Merge branch 'for-linus' of git://git.infradead.org/users/eparis/notify
[pandora-kernel.git] / fs / btrfs / zlib.c
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  *
18  * Based on jffs2 zlib code:
19  * Copyright © 2001-2007 Red Hat, Inc.
20  * Created by David Woodhouse <dwmw2@infradead.org>
21  */
22
23 #include <linux/kernel.h>
24 #include <linux/slab.h>
25 #include <linux/zlib.h>
26 #include <linux/zutil.h>
27 #include <linux/vmalloc.h>
28 #include <linux/init.h>
29 #include <linux/err.h>
30 #include <linux/sched.h>
31 #include <linux/pagemap.h>
32 #include <linux/bio.h>
33 #include "compression.h"
34
35 /* Plan: call deflate() with avail_in == *sourcelen,
36         avail_out = *dstlen - 12 and flush == Z_FINISH.
37         If it doesn't manage to finish, call it again with
38         avail_in == 0 and avail_out set to the remaining 12
39         bytes for it to clean up.
40    Q: Is 12 bytes sufficient?
41 */
42 #define STREAM_END_SPACE 12
43
44 struct workspace {
45         z_stream inf_strm;
46         z_stream def_strm;
47         char *buf;
48         struct list_head list;
49 };
50
51 static LIST_HEAD(idle_workspace);
52 static DEFINE_SPINLOCK(workspace_lock);
53 static unsigned long num_workspace;
54 static atomic_t alloc_workspace = ATOMIC_INIT(0);
55 static DECLARE_WAIT_QUEUE_HEAD(workspace_wait);
56
57 /*
58  * this finds an available zlib workspace or allocates a new one
59  * NULL or an ERR_PTR is returned if things go bad.
60  */
61 static struct workspace *find_zlib_workspace(void)
62 {
63         struct workspace *workspace;
64         int ret;
65         int cpus = num_online_cpus();
66
67 again:
68         spin_lock(&workspace_lock);
69         if (!list_empty(&idle_workspace)) {
70                 workspace = list_entry(idle_workspace.next, struct workspace,
71                                        list);
72                 list_del(&workspace->list);
73                 num_workspace--;
74                 spin_unlock(&workspace_lock);
75                 return workspace;
76
77         }
78         spin_unlock(&workspace_lock);
79         if (atomic_read(&alloc_workspace) > cpus) {
80                 DEFINE_WAIT(wait);
81                 prepare_to_wait(&workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
82                 if (atomic_read(&alloc_workspace) > cpus)
83                         schedule();
84                 finish_wait(&workspace_wait, &wait);
85                 goto again;
86         }
87         atomic_inc(&alloc_workspace);
88         workspace = kzalloc(sizeof(*workspace), GFP_NOFS);
89         if (!workspace) {
90                 ret = -ENOMEM;
91                 goto fail;
92         }
93
94         workspace->def_strm.workspace = vmalloc(zlib_deflate_workspacesize());
95         if (!workspace->def_strm.workspace) {
96                 ret = -ENOMEM;
97                 goto fail;
98         }
99         workspace->inf_strm.workspace = vmalloc(zlib_inflate_workspacesize());
100         if (!workspace->inf_strm.workspace) {
101                 ret = -ENOMEM;
102                 goto fail_inflate;
103         }
104         workspace->buf = kmalloc(PAGE_CACHE_SIZE, GFP_NOFS);
105         if (!workspace->buf) {
106                 ret = -ENOMEM;
107                 goto fail_kmalloc;
108         }
109         return workspace;
110
111 fail_kmalloc:
112         vfree(workspace->inf_strm.workspace);
113 fail_inflate:
114         vfree(workspace->def_strm.workspace);
115 fail:
116         kfree(workspace);
117         atomic_dec(&alloc_workspace);
118         wake_up(&workspace_wait);
119         return ERR_PTR(ret);
120 }
121
122 /*
123  * put a workspace struct back on the list or free it if we have enough
124  * idle ones sitting around
125  */
126 static int free_workspace(struct workspace *workspace)
127 {
128         spin_lock(&workspace_lock);
129         if (num_workspace < num_online_cpus()) {
130                 list_add_tail(&workspace->list, &idle_workspace);
131                 num_workspace++;
132                 spin_unlock(&workspace_lock);
133                 if (waitqueue_active(&workspace_wait))
134                         wake_up(&workspace_wait);
135                 return 0;
136         }
137         spin_unlock(&workspace_lock);
138         vfree(workspace->def_strm.workspace);
139         vfree(workspace->inf_strm.workspace);
140         kfree(workspace->buf);
141         kfree(workspace);
142
143         atomic_dec(&alloc_workspace);
144         if (waitqueue_active(&workspace_wait))
145                 wake_up(&workspace_wait);
146         return 0;
147 }
148
149 /*
150  * cleanup function for module exit
151  */
152 static void free_workspaces(void)
153 {
154         struct workspace *workspace;
155         while (!list_empty(&idle_workspace)) {
156                 workspace = list_entry(idle_workspace.next, struct workspace,
157                                        list);
158                 list_del(&workspace->list);
159                 vfree(workspace->def_strm.workspace);
160                 vfree(workspace->inf_strm.workspace);
161                 kfree(workspace->buf);
162                 kfree(workspace);
163                 atomic_dec(&alloc_workspace);
164         }
165 }
166
167 /*
168  * given an address space and start/len, compress the bytes.
169  *
170  * pages are allocated to hold the compressed result and stored
171  * in 'pages'
172  *
173  * out_pages is used to return the number of pages allocated.  There
174  * may be pages allocated even if we return an error
175  *
176  * total_in is used to return the number of bytes actually read.  It
177  * may be smaller then len if we had to exit early because we
178  * ran out of room in the pages array or because we cross the
179  * max_out threshold.
180  *
181  * total_out is used to return the total number of compressed bytes
182  *
183  * max_out tells us the max number of bytes that we're allowed to
184  * stuff into pages
185  */
186 int btrfs_zlib_compress_pages(struct address_space *mapping,
187                               u64 start, unsigned long len,
188                               struct page **pages,
189                               unsigned long nr_dest_pages,
190                               unsigned long *out_pages,
191                               unsigned long *total_in,
192                               unsigned long *total_out,
193                               unsigned long max_out)
194 {
195         int ret;
196         struct workspace *workspace;
197         char *data_in;
198         char *cpage_out;
199         int nr_pages = 0;
200         struct page *in_page = NULL;
201         struct page *out_page = NULL;
202         unsigned long bytes_left;
203
204         *out_pages = 0;
205         *total_out = 0;
206         *total_in = 0;
207
208         workspace = find_zlib_workspace();
209         if (IS_ERR(workspace))
210                 return -1;
211
212         if (Z_OK != zlib_deflateInit(&workspace->def_strm, 3)) {
213                 printk(KERN_WARNING "deflateInit failed\n");
214                 ret = -1;
215                 goto out;
216         }
217
218         workspace->def_strm.total_in = 0;
219         workspace->def_strm.total_out = 0;
220
221         in_page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
222         data_in = kmap(in_page);
223
224         out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
225         cpage_out = kmap(out_page);
226         pages[0] = out_page;
227         nr_pages = 1;
228
229         workspace->def_strm.next_in = data_in;
230         workspace->def_strm.next_out = cpage_out;
231         workspace->def_strm.avail_out = PAGE_CACHE_SIZE;
232         workspace->def_strm.avail_in = min(len, PAGE_CACHE_SIZE);
233
234         while (workspace->def_strm.total_in < len) {
235                 ret = zlib_deflate(&workspace->def_strm, Z_SYNC_FLUSH);
236                 if (ret != Z_OK) {
237                         printk(KERN_DEBUG "btrfs deflate in loop returned %d\n",
238                                ret);
239                         zlib_deflateEnd(&workspace->def_strm);
240                         ret = -1;
241                         goto out;
242                 }
243
244                 /* we're making it bigger, give up */
245                 if (workspace->def_strm.total_in > 8192 &&
246                     workspace->def_strm.total_in <
247                     workspace->def_strm.total_out) {
248                         ret = -1;
249                         goto out;
250                 }
251                 /* we need another page for writing out.  Test this
252                  * before the total_in so we will pull in a new page for
253                  * the stream end if required
254                  */
255                 if (workspace->def_strm.avail_out == 0) {
256                         kunmap(out_page);
257                         if (nr_pages == nr_dest_pages) {
258                                 out_page = NULL;
259                                 ret = -1;
260                                 goto out;
261                         }
262                         out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
263                         cpage_out = kmap(out_page);
264                         pages[nr_pages] = out_page;
265                         nr_pages++;
266                         workspace->def_strm.avail_out = PAGE_CACHE_SIZE;
267                         workspace->def_strm.next_out = cpage_out;
268                 }
269                 /* we're all done */
270                 if (workspace->def_strm.total_in >= len)
271                         break;
272
273                 /* we've read in a full page, get a new one */
274                 if (workspace->def_strm.avail_in == 0) {
275                         if (workspace->def_strm.total_out > max_out)
276                                 break;
277
278                         bytes_left = len - workspace->def_strm.total_in;
279                         kunmap(in_page);
280                         page_cache_release(in_page);
281
282                         start += PAGE_CACHE_SIZE;
283                         in_page = find_get_page(mapping,
284                                                 start >> PAGE_CACHE_SHIFT);
285                         data_in = kmap(in_page);
286                         workspace->def_strm.avail_in = min(bytes_left,
287                                                            PAGE_CACHE_SIZE);
288                         workspace->def_strm.next_in = data_in;
289                 }
290         }
291         workspace->def_strm.avail_in = 0;
292         ret = zlib_deflate(&workspace->def_strm, Z_FINISH);
293         zlib_deflateEnd(&workspace->def_strm);
294
295         if (ret != Z_STREAM_END) {
296                 ret = -1;
297                 goto out;
298         }
299
300         if (workspace->def_strm.total_out >= workspace->def_strm.total_in) {
301                 ret = -1;
302                 goto out;
303         }
304
305         ret = 0;
306         *total_out = workspace->def_strm.total_out;
307         *total_in = workspace->def_strm.total_in;
308 out:
309         *out_pages = nr_pages;
310         if (out_page)
311                 kunmap(out_page);
312
313         if (in_page) {
314                 kunmap(in_page);
315                 page_cache_release(in_page);
316         }
317         free_workspace(workspace);
318         return ret;
319 }
320
321 /*
322  * pages_in is an array of pages with compressed data.
323  *
324  * disk_start is the starting logical offset of this array in the file
325  *
326  * bvec is a bio_vec of pages from the file that we want to decompress into
327  *
328  * vcnt is the count of pages in the biovec
329  *
330  * srclen is the number of bytes in pages_in
331  *
332  * The basic idea is that we have a bio that was created by readpages.
333  * The pages in the bio are for the uncompressed data, and they may not
334  * be contiguous.  They all correspond to the range of bytes covered by
335  * the compressed extent.
336  */
337 int btrfs_zlib_decompress_biovec(struct page **pages_in,
338                               u64 disk_start,
339                               struct bio_vec *bvec,
340                               int vcnt,
341                               size_t srclen)
342 {
343         int ret = 0;
344         int wbits = MAX_WBITS;
345         struct workspace *workspace;
346         char *data_in;
347         size_t total_out = 0;
348         unsigned long page_bytes_left;
349         unsigned long page_in_index = 0;
350         unsigned long page_out_index = 0;
351         struct page *page_out;
352         unsigned long total_pages_in = (srclen + PAGE_CACHE_SIZE - 1) /
353                                         PAGE_CACHE_SIZE;
354         unsigned long buf_start;
355         unsigned long buf_offset;
356         unsigned long bytes;
357         unsigned long working_bytes;
358         unsigned long pg_offset;
359         unsigned long start_byte;
360         unsigned long current_buf_start;
361         char *kaddr;
362
363         workspace = find_zlib_workspace();
364         if (IS_ERR(workspace))
365                 return -ENOMEM;
366
367         data_in = kmap(pages_in[page_in_index]);
368         workspace->inf_strm.next_in = data_in;
369         workspace->inf_strm.avail_in = min_t(size_t, srclen, PAGE_CACHE_SIZE);
370         workspace->inf_strm.total_in = 0;
371
372         workspace->inf_strm.total_out = 0;
373         workspace->inf_strm.next_out = workspace->buf;
374         workspace->inf_strm.avail_out = PAGE_CACHE_SIZE;
375         page_out = bvec[page_out_index].bv_page;
376         page_bytes_left = PAGE_CACHE_SIZE;
377         pg_offset = 0;
378
379         /* If it's deflate, and it's got no preset dictionary, then
380            we can tell zlib to skip the adler32 check. */
381         if (srclen > 2 && !(data_in[1] & PRESET_DICT) &&
382             ((data_in[0] & 0x0f) == Z_DEFLATED) &&
383             !(((data_in[0]<<8) + data_in[1]) % 31)) {
384
385                 wbits = -((data_in[0] >> 4) + 8);
386                 workspace->inf_strm.next_in += 2;
387                 workspace->inf_strm.avail_in -= 2;
388         }
389
390         if (Z_OK != zlib_inflateInit2(&workspace->inf_strm, wbits)) {
391                 printk(KERN_WARNING "inflateInit failed\n");
392                 ret = -1;
393                 goto out;
394         }
395         while (workspace->inf_strm.total_in < srclen) {
396                 ret = zlib_inflate(&workspace->inf_strm, Z_NO_FLUSH);
397                 if (ret != Z_OK && ret != Z_STREAM_END)
398                         break;
399                 /*
400                  * buf start is the byte offset we're of the start of
401                  * our workspace buffer
402                  */
403                 buf_start = total_out;
404
405                 /* total_out is the last byte of the workspace buffer */
406                 total_out = workspace->inf_strm.total_out;
407
408                 working_bytes = total_out - buf_start;
409
410                 /*
411                  * start byte is the first byte of the page we're currently
412                  * copying into relative to the start of the compressed data.
413                  */
414                 start_byte = page_offset(page_out) - disk_start;
415
416                 if (working_bytes == 0) {
417                         /* we didn't make progress in this inflate
418                          * call, we're done
419                          */
420                         if (ret != Z_STREAM_END)
421                                 ret = -1;
422                         break;
423                 }
424
425                 /* we haven't yet hit data corresponding to this page */
426                 if (total_out <= start_byte)
427                         goto next;
428
429                 /*
430                  * the start of the data we care about is offset into
431                  * the middle of our working buffer
432                  */
433                 if (total_out > start_byte && buf_start < start_byte) {
434                         buf_offset = start_byte - buf_start;
435                         working_bytes -= buf_offset;
436                 } else {
437                         buf_offset = 0;
438                 }
439                 current_buf_start = buf_start;
440
441                 /* copy bytes from the working buffer into the pages */
442                 while (working_bytes > 0) {
443                         bytes = min(PAGE_CACHE_SIZE - pg_offset,
444                                     PAGE_CACHE_SIZE - buf_offset);
445                         bytes = min(bytes, working_bytes);
446                         kaddr = kmap_atomic(page_out, KM_USER0);
447                         memcpy(kaddr + pg_offset, workspace->buf + buf_offset,
448                                bytes);
449                         kunmap_atomic(kaddr, KM_USER0);
450                         flush_dcache_page(page_out);
451
452                         pg_offset += bytes;
453                         page_bytes_left -= bytes;
454                         buf_offset += bytes;
455                         working_bytes -= bytes;
456                         current_buf_start += bytes;
457
458                         /* check if we need to pick another page */
459                         if (page_bytes_left == 0) {
460                                 page_out_index++;
461                                 if (page_out_index >= vcnt) {
462                                         ret = 0;
463                                         goto done;
464                                 }
465
466                                 page_out = bvec[page_out_index].bv_page;
467                                 pg_offset = 0;
468                                 page_bytes_left = PAGE_CACHE_SIZE;
469                                 start_byte = page_offset(page_out) - disk_start;
470
471                                 /*
472                                  * make sure our new page is covered by this
473                                  * working buffer
474                                  */
475                                 if (total_out <= start_byte)
476                                         goto next;
477
478                                 /* the next page in the biovec might not
479                                  * be adjacent to the last page, but it
480                                  * might still be found inside this working
481                                  * buffer.  bump our offset pointer
482                                  */
483                                 if (total_out > start_byte &&
484                                     current_buf_start < start_byte) {
485                                         buf_offset = start_byte - buf_start;
486                                         working_bytes = total_out - start_byte;
487                                         current_buf_start = buf_start +
488                                                 buf_offset;
489                                 }
490                         }
491                 }
492 next:
493                 workspace->inf_strm.next_out = workspace->buf;
494                 workspace->inf_strm.avail_out = PAGE_CACHE_SIZE;
495
496                 if (workspace->inf_strm.avail_in == 0) {
497                         unsigned long tmp;
498                         kunmap(pages_in[page_in_index]);
499                         page_in_index++;
500                         if (page_in_index >= total_pages_in) {
501                                 data_in = NULL;
502                                 break;
503                         }
504                         data_in = kmap(pages_in[page_in_index]);
505                         workspace->inf_strm.next_in = data_in;
506                         tmp = srclen - workspace->inf_strm.total_in;
507                         workspace->inf_strm.avail_in = min(tmp,
508                                                            PAGE_CACHE_SIZE);
509                 }
510         }
511         if (ret != Z_STREAM_END)
512                 ret = -1;
513         else
514                 ret = 0;
515 done:
516         zlib_inflateEnd(&workspace->inf_strm);
517         if (data_in)
518                 kunmap(pages_in[page_in_index]);
519 out:
520         free_workspace(workspace);
521         return ret;
522 }
523
524 /*
525  * a less complex decompression routine.  Our compressed data fits in a
526  * single page, and we want to read a single page out of it.
527  * start_byte tells us the offset into the compressed data we're interested in
528  */
529 int btrfs_zlib_decompress(unsigned char *data_in,
530                           struct page *dest_page,
531                           unsigned long start_byte,
532                           size_t srclen, size_t destlen)
533 {
534         int ret = 0;
535         int wbits = MAX_WBITS;
536         struct workspace *workspace;
537         unsigned long bytes_left = destlen;
538         unsigned long total_out = 0;
539         char *kaddr;
540
541         if (destlen > PAGE_CACHE_SIZE)
542                 return -ENOMEM;
543
544         workspace = find_zlib_workspace();
545         if (IS_ERR(workspace))
546                 return -ENOMEM;
547
548         workspace->inf_strm.next_in = data_in;
549         workspace->inf_strm.avail_in = srclen;
550         workspace->inf_strm.total_in = 0;
551
552         workspace->inf_strm.next_out = workspace->buf;
553         workspace->inf_strm.avail_out = PAGE_CACHE_SIZE;
554         workspace->inf_strm.total_out = 0;
555         /* If it's deflate, and it's got no preset dictionary, then
556            we can tell zlib to skip the adler32 check. */
557         if (srclen > 2 && !(data_in[1] & PRESET_DICT) &&
558             ((data_in[0] & 0x0f) == Z_DEFLATED) &&
559             !(((data_in[0]<<8) + data_in[1]) % 31)) {
560
561                 wbits = -((data_in[0] >> 4) + 8);
562                 workspace->inf_strm.next_in += 2;
563                 workspace->inf_strm.avail_in -= 2;
564         }
565
566         if (Z_OK != zlib_inflateInit2(&workspace->inf_strm, wbits)) {
567                 printk(KERN_WARNING "inflateInit failed\n");
568                 ret = -1;
569                 goto out;
570         }
571
572         while (bytes_left > 0) {
573                 unsigned long buf_start;
574                 unsigned long buf_offset;
575                 unsigned long bytes;
576                 unsigned long pg_offset = 0;
577
578                 ret = zlib_inflate(&workspace->inf_strm, Z_NO_FLUSH);
579                 if (ret != Z_OK && ret != Z_STREAM_END)
580                         break;
581
582                 buf_start = total_out;
583                 total_out = workspace->inf_strm.total_out;
584
585                 if (total_out == buf_start) {
586                         ret = -1;
587                         break;
588                 }
589
590                 if (total_out <= start_byte)
591                         goto next;
592
593                 if (total_out > start_byte && buf_start < start_byte)
594                         buf_offset = start_byte - buf_start;
595                 else
596                         buf_offset = 0;
597
598                 bytes = min(PAGE_CACHE_SIZE - pg_offset,
599                             PAGE_CACHE_SIZE - buf_offset);
600                 bytes = min(bytes, bytes_left);
601
602                 kaddr = kmap_atomic(dest_page, KM_USER0);
603                 memcpy(kaddr + pg_offset, workspace->buf + buf_offset, bytes);
604                 kunmap_atomic(kaddr, KM_USER0);
605
606                 pg_offset += bytes;
607                 bytes_left -= bytes;
608 next:
609                 workspace->inf_strm.next_out = workspace->buf;
610                 workspace->inf_strm.avail_out = PAGE_CACHE_SIZE;
611         }
612
613         if (ret != Z_STREAM_END && bytes_left != 0)
614                 ret = -1;
615         else
616                 ret = 0;
617
618         zlib_inflateEnd(&workspace->inf_strm);
619 out:
620         free_workspace(workspace);
621         return ret;
622 }
623
624 void btrfs_zlib_exit(void)
625 {
626     free_workspaces();
627 }