btrfs: restructure find_free_dev_extent()
[pandora-kernel.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <asm/div64.h>
26 #include "compat.h"
27 #include "ctree.h"
28 #include "extent_map.h"
29 #include "disk-io.h"
30 #include "transaction.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "async-thread.h"
34
35 struct map_lookup {
36         u64 type;
37         int io_align;
38         int io_width;
39         int stripe_len;
40         int sector_size;
41         int num_stripes;
42         int sub_stripes;
43         struct btrfs_bio_stripe stripes[];
44 };
45
46 static int init_first_rw_device(struct btrfs_trans_handle *trans,
47                                 struct btrfs_root *root,
48                                 struct btrfs_device *device);
49 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
50
51 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
52                             (sizeof(struct btrfs_bio_stripe) * (n)))
53
54 static DEFINE_MUTEX(uuid_mutex);
55 static LIST_HEAD(fs_uuids);
56
57 void btrfs_lock_volumes(void)
58 {
59         mutex_lock(&uuid_mutex);
60 }
61
62 void btrfs_unlock_volumes(void)
63 {
64         mutex_unlock(&uuid_mutex);
65 }
66
67 static void lock_chunks(struct btrfs_root *root)
68 {
69         mutex_lock(&root->fs_info->chunk_mutex);
70 }
71
72 static void unlock_chunks(struct btrfs_root *root)
73 {
74         mutex_unlock(&root->fs_info->chunk_mutex);
75 }
76
77 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
78 {
79         struct btrfs_device *device;
80         WARN_ON(fs_devices->opened);
81         while (!list_empty(&fs_devices->devices)) {
82                 device = list_entry(fs_devices->devices.next,
83                                     struct btrfs_device, dev_list);
84                 list_del(&device->dev_list);
85                 kfree(device->name);
86                 kfree(device);
87         }
88         kfree(fs_devices);
89 }
90
91 int btrfs_cleanup_fs_uuids(void)
92 {
93         struct btrfs_fs_devices *fs_devices;
94
95         while (!list_empty(&fs_uuids)) {
96                 fs_devices = list_entry(fs_uuids.next,
97                                         struct btrfs_fs_devices, list);
98                 list_del(&fs_devices->list);
99                 free_fs_devices(fs_devices);
100         }
101         return 0;
102 }
103
104 static noinline struct btrfs_device *__find_device(struct list_head *head,
105                                                    u64 devid, u8 *uuid)
106 {
107         struct btrfs_device *dev;
108
109         list_for_each_entry(dev, head, dev_list) {
110                 if (dev->devid == devid &&
111                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
112                         return dev;
113                 }
114         }
115         return NULL;
116 }
117
118 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
119 {
120         struct btrfs_fs_devices *fs_devices;
121
122         list_for_each_entry(fs_devices, &fs_uuids, list) {
123                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
124                         return fs_devices;
125         }
126         return NULL;
127 }
128
129 static void requeue_list(struct btrfs_pending_bios *pending_bios,
130                         struct bio *head, struct bio *tail)
131 {
132
133         struct bio *old_head;
134
135         old_head = pending_bios->head;
136         pending_bios->head = head;
137         if (pending_bios->tail)
138                 tail->bi_next = old_head;
139         else
140                 pending_bios->tail = tail;
141 }
142
143 /*
144  * we try to collect pending bios for a device so we don't get a large
145  * number of procs sending bios down to the same device.  This greatly
146  * improves the schedulers ability to collect and merge the bios.
147  *
148  * But, it also turns into a long list of bios to process and that is sure
149  * to eventually make the worker thread block.  The solution here is to
150  * make some progress and then put this work struct back at the end of
151  * the list if the block device is congested.  This way, multiple devices
152  * can make progress from a single worker thread.
153  */
154 static noinline int run_scheduled_bios(struct btrfs_device *device)
155 {
156         struct bio *pending;
157         struct backing_dev_info *bdi;
158         struct btrfs_fs_info *fs_info;
159         struct btrfs_pending_bios *pending_bios;
160         struct bio *tail;
161         struct bio *cur;
162         int again = 0;
163         unsigned long num_run;
164         unsigned long num_sync_run;
165         unsigned long batch_run = 0;
166         unsigned long limit;
167         unsigned long last_waited = 0;
168         int force_reg = 0;
169
170         bdi = blk_get_backing_dev_info(device->bdev);
171         fs_info = device->dev_root->fs_info;
172         limit = btrfs_async_submit_limit(fs_info);
173         limit = limit * 2 / 3;
174
175         /* we want to make sure that every time we switch from the sync
176          * list to the normal list, we unplug
177          */
178         num_sync_run = 0;
179
180 loop:
181         spin_lock(&device->io_lock);
182
183 loop_lock:
184         num_run = 0;
185
186         /* take all the bios off the list at once and process them
187          * later on (without the lock held).  But, remember the
188          * tail and other pointers so the bios can be properly reinserted
189          * into the list if we hit congestion
190          */
191         if (!force_reg && device->pending_sync_bios.head) {
192                 pending_bios = &device->pending_sync_bios;
193                 force_reg = 1;
194         } else {
195                 pending_bios = &device->pending_bios;
196                 force_reg = 0;
197         }
198
199         pending = pending_bios->head;
200         tail = pending_bios->tail;
201         WARN_ON(pending && !tail);
202
203         /*
204          * if pending was null this time around, no bios need processing
205          * at all and we can stop.  Otherwise it'll loop back up again
206          * and do an additional check so no bios are missed.
207          *
208          * device->running_pending is used to synchronize with the
209          * schedule_bio code.
210          */
211         if (device->pending_sync_bios.head == NULL &&
212             device->pending_bios.head == NULL) {
213                 again = 0;
214                 device->running_pending = 0;
215         } else {
216                 again = 1;
217                 device->running_pending = 1;
218         }
219
220         pending_bios->head = NULL;
221         pending_bios->tail = NULL;
222
223         spin_unlock(&device->io_lock);
224
225         /*
226          * if we're doing the regular priority list, make sure we unplug
227          * for any high prio bios we've sent down
228          */
229         if (pending_bios == &device->pending_bios && num_sync_run > 0) {
230                 num_sync_run = 0;
231                 blk_run_backing_dev(bdi, NULL);
232         }
233
234         while (pending) {
235
236                 rmb();
237                 /* we want to work on both lists, but do more bios on the
238                  * sync list than the regular list
239                  */
240                 if ((num_run > 32 &&
241                     pending_bios != &device->pending_sync_bios &&
242                     device->pending_sync_bios.head) ||
243                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
244                     device->pending_bios.head)) {
245                         spin_lock(&device->io_lock);
246                         requeue_list(pending_bios, pending, tail);
247                         goto loop_lock;
248                 }
249
250                 cur = pending;
251                 pending = pending->bi_next;
252                 cur->bi_next = NULL;
253                 atomic_dec(&fs_info->nr_async_bios);
254
255                 if (atomic_read(&fs_info->nr_async_bios) < limit &&
256                     waitqueue_active(&fs_info->async_submit_wait))
257                         wake_up(&fs_info->async_submit_wait);
258
259                 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
260
261                 if (cur->bi_rw & REQ_SYNC)
262                         num_sync_run++;
263
264                 submit_bio(cur->bi_rw, cur);
265                 num_run++;
266                 batch_run++;
267                 if (need_resched()) {
268                         if (num_sync_run) {
269                                 blk_run_backing_dev(bdi, NULL);
270                                 num_sync_run = 0;
271                         }
272                         cond_resched();
273                 }
274
275                 /*
276                  * we made progress, there is more work to do and the bdi
277                  * is now congested.  Back off and let other work structs
278                  * run instead
279                  */
280                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
281                     fs_info->fs_devices->open_devices > 1) {
282                         struct io_context *ioc;
283
284                         ioc = current->io_context;
285
286                         /*
287                          * the main goal here is that we don't want to
288                          * block if we're going to be able to submit
289                          * more requests without blocking.
290                          *
291                          * This code does two great things, it pokes into
292                          * the elevator code from a filesystem _and_
293                          * it makes assumptions about how batching works.
294                          */
295                         if (ioc && ioc->nr_batch_requests > 0 &&
296                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
297                             (last_waited == 0 ||
298                              ioc->last_waited == last_waited)) {
299                                 /*
300                                  * we want to go through our batch of
301                                  * requests and stop.  So, we copy out
302                                  * the ioc->last_waited time and test
303                                  * against it before looping
304                                  */
305                                 last_waited = ioc->last_waited;
306                                 if (need_resched()) {
307                                         if (num_sync_run) {
308                                                 blk_run_backing_dev(bdi, NULL);
309                                                 num_sync_run = 0;
310                                         }
311                                         cond_resched();
312                                 }
313                                 continue;
314                         }
315                         spin_lock(&device->io_lock);
316                         requeue_list(pending_bios, pending, tail);
317                         device->running_pending = 1;
318
319                         spin_unlock(&device->io_lock);
320                         btrfs_requeue_work(&device->work);
321                         goto done;
322                 }
323         }
324
325         if (num_sync_run) {
326                 num_sync_run = 0;
327                 blk_run_backing_dev(bdi, NULL);
328         }
329         /*
330          * IO has already been through a long path to get here.  Checksumming,
331          * async helper threads, perhaps compression.  We've done a pretty
332          * good job of collecting a batch of IO and should just unplug
333          * the device right away.
334          *
335          * This will help anyone who is waiting on the IO, they might have
336          * already unplugged, but managed to do so before the bio they
337          * cared about found its way down here.
338          */
339         blk_run_backing_dev(bdi, NULL);
340
341         cond_resched();
342         if (again)
343                 goto loop;
344
345         spin_lock(&device->io_lock);
346         if (device->pending_bios.head || device->pending_sync_bios.head)
347                 goto loop_lock;
348         spin_unlock(&device->io_lock);
349
350 done:
351         return 0;
352 }
353
354 static void pending_bios_fn(struct btrfs_work *work)
355 {
356         struct btrfs_device *device;
357
358         device = container_of(work, struct btrfs_device, work);
359         run_scheduled_bios(device);
360 }
361
362 static noinline int device_list_add(const char *path,
363                            struct btrfs_super_block *disk_super,
364                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
365 {
366         struct btrfs_device *device;
367         struct btrfs_fs_devices *fs_devices;
368         u64 found_transid = btrfs_super_generation(disk_super);
369         char *name;
370
371         fs_devices = find_fsid(disk_super->fsid);
372         if (!fs_devices) {
373                 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
374                 if (!fs_devices)
375                         return -ENOMEM;
376                 INIT_LIST_HEAD(&fs_devices->devices);
377                 INIT_LIST_HEAD(&fs_devices->alloc_list);
378                 list_add(&fs_devices->list, &fs_uuids);
379                 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
380                 fs_devices->latest_devid = devid;
381                 fs_devices->latest_trans = found_transid;
382                 mutex_init(&fs_devices->device_list_mutex);
383                 device = NULL;
384         } else {
385                 device = __find_device(&fs_devices->devices, devid,
386                                        disk_super->dev_item.uuid);
387         }
388         if (!device) {
389                 if (fs_devices->opened)
390                         return -EBUSY;
391
392                 device = kzalloc(sizeof(*device), GFP_NOFS);
393                 if (!device) {
394                         /* we can safely leave the fs_devices entry around */
395                         return -ENOMEM;
396                 }
397                 device->devid = devid;
398                 device->work.func = pending_bios_fn;
399                 memcpy(device->uuid, disk_super->dev_item.uuid,
400                        BTRFS_UUID_SIZE);
401                 device->barriers = 1;
402                 spin_lock_init(&device->io_lock);
403                 device->name = kstrdup(path, GFP_NOFS);
404                 if (!device->name) {
405                         kfree(device);
406                         return -ENOMEM;
407                 }
408                 INIT_LIST_HEAD(&device->dev_alloc_list);
409
410                 mutex_lock(&fs_devices->device_list_mutex);
411                 list_add(&device->dev_list, &fs_devices->devices);
412                 mutex_unlock(&fs_devices->device_list_mutex);
413
414                 device->fs_devices = fs_devices;
415                 fs_devices->num_devices++;
416         } else if (!device->name || strcmp(device->name, path)) {
417                 name = kstrdup(path, GFP_NOFS);
418                 if (!name)
419                         return -ENOMEM;
420                 kfree(device->name);
421                 device->name = name;
422                 if (device->missing) {
423                         fs_devices->missing_devices--;
424                         device->missing = 0;
425                 }
426         }
427
428         if (found_transid > fs_devices->latest_trans) {
429                 fs_devices->latest_devid = devid;
430                 fs_devices->latest_trans = found_transid;
431         }
432         *fs_devices_ret = fs_devices;
433         return 0;
434 }
435
436 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
437 {
438         struct btrfs_fs_devices *fs_devices;
439         struct btrfs_device *device;
440         struct btrfs_device *orig_dev;
441
442         fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
443         if (!fs_devices)
444                 return ERR_PTR(-ENOMEM);
445
446         INIT_LIST_HEAD(&fs_devices->devices);
447         INIT_LIST_HEAD(&fs_devices->alloc_list);
448         INIT_LIST_HEAD(&fs_devices->list);
449         mutex_init(&fs_devices->device_list_mutex);
450         fs_devices->latest_devid = orig->latest_devid;
451         fs_devices->latest_trans = orig->latest_trans;
452         memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
453
454         mutex_lock(&orig->device_list_mutex);
455         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
456                 device = kzalloc(sizeof(*device), GFP_NOFS);
457                 if (!device)
458                         goto error;
459
460                 device->name = kstrdup(orig_dev->name, GFP_NOFS);
461                 if (!device->name) {
462                         kfree(device);
463                         goto error;
464                 }
465
466                 device->devid = orig_dev->devid;
467                 device->work.func = pending_bios_fn;
468                 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
469                 device->barriers = 1;
470                 spin_lock_init(&device->io_lock);
471                 INIT_LIST_HEAD(&device->dev_list);
472                 INIT_LIST_HEAD(&device->dev_alloc_list);
473
474                 list_add(&device->dev_list, &fs_devices->devices);
475                 device->fs_devices = fs_devices;
476                 fs_devices->num_devices++;
477         }
478         mutex_unlock(&orig->device_list_mutex);
479         return fs_devices;
480 error:
481         mutex_unlock(&orig->device_list_mutex);
482         free_fs_devices(fs_devices);
483         return ERR_PTR(-ENOMEM);
484 }
485
486 int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
487 {
488         struct btrfs_device *device, *next;
489
490         mutex_lock(&uuid_mutex);
491 again:
492         mutex_lock(&fs_devices->device_list_mutex);
493         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
494                 if (device->in_fs_metadata)
495                         continue;
496
497                 if (device->bdev) {
498                         close_bdev_exclusive(device->bdev, device->mode);
499                         device->bdev = NULL;
500                         fs_devices->open_devices--;
501                 }
502                 if (device->writeable) {
503                         list_del_init(&device->dev_alloc_list);
504                         device->writeable = 0;
505                         fs_devices->rw_devices--;
506                 }
507                 list_del_init(&device->dev_list);
508                 fs_devices->num_devices--;
509                 kfree(device->name);
510                 kfree(device);
511         }
512         mutex_unlock(&fs_devices->device_list_mutex);
513
514         if (fs_devices->seed) {
515                 fs_devices = fs_devices->seed;
516                 goto again;
517         }
518
519         mutex_unlock(&uuid_mutex);
520         return 0;
521 }
522
523 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
524 {
525         struct btrfs_device *device;
526
527         if (--fs_devices->opened > 0)
528                 return 0;
529
530         list_for_each_entry(device, &fs_devices->devices, dev_list) {
531                 if (device->bdev) {
532                         close_bdev_exclusive(device->bdev, device->mode);
533                         fs_devices->open_devices--;
534                 }
535                 if (device->writeable) {
536                         list_del_init(&device->dev_alloc_list);
537                         fs_devices->rw_devices--;
538                 }
539
540                 device->bdev = NULL;
541                 device->writeable = 0;
542                 device->in_fs_metadata = 0;
543         }
544         WARN_ON(fs_devices->open_devices);
545         WARN_ON(fs_devices->rw_devices);
546         fs_devices->opened = 0;
547         fs_devices->seeding = 0;
548
549         return 0;
550 }
551
552 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
553 {
554         struct btrfs_fs_devices *seed_devices = NULL;
555         int ret;
556
557         mutex_lock(&uuid_mutex);
558         ret = __btrfs_close_devices(fs_devices);
559         if (!fs_devices->opened) {
560                 seed_devices = fs_devices->seed;
561                 fs_devices->seed = NULL;
562         }
563         mutex_unlock(&uuid_mutex);
564
565         while (seed_devices) {
566                 fs_devices = seed_devices;
567                 seed_devices = fs_devices->seed;
568                 __btrfs_close_devices(fs_devices);
569                 free_fs_devices(fs_devices);
570         }
571         return ret;
572 }
573
574 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
575                                 fmode_t flags, void *holder)
576 {
577         struct block_device *bdev;
578         struct list_head *head = &fs_devices->devices;
579         struct btrfs_device *device;
580         struct block_device *latest_bdev = NULL;
581         struct buffer_head *bh;
582         struct btrfs_super_block *disk_super;
583         u64 latest_devid = 0;
584         u64 latest_transid = 0;
585         u64 devid;
586         int seeding = 1;
587         int ret = 0;
588
589         list_for_each_entry(device, head, dev_list) {
590                 if (device->bdev)
591                         continue;
592                 if (!device->name)
593                         continue;
594
595                 bdev = open_bdev_exclusive(device->name, flags, holder);
596                 if (IS_ERR(bdev)) {
597                         printk(KERN_INFO "open %s failed\n", device->name);
598                         goto error;
599                 }
600                 set_blocksize(bdev, 4096);
601
602                 bh = btrfs_read_dev_super(bdev);
603                 if (!bh)
604                         goto error_close;
605
606                 disk_super = (struct btrfs_super_block *)bh->b_data;
607                 devid = btrfs_stack_device_id(&disk_super->dev_item);
608                 if (devid != device->devid)
609                         goto error_brelse;
610
611                 if (memcmp(device->uuid, disk_super->dev_item.uuid,
612                            BTRFS_UUID_SIZE))
613                         goto error_brelse;
614
615                 device->generation = btrfs_super_generation(disk_super);
616                 if (!latest_transid || device->generation > latest_transid) {
617                         latest_devid = devid;
618                         latest_transid = device->generation;
619                         latest_bdev = bdev;
620                 }
621
622                 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
623                         device->writeable = 0;
624                 } else {
625                         device->writeable = !bdev_read_only(bdev);
626                         seeding = 0;
627                 }
628
629                 device->bdev = bdev;
630                 device->in_fs_metadata = 0;
631                 device->mode = flags;
632
633                 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
634                         fs_devices->rotating = 1;
635
636                 fs_devices->open_devices++;
637                 if (device->writeable) {
638                         fs_devices->rw_devices++;
639                         list_add(&device->dev_alloc_list,
640                                  &fs_devices->alloc_list);
641                 }
642                 continue;
643
644 error_brelse:
645                 brelse(bh);
646 error_close:
647                 close_bdev_exclusive(bdev, FMODE_READ);
648 error:
649                 continue;
650         }
651         if (fs_devices->open_devices == 0) {
652                 ret = -EIO;
653                 goto out;
654         }
655         fs_devices->seeding = seeding;
656         fs_devices->opened = 1;
657         fs_devices->latest_bdev = latest_bdev;
658         fs_devices->latest_devid = latest_devid;
659         fs_devices->latest_trans = latest_transid;
660         fs_devices->total_rw_bytes = 0;
661 out:
662         return ret;
663 }
664
665 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
666                        fmode_t flags, void *holder)
667 {
668         int ret;
669
670         mutex_lock(&uuid_mutex);
671         if (fs_devices->opened) {
672                 fs_devices->opened++;
673                 ret = 0;
674         } else {
675                 ret = __btrfs_open_devices(fs_devices, flags, holder);
676         }
677         mutex_unlock(&uuid_mutex);
678         return ret;
679 }
680
681 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
682                           struct btrfs_fs_devices **fs_devices_ret)
683 {
684         struct btrfs_super_block *disk_super;
685         struct block_device *bdev;
686         struct buffer_head *bh;
687         int ret;
688         u64 devid;
689         u64 transid;
690
691         mutex_lock(&uuid_mutex);
692
693         bdev = open_bdev_exclusive(path, flags, holder);
694
695         if (IS_ERR(bdev)) {
696                 ret = PTR_ERR(bdev);
697                 goto error;
698         }
699
700         ret = set_blocksize(bdev, 4096);
701         if (ret)
702                 goto error_close;
703         bh = btrfs_read_dev_super(bdev);
704         if (!bh) {
705                 ret = -EIO;
706                 goto error_close;
707         }
708         disk_super = (struct btrfs_super_block *)bh->b_data;
709         devid = btrfs_stack_device_id(&disk_super->dev_item);
710         transid = btrfs_super_generation(disk_super);
711         if (disk_super->label[0])
712                 printk(KERN_INFO "device label %s ", disk_super->label);
713         else {
714                 /* FIXME, make a readl uuid parser */
715                 printk(KERN_INFO "device fsid %llx-%llx ",
716                        *(unsigned long long *)disk_super->fsid,
717                        *(unsigned long long *)(disk_super->fsid + 8));
718         }
719         printk(KERN_CONT "devid %llu transid %llu %s\n",
720                (unsigned long long)devid, (unsigned long long)transid, path);
721         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
722
723         brelse(bh);
724 error_close:
725         close_bdev_exclusive(bdev, flags);
726 error:
727         mutex_unlock(&uuid_mutex);
728         return ret;
729 }
730
731 /*
732  * find_free_dev_extent - find free space in the specified device
733  * @trans:      transaction handler
734  * @device:     the device which we search the free space in
735  * @num_bytes:  the size of the free space that we need
736  * @start:      store the start of the free space.
737  * @len:        the size of the free space. that we find, or the size of the max
738  *              free space if we don't find suitable free space
739  *
740  * this uses a pretty simple search, the expectation is that it is
741  * called very infrequently and that a given device has a small number
742  * of extents
743  *
744  * @start is used to store the start of the free space if we find. But if we
745  * don't find suitable free space, it will be used to store the start position
746  * of the max free space.
747  *
748  * @len is used to store the size of the free space that we find.
749  * But if we don't find suitable free space, it is used to store the size of
750  * the max free space.
751  */
752 int find_free_dev_extent(struct btrfs_trans_handle *trans,
753                          struct btrfs_device *device, u64 num_bytes,
754                          u64 *start, u64 *len)
755 {
756         struct btrfs_key key;
757         struct btrfs_root *root = device->dev_root;
758         struct btrfs_dev_extent *dev_extent;
759         struct btrfs_path *path;
760         u64 hole_size;
761         u64 max_hole_start;
762         u64 max_hole_size;
763         u64 extent_end;
764         u64 search_start;
765         u64 search_end = device->total_bytes;
766         int ret;
767         int slot;
768         struct extent_buffer *l;
769
770         /* FIXME use last free of some kind */
771
772         /* we don't want to overwrite the superblock on the drive,
773          * so we make sure to start at an offset of at least 1MB
774          */
775         search_start = 1024 * 1024;
776
777         if (root->fs_info->alloc_start + num_bytes <= search_end)
778                 search_start = max(root->fs_info->alloc_start, search_start);
779
780         max_hole_start = search_start;
781         max_hole_size = 0;
782
783         if (search_start >= search_end) {
784                 ret = -ENOSPC;
785                 goto error;
786         }
787
788         path = btrfs_alloc_path();
789         if (!path) {
790                 ret = -ENOMEM;
791                 goto error;
792         }
793         path->reada = 2;
794
795         key.objectid = device->devid;
796         key.offset = search_start;
797         key.type = BTRFS_DEV_EXTENT_KEY;
798
799         ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
800         if (ret < 0)
801                 goto out;
802         if (ret > 0) {
803                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
804                 if (ret < 0)
805                         goto out;
806         }
807
808         while (1) {
809                 l = path->nodes[0];
810                 slot = path->slots[0];
811                 if (slot >= btrfs_header_nritems(l)) {
812                         ret = btrfs_next_leaf(root, path);
813                         if (ret == 0)
814                                 continue;
815                         if (ret < 0)
816                                 goto out;
817
818                         break;
819                 }
820                 btrfs_item_key_to_cpu(l, &key, slot);
821
822                 if (key.objectid < device->devid)
823                         goto next;
824
825                 if (key.objectid > device->devid)
826                         break;
827
828                 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
829                         goto next;
830
831                 if (key.offset > search_start) {
832                         hole_size = key.offset - search_start;
833
834                         if (hole_size > max_hole_size) {
835                                 max_hole_start = search_start;
836                                 max_hole_size = hole_size;
837                         }
838
839                         /*
840                          * If this free space is greater than which we need,
841                          * it must be the max free space that we have found
842                          * until now, so max_hole_start must point to the start
843                          * of this free space and the length of this free space
844                          * is stored in max_hole_size. Thus, we return
845                          * max_hole_start and max_hole_size and go back to the
846                          * caller.
847                          */
848                         if (hole_size >= num_bytes) {
849                                 ret = 0;
850                                 goto out;
851                         }
852                 }
853
854                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
855                 extent_end = key.offset + btrfs_dev_extent_length(l,
856                                                                   dev_extent);
857                 if (extent_end > search_start)
858                         search_start = extent_end;
859 next:
860                 path->slots[0]++;
861                 cond_resched();
862         }
863
864         hole_size = search_end- search_start;
865         if (hole_size > max_hole_size) {
866                 max_hole_start = search_start;
867                 max_hole_size = hole_size;
868         }
869
870         /* See above. */
871         if (hole_size < num_bytes)
872                 ret = -ENOSPC;
873         else
874                 ret = 0;
875
876 out:
877         btrfs_free_path(path);
878 error:
879         *start = max_hole_start;
880         if (len && max_hole_size > *len)
881                 *len = max_hole_size;
882         return ret;
883 }
884
885 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
886                           struct btrfs_device *device,
887                           u64 start)
888 {
889         int ret;
890         struct btrfs_path *path;
891         struct btrfs_root *root = device->dev_root;
892         struct btrfs_key key;
893         struct btrfs_key found_key;
894         struct extent_buffer *leaf = NULL;
895         struct btrfs_dev_extent *extent = NULL;
896
897         path = btrfs_alloc_path();
898         if (!path)
899                 return -ENOMEM;
900
901         key.objectid = device->devid;
902         key.offset = start;
903         key.type = BTRFS_DEV_EXTENT_KEY;
904
905         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
906         if (ret > 0) {
907                 ret = btrfs_previous_item(root, path, key.objectid,
908                                           BTRFS_DEV_EXTENT_KEY);
909                 BUG_ON(ret);
910                 leaf = path->nodes[0];
911                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
912                 extent = btrfs_item_ptr(leaf, path->slots[0],
913                                         struct btrfs_dev_extent);
914                 BUG_ON(found_key.offset > start || found_key.offset +
915                        btrfs_dev_extent_length(leaf, extent) < start);
916                 ret = 0;
917         } else if (ret == 0) {
918                 leaf = path->nodes[0];
919                 extent = btrfs_item_ptr(leaf, path->slots[0],
920                                         struct btrfs_dev_extent);
921         }
922         BUG_ON(ret);
923
924         if (device->bytes_used > 0)
925                 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
926         ret = btrfs_del_item(trans, root, path);
927         BUG_ON(ret);
928
929         btrfs_free_path(path);
930         return ret;
931 }
932
933 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
934                            struct btrfs_device *device,
935                            u64 chunk_tree, u64 chunk_objectid,
936                            u64 chunk_offset, u64 start, u64 num_bytes)
937 {
938         int ret;
939         struct btrfs_path *path;
940         struct btrfs_root *root = device->dev_root;
941         struct btrfs_dev_extent *extent;
942         struct extent_buffer *leaf;
943         struct btrfs_key key;
944
945         WARN_ON(!device->in_fs_metadata);
946         path = btrfs_alloc_path();
947         if (!path)
948                 return -ENOMEM;
949
950         key.objectid = device->devid;
951         key.offset = start;
952         key.type = BTRFS_DEV_EXTENT_KEY;
953         ret = btrfs_insert_empty_item(trans, root, path, &key,
954                                       sizeof(*extent));
955         BUG_ON(ret);
956
957         leaf = path->nodes[0];
958         extent = btrfs_item_ptr(leaf, path->slots[0],
959                                 struct btrfs_dev_extent);
960         btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
961         btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
962         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
963
964         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
965                     (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
966                     BTRFS_UUID_SIZE);
967
968         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
969         btrfs_mark_buffer_dirty(leaf);
970         btrfs_free_path(path);
971         return ret;
972 }
973
974 static noinline int find_next_chunk(struct btrfs_root *root,
975                                     u64 objectid, u64 *offset)
976 {
977         struct btrfs_path *path;
978         int ret;
979         struct btrfs_key key;
980         struct btrfs_chunk *chunk;
981         struct btrfs_key found_key;
982
983         path = btrfs_alloc_path();
984         BUG_ON(!path);
985
986         key.objectid = objectid;
987         key.offset = (u64)-1;
988         key.type = BTRFS_CHUNK_ITEM_KEY;
989
990         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
991         if (ret < 0)
992                 goto error;
993
994         BUG_ON(ret == 0);
995
996         ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
997         if (ret) {
998                 *offset = 0;
999         } else {
1000                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1001                                       path->slots[0]);
1002                 if (found_key.objectid != objectid)
1003                         *offset = 0;
1004                 else {
1005                         chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1006                                                struct btrfs_chunk);
1007                         *offset = found_key.offset +
1008                                 btrfs_chunk_length(path->nodes[0], chunk);
1009                 }
1010         }
1011         ret = 0;
1012 error:
1013         btrfs_free_path(path);
1014         return ret;
1015 }
1016
1017 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
1018 {
1019         int ret;
1020         struct btrfs_key key;
1021         struct btrfs_key found_key;
1022         struct btrfs_path *path;
1023
1024         root = root->fs_info->chunk_root;
1025
1026         path = btrfs_alloc_path();
1027         if (!path)
1028                 return -ENOMEM;
1029
1030         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1031         key.type = BTRFS_DEV_ITEM_KEY;
1032         key.offset = (u64)-1;
1033
1034         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1035         if (ret < 0)
1036                 goto error;
1037
1038         BUG_ON(ret == 0);
1039
1040         ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1041                                   BTRFS_DEV_ITEM_KEY);
1042         if (ret) {
1043                 *objectid = 1;
1044         } else {
1045                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1046                                       path->slots[0]);
1047                 *objectid = found_key.offset + 1;
1048         }
1049         ret = 0;
1050 error:
1051         btrfs_free_path(path);
1052         return ret;
1053 }
1054
1055 /*
1056  * the device information is stored in the chunk root
1057  * the btrfs_device struct should be fully filled in
1058  */
1059 int btrfs_add_device(struct btrfs_trans_handle *trans,
1060                      struct btrfs_root *root,
1061                      struct btrfs_device *device)
1062 {
1063         int ret;
1064         struct btrfs_path *path;
1065         struct btrfs_dev_item *dev_item;
1066         struct extent_buffer *leaf;
1067         struct btrfs_key key;
1068         unsigned long ptr;
1069
1070         root = root->fs_info->chunk_root;
1071
1072         path = btrfs_alloc_path();
1073         if (!path)
1074                 return -ENOMEM;
1075
1076         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1077         key.type = BTRFS_DEV_ITEM_KEY;
1078         key.offset = device->devid;
1079
1080         ret = btrfs_insert_empty_item(trans, root, path, &key,
1081                                       sizeof(*dev_item));
1082         if (ret)
1083                 goto out;
1084
1085         leaf = path->nodes[0];
1086         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1087
1088         btrfs_set_device_id(leaf, dev_item, device->devid);
1089         btrfs_set_device_generation(leaf, dev_item, 0);
1090         btrfs_set_device_type(leaf, dev_item, device->type);
1091         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1092         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1093         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1094         btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1095         btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1096         btrfs_set_device_group(leaf, dev_item, 0);
1097         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1098         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1099         btrfs_set_device_start_offset(leaf, dev_item, 0);
1100
1101         ptr = (unsigned long)btrfs_device_uuid(dev_item);
1102         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1103         ptr = (unsigned long)btrfs_device_fsid(dev_item);
1104         write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1105         btrfs_mark_buffer_dirty(leaf);
1106
1107         ret = 0;
1108 out:
1109         btrfs_free_path(path);
1110         return ret;
1111 }
1112
1113 static int btrfs_rm_dev_item(struct btrfs_root *root,
1114                              struct btrfs_device *device)
1115 {
1116         int ret;
1117         struct btrfs_path *path;
1118         struct btrfs_key key;
1119         struct btrfs_trans_handle *trans;
1120
1121         root = root->fs_info->chunk_root;
1122
1123         path = btrfs_alloc_path();
1124         if (!path)
1125                 return -ENOMEM;
1126
1127         trans = btrfs_start_transaction(root, 0);
1128         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1129         key.type = BTRFS_DEV_ITEM_KEY;
1130         key.offset = device->devid;
1131         lock_chunks(root);
1132
1133         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1134         if (ret < 0)
1135                 goto out;
1136
1137         if (ret > 0) {
1138                 ret = -ENOENT;
1139                 goto out;
1140         }
1141
1142         ret = btrfs_del_item(trans, root, path);
1143         if (ret)
1144                 goto out;
1145 out:
1146         btrfs_free_path(path);
1147         unlock_chunks(root);
1148         btrfs_commit_transaction(trans, root);
1149         return ret;
1150 }
1151
1152 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1153 {
1154         struct btrfs_device *device;
1155         struct btrfs_device *next_device;
1156         struct block_device *bdev;
1157         struct buffer_head *bh = NULL;
1158         struct btrfs_super_block *disk_super;
1159         u64 all_avail;
1160         u64 devid;
1161         u64 num_devices;
1162         u8 *dev_uuid;
1163         int ret = 0;
1164
1165         mutex_lock(&uuid_mutex);
1166         mutex_lock(&root->fs_info->volume_mutex);
1167
1168         all_avail = root->fs_info->avail_data_alloc_bits |
1169                 root->fs_info->avail_system_alloc_bits |
1170                 root->fs_info->avail_metadata_alloc_bits;
1171
1172         if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1173             root->fs_info->fs_devices->num_devices <= 4) {
1174                 printk(KERN_ERR "btrfs: unable to go below four devices "
1175                        "on raid10\n");
1176                 ret = -EINVAL;
1177                 goto out;
1178         }
1179
1180         if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1181             root->fs_info->fs_devices->num_devices <= 2) {
1182                 printk(KERN_ERR "btrfs: unable to go below two "
1183                        "devices on raid1\n");
1184                 ret = -EINVAL;
1185                 goto out;
1186         }
1187
1188         if (strcmp(device_path, "missing") == 0) {
1189                 struct list_head *devices;
1190                 struct btrfs_device *tmp;
1191
1192                 device = NULL;
1193                 devices = &root->fs_info->fs_devices->devices;
1194                 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1195                 list_for_each_entry(tmp, devices, dev_list) {
1196                         if (tmp->in_fs_metadata && !tmp->bdev) {
1197                                 device = tmp;
1198                                 break;
1199                         }
1200                 }
1201                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1202                 bdev = NULL;
1203                 bh = NULL;
1204                 disk_super = NULL;
1205                 if (!device) {
1206                         printk(KERN_ERR "btrfs: no missing devices found to "
1207                                "remove\n");
1208                         goto out;
1209                 }
1210         } else {
1211                 bdev = open_bdev_exclusive(device_path, FMODE_READ,
1212                                       root->fs_info->bdev_holder);
1213                 if (IS_ERR(bdev)) {
1214                         ret = PTR_ERR(bdev);
1215                         goto out;
1216                 }
1217
1218                 set_blocksize(bdev, 4096);
1219                 bh = btrfs_read_dev_super(bdev);
1220                 if (!bh) {
1221                         ret = -EIO;
1222                         goto error_close;
1223                 }
1224                 disk_super = (struct btrfs_super_block *)bh->b_data;
1225                 devid = btrfs_stack_device_id(&disk_super->dev_item);
1226                 dev_uuid = disk_super->dev_item.uuid;
1227                 device = btrfs_find_device(root, devid, dev_uuid,
1228                                            disk_super->fsid);
1229                 if (!device) {
1230                         ret = -ENOENT;
1231                         goto error_brelse;
1232                 }
1233         }
1234
1235         if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1236                 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1237                        "device\n");
1238                 ret = -EINVAL;
1239                 goto error_brelse;
1240         }
1241
1242         if (device->writeable) {
1243                 list_del_init(&device->dev_alloc_list);
1244                 root->fs_info->fs_devices->rw_devices--;
1245         }
1246
1247         ret = btrfs_shrink_device(device, 0);
1248         if (ret)
1249                 goto error_brelse;
1250
1251         ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1252         if (ret)
1253                 goto error_brelse;
1254
1255         device->in_fs_metadata = 0;
1256
1257         /*
1258          * the device list mutex makes sure that we don't change
1259          * the device list while someone else is writing out all
1260          * the device supers.
1261          */
1262         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1263         list_del_init(&device->dev_list);
1264         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1265
1266         device->fs_devices->num_devices--;
1267
1268         if (device->missing)
1269                 root->fs_info->fs_devices->missing_devices--;
1270
1271         next_device = list_entry(root->fs_info->fs_devices->devices.next,
1272                                  struct btrfs_device, dev_list);
1273         if (device->bdev == root->fs_info->sb->s_bdev)
1274                 root->fs_info->sb->s_bdev = next_device->bdev;
1275         if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1276                 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1277
1278         if (device->bdev) {
1279                 close_bdev_exclusive(device->bdev, device->mode);
1280                 device->bdev = NULL;
1281                 device->fs_devices->open_devices--;
1282         }
1283
1284         num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1285         btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1286
1287         if (device->fs_devices->open_devices == 0) {
1288                 struct btrfs_fs_devices *fs_devices;
1289                 fs_devices = root->fs_info->fs_devices;
1290                 while (fs_devices) {
1291                         if (fs_devices->seed == device->fs_devices)
1292                                 break;
1293                         fs_devices = fs_devices->seed;
1294                 }
1295                 fs_devices->seed = device->fs_devices->seed;
1296                 device->fs_devices->seed = NULL;
1297                 __btrfs_close_devices(device->fs_devices);
1298                 free_fs_devices(device->fs_devices);
1299         }
1300
1301         /*
1302          * at this point, the device is zero sized.  We want to
1303          * remove it from the devices list and zero out the old super
1304          */
1305         if (device->writeable) {
1306                 /* make sure this device isn't detected as part of
1307                  * the FS anymore
1308                  */
1309                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1310                 set_buffer_dirty(bh);
1311                 sync_dirty_buffer(bh);
1312         }
1313
1314         kfree(device->name);
1315         kfree(device);
1316         ret = 0;
1317
1318 error_brelse:
1319         brelse(bh);
1320 error_close:
1321         if (bdev)
1322                 close_bdev_exclusive(bdev, FMODE_READ);
1323 out:
1324         mutex_unlock(&root->fs_info->volume_mutex);
1325         mutex_unlock(&uuid_mutex);
1326         return ret;
1327 }
1328
1329 /*
1330  * does all the dirty work required for changing file system's UUID.
1331  */
1332 static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1333                                 struct btrfs_root *root)
1334 {
1335         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1336         struct btrfs_fs_devices *old_devices;
1337         struct btrfs_fs_devices *seed_devices;
1338         struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1339         struct btrfs_device *device;
1340         u64 super_flags;
1341
1342         BUG_ON(!mutex_is_locked(&uuid_mutex));
1343         if (!fs_devices->seeding)
1344                 return -EINVAL;
1345
1346         seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1347         if (!seed_devices)
1348                 return -ENOMEM;
1349
1350         old_devices = clone_fs_devices(fs_devices);
1351         if (IS_ERR(old_devices)) {
1352                 kfree(seed_devices);
1353                 return PTR_ERR(old_devices);
1354         }
1355
1356         list_add(&old_devices->list, &fs_uuids);
1357
1358         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1359         seed_devices->opened = 1;
1360         INIT_LIST_HEAD(&seed_devices->devices);
1361         INIT_LIST_HEAD(&seed_devices->alloc_list);
1362         mutex_init(&seed_devices->device_list_mutex);
1363         list_splice_init(&fs_devices->devices, &seed_devices->devices);
1364         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1365         list_for_each_entry(device, &seed_devices->devices, dev_list) {
1366                 device->fs_devices = seed_devices;
1367         }
1368
1369         fs_devices->seeding = 0;
1370         fs_devices->num_devices = 0;
1371         fs_devices->open_devices = 0;
1372         fs_devices->seed = seed_devices;
1373
1374         generate_random_uuid(fs_devices->fsid);
1375         memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1376         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1377         super_flags = btrfs_super_flags(disk_super) &
1378                       ~BTRFS_SUPER_FLAG_SEEDING;
1379         btrfs_set_super_flags(disk_super, super_flags);
1380
1381         return 0;
1382 }
1383
1384 /*
1385  * strore the expected generation for seed devices in device items.
1386  */
1387 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1388                                struct btrfs_root *root)
1389 {
1390         struct btrfs_path *path;
1391         struct extent_buffer *leaf;
1392         struct btrfs_dev_item *dev_item;
1393         struct btrfs_device *device;
1394         struct btrfs_key key;
1395         u8 fs_uuid[BTRFS_UUID_SIZE];
1396         u8 dev_uuid[BTRFS_UUID_SIZE];
1397         u64 devid;
1398         int ret;
1399
1400         path = btrfs_alloc_path();
1401         if (!path)
1402                 return -ENOMEM;
1403
1404         root = root->fs_info->chunk_root;
1405         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1406         key.offset = 0;
1407         key.type = BTRFS_DEV_ITEM_KEY;
1408
1409         while (1) {
1410                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1411                 if (ret < 0)
1412                         goto error;
1413
1414                 leaf = path->nodes[0];
1415 next_slot:
1416                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1417                         ret = btrfs_next_leaf(root, path);
1418                         if (ret > 0)
1419                                 break;
1420                         if (ret < 0)
1421                                 goto error;
1422                         leaf = path->nodes[0];
1423                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1424                         btrfs_release_path(root, path);
1425                         continue;
1426                 }
1427
1428                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1429                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1430                     key.type != BTRFS_DEV_ITEM_KEY)
1431                         break;
1432
1433                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1434                                           struct btrfs_dev_item);
1435                 devid = btrfs_device_id(leaf, dev_item);
1436                 read_extent_buffer(leaf, dev_uuid,
1437                                    (unsigned long)btrfs_device_uuid(dev_item),
1438                                    BTRFS_UUID_SIZE);
1439                 read_extent_buffer(leaf, fs_uuid,
1440                                    (unsigned long)btrfs_device_fsid(dev_item),
1441                                    BTRFS_UUID_SIZE);
1442                 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1443                 BUG_ON(!device);
1444
1445                 if (device->fs_devices->seeding) {
1446                         btrfs_set_device_generation(leaf, dev_item,
1447                                                     device->generation);
1448                         btrfs_mark_buffer_dirty(leaf);
1449                 }
1450
1451                 path->slots[0]++;
1452                 goto next_slot;
1453         }
1454         ret = 0;
1455 error:
1456         btrfs_free_path(path);
1457         return ret;
1458 }
1459
1460 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1461 {
1462         struct btrfs_trans_handle *trans;
1463         struct btrfs_device *device;
1464         struct block_device *bdev;
1465         struct list_head *devices;
1466         struct super_block *sb = root->fs_info->sb;
1467         u64 total_bytes;
1468         int seeding_dev = 0;
1469         int ret = 0;
1470
1471         if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1472                 return -EINVAL;
1473
1474         bdev = open_bdev_exclusive(device_path, 0, root->fs_info->bdev_holder);
1475         if (IS_ERR(bdev))
1476                 return PTR_ERR(bdev);
1477
1478         if (root->fs_info->fs_devices->seeding) {
1479                 seeding_dev = 1;
1480                 down_write(&sb->s_umount);
1481                 mutex_lock(&uuid_mutex);
1482         }
1483
1484         filemap_write_and_wait(bdev->bd_inode->i_mapping);
1485         mutex_lock(&root->fs_info->volume_mutex);
1486
1487         devices = &root->fs_info->fs_devices->devices;
1488         /*
1489          * we have the volume lock, so we don't need the extra
1490          * device list mutex while reading the list here.
1491          */
1492         list_for_each_entry(device, devices, dev_list) {
1493                 if (device->bdev == bdev) {
1494                         ret = -EEXIST;
1495                         goto error;
1496                 }
1497         }
1498
1499         device = kzalloc(sizeof(*device), GFP_NOFS);
1500         if (!device) {
1501                 /* we can safely leave the fs_devices entry around */
1502                 ret = -ENOMEM;
1503                 goto error;
1504         }
1505
1506         device->name = kstrdup(device_path, GFP_NOFS);
1507         if (!device->name) {
1508                 kfree(device);
1509                 ret = -ENOMEM;
1510                 goto error;
1511         }
1512
1513         ret = find_next_devid(root, &device->devid);
1514         if (ret) {
1515                 kfree(device);
1516                 goto error;
1517         }
1518
1519         trans = btrfs_start_transaction(root, 0);
1520         lock_chunks(root);
1521
1522         device->barriers = 1;
1523         device->writeable = 1;
1524         device->work.func = pending_bios_fn;
1525         generate_random_uuid(device->uuid);
1526         spin_lock_init(&device->io_lock);
1527         device->generation = trans->transid;
1528         device->io_width = root->sectorsize;
1529         device->io_align = root->sectorsize;
1530         device->sector_size = root->sectorsize;
1531         device->total_bytes = i_size_read(bdev->bd_inode);
1532         device->disk_total_bytes = device->total_bytes;
1533         device->dev_root = root->fs_info->dev_root;
1534         device->bdev = bdev;
1535         device->in_fs_metadata = 1;
1536         device->mode = 0;
1537         set_blocksize(device->bdev, 4096);
1538
1539         if (seeding_dev) {
1540                 sb->s_flags &= ~MS_RDONLY;
1541                 ret = btrfs_prepare_sprout(trans, root);
1542                 BUG_ON(ret);
1543         }
1544
1545         device->fs_devices = root->fs_info->fs_devices;
1546
1547         /*
1548          * we don't want write_supers to jump in here with our device
1549          * half setup
1550          */
1551         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1552         list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1553         list_add(&device->dev_alloc_list,
1554                  &root->fs_info->fs_devices->alloc_list);
1555         root->fs_info->fs_devices->num_devices++;
1556         root->fs_info->fs_devices->open_devices++;
1557         root->fs_info->fs_devices->rw_devices++;
1558         root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1559
1560         if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1561                 root->fs_info->fs_devices->rotating = 1;
1562
1563         total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1564         btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1565                                     total_bytes + device->total_bytes);
1566
1567         total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1568         btrfs_set_super_num_devices(&root->fs_info->super_copy,
1569                                     total_bytes + 1);
1570         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1571
1572         if (seeding_dev) {
1573                 ret = init_first_rw_device(trans, root, device);
1574                 BUG_ON(ret);
1575                 ret = btrfs_finish_sprout(trans, root);
1576                 BUG_ON(ret);
1577         } else {
1578                 ret = btrfs_add_device(trans, root, device);
1579         }
1580
1581         /*
1582          * we've got more storage, clear any full flags on the space
1583          * infos
1584          */
1585         btrfs_clear_space_info_full(root->fs_info);
1586
1587         unlock_chunks(root);
1588         btrfs_commit_transaction(trans, root);
1589
1590         if (seeding_dev) {
1591                 mutex_unlock(&uuid_mutex);
1592                 up_write(&sb->s_umount);
1593
1594                 ret = btrfs_relocate_sys_chunks(root);
1595                 BUG_ON(ret);
1596         }
1597 out:
1598         mutex_unlock(&root->fs_info->volume_mutex);
1599         return ret;
1600 error:
1601         close_bdev_exclusive(bdev, 0);
1602         if (seeding_dev) {
1603                 mutex_unlock(&uuid_mutex);
1604                 up_write(&sb->s_umount);
1605         }
1606         goto out;
1607 }
1608
1609 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1610                                         struct btrfs_device *device)
1611 {
1612         int ret;
1613         struct btrfs_path *path;
1614         struct btrfs_root *root;
1615         struct btrfs_dev_item *dev_item;
1616         struct extent_buffer *leaf;
1617         struct btrfs_key key;
1618
1619         root = device->dev_root->fs_info->chunk_root;
1620
1621         path = btrfs_alloc_path();
1622         if (!path)
1623                 return -ENOMEM;
1624
1625         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1626         key.type = BTRFS_DEV_ITEM_KEY;
1627         key.offset = device->devid;
1628
1629         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1630         if (ret < 0)
1631                 goto out;
1632
1633         if (ret > 0) {
1634                 ret = -ENOENT;
1635                 goto out;
1636         }
1637
1638         leaf = path->nodes[0];
1639         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1640
1641         btrfs_set_device_id(leaf, dev_item, device->devid);
1642         btrfs_set_device_type(leaf, dev_item, device->type);
1643         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1644         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1645         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1646         btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1647         btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1648         btrfs_mark_buffer_dirty(leaf);
1649
1650 out:
1651         btrfs_free_path(path);
1652         return ret;
1653 }
1654
1655 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1656                       struct btrfs_device *device, u64 new_size)
1657 {
1658         struct btrfs_super_block *super_copy =
1659                 &device->dev_root->fs_info->super_copy;
1660         u64 old_total = btrfs_super_total_bytes(super_copy);
1661         u64 diff = new_size - device->total_bytes;
1662
1663         if (!device->writeable)
1664                 return -EACCES;
1665         if (new_size <= device->total_bytes)
1666                 return -EINVAL;
1667
1668         btrfs_set_super_total_bytes(super_copy, old_total + diff);
1669         device->fs_devices->total_rw_bytes += diff;
1670
1671         device->total_bytes = new_size;
1672         device->disk_total_bytes = new_size;
1673         btrfs_clear_space_info_full(device->dev_root->fs_info);
1674
1675         return btrfs_update_device(trans, device);
1676 }
1677
1678 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1679                       struct btrfs_device *device, u64 new_size)
1680 {
1681         int ret;
1682         lock_chunks(device->dev_root);
1683         ret = __btrfs_grow_device(trans, device, new_size);
1684         unlock_chunks(device->dev_root);
1685         return ret;
1686 }
1687
1688 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1689                             struct btrfs_root *root,
1690                             u64 chunk_tree, u64 chunk_objectid,
1691                             u64 chunk_offset)
1692 {
1693         int ret;
1694         struct btrfs_path *path;
1695         struct btrfs_key key;
1696
1697         root = root->fs_info->chunk_root;
1698         path = btrfs_alloc_path();
1699         if (!path)
1700                 return -ENOMEM;
1701
1702         key.objectid = chunk_objectid;
1703         key.offset = chunk_offset;
1704         key.type = BTRFS_CHUNK_ITEM_KEY;
1705
1706         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1707         BUG_ON(ret);
1708
1709         ret = btrfs_del_item(trans, root, path);
1710         BUG_ON(ret);
1711
1712         btrfs_free_path(path);
1713         return 0;
1714 }
1715
1716 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1717                         chunk_offset)
1718 {
1719         struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1720         struct btrfs_disk_key *disk_key;
1721         struct btrfs_chunk *chunk;
1722         u8 *ptr;
1723         int ret = 0;
1724         u32 num_stripes;
1725         u32 array_size;
1726         u32 len = 0;
1727         u32 cur;
1728         struct btrfs_key key;
1729
1730         array_size = btrfs_super_sys_array_size(super_copy);
1731
1732         ptr = super_copy->sys_chunk_array;
1733         cur = 0;
1734
1735         while (cur < array_size) {
1736                 disk_key = (struct btrfs_disk_key *)ptr;
1737                 btrfs_disk_key_to_cpu(&key, disk_key);
1738
1739                 len = sizeof(*disk_key);
1740
1741                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1742                         chunk = (struct btrfs_chunk *)(ptr + len);
1743                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1744                         len += btrfs_chunk_item_size(num_stripes);
1745                 } else {
1746                         ret = -EIO;
1747                         break;
1748                 }
1749                 if (key.objectid == chunk_objectid &&
1750                     key.offset == chunk_offset) {
1751                         memmove(ptr, ptr + len, array_size - (cur + len));
1752                         array_size -= len;
1753                         btrfs_set_super_sys_array_size(super_copy, array_size);
1754                 } else {
1755                         ptr += len;
1756                         cur += len;
1757                 }
1758         }
1759         return ret;
1760 }
1761
1762 static int btrfs_relocate_chunk(struct btrfs_root *root,
1763                          u64 chunk_tree, u64 chunk_objectid,
1764                          u64 chunk_offset)
1765 {
1766         struct extent_map_tree *em_tree;
1767         struct btrfs_root *extent_root;
1768         struct btrfs_trans_handle *trans;
1769         struct extent_map *em;
1770         struct map_lookup *map;
1771         int ret;
1772         int i;
1773
1774         root = root->fs_info->chunk_root;
1775         extent_root = root->fs_info->extent_root;
1776         em_tree = &root->fs_info->mapping_tree.map_tree;
1777
1778         ret = btrfs_can_relocate(extent_root, chunk_offset);
1779         if (ret)
1780                 return -ENOSPC;
1781
1782         /* step one, relocate all the extents inside this chunk */
1783         ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1784         if (ret)
1785                 return ret;
1786
1787         trans = btrfs_start_transaction(root, 0);
1788         BUG_ON(!trans);
1789
1790         lock_chunks(root);
1791
1792         /*
1793          * step two, delete the device extents and the
1794          * chunk tree entries
1795          */
1796         read_lock(&em_tree->lock);
1797         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1798         read_unlock(&em_tree->lock);
1799
1800         BUG_ON(em->start > chunk_offset ||
1801                em->start + em->len < chunk_offset);
1802         map = (struct map_lookup *)em->bdev;
1803
1804         for (i = 0; i < map->num_stripes; i++) {
1805                 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1806                                             map->stripes[i].physical);
1807                 BUG_ON(ret);
1808
1809                 if (map->stripes[i].dev) {
1810                         ret = btrfs_update_device(trans, map->stripes[i].dev);
1811                         BUG_ON(ret);
1812                 }
1813         }
1814         ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1815                                chunk_offset);
1816
1817         BUG_ON(ret);
1818
1819         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1820                 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1821                 BUG_ON(ret);
1822         }
1823
1824         ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1825         BUG_ON(ret);
1826
1827         write_lock(&em_tree->lock);
1828         remove_extent_mapping(em_tree, em);
1829         write_unlock(&em_tree->lock);
1830
1831         kfree(map);
1832         em->bdev = NULL;
1833
1834         /* once for the tree */
1835         free_extent_map(em);
1836         /* once for us */
1837         free_extent_map(em);
1838
1839         unlock_chunks(root);
1840         btrfs_end_transaction(trans, root);
1841         return 0;
1842 }
1843
1844 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1845 {
1846         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1847         struct btrfs_path *path;
1848         struct extent_buffer *leaf;
1849         struct btrfs_chunk *chunk;
1850         struct btrfs_key key;
1851         struct btrfs_key found_key;
1852         u64 chunk_tree = chunk_root->root_key.objectid;
1853         u64 chunk_type;
1854         bool retried = false;
1855         int failed = 0;
1856         int ret;
1857
1858         path = btrfs_alloc_path();
1859         if (!path)
1860                 return -ENOMEM;
1861
1862 again:
1863         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1864         key.offset = (u64)-1;
1865         key.type = BTRFS_CHUNK_ITEM_KEY;
1866
1867         while (1) {
1868                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1869                 if (ret < 0)
1870                         goto error;
1871                 BUG_ON(ret == 0);
1872
1873                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
1874                                           key.type);
1875                 if (ret < 0)
1876                         goto error;
1877                 if (ret > 0)
1878                         break;
1879
1880                 leaf = path->nodes[0];
1881                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1882
1883                 chunk = btrfs_item_ptr(leaf, path->slots[0],
1884                                        struct btrfs_chunk);
1885                 chunk_type = btrfs_chunk_type(leaf, chunk);
1886                 btrfs_release_path(chunk_root, path);
1887
1888                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1889                         ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1890                                                    found_key.objectid,
1891                                                    found_key.offset);
1892                         if (ret == -ENOSPC)
1893                                 failed++;
1894                         else if (ret)
1895                                 BUG();
1896                 }
1897
1898                 if (found_key.offset == 0)
1899                         break;
1900                 key.offset = found_key.offset - 1;
1901         }
1902         ret = 0;
1903         if (failed && !retried) {
1904                 failed = 0;
1905                 retried = true;
1906                 goto again;
1907         } else if (failed && retried) {
1908                 WARN_ON(1);
1909                 ret = -ENOSPC;
1910         }
1911 error:
1912         btrfs_free_path(path);
1913         return ret;
1914 }
1915
1916 static u64 div_factor(u64 num, int factor)
1917 {
1918         if (factor == 10)
1919                 return num;
1920         num *= factor;
1921         do_div(num, 10);
1922         return num;
1923 }
1924
1925 int btrfs_balance(struct btrfs_root *dev_root)
1926 {
1927         int ret;
1928         struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
1929         struct btrfs_device *device;
1930         u64 old_size;
1931         u64 size_to_free;
1932         struct btrfs_path *path;
1933         struct btrfs_key key;
1934         struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
1935         struct btrfs_trans_handle *trans;
1936         struct btrfs_key found_key;
1937
1938         if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
1939                 return -EROFS;
1940
1941         mutex_lock(&dev_root->fs_info->volume_mutex);
1942         dev_root = dev_root->fs_info->dev_root;
1943
1944         /* step one make some room on all the devices */
1945         list_for_each_entry(device, devices, dev_list) {
1946                 old_size = device->total_bytes;
1947                 size_to_free = div_factor(old_size, 1);
1948                 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
1949                 if (!device->writeable ||
1950                     device->total_bytes - device->bytes_used > size_to_free)
1951                         continue;
1952
1953                 ret = btrfs_shrink_device(device, old_size - size_to_free);
1954                 if (ret == -ENOSPC)
1955                         break;
1956                 BUG_ON(ret);
1957
1958                 trans = btrfs_start_transaction(dev_root, 0);
1959                 BUG_ON(!trans);
1960
1961                 ret = btrfs_grow_device(trans, device, old_size);
1962                 BUG_ON(ret);
1963
1964                 btrfs_end_transaction(trans, dev_root);
1965         }
1966
1967         /* step two, relocate all the chunks */
1968         path = btrfs_alloc_path();
1969         BUG_ON(!path);
1970
1971         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1972         key.offset = (u64)-1;
1973         key.type = BTRFS_CHUNK_ITEM_KEY;
1974
1975         while (1) {
1976                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1977                 if (ret < 0)
1978                         goto error;
1979
1980                 /*
1981                  * this shouldn't happen, it means the last relocate
1982                  * failed
1983                  */
1984                 if (ret == 0)
1985                         break;
1986
1987                 ret = btrfs_previous_item(chunk_root, path, 0,
1988                                           BTRFS_CHUNK_ITEM_KEY);
1989                 if (ret)
1990                         break;
1991
1992                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1993                                       path->slots[0]);
1994                 if (found_key.objectid != key.objectid)
1995                         break;
1996
1997                 /* chunk zero is special */
1998                 if (found_key.offset == 0)
1999                         break;
2000
2001                 btrfs_release_path(chunk_root, path);
2002                 ret = btrfs_relocate_chunk(chunk_root,
2003                                            chunk_root->root_key.objectid,
2004                                            found_key.objectid,
2005                                            found_key.offset);
2006                 BUG_ON(ret && ret != -ENOSPC);
2007                 key.offset = found_key.offset - 1;
2008         }
2009         ret = 0;
2010 error:
2011         btrfs_free_path(path);
2012         mutex_unlock(&dev_root->fs_info->volume_mutex);
2013         return ret;
2014 }
2015
2016 /*
2017  * shrinking a device means finding all of the device extents past
2018  * the new size, and then following the back refs to the chunks.
2019  * The chunk relocation code actually frees the device extent
2020  */
2021 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
2022 {
2023         struct btrfs_trans_handle *trans;
2024         struct btrfs_root *root = device->dev_root;
2025         struct btrfs_dev_extent *dev_extent = NULL;
2026         struct btrfs_path *path;
2027         u64 length;
2028         u64 chunk_tree;
2029         u64 chunk_objectid;
2030         u64 chunk_offset;
2031         int ret;
2032         int slot;
2033         int failed = 0;
2034         bool retried = false;
2035         struct extent_buffer *l;
2036         struct btrfs_key key;
2037         struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2038         u64 old_total = btrfs_super_total_bytes(super_copy);
2039         u64 old_size = device->total_bytes;
2040         u64 diff = device->total_bytes - new_size;
2041
2042         if (new_size >= device->total_bytes)
2043                 return -EINVAL;
2044
2045         path = btrfs_alloc_path();
2046         if (!path)
2047                 return -ENOMEM;
2048
2049         path->reada = 2;
2050
2051         lock_chunks(root);
2052
2053         device->total_bytes = new_size;
2054         if (device->writeable)
2055                 device->fs_devices->total_rw_bytes -= diff;
2056         unlock_chunks(root);
2057
2058 again:
2059         key.objectid = device->devid;
2060         key.offset = (u64)-1;
2061         key.type = BTRFS_DEV_EXTENT_KEY;
2062
2063         while (1) {
2064                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2065                 if (ret < 0)
2066                         goto done;
2067
2068                 ret = btrfs_previous_item(root, path, 0, key.type);
2069                 if (ret < 0)
2070                         goto done;
2071                 if (ret) {
2072                         ret = 0;
2073                         btrfs_release_path(root, path);
2074                         break;
2075                 }
2076
2077                 l = path->nodes[0];
2078                 slot = path->slots[0];
2079                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2080
2081                 if (key.objectid != device->devid) {
2082                         btrfs_release_path(root, path);
2083                         break;
2084                 }
2085
2086                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2087                 length = btrfs_dev_extent_length(l, dev_extent);
2088
2089                 if (key.offset + length <= new_size) {
2090                         btrfs_release_path(root, path);
2091                         break;
2092                 }
2093
2094                 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2095                 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2096                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2097                 btrfs_release_path(root, path);
2098
2099                 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
2100                                            chunk_offset);
2101                 if (ret && ret != -ENOSPC)
2102                         goto done;
2103                 if (ret == -ENOSPC)
2104                         failed++;
2105                 key.offset -= 1;
2106         }
2107
2108         if (failed && !retried) {
2109                 failed = 0;
2110                 retried = true;
2111                 goto again;
2112         } else if (failed && retried) {
2113                 ret = -ENOSPC;
2114                 lock_chunks(root);
2115
2116                 device->total_bytes = old_size;
2117                 if (device->writeable)
2118                         device->fs_devices->total_rw_bytes += diff;
2119                 unlock_chunks(root);
2120                 goto done;
2121         }
2122
2123         /* Shrinking succeeded, else we would be at "done". */
2124         trans = btrfs_start_transaction(root, 0);
2125         lock_chunks(root);
2126
2127         device->disk_total_bytes = new_size;
2128         /* Now btrfs_update_device() will change the on-disk size. */
2129         ret = btrfs_update_device(trans, device);
2130         if (ret) {
2131                 unlock_chunks(root);
2132                 btrfs_end_transaction(trans, root);
2133                 goto done;
2134         }
2135         WARN_ON(diff > old_total);
2136         btrfs_set_super_total_bytes(super_copy, old_total - diff);
2137         unlock_chunks(root);
2138         btrfs_end_transaction(trans, root);
2139 done:
2140         btrfs_free_path(path);
2141         return ret;
2142 }
2143
2144 static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
2145                            struct btrfs_root *root,
2146                            struct btrfs_key *key,
2147                            struct btrfs_chunk *chunk, int item_size)
2148 {
2149         struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2150         struct btrfs_disk_key disk_key;
2151         u32 array_size;
2152         u8 *ptr;
2153
2154         array_size = btrfs_super_sys_array_size(super_copy);
2155         if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2156                 return -EFBIG;
2157
2158         ptr = super_copy->sys_chunk_array + array_size;
2159         btrfs_cpu_key_to_disk(&disk_key, key);
2160         memcpy(ptr, &disk_key, sizeof(disk_key));
2161         ptr += sizeof(disk_key);
2162         memcpy(ptr, chunk, item_size);
2163         item_size += sizeof(disk_key);
2164         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2165         return 0;
2166 }
2167
2168 static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size,
2169                                         int num_stripes, int sub_stripes)
2170 {
2171         if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
2172                 return calc_size;
2173         else if (type & BTRFS_BLOCK_GROUP_RAID10)
2174                 return calc_size * (num_stripes / sub_stripes);
2175         else
2176                 return calc_size * num_stripes;
2177 }
2178
2179 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2180                                struct btrfs_root *extent_root,
2181                                struct map_lookup **map_ret,
2182                                u64 *num_bytes, u64 *stripe_size,
2183                                u64 start, u64 type)
2184 {
2185         struct btrfs_fs_info *info = extent_root->fs_info;
2186         struct btrfs_device *device = NULL;
2187         struct btrfs_fs_devices *fs_devices = info->fs_devices;
2188         struct list_head *cur;
2189         struct map_lookup *map = NULL;
2190         struct extent_map_tree *em_tree;
2191         struct extent_map *em;
2192         struct list_head private_devs;
2193         int min_stripe_size = 1 * 1024 * 1024;
2194         u64 calc_size = 1024 * 1024 * 1024;
2195         u64 max_chunk_size = calc_size;
2196         u64 min_free;
2197         u64 avail;
2198         u64 max_avail = 0;
2199         u64 dev_offset;
2200         int num_stripes = 1;
2201         int min_stripes = 1;
2202         int sub_stripes = 0;
2203         int ncopies = 1;
2204         int looped = 0;
2205         int ret;
2206         int index;
2207         int stripe_len = 64 * 1024;
2208
2209         if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2210             (type & BTRFS_BLOCK_GROUP_DUP)) {
2211                 WARN_ON(1);
2212                 type &= ~BTRFS_BLOCK_GROUP_DUP;
2213         }
2214         if (list_empty(&fs_devices->alloc_list))
2215                 return -ENOSPC;
2216
2217         if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
2218                 num_stripes = fs_devices->rw_devices;
2219                 min_stripes = 2;
2220         }
2221         if (type & (BTRFS_BLOCK_GROUP_DUP)) {
2222                 num_stripes = 2;
2223                 min_stripes = 2;
2224                 ncopies = 2;
2225         }
2226         if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
2227                 if (fs_devices->rw_devices < 2)
2228                         return -ENOSPC;
2229                 num_stripes = 2;
2230                 min_stripes = 2;
2231                 ncopies = 2;
2232         }
2233         if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2234                 num_stripes = fs_devices->rw_devices;
2235                 if (num_stripes < 4)
2236                         return -ENOSPC;
2237                 num_stripes &= ~(u32)1;
2238                 sub_stripes = 2;
2239                 ncopies = 2;
2240                 min_stripes = 4;
2241         }
2242
2243         if (type & BTRFS_BLOCK_GROUP_DATA) {
2244                 max_chunk_size = 10 * calc_size;
2245                 min_stripe_size = 64 * 1024 * 1024;
2246         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
2247                 max_chunk_size = 256 * 1024 * 1024;
2248                 min_stripe_size = 32 * 1024 * 1024;
2249         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2250                 calc_size = 8 * 1024 * 1024;
2251                 max_chunk_size = calc_size * 2;
2252                 min_stripe_size = 1 * 1024 * 1024;
2253         }
2254
2255         /* we don't want a chunk larger than 10% of writeable space */
2256         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2257                              max_chunk_size);
2258
2259 again:
2260         max_avail = 0;
2261         if (!map || map->num_stripes != num_stripes) {
2262                 kfree(map);
2263                 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2264                 if (!map)
2265                         return -ENOMEM;
2266                 map->num_stripes = num_stripes;
2267         }
2268
2269         if (calc_size * num_stripes > max_chunk_size * ncopies) {
2270                 calc_size = max_chunk_size * ncopies;
2271                 do_div(calc_size, num_stripes);
2272                 do_div(calc_size, stripe_len);
2273                 calc_size *= stripe_len;
2274         }
2275
2276         /* we don't want tiny stripes */
2277         if (!looped)
2278                 calc_size = max_t(u64, min_stripe_size, calc_size);
2279
2280         /*
2281          * we're about to do_div by the stripe_len so lets make sure
2282          * we end up with something bigger than a stripe
2283          */
2284         calc_size = max_t(u64, calc_size, stripe_len * 4);
2285
2286         do_div(calc_size, stripe_len);
2287         calc_size *= stripe_len;
2288
2289         cur = fs_devices->alloc_list.next;
2290         index = 0;
2291
2292         if (type & BTRFS_BLOCK_GROUP_DUP)
2293                 min_free = calc_size * 2;
2294         else
2295                 min_free = calc_size;
2296
2297         /*
2298          * we add 1MB because we never use the first 1MB of the device, unless
2299          * we've looped, then we are likely allocating the maximum amount of
2300          * space left already
2301          */
2302         if (!looped)
2303                 min_free += 1024 * 1024;
2304
2305         INIT_LIST_HEAD(&private_devs);
2306         while (index < num_stripes) {
2307                 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2308                 BUG_ON(!device->writeable);
2309                 if (device->total_bytes > device->bytes_used)
2310                         avail = device->total_bytes - device->bytes_used;
2311                 else
2312                         avail = 0;
2313                 cur = cur->next;
2314
2315                 if (device->in_fs_metadata && avail >= min_free) {
2316                         ret = find_free_dev_extent(trans, device,
2317                                                    min_free, &dev_offset,
2318                                                    &max_avail);
2319                         if (ret == 0) {
2320                                 list_move_tail(&device->dev_alloc_list,
2321                                                &private_devs);
2322                                 map->stripes[index].dev = device;
2323                                 map->stripes[index].physical = dev_offset;
2324                                 index++;
2325                                 if (type & BTRFS_BLOCK_GROUP_DUP) {
2326                                         map->stripes[index].dev = device;
2327                                         map->stripes[index].physical =
2328                                                 dev_offset + calc_size;
2329                                         index++;
2330                                 }
2331                         }
2332                 } else if (device->in_fs_metadata && avail > max_avail)
2333                         max_avail = avail;
2334                 if (cur == &fs_devices->alloc_list)
2335                         break;
2336         }
2337         list_splice(&private_devs, &fs_devices->alloc_list);
2338         if (index < num_stripes) {
2339                 if (index >= min_stripes) {
2340                         num_stripes = index;
2341                         if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2342                                 num_stripes /= sub_stripes;
2343                                 num_stripes *= sub_stripes;
2344                         }
2345                         looped = 1;
2346                         goto again;
2347                 }
2348                 if (!looped && max_avail > 0) {
2349                         looped = 1;
2350                         calc_size = max_avail;
2351                         if (type & BTRFS_BLOCK_GROUP_DUP)
2352                                 do_div(calc_size, 2);
2353                         goto again;
2354                 }
2355                 kfree(map);
2356                 return -ENOSPC;
2357         }
2358         map->sector_size = extent_root->sectorsize;
2359         map->stripe_len = stripe_len;
2360         map->io_align = stripe_len;
2361         map->io_width = stripe_len;
2362         map->type = type;
2363         map->num_stripes = num_stripes;
2364         map->sub_stripes = sub_stripes;
2365
2366         *map_ret = map;
2367         *stripe_size = calc_size;
2368         *num_bytes = chunk_bytes_by_type(type, calc_size,
2369                                          num_stripes, sub_stripes);
2370
2371         em = alloc_extent_map(GFP_NOFS);
2372         if (!em) {
2373                 kfree(map);
2374                 return -ENOMEM;
2375         }
2376         em->bdev = (struct block_device *)map;
2377         em->start = start;
2378         em->len = *num_bytes;
2379         em->block_start = 0;
2380         em->block_len = em->len;
2381
2382         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
2383         write_lock(&em_tree->lock);
2384         ret = add_extent_mapping(em_tree, em);
2385         write_unlock(&em_tree->lock);
2386         BUG_ON(ret);
2387         free_extent_map(em);
2388
2389         ret = btrfs_make_block_group(trans, extent_root, 0, type,
2390                                      BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2391                                      start, *num_bytes);
2392         BUG_ON(ret);
2393
2394         index = 0;
2395         while (index < map->num_stripes) {
2396                 device = map->stripes[index].dev;
2397                 dev_offset = map->stripes[index].physical;
2398
2399                 ret = btrfs_alloc_dev_extent(trans, device,
2400                                 info->chunk_root->root_key.objectid,
2401                                 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2402                                 start, dev_offset, calc_size);
2403                 BUG_ON(ret);
2404                 index++;
2405         }
2406
2407         return 0;
2408 }
2409
2410 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2411                                 struct btrfs_root *extent_root,
2412                                 struct map_lookup *map, u64 chunk_offset,
2413                                 u64 chunk_size, u64 stripe_size)
2414 {
2415         u64 dev_offset;
2416         struct btrfs_key key;
2417         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2418         struct btrfs_device *device;
2419         struct btrfs_chunk *chunk;
2420         struct btrfs_stripe *stripe;
2421         size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2422         int index = 0;
2423         int ret;
2424
2425         chunk = kzalloc(item_size, GFP_NOFS);
2426         if (!chunk)
2427                 return -ENOMEM;
2428
2429         index = 0;
2430         while (index < map->num_stripes) {
2431                 device = map->stripes[index].dev;
2432                 device->bytes_used += stripe_size;
2433                 ret = btrfs_update_device(trans, device);
2434                 BUG_ON(ret);
2435                 index++;
2436         }
2437
2438         index = 0;
2439         stripe = &chunk->stripe;
2440         while (index < map->num_stripes) {
2441                 device = map->stripes[index].dev;
2442                 dev_offset = map->stripes[index].physical;
2443
2444                 btrfs_set_stack_stripe_devid(stripe, device->devid);
2445                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
2446                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2447                 stripe++;
2448                 index++;
2449         }
2450
2451         btrfs_set_stack_chunk_length(chunk, chunk_size);
2452         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2453         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2454         btrfs_set_stack_chunk_type(chunk, map->type);
2455         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2456         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2457         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
2458         btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2459         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
2460
2461         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2462         key.type = BTRFS_CHUNK_ITEM_KEY;
2463         key.offset = chunk_offset;
2464
2465         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2466         BUG_ON(ret);
2467
2468         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2469                 ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2470                                              item_size);
2471                 BUG_ON(ret);
2472         }
2473         kfree(chunk);
2474         return 0;
2475 }
2476
2477 /*
2478  * Chunk allocation falls into two parts. The first part does works
2479  * that make the new allocated chunk useable, but not do any operation
2480  * that modifies the chunk tree. The second part does the works that
2481  * require modifying the chunk tree. This division is important for the
2482  * bootstrap process of adding storage to a seed btrfs.
2483  */
2484 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2485                       struct btrfs_root *extent_root, u64 type)
2486 {
2487         u64 chunk_offset;
2488         u64 chunk_size;
2489         u64 stripe_size;
2490         struct map_lookup *map;
2491         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2492         int ret;
2493
2494         ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2495                               &chunk_offset);
2496         if (ret)
2497                 return ret;
2498
2499         ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2500                                   &stripe_size, chunk_offset, type);
2501         if (ret)
2502                 return ret;
2503
2504         ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2505                                    chunk_size, stripe_size);
2506         BUG_ON(ret);
2507         return 0;
2508 }
2509
2510 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2511                                          struct btrfs_root *root,
2512                                          struct btrfs_device *device)
2513 {
2514         u64 chunk_offset;
2515         u64 sys_chunk_offset;
2516         u64 chunk_size;
2517         u64 sys_chunk_size;
2518         u64 stripe_size;
2519         u64 sys_stripe_size;
2520         u64 alloc_profile;
2521         struct map_lookup *map;
2522         struct map_lookup *sys_map;
2523         struct btrfs_fs_info *fs_info = root->fs_info;
2524         struct btrfs_root *extent_root = fs_info->extent_root;
2525         int ret;
2526
2527         ret = find_next_chunk(fs_info->chunk_root,
2528                               BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2529         BUG_ON(ret);
2530
2531         alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2532                         (fs_info->metadata_alloc_profile &
2533                          fs_info->avail_metadata_alloc_bits);
2534         alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2535
2536         ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2537                                   &stripe_size, chunk_offset, alloc_profile);
2538         BUG_ON(ret);
2539
2540         sys_chunk_offset = chunk_offset + chunk_size;
2541
2542         alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2543                         (fs_info->system_alloc_profile &
2544                          fs_info->avail_system_alloc_bits);
2545         alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2546
2547         ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2548                                   &sys_chunk_size, &sys_stripe_size,
2549                                   sys_chunk_offset, alloc_profile);
2550         BUG_ON(ret);
2551
2552         ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2553         BUG_ON(ret);
2554
2555         /*
2556          * Modifying chunk tree needs allocating new blocks from both
2557          * system block group and metadata block group. So we only can
2558          * do operations require modifying the chunk tree after both
2559          * block groups were created.
2560          */
2561         ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2562                                    chunk_size, stripe_size);
2563         BUG_ON(ret);
2564
2565         ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2566                                    sys_chunk_offset, sys_chunk_size,
2567                                    sys_stripe_size);
2568         BUG_ON(ret);
2569         return 0;
2570 }
2571
2572 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2573 {
2574         struct extent_map *em;
2575         struct map_lookup *map;
2576         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2577         int readonly = 0;
2578         int i;
2579
2580         read_lock(&map_tree->map_tree.lock);
2581         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2582         read_unlock(&map_tree->map_tree.lock);
2583         if (!em)
2584                 return 1;
2585
2586         if (btrfs_test_opt(root, DEGRADED)) {
2587                 free_extent_map(em);
2588                 return 0;
2589         }
2590
2591         map = (struct map_lookup *)em->bdev;
2592         for (i = 0; i < map->num_stripes; i++) {
2593                 if (!map->stripes[i].dev->writeable) {
2594                         readonly = 1;
2595                         break;
2596                 }
2597         }
2598         free_extent_map(em);
2599         return readonly;
2600 }
2601
2602 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2603 {
2604         extent_map_tree_init(&tree->map_tree, GFP_NOFS);
2605 }
2606
2607 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2608 {
2609         struct extent_map *em;
2610
2611         while (1) {
2612                 write_lock(&tree->map_tree.lock);
2613                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2614                 if (em)
2615                         remove_extent_mapping(&tree->map_tree, em);
2616                 write_unlock(&tree->map_tree.lock);
2617                 if (!em)
2618                         break;
2619                 kfree(em->bdev);
2620                 /* once for us */
2621                 free_extent_map(em);
2622                 /* once for the tree */
2623                 free_extent_map(em);
2624         }
2625 }
2626
2627 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2628 {
2629         struct extent_map *em;
2630         struct map_lookup *map;
2631         struct extent_map_tree *em_tree = &map_tree->map_tree;
2632         int ret;
2633
2634         read_lock(&em_tree->lock);
2635         em = lookup_extent_mapping(em_tree, logical, len);
2636         read_unlock(&em_tree->lock);
2637         BUG_ON(!em);
2638
2639         BUG_ON(em->start > logical || em->start + em->len < logical);
2640         map = (struct map_lookup *)em->bdev;
2641         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2642                 ret = map->num_stripes;
2643         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2644                 ret = map->sub_stripes;
2645         else
2646                 ret = 1;
2647         free_extent_map(em);
2648         return ret;
2649 }
2650
2651 static int find_live_mirror(struct map_lookup *map, int first, int num,
2652                             int optimal)
2653 {
2654         int i;
2655         if (map->stripes[optimal].dev->bdev)
2656                 return optimal;
2657         for (i = first; i < first + num; i++) {
2658                 if (map->stripes[i].dev->bdev)
2659                         return i;
2660         }
2661         /* we couldn't find one that doesn't fail.  Just return something
2662          * and the io error handling code will clean up eventually
2663          */
2664         return optimal;
2665 }
2666
2667 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2668                              u64 logical, u64 *length,
2669                              struct btrfs_multi_bio **multi_ret,
2670                              int mirror_num, struct page *unplug_page)
2671 {
2672         struct extent_map *em;
2673         struct map_lookup *map;
2674         struct extent_map_tree *em_tree = &map_tree->map_tree;
2675         u64 offset;
2676         u64 stripe_offset;
2677         u64 stripe_nr;
2678         int stripes_allocated = 8;
2679         int stripes_required = 1;
2680         int stripe_index;
2681         int i;
2682         int num_stripes;
2683         int max_errors = 0;
2684         struct btrfs_multi_bio *multi = NULL;
2685
2686         if (multi_ret && !(rw & REQ_WRITE))
2687                 stripes_allocated = 1;
2688 again:
2689         if (multi_ret) {
2690                 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2691                                 GFP_NOFS);
2692                 if (!multi)
2693                         return -ENOMEM;
2694
2695                 atomic_set(&multi->error, 0);
2696         }
2697
2698         read_lock(&em_tree->lock);
2699         em = lookup_extent_mapping(em_tree, logical, *length);
2700         read_unlock(&em_tree->lock);
2701
2702         if (!em && unplug_page) {
2703                 kfree(multi);
2704                 return 0;
2705         }
2706
2707         if (!em) {
2708                 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2709                        (unsigned long long)logical,
2710                        (unsigned long long)*length);
2711                 BUG();
2712         }
2713
2714         BUG_ON(em->start > logical || em->start + em->len < logical);
2715         map = (struct map_lookup *)em->bdev;
2716         offset = logical - em->start;
2717
2718         if (mirror_num > map->num_stripes)
2719                 mirror_num = 0;
2720
2721         /* if our multi bio struct is too small, back off and try again */
2722         if (rw & REQ_WRITE) {
2723                 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
2724                                  BTRFS_BLOCK_GROUP_DUP)) {
2725                         stripes_required = map->num_stripes;
2726                         max_errors = 1;
2727                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2728                         stripes_required = map->sub_stripes;
2729                         max_errors = 1;
2730                 }
2731         }
2732         if (multi_ret && (rw & REQ_WRITE) &&
2733             stripes_allocated < stripes_required) {
2734                 stripes_allocated = map->num_stripes;
2735                 free_extent_map(em);
2736                 kfree(multi);
2737                 goto again;
2738         }
2739         stripe_nr = offset;
2740         /*
2741          * stripe_nr counts the total number of stripes we have to stride
2742          * to get to this block
2743          */
2744         do_div(stripe_nr, map->stripe_len);
2745
2746         stripe_offset = stripe_nr * map->stripe_len;
2747         BUG_ON(offset < stripe_offset);
2748
2749         /* stripe_offset is the offset of this block in its stripe*/
2750         stripe_offset = offset - stripe_offset;
2751
2752         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
2753                          BTRFS_BLOCK_GROUP_RAID10 |
2754                          BTRFS_BLOCK_GROUP_DUP)) {
2755                 /* we limit the length of each bio to what fits in a stripe */
2756                 *length = min_t(u64, em->len - offset,
2757                               map->stripe_len - stripe_offset);
2758         } else {
2759                 *length = em->len - offset;
2760         }
2761
2762         if (!multi_ret && !unplug_page)
2763                 goto out;
2764
2765         num_stripes = 1;
2766         stripe_index = 0;
2767         if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2768                 if (unplug_page || (rw & REQ_WRITE))
2769                         num_stripes = map->num_stripes;
2770                 else if (mirror_num)
2771                         stripe_index = mirror_num - 1;
2772                 else {
2773                         stripe_index = find_live_mirror(map, 0,
2774                                             map->num_stripes,
2775                                             current->pid % map->num_stripes);
2776                 }
2777
2778         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2779                 if (rw & REQ_WRITE)
2780                         num_stripes = map->num_stripes;
2781                 else if (mirror_num)
2782                         stripe_index = mirror_num - 1;
2783
2784         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2785                 int factor = map->num_stripes / map->sub_stripes;
2786
2787                 stripe_index = do_div(stripe_nr, factor);
2788                 stripe_index *= map->sub_stripes;
2789
2790                 if (unplug_page || (rw & REQ_WRITE))
2791                         num_stripes = map->sub_stripes;
2792                 else if (mirror_num)
2793                         stripe_index += mirror_num - 1;
2794                 else {
2795                         stripe_index = find_live_mirror(map, stripe_index,
2796                                               map->sub_stripes, stripe_index +
2797                                               current->pid % map->sub_stripes);
2798                 }
2799         } else {
2800                 /*
2801                  * after this do_div call, stripe_nr is the number of stripes
2802                  * on this device we have to walk to find the data, and
2803                  * stripe_index is the number of our device in the stripe array
2804                  */
2805                 stripe_index = do_div(stripe_nr, map->num_stripes);
2806         }
2807         BUG_ON(stripe_index >= map->num_stripes);
2808
2809         for (i = 0; i < num_stripes; i++) {
2810                 if (unplug_page) {
2811                         struct btrfs_device *device;
2812                         struct backing_dev_info *bdi;
2813
2814                         device = map->stripes[stripe_index].dev;
2815                         if (device->bdev) {
2816                                 bdi = blk_get_backing_dev_info(device->bdev);
2817                                 if (bdi->unplug_io_fn)
2818                                         bdi->unplug_io_fn(bdi, unplug_page);
2819                         }
2820                 } else {
2821                         multi->stripes[i].physical =
2822                                 map->stripes[stripe_index].physical +
2823                                 stripe_offset + stripe_nr * map->stripe_len;
2824                         multi->stripes[i].dev = map->stripes[stripe_index].dev;
2825                 }
2826                 stripe_index++;
2827         }
2828         if (multi_ret) {
2829                 *multi_ret = multi;
2830                 multi->num_stripes = num_stripes;
2831                 multi->max_errors = max_errors;
2832         }
2833 out:
2834         free_extent_map(em);
2835         return 0;
2836 }
2837
2838 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2839                       u64 logical, u64 *length,
2840                       struct btrfs_multi_bio **multi_ret, int mirror_num)
2841 {
2842         return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
2843                                  mirror_num, NULL);
2844 }
2845
2846 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
2847                      u64 chunk_start, u64 physical, u64 devid,
2848                      u64 **logical, int *naddrs, int *stripe_len)
2849 {
2850         struct extent_map_tree *em_tree = &map_tree->map_tree;
2851         struct extent_map *em;
2852         struct map_lookup *map;
2853         u64 *buf;
2854         u64 bytenr;
2855         u64 length;
2856         u64 stripe_nr;
2857         int i, j, nr = 0;
2858
2859         read_lock(&em_tree->lock);
2860         em = lookup_extent_mapping(em_tree, chunk_start, 1);
2861         read_unlock(&em_tree->lock);
2862
2863         BUG_ON(!em || em->start != chunk_start);
2864         map = (struct map_lookup *)em->bdev;
2865
2866         length = em->len;
2867         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2868                 do_div(length, map->num_stripes / map->sub_stripes);
2869         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
2870                 do_div(length, map->num_stripes);
2871
2872         buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
2873         BUG_ON(!buf);
2874
2875         for (i = 0; i < map->num_stripes; i++) {
2876                 if (devid && map->stripes[i].dev->devid != devid)
2877                         continue;
2878                 if (map->stripes[i].physical > physical ||
2879                     map->stripes[i].physical + length <= physical)
2880                         continue;
2881
2882                 stripe_nr = physical - map->stripes[i].physical;
2883                 do_div(stripe_nr, map->stripe_len);
2884
2885                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2886                         stripe_nr = stripe_nr * map->num_stripes + i;
2887                         do_div(stripe_nr, map->sub_stripes);
2888                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2889                         stripe_nr = stripe_nr * map->num_stripes + i;
2890                 }
2891                 bytenr = chunk_start + stripe_nr * map->stripe_len;
2892                 WARN_ON(nr >= map->num_stripes);
2893                 for (j = 0; j < nr; j++) {
2894                         if (buf[j] == bytenr)
2895                                 break;
2896                 }
2897                 if (j == nr) {
2898                         WARN_ON(nr >= map->num_stripes);
2899                         buf[nr++] = bytenr;
2900                 }
2901         }
2902
2903         *logical = buf;
2904         *naddrs = nr;
2905         *stripe_len = map->stripe_len;
2906
2907         free_extent_map(em);
2908         return 0;
2909 }
2910
2911 int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
2912                       u64 logical, struct page *page)
2913 {
2914         u64 length = PAGE_CACHE_SIZE;
2915         return __btrfs_map_block(map_tree, READ, logical, &length,
2916                                  NULL, 0, page);
2917 }
2918
2919 static void end_bio_multi_stripe(struct bio *bio, int err)
2920 {
2921         struct btrfs_multi_bio *multi = bio->bi_private;
2922         int is_orig_bio = 0;
2923
2924         if (err)
2925                 atomic_inc(&multi->error);
2926
2927         if (bio == multi->orig_bio)
2928                 is_orig_bio = 1;
2929
2930         if (atomic_dec_and_test(&multi->stripes_pending)) {
2931                 if (!is_orig_bio) {
2932                         bio_put(bio);
2933                         bio = multi->orig_bio;
2934                 }
2935                 bio->bi_private = multi->private;
2936                 bio->bi_end_io = multi->end_io;
2937                 /* only send an error to the higher layers if it is
2938                  * beyond the tolerance of the multi-bio
2939                  */
2940                 if (atomic_read(&multi->error) > multi->max_errors) {
2941                         err = -EIO;
2942                 } else if (err) {
2943                         /*
2944                          * this bio is actually up to date, we didn't
2945                          * go over the max number of errors
2946                          */
2947                         set_bit(BIO_UPTODATE, &bio->bi_flags);
2948                         err = 0;
2949                 }
2950                 kfree(multi);
2951
2952                 bio_endio(bio, err);
2953         } else if (!is_orig_bio) {
2954                 bio_put(bio);
2955         }
2956 }
2957
2958 struct async_sched {
2959         struct bio *bio;
2960         int rw;
2961         struct btrfs_fs_info *info;
2962         struct btrfs_work work;
2963 };
2964
2965 /*
2966  * see run_scheduled_bios for a description of why bios are collected for
2967  * async submit.
2968  *
2969  * This will add one bio to the pending list for a device and make sure
2970  * the work struct is scheduled.
2971  */
2972 static noinline int schedule_bio(struct btrfs_root *root,
2973                                  struct btrfs_device *device,
2974                                  int rw, struct bio *bio)
2975 {
2976         int should_queue = 1;
2977         struct btrfs_pending_bios *pending_bios;
2978
2979         /* don't bother with additional async steps for reads, right now */
2980         if (!(rw & REQ_WRITE)) {
2981                 bio_get(bio);
2982                 submit_bio(rw, bio);
2983                 bio_put(bio);
2984                 return 0;
2985         }
2986
2987         /*
2988          * nr_async_bios allows us to reliably return congestion to the
2989          * higher layers.  Otherwise, the async bio makes it appear we have
2990          * made progress against dirty pages when we've really just put it
2991          * on a queue for later
2992          */
2993         atomic_inc(&root->fs_info->nr_async_bios);
2994         WARN_ON(bio->bi_next);
2995         bio->bi_next = NULL;
2996         bio->bi_rw |= rw;
2997
2998         spin_lock(&device->io_lock);
2999         if (bio->bi_rw & REQ_SYNC)
3000                 pending_bios = &device->pending_sync_bios;
3001         else
3002                 pending_bios = &device->pending_bios;
3003
3004         if (pending_bios->tail)
3005                 pending_bios->tail->bi_next = bio;
3006
3007         pending_bios->tail = bio;
3008         if (!pending_bios->head)
3009                 pending_bios->head = bio;
3010         if (device->running_pending)
3011                 should_queue = 0;
3012
3013         spin_unlock(&device->io_lock);
3014
3015         if (should_queue)
3016                 btrfs_queue_worker(&root->fs_info->submit_workers,
3017                                    &device->work);
3018         return 0;
3019 }
3020
3021 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
3022                   int mirror_num, int async_submit)
3023 {
3024         struct btrfs_mapping_tree *map_tree;
3025         struct btrfs_device *dev;
3026         struct bio *first_bio = bio;
3027         u64 logical = (u64)bio->bi_sector << 9;
3028         u64 length = 0;
3029         u64 map_length;
3030         struct btrfs_multi_bio *multi = NULL;
3031         int ret;
3032         int dev_nr = 0;
3033         int total_devs = 1;
3034
3035         length = bio->bi_size;
3036         map_tree = &root->fs_info->mapping_tree;
3037         map_length = length;
3038
3039         ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
3040                               mirror_num);
3041         BUG_ON(ret);
3042
3043         total_devs = multi->num_stripes;
3044         if (map_length < length) {
3045                 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
3046                        "len %llu\n", (unsigned long long)logical,
3047                        (unsigned long long)length,
3048                        (unsigned long long)map_length);
3049                 BUG();
3050         }
3051         multi->end_io = first_bio->bi_end_io;
3052         multi->private = first_bio->bi_private;
3053         multi->orig_bio = first_bio;
3054         atomic_set(&multi->stripes_pending, multi->num_stripes);
3055
3056         while (dev_nr < total_devs) {
3057                 if (total_devs > 1) {
3058                         if (dev_nr < total_devs - 1) {
3059                                 bio = bio_clone(first_bio, GFP_NOFS);
3060                                 BUG_ON(!bio);
3061                         } else {
3062                                 bio = first_bio;
3063                         }
3064                         bio->bi_private = multi;
3065                         bio->bi_end_io = end_bio_multi_stripe;
3066                 }
3067                 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
3068                 dev = multi->stripes[dev_nr].dev;
3069                 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
3070                         bio->bi_bdev = dev->bdev;
3071                         if (async_submit)
3072                                 schedule_bio(root, dev, rw, bio);
3073                         else
3074                                 submit_bio(rw, bio);
3075                 } else {
3076                         bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
3077                         bio->bi_sector = logical >> 9;
3078                         bio_endio(bio, -EIO);
3079                 }
3080                 dev_nr++;
3081         }
3082         if (total_devs == 1)
3083                 kfree(multi);
3084         return 0;
3085 }
3086
3087 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
3088                                        u8 *uuid, u8 *fsid)
3089 {
3090         struct btrfs_device *device;
3091         struct btrfs_fs_devices *cur_devices;
3092
3093         cur_devices = root->fs_info->fs_devices;
3094         while (cur_devices) {
3095                 if (!fsid ||
3096                     !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3097                         device = __find_device(&cur_devices->devices,
3098                                                devid, uuid);
3099                         if (device)
3100                                 return device;
3101                 }
3102                 cur_devices = cur_devices->seed;
3103         }
3104         return NULL;
3105 }
3106
3107 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
3108                                             u64 devid, u8 *dev_uuid)
3109 {
3110         struct btrfs_device *device;
3111         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
3112
3113         device = kzalloc(sizeof(*device), GFP_NOFS);
3114         if (!device)
3115                 return NULL;
3116         list_add(&device->dev_list,
3117                  &fs_devices->devices);
3118         device->barriers = 1;
3119         device->dev_root = root->fs_info->dev_root;
3120         device->devid = devid;
3121         device->work.func = pending_bios_fn;
3122         device->fs_devices = fs_devices;
3123         device->missing = 1;
3124         fs_devices->num_devices++;
3125         fs_devices->missing_devices++;
3126         spin_lock_init(&device->io_lock);
3127         INIT_LIST_HEAD(&device->dev_alloc_list);
3128         memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
3129         return device;
3130 }
3131
3132 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
3133                           struct extent_buffer *leaf,
3134                           struct btrfs_chunk *chunk)
3135 {
3136         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3137         struct map_lookup *map;
3138         struct extent_map *em;
3139         u64 logical;
3140         u64 length;
3141         u64 devid;
3142         u8 uuid[BTRFS_UUID_SIZE];
3143         int num_stripes;
3144         int ret;
3145         int i;
3146
3147         logical = key->offset;
3148         length = btrfs_chunk_length(leaf, chunk);
3149
3150         read_lock(&map_tree->map_tree.lock);
3151         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
3152         read_unlock(&map_tree->map_tree.lock);
3153
3154         /* already mapped? */
3155         if (em && em->start <= logical && em->start + em->len > logical) {
3156                 free_extent_map(em);
3157                 return 0;
3158         } else if (em) {
3159                 free_extent_map(em);
3160         }
3161
3162         em = alloc_extent_map(GFP_NOFS);
3163         if (!em)
3164                 return -ENOMEM;
3165         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3166         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3167         if (!map) {
3168                 free_extent_map(em);
3169                 return -ENOMEM;
3170         }
3171
3172         em->bdev = (struct block_device *)map;
3173         em->start = logical;
3174         em->len = length;
3175         em->block_start = 0;
3176         em->block_len = em->len;
3177
3178         map->num_stripes = num_stripes;
3179         map->io_width = btrfs_chunk_io_width(leaf, chunk);
3180         map->io_align = btrfs_chunk_io_align(leaf, chunk);
3181         map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3182         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3183         map->type = btrfs_chunk_type(leaf, chunk);
3184         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
3185         for (i = 0; i < num_stripes; i++) {
3186                 map->stripes[i].physical =
3187                         btrfs_stripe_offset_nr(leaf, chunk, i);
3188                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
3189                 read_extent_buffer(leaf, uuid, (unsigned long)
3190                                    btrfs_stripe_dev_uuid_nr(chunk, i),
3191                                    BTRFS_UUID_SIZE);
3192                 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3193                                                         NULL);
3194                 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
3195                         kfree(map);
3196                         free_extent_map(em);
3197                         return -EIO;
3198                 }
3199                 if (!map->stripes[i].dev) {
3200                         map->stripes[i].dev =
3201                                 add_missing_dev(root, devid, uuid);
3202                         if (!map->stripes[i].dev) {
3203                                 kfree(map);
3204                                 free_extent_map(em);
3205                                 return -EIO;
3206                         }
3207                 }
3208                 map->stripes[i].dev->in_fs_metadata = 1;
3209         }
3210
3211         write_lock(&map_tree->map_tree.lock);
3212         ret = add_extent_mapping(&map_tree->map_tree, em);
3213         write_unlock(&map_tree->map_tree.lock);
3214         BUG_ON(ret);
3215         free_extent_map(em);
3216
3217         return 0;
3218 }
3219
3220 static int fill_device_from_item(struct extent_buffer *leaf,
3221                                  struct btrfs_dev_item *dev_item,
3222                                  struct btrfs_device *device)
3223 {
3224         unsigned long ptr;
3225
3226         device->devid = btrfs_device_id(leaf, dev_item);
3227         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3228         device->total_bytes = device->disk_total_bytes;
3229         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3230         device->type = btrfs_device_type(leaf, dev_item);
3231         device->io_align = btrfs_device_io_align(leaf, dev_item);
3232         device->io_width = btrfs_device_io_width(leaf, dev_item);
3233         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
3234
3235         ptr = (unsigned long)btrfs_device_uuid(dev_item);
3236         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
3237
3238         return 0;
3239 }
3240
3241 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3242 {
3243         struct btrfs_fs_devices *fs_devices;
3244         int ret;
3245
3246         mutex_lock(&uuid_mutex);
3247
3248         fs_devices = root->fs_info->fs_devices->seed;
3249         while (fs_devices) {
3250                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3251                         ret = 0;
3252                         goto out;
3253                 }
3254                 fs_devices = fs_devices->seed;
3255         }
3256
3257         fs_devices = find_fsid(fsid);
3258         if (!fs_devices) {
3259                 ret = -ENOENT;
3260                 goto out;
3261         }
3262
3263         fs_devices = clone_fs_devices(fs_devices);
3264         if (IS_ERR(fs_devices)) {
3265                 ret = PTR_ERR(fs_devices);
3266                 goto out;
3267         }
3268
3269         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
3270                                    root->fs_info->bdev_holder);
3271         if (ret)
3272                 goto out;
3273
3274         if (!fs_devices->seeding) {
3275                 __btrfs_close_devices(fs_devices);
3276                 free_fs_devices(fs_devices);
3277                 ret = -EINVAL;
3278                 goto out;
3279         }
3280
3281         fs_devices->seed = root->fs_info->fs_devices->seed;
3282         root->fs_info->fs_devices->seed = fs_devices;
3283 out:
3284         mutex_unlock(&uuid_mutex);
3285         return ret;
3286 }
3287
3288 static int read_one_dev(struct btrfs_root *root,
3289                         struct extent_buffer *leaf,
3290                         struct btrfs_dev_item *dev_item)
3291 {
3292         struct btrfs_device *device;
3293         u64 devid;
3294         int ret;
3295         u8 fs_uuid[BTRFS_UUID_SIZE];
3296         u8 dev_uuid[BTRFS_UUID_SIZE];
3297
3298         devid = btrfs_device_id(leaf, dev_item);
3299         read_extent_buffer(leaf, dev_uuid,
3300                            (unsigned long)btrfs_device_uuid(dev_item),
3301                            BTRFS_UUID_SIZE);
3302         read_extent_buffer(leaf, fs_uuid,
3303                            (unsigned long)btrfs_device_fsid(dev_item),
3304                            BTRFS_UUID_SIZE);
3305
3306         if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3307                 ret = open_seed_devices(root, fs_uuid);
3308                 if (ret && !btrfs_test_opt(root, DEGRADED))
3309                         return ret;
3310         }
3311
3312         device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3313         if (!device || !device->bdev) {
3314                 if (!btrfs_test_opt(root, DEGRADED))
3315                         return -EIO;
3316
3317                 if (!device) {
3318                         printk(KERN_WARNING "warning devid %llu missing\n",
3319                                (unsigned long long)devid);
3320                         device = add_missing_dev(root, devid, dev_uuid);
3321                         if (!device)
3322                                 return -ENOMEM;
3323                 } else if (!device->missing) {
3324                         /*
3325                          * this happens when a device that was properly setup
3326                          * in the device info lists suddenly goes bad.
3327                          * device->bdev is NULL, and so we have to set
3328                          * device->missing to one here
3329                          */
3330                         root->fs_info->fs_devices->missing_devices++;
3331                         device->missing = 1;
3332                 }
3333         }
3334
3335         if (device->fs_devices != root->fs_info->fs_devices) {
3336                 BUG_ON(device->writeable);
3337                 if (device->generation !=
3338                     btrfs_device_generation(leaf, dev_item))
3339                         return -EINVAL;
3340         }
3341
3342         fill_device_from_item(leaf, dev_item, device);
3343         device->dev_root = root->fs_info->dev_root;
3344         device->in_fs_metadata = 1;
3345         if (device->writeable)
3346                 device->fs_devices->total_rw_bytes += device->total_bytes;
3347         ret = 0;
3348         return ret;
3349 }
3350
3351 int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
3352 {
3353         struct btrfs_dev_item *dev_item;
3354
3355         dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
3356                                                      dev_item);
3357         return read_one_dev(root, buf, dev_item);
3358 }
3359
3360 int btrfs_read_sys_array(struct btrfs_root *root)
3361 {
3362         struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
3363         struct extent_buffer *sb;
3364         struct btrfs_disk_key *disk_key;
3365         struct btrfs_chunk *chunk;
3366         u8 *ptr;
3367         unsigned long sb_ptr;
3368         int ret = 0;
3369         u32 num_stripes;
3370         u32 array_size;
3371         u32 len = 0;
3372         u32 cur;
3373         struct btrfs_key key;
3374
3375         sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
3376                                           BTRFS_SUPER_INFO_SIZE);
3377         if (!sb)
3378                 return -ENOMEM;
3379         btrfs_set_buffer_uptodate(sb);
3380         btrfs_set_buffer_lockdep_class(sb, 0);
3381
3382         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
3383         array_size = btrfs_super_sys_array_size(super_copy);
3384
3385         ptr = super_copy->sys_chunk_array;
3386         sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3387         cur = 0;
3388
3389         while (cur < array_size) {
3390                 disk_key = (struct btrfs_disk_key *)ptr;
3391                 btrfs_disk_key_to_cpu(&key, disk_key);
3392
3393                 len = sizeof(*disk_key); ptr += len;
3394                 sb_ptr += len;
3395                 cur += len;
3396
3397                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3398                         chunk = (struct btrfs_chunk *)sb_ptr;
3399                         ret = read_one_chunk(root, &key, sb, chunk);
3400                         if (ret)
3401                                 break;
3402                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3403                         len = btrfs_chunk_item_size(num_stripes);
3404                 } else {
3405                         ret = -EIO;
3406                         break;
3407                 }
3408                 ptr += len;
3409                 sb_ptr += len;
3410                 cur += len;
3411         }
3412         free_extent_buffer(sb);
3413         return ret;
3414 }
3415
3416 int btrfs_read_chunk_tree(struct btrfs_root *root)
3417 {
3418         struct btrfs_path *path;
3419         struct extent_buffer *leaf;
3420         struct btrfs_key key;
3421         struct btrfs_key found_key;
3422         int ret;
3423         int slot;
3424
3425         root = root->fs_info->chunk_root;
3426
3427         path = btrfs_alloc_path();
3428         if (!path)
3429                 return -ENOMEM;
3430
3431         /* first we search for all of the device items, and then we
3432          * read in all of the chunk items.  This way we can create chunk
3433          * mappings that reference all of the devices that are afound
3434          */
3435         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3436         key.offset = 0;
3437         key.type = 0;
3438 again:
3439         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3440         if (ret < 0)
3441                 goto error;
3442         while (1) {
3443                 leaf = path->nodes[0];
3444                 slot = path->slots[0];
3445                 if (slot >= btrfs_header_nritems(leaf)) {
3446                         ret = btrfs_next_leaf(root, path);
3447                         if (ret == 0)
3448                                 continue;
3449                         if (ret < 0)
3450                                 goto error;
3451                         break;
3452                 }
3453                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3454                 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3455                         if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3456                                 break;
3457                         if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3458                                 struct btrfs_dev_item *dev_item;
3459                                 dev_item = btrfs_item_ptr(leaf, slot,
3460                                                   struct btrfs_dev_item);
3461                                 ret = read_one_dev(root, leaf, dev_item);
3462                                 if (ret)
3463                                         goto error;
3464                         }
3465                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3466                         struct btrfs_chunk *chunk;
3467                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3468                         ret = read_one_chunk(root, &found_key, leaf, chunk);
3469                         if (ret)
3470                                 goto error;
3471                 }
3472                 path->slots[0]++;
3473         }
3474         if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3475                 key.objectid = 0;
3476                 btrfs_release_path(root, path);
3477                 goto again;
3478         }
3479         ret = 0;
3480 error:
3481         btrfs_free_path(path);
3482         return ret;
3483 }