Merge branch 'stable-3.2' into pandora-3.2
[pandora-kernel.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/cleancache.h>
45
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50 inline void
51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 {
53         bh->b_end_io = handler;
54         bh->b_private = private;
55 }
56 EXPORT_SYMBOL(init_buffer);
57
58 static int sleep_on_buffer(void *word)
59 {
60         io_schedule();
61         return 0;
62 }
63
64 void __lock_buffer(struct buffer_head *bh)
65 {
66         wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
67                                                         TASK_UNINTERRUPTIBLE);
68 }
69 EXPORT_SYMBOL(__lock_buffer);
70
71 void unlock_buffer(struct buffer_head *bh)
72 {
73         clear_bit_unlock(BH_Lock, &bh->b_state);
74         smp_mb__after_clear_bit();
75         wake_up_bit(&bh->b_state, BH_Lock);
76 }
77 EXPORT_SYMBOL(unlock_buffer);
78
79 /*
80  * Block until a buffer comes unlocked.  This doesn't stop it
81  * from becoming locked again - you have to lock it yourself
82  * if you want to preserve its state.
83  */
84 void __wait_on_buffer(struct buffer_head * bh)
85 {
86         wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
87 }
88 EXPORT_SYMBOL(__wait_on_buffer);
89
90 static void
91 __clear_page_buffers(struct page *page)
92 {
93         ClearPagePrivate(page);
94         set_page_private(page, 0);
95         page_cache_release(page);
96 }
97
98
99 static int quiet_error(struct buffer_head *bh)
100 {
101         if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
102                 return 0;
103         return 1;
104 }
105
106
107 static void buffer_io_error(struct buffer_head *bh)
108 {
109         char b[BDEVNAME_SIZE];
110         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
111                         bdevname(bh->b_bdev, b),
112                         (unsigned long long)bh->b_blocknr);
113 }
114
115 /*
116  * End-of-IO handler helper function which does not touch the bh after
117  * unlocking it.
118  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
119  * a race there is benign: unlock_buffer() only use the bh's address for
120  * hashing after unlocking the buffer, so it doesn't actually touch the bh
121  * itself.
122  */
123 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
124 {
125         if (uptodate) {
126                 set_buffer_uptodate(bh);
127         } else {
128                 /* This happens, due to failed READA attempts. */
129                 clear_buffer_uptodate(bh);
130         }
131         unlock_buffer(bh);
132 }
133
134 /*
135  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
136  * unlock the buffer. This is what ll_rw_block uses too.
137  */
138 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
139 {
140         __end_buffer_read_notouch(bh, uptodate);
141         put_bh(bh);
142 }
143 EXPORT_SYMBOL(end_buffer_read_sync);
144
145 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
146 {
147         char b[BDEVNAME_SIZE];
148
149         if (uptodate) {
150                 set_buffer_uptodate(bh);
151         } else {
152                 if (!quiet_error(bh)) {
153                         buffer_io_error(bh);
154                         printk(KERN_WARNING "lost page write due to "
155                                         "I/O error on %s\n",
156                                        bdevname(bh->b_bdev, b));
157                 }
158                 set_buffer_write_io_error(bh);
159                 clear_buffer_uptodate(bh);
160         }
161         unlock_buffer(bh);
162         put_bh(bh);
163 }
164 EXPORT_SYMBOL(end_buffer_write_sync);
165
166 /*
167  * Various filesystems appear to want __find_get_block to be non-blocking.
168  * But it's the page lock which protects the buffers.  To get around this,
169  * we get exclusion from try_to_free_buffers with the blockdev mapping's
170  * private_lock.
171  *
172  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
173  * may be quite high.  This code could TryLock the page, and if that
174  * succeeds, there is no need to take private_lock. (But if
175  * private_lock is contended then so is mapping->tree_lock).
176  */
177 static struct buffer_head *
178 __find_get_block_slow(struct block_device *bdev, sector_t block)
179 {
180         struct inode *bd_inode = bdev->bd_inode;
181         struct address_space *bd_mapping = bd_inode->i_mapping;
182         struct buffer_head *ret = NULL;
183         pgoff_t index;
184         struct buffer_head *bh;
185         struct buffer_head *head;
186         struct page *page;
187         int all_mapped = 1;
188
189         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
190         page = find_get_page(bd_mapping, index);
191         if (!page)
192                 goto out;
193
194         spin_lock(&bd_mapping->private_lock);
195         if (!page_has_buffers(page))
196                 goto out_unlock;
197         head = page_buffers(page);
198         bh = head;
199         do {
200                 if (!buffer_mapped(bh))
201                         all_mapped = 0;
202                 else if (bh->b_blocknr == block) {
203                         ret = bh;
204                         get_bh(bh);
205                         goto out_unlock;
206                 }
207                 bh = bh->b_this_page;
208         } while (bh != head);
209
210         /* we might be here because some of the buffers on this page are
211          * not mapped.  This is due to various races between
212          * file io on the block device and getblk.  It gets dealt with
213          * elsewhere, don't buffer_error if we had some unmapped buffers
214          */
215         if (all_mapped) {
216                 char b[BDEVNAME_SIZE];
217
218                 printk("__find_get_block_slow() failed. "
219                         "block=%llu, b_blocknr=%llu\n",
220                         (unsigned long long)block,
221                         (unsigned long long)bh->b_blocknr);
222                 printk("b_state=0x%08lx, b_size=%zu\n",
223                         bh->b_state, bh->b_size);
224                 printk("device %s blocksize: %d\n", bdevname(bdev, b),
225                         1 << bd_inode->i_blkbits);
226         }
227 out_unlock:
228         spin_unlock(&bd_mapping->private_lock);
229         page_cache_release(page);
230 out:
231         return ret;
232 }
233
234 /* If invalidate_buffers() will trash dirty buffers, it means some kind
235    of fs corruption is going on. Trashing dirty data always imply losing
236    information that was supposed to be just stored on the physical layer
237    by the user.
238
239    Thus invalidate_buffers in general usage is not allwowed to trash
240    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
241    be preserved.  These buffers are simply skipped.
242   
243    We also skip buffers which are still in use.  For example this can
244    happen if a userspace program is reading the block device.
245
246    NOTE: In the case where the user removed a removable-media-disk even if
247    there's still dirty data not synced on disk (due a bug in the device driver
248    or due an error of the user), by not destroying the dirty buffers we could
249    generate corruption also on the next media inserted, thus a parameter is
250    necessary to handle this case in the most safe way possible (trying
251    to not corrupt also the new disk inserted with the data belonging to
252    the old now corrupted disk). Also for the ramdisk the natural thing
253    to do in order to release the ramdisk memory is to destroy dirty buffers.
254
255    These are two special cases. Normal usage imply the device driver
256    to issue a sync on the device (without waiting I/O completion) and
257    then an invalidate_buffers call that doesn't trash dirty buffers.
258
259    For handling cache coherency with the blkdev pagecache the 'update' case
260    is been introduced. It is needed to re-read from disk any pinned
261    buffer. NOTE: re-reading from disk is destructive so we can do it only
262    when we assume nobody is changing the buffercache under our I/O and when
263    we think the disk contains more recent information than the buffercache.
264    The update == 1 pass marks the buffers we need to update, the update == 2
265    pass does the actual I/O. */
266 void invalidate_bdev(struct block_device *bdev)
267 {
268         struct address_space *mapping = bdev->bd_inode->i_mapping;
269
270         if (mapping->nrpages == 0)
271                 return;
272
273         invalidate_bh_lrus();
274         lru_add_drain_all();    /* make sure all lru add caches are flushed */
275         invalidate_mapping_pages(mapping, 0, -1);
276         /* 99% of the time, we don't need to flush the cleancache on the bdev.
277          * But, for the strange corners, lets be cautious
278          */
279         cleancache_flush_inode(mapping);
280 }
281 EXPORT_SYMBOL(invalidate_bdev);
282
283 /*
284  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
285  */
286 static void free_more_memory(void)
287 {
288         struct zone *zone;
289         int nid;
290
291         wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
292         yield();
293
294         for_each_online_node(nid) {
295                 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
296                                                 gfp_zone(GFP_NOFS), NULL,
297                                                 &zone);
298                 if (zone)
299                         try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
300                                                 GFP_NOFS, NULL);
301         }
302 }
303
304 /*
305  * I/O completion handler for block_read_full_page() - pages
306  * which come unlocked at the end of I/O.
307  */
308 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
309 {
310         unsigned long flags;
311         struct buffer_head *first;
312         struct buffer_head *tmp;
313         struct page *page;
314         int page_uptodate = 1;
315
316         BUG_ON(!buffer_async_read(bh));
317
318         page = bh->b_page;
319         if (uptodate) {
320                 set_buffer_uptodate(bh);
321         } else {
322                 clear_buffer_uptodate(bh);
323                 if (!quiet_error(bh))
324                         buffer_io_error(bh);
325                 SetPageError(page);
326         }
327
328         /*
329          * Be _very_ careful from here on. Bad things can happen if
330          * two buffer heads end IO at almost the same time and both
331          * decide that the page is now completely done.
332          */
333         first = page_buffers(page);
334         local_irq_save(flags);
335         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
336         clear_buffer_async_read(bh);
337         unlock_buffer(bh);
338         tmp = bh;
339         do {
340                 if (!buffer_uptodate(tmp))
341                         page_uptodate = 0;
342                 if (buffer_async_read(tmp)) {
343                         BUG_ON(!buffer_locked(tmp));
344                         goto still_busy;
345                 }
346                 tmp = tmp->b_this_page;
347         } while (tmp != bh);
348         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
349         local_irq_restore(flags);
350
351         /*
352          * If none of the buffers had errors and they are all
353          * uptodate then we can set the page uptodate.
354          */
355         if (page_uptodate && !PageError(page))
356                 SetPageUptodate(page);
357         unlock_page(page);
358         return;
359
360 still_busy:
361         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
362         local_irq_restore(flags);
363         return;
364 }
365
366 /*
367  * Completion handler for block_write_full_page() - pages which are unlocked
368  * during I/O, and which have PageWriteback cleared upon I/O completion.
369  */
370 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
371 {
372         char b[BDEVNAME_SIZE];
373         unsigned long flags;
374         struct buffer_head *first;
375         struct buffer_head *tmp;
376         struct page *page;
377
378         BUG_ON(!buffer_async_write(bh));
379
380         page = bh->b_page;
381         if (uptodate) {
382                 set_buffer_uptodate(bh);
383         } else {
384                 if (!quiet_error(bh)) {
385                         buffer_io_error(bh);
386                         printk(KERN_WARNING "lost page write due to "
387                                         "I/O error on %s\n",
388                                bdevname(bh->b_bdev, b));
389                 }
390                 set_bit(AS_EIO, &page->mapping->flags);
391                 set_buffer_write_io_error(bh);
392                 clear_buffer_uptodate(bh);
393                 SetPageError(page);
394         }
395
396         first = page_buffers(page);
397         local_irq_save(flags);
398         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
399
400         clear_buffer_async_write(bh);
401         unlock_buffer(bh);
402         tmp = bh->b_this_page;
403         while (tmp != bh) {
404                 if (buffer_async_write(tmp)) {
405                         BUG_ON(!buffer_locked(tmp));
406                         goto still_busy;
407                 }
408                 tmp = tmp->b_this_page;
409         }
410         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
411         local_irq_restore(flags);
412         end_page_writeback(page);
413         return;
414
415 still_busy:
416         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
417         local_irq_restore(flags);
418         return;
419 }
420 EXPORT_SYMBOL(end_buffer_async_write);
421
422 /*
423  * If a page's buffers are under async readin (end_buffer_async_read
424  * completion) then there is a possibility that another thread of
425  * control could lock one of the buffers after it has completed
426  * but while some of the other buffers have not completed.  This
427  * locked buffer would confuse end_buffer_async_read() into not unlocking
428  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
429  * that this buffer is not under async I/O.
430  *
431  * The page comes unlocked when it has no locked buffer_async buffers
432  * left.
433  *
434  * PageLocked prevents anyone starting new async I/O reads any of
435  * the buffers.
436  *
437  * PageWriteback is used to prevent simultaneous writeout of the same
438  * page.
439  *
440  * PageLocked prevents anyone from starting writeback of a page which is
441  * under read I/O (PageWriteback is only ever set against a locked page).
442  */
443 static void mark_buffer_async_read(struct buffer_head *bh)
444 {
445         bh->b_end_io = end_buffer_async_read;
446         set_buffer_async_read(bh);
447 }
448
449 static void mark_buffer_async_write_endio(struct buffer_head *bh,
450                                           bh_end_io_t *handler)
451 {
452         bh->b_end_io = handler;
453         set_buffer_async_write(bh);
454 }
455
456 void mark_buffer_async_write(struct buffer_head *bh)
457 {
458         mark_buffer_async_write_endio(bh, end_buffer_async_write);
459 }
460 EXPORT_SYMBOL(mark_buffer_async_write);
461
462
463 /*
464  * fs/buffer.c contains helper functions for buffer-backed address space's
465  * fsync functions.  A common requirement for buffer-based filesystems is
466  * that certain data from the backing blockdev needs to be written out for
467  * a successful fsync().  For example, ext2 indirect blocks need to be
468  * written back and waited upon before fsync() returns.
469  *
470  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
471  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
472  * management of a list of dependent buffers at ->i_mapping->private_list.
473  *
474  * Locking is a little subtle: try_to_free_buffers() will remove buffers
475  * from their controlling inode's queue when they are being freed.  But
476  * try_to_free_buffers() will be operating against the *blockdev* mapping
477  * at the time, not against the S_ISREG file which depends on those buffers.
478  * So the locking for private_list is via the private_lock in the address_space
479  * which backs the buffers.  Which is different from the address_space 
480  * against which the buffers are listed.  So for a particular address_space,
481  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
482  * mapping->private_list will always be protected by the backing blockdev's
483  * ->private_lock.
484  *
485  * Which introduces a requirement: all buffers on an address_space's
486  * ->private_list must be from the same address_space: the blockdev's.
487  *
488  * address_spaces which do not place buffers at ->private_list via these
489  * utility functions are free to use private_lock and private_list for
490  * whatever they want.  The only requirement is that list_empty(private_list)
491  * be true at clear_inode() time.
492  *
493  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
494  * filesystems should do that.  invalidate_inode_buffers() should just go
495  * BUG_ON(!list_empty).
496  *
497  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
498  * take an address_space, not an inode.  And it should be called
499  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
500  * queued up.
501  *
502  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
503  * list if it is already on a list.  Because if the buffer is on a list,
504  * it *must* already be on the right one.  If not, the filesystem is being
505  * silly.  This will save a ton of locking.  But first we have to ensure
506  * that buffers are taken *off* the old inode's list when they are freed
507  * (presumably in truncate).  That requires careful auditing of all
508  * filesystems (do it inside bforget()).  It could also be done by bringing
509  * b_inode back.
510  */
511
512 /*
513  * The buffer's backing address_space's private_lock must be held
514  */
515 static void __remove_assoc_queue(struct buffer_head *bh)
516 {
517         list_del_init(&bh->b_assoc_buffers);
518         WARN_ON(!bh->b_assoc_map);
519         if (buffer_write_io_error(bh))
520                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
521         bh->b_assoc_map = NULL;
522 }
523
524 int inode_has_buffers(struct inode *inode)
525 {
526         return !list_empty(&inode->i_data.private_list);
527 }
528
529 /*
530  * osync is designed to support O_SYNC io.  It waits synchronously for
531  * all already-submitted IO to complete, but does not queue any new
532  * writes to the disk.
533  *
534  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
535  * you dirty the buffers, and then use osync_inode_buffers to wait for
536  * completion.  Any other dirty buffers which are not yet queued for
537  * write will not be flushed to disk by the osync.
538  */
539 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
540 {
541         struct buffer_head *bh;
542         struct list_head *p;
543         int err = 0;
544
545         spin_lock(lock);
546 repeat:
547         list_for_each_prev(p, list) {
548                 bh = BH_ENTRY(p);
549                 if (buffer_locked(bh)) {
550                         get_bh(bh);
551                         spin_unlock(lock);
552                         wait_on_buffer(bh);
553                         if (!buffer_uptodate(bh))
554                                 err = -EIO;
555                         brelse(bh);
556                         spin_lock(lock);
557                         goto repeat;
558                 }
559         }
560         spin_unlock(lock);
561         return err;
562 }
563
564 static void do_thaw_one(struct super_block *sb, void *unused)
565 {
566         char b[BDEVNAME_SIZE];
567         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
568                 printk(KERN_WARNING "Emergency Thaw on %s\n",
569                        bdevname(sb->s_bdev, b));
570 }
571
572 static void do_thaw_all(struct work_struct *work)
573 {
574         iterate_supers(do_thaw_one, NULL);
575         kfree(work);
576         printk(KERN_WARNING "Emergency Thaw complete\n");
577 }
578
579 /**
580  * emergency_thaw_all -- forcibly thaw every frozen filesystem
581  *
582  * Used for emergency unfreeze of all filesystems via SysRq
583  */
584 void emergency_thaw_all(void)
585 {
586         struct work_struct *work;
587
588         work = kmalloc(sizeof(*work), GFP_ATOMIC);
589         if (work) {
590                 INIT_WORK(work, do_thaw_all);
591                 schedule_work(work);
592         }
593 }
594
595 /**
596  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
597  * @mapping: the mapping which wants those buffers written
598  *
599  * Starts I/O against the buffers at mapping->private_list, and waits upon
600  * that I/O.
601  *
602  * Basically, this is a convenience function for fsync().
603  * @mapping is a file or directory which needs those buffers to be written for
604  * a successful fsync().
605  */
606 int sync_mapping_buffers(struct address_space *mapping)
607 {
608         struct address_space *buffer_mapping = mapping->assoc_mapping;
609
610         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
611                 return 0;
612
613         return fsync_buffers_list(&buffer_mapping->private_lock,
614                                         &mapping->private_list);
615 }
616 EXPORT_SYMBOL(sync_mapping_buffers);
617
618 /*
619  * Called when we've recently written block `bblock', and it is known that
620  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
621  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
622  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
623  */
624 void write_boundary_block(struct block_device *bdev,
625                         sector_t bblock, unsigned blocksize)
626 {
627         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
628         if (bh) {
629                 if (buffer_dirty(bh))
630                         ll_rw_block(WRITE, 1, &bh);
631                 put_bh(bh);
632         }
633 }
634
635 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
636 {
637         struct address_space *mapping = inode->i_mapping;
638         struct address_space *buffer_mapping = bh->b_page->mapping;
639
640         mark_buffer_dirty(bh);
641         if (!mapping->assoc_mapping) {
642                 mapping->assoc_mapping = buffer_mapping;
643         } else {
644                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
645         }
646         if (!bh->b_assoc_map) {
647                 spin_lock(&buffer_mapping->private_lock);
648                 list_move_tail(&bh->b_assoc_buffers,
649                                 &mapping->private_list);
650                 bh->b_assoc_map = mapping;
651                 spin_unlock(&buffer_mapping->private_lock);
652         }
653 }
654 EXPORT_SYMBOL(mark_buffer_dirty_inode);
655
656 /*
657  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
658  * dirty.
659  *
660  * If warn is true, then emit a warning if the page is not uptodate and has
661  * not been truncated.
662  */
663 static void __set_page_dirty(struct page *page,
664                 struct address_space *mapping, int warn)
665 {
666         spin_lock_irq(&mapping->tree_lock);
667         if (page->mapping) {    /* Race with truncate? */
668                 WARN_ON_ONCE(warn && !PageUptodate(page));
669                 account_page_dirtied(page, mapping);
670                 radix_tree_tag_set(&mapping->page_tree,
671                                 page_index(page), PAGECACHE_TAG_DIRTY);
672         }
673         spin_unlock_irq(&mapping->tree_lock);
674         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
675 }
676
677 /*
678  * Add a page to the dirty page list.
679  *
680  * It is a sad fact of life that this function is called from several places
681  * deeply under spinlocking.  It may not sleep.
682  *
683  * If the page has buffers, the uptodate buffers are set dirty, to preserve
684  * dirty-state coherency between the page and the buffers.  It the page does
685  * not have buffers then when they are later attached they will all be set
686  * dirty.
687  *
688  * The buffers are dirtied before the page is dirtied.  There's a small race
689  * window in which a writepage caller may see the page cleanness but not the
690  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
691  * before the buffers, a concurrent writepage caller could clear the page dirty
692  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
693  * page on the dirty page list.
694  *
695  * We use private_lock to lock against try_to_free_buffers while using the
696  * page's buffer list.  Also use this to protect against clean buffers being
697  * added to the page after it was set dirty.
698  *
699  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
700  * address_space though.
701  */
702 int __set_page_dirty_buffers(struct page *page)
703 {
704         int newly_dirty;
705         struct address_space *mapping = page_mapping(page);
706
707         if (unlikely(!mapping))
708                 return !TestSetPageDirty(page);
709
710         spin_lock(&mapping->private_lock);
711         if (page_has_buffers(page)) {
712                 struct buffer_head *head = page_buffers(page);
713                 struct buffer_head *bh = head;
714
715                 do {
716                         set_buffer_dirty(bh);
717                         bh = bh->b_this_page;
718                 } while (bh != head);
719         }
720         newly_dirty = !TestSetPageDirty(page);
721         spin_unlock(&mapping->private_lock);
722
723         if (newly_dirty)
724                 __set_page_dirty(page, mapping, 1);
725         return newly_dirty;
726 }
727 EXPORT_SYMBOL(__set_page_dirty_buffers);
728
729 /*
730  * Write out and wait upon a list of buffers.
731  *
732  * We have conflicting pressures: we want to make sure that all
733  * initially dirty buffers get waited on, but that any subsequently
734  * dirtied buffers don't.  After all, we don't want fsync to last
735  * forever if somebody is actively writing to the file.
736  *
737  * Do this in two main stages: first we copy dirty buffers to a
738  * temporary inode list, queueing the writes as we go.  Then we clean
739  * up, waiting for those writes to complete.
740  * 
741  * During this second stage, any subsequent updates to the file may end
742  * up refiling the buffer on the original inode's dirty list again, so
743  * there is a chance we will end up with a buffer queued for write but
744  * not yet completed on that list.  So, as a final cleanup we go through
745  * the osync code to catch these locked, dirty buffers without requeuing
746  * any newly dirty buffers for write.
747  */
748 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
749 {
750         struct buffer_head *bh;
751         struct list_head tmp;
752         struct address_space *mapping;
753         int err = 0, err2;
754         struct blk_plug plug;
755
756         INIT_LIST_HEAD(&tmp);
757         blk_start_plug(&plug);
758
759         spin_lock(lock);
760         while (!list_empty(list)) {
761                 bh = BH_ENTRY(list->next);
762                 mapping = bh->b_assoc_map;
763                 __remove_assoc_queue(bh);
764                 /* Avoid race with mark_buffer_dirty_inode() which does
765                  * a lockless check and we rely on seeing the dirty bit */
766                 smp_mb();
767                 if (buffer_dirty(bh) || buffer_locked(bh)) {
768                         list_add(&bh->b_assoc_buffers, &tmp);
769                         bh->b_assoc_map = mapping;
770                         if (buffer_dirty(bh)) {
771                                 get_bh(bh);
772                                 spin_unlock(lock);
773                                 /*
774                                  * Ensure any pending I/O completes so that
775                                  * write_dirty_buffer() actually writes the
776                                  * current contents - it is a noop if I/O is
777                                  * still in flight on potentially older
778                                  * contents.
779                                  */
780                                 write_dirty_buffer(bh, WRITE_SYNC);
781
782                                 /*
783                                  * Kick off IO for the previous mapping. Note
784                                  * that we will not run the very last mapping,
785                                  * wait_on_buffer() will do that for us
786                                  * through sync_buffer().
787                                  */
788                                 brelse(bh);
789                                 spin_lock(lock);
790                         }
791                 }
792         }
793
794         spin_unlock(lock);
795         blk_finish_plug(&plug);
796         spin_lock(lock);
797
798         while (!list_empty(&tmp)) {
799                 bh = BH_ENTRY(tmp.prev);
800                 get_bh(bh);
801                 mapping = bh->b_assoc_map;
802                 __remove_assoc_queue(bh);
803                 /* Avoid race with mark_buffer_dirty_inode() which does
804                  * a lockless check and we rely on seeing the dirty bit */
805                 smp_mb();
806                 if (buffer_dirty(bh)) {
807                         list_add(&bh->b_assoc_buffers,
808                                  &mapping->private_list);
809                         bh->b_assoc_map = mapping;
810                 }
811                 spin_unlock(lock);
812                 wait_on_buffer(bh);
813                 if (!buffer_uptodate(bh))
814                         err = -EIO;
815                 brelse(bh);
816                 spin_lock(lock);
817         }
818         
819         spin_unlock(lock);
820         err2 = osync_buffers_list(lock, list);
821         if (err)
822                 return err;
823         else
824                 return err2;
825 }
826
827 /*
828  * Invalidate any and all dirty buffers on a given inode.  We are
829  * probably unmounting the fs, but that doesn't mean we have already
830  * done a sync().  Just drop the buffers from the inode list.
831  *
832  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
833  * assumes that all the buffers are against the blockdev.  Not true
834  * for reiserfs.
835  */
836 void invalidate_inode_buffers(struct inode *inode)
837 {
838         if (inode_has_buffers(inode)) {
839                 struct address_space *mapping = &inode->i_data;
840                 struct list_head *list = &mapping->private_list;
841                 struct address_space *buffer_mapping = mapping->assoc_mapping;
842
843                 spin_lock(&buffer_mapping->private_lock);
844                 while (!list_empty(list))
845                         __remove_assoc_queue(BH_ENTRY(list->next));
846                 spin_unlock(&buffer_mapping->private_lock);
847         }
848 }
849 EXPORT_SYMBOL(invalidate_inode_buffers);
850
851 /*
852  * Remove any clean buffers from the inode's buffer list.  This is called
853  * when we're trying to free the inode itself.  Those buffers can pin it.
854  *
855  * Returns true if all buffers were removed.
856  */
857 int remove_inode_buffers(struct inode *inode)
858 {
859         int ret = 1;
860
861         if (inode_has_buffers(inode)) {
862                 struct address_space *mapping = &inode->i_data;
863                 struct list_head *list = &mapping->private_list;
864                 struct address_space *buffer_mapping = mapping->assoc_mapping;
865
866                 spin_lock(&buffer_mapping->private_lock);
867                 while (!list_empty(list)) {
868                         struct buffer_head *bh = BH_ENTRY(list->next);
869                         if (buffer_dirty(bh)) {
870                                 ret = 0;
871                                 break;
872                         }
873                         __remove_assoc_queue(bh);
874                 }
875                 spin_unlock(&buffer_mapping->private_lock);
876         }
877         return ret;
878 }
879
880 /*
881  * Create the appropriate buffers when given a page for data area and
882  * the size of each buffer.. Use the bh->b_this_page linked list to
883  * follow the buffers created.  Return NULL if unable to create more
884  * buffers.
885  *
886  * The retry flag is used to differentiate async IO (paging, swapping)
887  * which may not fail from ordinary buffer allocations.
888  */
889 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
890                 int retry)
891 {
892         struct buffer_head *bh, *head;
893         long offset;
894
895 try_again:
896         head = NULL;
897         offset = PAGE_SIZE;
898         while ((offset -= size) >= 0) {
899                 bh = alloc_buffer_head(GFP_NOFS);
900                 if (!bh)
901                         goto no_grow;
902
903                 bh->b_bdev = NULL;
904                 bh->b_this_page = head;
905                 bh->b_blocknr = -1;
906                 head = bh;
907
908                 bh->b_state = 0;
909                 atomic_set(&bh->b_count, 0);
910                 bh->b_size = size;
911
912                 /* Link the buffer to its page */
913                 set_bh_page(bh, page, offset);
914
915                 init_buffer(bh, NULL, NULL);
916         }
917         return head;
918 /*
919  * In case anything failed, we just free everything we got.
920  */
921 no_grow:
922         if (head) {
923                 do {
924                         bh = head;
925                         head = head->b_this_page;
926                         free_buffer_head(bh);
927                 } while (head);
928         }
929
930         /*
931          * Return failure for non-async IO requests.  Async IO requests
932          * are not allowed to fail, so we have to wait until buffer heads
933          * become available.  But we don't want tasks sleeping with 
934          * partially complete buffers, so all were released above.
935          */
936         if (!retry)
937                 return NULL;
938
939         /* We're _really_ low on memory. Now we just
940          * wait for old buffer heads to become free due to
941          * finishing IO.  Since this is an async request and
942          * the reserve list is empty, we're sure there are 
943          * async buffer heads in use.
944          */
945         free_more_memory();
946         goto try_again;
947 }
948 EXPORT_SYMBOL_GPL(alloc_page_buffers);
949
950 static inline void
951 link_dev_buffers(struct page *page, struct buffer_head *head)
952 {
953         struct buffer_head *bh, *tail;
954
955         bh = head;
956         do {
957                 tail = bh;
958                 bh = bh->b_this_page;
959         } while (bh);
960         tail->b_this_page = head;
961         attach_page_buffers(page, head);
962 }
963
964 /*
965  * Initialise the state of a blockdev page's buffers.
966  */ 
967 static sector_t
968 init_page_buffers(struct page *page, struct block_device *bdev,
969                         sector_t block, int size)
970 {
971         struct buffer_head *head = page_buffers(page);
972         struct buffer_head *bh = head;
973         int uptodate = PageUptodate(page);
974         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode));
975
976         do {
977                 if (!buffer_mapped(bh)) {
978                         init_buffer(bh, NULL, NULL);
979                         bh->b_bdev = bdev;
980                         bh->b_blocknr = block;
981                         if (uptodate)
982                                 set_buffer_uptodate(bh);
983                         if (block < end_block)
984                                 set_buffer_mapped(bh);
985                 }
986                 block++;
987                 bh = bh->b_this_page;
988         } while (bh != head);
989
990         /*
991          * Caller needs to validate requested block against end of device.
992          */
993         return end_block;
994 }
995
996 /*
997  * Create the page-cache page that contains the requested block.
998  *
999  * This is used purely for blockdev mappings.
1000  */
1001 static int
1002 grow_dev_page(struct block_device *bdev, sector_t block,
1003                 pgoff_t index, int size, int sizebits)
1004 {
1005         struct inode *inode = bdev->bd_inode;
1006         struct page *page;
1007         struct buffer_head *bh;
1008         sector_t end_block;
1009         int ret = 0;            /* Will call free_more_memory() */
1010
1011         page = find_or_create_page(inode->i_mapping, index,
1012                 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1013         if (!page)
1014                 return ret;
1015
1016         BUG_ON(!PageLocked(page));
1017
1018         if (page_has_buffers(page)) {
1019                 bh = page_buffers(page);
1020                 if (bh->b_size == size) {
1021                         end_block = init_page_buffers(page, bdev,
1022                                                 index << sizebits, size);
1023                         goto done;
1024                 }
1025                 if (!try_to_free_buffers(page))
1026                         goto failed;
1027         }
1028
1029         /*
1030          * Allocate some buffers for this page
1031          */
1032         bh = alloc_page_buffers(page, size, 0);
1033         if (!bh)
1034                 goto failed;
1035
1036         /*
1037          * Link the page to the buffers and initialise them.  Take the
1038          * lock to be atomic wrt __find_get_block(), which does not
1039          * run under the page lock.
1040          */
1041         spin_lock(&inode->i_mapping->private_lock);
1042         link_dev_buffers(page, bh);
1043         end_block = init_page_buffers(page, bdev, index << sizebits, size);
1044         spin_unlock(&inode->i_mapping->private_lock);
1045 done:
1046         ret = (block < end_block) ? 1 : -ENXIO;
1047 failed:
1048         unlock_page(page);
1049         page_cache_release(page);
1050         return ret;
1051 }
1052
1053 /*
1054  * Create buffers for the specified block device block's page.  If
1055  * that page was dirty, the buffers are set dirty also.
1056  */
1057 static int
1058 grow_buffers(struct block_device *bdev, sector_t block, int size)
1059 {
1060         pgoff_t index;
1061         int sizebits;
1062
1063         sizebits = -1;
1064         do {
1065                 sizebits++;
1066         } while ((size << sizebits) < PAGE_SIZE);
1067
1068         index = block >> sizebits;
1069
1070         /*
1071          * Check for a block which wants to lie outside our maximum possible
1072          * pagecache index.  (this comparison is done using sector_t types).
1073          */
1074         if (unlikely(index != block >> sizebits)) {
1075                 char b[BDEVNAME_SIZE];
1076
1077                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1078                         "device %s\n",
1079                         __func__, (unsigned long long)block,
1080                         bdevname(bdev, b));
1081                 return -EIO;
1082         }
1083
1084         /* Create a page with the proper size buffers.. */
1085         return grow_dev_page(bdev, block, index, size, sizebits);
1086 }
1087
1088 static struct buffer_head *
1089 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1090 {
1091         /* Size must be multiple of hard sectorsize */
1092         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1093                         (size < 512 || size > PAGE_SIZE))) {
1094                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1095                                         size);
1096                 printk(KERN_ERR "logical block size: %d\n",
1097                                         bdev_logical_block_size(bdev));
1098
1099                 dump_stack();
1100                 return NULL;
1101         }
1102
1103         for (;;) {
1104                 struct buffer_head *bh;
1105                 int ret;
1106
1107                 bh = __find_get_block(bdev, block, size);
1108                 if (bh)
1109                         return bh;
1110
1111                 ret = grow_buffers(bdev, block, size);
1112                 if (ret < 0)
1113                         return NULL;
1114                 if (ret == 0)
1115                         free_more_memory();
1116         }
1117 }
1118
1119 /*
1120  * The relationship between dirty buffers and dirty pages:
1121  *
1122  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1123  * the page is tagged dirty in its radix tree.
1124  *
1125  * At all times, the dirtiness of the buffers represents the dirtiness of
1126  * subsections of the page.  If the page has buffers, the page dirty bit is
1127  * merely a hint about the true dirty state.
1128  *
1129  * When a page is set dirty in its entirety, all its buffers are marked dirty
1130  * (if the page has buffers).
1131  *
1132  * When a buffer is marked dirty, its page is dirtied, but the page's other
1133  * buffers are not.
1134  *
1135  * Also.  When blockdev buffers are explicitly read with bread(), they
1136  * individually become uptodate.  But their backing page remains not
1137  * uptodate - even if all of its buffers are uptodate.  A subsequent
1138  * block_read_full_page() against that page will discover all the uptodate
1139  * buffers, will set the page uptodate and will perform no I/O.
1140  */
1141
1142 /**
1143  * mark_buffer_dirty - mark a buffer_head as needing writeout
1144  * @bh: the buffer_head to mark dirty
1145  *
1146  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1147  * backing page dirty, then tag the page as dirty in its address_space's radix
1148  * tree and then attach the address_space's inode to its superblock's dirty
1149  * inode list.
1150  *
1151  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1152  * mapping->tree_lock and mapping->host->i_lock.
1153  */
1154 void mark_buffer_dirty(struct buffer_head *bh)
1155 {
1156         WARN_ON_ONCE(!buffer_uptodate(bh));
1157
1158         /*
1159          * Very *carefully* optimize the it-is-already-dirty case.
1160          *
1161          * Don't let the final "is it dirty" escape to before we
1162          * perhaps modified the buffer.
1163          */
1164         if (buffer_dirty(bh)) {
1165                 smp_mb();
1166                 if (buffer_dirty(bh))
1167                         return;
1168         }
1169
1170         if (!test_set_buffer_dirty(bh)) {
1171                 struct page *page = bh->b_page;
1172                 if (!TestSetPageDirty(page)) {
1173                         struct address_space *mapping = page_mapping(page);
1174                         if (mapping)
1175                                 __set_page_dirty(page, mapping, 0);
1176                 }
1177         }
1178 }
1179 EXPORT_SYMBOL(mark_buffer_dirty);
1180
1181 /*
1182  * Decrement a buffer_head's reference count.  If all buffers against a page
1183  * have zero reference count, are clean and unlocked, and if the page is clean
1184  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1185  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1186  * a page but it ends up not being freed, and buffers may later be reattached).
1187  */
1188 void __brelse(struct buffer_head * buf)
1189 {
1190         if (atomic_read(&buf->b_count)) {
1191                 put_bh(buf);
1192                 return;
1193         }
1194         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1195 }
1196 EXPORT_SYMBOL(__brelse);
1197
1198 /*
1199  * bforget() is like brelse(), except it discards any
1200  * potentially dirty data.
1201  */
1202 void __bforget(struct buffer_head *bh)
1203 {
1204         clear_buffer_dirty(bh);
1205         if (bh->b_assoc_map) {
1206                 struct address_space *buffer_mapping = bh->b_page->mapping;
1207
1208                 spin_lock(&buffer_mapping->private_lock);
1209                 list_del_init(&bh->b_assoc_buffers);
1210                 bh->b_assoc_map = NULL;
1211                 spin_unlock(&buffer_mapping->private_lock);
1212         }
1213         __brelse(bh);
1214 }
1215 EXPORT_SYMBOL(__bforget);
1216
1217 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1218 {
1219         lock_buffer(bh);
1220         if (buffer_uptodate(bh)) {
1221                 unlock_buffer(bh);
1222                 return bh;
1223         } else {
1224                 get_bh(bh);
1225                 bh->b_end_io = end_buffer_read_sync;
1226                 submit_bh(READ, bh);
1227                 wait_on_buffer(bh);
1228                 if (buffer_uptodate(bh))
1229                         return bh;
1230         }
1231         brelse(bh);
1232         return NULL;
1233 }
1234
1235 /*
1236  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1237  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1238  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1239  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1240  * CPU's LRUs at the same time.
1241  *
1242  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1243  * sb_find_get_block().
1244  *
1245  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1246  * a local interrupt disable for that.
1247  */
1248
1249 #define BH_LRU_SIZE     8
1250
1251 struct bh_lru {
1252         struct buffer_head *bhs[BH_LRU_SIZE];
1253 };
1254
1255 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1256
1257 #ifdef CONFIG_SMP
1258 #define bh_lru_lock()   local_irq_disable()
1259 #define bh_lru_unlock() local_irq_enable()
1260 #else
1261 #define bh_lru_lock()   preempt_disable()
1262 #define bh_lru_unlock() preempt_enable()
1263 #endif
1264
1265 static inline void check_irqs_on(void)
1266 {
1267 #ifdef irqs_disabled
1268         BUG_ON(irqs_disabled());
1269 #endif
1270 }
1271
1272 /*
1273  * The LRU management algorithm is dopey-but-simple.  Sorry.
1274  */
1275 static void bh_lru_install(struct buffer_head *bh)
1276 {
1277         struct buffer_head *evictee = NULL;
1278
1279         check_irqs_on();
1280         bh_lru_lock();
1281         if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1282                 struct buffer_head *bhs[BH_LRU_SIZE];
1283                 int in;
1284                 int out = 0;
1285
1286                 get_bh(bh);
1287                 bhs[out++] = bh;
1288                 for (in = 0; in < BH_LRU_SIZE; in++) {
1289                         struct buffer_head *bh2 =
1290                                 __this_cpu_read(bh_lrus.bhs[in]);
1291
1292                         if (bh2 == bh) {
1293                                 __brelse(bh2);
1294                         } else {
1295                                 if (out >= BH_LRU_SIZE) {
1296                                         BUG_ON(evictee != NULL);
1297                                         evictee = bh2;
1298                                 } else {
1299                                         bhs[out++] = bh2;
1300                                 }
1301                         }
1302                 }
1303                 while (out < BH_LRU_SIZE)
1304                         bhs[out++] = NULL;
1305                 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1306         }
1307         bh_lru_unlock();
1308
1309         if (evictee)
1310                 __brelse(evictee);
1311 }
1312
1313 /*
1314  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1315  */
1316 static struct buffer_head *
1317 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1318 {
1319         struct buffer_head *ret = NULL;
1320         unsigned int i;
1321
1322         check_irqs_on();
1323         bh_lru_lock();
1324         for (i = 0; i < BH_LRU_SIZE; i++) {
1325                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1326
1327                 if (bh && bh->b_bdev == bdev &&
1328                                 bh->b_blocknr == block && bh->b_size == size) {
1329                         if (i) {
1330                                 while (i) {
1331                                         __this_cpu_write(bh_lrus.bhs[i],
1332                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1333                                         i--;
1334                                 }
1335                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1336                         }
1337                         get_bh(bh);
1338                         ret = bh;
1339                         break;
1340                 }
1341         }
1342         bh_lru_unlock();
1343         return ret;
1344 }
1345
1346 /*
1347  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1348  * it in the LRU and mark it as accessed.  If it is not present then return
1349  * NULL
1350  */
1351 struct buffer_head *
1352 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1353 {
1354         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1355
1356         if (bh == NULL) {
1357                 bh = __find_get_block_slow(bdev, block);
1358                 if (bh)
1359                         bh_lru_install(bh);
1360         }
1361         if (bh)
1362                 touch_buffer(bh);
1363         return bh;
1364 }
1365 EXPORT_SYMBOL(__find_get_block);
1366
1367 /*
1368  * __getblk will locate (and, if necessary, create) the buffer_head
1369  * which corresponds to the passed block_device, block and size. The
1370  * returned buffer has its reference count incremented.
1371  *
1372  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1373  * attempt is failing.  FIXME, perhaps?
1374  */
1375 struct buffer_head *
1376 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1377 {
1378         struct buffer_head *bh = __find_get_block(bdev, block, size);
1379
1380         might_sleep();
1381         if (bh == NULL)
1382                 bh = __getblk_slow(bdev, block, size);
1383         return bh;
1384 }
1385 EXPORT_SYMBOL(__getblk);
1386
1387 /*
1388  * Do async read-ahead on a buffer..
1389  */
1390 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1391 {
1392         struct buffer_head *bh = __getblk(bdev, block, size);
1393         if (likely(bh)) {
1394                 ll_rw_block(READA, 1, &bh);
1395                 brelse(bh);
1396         }
1397 }
1398 EXPORT_SYMBOL(__breadahead);
1399
1400 /**
1401  *  __bread() - reads a specified block and returns the bh
1402  *  @bdev: the block_device to read from
1403  *  @block: number of block
1404  *  @size: size (in bytes) to read
1405  * 
1406  *  Reads a specified block, and returns buffer head that contains it.
1407  *  It returns NULL if the block was unreadable.
1408  */
1409 struct buffer_head *
1410 __bread(struct block_device *bdev, sector_t block, unsigned size)
1411 {
1412         struct buffer_head *bh = __getblk(bdev, block, size);
1413
1414         if (likely(bh) && !buffer_uptodate(bh))
1415                 bh = __bread_slow(bh);
1416         return bh;
1417 }
1418 EXPORT_SYMBOL(__bread);
1419
1420 /*
1421  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1422  * This doesn't race because it runs in each cpu either in irq
1423  * or with preempt disabled.
1424  */
1425 static void invalidate_bh_lru(void *arg)
1426 {
1427         struct bh_lru *b = &get_cpu_var(bh_lrus);
1428         int i;
1429
1430         for (i = 0; i < BH_LRU_SIZE; i++) {
1431                 brelse(b->bhs[i]);
1432                 b->bhs[i] = NULL;
1433         }
1434         put_cpu_var(bh_lrus);
1435 }
1436         
1437 void invalidate_bh_lrus(void)
1438 {
1439         on_each_cpu(invalidate_bh_lru, NULL, 1);
1440 }
1441 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1442
1443 void set_bh_page(struct buffer_head *bh,
1444                 struct page *page, unsigned long offset)
1445 {
1446         bh->b_page = page;
1447         BUG_ON(offset >= PAGE_SIZE);
1448         if (PageHighMem(page))
1449                 /*
1450                  * This catches illegal uses and preserves the offset:
1451                  */
1452                 bh->b_data = (char *)(0 + offset);
1453         else
1454                 bh->b_data = page_address(page) + offset;
1455 }
1456 EXPORT_SYMBOL(set_bh_page);
1457
1458 /*
1459  * Called when truncating a buffer on a page completely.
1460  */
1461 static void discard_buffer(struct buffer_head * bh)
1462 {
1463         lock_buffer(bh);
1464         clear_buffer_dirty(bh);
1465         bh->b_bdev = NULL;
1466         clear_buffer_mapped(bh);
1467         clear_buffer_req(bh);
1468         clear_buffer_new(bh);
1469         clear_buffer_delay(bh);
1470         clear_buffer_unwritten(bh);
1471         unlock_buffer(bh);
1472 }
1473
1474 /**
1475  * block_invalidatepage - invalidate part or all of a buffer-backed page
1476  *
1477  * @page: the page which is affected
1478  * @offset: the index of the truncation point
1479  *
1480  * block_invalidatepage() is called when all or part of the page has become
1481  * invalidated by a truncate operation.
1482  *
1483  * block_invalidatepage() does not have to release all buffers, but it must
1484  * ensure that no dirty buffer is left outside @offset and that no I/O
1485  * is underway against any of the blocks which are outside the truncation
1486  * point.  Because the caller is about to free (and possibly reuse) those
1487  * blocks on-disk.
1488  */
1489 void block_invalidatepage(struct page *page, unsigned long offset)
1490 {
1491         struct buffer_head *head, *bh, *next;
1492         unsigned int curr_off = 0;
1493
1494         BUG_ON(!PageLocked(page));
1495         if (!page_has_buffers(page))
1496                 goto out;
1497
1498         head = page_buffers(page);
1499         bh = head;
1500         do {
1501                 unsigned int next_off = curr_off + bh->b_size;
1502                 next = bh->b_this_page;
1503
1504                 /*
1505                  * is this block fully invalidated?
1506                  */
1507                 if (offset <= curr_off)
1508                         discard_buffer(bh);
1509                 curr_off = next_off;
1510                 bh = next;
1511         } while (bh != head);
1512
1513         /*
1514          * We release buffers only if the entire page is being invalidated.
1515          * The get_block cached value has been unconditionally invalidated,
1516          * so real IO is not possible anymore.
1517          */
1518         if (offset == 0)
1519                 try_to_release_page(page, 0);
1520 out:
1521         return;
1522 }
1523 EXPORT_SYMBOL(block_invalidatepage);
1524
1525 /*
1526  * We attach and possibly dirty the buffers atomically wrt
1527  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1528  * is already excluded via the page lock.
1529  */
1530 void create_empty_buffers(struct page *page,
1531                         unsigned long blocksize, unsigned long b_state)
1532 {
1533         struct buffer_head *bh, *head, *tail;
1534
1535         head = alloc_page_buffers(page, blocksize, 1);
1536         bh = head;
1537         do {
1538                 bh->b_state |= b_state;
1539                 tail = bh;
1540                 bh = bh->b_this_page;
1541         } while (bh);
1542         tail->b_this_page = head;
1543
1544         spin_lock(&page->mapping->private_lock);
1545         if (PageUptodate(page) || PageDirty(page)) {
1546                 bh = head;
1547                 do {
1548                         if (PageDirty(page))
1549                                 set_buffer_dirty(bh);
1550                         if (PageUptodate(page))
1551                                 set_buffer_uptodate(bh);
1552                         bh = bh->b_this_page;
1553                 } while (bh != head);
1554         }
1555         attach_page_buffers(page, head);
1556         spin_unlock(&page->mapping->private_lock);
1557 }
1558 EXPORT_SYMBOL(create_empty_buffers);
1559
1560 /*
1561  * We are taking a block for data and we don't want any output from any
1562  * buffer-cache aliases starting from return from that function and
1563  * until the moment when something will explicitly mark the buffer
1564  * dirty (hopefully that will not happen until we will free that block ;-)
1565  * We don't even need to mark it not-uptodate - nobody can expect
1566  * anything from a newly allocated buffer anyway. We used to used
1567  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1568  * don't want to mark the alias unmapped, for example - it would confuse
1569  * anyone who might pick it with bread() afterwards...
1570  *
1571  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1572  * be writeout I/O going on against recently-freed buffers.  We don't
1573  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1574  * only if we really need to.  That happens here.
1575  */
1576 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1577 {
1578         struct buffer_head *old_bh;
1579
1580         might_sleep();
1581
1582         old_bh = __find_get_block_slow(bdev, block);
1583         if (old_bh) {
1584                 clear_buffer_dirty(old_bh);
1585                 wait_on_buffer(old_bh);
1586                 clear_buffer_req(old_bh);
1587                 __brelse(old_bh);
1588         }
1589 }
1590 EXPORT_SYMBOL(unmap_underlying_metadata);
1591
1592 /*
1593  * NOTE! All mapped/uptodate combinations are valid:
1594  *
1595  *      Mapped  Uptodate        Meaning
1596  *
1597  *      No      No              "unknown" - must do get_block()
1598  *      No      Yes             "hole" - zero-filled
1599  *      Yes     No              "allocated" - allocated on disk, not read in
1600  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1601  *
1602  * "Dirty" is valid only with the last case (mapped+uptodate).
1603  */
1604
1605 /*
1606  * While block_write_full_page is writing back the dirty buffers under
1607  * the page lock, whoever dirtied the buffers may decide to clean them
1608  * again at any time.  We handle that by only looking at the buffer
1609  * state inside lock_buffer().
1610  *
1611  * If block_write_full_page() is called for regular writeback
1612  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1613  * locked buffer.   This only can happen if someone has written the buffer
1614  * directly, with submit_bh().  At the address_space level PageWriteback
1615  * prevents this contention from occurring.
1616  *
1617  * If block_write_full_page() is called with wbc->sync_mode ==
1618  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1619  * causes the writes to be flagged as synchronous writes.
1620  */
1621 static int __block_write_full_page(struct inode *inode, struct page *page,
1622                         get_block_t *get_block, struct writeback_control *wbc,
1623                         bh_end_io_t *handler)
1624 {
1625         int err;
1626         sector_t block;
1627         sector_t last_block;
1628         struct buffer_head *bh, *head;
1629         const unsigned blocksize = 1 << inode->i_blkbits;
1630         int nr_underway = 0;
1631         int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1632                         WRITE_SYNC : WRITE);
1633
1634         BUG_ON(!PageLocked(page));
1635
1636         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1637
1638         if (!page_has_buffers(page)) {
1639                 create_empty_buffers(page, blocksize,
1640                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1641         }
1642
1643         /*
1644          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1645          * here, and the (potentially unmapped) buffers may become dirty at
1646          * any time.  If a buffer becomes dirty here after we've inspected it
1647          * then we just miss that fact, and the page stays dirty.
1648          *
1649          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1650          * handle that here by just cleaning them.
1651          */
1652
1653         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1654         head = page_buffers(page);
1655         bh = head;
1656
1657         /*
1658          * Get all the dirty buffers mapped to disk addresses and
1659          * handle any aliases from the underlying blockdev's mapping.
1660          */
1661         do {
1662                 if (block > last_block) {
1663                         /*
1664                          * mapped buffers outside i_size will occur, because
1665                          * this page can be outside i_size when there is a
1666                          * truncate in progress.
1667                          */
1668                         /*
1669                          * The buffer was zeroed by block_write_full_page()
1670                          */
1671                         clear_buffer_dirty(bh);
1672                         set_buffer_uptodate(bh);
1673                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1674                            buffer_dirty(bh)) {
1675                         WARN_ON(bh->b_size != blocksize);
1676                         err = get_block(inode, block, bh, 1);
1677                         if (err)
1678                                 goto recover;
1679                         clear_buffer_delay(bh);
1680                         if (buffer_new(bh)) {
1681                                 /* blockdev mappings never come here */
1682                                 clear_buffer_new(bh);
1683                                 unmap_underlying_metadata(bh->b_bdev,
1684                                                         bh->b_blocknr);
1685                         }
1686                 }
1687                 bh = bh->b_this_page;
1688                 block++;
1689         } while (bh != head);
1690
1691         do {
1692                 if (!buffer_mapped(bh))
1693                         continue;
1694                 /*
1695                  * If it's a fully non-blocking write attempt and we cannot
1696                  * lock the buffer then redirty the page.  Note that this can
1697                  * potentially cause a busy-wait loop from writeback threads
1698                  * and kswapd activity, but those code paths have their own
1699                  * higher-level throttling.
1700                  */
1701                 if (wbc->sync_mode != WB_SYNC_NONE) {
1702                         lock_buffer(bh);
1703                 } else if (!trylock_buffer(bh)) {
1704                         redirty_page_for_writepage(wbc, page);
1705                         continue;
1706                 }
1707                 if (test_clear_buffer_dirty(bh)) {
1708                         mark_buffer_async_write_endio(bh, handler);
1709                 } else {
1710                         unlock_buffer(bh);
1711                 }
1712         } while ((bh = bh->b_this_page) != head);
1713
1714         /*
1715          * The page and its buffers are protected by PageWriteback(), so we can
1716          * drop the bh refcounts early.
1717          */
1718         BUG_ON(PageWriteback(page));
1719         set_page_writeback(page);
1720
1721         do {
1722                 struct buffer_head *next = bh->b_this_page;
1723                 if (buffer_async_write(bh)) {
1724                         submit_bh(write_op, bh);
1725                         nr_underway++;
1726                 }
1727                 bh = next;
1728         } while (bh != head);
1729         unlock_page(page);
1730
1731         err = 0;
1732 done:
1733         if (nr_underway == 0) {
1734                 /*
1735                  * The page was marked dirty, but the buffers were
1736                  * clean.  Someone wrote them back by hand with
1737                  * ll_rw_block/submit_bh.  A rare case.
1738                  */
1739                 end_page_writeback(page);
1740
1741                 /*
1742                  * The page and buffer_heads can be released at any time from
1743                  * here on.
1744                  */
1745         }
1746         return err;
1747
1748 recover:
1749         /*
1750          * ENOSPC, or some other error.  We may already have added some
1751          * blocks to the file, so we need to write these out to avoid
1752          * exposing stale data.
1753          * The page is currently locked and not marked for writeback
1754          */
1755         bh = head;
1756         /* Recovery: lock and submit the mapped buffers */
1757         do {
1758                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1759                     !buffer_delay(bh)) {
1760                         lock_buffer(bh);
1761                         mark_buffer_async_write_endio(bh, handler);
1762                 } else {
1763                         /*
1764                          * The buffer may have been set dirty during
1765                          * attachment to a dirty page.
1766                          */
1767                         clear_buffer_dirty(bh);
1768                 }
1769         } while ((bh = bh->b_this_page) != head);
1770         SetPageError(page);
1771         BUG_ON(PageWriteback(page));
1772         mapping_set_error(page->mapping, err);
1773         set_page_writeback(page);
1774         do {
1775                 struct buffer_head *next = bh->b_this_page;
1776                 if (buffer_async_write(bh)) {
1777                         clear_buffer_dirty(bh);
1778                         submit_bh(write_op, bh);
1779                         nr_underway++;
1780                 }
1781                 bh = next;
1782         } while (bh != head);
1783         unlock_page(page);
1784         goto done;
1785 }
1786
1787 /*
1788  * If a page has any new buffers, zero them out here, and mark them uptodate
1789  * and dirty so they'll be written out (in order to prevent uninitialised
1790  * block data from leaking). And clear the new bit.
1791  */
1792 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1793 {
1794         unsigned int block_start, block_end;
1795         struct buffer_head *head, *bh;
1796
1797         BUG_ON(!PageLocked(page));
1798         if (!page_has_buffers(page))
1799                 return;
1800
1801         bh = head = page_buffers(page);
1802         block_start = 0;
1803         do {
1804                 block_end = block_start + bh->b_size;
1805
1806                 if (buffer_new(bh)) {
1807                         if (block_end > from && block_start < to) {
1808                                 if (!PageUptodate(page)) {
1809                                         unsigned start, size;
1810
1811                                         start = max(from, block_start);
1812                                         size = min(to, block_end) - start;
1813
1814                                         zero_user(page, start, size);
1815                                         set_buffer_uptodate(bh);
1816                                 }
1817
1818                                 clear_buffer_new(bh);
1819                                 mark_buffer_dirty(bh);
1820                         }
1821                 }
1822
1823                 block_start = block_end;
1824                 bh = bh->b_this_page;
1825         } while (bh != head);
1826 }
1827 EXPORT_SYMBOL(page_zero_new_buffers);
1828
1829 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1830                 get_block_t *get_block)
1831 {
1832         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1833         unsigned to = from + len;
1834         struct inode *inode = page->mapping->host;
1835         unsigned block_start, block_end;
1836         sector_t block;
1837         int err = 0;
1838         unsigned blocksize, bbits;
1839         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1840
1841         BUG_ON(!PageLocked(page));
1842         BUG_ON(from > PAGE_CACHE_SIZE);
1843         BUG_ON(to > PAGE_CACHE_SIZE);
1844         BUG_ON(from > to);
1845
1846         blocksize = 1 << inode->i_blkbits;
1847         if (!page_has_buffers(page))
1848                 create_empty_buffers(page, blocksize, 0);
1849         head = page_buffers(page);
1850
1851         bbits = inode->i_blkbits;
1852         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1853
1854         for(bh = head, block_start = 0; bh != head || !block_start;
1855             block++, block_start=block_end, bh = bh->b_this_page) {
1856                 block_end = block_start + blocksize;
1857                 if (block_end <= from || block_start >= to) {
1858                         if (PageUptodate(page)) {
1859                                 if (!buffer_uptodate(bh))
1860                                         set_buffer_uptodate(bh);
1861                         }
1862                         continue;
1863                 }
1864                 if (buffer_new(bh))
1865                         clear_buffer_new(bh);
1866                 if (!buffer_mapped(bh)) {
1867                         WARN_ON(bh->b_size != blocksize);
1868                         err = get_block(inode, block, bh, 1);
1869                         if (err)
1870                                 break;
1871                         if (buffer_new(bh)) {
1872                                 unmap_underlying_metadata(bh->b_bdev,
1873                                                         bh->b_blocknr);
1874                                 if (PageUptodate(page)) {
1875                                         clear_buffer_new(bh);
1876                                         set_buffer_uptodate(bh);
1877                                         mark_buffer_dirty(bh);
1878                                         continue;
1879                                 }
1880                                 if (block_end > to || block_start < from)
1881                                         zero_user_segments(page,
1882                                                 to, block_end,
1883                                                 block_start, from);
1884                                 continue;
1885                         }
1886                 }
1887                 if (PageUptodate(page)) {
1888                         if (!buffer_uptodate(bh))
1889                                 set_buffer_uptodate(bh);
1890                         continue; 
1891                 }
1892                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1893                     !buffer_unwritten(bh) &&
1894                      (block_start < from || block_end > to)) {
1895                         ll_rw_block(READ, 1, &bh);
1896                         *wait_bh++=bh;
1897                 }
1898         }
1899         /*
1900          * If we issued read requests - let them complete.
1901          */
1902         while(wait_bh > wait) {
1903                 wait_on_buffer(*--wait_bh);
1904                 if (!buffer_uptodate(*wait_bh))
1905                         err = -EIO;
1906         }
1907         if (unlikely(err))
1908                 page_zero_new_buffers(page, from, to);
1909         return err;
1910 }
1911 EXPORT_SYMBOL(__block_write_begin);
1912
1913 static int __block_commit_write(struct inode *inode, struct page *page,
1914                 unsigned from, unsigned to)
1915 {
1916         unsigned block_start, block_end;
1917         int partial = 0;
1918         unsigned blocksize;
1919         struct buffer_head *bh, *head;
1920
1921         blocksize = 1 << inode->i_blkbits;
1922
1923         for(bh = head = page_buffers(page), block_start = 0;
1924             bh != head || !block_start;
1925             block_start=block_end, bh = bh->b_this_page) {
1926                 block_end = block_start + blocksize;
1927                 if (block_end <= from || block_start >= to) {
1928                         if (!buffer_uptodate(bh))
1929                                 partial = 1;
1930                 } else {
1931                         set_buffer_uptodate(bh);
1932                         mark_buffer_dirty(bh);
1933                 }
1934                 clear_buffer_new(bh);
1935         }
1936
1937         /*
1938          * If this is a partial write which happened to make all buffers
1939          * uptodate then we can optimize away a bogus readpage() for
1940          * the next read(). Here we 'discover' whether the page went
1941          * uptodate as a result of this (potentially partial) write.
1942          */
1943         if (!partial)
1944                 SetPageUptodate(page);
1945         return 0;
1946 }
1947
1948 /*
1949  * block_write_begin takes care of the basic task of block allocation and
1950  * bringing partial write blocks uptodate first.
1951  *
1952  * The filesystem needs to handle block truncation upon failure.
1953  */
1954 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1955                 unsigned flags, struct page **pagep, get_block_t *get_block)
1956 {
1957         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1958         struct page *page;
1959         int status;
1960
1961         page = grab_cache_page_write_begin(mapping, index, flags);
1962         if (!page)
1963                 return -ENOMEM;
1964
1965         status = __block_write_begin(page, pos, len, get_block);
1966         if (unlikely(status)) {
1967                 unlock_page(page);
1968                 page_cache_release(page);
1969                 page = NULL;
1970         }
1971
1972         *pagep = page;
1973         return status;
1974 }
1975 EXPORT_SYMBOL(block_write_begin);
1976
1977 int block_write_end(struct file *file, struct address_space *mapping,
1978                         loff_t pos, unsigned len, unsigned copied,
1979                         struct page *page, void *fsdata)
1980 {
1981         struct inode *inode = mapping->host;
1982         unsigned start;
1983
1984         start = pos & (PAGE_CACHE_SIZE - 1);
1985
1986         if (unlikely(copied < len)) {
1987                 /*
1988                  * The buffers that were written will now be uptodate, so we
1989                  * don't have to worry about a readpage reading them and
1990                  * overwriting a partial write. However if we have encountered
1991                  * a short write and only partially written into a buffer, it
1992                  * will not be marked uptodate, so a readpage might come in and
1993                  * destroy our partial write.
1994                  *
1995                  * Do the simplest thing, and just treat any short write to a
1996                  * non uptodate page as a zero-length write, and force the
1997                  * caller to redo the whole thing.
1998                  */
1999                 if (!PageUptodate(page))
2000                         copied = 0;
2001
2002                 page_zero_new_buffers(page, start+copied, start+len);
2003         }
2004         flush_dcache_page(page);
2005
2006         /* This could be a short (even 0-length) commit */
2007         __block_commit_write(inode, page, start, start+copied);
2008
2009         return copied;
2010 }
2011 EXPORT_SYMBOL(block_write_end);
2012
2013 int generic_write_end(struct file *file, struct address_space *mapping,
2014                         loff_t pos, unsigned len, unsigned copied,
2015                         struct page *page, void *fsdata)
2016 {
2017         struct inode *inode = mapping->host;
2018         int i_size_changed = 0;
2019
2020         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2021
2022         /*
2023          * No need to use i_size_read() here, the i_size
2024          * cannot change under us because we hold i_mutex.
2025          *
2026          * But it's important to update i_size while still holding page lock:
2027          * page writeout could otherwise come in and zero beyond i_size.
2028          */
2029         if (pos+copied > inode->i_size) {
2030                 i_size_write(inode, pos+copied);
2031                 i_size_changed = 1;
2032         }
2033
2034         unlock_page(page);
2035         page_cache_release(page);
2036
2037         /*
2038          * Don't mark the inode dirty under page lock. First, it unnecessarily
2039          * makes the holding time of page lock longer. Second, it forces lock
2040          * ordering of page lock and transaction start for journaling
2041          * filesystems.
2042          */
2043         if (i_size_changed)
2044                 mark_inode_dirty(inode);
2045
2046         return copied;
2047 }
2048 EXPORT_SYMBOL(generic_write_end);
2049
2050 /*
2051  * block_is_partially_uptodate checks whether buffers within a page are
2052  * uptodate or not.
2053  *
2054  * Returns true if all buffers which correspond to a file portion
2055  * we want to read are uptodate.
2056  */
2057 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2058                                         unsigned long from)
2059 {
2060         struct inode *inode = page->mapping->host;
2061         unsigned block_start, block_end, blocksize;
2062         unsigned to;
2063         struct buffer_head *bh, *head;
2064         int ret = 1;
2065
2066         if (!page_has_buffers(page))
2067                 return 0;
2068
2069         blocksize = 1 << inode->i_blkbits;
2070         to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2071         to = from + to;
2072         if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2073                 return 0;
2074
2075         head = page_buffers(page);
2076         bh = head;
2077         block_start = 0;
2078         do {
2079                 block_end = block_start + blocksize;
2080                 if (block_end > from && block_start < to) {
2081                         if (!buffer_uptodate(bh)) {
2082                                 ret = 0;
2083                                 break;
2084                         }
2085                         if (block_end >= to)
2086                                 break;
2087                 }
2088                 block_start = block_end;
2089                 bh = bh->b_this_page;
2090         } while (bh != head);
2091
2092         return ret;
2093 }
2094 EXPORT_SYMBOL(block_is_partially_uptodate);
2095
2096 /*
2097  * Generic "read page" function for block devices that have the normal
2098  * get_block functionality. This is most of the block device filesystems.
2099  * Reads the page asynchronously --- the unlock_buffer() and
2100  * set/clear_buffer_uptodate() functions propagate buffer state into the
2101  * page struct once IO has completed.
2102  */
2103 int block_read_full_page(struct page *page, get_block_t *get_block)
2104 {
2105         struct inode *inode = page->mapping->host;
2106         sector_t iblock, lblock;
2107         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2108         unsigned int blocksize;
2109         int nr, i;
2110         int fully_mapped = 1;
2111
2112         BUG_ON(!PageLocked(page));
2113         blocksize = 1 << inode->i_blkbits;
2114         if (!page_has_buffers(page))
2115                 create_empty_buffers(page, blocksize, 0);
2116         head = page_buffers(page);
2117
2118         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2119         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2120         bh = head;
2121         nr = 0;
2122         i = 0;
2123
2124         do {
2125                 if (buffer_uptodate(bh))
2126                         continue;
2127
2128                 if (!buffer_mapped(bh)) {
2129                         int err = 0;
2130
2131                         fully_mapped = 0;
2132                         if (iblock < lblock) {
2133                                 WARN_ON(bh->b_size != blocksize);
2134                                 err = get_block(inode, iblock, bh, 0);
2135                                 if (err)
2136                                         SetPageError(page);
2137                         }
2138                         if (!buffer_mapped(bh)) {
2139                                 zero_user(page, i * blocksize, blocksize);
2140                                 if (!err)
2141                                         set_buffer_uptodate(bh);
2142                                 continue;
2143                         }
2144                         /*
2145                          * get_block() might have updated the buffer
2146                          * synchronously
2147                          */
2148                         if (buffer_uptodate(bh))
2149                                 continue;
2150                 }
2151                 arr[nr++] = bh;
2152         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2153
2154         if (fully_mapped)
2155                 SetPageMappedToDisk(page);
2156
2157         if (!nr) {
2158                 /*
2159                  * All buffers are uptodate - we can set the page uptodate
2160                  * as well. But not if get_block() returned an error.
2161                  */
2162                 if (!PageError(page))
2163                         SetPageUptodate(page);
2164                 unlock_page(page);
2165                 return 0;
2166         }
2167
2168         /* Stage two: lock the buffers */
2169         for (i = 0; i < nr; i++) {
2170                 bh = arr[i];
2171                 lock_buffer(bh);
2172                 mark_buffer_async_read(bh);
2173         }
2174
2175         /*
2176          * Stage 3: start the IO.  Check for uptodateness
2177          * inside the buffer lock in case another process reading
2178          * the underlying blockdev brought it uptodate (the sct fix).
2179          */
2180         for (i = 0; i < nr; i++) {
2181                 bh = arr[i];
2182                 if (buffer_uptodate(bh))
2183                         end_buffer_async_read(bh, 1);
2184                 else
2185                         submit_bh(READ, bh);
2186         }
2187         return 0;
2188 }
2189 EXPORT_SYMBOL(block_read_full_page);
2190
2191 /* utility function for filesystems that need to do work on expanding
2192  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2193  * deal with the hole.  
2194  */
2195 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2196 {
2197         struct address_space *mapping = inode->i_mapping;
2198         struct page *page;
2199         void *fsdata;
2200         int err;
2201
2202         err = inode_newsize_ok(inode, size);
2203         if (err)
2204                 goto out;
2205
2206         err = pagecache_write_begin(NULL, mapping, size, 0,
2207                                 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2208                                 &page, &fsdata);
2209         if (err)
2210                 goto out;
2211
2212         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2213         BUG_ON(err > 0);
2214
2215 out:
2216         return err;
2217 }
2218 EXPORT_SYMBOL(generic_cont_expand_simple);
2219
2220 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2221                             loff_t pos, loff_t *bytes)
2222 {
2223         struct inode *inode = mapping->host;
2224         unsigned blocksize = 1 << inode->i_blkbits;
2225         struct page *page;
2226         void *fsdata;
2227         pgoff_t index, curidx;
2228         loff_t curpos;
2229         unsigned zerofrom, offset, len;
2230         int err = 0;
2231
2232         index = pos >> PAGE_CACHE_SHIFT;
2233         offset = pos & ~PAGE_CACHE_MASK;
2234
2235         while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2236                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2237                 if (zerofrom & (blocksize-1)) {
2238                         *bytes |= (blocksize-1);
2239                         (*bytes)++;
2240                 }
2241                 len = PAGE_CACHE_SIZE - zerofrom;
2242
2243                 err = pagecache_write_begin(file, mapping, curpos, len,
2244                                                 AOP_FLAG_UNINTERRUPTIBLE,
2245                                                 &page, &fsdata);
2246                 if (err)
2247                         goto out;
2248                 zero_user(page, zerofrom, len);
2249                 err = pagecache_write_end(file, mapping, curpos, len, len,
2250                                                 page, fsdata);
2251                 if (err < 0)
2252                         goto out;
2253                 BUG_ON(err != len);
2254                 err = 0;
2255
2256                 balance_dirty_pages_ratelimited(mapping);
2257         }
2258
2259         /* page covers the boundary, find the boundary offset */
2260         if (index == curidx) {
2261                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2262                 /* if we will expand the thing last block will be filled */
2263                 if (offset <= zerofrom) {
2264                         goto out;
2265                 }
2266                 if (zerofrom & (blocksize-1)) {
2267                         *bytes |= (blocksize-1);
2268                         (*bytes)++;
2269                 }
2270                 len = offset - zerofrom;
2271
2272                 err = pagecache_write_begin(file, mapping, curpos, len,
2273                                                 AOP_FLAG_UNINTERRUPTIBLE,
2274                                                 &page, &fsdata);
2275                 if (err)
2276                         goto out;
2277                 zero_user(page, zerofrom, len);
2278                 err = pagecache_write_end(file, mapping, curpos, len, len,
2279                                                 page, fsdata);
2280                 if (err < 0)
2281                         goto out;
2282                 BUG_ON(err != len);
2283                 err = 0;
2284         }
2285 out:
2286         return err;
2287 }
2288
2289 /*
2290  * For moronic filesystems that do not allow holes in file.
2291  * We may have to extend the file.
2292  */
2293 int cont_write_begin(struct file *file, struct address_space *mapping,
2294                         loff_t pos, unsigned len, unsigned flags,
2295                         struct page **pagep, void **fsdata,
2296                         get_block_t *get_block, loff_t *bytes)
2297 {
2298         struct inode *inode = mapping->host;
2299         unsigned blocksize = 1 << inode->i_blkbits;
2300         unsigned zerofrom;
2301         int err;
2302
2303         err = cont_expand_zero(file, mapping, pos, bytes);
2304         if (err)
2305                 return err;
2306
2307         zerofrom = *bytes & ~PAGE_CACHE_MASK;
2308         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2309                 *bytes |= (blocksize-1);
2310                 (*bytes)++;
2311         }
2312
2313         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2314 }
2315 EXPORT_SYMBOL(cont_write_begin);
2316
2317 int block_commit_write(struct page *page, unsigned from, unsigned to)
2318 {
2319         struct inode *inode = page->mapping->host;
2320         __block_commit_write(inode,page,from,to);
2321         return 0;
2322 }
2323 EXPORT_SYMBOL(block_commit_write);
2324
2325 /*
2326  * block_page_mkwrite() is not allowed to change the file size as it gets
2327  * called from a page fault handler when a page is first dirtied. Hence we must
2328  * be careful to check for EOF conditions here. We set the page up correctly
2329  * for a written page which means we get ENOSPC checking when writing into
2330  * holes and correct delalloc and unwritten extent mapping on filesystems that
2331  * support these features.
2332  *
2333  * We are not allowed to take the i_mutex here so we have to play games to
2334  * protect against truncate races as the page could now be beyond EOF.  Because
2335  * truncate writes the inode size before removing pages, once we have the
2336  * page lock we can determine safely if the page is beyond EOF. If it is not
2337  * beyond EOF, then the page is guaranteed safe against truncation until we
2338  * unlock the page.
2339  *
2340  * Direct callers of this function should call vfs_check_frozen() so that page
2341  * fault does not busyloop until the fs is thawed.
2342  */
2343 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2344                          get_block_t get_block)
2345 {
2346         struct page *page = vmf->page;
2347         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2348         unsigned long end;
2349         loff_t size;
2350         int ret;
2351
2352         lock_page(page);
2353         size = i_size_read(inode);
2354         if ((page->mapping != inode->i_mapping) ||
2355             (page_offset(page) > size)) {
2356                 /* We overload EFAULT to mean page got truncated */
2357                 ret = -EFAULT;
2358                 goto out_unlock;
2359         }
2360
2361         /* page is wholly or partially inside EOF */
2362         if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2363                 end = size & ~PAGE_CACHE_MASK;
2364         else
2365                 end = PAGE_CACHE_SIZE;
2366
2367         ret = __block_write_begin(page, 0, end, get_block);
2368         if (!ret)
2369                 ret = block_commit_write(page, 0, end);
2370
2371         if (unlikely(ret < 0))
2372                 goto out_unlock;
2373         /*
2374          * Freezing in progress? We check after the page is marked dirty and
2375          * with page lock held so if the test here fails, we are sure freezing
2376          * code will wait during syncing until the page fault is done - at that
2377          * point page will be dirty and unlocked so freezing code will write it
2378          * and writeprotect it again.
2379          */
2380         set_page_dirty(page);
2381         if (inode->i_sb->s_frozen != SB_UNFROZEN) {
2382                 ret = -EAGAIN;
2383                 goto out_unlock;
2384         }
2385         wait_on_page_writeback(page);
2386         return 0;
2387 out_unlock:
2388         unlock_page(page);
2389         return ret;
2390 }
2391 EXPORT_SYMBOL(__block_page_mkwrite);
2392
2393 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2394                    get_block_t get_block)
2395 {
2396         int ret;
2397         struct super_block *sb = vma->vm_file->f_path.dentry->d_inode->i_sb;
2398
2399         /*
2400          * This check is racy but catches the common case. The check in
2401          * __block_page_mkwrite() is reliable.
2402          */
2403         vfs_check_frozen(sb, SB_FREEZE_WRITE);
2404         ret = __block_page_mkwrite(vma, vmf, get_block);
2405         return block_page_mkwrite_return(ret);
2406 }
2407 EXPORT_SYMBOL(block_page_mkwrite);
2408
2409 /*
2410  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2411  * immediately, while under the page lock.  So it needs a special end_io
2412  * handler which does not touch the bh after unlocking it.
2413  */
2414 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2415 {
2416         __end_buffer_read_notouch(bh, uptodate);
2417 }
2418
2419 /*
2420  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2421  * the page (converting it to circular linked list and taking care of page
2422  * dirty races).
2423  */
2424 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2425 {
2426         struct buffer_head *bh;
2427
2428         BUG_ON(!PageLocked(page));
2429
2430         spin_lock(&page->mapping->private_lock);
2431         bh = head;
2432         do {
2433                 if (PageDirty(page))
2434                         set_buffer_dirty(bh);
2435                 if (!bh->b_this_page)
2436                         bh->b_this_page = head;
2437                 bh = bh->b_this_page;
2438         } while (bh != head);
2439         attach_page_buffers(page, head);
2440         spin_unlock(&page->mapping->private_lock);
2441 }
2442
2443 /*
2444  * On entry, the page is fully not uptodate.
2445  * On exit the page is fully uptodate in the areas outside (from,to)
2446  * The filesystem needs to handle block truncation upon failure.
2447  */
2448 int nobh_write_begin(struct address_space *mapping,
2449                         loff_t pos, unsigned len, unsigned flags,
2450                         struct page **pagep, void **fsdata,
2451                         get_block_t *get_block)
2452 {
2453         struct inode *inode = mapping->host;
2454         const unsigned blkbits = inode->i_blkbits;
2455         const unsigned blocksize = 1 << blkbits;
2456         struct buffer_head *head, *bh;
2457         struct page *page;
2458         pgoff_t index;
2459         unsigned from, to;
2460         unsigned block_in_page;
2461         unsigned block_start, block_end;
2462         sector_t block_in_file;
2463         int nr_reads = 0;
2464         int ret = 0;
2465         int is_mapped_to_disk = 1;
2466
2467         index = pos >> PAGE_CACHE_SHIFT;
2468         from = pos & (PAGE_CACHE_SIZE - 1);
2469         to = from + len;
2470
2471         page = grab_cache_page_write_begin(mapping, index, flags);
2472         if (!page)
2473                 return -ENOMEM;
2474         *pagep = page;
2475         *fsdata = NULL;
2476
2477         if (page_has_buffers(page)) {
2478                 ret = __block_write_begin(page, pos, len, get_block);
2479                 if (unlikely(ret))
2480                         goto out_release;
2481                 return ret;
2482         }
2483
2484         if (PageMappedToDisk(page))
2485                 return 0;
2486
2487         /*
2488          * Allocate buffers so that we can keep track of state, and potentially
2489          * attach them to the page if an error occurs. In the common case of
2490          * no error, they will just be freed again without ever being attached
2491          * to the page (which is all OK, because we're under the page lock).
2492          *
2493          * Be careful: the buffer linked list is a NULL terminated one, rather
2494          * than the circular one we're used to.
2495          */
2496         head = alloc_page_buffers(page, blocksize, 0);
2497         if (!head) {
2498                 ret = -ENOMEM;
2499                 goto out_release;
2500         }
2501
2502         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2503
2504         /*
2505          * We loop across all blocks in the page, whether or not they are
2506          * part of the affected region.  This is so we can discover if the
2507          * page is fully mapped-to-disk.
2508          */
2509         for (block_start = 0, block_in_page = 0, bh = head;
2510                   block_start < PAGE_CACHE_SIZE;
2511                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2512                 int create;
2513
2514                 block_end = block_start + blocksize;
2515                 bh->b_state = 0;
2516                 create = 1;
2517                 if (block_start >= to)
2518                         create = 0;
2519                 ret = get_block(inode, block_in_file + block_in_page,
2520                                         bh, create);
2521                 if (ret)
2522                         goto failed;
2523                 if (!buffer_mapped(bh))
2524                         is_mapped_to_disk = 0;
2525                 if (buffer_new(bh))
2526                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2527                 if (PageUptodate(page)) {
2528                         set_buffer_uptodate(bh);
2529                         continue;
2530                 }
2531                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2532                         zero_user_segments(page, block_start, from,
2533                                                         to, block_end);
2534                         continue;
2535                 }
2536                 if (buffer_uptodate(bh))
2537                         continue;       /* reiserfs does this */
2538                 if (block_start < from || block_end > to) {
2539                         lock_buffer(bh);
2540                         bh->b_end_io = end_buffer_read_nobh;
2541                         submit_bh(READ, bh);
2542                         nr_reads++;
2543                 }
2544         }
2545
2546         if (nr_reads) {
2547                 /*
2548                  * The page is locked, so these buffers are protected from
2549                  * any VM or truncate activity.  Hence we don't need to care
2550                  * for the buffer_head refcounts.
2551                  */
2552                 for (bh = head; bh; bh = bh->b_this_page) {
2553                         wait_on_buffer(bh);
2554                         if (!buffer_uptodate(bh))
2555                                 ret = -EIO;
2556                 }
2557                 if (ret)
2558                         goto failed;
2559         }
2560
2561         if (is_mapped_to_disk)
2562                 SetPageMappedToDisk(page);
2563
2564         *fsdata = head; /* to be released by nobh_write_end */
2565
2566         return 0;
2567
2568 failed:
2569         BUG_ON(!ret);
2570         /*
2571          * Error recovery is a bit difficult. We need to zero out blocks that
2572          * were newly allocated, and dirty them to ensure they get written out.
2573          * Buffers need to be attached to the page at this point, otherwise
2574          * the handling of potential IO errors during writeout would be hard
2575          * (could try doing synchronous writeout, but what if that fails too?)
2576          */
2577         attach_nobh_buffers(page, head);
2578         page_zero_new_buffers(page, from, to);
2579
2580 out_release:
2581         unlock_page(page);
2582         page_cache_release(page);
2583         *pagep = NULL;
2584
2585         return ret;
2586 }
2587 EXPORT_SYMBOL(nobh_write_begin);
2588
2589 int nobh_write_end(struct file *file, struct address_space *mapping,
2590                         loff_t pos, unsigned len, unsigned copied,
2591                         struct page *page, void *fsdata)
2592 {
2593         struct inode *inode = page->mapping->host;
2594         struct buffer_head *head = fsdata;
2595         struct buffer_head *bh;
2596         BUG_ON(fsdata != NULL && page_has_buffers(page));
2597
2598         if (unlikely(copied < len) && head)
2599                 attach_nobh_buffers(page, head);
2600         if (page_has_buffers(page))
2601                 return generic_write_end(file, mapping, pos, len,
2602                                         copied, page, fsdata);
2603
2604         SetPageUptodate(page);
2605         set_page_dirty(page);
2606         if (pos+copied > inode->i_size) {
2607                 i_size_write(inode, pos+copied);
2608                 mark_inode_dirty(inode);
2609         }
2610
2611         unlock_page(page);
2612         page_cache_release(page);
2613
2614         while (head) {
2615                 bh = head;
2616                 head = head->b_this_page;
2617                 free_buffer_head(bh);
2618         }
2619
2620         return copied;
2621 }
2622 EXPORT_SYMBOL(nobh_write_end);
2623
2624 /*
2625  * nobh_writepage() - based on block_full_write_page() except
2626  * that it tries to operate without attaching bufferheads to
2627  * the page.
2628  */
2629 int nobh_writepage(struct page *page, get_block_t *get_block,
2630                         struct writeback_control *wbc)
2631 {
2632         struct inode * const inode = page->mapping->host;
2633         loff_t i_size = i_size_read(inode);
2634         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2635         unsigned offset;
2636         int ret;
2637
2638         /* Is the page fully inside i_size? */
2639         if (page->index < end_index)
2640                 goto out;
2641
2642         /* Is the page fully outside i_size? (truncate in progress) */
2643         offset = i_size & (PAGE_CACHE_SIZE-1);
2644         if (page->index >= end_index+1 || !offset) {
2645                 /*
2646                  * The page may have dirty, unmapped buffers.  For example,
2647                  * they may have been added in ext3_writepage().  Make them
2648                  * freeable here, so the page does not leak.
2649                  */
2650 #if 0
2651                 /* Not really sure about this  - do we need this ? */
2652                 if (page->mapping->a_ops->invalidatepage)
2653                         page->mapping->a_ops->invalidatepage(page, offset);
2654 #endif
2655                 unlock_page(page);
2656                 return 0; /* don't care */
2657         }
2658
2659         /*
2660          * The page straddles i_size.  It must be zeroed out on each and every
2661          * writepage invocation because it may be mmapped.  "A file is mapped
2662          * in multiples of the page size.  For a file that is not a multiple of
2663          * the  page size, the remaining memory is zeroed when mapped, and
2664          * writes to that region are not written out to the file."
2665          */
2666         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2667 out:
2668         ret = mpage_writepage(page, get_block, wbc);
2669         if (ret == -EAGAIN)
2670                 ret = __block_write_full_page(inode, page, get_block, wbc,
2671                                               end_buffer_async_write);
2672         return ret;
2673 }
2674 EXPORT_SYMBOL(nobh_writepage);
2675
2676 int nobh_truncate_page(struct address_space *mapping,
2677                         loff_t from, get_block_t *get_block)
2678 {
2679         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2680         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2681         unsigned blocksize;
2682         sector_t iblock;
2683         unsigned length, pos;
2684         struct inode *inode = mapping->host;
2685         struct page *page;
2686         struct buffer_head map_bh;
2687         int err;
2688
2689         blocksize = 1 << inode->i_blkbits;
2690         length = offset & (blocksize - 1);
2691
2692         /* Block boundary? Nothing to do */
2693         if (!length)
2694                 return 0;
2695
2696         length = blocksize - length;
2697         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2698
2699         page = grab_cache_page(mapping, index);
2700         err = -ENOMEM;
2701         if (!page)
2702                 goto out;
2703
2704         if (page_has_buffers(page)) {
2705 has_buffers:
2706                 unlock_page(page);
2707                 page_cache_release(page);
2708                 return block_truncate_page(mapping, from, get_block);
2709         }
2710
2711         /* Find the buffer that contains "offset" */
2712         pos = blocksize;
2713         while (offset >= pos) {
2714                 iblock++;
2715                 pos += blocksize;
2716         }
2717
2718         map_bh.b_size = blocksize;
2719         map_bh.b_state = 0;
2720         err = get_block(inode, iblock, &map_bh, 0);
2721         if (err)
2722                 goto unlock;
2723         /* unmapped? It's a hole - nothing to do */
2724         if (!buffer_mapped(&map_bh))
2725                 goto unlock;
2726
2727         /* Ok, it's mapped. Make sure it's up-to-date */
2728         if (!PageUptodate(page)) {
2729                 err = mapping->a_ops->readpage(NULL, page);
2730                 if (err) {
2731                         page_cache_release(page);
2732                         goto out;
2733                 }
2734                 lock_page(page);
2735                 if (!PageUptodate(page)) {
2736                         err = -EIO;
2737                         goto unlock;
2738                 }
2739                 if (page_has_buffers(page))
2740                         goto has_buffers;
2741         }
2742         zero_user(page, offset, length);
2743         set_page_dirty(page);
2744         err = 0;
2745
2746 unlock:
2747         unlock_page(page);
2748         page_cache_release(page);
2749 out:
2750         return err;
2751 }
2752 EXPORT_SYMBOL(nobh_truncate_page);
2753
2754 int block_truncate_page(struct address_space *mapping,
2755                         loff_t from, get_block_t *get_block)
2756 {
2757         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2758         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2759         unsigned blocksize;
2760         sector_t iblock;
2761         unsigned length, pos;
2762         struct inode *inode = mapping->host;
2763         struct page *page;
2764         struct buffer_head *bh;
2765         int err;
2766
2767         blocksize = 1 << inode->i_blkbits;
2768         length = offset & (blocksize - 1);
2769
2770         /* Block boundary? Nothing to do */
2771         if (!length)
2772                 return 0;
2773
2774         length = blocksize - length;
2775         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2776         
2777         page = grab_cache_page(mapping, index);
2778         err = -ENOMEM;
2779         if (!page)
2780                 goto out;
2781
2782         if (!page_has_buffers(page))
2783                 create_empty_buffers(page, blocksize, 0);
2784
2785         /* Find the buffer that contains "offset" */
2786         bh = page_buffers(page);
2787         pos = blocksize;
2788         while (offset >= pos) {
2789                 bh = bh->b_this_page;
2790                 iblock++;
2791                 pos += blocksize;
2792         }
2793
2794         err = 0;
2795         if (!buffer_mapped(bh)) {
2796                 WARN_ON(bh->b_size != blocksize);
2797                 err = get_block(inode, iblock, bh, 0);
2798                 if (err)
2799                         goto unlock;
2800                 /* unmapped? It's a hole - nothing to do */
2801                 if (!buffer_mapped(bh))
2802                         goto unlock;
2803         }
2804
2805         /* Ok, it's mapped. Make sure it's up-to-date */
2806         if (PageUptodate(page))
2807                 set_buffer_uptodate(bh);
2808
2809         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2810                 err = -EIO;
2811                 ll_rw_block(READ, 1, &bh);
2812                 wait_on_buffer(bh);
2813                 /* Uhhuh. Read error. Complain and punt. */
2814                 if (!buffer_uptodate(bh))
2815                         goto unlock;
2816         }
2817
2818         zero_user(page, offset, length);
2819         mark_buffer_dirty(bh);
2820         err = 0;
2821
2822 unlock:
2823         unlock_page(page);
2824         page_cache_release(page);
2825 out:
2826         return err;
2827 }
2828 EXPORT_SYMBOL(block_truncate_page);
2829
2830 /*
2831  * The generic ->writepage function for buffer-backed address_spaces
2832  * this form passes in the end_io handler used to finish the IO.
2833  */
2834 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2835                         struct writeback_control *wbc, bh_end_io_t *handler)
2836 {
2837         struct inode * const inode = page->mapping->host;
2838         loff_t i_size = i_size_read(inode);
2839         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2840         unsigned offset;
2841
2842         /* Is the page fully inside i_size? */
2843         if (page->index < end_index)
2844                 return __block_write_full_page(inode, page, get_block, wbc,
2845                                                handler);
2846
2847         /* Is the page fully outside i_size? (truncate in progress) */
2848         offset = i_size & (PAGE_CACHE_SIZE-1);
2849         if (page->index >= end_index+1 || !offset) {
2850                 /*
2851                  * The page may have dirty, unmapped buffers.  For example,
2852                  * they may have been added in ext3_writepage().  Make them
2853                  * freeable here, so the page does not leak.
2854                  */
2855                 do_invalidatepage(page, 0);
2856                 unlock_page(page);
2857                 return 0; /* don't care */
2858         }
2859
2860         /*
2861          * The page straddles i_size.  It must be zeroed out on each and every
2862          * writepage invocation because it may be mmapped.  "A file is mapped
2863          * in multiples of the page size.  For a file that is not a multiple of
2864          * the  page size, the remaining memory is zeroed when mapped, and
2865          * writes to that region are not written out to the file."
2866          */
2867         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2868         return __block_write_full_page(inode, page, get_block, wbc, handler);
2869 }
2870 EXPORT_SYMBOL(block_write_full_page_endio);
2871
2872 /*
2873  * The generic ->writepage function for buffer-backed address_spaces
2874  */
2875 int block_write_full_page(struct page *page, get_block_t *get_block,
2876                         struct writeback_control *wbc)
2877 {
2878         return block_write_full_page_endio(page, get_block, wbc,
2879                                            end_buffer_async_write);
2880 }
2881 EXPORT_SYMBOL(block_write_full_page);
2882
2883 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2884                             get_block_t *get_block)
2885 {
2886         struct buffer_head tmp;
2887         struct inode *inode = mapping->host;
2888         tmp.b_state = 0;
2889         tmp.b_blocknr = 0;
2890         tmp.b_size = 1 << inode->i_blkbits;
2891         get_block(inode, block, &tmp, 0);
2892         return tmp.b_blocknr;
2893 }
2894 EXPORT_SYMBOL(generic_block_bmap);
2895
2896 static void end_bio_bh_io_sync(struct bio *bio, int err)
2897 {
2898         struct buffer_head *bh = bio->bi_private;
2899
2900         if (err == -EOPNOTSUPP) {
2901                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2902         }
2903
2904         if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2905                 set_bit(BH_Quiet, &bh->b_state);
2906
2907         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2908         bio_put(bio);
2909 }
2910
2911 int submit_bh(int rw, struct buffer_head * bh)
2912 {
2913         struct bio *bio;
2914         int ret = 0;
2915
2916         BUG_ON(!buffer_locked(bh));
2917         BUG_ON(!buffer_mapped(bh));
2918         BUG_ON(!bh->b_end_io);
2919         BUG_ON(buffer_delay(bh));
2920         BUG_ON(buffer_unwritten(bh));
2921
2922         /*
2923          * Only clear out a write error when rewriting
2924          */
2925         if (test_set_buffer_req(bh) && (rw & WRITE))
2926                 clear_buffer_write_io_error(bh);
2927
2928         /*
2929          * from here on down, it's all bio -- do the initial mapping,
2930          * submit_bio -> generic_make_request may further map this bio around
2931          */
2932         bio = bio_alloc(GFP_NOIO, 1);
2933
2934         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2935         bio->bi_bdev = bh->b_bdev;
2936         bio->bi_io_vec[0].bv_page = bh->b_page;
2937         bio->bi_io_vec[0].bv_len = bh->b_size;
2938         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2939
2940         bio->bi_vcnt = 1;
2941         bio->bi_idx = 0;
2942         bio->bi_size = bh->b_size;
2943
2944         bio->bi_end_io = end_bio_bh_io_sync;
2945         bio->bi_private = bh;
2946
2947         bio_get(bio);
2948         submit_bio(rw, bio);
2949
2950         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2951                 ret = -EOPNOTSUPP;
2952
2953         bio_put(bio);
2954         return ret;
2955 }
2956 EXPORT_SYMBOL(submit_bh);
2957
2958 /**
2959  * ll_rw_block: low-level access to block devices (DEPRECATED)
2960  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2961  * @nr: number of &struct buffer_heads in the array
2962  * @bhs: array of pointers to &struct buffer_head
2963  *
2964  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2965  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2966  * %READA option is described in the documentation for generic_make_request()
2967  * which ll_rw_block() calls.
2968  *
2969  * This function drops any buffer that it cannot get a lock on (with the
2970  * BH_Lock state bit), any buffer that appears to be clean when doing a write
2971  * request, and any buffer that appears to be up-to-date when doing read
2972  * request.  Further it marks as clean buffers that are processed for
2973  * writing (the buffer cache won't assume that they are actually clean
2974  * until the buffer gets unlocked).
2975  *
2976  * ll_rw_block sets b_end_io to simple completion handler that marks
2977  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2978  * any waiters. 
2979  *
2980  * All of the buffers must be for the same device, and must also be a
2981  * multiple of the current approved size for the device.
2982  */
2983 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2984 {
2985         int i;
2986
2987         for (i = 0; i < nr; i++) {
2988                 struct buffer_head *bh = bhs[i];
2989
2990                 if (!trylock_buffer(bh))
2991                         continue;
2992                 if (rw == WRITE) {
2993                         if (test_clear_buffer_dirty(bh)) {
2994                                 bh->b_end_io = end_buffer_write_sync;
2995                                 get_bh(bh);
2996                                 submit_bh(WRITE, bh);
2997                                 continue;
2998                         }
2999                 } else {
3000                         if (!buffer_uptodate(bh)) {
3001                                 bh->b_end_io = end_buffer_read_sync;
3002                                 get_bh(bh);
3003                                 submit_bh(rw, bh);
3004                                 continue;
3005                         }
3006                 }
3007                 unlock_buffer(bh);
3008         }
3009 }
3010 EXPORT_SYMBOL(ll_rw_block);
3011
3012 void write_dirty_buffer(struct buffer_head *bh, int rw)
3013 {
3014         lock_buffer(bh);
3015         if (!test_clear_buffer_dirty(bh)) {
3016                 unlock_buffer(bh);
3017                 return;
3018         }
3019         bh->b_end_io = end_buffer_write_sync;
3020         get_bh(bh);
3021         submit_bh(rw, bh);
3022 }
3023 EXPORT_SYMBOL(write_dirty_buffer);
3024
3025 /*
3026  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3027  * and then start new I/O and then wait upon it.  The caller must have a ref on
3028  * the buffer_head.
3029  */
3030 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3031 {
3032         int ret = 0;
3033
3034         WARN_ON(atomic_read(&bh->b_count) < 1);
3035         lock_buffer(bh);
3036         if (test_clear_buffer_dirty(bh)) {
3037                 get_bh(bh);
3038                 bh->b_end_io = end_buffer_write_sync;
3039                 ret = submit_bh(rw, bh);
3040                 wait_on_buffer(bh);
3041                 if (!ret && !buffer_uptodate(bh))
3042                         ret = -EIO;
3043         } else {
3044                 unlock_buffer(bh);
3045         }
3046         return ret;
3047 }
3048 EXPORT_SYMBOL(__sync_dirty_buffer);
3049
3050 int sync_dirty_buffer(struct buffer_head *bh)
3051 {
3052         return __sync_dirty_buffer(bh, WRITE_SYNC);
3053 }
3054 EXPORT_SYMBOL(sync_dirty_buffer);
3055
3056 /*
3057  * try_to_free_buffers() checks if all the buffers on this particular page
3058  * are unused, and releases them if so.
3059  *
3060  * Exclusion against try_to_free_buffers may be obtained by either
3061  * locking the page or by holding its mapping's private_lock.
3062  *
3063  * If the page is dirty but all the buffers are clean then we need to
3064  * be sure to mark the page clean as well.  This is because the page
3065  * may be against a block device, and a later reattachment of buffers
3066  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3067  * filesystem data on the same device.
3068  *
3069  * The same applies to regular filesystem pages: if all the buffers are
3070  * clean then we set the page clean and proceed.  To do that, we require
3071  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3072  * private_lock.
3073  *
3074  * try_to_free_buffers() is non-blocking.
3075  */
3076 static inline int buffer_busy(struct buffer_head *bh)
3077 {
3078         return atomic_read(&bh->b_count) |
3079                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3080 }
3081
3082 static int
3083 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3084 {
3085         struct buffer_head *head = page_buffers(page);
3086         struct buffer_head *bh;
3087
3088         bh = head;
3089         do {
3090                 if (buffer_write_io_error(bh) && page->mapping)
3091                         set_bit(AS_EIO, &page->mapping->flags);
3092                 if (buffer_busy(bh))
3093                         goto failed;
3094                 bh = bh->b_this_page;
3095         } while (bh != head);
3096
3097         do {
3098                 struct buffer_head *next = bh->b_this_page;
3099
3100                 if (bh->b_assoc_map)
3101                         __remove_assoc_queue(bh);
3102                 bh = next;
3103         } while (bh != head);
3104         *buffers_to_free = head;
3105         __clear_page_buffers(page);
3106         return 1;
3107 failed:
3108         return 0;
3109 }
3110
3111 int try_to_free_buffers(struct page *page)
3112 {
3113         struct address_space * const mapping = page->mapping;
3114         struct buffer_head *buffers_to_free = NULL;
3115         int ret = 0;
3116
3117         BUG_ON(!PageLocked(page));
3118         if (PageWriteback(page))
3119                 return 0;
3120
3121         if (mapping == NULL) {          /* can this still happen? */
3122                 ret = drop_buffers(page, &buffers_to_free);
3123                 goto out;
3124         }
3125
3126         spin_lock(&mapping->private_lock);
3127         ret = drop_buffers(page, &buffers_to_free);
3128
3129         /*
3130          * If the filesystem writes its buffers by hand (eg ext3)
3131          * then we can have clean buffers against a dirty page.  We
3132          * clean the page here; otherwise the VM will never notice
3133          * that the filesystem did any IO at all.
3134          *
3135          * Also, during truncate, discard_buffer will have marked all
3136          * the page's buffers clean.  We discover that here and clean
3137          * the page also.
3138          *
3139          * private_lock must be held over this entire operation in order
3140          * to synchronise against __set_page_dirty_buffers and prevent the
3141          * dirty bit from being lost.
3142          */
3143         if (ret)
3144                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3145         spin_unlock(&mapping->private_lock);
3146 out:
3147         if (buffers_to_free) {
3148                 struct buffer_head *bh = buffers_to_free;
3149
3150                 do {
3151                         struct buffer_head *next = bh->b_this_page;
3152                         free_buffer_head(bh);
3153                         bh = next;
3154                 } while (bh != buffers_to_free);
3155         }
3156         return ret;
3157 }
3158 EXPORT_SYMBOL(try_to_free_buffers);
3159
3160 /*
3161  * There are no bdflush tunables left.  But distributions are
3162  * still running obsolete flush daemons, so we terminate them here.
3163  *
3164  * Use of bdflush() is deprecated and will be removed in a future kernel.
3165  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3166  */
3167 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3168 {
3169         static int msg_count;
3170
3171         if (!capable(CAP_SYS_ADMIN))
3172                 return -EPERM;
3173
3174         if (msg_count < 5) {
3175                 msg_count++;
3176                 printk(KERN_INFO
3177                         "warning: process `%s' used the obsolete bdflush"
3178                         " system call\n", current->comm);
3179                 printk(KERN_INFO "Fix your initscripts?\n");
3180         }
3181
3182         if (func == 1)
3183                 do_exit(0);
3184         return 0;
3185 }
3186
3187 /*
3188  * Buffer-head allocation
3189  */
3190 static struct kmem_cache *bh_cachep;
3191
3192 /*
3193  * Once the number of bh's in the machine exceeds this level, we start
3194  * stripping them in writeback.
3195  */
3196 static int max_buffer_heads;
3197
3198 int buffer_heads_over_limit;
3199
3200 struct bh_accounting {
3201         int nr;                 /* Number of live bh's */
3202         int ratelimit;          /* Limit cacheline bouncing */
3203 };
3204
3205 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3206
3207 static void recalc_bh_state(void)
3208 {
3209         int i;
3210         int tot = 0;
3211
3212         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3213                 return;
3214         __this_cpu_write(bh_accounting.ratelimit, 0);
3215         for_each_online_cpu(i)
3216                 tot += per_cpu(bh_accounting, i).nr;
3217         buffer_heads_over_limit = (tot > max_buffer_heads);
3218 }
3219
3220 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3221 {
3222         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3223         if (ret) {
3224                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3225                 preempt_disable();
3226                 __this_cpu_inc(bh_accounting.nr);
3227                 recalc_bh_state();
3228                 preempt_enable();
3229         }
3230         return ret;
3231 }
3232 EXPORT_SYMBOL(alloc_buffer_head);
3233
3234 void free_buffer_head(struct buffer_head *bh)
3235 {
3236         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3237         kmem_cache_free(bh_cachep, bh);
3238         preempt_disable();
3239         __this_cpu_dec(bh_accounting.nr);
3240         recalc_bh_state();
3241         preempt_enable();
3242 }
3243 EXPORT_SYMBOL(free_buffer_head);
3244
3245 static void buffer_exit_cpu(int cpu)
3246 {
3247         int i;
3248         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3249
3250         for (i = 0; i < BH_LRU_SIZE; i++) {
3251                 brelse(b->bhs[i]);
3252                 b->bhs[i] = NULL;
3253         }
3254         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3255         per_cpu(bh_accounting, cpu).nr = 0;
3256 }
3257
3258 static int buffer_cpu_notify(struct notifier_block *self,
3259                               unsigned long action, void *hcpu)
3260 {
3261         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3262                 buffer_exit_cpu((unsigned long)hcpu);
3263         return NOTIFY_OK;
3264 }
3265
3266 /**
3267  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3268  * @bh: struct buffer_head
3269  *
3270  * Return true if the buffer is up-to-date and false,
3271  * with the buffer locked, if not.
3272  */
3273 int bh_uptodate_or_lock(struct buffer_head *bh)
3274 {
3275         if (!buffer_uptodate(bh)) {
3276                 lock_buffer(bh);
3277                 if (!buffer_uptodate(bh))
3278                         return 0;
3279                 unlock_buffer(bh);
3280         }
3281         return 1;
3282 }
3283 EXPORT_SYMBOL(bh_uptodate_or_lock);
3284
3285 /**
3286  * bh_submit_read - Submit a locked buffer for reading
3287  * @bh: struct buffer_head
3288  *
3289  * Returns zero on success and -EIO on error.
3290  */
3291 int bh_submit_read(struct buffer_head *bh)
3292 {
3293         BUG_ON(!buffer_locked(bh));
3294
3295         if (buffer_uptodate(bh)) {
3296                 unlock_buffer(bh);
3297                 return 0;
3298         }
3299
3300         get_bh(bh);
3301         bh->b_end_io = end_buffer_read_sync;
3302         submit_bh(READ, bh);
3303         wait_on_buffer(bh);
3304         if (buffer_uptodate(bh))
3305                 return 0;
3306         return -EIO;
3307 }
3308 EXPORT_SYMBOL(bh_submit_read);
3309
3310 void __init buffer_init(void)
3311 {
3312         int nrpages;
3313
3314         bh_cachep = kmem_cache_create("buffer_head",
3315                         sizeof(struct buffer_head), 0,
3316                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3317                                 SLAB_MEM_SPREAD),
3318                                 NULL);
3319
3320         /*
3321          * Limit the bh occupancy to 10% of ZONE_NORMAL
3322          */
3323         nrpages = (nr_free_buffer_pages() * 10) / 100;
3324         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3325         hotcpu_notifier(buffer_cpu_notify, 0);
3326 }