Fix nasty 32-bit overflow bug in buffer i/o code.
[pandora-kernel.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/cleancache.h>
45
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50 inline void
51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 {
53         bh->b_end_io = handler;
54         bh->b_private = private;
55 }
56 EXPORT_SYMBOL(init_buffer);
57
58 static int sleep_on_buffer(void *word)
59 {
60         io_schedule();
61         return 0;
62 }
63
64 void __lock_buffer(struct buffer_head *bh)
65 {
66         wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
67                                                         TASK_UNINTERRUPTIBLE);
68 }
69 EXPORT_SYMBOL(__lock_buffer);
70
71 void unlock_buffer(struct buffer_head *bh)
72 {
73         clear_bit_unlock(BH_Lock, &bh->b_state);
74         smp_mb__after_clear_bit();
75         wake_up_bit(&bh->b_state, BH_Lock);
76 }
77 EXPORT_SYMBOL(unlock_buffer);
78
79 /*
80  * Block until a buffer comes unlocked.  This doesn't stop it
81  * from becoming locked again - you have to lock it yourself
82  * if you want to preserve its state.
83  */
84 void __wait_on_buffer(struct buffer_head * bh)
85 {
86         wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
87 }
88 EXPORT_SYMBOL(__wait_on_buffer);
89
90 static void
91 __clear_page_buffers(struct page *page)
92 {
93         ClearPagePrivate(page);
94         set_page_private(page, 0);
95         page_cache_release(page);
96 }
97
98
99 static int quiet_error(struct buffer_head *bh)
100 {
101         if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
102                 return 0;
103         return 1;
104 }
105
106
107 static void buffer_io_error(struct buffer_head *bh)
108 {
109         char b[BDEVNAME_SIZE];
110         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
111                         bdevname(bh->b_bdev, b),
112                         (unsigned long long)bh->b_blocknr);
113 }
114
115 /*
116  * End-of-IO handler helper function which does not touch the bh after
117  * unlocking it.
118  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
119  * a race there is benign: unlock_buffer() only use the bh's address for
120  * hashing after unlocking the buffer, so it doesn't actually touch the bh
121  * itself.
122  */
123 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
124 {
125         if (uptodate) {
126                 set_buffer_uptodate(bh);
127         } else {
128                 /* This happens, due to failed READA attempts. */
129                 clear_buffer_uptodate(bh);
130         }
131         unlock_buffer(bh);
132 }
133
134 /*
135  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
136  * unlock the buffer. This is what ll_rw_block uses too.
137  */
138 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
139 {
140         __end_buffer_read_notouch(bh, uptodate);
141         put_bh(bh);
142 }
143 EXPORT_SYMBOL(end_buffer_read_sync);
144
145 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
146 {
147         char b[BDEVNAME_SIZE];
148
149         if (uptodate) {
150                 set_buffer_uptodate(bh);
151         } else {
152                 if (!quiet_error(bh)) {
153                         buffer_io_error(bh);
154                         printk(KERN_WARNING "lost page write due to "
155                                         "I/O error on %s\n",
156                                        bdevname(bh->b_bdev, b));
157                 }
158                 set_buffer_write_io_error(bh);
159                 clear_buffer_uptodate(bh);
160         }
161         unlock_buffer(bh);
162         put_bh(bh);
163 }
164 EXPORT_SYMBOL(end_buffer_write_sync);
165
166 /*
167  * Various filesystems appear to want __find_get_block to be non-blocking.
168  * But it's the page lock which protects the buffers.  To get around this,
169  * we get exclusion from try_to_free_buffers with the blockdev mapping's
170  * private_lock.
171  *
172  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
173  * may be quite high.  This code could TryLock the page, and if that
174  * succeeds, there is no need to take private_lock. (But if
175  * private_lock is contended then so is mapping->tree_lock).
176  */
177 static struct buffer_head *
178 __find_get_block_slow(struct block_device *bdev, sector_t block)
179 {
180         struct inode *bd_inode = bdev->bd_inode;
181         struct address_space *bd_mapping = bd_inode->i_mapping;
182         struct buffer_head *ret = NULL;
183         pgoff_t index;
184         struct buffer_head *bh;
185         struct buffer_head *head;
186         struct page *page;
187         int all_mapped = 1;
188
189         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
190         page = find_get_page(bd_mapping, index);
191         if (!page)
192                 goto out;
193
194         spin_lock(&bd_mapping->private_lock);
195         if (!page_has_buffers(page))
196                 goto out_unlock;
197         head = page_buffers(page);
198         bh = head;
199         do {
200                 if (!buffer_mapped(bh))
201                         all_mapped = 0;
202                 else if (bh->b_blocknr == block) {
203                         ret = bh;
204                         get_bh(bh);
205                         goto out_unlock;
206                 }
207                 bh = bh->b_this_page;
208         } while (bh != head);
209
210         /* we might be here because some of the buffers on this page are
211          * not mapped.  This is due to various races between
212          * file io on the block device and getblk.  It gets dealt with
213          * elsewhere, don't buffer_error if we had some unmapped buffers
214          */
215         if (all_mapped) {
216                 char b[BDEVNAME_SIZE];
217
218                 printk("__find_get_block_slow() failed. "
219                         "block=%llu, b_blocknr=%llu\n",
220                         (unsigned long long)block,
221                         (unsigned long long)bh->b_blocknr);
222                 printk("b_state=0x%08lx, b_size=%zu\n",
223                         bh->b_state, bh->b_size);
224                 printk("device %s blocksize: %d\n", bdevname(bdev, b),
225                         1 << bd_inode->i_blkbits);
226         }
227 out_unlock:
228         spin_unlock(&bd_mapping->private_lock);
229         page_cache_release(page);
230 out:
231         return ret;
232 }
233
234 /* If invalidate_buffers() will trash dirty buffers, it means some kind
235    of fs corruption is going on. Trashing dirty data always imply losing
236    information that was supposed to be just stored on the physical layer
237    by the user.
238
239    Thus invalidate_buffers in general usage is not allwowed to trash
240    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
241    be preserved.  These buffers are simply skipped.
242   
243    We also skip buffers which are still in use.  For example this can
244    happen if a userspace program is reading the block device.
245
246    NOTE: In the case where the user removed a removable-media-disk even if
247    there's still dirty data not synced on disk (due a bug in the device driver
248    or due an error of the user), by not destroying the dirty buffers we could
249    generate corruption also on the next media inserted, thus a parameter is
250    necessary to handle this case in the most safe way possible (trying
251    to not corrupt also the new disk inserted with the data belonging to
252    the old now corrupted disk). Also for the ramdisk the natural thing
253    to do in order to release the ramdisk memory is to destroy dirty buffers.
254
255    These are two special cases. Normal usage imply the device driver
256    to issue a sync on the device (without waiting I/O completion) and
257    then an invalidate_buffers call that doesn't trash dirty buffers.
258
259    For handling cache coherency with the blkdev pagecache the 'update' case
260    is been introduced. It is needed to re-read from disk any pinned
261    buffer. NOTE: re-reading from disk is destructive so we can do it only
262    when we assume nobody is changing the buffercache under our I/O and when
263    we think the disk contains more recent information than the buffercache.
264    The update == 1 pass marks the buffers we need to update, the update == 2
265    pass does the actual I/O. */
266 void invalidate_bdev(struct block_device *bdev)
267 {
268         struct address_space *mapping = bdev->bd_inode->i_mapping;
269
270         if (mapping->nrpages == 0)
271                 return;
272
273         invalidate_bh_lrus();
274         lru_add_drain_all();    /* make sure all lru add caches are flushed */
275         invalidate_mapping_pages(mapping, 0, -1);
276         /* 99% of the time, we don't need to flush the cleancache on the bdev.
277          * But, for the strange corners, lets be cautious
278          */
279         cleancache_flush_inode(mapping);
280 }
281 EXPORT_SYMBOL(invalidate_bdev);
282
283 /*
284  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
285  */
286 static void free_more_memory(void)
287 {
288         struct zone *zone;
289         int nid;
290
291         wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
292         yield();
293
294         for_each_online_node(nid) {
295                 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
296                                                 gfp_zone(GFP_NOFS), NULL,
297                                                 &zone);
298                 if (zone)
299                         try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
300                                                 GFP_NOFS, NULL);
301         }
302 }
303
304 /*
305  * I/O completion handler for block_read_full_page() - pages
306  * which come unlocked at the end of I/O.
307  */
308 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
309 {
310         unsigned long flags;
311         struct buffer_head *first;
312         struct buffer_head *tmp;
313         struct page *page;
314         int page_uptodate = 1;
315
316         BUG_ON(!buffer_async_read(bh));
317
318         page = bh->b_page;
319         if (uptodate) {
320                 set_buffer_uptodate(bh);
321         } else {
322                 clear_buffer_uptodate(bh);
323                 if (!quiet_error(bh))
324                         buffer_io_error(bh);
325                 SetPageError(page);
326         }
327
328         /*
329          * Be _very_ careful from here on. Bad things can happen if
330          * two buffer heads end IO at almost the same time and both
331          * decide that the page is now completely done.
332          */
333         first = page_buffers(page);
334         local_irq_save(flags);
335         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
336         clear_buffer_async_read(bh);
337         unlock_buffer(bh);
338         tmp = bh;
339         do {
340                 if (!buffer_uptodate(tmp))
341                         page_uptodate = 0;
342                 if (buffer_async_read(tmp)) {
343                         BUG_ON(!buffer_locked(tmp));
344                         goto still_busy;
345                 }
346                 tmp = tmp->b_this_page;
347         } while (tmp != bh);
348         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
349         local_irq_restore(flags);
350
351         /*
352          * If none of the buffers had errors and they are all
353          * uptodate then we can set the page uptodate.
354          */
355         if (page_uptodate && !PageError(page))
356                 SetPageUptodate(page);
357         unlock_page(page);
358         return;
359
360 still_busy:
361         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
362         local_irq_restore(flags);
363         return;
364 }
365
366 /*
367  * Completion handler for block_write_full_page() - pages which are unlocked
368  * during I/O, and which have PageWriteback cleared upon I/O completion.
369  */
370 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
371 {
372         char b[BDEVNAME_SIZE];
373         unsigned long flags;
374         struct buffer_head *first;
375         struct buffer_head *tmp;
376         struct page *page;
377
378         BUG_ON(!buffer_async_write(bh));
379
380         page = bh->b_page;
381         if (uptodate) {
382                 set_buffer_uptodate(bh);
383         } else {
384                 if (!quiet_error(bh)) {
385                         buffer_io_error(bh);
386                         printk(KERN_WARNING "lost page write due to "
387                                         "I/O error on %s\n",
388                                bdevname(bh->b_bdev, b));
389                 }
390                 set_bit(AS_EIO, &page->mapping->flags);
391                 set_buffer_write_io_error(bh);
392                 clear_buffer_uptodate(bh);
393                 SetPageError(page);
394         }
395
396         first = page_buffers(page);
397         local_irq_save(flags);
398         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
399
400         clear_buffer_async_write(bh);
401         unlock_buffer(bh);
402         tmp = bh->b_this_page;
403         while (tmp != bh) {
404                 if (buffer_async_write(tmp)) {
405                         BUG_ON(!buffer_locked(tmp));
406                         goto still_busy;
407                 }
408                 tmp = tmp->b_this_page;
409         }
410         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
411         local_irq_restore(flags);
412         end_page_writeback(page);
413         return;
414
415 still_busy:
416         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
417         local_irq_restore(flags);
418         return;
419 }
420 EXPORT_SYMBOL(end_buffer_async_write);
421
422 /*
423  * If a page's buffers are under async readin (end_buffer_async_read
424  * completion) then there is a possibility that another thread of
425  * control could lock one of the buffers after it has completed
426  * but while some of the other buffers have not completed.  This
427  * locked buffer would confuse end_buffer_async_read() into not unlocking
428  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
429  * that this buffer is not under async I/O.
430  *
431  * The page comes unlocked when it has no locked buffer_async buffers
432  * left.
433  *
434  * PageLocked prevents anyone starting new async I/O reads any of
435  * the buffers.
436  *
437  * PageWriteback is used to prevent simultaneous writeout of the same
438  * page.
439  *
440  * PageLocked prevents anyone from starting writeback of a page which is
441  * under read I/O (PageWriteback is only ever set against a locked page).
442  */
443 static void mark_buffer_async_read(struct buffer_head *bh)
444 {
445         bh->b_end_io = end_buffer_async_read;
446         set_buffer_async_read(bh);
447 }
448
449 static void mark_buffer_async_write_endio(struct buffer_head *bh,
450                                           bh_end_io_t *handler)
451 {
452         bh->b_end_io = handler;
453         set_buffer_async_write(bh);
454 }
455
456 void mark_buffer_async_write(struct buffer_head *bh)
457 {
458         mark_buffer_async_write_endio(bh, end_buffer_async_write);
459 }
460 EXPORT_SYMBOL(mark_buffer_async_write);
461
462
463 /*
464  * fs/buffer.c contains helper functions for buffer-backed address space's
465  * fsync functions.  A common requirement for buffer-based filesystems is
466  * that certain data from the backing blockdev needs to be written out for
467  * a successful fsync().  For example, ext2 indirect blocks need to be
468  * written back and waited upon before fsync() returns.
469  *
470  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
471  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
472  * management of a list of dependent buffers at ->i_mapping->private_list.
473  *
474  * Locking is a little subtle: try_to_free_buffers() will remove buffers
475  * from their controlling inode's queue when they are being freed.  But
476  * try_to_free_buffers() will be operating against the *blockdev* mapping
477  * at the time, not against the S_ISREG file which depends on those buffers.
478  * So the locking for private_list is via the private_lock in the address_space
479  * which backs the buffers.  Which is different from the address_space 
480  * against which the buffers are listed.  So for a particular address_space,
481  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
482  * mapping->private_list will always be protected by the backing blockdev's
483  * ->private_lock.
484  *
485  * Which introduces a requirement: all buffers on an address_space's
486  * ->private_list must be from the same address_space: the blockdev's.
487  *
488  * address_spaces which do not place buffers at ->private_list via these
489  * utility functions are free to use private_lock and private_list for
490  * whatever they want.  The only requirement is that list_empty(private_list)
491  * be true at clear_inode() time.
492  *
493  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
494  * filesystems should do that.  invalidate_inode_buffers() should just go
495  * BUG_ON(!list_empty).
496  *
497  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
498  * take an address_space, not an inode.  And it should be called
499  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
500  * queued up.
501  *
502  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
503  * list if it is already on a list.  Because if the buffer is on a list,
504  * it *must* already be on the right one.  If not, the filesystem is being
505  * silly.  This will save a ton of locking.  But first we have to ensure
506  * that buffers are taken *off* the old inode's list when they are freed
507  * (presumably in truncate).  That requires careful auditing of all
508  * filesystems (do it inside bforget()).  It could also be done by bringing
509  * b_inode back.
510  */
511
512 /*
513  * The buffer's backing address_space's private_lock must be held
514  */
515 static void __remove_assoc_queue(struct buffer_head *bh)
516 {
517         list_del_init(&bh->b_assoc_buffers);
518         WARN_ON(!bh->b_assoc_map);
519         if (buffer_write_io_error(bh))
520                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
521         bh->b_assoc_map = NULL;
522 }
523
524 int inode_has_buffers(struct inode *inode)
525 {
526         return !list_empty(&inode->i_data.private_list);
527 }
528
529 /*
530  * osync is designed to support O_SYNC io.  It waits synchronously for
531  * all already-submitted IO to complete, but does not queue any new
532  * writes to the disk.
533  *
534  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
535  * you dirty the buffers, and then use osync_inode_buffers to wait for
536  * completion.  Any other dirty buffers which are not yet queued for
537  * write will not be flushed to disk by the osync.
538  */
539 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
540 {
541         struct buffer_head *bh;
542         struct list_head *p;
543         int err = 0;
544
545         spin_lock(lock);
546 repeat:
547         list_for_each_prev(p, list) {
548                 bh = BH_ENTRY(p);
549                 if (buffer_locked(bh)) {
550                         get_bh(bh);
551                         spin_unlock(lock);
552                         wait_on_buffer(bh);
553                         if (!buffer_uptodate(bh))
554                                 err = -EIO;
555                         brelse(bh);
556                         spin_lock(lock);
557                         goto repeat;
558                 }
559         }
560         spin_unlock(lock);
561         return err;
562 }
563
564 static void do_thaw_one(struct super_block *sb, void *unused)
565 {
566         char b[BDEVNAME_SIZE];
567         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
568                 printk(KERN_WARNING "Emergency Thaw on %s\n",
569                        bdevname(sb->s_bdev, b));
570 }
571
572 static void do_thaw_all(struct work_struct *work)
573 {
574         iterate_supers(do_thaw_one, NULL);
575         kfree(work);
576         printk(KERN_WARNING "Emergency Thaw complete\n");
577 }
578
579 /**
580  * emergency_thaw_all -- forcibly thaw every frozen filesystem
581  *
582  * Used for emergency unfreeze of all filesystems via SysRq
583  */
584 void emergency_thaw_all(void)
585 {
586         struct work_struct *work;
587
588         work = kmalloc(sizeof(*work), GFP_ATOMIC);
589         if (work) {
590                 INIT_WORK(work, do_thaw_all);
591                 schedule_work(work);
592         }
593 }
594
595 /**
596  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
597  * @mapping: the mapping which wants those buffers written
598  *
599  * Starts I/O against the buffers at mapping->private_list, and waits upon
600  * that I/O.
601  *
602  * Basically, this is a convenience function for fsync().
603  * @mapping is a file or directory which needs those buffers to be written for
604  * a successful fsync().
605  */
606 int sync_mapping_buffers(struct address_space *mapping)
607 {
608         struct address_space *buffer_mapping = mapping->assoc_mapping;
609
610         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
611                 return 0;
612
613         return fsync_buffers_list(&buffer_mapping->private_lock,
614                                         &mapping->private_list);
615 }
616 EXPORT_SYMBOL(sync_mapping_buffers);
617
618 /*
619  * Called when we've recently written block `bblock', and it is known that
620  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
621  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
622  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
623  */
624 void write_boundary_block(struct block_device *bdev,
625                         sector_t bblock, unsigned blocksize)
626 {
627         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
628         if (bh) {
629                 if (buffer_dirty(bh))
630                         ll_rw_block(WRITE, 1, &bh);
631                 put_bh(bh);
632         }
633 }
634
635 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
636 {
637         struct address_space *mapping = inode->i_mapping;
638         struct address_space *buffer_mapping = bh->b_page->mapping;
639
640         mark_buffer_dirty(bh);
641         if (!mapping->assoc_mapping) {
642                 mapping->assoc_mapping = buffer_mapping;
643         } else {
644                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
645         }
646         if (!bh->b_assoc_map) {
647                 spin_lock(&buffer_mapping->private_lock);
648                 list_move_tail(&bh->b_assoc_buffers,
649                                 &mapping->private_list);
650                 bh->b_assoc_map = mapping;
651                 spin_unlock(&buffer_mapping->private_lock);
652         }
653 }
654 EXPORT_SYMBOL(mark_buffer_dirty_inode);
655
656 /*
657  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
658  * dirty.
659  *
660  * If warn is true, then emit a warning if the page is not uptodate and has
661  * not been truncated.
662  */
663 static void __set_page_dirty(struct page *page,
664                 struct address_space *mapping, int warn)
665 {
666         unsigned long flags;
667
668         spin_lock_irqsave(&mapping->tree_lock, flags);
669         if (page->mapping) {    /* Race with truncate? */
670                 WARN_ON_ONCE(warn && !PageUptodate(page));
671                 account_page_dirtied(page, mapping);
672                 radix_tree_tag_set(&mapping->page_tree,
673                                 page_index(page), PAGECACHE_TAG_DIRTY);
674         }
675         spin_unlock_irqrestore(&mapping->tree_lock, flags);
676         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
677 }
678
679 /*
680  * Add a page to the dirty page list.
681  *
682  * It is a sad fact of life that this function is called from several places
683  * deeply under spinlocking.  It may not sleep.
684  *
685  * If the page has buffers, the uptodate buffers are set dirty, to preserve
686  * dirty-state coherency between the page and the buffers.  It the page does
687  * not have buffers then when they are later attached they will all be set
688  * dirty.
689  *
690  * The buffers are dirtied before the page is dirtied.  There's a small race
691  * window in which a writepage caller may see the page cleanness but not the
692  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
693  * before the buffers, a concurrent writepage caller could clear the page dirty
694  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
695  * page on the dirty page list.
696  *
697  * We use private_lock to lock against try_to_free_buffers while using the
698  * page's buffer list.  Also use this to protect against clean buffers being
699  * added to the page after it was set dirty.
700  *
701  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
702  * address_space though.
703  */
704 int __set_page_dirty_buffers(struct page *page)
705 {
706         int newly_dirty;
707         struct address_space *mapping = page_mapping(page);
708
709         if (unlikely(!mapping))
710                 return !TestSetPageDirty(page);
711
712         spin_lock(&mapping->private_lock);
713         if (page_has_buffers(page)) {
714                 struct buffer_head *head = page_buffers(page);
715                 struct buffer_head *bh = head;
716
717                 do {
718                         set_buffer_dirty(bh);
719                         bh = bh->b_this_page;
720                 } while (bh != head);
721         }
722         newly_dirty = !TestSetPageDirty(page);
723         spin_unlock(&mapping->private_lock);
724
725         if (newly_dirty)
726                 __set_page_dirty(page, mapping, 1);
727         return newly_dirty;
728 }
729 EXPORT_SYMBOL(__set_page_dirty_buffers);
730
731 /*
732  * Write out and wait upon a list of buffers.
733  *
734  * We have conflicting pressures: we want to make sure that all
735  * initially dirty buffers get waited on, but that any subsequently
736  * dirtied buffers don't.  After all, we don't want fsync to last
737  * forever if somebody is actively writing to the file.
738  *
739  * Do this in two main stages: first we copy dirty buffers to a
740  * temporary inode list, queueing the writes as we go.  Then we clean
741  * up, waiting for those writes to complete.
742  * 
743  * During this second stage, any subsequent updates to the file may end
744  * up refiling the buffer on the original inode's dirty list again, so
745  * there is a chance we will end up with a buffer queued for write but
746  * not yet completed on that list.  So, as a final cleanup we go through
747  * the osync code to catch these locked, dirty buffers without requeuing
748  * any newly dirty buffers for write.
749  */
750 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
751 {
752         struct buffer_head *bh;
753         struct list_head tmp;
754         struct address_space *mapping;
755         int err = 0, err2;
756         struct blk_plug plug;
757
758         INIT_LIST_HEAD(&tmp);
759         blk_start_plug(&plug);
760
761         spin_lock(lock);
762         while (!list_empty(list)) {
763                 bh = BH_ENTRY(list->next);
764                 mapping = bh->b_assoc_map;
765                 __remove_assoc_queue(bh);
766                 /* Avoid race with mark_buffer_dirty_inode() which does
767                  * a lockless check and we rely on seeing the dirty bit */
768                 smp_mb();
769                 if (buffer_dirty(bh) || buffer_locked(bh)) {
770                         list_add(&bh->b_assoc_buffers, &tmp);
771                         bh->b_assoc_map = mapping;
772                         if (buffer_dirty(bh)) {
773                                 get_bh(bh);
774                                 spin_unlock(lock);
775                                 /*
776                                  * Ensure any pending I/O completes so that
777                                  * write_dirty_buffer() actually writes the
778                                  * current contents - it is a noop if I/O is
779                                  * still in flight on potentially older
780                                  * contents.
781                                  */
782                                 write_dirty_buffer(bh, WRITE_SYNC);
783
784                                 /*
785                                  * Kick off IO for the previous mapping. Note
786                                  * that we will not run the very last mapping,
787                                  * wait_on_buffer() will do that for us
788                                  * through sync_buffer().
789                                  */
790                                 brelse(bh);
791                                 spin_lock(lock);
792                         }
793                 }
794         }
795
796         spin_unlock(lock);
797         blk_finish_plug(&plug);
798         spin_lock(lock);
799
800         while (!list_empty(&tmp)) {
801                 bh = BH_ENTRY(tmp.prev);
802                 get_bh(bh);
803                 mapping = bh->b_assoc_map;
804                 __remove_assoc_queue(bh);
805                 /* Avoid race with mark_buffer_dirty_inode() which does
806                  * a lockless check and we rely on seeing the dirty bit */
807                 smp_mb();
808                 if (buffer_dirty(bh)) {
809                         list_add(&bh->b_assoc_buffers,
810                                  &mapping->private_list);
811                         bh->b_assoc_map = mapping;
812                 }
813                 spin_unlock(lock);
814                 wait_on_buffer(bh);
815                 if (!buffer_uptodate(bh))
816                         err = -EIO;
817                 brelse(bh);
818                 spin_lock(lock);
819         }
820         
821         spin_unlock(lock);
822         err2 = osync_buffers_list(lock, list);
823         if (err)
824                 return err;
825         else
826                 return err2;
827 }
828
829 /*
830  * Invalidate any and all dirty buffers on a given inode.  We are
831  * probably unmounting the fs, but that doesn't mean we have already
832  * done a sync().  Just drop the buffers from the inode list.
833  *
834  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
835  * assumes that all the buffers are against the blockdev.  Not true
836  * for reiserfs.
837  */
838 void invalidate_inode_buffers(struct inode *inode)
839 {
840         if (inode_has_buffers(inode)) {
841                 struct address_space *mapping = &inode->i_data;
842                 struct list_head *list = &mapping->private_list;
843                 struct address_space *buffer_mapping = mapping->assoc_mapping;
844
845                 spin_lock(&buffer_mapping->private_lock);
846                 while (!list_empty(list))
847                         __remove_assoc_queue(BH_ENTRY(list->next));
848                 spin_unlock(&buffer_mapping->private_lock);
849         }
850 }
851 EXPORT_SYMBOL(invalidate_inode_buffers);
852
853 /*
854  * Remove any clean buffers from the inode's buffer list.  This is called
855  * when we're trying to free the inode itself.  Those buffers can pin it.
856  *
857  * Returns true if all buffers were removed.
858  */
859 int remove_inode_buffers(struct inode *inode)
860 {
861         int ret = 1;
862
863         if (inode_has_buffers(inode)) {
864                 struct address_space *mapping = &inode->i_data;
865                 struct list_head *list = &mapping->private_list;
866                 struct address_space *buffer_mapping = mapping->assoc_mapping;
867
868                 spin_lock(&buffer_mapping->private_lock);
869                 while (!list_empty(list)) {
870                         struct buffer_head *bh = BH_ENTRY(list->next);
871                         if (buffer_dirty(bh)) {
872                                 ret = 0;
873                                 break;
874                         }
875                         __remove_assoc_queue(bh);
876                 }
877                 spin_unlock(&buffer_mapping->private_lock);
878         }
879         return ret;
880 }
881
882 /*
883  * Create the appropriate buffers when given a page for data area and
884  * the size of each buffer.. Use the bh->b_this_page linked list to
885  * follow the buffers created.  Return NULL if unable to create more
886  * buffers.
887  *
888  * The retry flag is used to differentiate async IO (paging, swapping)
889  * which may not fail from ordinary buffer allocations.
890  */
891 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
892                 int retry)
893 {
894         struct buffer_head *bh, *head;
895         long offset;
896
897 try_again:
898         head = NULL;
899         offset = PAGE_SIZE;
900         while ((offset -= size) >= 0) {
901                 bh = alloc_buffer_head(GFP_NOFS);
902                 if (!bh)
903                         goto no_grow;
904
905                 bh->b_bdev = NULL;
906                 bh->b_this_page = head;
907                 bh->b_blocknr = -1;
908                 head = bh;
909
910                 bh->b_state = 0;
911                 atomic_set(&bh->b_count, 0);
912                 bh->b_size = size;
913
914                 /* Link the buffer to its page */
915                 set_bh_page(bh, page, offset);
916
917                 init_buffer(bh, NULL, NULL);
918         }
919         return head;
920 /*
921  * In case anything failed, we just free everything we got.
922  */
923 no_grow:
924         if (head) {
925                 do {
926                         bh = head;
927                         head = head->b_this_page;
928                         free_buffer_head(bh);
929                 } while (head);
930         }
931
932         /*
933          * Return failure for non-async IO requests.  Async IO requests
934          * are not allowed to fail, so we have to wait until buffer heads
935          * become available.  But we don't want tasks sleeping with 
936          * partially complete buffers, so all were released above.
937          */
938         if (!retry)
939                 return NULL;
940
941         /* We're _really_ low on memory. Now we just
942          * wait for old buffer heads to become free due to
943          * finishing IO.  Since this is an async request and
944          * the reserve list is empty, we're sure there are 
945          * async buffer heads in use.
946          */
947         free_more_memory();
948         goto try_again;
949 }
950 EXPORT_SYMBOL_GPL(alloc_page_buffers);
951
952 static inline void
953 link_dev_buffers(struct page *page, struct buffer_head *head)
954 {
955         struct buffer_head *bh, *tail;
956
957         bh = head;
958         do {
959                 tail = bh;
960                 bh = bh->b_this_page;
961         } while (bh);
962         tail->b_this_page = head;
963         attach_page_buffers(page, head);
964 }
965
966 /*
967  * Initialise the state of a blockdev page's buffers.
968  */ 
969 static sector_t
970 init_page_buffers(struct page *page, struct block_device *bdev,
971                         sector_t block, int size)
972 {
973         struct buffer_head *head = page_buffers(page);
974         struct buffer_head *bh = head;
975         int uptodate = PageUptodate(page);
976         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode));
977
978         do {
979                 if (!buffer_mapped(bh)) {
980                         init_buffer(bh, NULL, NULL);
981                         bh->b_bdev = bdev;
982                         bh->b_blocknr = block;
983                         if (uptodate)
984                                 set_buffer_uptodate(bh);
985                         if (block < end_block)
986                                 set_buffer_mapped(bh);
987                 }
988                 block++;
989                 bh = bh->b_this_page;
990         } while (bh != head);
991
992         /*
993          * Caller needs to validate requested block against end of device.
994          */
995         return end_block;
996 }
997
998 /*
999  * Create the page-cache page that contains the requested block.
1000  *
1001  * This is used purely for blockdev mappings.
1002  */
1003 static int
1004 grow_dev_page(struct block_device *bdev, sector_t block,
1005                 pgoff_t index, int size, int sizebits)
1006 {
1007         struct inode *inode = bdev->bd_inode;
1008         struct page *page;
1009         struct buffer_head *bh;
1010         sector_t end_block;
1011         int ret = 0;            /* Will call free_more_memory() */
1012
1013         page = find_or_create_page(inode->i_mapping, index,
1014                 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1015         if (!page)
1016                 return ret;
1017
1018         BUG_ON(!PageLocked(page));
1019
1020         if (page_has_buffers(page)) {
1021                 bh = page_buffers(page);
1022                 if (bh->b_size == size) {
1023                         end_block = init_page_buffers(page, bdev,
1024                                                 (sector_t)index << sizebits,
1025                                                 size);
1026                         goto done;
1027                 }
1028                 if (!try_to_free_buffers(page))
1029                         goto failed;
1030         }
1031
1032         /*
1033          * Allocate some buffers for this page
1034          */
1035         bh = alloc_page_buffers(page, size, 0);
1036         if (!bh)
1037                 goto failed;
1038
1039         /*
1040          * Link the page to the buffers and initialise them.  Take the
1041          * lock to be atomic wrt __find_get_block(), which does not
1042          * run under the page lock.
1043          */
1044         spin_lock(&inode->i_mapping->private_lock);
1045         link_dev_buffers(page, bh);
1046         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1047                         size);
1048         spin_unlock(&inode->i_mapping->private_lock);
1049 done:
1050         ret = (block < end_block) ? 1 : -ENXIO;
1051 failed:
1052         unlock_page(page);
1053         page_cache_release(page);
1054         return ret;
1055 }
1056
1057 /*
1058  * Create buffers for the specified block device block's page.  If
1059  * that page was dirty, the buffers are set dirty also.
1060  */
1061 static int
1062 grow_buffers(struct block_device *bdev, sector_t block, int size)
1063 {
1064         pgoff_t index;
1065         int sizebits;
1066
1067         sizebits = -1;
1068         do {
1069                 sizebits++;
1070         } while ((size << sizebits) < PAGE_SIZE);
1071
1072         index = block >> sizebits;
1073
1074         /*
1075          * Check for a block which wants to lie outside our maximum possible
1076          * pagecache index.  (this comparison is done using sector_t types).
1077          */
1078         if (unlikely(index != block >> sizebits)) {
1079                 char b[BDEVNAME_SIZE];
1080
1081                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1082                         "device %s\n",
1083                         __func__, (unsigned long long)block,
1084                         bdevname(bdev, b));
1085                 return -EIO;
1086         }
1087
1088         /* Create a page with the proper size buffers.. */
1089         return grow_dev_page(bdev, block, index, size, sizebits);
1090 }
1091
1092 static struct buffer_head *
1093 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1094 {
1095         /* Size must be multiple of hard sectorsize */
1096         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1097                         (size < 512 || size > PAGE_SIZE))) {
1098                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1099                                         size);
1100                 printk(KERN_ERR "logical block size: %d\n",
1101                                         bdev_logical_block_size(bdev));
1102
1103                 dump_stack();
1104                 return NULL;
1105         }
1106
1107         for (;;) {
1108                 struct buffer_head *bh;
1109                 int ret;
1110
1111                 bh = __find_get_block(bdev, block, size);
1112                 if (bh)
1113                         return bh;
1114
1115                 ret = grow_buffers(bdev, block, size);
1116                 if (ret < 0)
1117                         return NULL;
1118                 if (ret == 0)
1119                         free_more_memory();
1120         }
1121 }
1122
1123 /*
1124  * The relationship between dirty buffers and dirty pages:
1125  *
1126  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1127  * the page is tagged dirty in its radix tree.
1128  *
1129  * At all times, the dirtiness of the buffers represents the dirtiness of
1130  * subsections of the page.  If the page has buffers, the page dirty bit is
1131  * merely a hint about the true dirty state.
1132  *
1133  * When a page is set dirty in its entirety, all its buffers are marked dirty
1134  * (if the page has buffers).
1135  *
1136  * When a buffer is marked dirty, its page is dirtied, but the page's other
1137  * buffers are not.
1138  *
1139  * Also.  When blockdev buffers are explicitly read with bread(), they
1140  * individually become uptodate.  But their backing page remains not
1141  * uptodate - even if all of its buffers are uptodate.  A subsequent
1142  * block_read_full_page() against that page will discover all the uptodate
1143  * buffers, will set the page uptodate and will perform no I/O.
1144  */
1145
1146 /**
1147  * mark_buffer_dirty - mark a buffer_head as needing writeout
1148  * @bh: the buffer_head to mark dirty
1149  *
1150  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1151  * backing page dirty, then tag the page as dirty in its address_space's radix
1152  * tree and then attach the address_space's inode to its superblock's dirty
1153  * inode list.
1154  *
1155  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1156  * mapping->tree_lock and mapping->host->i_lock.
1157  */
1158 void mark_buffer_dirty(struct buffer_head *bh)
1159 {
1160         WARN_ON_ONCE(!buffer_uptodate(bh));
1161
1162         /*
1163          * Very *carefully* optimize the it-is-already-dirty case.
1164          *
1165          * Don't let the final "is it dirty" escape to before we
1166          * perhaps modified the buffer.
1167          */
1168         if (buffer_dirty(bh)) {
1169                 smp_mb();
1170                 if (buffer_dirty(bh))
1171                         return;
1172         }
1173
1174         if (!test_set_buffer_dirty(bh)) {
1175                 struct page *page = bh->b_page;
1176                 if (!TestSetPageDirty(page)) {
1177                         struct address_space *mapping = page_mapping(page);
1178                         if (mapping)
1179                                 __set_page_dirty(page, mapping, 0);
1180                 }
1181         }
1182 }
1183 EXPORT_SYMBOL(mark_buffer_dirty);
1184
1185 /*
1186  * Decrement a buffer_head's reference count.  If all buffers against a page
1187  * have zero reference count, are clean and unlocked, and if the page is clean
1188  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1189  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1190  * a page but it ends up not being freed, and buffers may later be reattached).
1191  */
1192 void __brelse(struct buffer_head * buf)
1193 {
1194         if (atomic_read(&buf->b_count)) {
1195                 put_bh(buf);
1196                 return;
1197         }
1198         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1199 }
1200 EXPORT_SYMBOL(__brelse);
1201
1202 /*
1203  * bforget() is like brelse(), except it discards any
1204  * potentially dirty data.
1205  */
1206 void __bforget(struct buffer_head *bh)
1207 {
1208         clear_buffer_dirty(bh);
1209         if (bh->b_assoc_map) {
1210                 struct address_space *buffer_mapping = bh->b_page->mapping;
1211
1212                 spin_lock(&buffer_mapping->private_lock);
1213                 list_del_init(&bh->b_assoc_buffers);
1214                 bh->b_assoc_map = NULL;
1215                 spin_unlock(&buffer_mapping->private_lock);
1216         }
1217         __brelse(bh);
1218 }
1219 EXPORT_SYMBOL(__bforget);
1220
1221 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1222 {
1223         lock_buffer(bh);
1224         if (buffer_uptodate(bh)) {
1225                 unlock_buffer(bh);
1226                 return bh;
1227         } else {
1228                 get_bh(bh);
1229                 bh->b_end_io = end_buffer_read_sync;
1230                 submit_bh(READ, bh);
1231                 wait_on_buffer(bh);
1232                 if (buffer_uptodate(bh))
1233                         return bh;
1234         }
1235         brelse(bh);
1236         return NULL;
1237 }
1238
1239 /*
1240  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1241  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1242  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1243  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1244  * CPU's LRUs at the same time.
1245  *
1246  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1247  * sb_find_get_block().
1248  *
1249  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1250  * a local interrupt disable for that.
1251  */
1252
1253 #define BH_LRU_SIZE     8
1254
1255 struct bh_lru {
1256         struct buffer_head *bhs[BH_LRU_SIZE];
1257 };
1258
1259 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1260
1261 #ifdef CONFIG_SMP
1262 #define bh_lru_lock()   local_irq_disable()
1263 #define bh_lru_unlock() local_irq_enable()
1264 #else
1265 #define bh_lru_lock()   preempt_disable()
1266 #define bh_lru_unlock() preempt_enable()
1267 #endif
1268
1269 static inline void check_irqs_on(void)
1270 {
1271 #ifdef irqs_disabled
1272         BUG_ON(irqs_disabled());
1273 #endif
1274 }
1275
1276 /*
1277  * The LRU management algorithm is dopey-but-simple.  Sorry.
1278  */
1279 static void bh_lru_install(struct buffer_head *bh)
1280 {
1281         struct buffer_head *evictee = NULL;
1282
1283         check_irqs_on();
1284         bh_lru_lock();
1285         if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1286                 struct buffer_head *bhs[BH_LRU_SIZE];
1287                 int in;
1288                 int out = 0;
1289
1290                 get_bh(bh);
1291                 bhs[out++] = bh;
1292                 for (in = 0; in < BH_LRU_SIZE; in++) {
1293                         struct buffer_head *bh2 =
1294                                 __this_cpu_read(bh_lrus.bhs[in]);
1295
1296                         if (bh2 == bh) {
1297                                 __brelse(bh2);
1298                         } else {
1299                                 if (out >= BH_LRU_SIZE) {
1300                                         BUG_ON(evictee != NULL);
1301                                         evictee = bh2;
1302                                 } else {
1303                                         bhs[out++] = bh2;
1304                                 }
1305                         }
1306                 }
1307                 while (out < BH_LRU_SIZE)
1308                         bhs[out++] = NULL;
1309                 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1310         }
1311         bh_lru_unlock();
1312
1313         if (evictee)
1314                 __brelse(evictee);
1315 }
1316
1317 /*
1318  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1319  */
1320 static struct buffer_head *
1321 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1322 {
1323         struct buffer_head *ret = NULL;
1324         unsigned int i;
1325
1326         check_irqs_on();
1327         bh_lru_lock();
1328         for (i = 0; i < BH_LRU_SIZE; i++) {
1329                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1330
1331                 if (bh && bh->b_bdev == bdev &&
1332                                 bh->b_blocknr == block && bh->b_size == size) {
1333                         if (i) {
1334                                 while (i) {
1335                                         __this_cpu_write(bh_lrus.bhs[i],
1336                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1337                                         i--;
1338                                 }
1339                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1340                         }
1341                         get_bh(bh);
1342                         ret = bh;
1343                         break;
1344                 }
1345         }
1346         bh_lru_unlock();
1347         return ret;
1348 }
1349
1350 /*
1351  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1352  * it in the LRU and mark it as accessed.  If it is not present then return
1353  * NULL
1354  */
1355 struct buffer_head *
1356 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1357 {
1358         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1359
1360         if (bh == NULL) {
1361                 bh = __find_get_block_slow(bdev, block);
1362                 if (bh)
1363                         bh_lru_install(bh);
1364         }
1365         if (bh)
1366                 touch_buffer(bh);
1367         return bh;
1368 }
1369 EXPORT_SYMBOL(__find_get_block);
1370
1371 /*
1372  * __getblk will locate (and, if necessary, create) the buffer_head
1373  * which corresponds to the passed block_device, block and size. The
1374  * returned buffer has its reference count incremented.
1375  *
1376  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1377  * attempt is failing.  FIXME, perhaps?
1378  */
1379 struct buffer_head *
1380 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1381 {
1382         struct buffer_head *bh = __find_get_block(bdev, block, size);
1383
1384         might_sleep();
1385         if (bh == NULL)
1386                 bh = __getblk_slow(bdev, block, size);
1387         return bh;
1388 }
1389 EXPORT_SYMBOL(__getblk);
1390
1391 /*
1392  * Do async read-ahead on a buffer..
1393  */
1394 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1395 {
1396         struct buffer_head *bh = __getblk(bdev, block, size);
1397         if (likely(bh)) {
1398                 ll_rw_block(READA, 1, &bh);
1399                 brelse(bh);
1400         }
1401 }
1402 EXPORT_SYMBOL(__breadahead);
1403
1404 /**
1405  *  __bread() - reads a specified block and returns the bh
1406  *  @bdev: the block_device to read from
1407  *  @block: number of block
1408  *  @size: size (in bytes) to read
1409  * 
1410  *  Reads a specified block, and returns buffer head that contains it.
1411  *  It returns NULL if the block was unreadable.
1412  */
1413 struct buffer_head *
1414 __bread(struct block_device *bdev, sector_t block, unsigned size)
1415 {
1416         struct buffer_head *bh = __getblk(bdev, block, size);
1417
1418         if (likely(bh) && !buffer_uptodate(bh))
1419                 bh = __bread_slow(bh);
1420         return bh;
1421 }
1422 EXPORT_SYMBOL(__bread);
1423
1424 /*
1425  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1426  * This doesn't race because it runs in each cpu either in irq
1427  * or with preempt disabled.
1428  */
1429 static void invalidate_bh_lru(void *arg)
1430 {
1431         struct bh_lru *b = &get_cpu_var(bh_lrus);
1432         int i;
1433
1434         for (i = 0; i < BH_LRU_SIZE; i++) {
1435                 brelse(b->bhs[i]);
1436                 b->bhs[i] = NULL;
1437         }
1438         put_cpu_var(bh_lrus);
1439 }
1440         
1441 void invalidate_bh_lrus(void)
1442 {
1443         on_each_cpu(invalidate_bh_lru, NULL, 1);
1444 }
1445 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1446
1447 void set_bh_page(struct buffer_head *bh,
1448                 struct page *page, unsigned long offset)
1449 {
1450         bh->b_page = page;
1451         BUG_ON(offset >= PAGE_SIZE);
1452         if (PageHighMem(page))
1453                 /*
1454                  * This catches illegal uses and preserves the offset:
1455                  */
1456                 bh->b_data = (char *)(0 + offset);
1457         else
1458                 bh->b_data = page_address(page) + offset;
1459 }
1460 EXPORT_SYMBOL(set_bh_page);
1461
1462 /*
1463  * Called when truncating a buffer on a page completely.
1464  */
1465 static void discard_buffer(struct buffer_head * bh)
1466 {
1467         lock_buffer(bh);
1468         clear_buffer_dirty(bh);
1469         bh->b_bdev = NULL;
1470         clear_buffer_mapped(bh);
1471         clear_buffer_req(bh);
1472         clear_buffer_new(bh);
1473         clear_buffer_delay(bh);
1474         clear_buffer_unwritten(bh);
1475         unlock_buffer(bh);
1476 }
1477
1478 /**
1479  * block_invalidatepage - invalidate part or all of a buffer-backed page
1480  *
1481  * @page: the page which is affected
1482  * @offset: the index of the truncation point
1483  *
1484  * block_invalidatepage() is called when all or part of the page has become
1485  * invalidated by a truncate operation.
1486  *
1487  * block_invalidatepage() does not have to release all buffers, but it must
1488  * ensure that no dirty buffer is left outside @offset and that no I/O
1489  * is underway against any of the blocks which are outside the truncation
1490  * point.  Because the caller is about to free (and possibly reuse) those
1491  * blocks on-disk.
1492  */
1493 void block_invalidatepage(struct page *page, unsigned long offset)
1494 {
1495         struct buffer_head *head, *bh, *next;
1496         unsigned int curr_off = 0;
1497
1498         BUG_ON(!PageLocked(page));
1499         if (!page_has_buffers(page))
1500                 goto out;
1501
1502         head = page_buffers(page);
1503         bh = head;
1504         do {
1505                 unsigned int next_off = curr_off + bh->b_size;
1506                 next = bh->b_this_page;
1507
1508                 /*
1509                  * is this block fully invalidated?
1510                  */
1511                 if (offset <= curr_off)
1512                         discard_buffer(bh);
1513                 curr_off = next_off;
1514                 bh = next;
1515         } while (bh != head);
1516
1517         /*
1518          * We release buffers only if the entire page is being invalidated.
1519          * The get_block cached value has been unconditionally invalidated,
1520          * so real IO is not possible anymore.
1521          */
1522         if (offset == 0)
1523                 try_to_release_page(page, 0);
1524 out:
1525         return;
1526 }
1527 EXPORT_SYMBOL(block_invalidatepage);
1528
1529 /*
1530  * We attach and possibly dirty the buffers atomically wrt
1531  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1532  * is already excluded via the page lock.
1533  */
1534 void create_empty_buffers(struct page *page,
1535                         unsigned long blocksize, unsigned long b_state)
1536 {
1537         struct buffer_head *bh, *head, *tail;
1538
1539         head = alloc_page_buffers(page, blocksize, 1);
1540         bh = head;
1541         do {
1542                 bh->b_state |= b_state;
1543                 tail = bh;
1544                 bh = bh->b_this_page;
1545         } while (bh);
1546         tail->b_this_page = head;
1547
1548         spin_lock(&page->mapping->private_lock);
1549         if (PageUptodate(page) || PageDirty(page)) {
1550                 bh = head;
1551                 do {
1552                         if (PageDirty(page))
1553                                 set_buffer_dirty(bh);
1554                         if (PageUptodate(page))
1555                                 set_buffer_uptodate(bh);
1556                         bh = bh->b_this_page;
1557                 } while (bh != head);
1558         }
1559         attach_page_buffers(page, head);
1560         spin_unlock(&page->mapping->private_lock);
1561 }
1562 EXPORT_SYMBOL(create_empty_buffers);
1563
1564 /*
1565  * We are taking a block for data and we don't want any output from any
1566  * buffer-cache aliases starting from return from that function and
1567  * until the moment when something will explicitly mark the buffer
1568  * dirty (hopefully that will not happen until we will free that block ;-)
1569  * We don't even need to mark it not-uptodate - nobody can expect
1570  * anything from a newly allocated buffer anyway. We used to used
1571  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1572  * don't want to mark the alias unmapped, for example - it would confuse
1573  * anyone who might pick it with bread() afterwards...
1574  *
1575  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1576  * be writeout I/O going on against recently-freed buffers.  We don't
1577  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1578  * only if we really need to.  That happens here.
1579  */
1580 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1581 {
1582         struct buffer_head *old_bh;
1583
1584         might_sleep();
1585
1586         old_bh = __find_get_block_slow(bdev, block);
1587         if (old_bh) {
1588                 clear_buffer_dirty(old_bh);
1589                 wait_on_buffer(old_bh);
1590                 clear_buffer_req(old_bh);
1591                 __brelse(old_bh);
1592         }
1593 }
1594 EXPORT_SYMBOL(unmap_underlying_metadata);
1595
1596 /*
1597  * NOTE! All mapped/uptodate combinations are valid:
1598  *
1599  *      Mapped  Uptodate        Meaning
1600  *
1601  *      No      No              "unknown" - must do get_block()
1602  *      No      Yes             "hole" - zero-filled
1603  *      Yes     No              "allocated" - allocated on disk, not read in
1604  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1605  *
1606  * "Dirty" is valid only with the last case (mapped+uptodate).
1607  */
1608
1609 /*
1610  * While block_write_full_page is writing back the dirty buffers under
1611  * the page lock, whoever dirtied the buffers may decide to clean them
1612  * again at any time.  We handle that by only looking at the buffer
1613  * state inside lock_buffer().
1614  *
1615  * If block_write_full_page() is called for regular writeback
1616  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1617  * locked buffer.   This only can happen if someone has written the buffer
1618  * directly, with submit_bh().  At the address_space level PageWriteback
1619  * prevents this contention from occurring.
1620  *
1621  * If block_write_full_page() is called with wbc->sync_mode ==
1622  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1623  * causes the writes to be flagged as synchronous writes.
1624  */
1625 static int __block_write_full_page(struct inode *inode, struct page *page,
1626                         get_block_t *get_block, struct writeback_control *wbc,
1627                         bh_end_io_t *handler)
1628 {
1629         int err;
1630         sector_t block;
1631         sector_t last_block;
1632         struct buffer_head *bh, *head;
1633         const unsigned blocksize = 1 << inode->i_blkbits;
1634         int nr_underway = 0;
1635         int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1636                         WRITE_SYNC : WRITE);
1637
1638         BUG_ON(!PageLocked(page));
1639
1640         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1641
1642         if (!page_has_buffers(page)) {
1643                 create_empty_buffers(page, blocksize,
1644                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1645         }
1646
1647         /*
1648          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1649          * here, and the (potentially unmapped) buffers may become dirty at
1650          * any time.  If a buffer becomes dirty here after we've inspected it
1651          * then we just miss that fact, and the page stays dirty.
1652          *
1653          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1654          * handle that here by just cleaning them.
1655          */
1656
1657         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1658         head = page_buffers(page);
1659         bh = head;
1660
1661         /*
1662          * Get all the dirty buffers mapped to disk addresses and
1663          * handle any aliases from the underlying blockdev's mapping.
1664          */
1665         do {
1666                 if (block > last_block) {
1667                         /*
1668                          * mapped buffers outside i_size will occur, because
1669                          * this page can be outside i_size when there is a
1670                          * truncate in progress.
1671                          */
1672                         /*
1673                          * The buffer was zeroed by block_write_full_page()
1674                          */
1675                         clear_buffer_dirty(bh);
1676                         set_buffer_uptodate(bh);
1677                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1678                            buffer_dirty(bh)) {
1679                         WARN_ON(bh->b_size != blocksize);
1680                         err = get_block(inode, block, bh, 1);
1681                         if (err)
1682                                 goto recover;
1683                         clear_buffer_delay(bh);
1684                         if (buffer_new(bh)) {
1685                                 /* blockdev mappings never come here */
1686                                 clear_buffer_new(bh);
1687                                 unmap_underlying_metadata(bh->b_bdev,
1688                                                         bh->b_blocknr);
1689                         }
1690                 }
1691                 bh = bh->b_this_page;
1692                 block++;
1693         } while (bh != head);
1694
1695         do {
1696                 if (!buffer_mapped(bh))
1697                         continue;
1698                 /*
1699                  * If it's a fully non-blocking write attempt and we cannot
1700                  * lock the buffer then redirty the page.  Note that this can
1701                  * potentially cause a busy-wait loop from writeback threads
1702                  * and kswapd activity, but those code paths have their own
1703                  * higher-level throttling.
1704                  */
1705                 if (wbc->sync_mode != WB_SYNC_NONE) {
1706                         lock_buffer(bh);
1707                 } else if (!trylock_buffer(bh)) {
1708                         redirty_page_for_writepage(wbc, page);
1709                         continue;
1710                 }
1711                 if (test_clear_buffer_dirty(bh)) {
1712                         mark_buffer_async_write_endio(bh, handler);
1713                 } else {
1714                         unlock_buffer(bh);
1715                 }
1716         } while ((bh = bh->b_this_page) != head);
1717
1718         /*
1719          * The page and its buffers are protected by PageWriteback(), so we can
1720          * drop the bh refcounts early.
1721          */
1722         BUG_ON(PageWriteback(page));
1723         set_page_writeback(page);
1724
1725         do {
1726                 struct buffer_head *next = bh->b_this_page;
1727                 if (buffer_async_write(bh)) {
1728                         submit_bh(write_op, bh);
1729                         nr_underway++;
1730                 }
1731                 bh = next;
1732         } while (bh != head);
1733         unlock_page(page);
1734
1735         err = 0;
1736 done:
1737         if (nr_underway == 0) {
1738                 /*
1739                  * The page was marked dirty, but the buffers were
1740                  * clean.  Someone wrote them back by hand with
1741                  * ll_rw_block/submit_bh.  A rare case.
1742                  */
1743                 end_page_writeback(page);
1744
1745                 /*
1746                  * The page and buffer_heads can be released at any time from
1747                  * here on.
1748                  */
1749         }
1750         return err;
1751
1752 recover:
1753         /*
1754          * ENOSPC, or some other error.  We may already have added some
1755          * blocks to the file, so we need to write these out to avoid
1756          * exposing stale data.
1757          * The page is currently locked and not marked for writeback
1758          */
1759         bh = head;
1760         /* Recovery: lock and submit the mapped buffers */
1761         do {
1762                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1763                     !buffer_delay(bh)) {
1764                         lock_buffer(bh);
1765                         mark_buffer_async_write_endio(bh, handler);
1766                 } else {
1767                         /*
1768                          * The buffer may have been set dirty during
1769                          * attachment to a dirty page.
1770                          */
1771                         clear_buffer_dirty(bh);
1772                 }
1773         } while ((bh = bh->b_this_page) != head);
1774         SetPageError(page);
1775         BUG_ON(PageWriteback(page));
1776         mapping_set_error(page->mapping, err);
1777         set_page_writeback(page);
1778         do {
1779                 struct buffer_head *next = bh->b_this_page;
1780                 if (buffer_async_write(bh)) {
1781                         clear_buffer_dirty(bh);
1782                         submit_bh(write_op, bh);
1783                         nr_underway++;
1784                 }
1785                 bh = next;
1786         } while (bh != head);
1787         unlock_page(page);
1788         goto done;
1789 }
1790
1791 /*
1792  * If a page has any new buffers, zero them out here, and mark them uptodate
1793  * and dirty so they'll be written out (in order to prevent uninitialised
1794  * block data from leaking). And clear the new bit.
1795  */
1796 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1797 {
1798         unsigned int block_start, block_end;
1799         struct buffer_head *head, *bh;
1800
1801         BUG_ON(!PageLocked(page));
1802         if (!page_has_buffers(page))
1803                 return;
1804
1805         bh = head = page_buffers(page);
1806         block_start = 0;
1807         do {
1808                 block_end = block_start + bh->b_size;
1809
1810                 if (buffer_new(bh)) {
1811                         if (block_end > from && block_start < to) {
1812                                 if (!PageUptodate(page)) {
1813                                         unsigned start, size;
1814
1815                                         start = max(from, block_start);
1816                                         size = min(to, block_end) - start;
1817
1818                                         zero_user(page, start, size);
1819                                         set_buffer_uptodate(bh);
1820                                 }
1821
1822                                 clear_buffer_new(bh);
1823                                 mark_buffer_dirty(bh);
1824                         }
1825                 }
1826
1827                 block_start = block_end;
1828                 bh = bh->b_this_page;
1829         } while (bh != head);
1830 }
1831 EXPORT_SYMBOL(page_zero_new_buffers);
1832
1833 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1834                 get_block_t *get_block)
1835 {
1836         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1837         unsigned to = from + len;
1838         struct inode *inode = page->mapping->host;
1839         unsigned block_start, block_end;
1840         sector_t block;
1841         int err = 0;
1842         unsigned blocksize, bbits;
1843         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1844
1845         BUG_ON(!PageLocked(page));
1846         BUG_ON(from > PAGE_CACHE_SIZE);
1847         BUG_ON(to > PAGE_CACHE_SIZE);
1848         BUG_ON(from > to);
1849
1850         blocksize = 1 << inode->i_blkbits;
1851         if (!page_has_buffers(page))
1852                 create_empty_buffers(page, blocksize, 0);
1853         head = page_buffers(page);
1854
1855         bbits = inode->i_blkbits;
1856         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1857
1858         for(bh = head, block_start = 0; bh != head || !block_start;
1859             block++, block_start=block_end, bh = bh->b_this_page) {
1860                 block_end = block_start + blocksize;
1861                 if (block_end <= from || block_start >= to) {
1862                         if (PageUptodate(page)) {
1863                                 if (!buffer_uptodate(bh))
1864                                         set_buffer_uptodate(bh);
1865                         }
1866                         continue;
1867                 }
1868                 if (buffer_new(bh))
1869                         clear_buffer_new(bh);
1870                 if (!buffer_mapped(bh)) {
1871                         WARN_ON(bh->b_size != blocksize);
1872                         err = get_block(inode, block, bh, 1);
1873                         if (err)
1874                                 break;
1875                         if (buffer_new(bh)) {
1876                                 unmap_underlying_metadata(bh->b_bdev,
1877                                                         bh->b_blocknr);
1878                                 if (PageUptodate(page)) {
1879                                         clear_buffer_new(bh);
1880                                         set_buffer_uptodate(bh);
1881                                         mark_buffer_dirty(bh);
1882                                         continue;
1883                                 }
1884                                 if (block_end > to || block_start < from)
1885                                         zero_user_segments(page,
1886                                                 to, block_end,
1887                                                 block_start, from);
1888                                 continue;
1889                         }
1890                 }
1891                 if (PageUptodate(page)) {
1892                         if (!buffer_uptodate(bh))
1893                                 set_buffer_uptodate(bh);
1894                         continue; 
1895                 }
1896                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1897                     !buffer_unwritten(bh) &&
1898                      (block_start < from || block_end > to)) {
1899                         ll_rw_block(READ, 1, &bh);
1900                         *wait_bh++=bh;
1901                 }
1902         }
1903         /*
1904          * If we issued read requests - let them complete.
1905          */
1906         while(wait_bh > wait) {
1907                 wait_on_buffer(*--wait_bh);
1908                 if (!buffer_uptodate(*wait_bh))
1909                         err = -EIO;
1910         }
1911         if (unlikely(err))
1912                 page_zero_new_buffers(page, from, to);
1913         return err;
1914 }
1915 EXPORT_SYMBOL(__block_write_begin);
1916
1917 static int __block_commit_write(struct inode *inode, struct page *page,
1918                 unsigned from, unsigned to)
1919 {
1920         unsigned block_start, block_end;
1921         int partial = 0;
1922         unsigned blocksize;
1923         struct buffer_head *bh, *head;
1924
1925         blocksize = 1 << inode->i_blkbits;
1926
1927         for(bh = head = page_buffers(page), block_start = 0;
1928             bh != head || !block_start;
1929             block_start=block_end, bh = bh->b_this_page) {
1930                 block_end = block_start + blocksize;
1931                 if (block_end <= from || block_start >= to) {
1932                         if (!buffer_uptodate(bh))
1933                                 partial = 1;
1934                 } else {
1935                         set_buffer_uptodate(bh);
1936                         mark_buffer_dirty(bh);
1937                 }
1938                 clear_buffer_new(bh);
1939         }
1940
1941         /*
1942          * If this is a partial write which happened to make all buffers
1943          * uptodate then we can optimize away a bogus readpage() for
1944          * the next read(). Here we 'discover' whether the page went
1945          * uptodate as a result of this (potentially partial) write.
1946          */
1947         if (!partial)
1948                 SetPageUptodate(page);
1949         return 0;
1950 }
1951
1952 /*
1953  * block_write_begin takes care of the basic task of block allocation and
1954  * bringing partial write blocks uptodate first.
1955  *
1956  * The filesystem needs to handle block truncation upon failure.
1957  */
1958 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1959                 unsigned flags, struct page **pagep, get_block_t *get_block)
1960 {
1961         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1962         struct page *page;
1963         int status;
1964
1965         page = grab_cache_page_write_begin(mapping, index, flags);
1966         if (!page)
1967                 return -ENOMEM;
1968
1969         status = __block_write_begin(page, pos, len, get_block);
1970         if (unlikely(status)) {
1971                 unlock_page(page);
1972                 page_cache_release(page);
1973                 page = NULL;
1974         }
1975
1976         *pagep = page;
1977         return status;
1978 }
1979 EXPORT_SYMBOL(block_write_begin);
1980
1981 int block_write_end(struct file *file, struct address_space *mapping,
1982                         loff_t pos, unsigned len, unsigned copied,
1983                         struct page *page, void *fsdata)
1984 {
1985         struct inode *inode = mapping->host;
1986         unsigned start;
1987
1988         start = pos & (PAGE_CACHE_SIZE - 1);
1989
1990         if (unlikely(copied < len)) {
1991                 /*
1992                  * The buffers that were written will now be uptodate, so we
1993                  * don't have to worry about a readpage reading them and
1994                  * overwriting a partial write. However if we have encountered
1995                  * a short write and only partially written into a buffer, it
1996                  * will not be marked uptodate, so a readpage might come in and
1997                  * destroy our partial write.
1998                  *
1999                  * Do the simplest thing, and just treat any short write to a
2000                  * non uptodate page as a zero-length write, and force the
2001                  * caller to redo the whole thing.
2002                  */
2003                 if (!PageUptodate(page))
2004                         copied = 0;
2005
2006                 page_zero_new_buffers(page, start+copied, start+len);
2007         }
2008         flush_dcache_page(page);
2009
2010         /* This could be a short (even 0-length) commit */
2011         __block_commit_write(inode, page, start, start+copied);
2012
2013         return copied;
2014 }
2015 EXPORT_SYMBOL(block_write_end);
2016
2017 int generic_write_end(struct file *file, struct address_space *mapping,
2018                         loff_t pos, unsigned len, unsigned copied,
2019                         struct page *page, void *fsdata)
2020 {
2021         struct inode *inode = mapping->host;
2022         int i_size_changed = 0;
2023
2024         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2025
2026         /*
2027          * No need to use i_size_read() here, the i_size
2028          * cannot change under us because we hold i_mutex.
2029          *
2030          * But it's important to update i_size while still holding page lock:
2031          * page writeout could otherwise come in and zero beyond i_size.
2032          */
2033         if (pos+copied > inode->i_size) {
2034                 i_size_write(inode, pos+copied);
2035                 i_size_changed = 1;
2036         }
2037
2038         unlock_page(page);
2039         page_cache_release(page);
2040
2041         /*
2042          * Don't mark the inode dirty under page lock. First, it unnecessarily
2043          * makes the holding time of page lock longer. Second, it forces lock
2044          * ordering of page lock and transaction start for journaling
2045          * filesystems.
2046          */
2047         if (i_size_changed)
2048                 mark_inode_dirty(inode);
2049
2050         return copied;
2051 }
2052 EXPORT_SYMBOL(generic_write_end);
2053
2054 /*
2055  * block_is_partially_uptodate checks whether buffers within a page are
2056  * uptodate or not.
2057  *
2058  * Returns true if all buffers which correspond to a file portion
2059  * we want to read are uptodate.
2060  */
2061 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2062                                         unsigned long from)
2063 {
2064         struct inode *inode = page->mapping->host;
2065         unsigned block_start, block_end, blocksize;
2066         unsigned to;
2067         struct buffer_head *bh, *head;
2068         int ret = 1;
2069
2070         if (!page_has_buffers(page))
2071                 return 0;
2072
2073         blocksize = 1 << inode->i_blkbits;
2074         to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2075         to = from + to;
2076         if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2077                 return 0;
2078
2079         head = page_buffers(page);
2080         bh = head;
2081         block_start = 0;
2082         do {
2083                 block_end = block_start + blocksize;
2084                 if (block_end > from && block_start < to) {
2085                         if (!buffer_uptodate(bh)) {
2086                                 ret = 0;
2087                                 break;
2088                         }
2089                         if (block_end >= to)
2090                                 break;
2091                 }
2092                 block_start = block_end;
2093                 bh = bh->b_this_page;
2094         } while (bh != head);
2095
2096         return ret;
2097 }
2098 EXPORT_SYMBOL(block_is_partially_uptodate);
2099
2100 /*
2101  * Generic "read page" function for block devices that have the normal
2102  * get_block functionality. This is most of the block device filesystems.
2103  * Reads the page asynchronously --- the unlock_buffer() and
2104  * set/clear_buffer_uptodate() functions propagate buffer state into the
2105  * page struct once IO has completed.
2106  */
2107 int block_read_full_page(struct page *page, get_block_t *get_block)
2108 {
2109         struct inode *inode = page->mapping->host;
2110         sector_t iblock, lblock;
2111         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2112         unsigned int blocksize;
2113         int nr, i;
2114         int fully_mapped = 1;
2115
2116         BUG_ON(!PageLocked(page));
2117         blocksize = 1 << inode->i_blkbits;
2118         if (!page_has_buffers(page))
2119                 create_empty_buffers(page, blocksize, 0);
2120         head = page_buffers(page);
2121
2122         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2123         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2124         bh = head;
2125         nr = 0;
2126         i = 0;
2127
2128         do {
2129                 if (buffer_uptodate(bh))
2130                         continue;
2131
2132                 if (!buffer_mapped(bh)) {
2133                         int err = 0;
2134
2135                         fully_mapped = 0;
2136                         if (iblock < lblock) {
2137                                 WARN_ON(bh->b_size != blocksize);
2138                                 err = get_block(inode, iblock, bh, 0);
2139                                 if (err)
2140                                         SetPageError(page);
2141                         }
2142                         if (!buffer_mapped(bh)) {
2143                                 zero_user(page, i * blocksize, blocksize);
2144                                 if (!err)
2145                                         set_buffer_uptodate(bh);
2146                                 continue;
2147                         }
2148                         /*
2149                          * get_block() might have updated the buffer
2150                          * synchronously
2151                          */
2152                         if (buffer_uptodate(bh))
2153                                 continue;
2154                 }
2155                 arr[nr++] = bh;
2156         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2157
2158         if (fully_mapped)
2159                 SetPageMappedToDisk(page);
2160
2161         if (!nr) {
2162                 /*
2163                  * All buffers are uptodate - we can set the page uptodate
2164                  * as well. But not if get_block() returned an error.
2165                  */
2166                 if (!PageError(page))
2167                         SetPageUptodate(page);
2168                 unlock_page(page);
2169                 return 0;
2170         }
2171
2172         /* Stage two: lock the buffers */
2173         for (i = 0; i < nr; i++) {
2174                 bh = arr[i];
2175                 lock_buffer(bh);
2176                 mark_buffer_async_read(bh);
2177         }
2178
2179         /*
2180          * Stage 3: start the IO.  Check for uptodateness
2181          * inside the buffer lock in case another process reading
2182          * the underlying blockdev brought it uptodate (the sct fix).
2183          */
2184         for (i = 0; i < nr; i++) {
2185                 bh = arr[i];
2186                 if (buffer_uptodate(bh))
2187                         end_buffer_async_read(bh, 1);
2188                 else
2189                         submit_bh(READ, bh);
2190         }
2191         return 0;
2192 }
2193 EXPORT_SYMBOL(block_read_full_page);
2194
2195 /* utility function for filesystems that need to do work on expanding
2196  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2197  * deal with the hole.  
2198  */
2199 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2200 {
2201         struct address_space *mapping = inode->i_mapping;
2202         struct page *page;
2203         void *fsdata;
2204         int err;
2205
2206         err = inode_newsize_ok(inode, size);
2207         if (err)
2208                 goto out;
2209
2210         err = pagecache_write_begin(NULL, mapping, size, 0,
2211                                 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2212                                 &page, &fsdata);
2213         if (err)
2214                 goto out;
2215
2216         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2217         BUG_ON(err > 0);
2218
2219 out:
2220         return err;
2221 }
2222 EXPORT_SYMBOL(generic_cont_expand_simple);
2223
2224 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2225                             loff_t pos, loff_t *bytes)
2226 {
2227         struct inode *inode = mapping->host;
2228         unsigned blocksize = 1 << inode->i_blkbits;
2229         struct page *page;
2230         void *fsdata;
2231         pgoff_t index, curidx;
2232         loff_t curpos;
2233         unsigned zerofrom, offset, len;
2234         int err = 0;
2235
2236         index = pos >> PAGE_CACHE_SHIFT;
2237         offset = pos & ~PAGE_CACHE_MASK;
2238
2239         while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2240                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2241                 if (zerofrom & (blocksize-1)) {
2242                         *bytes |= (blocksize-1);
2243                         (*bytes)++;
2244                 }
2245                 len = PAGE_CACHE_SIZE - zerofrom;
2246
2247                 err = pagecache_write_begin(file, mapping, curpos, len,
2248                                                 AOP_FLAG_UNINTERRUPTIBLE,
2249                                                 &page, &fsdata);
2250                 if (err)
2251                         goto out;
2252                 zero_user(page, zerofrom, len);
2253                 err = pagecache_write_end(file, mapping, curpos, len, len,
2254                                                 page, fsdata);
2255                 if (err < 0)
2256                         goto out;
2257                 BUG_ON(err != len);
2258                 err = 0;
2259
2260                 balance_dirty_pages_ratelimited(mapping);
2261         }
2262
2263         /* page covers the boundary, find the boundary offset */
2264         if (index == curidx) {
2265                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2266                 /* if we will expand the thing last block will be filled */
2267                 if (offset <= zerofrom) {
2268                         goto out;
2269                 }
2270                 if (zerofrom & (blocksize-1)) {
2271                         *bytes |= (blocksize-1);
2272                         (*bytes)++;
2273                 }
2274                 len = offset - zerofrom;
2275
2276                 err = pagecache_write_begin(file, mapping, curpos, len,
2277                                                 AOP_FLAG_UNINTERRUPTIBLE,
2278                                                 &page, &fsdata);
2279                 if (err)
2280                         goto out;
2281                 zero_user(page, zerofrom, len);
2282                 err = pagecache_write_end(file, mapping, curpos, len, len,
2283                                                 page, fsdata);
2284                 if (err < 0)
2285                         goto out;
2286                 BUG_ON(err != len);
2287                 err = 0;
2288         }
2289 out:
2290         return err;
2291 }
2292
2293 /*
2294  * For moronic filesystems that do not allow holes in file.
2295  * We may have to extend the file.
2296  */
2297 int cont_write_begin(struct file *file, struct address_space *mapping,
2298                         loff_t pos, unsigned len, unsigned flags,
2299                         struct page **pagep, void **fsdata,
2300                         get_block_t *get_block, loff_t *bytes)
2301 {
2302         struct inode *inode = mapping->host;
2303         unsigned blocksize = 1 << inode->i_blkbits;
2304         unsigned zerofrom;
2305         int err;
2306
2307         err = cont_expand_zero(file, mapping, pos, bytes);
2308         if (err)
2309                 return err;
2310
2311         zerofrom = *bytes & ~PAGE_CACHE_MASK;
2312         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2313                 *bytes |= (blocksize-1);
2314                 (*bytes)++;
2315         }
2316
2317         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2318 }
2319 EXPORT_SYMBOL(cont_write_begin);
2320
2321 int block_commit_write(struct page *page, unsigned from, unsigned to)
2322 {
2323         struct inode *inode = page->mapping->host;
2324         __block_commit_write(inode,page,from,to);
2325         return 0;
2326 }
2327 EXPORT_SYMBOL(block_commit_write);
2328
2329 /*
2330  * block_page_mkwrite() is not allowed to change the file size as it gets
2331  * called from a page fault handler when a page is first dirtied. Hence we must
2332  * be careful to check for EOF conditions here. We set the page up correctly
2333  * for a written page which means we get ENOSPC checking when writing into
2334  * holes and correct delalloc and unwritten extent mapping on filesystems that
2335  * support these features.
2336  *
2337  * We are not allowed to take the i_mutex here so we have to play games to
2338  * protect against truncate races as the page could now be beyond EOF.  Because
2339  * truncate writes the inode size before removing pages, once we have the
2340  * page lock we can determine safely if the page is beyond EOF. If it is not
2341  * beyond EOF, then the page is guaranteed safe against truncation until we
2342  * unlock the page.
2343  *
2344  * Direct callers of this function should call vfs_check_frozen() so that page
2345  * fault does not busyloop until the fs is thawed.
2346  */
2347 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2348                          get_block_t get_block)
2349 {
2350         struct page *page = vmf->page;
2351         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2352         unsigned long end;
2353         loff_t size;
2354         int ret;
2355
2356         lock_page(page);
2357         size = i_size_read(inode);
2358         if ((page->mapping != inode->i_mapping) ||
2359             (page_offset(page) > size)) {
2360                 /* We overload EFAULT to mean page got truncated */
2361                 ret = -EFAULT;
2362                 goto out_unlock;
2363         }
2364
2365         /* page is wholly or partially inside EOF */
2366         if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2367                 end = size & ~PAGE_CACHE_MASK;
2368         else
2369                 end = PAGE_CACHE_SIZE;
2370
2371         ret = __block_write_begin(page, 0, end, get_block);
2372         if (!ret)
2373                 ret = block_commit_write(page, 0, end);
2374
2375         if (unlikely(ret < 0))
2376                 goto out_unlock;
2377         /*
2378          * Freezing in progress? We check after the page is marked dirty and
2379          * with page lock held so if the test here fails, we are sure freezing
2380          * code will wait during syncing until the page fault is done - at that
2381          * point page will be dirty and unlocked so freezing code will write it
2382          * and writeprotect it again.
2383          */
2384         set_page_dirty(page);
2385         if (inode->i_sb->s_frozen != SB_UNFROZEN) {
2386                 ret = -EAGAIN;
2387                 goto out_unlock;
2388         }
2389         wait_on_page_writeback(page);
2390         return 0;
2391 out_unlock:
2392         unlock_page(page);
2393         return ret;
2394 }
2395 EXPORT_SYMBOL(__block_page_mkwrite);
2396
2397 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2398                    get_block_t get_block)
2399 {
2400         int ret;
2401         struct super_block *sb = vma->vm_file->f_path.dentry->d_inode->i_sb;
2402
2403         /*
2404          * This check is racy but catches the common case. The check in
2405          * __block_page_mkwrite() is reliable.
2406          */
2407         vfs_check_frozen(sb, SB_FREEZE_WRITE);
2408         ret = __block_page_mkwrite(vma, vmf, get_block);
2409         return block_page_mkwrite_return(ret);
2410 }
2411 EXPORT_SYMBOL(block_page_mkwrite);
2412
2413 /*
2414  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2415  * immediately, while under the page lock.  So it needs a special end_io
2416  * handler which does not touch the bh after unlocking it.
2417  */
2418 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2419 {
2420         __end_buffer_read_notouch(bh, uptodate);
2421 }
2422
2423 /*
2424  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2425  * the page (converting it to circular linked list and taking care of page
2426  * dirty races).
2427  */
2428 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2429 {
2430         struct buffer_head *bh;
2431
2432         BUG_ON(!PageLocked(page));
2433
2434         spin_lock(&page->mapping->private_lock);
2435         bh = head;
2436         do {
2437                 if (PageDirty(page))
2438                         set_buffer_dirty(bh);
2439                 if (!bh->b_this_page)
2440                         bh->b_this_page = head;
2441                 bh = bh->b_this_page;
2442         } while (bh != head);
2443         attach_page_buffers(page, head);
2444         spin_unlock(&page->mapping->private_lock);
2445 }
2446
2447 /*
2448  * On entry, the page is fully not uptodate.
2449  * On exit the page is fully uptodate in the areas outside (from,to)
2450  * The filesystem needs to handle block truncation upon failure.
2451  */
2452 int nobh_write_begin(struct address_space *mapping,
2453                         loff_t pos, unsigned len, unsigned flags,
2454                         struct page **pagep, void **fsdata,
2455                         get_block_t *get_block)
2456 {
2457         struct inode *inode = mapping->host;
2458         const unsigned blkbits = inode->i_blkbits;
2459         const unsigned blocksize = 1 << blkbits;
2460         struct buffer_head *head, *bh;
2461         struct page *page;
2462         pgoff_t index;
2463         unsigned from, to;
2464         unsigned block_in_page;
2465         unsigned block_start, block_end;
2466         sector_t block_in_file;
2467         int nr_reads = 0;
2468         int ret = 0;
2469         int is_mapped_to_disk = 1;
2470
2471         index = pos >> PAGE_CACHE_SHIFT;
2472         from = pos & (PAGE_CACHE_SIZE - 1);
2473         to = from + len;
2474
2475         page = grab_cache_page_write_begin(mapping, index, flags);
2476         if (!page)
2477                 return -ENOMEM;
2478         *pagep = page;
2479         *fsdata = NULL;
2480
2481         if (page_has_buffers(page)) {
2482                 ret = __block_write_begin(page, pos, len, get_block);
2483                 if (unlikely(ret))
2484                         goto out_release;
2485                 return ret;
2486         }
2487
2488         if (PageMappedToDisk(page))
2489                 return 0;
2490
2491         /*
2492          * Allocate buffers so that we can keep track of state, and potentially
2493          * attach them to the page if an error occurs. In the common case of
2494          * no error, they will just be freed again without ever being attached
2495          * to the page (which is all OK, because we're under the page lock).
2496          *
2497          * Be careful: the buffer linked list is a NULL terminated one, rather
2498          * than the circular one we're used to.
2499          */
2500         head = alloc_page_buffers(page, blocksize, 0);
2501         if (!head) {
2502                 ret = -ENOMEM;
2503                 goto out_release;
2504         }
2505
2506         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2507
2508         /*
2509          * We loop across all blocks in the page, whether or not they are
2510          * part of the affected region.  This is so we can discover if the
2511          * page is fully mapped-to-disk.
2512          */
2513         for (block_start = 0, block_in_page = 0, bh = head;
2514                   block_start < PAGE_CACHE_SIZE;
2515                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2516                 int create;
2517
2518                 block_end = block_start + blocksize;
2519                 bh->b_state = 0;
2520                 create = 1;
2521                 if (block_start >= to)
2522                         create = 0;
2523                 ret = get_block(inode, block_in_file + block_in_page,
2524                                         bh, create);
2525                 if (ret)
2526                         goto failed;
2527                 if (!buffer_mapped(bh))
2528                         is_mapped_to_disk = 0;
2529                 if (buffer_new(bh))
2530                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2531                 if (PageUptodate(page)) {
2532                         set_buffer_uptodate(bh);
2533                         continue;
2534                 }
2535                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2536                         zero_user_segments(page, block_start, from,
2537                                                         to, block_end);
2538                         continue;
2539                 }
2540                 if (buffer_uptodate(bh))
2541                         continue;       /* reiserfs does this */
2542                 if (block_start < from || block_end > to) {
2543                         lock_buffer(bh);
2544                         bh->b_end_io = end_buffer_read_nobh;
2545                         submit_bh(READ, bh);
2546                         nr_reads++;
2547                 }
2548         }
2549
2550         if (nr_reads) {
2551                 /*
2552                  * The page is locked, so these buffers are protected from
2553                  * any VM or truncate activity.  Hence we don't need to care
2554                  * for the buffer_head refcounts.
2555                  */
2556                 for (bh = head; bh; bh = bh->b_this_page) {
2557                         wait_on_buffer(bh);
2558                         if (!buffer_uptodate(bh))
2559                                 ret = -EIO;
2560                 }
2561                 if (ret)
2562                         goto failed;
2563         }
2564
2565         if (is_mapped_to_disk)
2566                 SetPageMappedToDisk(page);
2567
2568         *fsdata = head; /* to be released by nobh_write_end */
2569
2570         return 0;
2571
2572 failed:
2573         BUG_ON(!ret);
2574         /*
2575          * Error recovery is a bit difficult. We need to zero out blocks that
2576          * were newly allocated, and dirty them to ensure they get written out.
2577          * Buffers need to be attached to the page at this point, otherwise
2578          * the handling of potential IO errors during writeout would be hard
2579          * (could try doing synchronous writeout, but what if that fails too?)
2580          */
2581         attach_nobh_buffers(page, head);
2582         page_zero_new_buffers(page, from, to);
2583
2584 out_release:
2585         unlock_page(page);
2586         page_cache_release(page);
2587         *pagep = NULL;
2588
2589         return ret;
2590 }
2591 EXPORT_SYMBOL(nobh_write_begin);
2592
2593 int nobh_write_end(struct file *file, struct address_space *mapping,
2594                         loff_t pos, unsigned len, unsigned copied,
2595                         struct page *page, void *fsdata)
2596 {
2597         struct inode *inode = page->mapping->host;
2598         struct buffer_head *head = fsdata;
2599         struct buffer_head *bh;
2600         BUG_ON(fsdata != NULL && page_has_buffers(page));
2601
2602         if (unlikely(copied < len) && head)
2603                 attach_nobh_buffers(page, head);
2604         if (page_has_buffers(page))
2605                 return generic_write_end(file, mapping, pos, len,
2606                                         copied, page, fsdata);
2607
2608         SetPageUptodate(page);
2609         set_page_dirty(page);
2610         if (pos+copied > inode->i_size) {
2611                 i_size_write(inode, pos+copied);
2612                 mark_inode_dirty(inode);
2613         }
2614
2615         unlock_page(page);
2616         page_cache_release(page);
2617
2618         while (head) {
2619                 bh = head;
2620                 head = head->b_this_page;
2621                 free_buffer_head(bh);
2622         }
2623
2624         return copied;
2625 }
2626 EXPORT_SYMBOL(nobh_write_end);
2627
2628 /*
2629  * nobh_writepage() - based on block_full_write_page() except
2630  * that it tries to operate without attaching bufferheads to
2631  * the page.
2632  */
2633 int nobh_writepage(struct page *page, get_block_t *get_block,
2634                         struct writeback_control *wbc)
2635 {
2636         struct inode * const inode = page->mapping->host;
2637         loff_t i_size = i_size_read(inode);
2638         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2639         unsigned offset;
2640         int ret;
2641
2642         /* Is the page fully inside i_size? */
2643         if (page->index < end_index)
2644                 goto out;
2645
2646         /* Is the page fully outside i_size? (truncate in progress) */
2647         offset = i_size & (PAGE_CACHE_SIZE-1);
2648         if (page->index >= end_index+1 || !offset) {
2649                 /*
2650                  * The page may have dirty, unmapped buffers.  For example,
2651                  * they may have been added in ext3_writepage().  Make them
2652                  * freeable here, so the page does not leak.
2653                  */
2654 #if 0
2655                 /* Not really sure about this  - do we need this ? */
2656                 if (page->mapping->a_ops->invalidatepage)
2657                         page->mapping->a_ops->invalidatepage(page, offset);
2658 #endif
2659                 unlock_page(page);
2660                 return 0; /* don't care */
2661         }
2662
2663         /*
2664          * The page straddles i_size.  It must be zeroed out on each and every
2665          * writepage invocation because it may be mmapped.  "A file is mapped
2666          * in multiples of the page size.  For a file that is not a multiple of
2667          * the  page size, the remaining memory is zeroed when mapped, and
2668          * writes to that region are not written out to the file."
2669          */
2670         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2671 out:
2672         ret = mpage_writepage(page, get_block, wbc);
2673         if (ret == -EAGAIN)
2674                 ret = __block_write_full_page(inode, page, get_block, wbc,
2675                                               end_buffer_async_write);
2676         return ret;
2677 }
2678 EXPORT_SYMBOL(nobh_writepage);
2679
2680 int nobh_truncate_page(struct address_space *mapping,
2681                         loff_t from, get_block_t *get_block)
2682 {
2683         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2684         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2685         unsigned blocksize;
2686         sector_t iblock;
2687         unsigned length, pos;
2688         struct inode *inode = mapping->host;
2689         struct page *page;
2690         struct buffer_head map_bh;
2691         int err;
2692
2693         blocksize = 1 << inode->i_blkbits;
2694         length = offset & (blocksize - 1);
2695
2696         /* Block boundary? Nothing to do */
2697         if (!length)
2698                 return 0;
2699
2700         length = blocksize - length;
2701         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2702
2703         page = grab_cache_page(mapping, index);
2704         err = -ENOMEM;
2705         if (!page)
2706                 goto out;
2707
2708         if (page_has_buffers(page)) {
2709 has_buffers:
2710                 unlock_page(page);
2711                 page_cache_release(page);
2712                 return block_truncate_page(mapping, from, get_block);
2713         }
2714
2715         /* Find the buffer that contains "offset" */
2716         pos = blocksize;
2717         while (offset >= pos) {
2718                 iblock++;
2719                 pos += blocksize;
2720         }
2721
2722         map_bh.b_size = blocksize;
2723         map_bh.b_state = 0;
2724         err = get_block(inode, iblock, &map_bh, 0);
2725         if (err)
2726                 goto unlock;
2727         /* unmapped? It's a hole - nothing to do */
2728         if (!buffer_mapped(&map_bh))
2729                 goto unlock;
2730
2731         /* Ok, it's mapped. Make sure it's up-to-date */
2732         if (!PageUptodate(page)) {
2733                 err = mapping->a_ops->readpage(NULL, page);
2734                 if (err) {
2735                         page_cache_release(page);
2736                         goto out;
2737                 }
2738                 lock_page(page);
2739                 if (!PageUptodate(page)) {
2740                         err = -EIO;
2741                         goto unlock;
2742                 }
2743                 if (page_has_buffers(page))
2744                         goto has_buffers;
2745         }
2746         zero_user(page, offset, length);
2747         set_page_dirty(page);
2748         err = 0;
2749
2750 unlock:
2751         unlock_page(page);
2752         page_cache_release(page);
2753 out:
2754         return err;
2755 }
2756 EXPORT_SYMBOL(nobh_truncate_page);
2757
2758 int block_truncate_page(struct address_space *mapping,
2759                         loff_t from, get_block_t *get_block)
2760 {
2761         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2762         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2763         unsigned blocksize;
2764         sector_t iblock;
2765         unsigned length, pos;
2766         struct inode *inode = mapping->host;
2767         struct page *page;
2768         struct buffer_head *bh;
2769         int err;
2770
2771         blocksize = 1 << inode->i_blkbits;
2772         length = offset & (blocksize - 1);
2773
2774         /* Block boundary? Nothing to do */
2775         if (!length)
2776                 return 0;
2777
2778         length = blocksize - length;
2779         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2780         
2781         page = grab_cache_page(mapping, index);
2782         err = -ENOMEM;
2783         if (!page)
2784                 goto out;
2785
2786         if (!page_has_buffers(page))
2787                 create_empty_buffers(page, blocksize, 0);
2788
2789         /* Find the buffer that contains "offset" */
2790         bh = page_buffers(page);
2791         pos = blocksize;
2792         while (offset >= pos) {
2793                 bh = bh->b_this_page;
2794                 iblock++;
2795                 pos += blocksize;
2796         }
2797
2798         err = 0;
2799         if (!buffer_mapped(bh)) {
2800                 WARN_ON(bh->b_size != blocksize);
2801                 err = get_block(inode, iblock, bh, 0);
2802                 if (err)
2803                         goto unlock;
2804                 /* unmapped? It's a hole - nothing to do */
2805                 if (!buffer_mapped(bh))
2806                         goto unlock;
2807         }
2808
2809         /* Ok, it's mapped. Make sure it's up-to-date */
2810         if (PageUptodate(page))
2811                 set_buffer_uptodate(bh);
2812
2813         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2814                 err = -EIO;
2815                 ll_rw_block(READ, 1, &bh);
2816                 wait_on_buffer(bh);
2817                 /* Uhhuh. Read error. Complain and punt. */
2818                 if (!buffer_uptodate(bh))
2819                         goto unlock;
2820         }
2821
2822         zero_user(page, offset, length);
2823         mark_buffer_dirty(bh);
2824         err = 0;
2825
2826 unlock:
2827         unlock_page(page);
2828         page_cache_release(page);
2829 out:
2830         return err;
2831 }
2832 EXPORT_SYMBOL(block_truncate_page);
2833
2834 /*
2835  * The generic ->writepage function for buffer-backed address_spaces
2836  * this form passes in the end_io handler used to finish the IO.
2837  */
2838 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2839                         struct writeback_control *wbc, bh_end_io_t *handler)
2840 {
2841         struct inode * const inode = page->mapping->host;
2842         loff_t i_size = i_size_read(inode);
2843         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2844         unsigned offset;
2845
2846         /* Is the page fully inside i_size? */
2847         if (page->index < end_index)
2848                 return __block_write_full_page(inode, page, get_block, wbc,
2849                                                handler);
2850
2851         /* Is the page fully outside i_size? (truncate in progress) */
2852         offset = i_size & (PAGE_CACHE_SIZE-1);
2853         if (page->index >= end_index+1 || !offset) {
2854                 /*
2855                  * The page may have dirty, unmapped buffers.  For example,
2856                  * they may have been added in ext3_writepage().  Make them
2857                  * freeable here, so the page does not leak.
2858                  */
2859                 do_invalidatepage(page, 0);
2860                 unlock_page(page);
2861                 return 0; /* don't care */
2862         }
2863
2864         /*
2865          * The page straddles i_size.  It must be zeroed out on each and every
2866          * writepage invocation because it may be mmapped.  "A file is mapped
2867          * in multiples of the page size.  For a file that is not a multiple of
2868          * the  page size, the remaining memory is zeroed when mapped, and
2869          * writes to that region are not written out to the file."
2870          */
2871         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2872         return __block_write_full_page(inode, page, get_block, wbc, handler);
2873 }
2874 EXPORT_SYMBOL(block_write_full_page_endio);
2875
2876 /*
2877  * The generic ->writepage function for buffer-backed address_spaces
2878  */
2879 int block_write_full_page(struct page *page, get_block_t *get_block,
2880                         struct writeback_control *wbc)
2881 {
2882         return block_write_full_page_endio(page, get_block, wbc,
2883                                            end_buffer_async_write);
2884 }
2885 EXPORT_SYMBOL(block_write_full_page);
2886
2887 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2888                             get_block_t *get_block)
2889 {
2890         struct buffer_head tmp;
2891         struct inode *inode = mapping->host;
2892         tmp.b_state = 0;
2893         tmp.b_blocknr = 0;
2894         tmp.b_size = 1 << inode->i_blkbits;
2895         get_block(inode, block, &tmp, 0);
2896         return tmp.b_blocknr;
2897 }
2898 EXPORT_SYMBOL(generic_block_bmap);
2899
2900 static void end_bio_bh_io_sync(struct bio *bio, int err)
2901 {
2902         struct buffer_head *bh = bio->bi_private;
2903
2904         if (err == -EOPNOTSUPP) {
2905                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2906         }
2907
2908         if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2909                 set_bit(BH_Quiet, &bh->b_state);
2910
2911         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2912         bio_put(bio);
2913 }
2914
2915 int submit_bh(int rw, struct buffer_head * bh)
2916 {
2917         struct bio *bio;
2918         int ret = 0;
2919
2920         BUG_ON(!buffer_locked(bh));
2921         BUG_ON(!buffer_mapped(bh));
2922         BUG_ON(!bh->b_end_io);
2923         BUG_ON(buffer_delay(bh));
2924         BUG_ON(buffer_unwritten(bh));
2925
2926         /*
2927          * Only clear out a write error when rewriting
2928          */
2929         if (test_set_buffer_req(bh) && (rw & WRITE))
2930                 clear_buffer_write_io_error(bh);
2931
2932         /*
2933          * from here on down, it's all bio -- do the initial mapping,
2934          * submit_bio -> generic_make_request may further map this bio around
2935          */
2936         bio = bio_alloc(GFP_NOIO, 1);
2937
2938         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2939         bio->bi_bdev = bh->b_bdev;
2940         bio->bi_io_vec[0].bv_page = bh->b_page;
2941         bio->bi_io_vec[0].bv_len = bh->b_size;
2942         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2943
2944         bio->bi_vcnt = 1;
2945         bio->bi_idx = 0;
2946         bio->bi_size = bh->b_size;
2947
2948         bio->bi_end_io = end_bio_bh_io_sync;
2949         bio->bi_private = bh;
2950
2951         bio_get(bio);
2952         submit_bio(rw, bio);
2953
2954         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2955                 ret = -EOPNOTSUPP;
2956
2957         bio_put(bio);
2958         return ret;
2959 }
2960 EXPORT_SYMBOL(submit_bh);
2961
2962 /**
2963  * ll_rw_block: low-level access to block devices (DEPRECATED)
2964  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2965  * @nr: number of &struct buffer_heads in the array
2966  * @bhs: array of pointers to &struct buffer_head
2967  *
2968  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2969  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2970  * %READA option is described in the documentation for generic_make_request()
2971  * which ll_rw_block() calls.
2972  *
2973  * This function drops any buffer that it cannot get a lock on (with the
2974  * BH_Lock state bit), any buffer that appears to be clean when doing a write
2975  * request, and any buffer that appears to be up-to-date when doing read
2976  * request.  Further it marks as clean buffers that are processed for
2977  * writing (the buffer cache won't assume that they are actually clean
2978  * until the buffer gets unlocked).
2979  *
2980  * ll_rw_block sets b_end_io to simple completion handler that marks
2981  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2982  * any waiters. 
2983  *
2984  * All of the buffers must be for the same device, and must also be a
2985  * multiple of the current approved size for the device.
2986  */
2987 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2988 {
2989         int i;
2990
2991         for (i = 0; i < nr; i++) {
2992                 struct buffer_head *bh = bhs[i];
2993
2994                 if (!trylock_buffer(bh))
2995                         continue;
2996                 if (rw == WRITE) {
2997                         if (test_clear_buffer_dirty(bh)) {
2998                                 bh->b_end_io = end_buffer_write_sync;
2999                                 get_bh(bh);
3000                                 submit_bh(WRITE, bh);
3001                                 continue;
3002                         }
3003                 } else {
3004                         if (!buffer_uptodate(bh)) {
3005                                 bh->b_end_io = end_buffer_read_sync;
3006                                 get_bh(bh);
3007                                 submit_bh(rw, bh);
3008                                 continue;
3009                         }
3010                 }
3011                 unlock_buffer(bh);
3012         }
3013 }
3014 EXPORT_SYMBOL(ll_rw_block);
3015
3016 void write_dirty_buffer(struct buffer_head *bh, int rw)
3017 {
3018         lock_buffer(bh);
3019         if (!test_clear_buffer_dirty(bh)) {
3020                 unlock_buffer(bh);
3021                 return;
3022         }
3023         bh->b_end_io = end_buffer_write_sync;
3024         get_bh(bh);
3025         submit_bh(rw, bh);
3026 }
3027 EXPORT_SYMBOL(write_dirty_buffer);
3028
3029 /*
3030  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3031  * and then start new I/O and then wait upon it.  The caller must have a ref on
3032  * the buffer_head.
3033  */
3034 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3035 {
3036         int ret = 0;
3037
3038         WARN_ON(atomic_read(&bh->b_count) < 1);
3039         lock_buffer(bh);
3040         if (test_clear_buffer_dirty(bh)) {
3041                 get_bh(bh);
3042                 bh->b_end_io = end_buffer_write_sync;
3043                 ret = submit_bh(rw, bh);
3044                 wait_on_buffer(bh);
3045                 if (!ret && !buffer_uptodate(bh))
3046                         ret = -EIO;
3047         } else {
3048                 unlock_buffer(bh);
3049         }
3050         return ret;
3051 }
3052 EXPORT_SYMBOL(__sync_dirty_buffer);
3053
3054 int sync_dirty_buffer(struct buffer_head *bh)
3055 {
3056         return __sync_dirty_buffer(bh, WRITE_SYNC);
3057 }
3058 EXPORT_SYMBOL(sync_dirty_buffer);
3059
3060 /*
3061  * try_to_free_buffers() checks if all the buffers on this particular page
3062  * are unused, and releases them if so.
3063  *
3064  * Exclusion against try_to_free_buffers may be obtained by either
3065  * locking the page or by holding its mapping's private_lock.
3066  *
3067  * If the page is dirty but all the buffers are clean then we need to
3068  * be sure to mark the page clean as well.  This is because the page
3069  * may be against a block device, and a later reattachment of buffers
3070  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3071  * filesystem data on the same device.
3072  *
3073  * The same applies to regular filesystem pages: if all the buffers are
3074  * clean then we set the page clean and proceed.  To do that, we require
3075  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3076  * private_lock.
3077  *
3078  * try_to_free_buffers() is non-blocking.
3079  */
3080 static inline int buffer_busy(struct buffer_head *bh)
3081 {
3082         return atomic_read(&bh->b_count) |
3083                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3084 }
3085
3086 static int
3087 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3088 {
3089         struct buffer_head *head = page_buffers(page);
3090         struct buffer_head *bh;
3091
3092         bh = head;
3093         do {
3094                 if (buffer_write_io_error(bh) && page->mapping)
3095                         set_bit(AS_EIO, &page->mapping->flags);
3096                 if (buffer_busy(bh))
3097                         goto failed;
3098                 bh = bh->b_this_page;
3099         } while (bh != head);
3100
3101         do {
3102                 struct buffer_head *next = bh->b_this_page;
3103
3104                 if (bh->b_assoc_map)
3105                         __remove_assoc_queue(bh);
3106                 bh = next;
3107         } while (bh != head);
3108         *buffers_to_free = head;
3109         __clear_page_buffers(page);
3110         return 1;
3111 failed:
3112         return 0;
3113 }
3114
3115 int try_to_free_buffers(struct page *page)
3116 {
3117         struct address_space * const mapping = page->mapping;
3118         struct buffer_head *buffers_to_free = NULL;
3119         int ret = 0;
3120
3121         BUG_ON(!PageLocked(page));
3122         if (PageWriteback(page))
3123                 return 0;
3124
3125         if (mapping == NULL) {          /* can this still happen? */
3126                 ret = drop_buffers(page, &buffers_to_free);
3127                 goto out;
3128         }
3129
3130         spin_lock(&mapping->private_lock);
3131         ret = drop_buffers(page, &buffers_to_free);
3132
3133         /*
3134          * If the filesystem writes its buffers by hand (eg ext3)
3135          * then we can have clean buffers against a dirty page.  We
3136          * clean the page here; otherwise the VM will never notice
3137          * that the filesystem did any IO at all.
3138          *
3139          * Also, during truncate, discard_buffer will have marked all
3140          * the page's buffers clean.  We discover that here and clean
3141          * the page also.
3142          *
3143          * private_lock must be held over this entire operation in order
3144          * to synchronise against __set_page_dirty_buffers and prevent the
3145          * dirty bit from being lost.
3146          */
3147         if (ret)
3148                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3149         spin_unlock(&mapping->private_lock);
3150 out:
3151         if (buffers_to_free) {
3152                 struct buffer_head *bh = buffers_to_free;
3153
3154                 do {
3155                         struct buffer_head *next = bh->b_this_page;
3156                         free_buffer_head(bh);
3157                         bh = next;
3158                 } while (bh != buffers_to_free);
3159         }
3160         return ret;
3161 }
3162 EXPORT_SYMBOL(try_to_free_buffers);
3163
3164 /*
3165  * There are no bdflush tunables left.  But distributions are
3166  * still running obsolete flush daemons, so we terminate them here.
3167  *
3168  * Use of bdflush() is deprecated and will be removed in a future kernel.
3169  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3170  */
3171 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3172 {
3173         static int msg_count;
3174
3175         if (!capable(CAP_SYS_ADMIN))
3176                 return -EPERM;
3177
3178         if (msg_count < 5) {
3179                 msg_count++;
3180                 printk(KERN_INFO
3181                         "warning: process `%s' used the obsolete bdflush"
3182                         " system call\n", current->comm);
3183                 printk(KERN_INFO "Fix your initscripts?\n");
3184         }
3185
3186         if (func == 1)
3187                 do_exit(0);
3188         return 0;
3189 }
3190
3191 /*
3192  * Buffer-head allocation
3193  */
3194 static struct kmem_cache *bh_cachep;
3195
3196 /*
3197  * Once the number of bh's in the machine exceeds this level, we start
3198  * stripping them in writeback.
3199  */
3200 static int max_buffer_heads;
3201
3202 int buffer_heads_over_limit;
3203
3204 struct bh_accounting {
3205         int nr;                 /* Number of live bh's */
3206         int ratelimit;          /* Limit cacheline bouncing */
3207 };
3208
3209 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3210
3211 static void recalc_bh_state(void)
3212 {
3213         int i;
3214         int tot = 0;
3215
3216         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3217                 return;
3218         __this_cpu_write(bh_accounting.ratelimit, 0);
3219         for_each_online_cpu(i)
3220                 tot += per_cpu(bh_accounting, i).nr;
3221         buffer_heads_over_limit = (tot > max_buffer_heads);
3222 }
3223
3224 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3225 {
3226         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3227         if (ret) {
3228                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3229                 preempt_disable();
3230                 __this_cpu_inc(bh_accounting.nr);
3231                 recalc_bh_state();
3232                 preempt_enable();
3233         }
3234         return ret;
3235 }
3236 EXPORT_SYMBOL(alloc_buffer_head);
3237
3238 void free_buffer_head(struct buffer_head *bh)
3239 {
3240         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3241         kmem_cache_free(bh_cachep, bh);
3242         preempt_disable();
3243         __this_cpu_dec(bh_accounting.nr);
3244         recalc_bh_state();
3245         preempt_enable();
3246 }
3247 EXPORT_SYMBOL(free_buffer_head);
3248
3249 static void buffer_exit_cpu(int cpu)
3250 {
3251         int i;
3252         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3253
3254         for (i = 0; i < BH_LRU_SIZE; i++) {
3255                 brelse(b->bhs[i]);
3256                 b->bhs[i] = NULL;
3257         }
3258         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3259         per_cpu(bh_accounting, cpu).nr = 0;
3260 }
3261
3262 static int buffer_cpu_notify(struct notifier_block *self,
3263                               unsigned long action, void *hcpu)
3264 {
3265         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3266                 buffer_exit_cpu((unsigned long)hcpu);
3267         return NOTIFY_OK;
3268 }
3269
3270 /**
3271  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3272  * @bh: struct buffer_head
3273  *
3274  * Return true if the buffer is up-to-date and false,
3275  * with the buffer locked, if not.
3276  */
3277 int bh_uptodate_or_lock(struct buffer_head *bh)
3278 {
3279         if (!buffer_uptodate(bh)) {
3280                 lock_buffer(bh);
3281                 if (!buffer_uptodate(bh))
3282                         return 0;
3283                 unlock_buffer(bh);
3284         }
3285         return 1;
3286 }
3287 EXPORT_SYMBOL(bh_uptodate_or_lock);
3288
3289 /**
3290  * bh_submit_read - Submit a locked buffer for reading
3291  * @bh: struct buffer_head
3292  *
3293  * Returns zero on success and -EIO on error.
3294  */
3295 int bh_submit_read(struct buffer_head *bh)
3296 {
3297         BUG_ON(!buffer_locked(bh));
3298
3299         if (buffer_uptodate(bh)) {
3300                 unlock_buffer(bh);
3301                 return 0;
3302         }
3303
3304         get_bh(bh);
3305         bh->b_end_io = end_buffer_read_sync;
3306         submit_bh(READ, bh);
3307         wait_on_buffer(bh);
3308         if (buffer_uptodate(bh))
3309                 return 0;
3310         return -EIO;
3311 }
3312 EXPORT_SYMBOL(bh_submit_read);
3313
3314 void __init buffer_init(void)
3315 {
3316         int nrpages;
3317
3318         bh_cachep = kmem_cache_create("buffer_head",
3319                         sizeof(struct buffer_head), 0,
3320                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3321                                 SLAB_MEM_SPREAD),
3322                                 NULL);
3323
3324         /*
3325          * Limit the bh occupancy to 10% of ZONE_NORMAL
3326          */
3327         nrpages = (nr_free_buffer_pages() * 10) / 100;
3328         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3329         hotcpu_notifier(buffer_cpu_notify, 0);
3330 }