock. First, it unnecessarily
2041          * makes the holding time of page lock longer. Second, it forces lock
2042          * ordering of page lock and transaction start for journaling
2043          * filesystems.
2044          */
2045         if (i_size_changed)
2046                 mark_inode_dirty(inode);
2047
2048         return copied;
2049 }
2050 EXPORT_SYMBOL(generic_write_end);
2051
2052 /*
2053  * block_is_partially_uptodate checks whether buffers within a page are
2054  * uptodate or not.
2055  *
2056  * Returns true if all buffers which correspond to a file portion
2057  * we want to read are uptodate.
2058  */
2059 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2060                                         unsigned long from)
2061 {
2062         struct inode *inode = page->mapping->host;
2063         unsigned block_start, block_end, blocksize;
2064         unsigned to;
2065         struct buffer_head *bh, *head;
2066         int ret = 1;
2067
2068         if (!page_has_buffers(page))
2069                 return 0;
2070
2071         blocksize = 1 << inode->i_blkbits;
2072         to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2073         to = from + to;
2074         if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2075                 return 0;
2076
2077         head = page_buffers(page);
2078         bh = head;
2079         block_start = 0;
2080         do {
2081                 block_end = block_start + blocksize;
2082                 if (block_end > from && block_start < to) {
2083                         if (!buffer_uptodate(bh)) {
2084                                 ret = 0;
2085                                 break;
2086                         }
2087                         if (block_end >= to)
2088                                 break;
2089                 }
2090                 block_start = block_end;
2091                 bh = bh->b_this_page;
2092         } while (bh != head);
2093
2094         return ret;
2095 }
2096 EXPORT_SYMBOL(block_is_partially_uptodate);
2097
2098 /*
2099  * Generic "read page" function for block devices that have the normal
2100  * get_block functionality. This is most of the block device filesystems.
2101  * Reads the page asynchronously --- the unlock_buffer() and
2102  * set/clear_buffer_uptodate() functions propagate buffer state into the
2103  * page struct once IO has completed.
2104  */
2105 int block_read_full_page(struct page *page, get_block_t *get_block)
2106 {
2107         struct inode *inode = page->mapping->host;
2108         sector_t iblock, lblock;
2109         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2110         unsigned int blocksize;
2111         int nr, i;
2112         int fully_mapped = 1;
2113
2114         BUG_ON(!PageLocked(page));
2115         blocksize = 1 << inode->i_blkbits;
2116         if (!page_has_buffers(page))
2117                 create_empty_buffers(page, blocksize, 0);
2118         head = page_buffers(page);
2119
2120         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2121         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2122         bh = head;
2123         nr = 0;
2124         i = 0;
2125
2126         do {
2127                 if (buffer_uptodate(bh))
2128                         continue;
2129
2130                 if (!buffer_mapped(bh)) {
2131                         int err = 0;
2132
2133                         fully_mapped = 0;
2134                         if (iblock < lblock) {
2135                                 WARN_ON(bh->b_size != blocksize);
2136                                 err = get_block(inode, iblock, bh, 0);
2137                                 if (err)
2138                                         SetPageError(page);
2139                         }
2140                         if (!buffer_mapped(bh)) {
2141                                 zero_user(page, i * blocksize, blocksize);
2142                                 if (!err)
2143                                         set_buffer_uptodate(bh);
2144                                 continue;
2145                         }
2146                         /*
2147                          * get_block() might have updated the buffer
2148                          * synchronously
2149                          */
2150                         if (buffer_uptodate(bh))
2151                                 continue;
2152                 }
2153                 arr[nr++] = bh;
2154         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2155
2156         if (fully_mapped)
2157                 SetPageMappedToDisk(page);
2158
2159         if (!nr) {
2160                 /*
2161                  * All buffers are uptodate - we can set the page uptodate
2162                  * as well. But not if get_block() returned an error.
2163                  */
2164                 if (!PageError(page))
2165                         SetPageUptodate(page);
2166                 unlock_page(page);
2167                 return 0;
2168         }
2169
2170         /* Stage two: lock the buffers */
2171         for (i = 0; i < nr; i++) {
2172                 bh = arr[i];
2173                 lock_buffer(bh);
2174                 mark_buffer_async_read(bh);
2175         }
2176
2177         /*
2178          * Stage 3: start the IO.  Check for uptodateness
2179          * inside the buffer lock in case another process reading
2180          * the underlying blockdev brought it uptodate (the sct fix).
2181          */
2182         for (i = 0; i < nr; i++) {
2183                 bh = arr[i];
2184                 if (buffer_uptodate(bh))
2185                         end_buffer_async_read(bh, 1);
2186                 else
2187                         submit_bh(READ, bh);
2188         }
2189         return 0;
2190 }
2191 EXPORT_SYMBOL(block_read_full_page);
2192
2193 /* utility function for filesystems that need to do work on expanding
2194  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2195  * deal with the hole.  
2196  */
2197 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2198 {
2199         struct address_space *mapping = inode->i_mapping;
2200         struct page *page;
2201         void *fsdata;
2202         int err;
2203
2204         err = inode_newsize_ok(inode, size);
2205         if (err)
2206                 goto out;
2207
2208         err = pagecache_write_begin(NULL, mapping, size, 0,
2209                                 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2210                                 &page, &fsdata);
2211         if (err)
2212                 goto out;
2213
2214         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2215         BUG_ON(err > 0);
2216
2217 out:
2218         return err;
2219 }
2220 EXPORT_SYMBOL(generic_cont_expand_simple);
2221
2222 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2223                             loff_t pos, loff_t *bytes)
2224 {
2225         struct inode *inode = mapping->host;
2226         unsigned blocksize = 1 << inode->i_blkbits;
2227         struct page *page;
2228         void *fsdata;
2229         pgoff_t index, curidx;
2230         loff_t curpos;
2231         unsigned zerofrom, offset, len;
2232         int err = 0;
2233
2234         index = pos >> PAGE_CACHE_SHIFT;
2235         offset = pos & ~PAGE_CACHE_MASK;
2236
2237         while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2238                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2239                 if (zerofrom & (blocksize-1)) {
2240                         *bytes |= (blocksize-1);
2241                         (*bytes)++;
2242                 }
2243                 len = PAGE_CACHE_SIZE - zerofrom;
2244
2245                 err = pagecache_write_begin(file, mapping, curpos, len,
2246                                                 AOP_FLAG_UNINTERRUPTIBLE,
2247                                                 &page, &fsdata);
2248                 if (err)
2249                         goto out;
2250                 zero_user(page, zerofrom, len);
2251                 err = pagecache_write_end(file, mapping, curpos, len, len,
2252                                                 page, fsdata);
2253                 if (err < 0)
2254                         goto out;
2255                 BUG_ON(err != len);
2256                 err = 0;
2257
2258                 balance_dirty_pages_ratelimited(mapping);
2259         }
2260
2261         /* page covers the boundary, find the boundary offset */
2262         if (index == curidx) {
2263                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2264                 /* if we will expand the thing last block will be filled */
2265                 if (offset <= zerofrom) {
2266                         goto out;
2267                 }
2268                 if (zerofrom & (blocksize-1)) {
2269                         *bytes |= (blocksize-1);
2270                         (*bytes)++;
2271                 }
2272                 len = offset - zerofrom;
2273
2274                 err = pagecache_write_begin(file, mapping, curpos, len,
2275                                                 AOP_FLAG_UNINTERRUPTIBLE,
2276                                                 &page, &fsdata);
2277                 if (err)
2278                         goto out;
2279                 zero_user(page, zerofrom, len);
2280                 err = pagecache_write_end(file, mapping, curpos, len, len,
2281                                                 page, fsdata);
2282                 if (err < 0)
2283                         goto out;
2284                 BUG_ON(err != len);
2285                 err = 0;
2286         }
2287 out:
2288         return err;
2289 }
2290
2291 /*
2292  * For moronic filesystems that do not allow holes in file.
2293  * We may have to extend the file.
2294  */
2295 int cont_write_begin(struct file *file, struct address_space *mapping,
2296                         loff_t pos, unsigned len, unsigned flags,
2297                         struct page **pagep, void **fsdata,
2298                         get_block_t *get_block, loff_t *bytes)
2299 {
2300         struct inode *inode = mapping->host;
2301         unsigned blocksize = 1 << inode->i_blkbits;
2302         unsigned zerofrom;
2303         int err;
2304
2305         err = cont_expand_zero(file, mapping, pos, bytes);
2306         if (err)
2307                 return err;
2308
2309         zerofrom = *bytes & ~PAGE_CACHE_MASK;
2310         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2311                 *bytes |= (blocksize-1);
2312                 (*bytes)++;
2313         }
2314
2315         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2316 }
2317 EXPORT_SYMBOL(cont_write_begin);
2318
2319 int block_commit_write(struct page *page, unsigned from, unsigned to)
2320 {
2321         struct inode *inode = page->mapping->host;
2322         __block_commit_write(inode,page,from,to);
2323         return 0;
2324 }
2325 EXPORT_SYMBOL(block_commit_write);
2326
2327 /*
2328  * block_page_mkwrite() is not allowed to change the file size as it gets
2329  * called from a page fault handler when a page is first dirtied. Hence we must
2330  * be careful to check for EOF conditions here. We set the page up correctly
2331  * for a written page which means we get ENOSPC checking when writing into
2332  * holes and correct delalloc and unwritten extent mapping on filesystems that
2333  * support these features.
2334  *
2335  * We are not allowed to take the i_mutex here so we have to play games to
2336  * protect against truncate races as the page could now be beyond EOF.  Because
2337  * truncate writes the inode size before removing pages, once we have the
2338  * page lock we can determine safely if the page is beyond EOF. If it is not
2339  * beyond EOF, then the page is guaranteed safe against truncation until we
2340  * unlock the page.
2341  *
2342  * Direct callers of this function should call vfs_check_frozen() so that page
2343  * fault does not busyloop until the fs is thawed.
2344  */
2345 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2346                          get_block_t get_block)
2347 {
2348         struct page *page = vmf->page;
2349         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2350         unsigned long end;
2351         loff_t size;
2352         int ret;
2353
2354         lock_page(page);
2355         size = i_size_read(inode);
2356         if ((page->mapping != inode->i_mapping) ||
2357             (page_offset(page) > size)) {
2358                 /* We overload EFAULT to mean page got truncated */
2359                 ret = -EFAULT;
2360                 goto out_unlock;
2361         }
2362
2363         /* page is wholly or partially inside EOF */
2364         if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2365                 end = size & ~PAGE_CACHE_MASK;
2366         else
2367                 end = PAGE_CACHE_SIZE;
2368
2369         ret = __block_write_begin(page, 0, end, get_block);
2370         if (!ret)
2371                 ret = block_commit_write(page, 0, end);
2372
2373         if (unlikely(ret < 0))
2374                 goto out_unlock;
2375         /*
2376          * Freezing in progress? We check after the page is marked dirty and
2377          * with page lock held so if the test here fails, we are sure freezing
2378          * code will wait during syncing until the page fault is done - at that
2379          * point page will be dirty and unlocked so freezing code will write it
2380          * and writeprotect it again.
2381          */
2382         set_page_dirty(page);
2383         if (inode->i_sb->s_frozen != SB_UNFROZEN) {
2384                 ret = -EAGAIN;
2385                 goto out_unlock;
2386         }
2387         wait_on_page_writeback(page);
2388         return 0;
2389 out_unlock:
2390         unlock_page(page);
2391         return ret;
2392 }
2393 EXPORT_SYMBOL(__block_page_mkwrite);
2394
2395 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2396                    get_block_t get_block)
2397 {
2398         int ret;
2399         struct super_block *sb = vma->vm_file->f_path.dentry->d_inode->i_sb;
2400
2401         /*
2402          * This check is racy but catches the common case. The check in
2403          * __block_page_mkwrite() is reliable.
2404          */
2405         vfs_check_frozen(sb, SB_FREEZE_WRITE);
2406         ret = __block_page_mkwrite(vma, vmf, get_block);
2407         return block_page_mkwrite_return(ret);
2408 }
2409 EXPORT_SYMBOL(block_page_mkwrite);
2410
2411 /*
2412  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2413  * immediately, while under the page lock.  So it needs a special end_io
2414  * handler which does not touch the bh after unlocking it.
2415  */
2416 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2417 {
2418         __end_buffer_read_notouch(bh, uptodate);
2419 }
2420
2421 /*
2422  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2423  * the page (converting it to circular linked list and taking care of page
2424  * dirty races).
2425  */
2426 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2427 {
2428         struct buffer_head *bh;
2429
2430         BUG_ON(!PageLocked(page));
2431
2432         spin_lock(&page->mapping->private_lock);
2433         bh = head;
2434         do {
2435                 if (PageDirty(page))
2436                         set_buffer_dirty(bh);
2437                 if (!bh->b_this_page)
2438                         bh->b_this_page = head;
2439                 bh = bh->b_this_page;
2440         } while (bh != head);
2441         attach_page_buffers(page, head);
2442         spin_unlock(&page->mapping->private_lock);
2443 }
2444
2445 /*
2446  * On entry, the page is fully not uptodate.
2447  * On exit the page is fully uptodate in the areas outside (from,to)
2448  * The filesystem needs to handle block truncation upon failure.
2449  */
2450 int nobh_write_begin(struct address_space *mapping,
2451                         loff_t pos, unsigned len, unsigned flags,
2452                         struct page **pagep, void **fsdata,
2453                         get_block_t *get_block)
2454 {
2455         struct inode *inode = mapping->host;
2456         const unsigned blkbits = inode->i_blkbits;
2457         const unsigned blocksize = 1 << blkbits;
2458         struct buffer_head *head, *bh;
2459         struct page *page;
2460         pgoff_t index;
2461         unsigned from, to;
2462         unsigned block_in_page;
2463         unsigned block_start, block_end;
2464         sector_t block_in_file;
2465         int nr_reads = 0;
2466         int ret = 0;
2467         int is_mapped_to_disk = 1;
2468
2469         index = pos >> PAGE_CACHE_SHIFT;
2470         from = pos & (PAGE_CACHE_SIZE - 1);
2471         to = from + len;
2472
2473         page = grab_cache_page_write_begin(mapping, index, flags);
2474         if (!page)
2475                 return -ENOMEM;
2476         *pagep = page;
2477         *fsdata = NULL;
2478
2479         if (page_has_buffers(page)) {
2480                 ret = __block_write_begin(page, pos, len, get_block);
2481                 if (unlikely(ret))
2482                         goto out_release;
2483                 return ret;
2484         }
2485
2486         if (PageMappedToDisk(page))
2487                 return 0;
2488
2489         /*
2490          * Allocate buffers so that we can keep track of state, and potentially
2491          * attach them to the page if an error occurs. In the common case of
2492          * no error, they will just be freed again without ever being attached
2493          * to the page (which is all OK, because we're under the page lock).
2494          *
2495          * Be careful: the buffer linked list is a NULL terminated one, rather
2496          * than the circular one we're used to.
2497          */
2498         head = alloc_page_buffers(page, blocksize, 0);
2499         if (!head) {
2500                 ret = -ENOMEM;
2501                 goto out_release;
2502         }
2503
2504         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2505
2506         /*
2507          * We loop across all blocks in the page, whether or not they are
2508          * part of the affected region.  This is so we can discover if the
2509          * page is fully mapped-to-disk.
2510          */
2511         for (block_start = 0, block_in_page = 0, bh = head;
2512                   block_start < PAGE_CACHE_SIZE;
2513                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2514                 int create;
2515
2516                 block_end = block_start + blocksize;
2517                 bh->b_state = 0;
2518                 create = 1;
2519                 if (block_start >= to)
2520                         create = 0;
2521                 ret = get_block(inode, block_in_file + block_in_page,
2522                                         bh, create);
2523                 if (ret)
2524                         goto failed;
2525                 if (!buffer_mapped(bh))
2526                         is_mapped_to_disk = 0;
2527                 if (buffer_new(bh))
2528                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2529                 if (PageUptodate(page)) {
2530                         set_buffer_uptodate(bh);
2531                         continue;
2532                 }
2533                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2534                         zero_user_segments(page, block_start, from,
2535                                                         to, block_end);
2536                         continue;
2537                 }
2538                 if (buffer_uptodate(bh))
2539                         continue;       /* reiserfs does this */
2540                 if (block_start < from || block_end > to) {
2541                         lock_buffer(bh);
2542                         bh->b_end_io = end_buffer_read_nobh;
2543                         submit_bh(READ, bh);
2544                         nr_reads++;
2545                 }
2546         }
2547
2548         if (nr_reads) {
2549                 /*
2550                  * The page is locked, so these buffers are protected from
2551                  * any VM or truncate activity.  Hence we don't need to care
2552                  * for the buffer_head refcounts.
2553                  */
2554                 for (bh = head; bh; bh = bh->b_this_page) {
2555                         wait_on_buffer(bh);
2556                         if (!buffer_uptodate(bh))
2557                                 ret = -EIO;
2558                 }
2559                 if (ret)
2560                         goto failed;
2561         }
2562
2563         if (is_mapped_to_disk)
2564                 SetPageMappedToDisk(page);
2565
2566         *fsdata = head; /* to be released by nobh_write_end */
2567
2568         return 0;
2569
2570 failed:
2571         BUG_ON(!ret);
2572         /*
2573          * Error recovery is a bit difficult. We need to zero out blocks that
2574          * were newly allocated, and dirty them to ensure they get written out.
2575          * Buffers need to be attached to the page at this point, otherwise
2576          * the handling of potential IO errors during writeout would be hard
2577          * (could try doing synchronous writeout, but what if that fails too?)
2578          */
2579         attach_nobh_buffers(page, head);
2580         page_zero_new_buffers(page, from, to);
2581
2582 out_release:
2583         unlock_page(page);
2584         page_cache_release(page);
2585         *pagep = NULL;
2586
2587         return ret;
2588 }
2589 EXPORT_SYMBOL(nobh_write_begin);
2590
2591 int nobh_write_end(struct file *file, struct address_space *mapping,
2592                         loff_t pos, unsigned len, unsigned copied,
2593                         struct page *page, void *fsdata)
2594 {
2595         struct inode *inode = page->mapping->host;
2596         struct buffer_head *head = fsdata;
2597         struct buffer_head *bh;
2598         BUG_ON(fsdata != NULL && page_has_buffers(page));
2599
2600         if (unlikely(copied < len) && head)
2601                 attach_nobh_buffers(page, head);
2602         if (page_has_buffers(page))
2603                 return generic_write_end(file, mapping, pos, len,
2604                                         copied, page, fsdata);
2605
2606         SetPageUptodate(page);
2607         set_page_dirty(page);
2608         if (pos+copied > inode->i_size) {
2609                 i_size_write(inode, pos+copied);
2610                 mark_inode_dirty(inode);
2611         }
2612
2613         unlock_page(page);
2614         page_cache_release(page);
2615
2616         while (head) {
2617                 bh = head;
2618                 head = head->b_this_page;
2619                 free_buffer_head(bh);
2620         }
2621
2622         return copied;
2623 }
2624 EXPORT_SYMBOL(nobh_write_end);
2625
2626 /*
2627  * nobh_writepage() - based on block_full_write_page() except
2628  * that it tries to operate without attaching bufferheads to
2629  * the page.
2630  */
2631 int nobh_writepage(struct page *page, get_block_t *get_block,
2632                         struct writeback_control *wbc)
2633 {
2634         struct inode * const inode = page->mapping->host;
2635         loff_t i_size = i_size_read(inode);
2636         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2637         unsigned offset;
2638         int ret;
2639
2640         /* Is the page fully inside i_size? */
2641         if (page->index < end_index)
2642                 goto out;
2643
2644         /* Is the page fully outside i_size? (truncate in progress) */
2645         offset = i_size & (PAGE_CACHE_SIZE-1);
2646         if (page->index >= end_index+1 || !offset) {
2647                 /*
2648                  * The page may have dirty, unmapped buffers.  For example,
2649                  * they may have been added in ext3_writepage().  Make them
2650                  * freeable here, so the page does not leak.
2651                  */
2652 #if 0
2653                 /* Not really sure about this  - do we need this ? */
2654                 if (page->mapping->a_ops->invalidatepage)
2655                         page->mapping->a_ops->invalidatepage(page, offset);
2656 #endif
2657                 unlock_page(page);
2658                 return 0; /* don't care */
2659         }
2660
2661         /*
2662          * The page straddles i_size.  It must be zeroed out on each and every
2663          * writepage invocation because it may be mmapped.  "A file is mapped
2664          * in multiples of the page size.  For a file that is not a multiple of
2665          * the  page size, the remaining memory is zeroed when mapped, and
2666          * writes to that region are not written out to the file."
2667          */
2668         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2669 out:
2670         ret = mpage_writepage(page, get_block, wbc);
2671         if (ret == -EAGAIN)
2672                 ret = __block_write_full_page(inode, page, get_block, wbc,
2673                                               end_buffer_async_write);
2674         return ret;
2675 }
2676 EXPORT_SYMBOL(nobh_writepage);
2677
2678 int nobh_truncate_page(struct address_space *mapping,
2679                         loff_t from, get_block_t *get_block)
2680 {
2681         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2682         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2683         unsigned blocksize;
2684         sector_t iblock;
2685         unsigned length, pos;
2686         struct inode *inode = mapping->host;
2687         struct page *page;
2688         struct buffer_head map_bh;
2689         int err;
2690
2691         blocksize = 1 << inode->i_blkbits;
2692         length = offset & (blocksize - 1);
2693
2694         /* Block boundary? Nothing to do */
2695         if (!length)
2696                 return 0;
2697
2698         length = blocksize - length;
2699         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2700
2701         page = grab_cache_page(mapping, index);
2702         err = -ENOMEM;
2703         if (!page)
2704                 goto out;
2705
2706         if (page_has_buffers(page)) {
2707 has_buffers:
2708                 unlock_page(page);
2709                 page_cache_release(page);
2710                 return block_truncate_page(mapping, from, get_block);
2711         }
2712
2713         /* Find the buffer that contains "offset" */
2714         pos = blocksize;
2715         while (offset >= pos) {
2716                 iblock++;
2717                 pos += blocksize;
2718         }
2719
2720         map_bh.b_size = blocksize;
2721         map_bh.b_state = 0;
2722         err = get_block(inode, iblock, &map_bh, 0);
2723         if (err)
2724                 goto unlock;
2725         /* unmapped? It's a hole - nothing to do */
2726         if (!buffer_mapped(&map_bh))
2727                 goto unlock;
2728
2729         /* Ok, it's mapped. Make sure it's up-to-date */
2730         if (!PageUptodate(page)) {
2731                 err = mapping->a_ops->readpage(NULL, page);
2732                 if (err) {
2733                         page_cache_release(page);
2734                         goto out;
2735                 }
2736                 lock_page(page);
2737                 if (!PageUptodate(page)) {
2738                         err = -EIO;
2739                         goto unlock;
2740                 }
2741                 if (page_has_buffers(page))
2742                         goto has_buffers;
2743         }
2744         zero_user(page, offset, length);
2745         set_page_dirty(page);
2746         err = 0;
2747
2748 unlock:
2749         unlock_page(page);
2750         page_cache_release(page);
2751 out:
2752         return err;
2753 }
2754 EXPORT_SYMBOL(nobh_truncate_page);
2755
2756 int block_truncate_page(struct address_space *mapping,
2757                         loff_t from, get_block_t *get_block)
2758 {
2759         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2760         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2761         unsigned blocksize;
2762         sector_t iblock;
2763         unsigned length, pos;
2764         struct inode *inode = mapping->host;
2765         struct page *page;
2766         struct buffer_head *bh;
2767         int err;
2768
2769         blocksize = 1 << inode->i_blkbits;
2770         length = offset & (blocksize - 1);
2771
2772         /* Block boundary? Nothing to do */
2773         if (!length)
2774                 return 0;
2775
2776         length = blocksize - length;
2777         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2778         
2779         page = grab_cache_page(mapping, index);
2780         err = -ENOMEM;
2781         if (!page)
2782                 goto out;
2783
2784         if (!page_has_buffers(page))
2785                 create_empty_buffers(page, blocksize, 0);
2786
2787         /* Find the buffer that contains "offset" */
2788         bh = page_buffers(page);
2789         pos = blocksize;
2790         while (offset >= pos) {
2791                 bh = bh->b_this_page;
2792                 iblock++;
2793                 pos += blocksize;
2794         }
2795
2796         err = 0;
2797         if (!buffer_mapped(bh)) {
2798                 WARN_ON(bh->b_size != blocksize);
2799                 err = get_block(inode, iblock, bh, 0);
2800                 if (err)
2801                         goto unlock;
2802                 /* unmapped? It's a hole - nothing to do */
2803                 if (!buffer_mapped(bh))
2804                         goto unlock;
2805         }
2806
2807         /* Ok, it's mapped. Make sure it's up-to-date */
2808         if (PageUptodate(page))
2809                 set_buffer_uptodate(bh);
2810
2811         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2812                 err = -EIO;
2813                 ll_rw_block(READ, 1, &bh);
2814                 wait_on_buffer(bh);
2815                 /* Uhhuh. Read error. Complain and punt. */
2816                 if (!buffer_uptodate(bh))
2817                         goto unlock;
2818         }
2819
2820         zero_user(page, offset, length);
2821         mark_buffer_dirty(bh);
2822         err = 0;
2823
2824 unlock:
2825         unlock_page(page);
2826         page_cache_release(page);
2827 out:
2828         return err;
2829 }
2830 EXPORT_SYMBOL(block_truncate_page);
2831
2832 /*
2833  * The generic ->writepage function for buffer-backed address_spaces
2834  * this form passes in the end_io handler used to finish the IO.
2835  */
2836 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2837                         struct writeback_control *wbc, bh_end_io_t *handler)
2838 {
2839         struct inode * const inode = page->mapping->host;
2840         loff_t i_size = i_size_read(inode);
2841         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2842         unsigned offset;
2843
2844         /* Is the page fully inside i_size? */
2845         if (page->index < end_index)
2846                 return __block_write_full_page(inode, page, get_block, wbc,
2847                                                handler);
2848
2849         /* Is the page fully outside i_size? (truncate in progress) */
2850         offset = i_size & (PAGE_CACHE_SIZE-1);
2851         if (page->index >= end_index+1 || !offset) {
2852                 /*
2853                  * The page may have dirty, unmapped buffers.  For example,
2854                  * they may have been added in ext3_writepage().  Make them
2855                  * freeable here, so the page does not leak.
2856                  */
2857                 do_invalidatepage(page, 0);
2858                 unlock_page(page);
2859                 return 0; /* don't care */
2860         }
2861
2862         /*
2863          * The page straddles i_size.  It must be zeroed out on each and every
2864          * writepage invocation because it may be mmapped.  "A file is mapped
2865          * in multiples of the page size.  For a file that is not a multiple of
2866          * the  page size, the remaining memory is zeroed when mapped, and
2867          * writes to that region are not written out to the file."
2868          */
2869         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2870         return __block_write_full_page(inode, page, get_block, wbc, handler);
2871 }
2872 EXPORT_SYMBOL(block_write_full_page_endio);
2873
2874 /*
2875  * The generic ->writepage function for buffer-backed address_spaces
2876  */
2877 int block_write_full_page(struct page *page, get_block_t *get_block,
2878                         struct writeback_control *wbc)
2879 {
2880         return block_write_full_page_endio(page, get_block, wbc,
2881                                            end_buffer_async_write);
2882 }
2883 EXPORT_SYMBOL(block_write_full_page);
2884
2885 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2886                             get_block_t *get_block)
2887 {
2888         struct buffer_head tmp;
2889         struct inode *inode = mapping->host;
2890         tmp.b_state = 0;
2891         tmp.b_blocknr = 0;
2892         tmp.b_size = 1 << inode->i_blkbits;
2893         get_block(inode, block, &tmp, 0);
2894         return tmp.b_blocknr;
2895 }
2896 EXPORT_SYMBOL(generic_block_bmap);
2897
2898 static void end_bio_bh_io_sync(struct bio *bio, int err)
2899 {
2900         struct buffer_head *bh = bio->bi_private;
2901
2902         if (err == -EOPNOTSUPP) {
2903                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2904         }
2905
2906         if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2907                 set_bit(BH_Quiet, &bh->b_state);
2908
2909         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2910         bio_put(bio);
2911 }
2912
2913 int submit_bh(int rw, struct buffer_head * bh)
2914 {
2915         struct bio *bio;
2916         int ret = 0;
2917
2918         BUG_ON(!buffer_locked(bh));
2919         BUG_ON(!buffer_mapped(bh));
2920         BUG_ON(!bh->b_end_io);
2921         BUG_ON(buffer_delay(bh));
2922         BUG_ON(buffer_unwritten(bh));
2923
2924         /*
2925          * Only clear out a write error when rewriting
2926          */
2927         if (test_set_buffer_req(bh) && (rw & WRITE))
2928                 clear_buffer_write_io_error(bh);
2929
2930         /*
2931          * from here on down, it's all bio -- do the initial mapping,
2932          * submit_bio -> generic_make_request may further map this bio around
2933          */
2934         bio = bio_alloc(GFP_NOIO, 1);
2935
2936         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2937         bio->bi_bdev = bh->b_bdev;
2938         bio->bi_io_vec[0].bv_page = bh->b_page;
2939         bio->bi_io_vec[0].bv_len = bh->b_size;
2940         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2941
2942         bio->bi_vcnt = 1;
2943         bio->bi_idx = 0;
2944         bio->bi_size = bh->b_size;
2945
2946         bio->bi_end_io = end_bio_bh_io_sync;
2947         bio->bi_private = bh;
2948
2949         bio_get(bio);
2950         submit_bio(rw, bio);
2951
2952         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2953                 ret = -EOPNOTSUPP;
2954
2955         bio_put(bio);
2956         return ret;
2957 }
2958 EXPORT_SYMBOL(submit_bh);
2959
2960 /**
2961  * ll_rw_block: low-level access to block devices (DEPRECATED)
2962  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2963  * @nr: number of &struct buffer_heads in the array
2964  * @bhs: array of pointers to &struct buffer_head
2965  *
2966  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2967  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2968  * %READA option is described in the documentation for generic_make_request()
2969  * which ll_rw_block() calls.
2970  *
2971  * This function drops any buffer that it cannot get a lock on (with the
2972  * BH_Lock state bit), any buffer that appears to be clean when doing a write
2973  * request, and any buffer that appears to be up-to-date when doing read
2974  * request.  Further it marks as clean buffers that are processed for
2975  * writing (the buffer cache won't assume that they are actually clean
2976  * until the buffer gets unlocked).
2977  *
2978  * ll_rw_block sets b_end_io to simple completion handler that marks
2979  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2980  * any waiters. 
2981  *
2982  * All of the buffers must be for the same device, and must also be a
2983  * multiple of the current approved size for the device.
2984  */
2985 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2986 {
2987         int i;
2988
2989         for (i = 0; i < nr; i++) {
2990                 struct buffer_head *bh = bhs[i];
2991
2992                 if (!trylock_buffer(bh))
2993                         continue;
2994                 if (rw == WRITE) {
2995                         if (test_clear_buffer_dirty(bh)) {
2996                                 bh->b_end_io = end_buffer_write_sync;
2997                                 get_bh(bh);
2998                                 submit_bh(WRITE, bh);
2999                                 continue;
3000                         }
3001                 } else {
3002                         if (!buffer_uptodate(bh)) {
3003                                 bh->b_end_io = end_buffer_read_sync;
3004                                 get_bh(bh);
3005                                 submit_bh(rw, bh);
3006                                 continue;
3007                         }
3008                 }
3009                 unlock_buffer(bh);
3010         }
3011 }
3012 EXPORT_SYMBOL(ll_rw_block);
3013
3014 void write_dirty_buffer(struct buffer_head *bh, int rw)
3015 {
3016         lock_buffer(bh);
3017         if (!test_clear_buffer_dirty(bh)) {
3018                 unlock_buffer(bh);
3019                 return;
3020         }
3021         bh->b_end_io = end_buffer_write_sync;
3022         get_bh(bh);
3023         submit_bh(rw, bh);
3024 }
3025 EXPORT_SYMBOL(write_dirty_buffer);
3026
3027 /*
3028  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3029  * and then start new I/O and then wait upon it.  The caller must have a ref on
3030  * the buffer_head.
3031  */
3032 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3033 {
3034         int ret = 0;
3035
3036         WARN_ON(atomic_read(&bh->b_count) < 1);
3037         lock_buffer(bh);
3038         if (test_clear_buffer_dirty(bh)) {
3039                 get_bh(bh);
3040                 bh->b_end_io = end_buffer_write_sync;
3041                 ret = submit_bh(rw, bh);
3042                 wait_on_buffer(bh);
3043                 if (!ret && !buffer_uptodate(bh))
3044                         ret = -EIO;
3045         } else {
3046                 unlock_buffer(bh);
3047         }
3048         return ret;
3049 }
3050 EXPORT_SYMBOL(__sync_dirty_buffer);
3051
3052 int sync_dirty_buffer(struct buffer_head *bh)
3053 {
3054         return __sync_dirty_buffer(bh, WRITE_SYNC);
3055 }
3056 EXPORT_SYMBOL(sync_dirty_buffer);
3057
3058 /*
3059  * try_to_free_buffers() checks if all the buffers on this particular page
3060  * are unused, and releases them if so.
3061  *
3062  * Exclusion against try_to_free_buffers may be obtained by either
3063  * locking the page or by holding its mapping's private_lock.
3064  *
3065  * If the page is dirty but all the buffers are clean then we need to
3066  * be sure to mark the page clean as well.  This is because the page
3067  * may be against a block device, and a later reattachment of buffers
3068  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3069  * filesystem data on the same device.
3070  *
3071  * The same applies to regular filesystem pages: if all the buffers are
3072  * clean then we set the page clean and proceed.  To do that, we require
3073  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3074  * private_lock.
3075  *
3076  * try_to_free_buffers() is non-blocking.
3077  */
3078 static inline int buffer_busy(struct buffer_head *bh)
3079 {
3080         return atomic_read(&bh->b_count) |
3081                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3082 }
3083
3084 static int
3085 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3086 {
3087         struct buffer_head *head = page_buffers(page);
3088         struct buffer_head *bh;
3089
3090         bh = head;
3091         do {
3092                 if (buffer_write_io_error(bh) && page->mapping)
3093                         set_bit(AS_EIO, &page->mapping->flags);
3094                 if (buffer_busy(bh))
3095                         goto failed;
3096                 bh = bh->b_this_page;
3097         } while (bh != head);
3098
3099         do {
3100                 struct buffer_head *next = bh->b_this_page;
3101
3102                 if (bh->b_assoc_map)
3103                         __remove_assoc_queue(bh);
3104                 bh = next;
3105         } while (bh != head);
3106         *buffers_to_free = head;
3107         __clear_page_buffers(page);
3108         return 1;
3109 failed:
3110         return 0;
3111 }
3112
3113 int try_to_free_buffers(struct page *page)
3114 {
3115         struct address_space * const mapping = page->mapping;
3116         struct buffer_head *buffers_to_free = NULL;
3117         int ret = 0;
3118
3119         BUG_ON(!PageLocked(page));
3120         if (PageWriteback(page))
3121                 return 0;
3122
3123         if (mapping == NULL) {          /* can this still happen? */
3124                 ret = drop_buffers(page, &buffers_to_free);
3125                 goto out;
3126         }
3127
3128         spin_lock(&mapping->private_lock);
3129         ret = drop_buffers(page, &buffers_to_free);
3130
3131         /*
3132          * If the filesystem writes its buffers by hand (eg ext3)
3133          * then we can have clean buffers against a dirty page.  We
3134          * clean the page here; otherwise the VM will never notice
3135          * that the filesystem did any IO at all.
3136          *
3137          * Also, during truncate, discard_buffer will have marked all
3138          * the page's buffers clean.  We discover that here and clean
3139          * the page also.
3140          *
3141          * private_lock must be held over this entire operation in order
3142          * to synchronise against __set_page_dirty_buffers and prevent the
3143          * dirty bit from being lost.
3144          */
3145         if (ret)
3146                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3147         spin_unlock(&mapping->private_lock);
3148 out:
3149         if (buffers_to_free) {
3150                 struct buffer_head *bh = buffers_to_free;
3151
3152                 do {
3153                         struct buffer_head *next = bh->b_this_page;
3154                         free_buffer_head(bh);
3155                         bh = next;
3156                 } while (bh != buffers_to_free);
3157         }
3158         return ret;
3159 }
3160 EXPORT_SYMBOL(try_to_free_buffers);
3161
3162 /*
3163  * There are no bdflush tunables left.  But distributions are
3164  * still running obsolete flush daemons, so we terminate them here.
3165  *
3166  * Use of bdflush() is deprecated and will be removed in a future kernel.
3167  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3168  */
3169 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3170 {
3171         static int msg_count;
3172
3173         if (!capable(CAP_SYS_ADMIN))
3174                 return -EPERM;
3175
3176         if (msg_count < 5) {
3177                 msg_count++;
3178                 printk(KERN_INFO
3179                         "warning: process `%s' used the obsolete bdflush"
3180                         " system call\n", current->comm);
3181                 printk(KERN_INFO "Fix your initscripts?\n");
3182         }
3183
3184         if (func == 1)
3185                 do_exit(0);
3186         return 0;
3187 }
3188
3189 /*
3190  * Buffer-head allocation
3191  */
3192 static struct kmem_cache *bh_cachep;
3193
3194 /*
3195  * Once the number of bh's in the machine exceeds this level, we start
3196  * stripping them in writeback.
3197  */
3198 static int max_buffer_heads;
3199
3200 int buffer_heads_over_limit;
3201
3202 struct bh_accounting {
3203         int nr;                 /* Number of live bh's */
3204         int ratelimit;          /* Limit cacheline bouncing */
3205 };
3206
3207 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3208
3209 static void recalc_bh_state(void)
3210 {
3211         int i;
3212         int tot = 0;
3213
3214         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3215                 return;
3216         __this_cpu_write(bh_accounting.ratelimit, 0);
3217         for_each_online_cpu(i)
3218                 tot += per_cpu(bh_accounting, i).nr;
3219         buffer_heads_over_limit = (tot > max_buffer_heads);
3220 }
3221
3222 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3223 {
3224         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3225         if (ret) {
3226                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3227                 preempt_disable();
3228                 __this_cpu_inc(bh_accounting.nr);
3229                 recalc_bh_state();
3230                 preempt_enable();
3231         }
3232         return ret;
3233 }
3234 EXPORT_SYMBOL(alloc_buffer_head);
3235
3236 void free_buffer_head(struct buffer_head *bh)
3237 {
3238         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3239         kmem_cache_free(bh_cachep, bh);
3240         preempt_disable();
3241         __this_cpu_dec(bh_accounting.nr);
3242         recalc_bh_state();
3243         preempt_enable();
3244 }
3245 EXPORT_SYMBOL(free_buffer_head);
3246
3247 static void buffer_exit_cpu(int cpu)
3248 {
3249         int i;
3250         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3251
3252         for (i = 0; i < BH_LRU_SIZE; i++) {
3253                 brelse(b->bhs[i]);
3254                 b->bhs[i] = NULL;
3255         }
3256         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3257         per_cpu(bh_accounting, cpu).nr = 0;
3258 }
3259
3260 static int buffer_cpu_notify(struct notifier_block *self,
3261                               unsigned long action, void *hcpu)
3262 {
3263         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3264                 buffer_exit_cpu((unsigned long)hcpu);
3265         return NOTIFY_OK;
3266 }
3267
3268 /**
3269  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3270  * @bh: struct buffer_head
3271  *
3272  * Return true if the buffer is up-to-date and false,
3273  * with the buffer locked, if not.
3274  */
3275 int bh_uptodate_or_lock(struct buffer_head *bh)
3276 {
3277         if (!buffer_uptodate(bh)) {
3278                 lock_buffer(bh);
3279                 if (!buffer_uptodate(bh))
3280                         return 0;
3281                 unlock_buffer(bh);
3282         }
3283         return 1;
3284 }
3285 EXPORT_SYMBOL(bh_uptodate_or_lock);
3286
3287 /**
3288  * bh_submit_read - Submit a locked buffer for reading
3289  * @bh: struct buffer_head
3290  *
3291  * Returns zero on success and -EIO on error.
3292  */
3293 int bh_submit_read(struct buffer_head *bh)
3294 {
3295         BUG_ON(!buffer_locked(bh));
3296
3297         if (buffer_uptodate(bh)) {
3298                 unlock_buffer(bh);
3299                 return 0;
3300         }
3301
3302         get_bh(bh);
3303         bh->b_end_io = end_buffer_read_sync;
3304         submit_bh(READ, bh);
3305         wait_on_buffer(bh);
3306         if (buffer_uptodate(bh))
3307                 return 0;
3308         return -EIO;
3309 }
3310 EXPORT_SYMBOL(bh_submit_read);
3311
3312 void __init buffer_init(void)
3313 {
3314         int nrpages;
3315
3316         bh_cachep = kmem_cache_create("buffer_head",
3317                         sizeof(struct buffer_head), 0,
3318                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3319                                 SLAB_MEM_SPREAD),
3320                                 NULL);
3321
3322         /*
3323          * Limit the bh occupancy to 10% of ZONE_NORMAL
3324          */
3325         nrpages = (nr_free_buffer_pages() * 10) / 100;
3326         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3327         hotcpu_notifier(buffer_cpu_notify, 0);
3328 }