Btrfs - Fix memory leak in btrfs_init_new_device()
[pandora-kernel.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <asm/div64.h>
27 #include "compat.h"
28 #include "ctree.h"
29 #include "extent_map.h"
30 #include "disk-io.h"
31 #include "transaction.h"
32 #include "print-tree.h"
33 #include "volumes.h"
34 #include "async-thread.h"
35
36 struct map_lookup {
37         u64 type;
38         int io_align;
39         int io_width;
40         int stripe_len;
41         int sector_size;
42         int num_stripes;
43         int sub_stripes;
44         struct btrfs_bio_stripe stripes[];
45 };
46
47 static int init_first_rw_device(struct btrfs_trans_handle *trans,
48                                 struct btrfs_root *root,
49                                 struct btrfs_device *device);
50 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
51
52 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
53                             (sizeof(struct btrfs_bio_stripe) * (n)))
54
55 static DEFINE_MUTEX(uuid_mutex);
56 static LIST_HEAD(fs_uuids);
57
58 void btrfs_lock_volumes(void)
59 {
60         mutex_lock(&uuid_mutex);
61 }
62
63 void btrfs_unlock_volumes(void)
64 {
65         mutex_unlock(&uuid_mutex);
66 }
67
68 static void lock_chunks(struct btrfs_root *root)
69 {
70         mutex_lock(&root->fs_info->chunk_mutex);
71 }
72
73 static void unlock_chunks(struct btrfs_root *root)
74 {
75         mutex_unlock(&root->fs_info->chunk_mutex);
76 }
77
78 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
79 {
80         struct btrfs_device *device;
81         WARN_ON(fs_devices->opened);
82         while (!list_empty(&fs_devices->devices)) {
83                 device = list_entry(fs_devices->devices.next,
84                                     struct btrfs_device, dev_list);
85                 list_del(&device->dev_list);
86                 kfree(device->name);
87                 kfree(device);
88         }
89         kfree(fs_devices);
90 }
91
92 int btrfs_cleanup_fs_uuids(void)
93 {
94         struct btrfs_fs_devices *fs_devices;
95
96         while (!list_empty(&fs_uuids)) {
97                 fs_devices = list_entry(fs_uuids.next,
98                                         struct btrfs_fs_devices, list);
99                 list_del(&fs_devices->list);
100                 free_fs_devices(fs_devices);
101         }
102         return 0;
103 }
104
105 static noinline struct btrfs_device *__find_device(struct list_head *head,
106                                                    u64 devid, u8 *uuid)
107 {
108         struct btrfs_device *dev;
109
110         list_for_each_entry(dev, head, dev_list) {
111                 if (dev->devid == devid &&
112                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
113                         return dev;
114                 }
115         }
116         return NULL;
117 }
118
119 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
120 {
121         struct btrfs_fs_devices *fs_devices;
122
123         list_for_each_entry(fs_devices, &fs_uuids, list) {
124                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
125                         return fs_devices;
126         }
127         return NULL;
128 }
129
130 static void requeue_list(struct btrfs_pending_bios *pending_bios,
131                         struct bio *head, struct bio *tail)
132 {
133
134         struct bio *old_head;
135
136         old_head = pending_bios->head;
137         pending_bios->head = head;
138         if (pending_bios->tail)
139                 tail->bi_next = old_head;
140         else
141                 pending_bios->tail = tail;
142 }
143
144 /*
145  * we try to collect pending bios for a device so we don't get a large
146  * number of procs sending bios down to the same device.  This greatly
147  * improves the schedulers ability to collect and merge the bios.
148  *
149  * But, it also turns into a long list of bios to process and that is sure
150  * to eventually make the worker thread block.  The solution here is to
151  * make some progress and then put this work struct back at the end of
152  * the list if the block device is congested.  This way, multiple devices
153  * can make progress from a single worker thread.
154  */
155 static noinline int run_scheduled_bios(struct btrfs_device *device)
156 {
157         struct bio *pending;
158         struct backing_dev_info *bdi;
159         struct btrfs_fs_info *fs_info;
160         struct btrfs_pending_bios *pending_bios;
161         struct bio *tail;
162         struct bio *cur;
163         int again = 0;
164         unsigned long num_run;
165         unsigned long num_sync_run;
166         unsigned long batch_run = 0;
167         unsigned long limit;
168         unsigned long last_waited = 0;
169         int force_reg = 0;
170
171         bdi = blk_get_backing_dev_info(device->bdev);
172         fs_info = device->dev_root->fs_info;
173         limit = btrfs_async_submit_limit(fs_info);
174         limit = limit * 2 / 3;
175
176         /* we want to make sure that every time we switch from the sync
177          * list to the normal list, we unplug
178          */
179         num_sync_run = 0;
180
181 loop:
182         spin_lock(&device->io_lock);
183
184 loop_lock:
185         num_run = 0;
186
187         /* take all the bios off the list at once and process them
188          * later on (without the lock held).  But, remember the
189          * tail and other pointers so the bios can be properly reinserted
190          * into the list if we hit congestion
191          */
192         if (!force_reg && device->pending_sync_bios.head) {
193                 pending_bios = &device->pending_sync_bios;
194                 force_reg = 1;
195         } else {
196                 pending_bios = &device->pending_bios;
197                 force_reg = 0;
198         }
199
200         pending = pending_bios->head;
201         tail = pending_bios->tail;
202         WARN_ON(pending && !tail);
203
204         /*
205          * if pending was null this time around, no bios need processing
206          * at all and we can stop.  Otherwise it'll loop back up again
207          * and do an additional check so no bios are missed.
208          *
209          * device->running_pending is used to synchronize with the
210          * schedule_bio code.
211          */
212         if (device->pending_sync_bios.head == NULL &&
213             device->pending_bios.head == NULL) {
214                 again = 0;
215                 device->running_pending = 0;
216         } else {
217                 again = 1;
218                 device->running_pending = 1;
219         }
220
221         pending_bios->head = NULL;
222         pending_bios->tail = NULL;
223
224         spin_unlock(&device->io_lock);
225
226         /*
227          * if we're doing the regular priority list, make sure we unplug
228          * for any high prio bios we've sent down
229          */
230         if (pending_bios == &device->pending_bios && num_sync_run > 0) {
231                 num_sync_run = 0;
232                 blk_run_backing_dev(bdi, NULL);
233         }
234
235         while (pending) {
236
237                 rmb();
238                 /* we want to work on both lists, but do more bios on the
239                  * sync list than the regular list
240                  */
241                 if ((num_run > 32 &&
242                     pending_bios != &device->pending_sync_bios &&
243                     device->pending_sync_bios.head) ||
244                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
245                     device->pending_bios.head)) {
246                         spin_lock(&device->io_lock);
247                         requeue_list(pending_bios, pending, tail);
248                         goto loop_lock;
249                 }
250
251                 cur = pending;
252                 pending = pending->bi_next;
253                 cur->bi_next = NULL;
254                 atomic_dec(&fs_info->nr_async_bios);
255
256                 if (atomic_read(&fs_info->nr_async_bios) < limit &&
257                     waitqueue_active(&fs_info->async_submit_wait))
258                         wake_up(&fs_info->async_submit_wait);
259
260                 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
261
262                 if (cur->bi_rw & REQ_SYNC)
263                         num_sync_run++;
264
265                 submit_bio(cur->bi_rw, cur);
266                 num_run++;
267                 batch_run++;
268                 if (need_resched()) {
269                         if (num_sync_run) {
270                                 blk_run_backing_dev(bdi, NULL);
271                                 num_sync_run = 0;
272                         }
273                         cond_resched();
274                 }
275
276                 /*
277                  * we made progress, there is more work to do and the bdi
278                  * is now congested.  Back off and let other work structs
279                  * run instead
280                  */
281                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
282                     fs_info->fs_devices->open_devices > 1) {
283                         struct io_context *ioc;
284
285                         ioc = current->io_context;
286
287                         /*
288                          * the main goal here is that we don't want to
289                          * block if we're going to be able to submit
290                          * more requests without blocking.
291                          *
292                          * This code does two great things, it pokes into
293                          * the elevator code from a filesystem _and_
294                          * it makes assumptions about how batching works.
295                          */
296                         if (ioc && ioc->nr_batch_requests > 0 &&
297                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
298                             (last_waited == 0 ||
299                              ioc->last_waited == last_waited)) {
300                                 /*
301                                  * we want to go through our batch of
302                                  * requests and stop.  So, we copy out
303                                  * the ioc->last_waited time and test
304                                  * against it before looping
305                                  */
306                                 last_waited = ioc->last_waited;
307                                 if (need_resched()) {
308                                         if (num_sync_run) {
309                                                 blk_run_backing_dev(bdi, NULL);
310                                                 num_sync_run = 0;
311                                         }
312                                         cond_resched();
313                                 }
314                                 continue;
315                         }
316                         spin_lock(&device->io_lock);
317                         requeue_list(pending_bios, pending, tail);
318                         device->running_pending = 1;
319
320                         spin_unlock(&device->io_lock);
321                         btrfs_requeue_work(&device->work);
322                         goto done;
323                 }
324         }
325
326         if (num_sync_run) {
327                 num_sync_run = 0;
328                 blk_run_backing_dev(bdi, NULL);
329         }
330         /*
331          * IO has already been through a long path to get here.  Checksumming,
332          * async helper threads, perhaps compression.  We've done a pretty
333          * good job of collecting a batch of IO and should just unplug
334          * the device right away.
335          *
336          * This will help anyone who is waiting on the IO, they might have
337          * already unplugged, but managed to do so before the bio they
338          * cared about found its way down here.
339          */
340         blk_run_backing_dev(bdi, NULL);
341
342         cond_resched();
343         if (again)
344                 goto loop;
345
346         spin_lock(&device->io_lock);
347         if (device->pending_bios.head || device->pending_sync_bios.head)
348                 goto loop_lock;
349         spin_unlock(&device->io_lock);
350
351 done:
352         return 0;
353 }
354
355 static void pending_bios_fn(struct btrfs_work *work)
356 {
357         struct btrfs_device *device;
358
359         device = container_of(work, struct btrfs_device, work);
360         run_scheduled_bios(device);
361 }
362
363 static noinline int device_list_add(const char *path,
364                            struct btrfs_super_block *disk_super,
365                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
366 {
367         struct btrfs_device *device;
368         struct btrfs_fs_devices *fs_devices;
369         u64 found_transid = btrfs_super_generation(disk_super);
370         char *name;
371
372         fs_devices = find_fsid(disk_super->fsid);
373         if (!fs_devices) {
374                 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
375                 if (!fs_devices)
376                         return -ENOMEM;
377                 INIT_LIST_HEAD(&fs_devices->devices);
378                 INIT_LIST_HEAD(&fs_devices->alloc_list);
379                 list_add(&fs_devices->list, &fs_uuids);
380                 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
381                 fs_devices->latest_devid = devid;
382                 fs_devices->latest_trans = found_transid;
383                 mutex_init(&fs_devices->device_list_mutex);
384                 device = NULL;
385         } else {
386                 device = __find_device(&fs_devices->devices, devid,
387                                        disk_super->dev_item.uuid);
388         }
389         if (!device) {
390                 if (fs_devices->opened)
391                         return -EBUSY;
392
393                 device = kzalloc(sizeof(*device), GFP_NOFS);
394                 if (!device) {
395                         /* we can safely leave the fs_devices entry around */
396                         return -ENOMEM;
397                 }
398                 device->devid = devid;
399                 device->work.func = pending_bios_fn;
400                 memcpy(device->uuid, disk_super->dev_item.uuid,
401                        BTRFS_UUID_SIZE);
402                 device->barriers = 1;
403                 spin_lock_init(&device->io_lock);
404                 device->name = kstrdup(path, GFP_NOFS);
405                 if (!device->name) {
406                         kfree(device);
407                         return -ENOMEM;
408                 }
409                 INIT_LIST_HEAD(&device->dev_alloc_list);
410
411                 mutex_lock(&fs_devices->device_list_mutex);
412                 list_add(&device->dev_list, &fs_devices->devices);
413                 mutex_unlock(&fs_devices->device_list_mutex);
414
415                 device->fs_devices = fs_devices;
416                 fs_devices->num_devices++;
417         } else if (!device->name || strcmp(device->name, path)) {
418                 name = kstrdup(path, GFP_NOFS);
419                 if (!name)
420                         return -ENOMEM;
421                 kfree(device->name);
422                 device->name = name;
423                 if (device->missing) {
424                         fs_devices->missing_devices--;
425                         device->missing = 0;
426                 }
427         }
428
429         if (found_transid > fs_devices->latest_trans) {
430                 fs_devices->latest_devid = devid;
431                 fs_devices->latest_trans = found_transid;
432         }
433         *fs_devices_ret = fs_devices;
434         return 0;
435 }
436
437 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
438 {
439         struct btrfs_fs_devices *fs_devices;
440         struct btrfs_device *device;
441         struct btrfs_device *orig_dev;
442
443         fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
444         if (!fs_devices)
445                 return ERR_PTR(-ENOMEM);
446
447         INIT_LIST_HEAD(&fs_devices->devices);
448         INIT_LIST_HEAD(&fs_devices->alloc_list);
449         INIT_LIST_HEAD(&fs_devices->list);
450         mutex_init(&fs_devices->device_list_mutex);
451         fs_devices->latest_devid = orig->latest_devid;
452         fs_devices->latest_trans = orig->latest_trans;
453         memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
454
455         mutex_lock(&orig->device_list_mutex);
456         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
457                 device = kzalloc(sizeof(*device), GFP_NOFS);
458                 if (!device)
459                         goto error;
460
461                 device->name = kstrdup(orig_dev->name, GFP_NOFS);
462                 if (!device->name) {
463                         kfree(device);
464                         goto error;
465                 }
466
467                 device->devid = orig_dev->devid;
468                 device->work.func = pending_bios_fn;
469                 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
470                 device->barriers = 1;
471                 spin_lock_init(&device->io_lock);
472                 INIT_LIST_HEAD(&device->dev_list);
473                 INIT_LIST_HEAD(&device->dev_alloc_list);
474
475                 list_add(&device->dev_list, &fs_devices->devices);
476                 device->fs_devices = fs_devices;
477                 fs_devices->num_devices++;
478         }
479         mutex_unlock(&orig->device_list_mutex);
480         return fs_devices;
481 error:
482         mutex_unlock(&orig->device_list_mutex);
483         free_fs_devices(fs_devices);
484         return ERR_PTR(-ENOMEM);
485 }
486
487 int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
488 {
489         struct btrfs_device *device, *next;
490
491         mutex_lock(&uuid_mutex);
492 again:
493         mutex_lock(&fs_devices->device_list_mutex);
494         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
495                 if (device->in_fs_metadata)
496                         continue;
497
498                 if (device->bdev) {
499                         close_bdev_exclusive(device->bdev, device->mode);
500                         device->bdev = NULL;
501                         fs_devices->open_devices--;
502                 }
503                 if (device->writeable) {
504                         list_del_init(&device->dev_alloc_list);
505                         device->writeable = 0;
506                         fs_devices->rw_devices--;
507                 }
508                 list_del_init(&device->dev_list);
509                 fs_devices->num_devices--;
510                 kfree(device->name);
511                 kfree(device);
512         }
513         mutex_unlock(&fs_devices->device_list_mutex);
514
515         if (fs_devices->seed) {
516                 fs_devices = fs_devices->seed;
517                 goto again;
518         }
519
520         mutex_unlock(&uuid_mutex);
521         return 0;
522 }
523
524 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
525 {
526         struct btrfs_device *device;
527
528         if (--fs_devices->opened > 0)
529                 return 0;
530
531         list_for_each_entry(device, &fs_devices->devices, dev_list) {
532                 if (device->bdev) {
533                         close_bdev_exclusive(device->bdev, device->mode);
534                         fs_devices->open_devices--;
535                 }
536                 if (device->writeable) {
537                         list_del_init(&device->dev_alloc_list);
538                         fs_devices->rw_devices--;
539                 }
540
541                 device->bdev = NULL;
542                 device->writeable = 0;
543                 device->in_fs_metadata = 0;
544         }
545         WARN_ON(fs_devices->open_devices);
546         WARN_ON(fs_devices->rw_devices);
547         fs_devices->opened = 0;
548         fs_devices->seeding = 0;
549
550         return 0;
551 }
552
553 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
554 {
555         struct btrfs_fs_devices *seed_devices = NULL;
556         int ret;
557
558         mutex_lock(&uuid_mutex);
559         ret = __btrfs_close_devices(fs_devices);
560         if (!fs_devices->opened) {
561                 seed_devices = fs_devices->seed;
562                 fs_devices->seed = NULL;
563         }
564         mutex_unlock(&uuid_mutex);
565
566         while (seed_devices) {
567                 fs_devices = seed_devices;
568                 seed_devices = fs_devices->seed;
569                 __btrfs_close_devices(fs_devices);
570                 free_fs_devices(fs_devices);
571         }
572         return ret;
573 }
574
575 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
576                                 fmode_t flags, void *holder)
577 {
578         struct block_device *bdev;
579         struct list_head *head = &fs_devices->devices;
580         struct btrfs_device *device;
581         struct block_device *latest_bdev = NULL;
582         struct buffer_head *bh;
583         struct btrfs_super_block *disk_super;
584         u64 latest_devid = 0;
585         u64 latest_transid = 0;
586         u64 devid;
587         int seeding = 1;
588         int ret = 0;
589
590         list_for_each_entry(device, head, dev_list) {
591                 if (device->bdev)
592                         continue;
593                 if (!device->name)
594                         continue;
595
596                 bdev = open_bdev_exclusive(device->name, flags, holder);
597                 if (IS_ERR(bdev)) {
598                         printk(KERN_INFO "open %s failed\n", device->name);
599                         goto error;
600                 }
601                 set_blocksize(bdev, 4096);
602
603                 bh = btrfs_read_dev_super(bdev);
604                 if (!bh) {
605                         ret = -EINVAL;
606                         goto error_close;
607                 }
608
609                 disk_super = (struct btrfs_super_block *)bh->b_data;
610                 devid = btrfs_stack_device_id(&disk_super->dev_item);
611                 if (devid != device->devid)
612                         goto error_brelse;
613
614                 if (memcmp(device->uuid, disk_super->dev_item.uuid,
615                            BTRFS_UUID_SIZE))
616                         goto error_brelse;
617
618                 device->generation = btrfs_super_generation(disk_super);
619                 if (!latest_transid || device->generation > latest_transid) {
620                         latest_devid = devid;
621                         latest_transid = device->generation;
622                         latest_bdev = bdev;
623                 }
624
625                 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
626                         device->writeable = 0;
627                 } else {
628                         device->writeable = !bdev_read_only(bdev);
629                         seeding = 0;
630                 }
631
632                 device->bdev = bdev;
633                 device->in_fs_metadata = 0;
634                 device->mode = flags;
635
636                 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
637                         fs_devices->rotating = 1;
638
639                 fs_devices->open_devices++;
640                 if (device->writeable) {
641                         fs_devices->rw_devices++;
642                         list_add(&device->dev_alloc_list,
643                                  &fs_devices->alloc_list);
644                 }
645                 continue;
646
647 error_brelse:
648                 brelse(bh);
649 error_close:
650                 close_bdev_exclusive(bdev, FMODE_READ);
651 error:
652                 continue;
653         }
654         if (fs_devices->open_devices == 0) {
655                 ret = -EIO;
656                 goto out;
657         }
658         fs_devices->seeding = seeding;
659         fs_devices->opened = 1;
660         fs_devices->latest_bdev = latest_bdev;
661         fs_devices->latest_devid = latest_devid;
662         fs_devices->latest_trans = latest_transid;
663         fs_devices->total_rw_bytes = 0;
664 out:
665         return ret;
666 }
667
668 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
669                        fmode_t flags, void *holder)
670 {
671         int ret;
672
673         mutex_lock(&uuid_mutex);
674         if (fs_devices->opened) {
675                 fs_devices->opened++;
676                 ret = 0;
677         } else {
678                 ret = __btrfs_open_devices(fs_devices, flags, holder);
679         }
680         mutex_unlock(&uuid_mutex);
681         return ret;
682 }
683
684 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
685                           struct btrfs_fs_devices **fs_devices_ret)
686 {
687         struct btrfs_super_block *disk_super;
688         struct block_device *bdev;
689         struct buffer_head *bh;
690         int ret;
691         u64 devid;
692         u64 transid;
693
694         mutex_lock(&uuid_mutex);
695
696         bdev = open_bdev_exclusive(path, flags, holder);
697
698         if (IS_ERR(bdev)) {
699                 ret = PTR_ERR(bdev);
700                 goto error;
701         }
702
703         ret = set_blocksize(bdev, 4096);
704         if (ret)
705                 goto error_close;
706         bh = btrfs_read_dev_super(bdev);
707         if (!bh) {
708                 ret = -EINVAL;
709                 goto error_close;
710         }
711         disk_super = (struct btrfs_super_block *)bh->b_data;
712         devid = btrfs_stack_device_id(&disk_super->dev_item);
713         transid = btrfs_super_generation(disk_super);
714         if (disk_super->label[0])
715                 printk(KERN_INFO "device label %s ", disk_super->label);
716         else {
717                 /* FIXME, make a readl uuid parser */
718                 printk(KERN_INFO "device fsid %llx-%llx ",
719                        *(unsigned long long *)disk_super->fsid,
720                        *(unsigned long long *)(disk_super->fsid + 8));
721         }
722         printk(KERN_CONT "devid %llu transid %llu %s\n",
723                (unsigned long long)devid, (unsigned long long)transid, path);
724         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
725
726         brelse(bh);
727 error_close:
728         close_bdev_exclusive(bdev, flags);
729 error:
730         mutex_unlock(&uuid_mutex);
731         return ret;
732 }
733
734 /* helper to account the used device space in the range */
735 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
736                                    u64 end, u64 *length)
737 {
738         struct btrfs_key key;
739         struct btrfs_root *root = device->dev_root;
740         struct btrfs_dev_extent *dev_extent;
741         struct btrfs_path *path;
742         u64 extent_end;
743         int ret;
744         int slot;
745         struct extent_buffer *l;
746
747         *length = 0;
748
749         if (start >= device->total_bytes)
750                 return 0;
751
752         path = btrfs_alloc_path();
753         if (!path)
754                 return -ENOMEM;
755         path->reada = 2;
756
757         key.objectid = device->devid;
758         key.offset = start;
759         key.type = BTRFS_DEV_EXTENT_KEY;
760
761         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
762         if (ret < 0)
763                 goto out;
764         if (ret > 0) {
765                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
766                 if (ret < 0)
767                         goto out;
768         }
769
770         while (1) {
771                 l = path->nodes[0];
772                 slot = path->slots[0];
773                 if (slot >= btrfs_header_nritems(l)) {
774                         ret = btrfs_next_leaf(root, path);
775                         if (ret == 0)
776                                 continue;
777                         if (ret < 0)
778                                 goto out;
779
780                         break;
781                 }
782                 btrfs_item_key_to_cpu(l, &key, slot);
783
784                 if (key.objectid < device->devid)
785                         goto next;
786
787                 if (key.objectid > device->devid)
788                         break;
789
790                 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
791                         goto next;
792
793                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
794                 extent_end = key.offset + btrfs_dev_extent_length(l,
795                                                                   dev_extent);
796                 if (key.offset <= start && extent_end > end) {
797                         *length = end - start + 1;
798                         break;
799                 } else if (key.offset <= start && extent_end > start)
800                         *length += extent_end - start;
801                 else if (key.offset > start && extent_end <= end)
802                         *length += extent_end - key.offset;
803                 else if (key.offset > start && key.offset <= end) {
804                         *length += end - key.offset + 1;
805                         break;
806                 } else if (key.offset > end)
807                         break;
808
809 next:
810                 path->slots[0]++;
811         }
812         ret = 0;
813 out:
814         btrfs_free_path(path);
815         return ret;
816 }
817
818 /*
819  * find_free_dev_extent - find free space in the specified device
820  * @trans:      transaction handler
821  * @device:     the device which we search the free space in
822  * @num_bytes:  the size of the free space that we need
823  * @start:      store the start of the free space.
824  * @len:        the size of the free space. that we find, or the size of the max
825  *              free space if we don't find suitable free space
826  *
827  * this uses a pretty simple search, the expectation is that it is
828  * called very infrequently and that a given device has a small number
829  * of extents
830  *
831  * @start is used to store the start of the free space if we find. But if we
832  * don't find suitable free space, it will be used to store the start position
833  * of the max free space.
834  *
835  * @len is used to store the size of the free space that we find.
836  * But if we don't find suitable free space, it is used to store the size of
837  * the max free space.
838  */
839 int find_free_dev_extent(struct btrfs_trans_handle *trans,
840                          struct btrfs_device *device, u64 num_bytes,
841                          u64 *start, u64 *len)
842 {
843         struct btrfs_key key;
844         struct btrfs_root *root = device->dev_root;
845         struct btrfs_dev_extent *dev_extent;
846         struct btrfs_path *path;
847         u64 hole_size;
848         u64 max_hole_start;
849         u64 max_hole_size;
850         u64 extent_end;
851         u64 search_start;
852         u64 search_end = device->total_bytes;
853         int ret;
854         int slot;
855         struct extent_buffer *l;
856
857         /* FIXME use last free of some kind */
858
859         /* we don't want to overwrite the superblock on the drive,
860          * so we make sure to start at an offset of at least 1MB
861          */
862         search_start = 1024 * 1024;
863
864         if (root->fs_info->alloc_start + num_bytes <= search_end)
865                 search_start = max(root->fs_info->alloc_start, search_start);
866
867         max_hole_start = search_start;
868         max_hole_size = 0;
869
870         if (search_start >= search_end) {
871                 ret = -ENOSPC;
872                 goto error;
873         }
874
875         path = btrfs_alloc_path();
876         if (!path) {
877                 ret = -ENOMEM;
878                 goto error;
879         }
880         path->reada = 2;
881
882         key.objectid = device->devid;
883         key.offset = search_start;
884         key.type = BTRFS_DEV_EXTENT_KEY;
885
886         ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
887         if (ret < 0)
888                 goto out;
889         if (ret > 0) {
890                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
891                 if (ret < 0)
892                         goto out;
893         }
894
895         while (1) {
896                 l = path->nodes[0];
897                 slot = path->slots[0];
898                 if (slot >= btrfs_header_nritems(l)) {
899                         ret = btrfs_next_leaf(root, path);
900                         if (ret == 0)
901                                 continue;
902                         if (ret < 0)
903                                 goto out;
904
905                         break;
906                 }
907                 btrfs_item_key_to_cpu(l, &key, slot);
908
909                 if (key.objectid < device->devid)
910                         goto next;
911
912                 if (key.objectid > device->devid)
913                         break;
914
915                 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
916                         goto next;
917
918                 if (key.offset > search_start) {
919                         hole_size = key.offset - search_start;
920
921                         if (hole_size > max_hole_size) {
922                                 max_hole_start = search_start;
923                                 max_hole_size = hole_size;
924                         }
925
926                         /*
927                          * If this free space is greater than which we need,
928                          * it must be the max free space that we have found
929                          * until now, so max_hole_start must point to the start
930                          * of this free space and the length of this free space
931                          * is stored in max_hole_size. Thus, we return
932                          * max_hole_start and max_hole_size and go back to the
933                          * caller.
934                          */
935                         if (hole_size >= num_bytes) {
936                                 ret = 0;
937                                 goto out;
938                         }
939                 }
940
941                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
942                 extent_end = key.offset + btrfs_dev_extent_length(l,
943                                                                   dev_extent);
944                 if (extent_end > search_start)
945                         search_start = extent_end;
946 next:
947                 path->slots[0]++;
948                 cond_resched();
949         }
950
951         hole_size = search_end- search_start;
952         if (hole_size > max_hole_size) {
953                 max_hole_start = search_start;
954                 max_hole_size = hole_size;
955         }
956
957         /* See above. */
958         if (hole_size < num_bytes)
959                 ret = -ENOSPC;
960         else
961                 ret = 0;
962
963 out:
964         btrfs_free_path(path);
965 error:
966         *start = max_hole_start;
967         if (len)
968                 *len = max_hole_size;
969         return ret;
970 }
971
972 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
973                           struct btrfs_device *device,
974                           u64 start)
975 {
976         int ret;
977         struct btrfs_path *path;
978         struct btrfs_root *root = device->dev_root;
979         struct btrfs_key key;
980         struct btrfs_key found_key;
981         struct extent_buffer *leaf = NULL;
982         struct btrfs_dev_extent *extent = NULL;
983
984         path = btrfs_alloc_path();
985         if (!path)
986                 return -ENOMEM;
987
988         key.objectid = device->devid;
989         key.offset = start;
990         key.type = BTRFS_DEV_EXTENT_KEY;
991
992         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
993         if (ret > 0) {
994                 ret = btrfs_previous_item(root, path, key.objectid,
995                                           BTRFS_DEV_EXTENT_KEY);
996                 BUG_ON(ret);
997                 leaf = path->nodes[0];
998                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
999                 extent = btrfs_item_ptr(leaf, path->slots[0],
1000                                         struct btrfs_dev_extent);
1001                 BUG_ON(found_key.offset > start || found_key.offset +
1002                        btrfs_dev_extent_length(leaf, extent) < start);
1003                 ret = 0;
1004         } else if (ret == 0) {
1005                 leaf = path->nodes[0];
1006                 extent = btrfs_item_ptr(leaf, path->slots[0],
1007                                         struct btrfs_dev_extent);
1008         }
1009         BUG_ON(ret);
1010
1011         if (device->bytes_used > 0)
1012                 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
1013         ret = btrfs_del_item(trans, root, path);
1014         BUG_ON(ret);
1015
1016         btrfs_free_path(path);
1017         return ret;
1018 }
1019
1020 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1021                            struct btrfs_device *device,
1022                            u64 chunk_tree, u64 chunk_objectid,
1023                            u64 chunk_offset, u64 start, u64 num_bytes)
1024 {
1025         int ret;
1026         struct btrfs_path *path;
1027         struct btrfs_root *root = device->dev_root;
1028         struct btrfs_dev_extent *extent;
1029         struct extent_buffer *leaf;
1030         struct btrfs_key key;
1031
1032         WARN_ON(!device->in_fs_metadata);
1033         path = btrfs_alloc_path();
1034         if (!path)
1035                 return -ENOMEM;
1036
1037         key.objectid = device->devid;
1038         key.offset = start;
1039         key.type = BTRFS_DEV_EXTENT_KEY;
1040         ret = btrfs_insert_empty_item(trans, root, path, &key,
1041                                       sizeof(*extent));
1042         BUG_ON(ret);
1043
1044         leaf = path->nodes[0];
1045         extent = btrfs_item_ptr(leaf, path->slots[0],
1046                                 struct btrfs_dev_extent);
1047         btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1048         btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1049         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1050
1051         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1052                     (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1053                     BTRFS_UUID_SIZE);
1054
1055         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1056         btrfs_mark_buffer_dirty(leaf);
1057         btrfs_free_path(path);
1058         return ret;
1059 }
1060
1061 static noinline int find_next_chunk(struct btrfs_root *root,
1062                                     u64 objectid, u64 *offset)
1063 {
1064         struct btrfs_path *path;
1065         int ret;
1066         struct btrfs_key key;
1067         struct btrfs_chunk *chunk;
1068         struct btrfs_key found_key;
1069
1070         path = btrfs_alloc_path();
1071         BUG_ON(!path);
1072
1073         key.objectid = objectid;
1074         key.offset = (u64)-1;
1075         key.type = BTRFS_CHUNK_ITEM_KEY;
1076
1077         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1078         if (ret < 0)
1079                 goto error;
1080
1081         BUG_ON(ret == 0);
1082
1083         ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1084         if (ret) {
1085                 *offset = 0;
1086         } else {
1087                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1088                                       path->slots[0]);
1089                 if (found_key.objectid != objectid)
1090                         *offset = 0;
1091                 else {
1092                         chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1093                                                struct btrfs_chunk);
1094                         *offset = found_key.offset +
1095                                 btrfs_chunk_length(path->nodes[0], chunk);
1096                 }
1097         }
1098         ret = 0;
1099 error:
1100         btrfs_free_path(path);
1101         return ret;
1102 }
1103
1104 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
1105 {
1106         int ret;
1107         struct btrfs_key key;
1108         struct btrfs_key found_key;
1109         struct btrfs_path *path;
1110
1111         root = root->fs_info->chunk_root;
1112
1113         path = btrfs_alloc_path();
1114         if (!path)
1115                 return -ENOMEM;
1116
1117         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1118         key.type = BTRFS_DEV_ITEM_KEY;
1119         key.offset = (u64)-1;
1120
1121         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1122         if (ret < 0)
1123                 goto error;
1124
1125         BUG_ON(ret == 0);
1126
1127         ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1128                                   BTRFS_DEV_ITEM_KEY);
1129         if (ret) {
1130                 *objectid = 1;
1131         } else {
1132                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1133                                       path->slots[0]);
1134                 *objectid = found_key.offset + 1;
1135         }
1136         ret = 0;
1137 error:
1138         btrfs_free_path(path);
1139         return ret;
1140 }
1141
1142 /*
1143  * the device information is stored in the chunk root
1144  * the btrfs_device struct should be fully filled in
1145  */
1146 int btrfs_add_device(struct btrfs_trans_handle *trans,
1147                      struct btrfs_root *root,
1148                      struct btrfs_device *device)
1149 {
1150         int ret;
1151         struct btrfs_path *path;
1152         struct btrfs_dev_item *dev_item;
1153         struct extent_buffer *leaf;
1154         struct btrfs_key key;
1155         unsigned long ptr;
1156
1157         root = root->fs_info->chunk_root;
1158
1159         path = btrfs_alloc_path();
1160         if (!path)
1161                 return -ENOMEM;
1162
1163         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1164         key.type = BTRFS_DEV_ITEM_KEY;
1165         key.offset = device->devid;
1166
1167         ret = btrfs_insert_empty_item(trans, root, path, &key,
1168                                       sizeof(*dev_item));
1169         if (ret)
1170                 goto out;
1171
1172         leaf = path->nodes[0];
1173         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1174
1175         btrfs_set_device_id(leaf, dev_item, device->devid);
1176         btrfs_set_device_generation(leaf, dev_item, 0);
1177         btrfs_set_device_type(leaf, dev_item, device->type);
1178         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1179         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1180         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1181         btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1182         btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1183         btrfs_set_device_group(leaf, dev_item, 0);
1184         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1185         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1186         btrfs_set_device_start_offset(leaf, dev_item, 0);
1187
1188         ptr = (unsigned long)btrfs_device_uuid(dev_item);
1189         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1190         ptr = (unsigned long)btrfs_device_fsid(dev_item);
1191         write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1192         btrfs_mark_buffer_dirty(leaf);
1193
1194         ret = 0;
1195 out:
1196         btrfs_free_path(path);
1197         return ret;
1198 }
1199
1200 static int btrfs_rm_dev_item(struct btrfs_root *root,
1201                              struct btrfs_device *device)
1202 {
1203         int ret;
1204         struct btrfs_path *path;
1205         struct btrfs_key key;
1206         struct btrfs_trans_handle *trans;
1207
1208         root = root->fs_info->chunk_root;
1209
1210         path = btrfs_alloc_path();
1211         if (!path)
1212                 return -ENOMEM;
1213
1214         trans = btrfs_start_transaction(root, 0);
1215         if (IS_ERR(trans)) {
1216                 btrfs_free_path(path);
1217                 return PTR_ERR(trans);
1218         }
1219         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1220         key.type = BTRFS_DEV_ITEM_KEY;
1221         key.offset = device->devid;
1222         lock_chunks(root);
1223
1224         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1225         if (ret < 0)
1226                 goto out;
1227
1228         if (ret > 0) {
1229                 ret = -ENOENT;
1230                 goto out;
1231         }
1232
1233         ret = btrfs_del_item(trans, root, path);
1234         if (ret)
1235                 goto out;
1236 out:
1237         btrfs_free_path(path);
1238         unlock_chunks(root);
1239         btrfs_commit_transaction(trans, root);
1240         return ret;
1241 }
1242
1243 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1244 {
1245         struct btrfs_device *device;
1246         struct btrfs_device *next_device;
1247         struct block_device *bdev;
1248         struct buffer_head *bh = NULL;
1249         struct btrfs_super_block *disk_super;
1250         u64 all_avail;
1251         u64 devid;
1252         u64 num_devices;
1253         u8 *dev_uuid;
1254         int ret = 0;
1255
1256         mutex_lock(&uuid_mutex);
1257         mutex_lock(&root->fs_info->volume_mutex);
1258
1259         all_avail = root->fs_info->avail_data_alloc_bits |
1260                 root->fs_info->avail_system_alloc_bits |
1261                 root->fs_info->avail_metadata_alloc_bits;
1262
1263         if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1264             root->fs_info->fs_devices->num_devices <= 4) {
1265                 printk(KERN_ERR "btrfs: unable to go below four devices "
1266                        "on raid10\n");
1267                 ret = -EINVAL;
1268                 goto out;
1269         }
1270
1271         if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1272             root->fs_info->fs_devices->num_devices <= 2) {
1273                 printk(KERN_ERR "btrfs: unable to go below two "
1274                        "devices on raid1\n");
1275                 ret = -EINVAL;
1276                 goto out;
1277         }
1278
1279         if (strcmp(device_path, "missing") == 0) {
1280                 struct list_head *devices;
1281                 struct btrfs_device *tmp;
1282
1283                 device = NULL;
1284                 devices = &root->fs_info->fs_devices->devices;
1285                 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1286                 list_for_each_entry(tmp, devices, dev_list) {
1287                         if (tmp->in_fs_metadata && !tmp->bdev) {
1288                                 device = tmp;
1289                                 break;
1290                         }
1291                 }
1292                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1293                 bdev = NULL;
1294                 bh = NULL;
1295                 disk_super = NULL;
1296                 if (!device) {
1297                         printk(KERN_ERR "btrfs: no missing devices found to "
1298                                "remove\n");
1299                         goto out;
1300                 }
1301         } else {
1302                 bdev = open_bdev_exclusive(device_path, FMODE_READ,
1303                                       root->fs_info->bdev_holder);
1304                 if (IS_ERR(bdev)) {
1305                         ret = PTR_ERR(bdev);
1306                         goto out;
1307                 }
1308
1309                 set_blocksize(bdev, 4096);
1310                 bh = btrfs_read_dev_super(bdev);
1311                 if (!bh) {
1312                         ret = -EINVAL;
1313                         goto error_close;
1314                 }
1315                 disk_super = (struct btrfs_super_block *)bh->b_data;
1316                 devid = btrfs_stack_device_id(&disk_super->dev_item);
1317                 dev_uuid = disk_super->dev_item.uuid;
1318                 device = btrfs_find_device(root, devid, dev_uuid,
1319                                            disk_super->fsid);
1320                 if (!device) {
1321                         ret = -ENOENT;
1322                         goto error_brelse;
1323                 }
1324         }
1325
1326         if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1327                 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1328                        "device\n");
1329                 ret = -EINVAL;
1330                 goto error_brelse;
1331         }
1332
1333         if (device->writeable) {
1334                 list_del_init(&device->dev_alloc_list);
1335                 root->fs_info->fs_devices->rw_devices--;
1336         }
1337
1338         ret = btrfs_shrink_device(device, 0);
1339         if (ret)
1340                 goto error_brelse;
1341
1342         ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1343         if (ret)
1344                 goto error_brelse;
1345
1346         device->in_fs_metadata = 0;
1347
1348         /*
1349          * the device list mutex makes sure that we don't change
1350          * the device list while someone else is writing out all
1351          * the device supers.
1352          */
1353         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1354         list_del_init(&device->dev_list);
1355         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1356
1357         device->fs_devices->num_devices--;
1358
1359         if (device->missing)
1360                 root->fs_info->fs_devices->missing_devices--;
1361
1362         next_device = list_entry(root->fs_info->fs_devices->devices.next,
1363                                  struct btrfs_device, dev_list);
1364         if (device->bdev == root->fs_info->sb->s_bdev)
1365                 root->fs_info->sb->s_bdev = next_device->bdev;
1366         if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1367                 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1368
1369         if (device->bdev) {
1370                 close_bdev_exclusive(device->bdev, device->mode);
1371                 device->bdev = NULL;
1372                 device->fs_devices->open_devices--;
1373         }
1374
1375         num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1376         btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1377
1378         if (device->fs_devices->open_devices == 0) {
1379                 struct btrfs_fs_devices *fs_devices;
1380                 fs_devices = root->fs_info->fs_devices;
1381                 while (fs_devices) {
1382                         if (fs_devices->seed == device->fs_devices)
1383                                 break;
1384                         fs_devices = fs_devices->seed;
1385                 }
1386                 fs_devices->seed = device->fs_devices->seed;
1387                 device->fs_devices->seed = NULL;
1388                 __btrfs_close_devices(device->fs_devices);
1389                 free_fs_devices(device->fs_devices);
1390         }
1391
1392         /*
1393          * at this point, the device is zero sized.  We want to
1394          * remove it from the devices list and zero out the old super
1395          */
1396         if (device->writeable) {
1397                 /* make sure this device isn't detected as part of
1398                  * the FS anymore
1399                  */
1400                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1401                 set_buffer_dirty(bh);
1402                 sync_dirty_buffer(bh);
1403         }
1404
1405         kfree(device->name);
1406         kfree(device);
1407         ret = 0;
1408
1409 error_brelse:
1410         brelse(bh);
1411 error_close:
1412         if (bdev)
1413                 close_bdev_exclusive(bdev, FMODE_READ);
1414 out:
1415         mutex_unlock(&root->fs_info->volume_mutex);
1416         mutex_unlock(&uuid_mutex);
1417         return ret;
1418 }
1419
1420 /*
1421  * does all the dirty work required for changing file system's UUID.
1422  */
1423 static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1424                                 struct btrfs_root *root)
1425 {
1426         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1427         struct btrfs_fs_devices *old_devices;
1428         struct btrfs_fs_devices *seed_devices;
1429         struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1430         struct btrfs_device *device;
1431         u64 super_flags;
1432
1433         BUG_ON(!mutex_is_locked(&uuid_mutex));
1434         if (!fs_devices->seeding)
1435                 return -EINVAL;
1436
1437         seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1438         if (!seed_devices)
1439                 return -ENOMEM;
1440
1441         old_devices = clone_fs_devices(fs_devices);
1442         if (IS_ERR(old_devices)) {
1443                 kfree(seed_devices);
1444                 return PTR_ERR(old_devices);
1445         }
1446
1447         list_add(&old_devices->list, &fs_uuids);
1448
1449         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1450         seed_devices->opened = 1;
1451         INIT_LIST_HEAD(&seed_devices->devices);
1452         INIT_LIST_HEAD(&seed_devices->alloc_list);
1453         mutex_init(&seed_devices->device_list_mutex);
1454         list_splice_init(&fs_devices->devices, &seed_devices->devices);
1455         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1456         list_for_each_entry(device, &seed_devices->devices, dev_list) {
1457                 device->fs_devices = seed_devices;
1458         }
1459
1460         fs_devices->seeding = 0;
1461         fs_devices->num_devices = 0;
1462         fs_devices->open_devices = 0;
1463         fs_devices->seed = seed_devices;
1464
1465         generate_random_uuid(fs_devices->fsid);
1466         memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1467         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1468         super_flags = btrfs_super_flags(disk_super) &
1469                       ~BTRFS_SUPER_FLAG_SEEDING;
1470         btrfs_set_super_flags(disk_super, super_flags);
1471
1472         return 0;
1473 }
1474
1475 /*
1476  * strore the expected generation for seed devices in device items.
1477  */
1478 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1479                                struct btrfs_root *root)
1480 {
1481         struct btrfs_path *path;
1482         struct extent_buffer *leaf;
1483         struct btrfs_dev_item *dev_item;
1484         struct btrfs_device *device;
1485         struct btrfs_key key;
1486         u8 fs_uuid[BTRFS_UUID_SIZE];
1487         u8 dev_uuid[BTRFS_UUID_SIZE];
1488         u64 devid;
1489         int ret;
1490
1491         path = btrfs_alloc_path();
1492         if (!path)
1493                 return -ENOMEM;
1494
1495         root = root->fs_info->chunk_root;
1496         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1497         key.offset = 0;
1498         key.type = BTRFS_DEV_ITEM_KEY;
1499
1500         while (1) {
1501                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1502                 if (ret < 0)
1503                         goto error;
1504
1505                 leaf = path->nodes[0];
1506 next_slot:
1507                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1508                         ret = btrfs_next_leaf(root, path);
1509                         if (ret > 0)
1510                                 break;
1511                         if (ret < 0)
1512                                 goto error;
1513                         leaf = path->nodes[0];
1514                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1515                         btrfs_release_path(root, path);
1516                         continue;
1517                 }
1518
1519                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1520                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1521                     key.type != BTRFS_DEV_ITEM_KEY)
1522                         break;
1523
1524                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1525                                           struct btrfs_dev_item);
1526                 devid = btrfs_device_id(leaf, dev_item);
1527                 read_extent_buffer(leaf, dev_uuid,
1528                                    (unsigned long)btrfs_device_uuid(dev_item),
1529                                    BTRFS_UUID_SIZE);
1530                 read_extent_buffer(leaf, fs_uuid,
1531                                    (unsigned long)btrfs_device_fsid(dev_item),
1532                                    BTRFS_UUID_SIZE);
1533                 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1534                 BUG_ON(!device);
1535
1536                 if (device->fs_devices->seeding) {
1537                         btrfs_set_device_generation(leaf, dev_item,
1538                                                     device->generation);
1539                         btrfs_mark_buffer_dirty(leaf);
1540                 }
1541
1542                 path->slots[0]++;
1543                 goto next_slot;
1544         }
1545         ret = 0;
1546 error:
1547         btrfs_free_path(path);
1548         return ret;
1549 }
1550
1551 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1552 {
1553         struct btrfs_trans_handle *trans;
1554         struct btrfs_device *device;
1555         struct block_device *bdev;
1556         struct list_head *devices;
1557         struct super_block *sb = root->fs_info->sb;
1558         u64 total_bytes;
1559         int seeding_dev = 0;
1560         int ret = 0;
1561
1562         if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1563                 return -EINVAL;
1564
1565         bdev = open_bdev_exclusive(device_path, 0, root->fs_info->bdev_holder);
1566         if (IS_ERR(bdev))
1567                 return PTR_ERR(bdev);
1568
1569         if (root->fs_info->fs_devices->seeding) {
1570                 seeding_dev = 1;
1571                 down_write(&sb->s_umount);
1572                 mutex_lock(&uuid_mutex);
1573         }
1574
1575         filemap_write_and_wait(bdev->bd_inode->i_mapping);
1576         mutex_lock(&root->fs_info->volume_mutex);
1577
1578         devices = &root->fs_info->fs_devices->devices;
1579         /*
1580          * we have the volume lock, so we don't need the extra
1581          * device list mutex while reading the list here.
1582          */
1583         list_for_each_entry(device, devices, dev_list) {
1584                 if (device->bdev == bdev) {
1585                         ret = -EEXIST;
1586                         goto error;
1587                 }
1588         }
1589
1590         device = kzalloc(sizeof(*device), GFP_NOFS);
1591         if (!device) {
1592                 /* we can safely leave the fs_devices entry around */
1593                 ret = -ENOMEM;
1594                 goto error;
1595         }
1596
1597         device->name = kstrdup(device_path, GFP_NOFS);
1598         if (!device->name) {
1599                 kfree(device);
1600                 ret = -ENOMEM;
1601                 goto error;
1602         }
1603
1604         ret = find_next_devid(root, &device->devid);
1605         if (ret) {
1606                 kfree(device->name);
1607                 kfree(device);
1608                 goto error;
1609         }
1610
1611         trans = btrfs_start_transaction(root, 0);
1612         if (IS_ERR(trans)) {
1613                 kfree(device->name);
1614                 kfree(device);
1615                 ret = PTR_ERR(trans);
1616                 goto error;
1617         }
1618
1619         lock_chunks(root);
1620
1621         device->barriers = 1;
1622         device->writeable = 1;
1623         device->work.func = pending_bios_fn;
1624         generate_random_uuid(device->uuid);
1625         spin_lock_init(&device->io_lock);
1626         device->generation = trans->transid;
1627         device->io_width = root->sectorsize;
1628         device->io_align = root->sectorsize;
1629         device->sector_size = root->sectorsize;
1630         device->total_bytes = i_size_read(bdev->bd_inode);
1631         device->disk_total_bytes = device->total_bytes;
1632         device->dev_root = root->fs_info->dev_root;
1633         device->bdev = bdev;
1634         device->in_fs_metadata = 1;
1635         device->mode = 0;
1636         set_blocksize(device->bdev, 4096);
1637
1638         if (seeding_dev) {
1639                 sb->s_flags &= ~MS_RDONLY;
1640                 ret = btrfs_prepare_sprout(trans, root);
1641                 BUG_ON(ret);
1642         }
1643
1644         device->fs_devices = root->fs_info->fs_devices;
1645
1646         /*
1647          * we don't want write_supers to jump in here with our device
1648          * half setup
1649          */
1650         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1651         list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1652         list_add(&device->dev_alloc_list,
1653                  &root->fs_info->fs_devices->alloc_list);
1654         root->fs_info->fs_devices->num_devices++;
1655         root->fs_info->fs_devices->open_devices++;
1656         root->fs_info->fs_devices->rw_devices++;
1657         root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1658
1659         if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1660                 root->fs_info->fs_devices->rotating = 1;
1661
1662         total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1663         btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1664                                     total_bytes + device->total_bytes);
1665
1666         total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1667         btrfs_set_super_num_devices(&root->fs_info->super_copy,
1668                                     total_bytes + 1);
1669         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1670
1671         if (seeding_dev) {
1672                 ret = init_first_rw_device(trans, root, device);
1673                 BUG_ON(ret);
1674                 ret = btrfs_finish_sprout(trans, root);
1675                 BUG_ON(ret);
1676         } else {
1677                 ret = btrfs_add_device(trans, root, device);
1678         }
1679
1680         /*
1681          * we've got more storage, clear any full flags on the space
1682          * infos
1683          */
1684         btrfs_clear_space_info_full(root->fs_info);
1685
1686         unlock_chunks(root);
1687         btrfs_commit_transaction(trans, root);
1688
1689         if (seeding_dev) {
1690                 mutex_unlock(&uuid_mutex);
1691                 up_write(&sb->s_umount);
1692
1693                 ret = btrfs_relocate_sys_chunks(root);
1694                 BUG_ON(ret);
1695         }
1696 out:
1697         mutex_unlock(&root->fs_info->volume_mutex);
1698         return ret;
1699 error:
1700         close_bdev_exclusive(bdev, 0);
1701         if (seeding_dev) {
1702                 mutex_unlock(&uuid_mutex);
1703                 up_write(&sb->s_umount);
1704         }
1705         goto out;
1706 }
1707
1708 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1709                                         struct btrfs_device *device)
1710 {
1711         int ret;
1712         struct btrfs_path *path;
1713         struct btrfs_root *root;
1714         struct btrfs_dev_item *dev_item;
1715         struct extent_buffer *leaf;
1716         struct btrfs_key key;
1717
1718         root = device->dev_root->fs_info->chunk_root;
1719
1720         path = btrfs_alloc_path();
1721         if (!path)
1722                 return -ENOMEM;
1723
1724         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1725         key.type = BTRFS_DEV_ITEM_KEY;
1726         key.offset = device->devid;
1727
1728         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1729         if (ret < 0)
1730                 goto out;
1731
1732         if (ret > 0) {
1733                 ret = -ENOENT;
1734                 goto out;
1735         }
1736
1737         leaf = path->nodes[0];
1738         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1739
1740         btrfs_set_device_id(leaf, dev_item, device->devid);
1741         btrfs_set_device_type(leaf, dev_item, device->type);
1742         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1743         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1744         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1745         btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1746         btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1747         btrfs_mark_buffer_dirty(leaf);
1748
1749 out:
1750         btrfs_free_path(path);
1751         return ret;
1752 }
1753
1754 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1755                       struct btrfs_device *device, u64 new_size)
1756 {
1757         struct btrfs_super_block *super_copy =
1758                 &device->dev_root->fs_info->super_copy;
1759         u64 old_total = btrfs_super_total_bytes(super_copy);
1760         u64 diff = new_size - device->total_bytes;
1761
1762         if (!device->writeable)
1763                 return -EACCES;
1764         if (new_size <= device->total_bytes)
1765                 return -EINVAL;
1766
1767         btrfs_set_super_total_bytes(super_copy, old_total + diff);
1768         device->fs_devices->total_rw_bytes += diff;
1769
1770         device->total_bytes = new_size;
1771         device->disk_total_bytes = new_size;
1772         btrfs_clear_space_info_full(device->dev_root->fs_info);
1773
1774         return btrfs_update_device(trans, device);
1775 }
1776
1777 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1778                       struct btrfs_device *device, u64 new_size)
1779 {
1780         int ret;
1781         lock_chunks(device->dev_root);
1782         ret = __btrfs_grow_device(trans, device, new_size);
1783         unlock_chunks(device->dev_root);
1784         return ret;
1785 }
1786
1787 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1788                             struct btrfs_root *root,
1789                             u64 chunk_tree, u64 chunk_objectid,
1790                             u64 chunk_offset)
1791 {
1792         int ret;
1793         struct btrfs_path *path;
1794         struct btrfs_key key;
1795
1796         root = root->fs_info->chunk_root;
1797         path = btrfs_alloc_path();
1798         if (!path)
1799                 return -ENOMEM;
1800
1801         key.objectid = chunk_objectid;
1802         key.offset = chunk_offset;
1803         key.type = BTRFS_CHUNK_ITEM_KEY;
1804
1805         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1806         BUG_ON(ret);
1807
1808         ret = btrfs_del_item(trans, root, path);
1809         BUG_ON(ret);
1810
1811         btrfs_free_path(path);
1812         return 0;
1813 }
1814
1815 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1816                         chunk_offset)
1817 {
1818         struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1819         struct btrfs_disk_key *disk_key;
1820         struct btrfs_chunk *chunk;
1821         u8 *ptr;
1822         int ret = 0;
1823         u32 num_stripes;
1824         u32 array_size;
1825         u32 len = 0;
1826         u32 cur;
1827         struct btrfs_key key;
1828
1829         array_size = btrfs_super_sys_array_size(super_copy);
1830
1831         ptr = super_copy->sys_chunk_array;
1832         cur = 0;
1833
1834         while (cur < array_size) {
1835                 disk_key = (struct btrfs_disk_key *)ptr;
1836                 btrfs_disk_key_to_cpu(&key, disk_key);
1837
1838                 len = sizeof(*disk_key);
1839
1840                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1841                         chunk = (struct btrfs_chunk *)(ptr + len);
1842                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1843                         len += btrfs_chunk_item_size(num_stripes);
1844                 } else {
1845                         ret = -EIO;
1846                         break;
1847                 }
1848                 if (key.objectid == chunk_objectid &&
1849                     key.offset == chunk_offset) {
1850                         memmove(ptr, ptr + len, array_size - (cur + len));
1851                         array_size -= len;
1852                         btrfs_set_super_sys_array_size(super_copy, array_size);
1853                 } else {
1854                         ptr += len;
1855                         cur += len;
1856                 }
1857         }
1858         return ret;
1859 }
1860
1861 static int btrfs_relocate_chunk(struct btrfs_root *root,
1862                          u64 chunk_tree, u64 chunk_objectid,
1863                          u64 chunk_offset)
1864 {
1865         struct extent_map_tree *em_tree;
1866         struct btrfs_root *extent_root;
1867         struct btrfs_trans_handle *trans;
1868         struct extent_map *em;
1869         struct map_lookup *map;
1870         int ret;
1871         int i;
1872
1873         root = root->fs_info->chunk_root;
1874         extent_root = root->fs_info->extent_root;
1875         em_tree = &root->fs_info->mapping_tree.map_tree;
1876
1877         ret = btrfs_can_relocate(extent_root, chunk_offset);
1878         if (ret)
1879                 return -ENOSPC;
1880
1881         /* step one, relocate all the extents inside this chunk */
1882         ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1883         if (ret)
1884                 return ret;
1885
1886         trans = btrfs_start_transaction(root, 0);
1887         BUG_ON(IS_ERR(trans));
1888
1889         lock_chunks(root);
1890
1891         /*
1892          * step two, delete the device extents and the
1893          * chunk tree entries
1894          */
1895         read_lock(&em_tree->lock);
1896         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1897         read_unlock(&em_tree->lock);
1898
1899         BUG_ON(em->start > chunk_offset ||
1900                em->start + em->len < chunk_offset);
1901         map = (struct map_lookup *)em->bdev;
1902
1903         for (i = 0; i < map->num_stripes; i++) {
1904                 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1905                                             map->stripes[i].physical);
1906                 BUG_ON(ret);
1907
1908                 if (map->stripes[i].dev) {
1909                         ret = btrfs_update_device(trans, map->stripes[i].dev);
1910                         BUG_ON(ret);
1911                 }
1912         }
1913         ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1914                                chunk_offset);
1915
1916         BUG_ON(ret);
1917
1918         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1919                 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1920                 BUG_ON(ret);
1921         }
1922
1923         ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1924         BUG_ON(ret);
1925
1926         write_lock(&em_tree->lock);
1927         remove_extent_mapping(em_tree, em);
1928         write_unlock(&em_tree->lock);
1929
1930         kfree(map);
1931         em->bdev = NULL;
1932
1933         /* once for the tree */
1934         free_extent_map(em);
1935         /* once for us */
1936         free_extent_map(em);
1937
1938         unlock_chunks(root);
1939         btrfs_end_transaction(trans, root);
1940         return 0;
1941 }
1942
1943 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1944 {
1945         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1946         struct btrfs_path *path;
1947         struct extent_buffer *leaf;
1948         struct btrfs_chunk *chunk;
1949         struct btrfs_key key;
1950         struct btrfs_key found_key;
1951         u64 chunk_tree = chunk_root->root_key.objectid;
1952         u64 chunk_type;
1953         bool retried = false;
1954         int failed = 0;
1955         int ret;
1956
1957         path = btrfs_alloc_path();
1958         if (!path)
1959                 return -ENOMEM;
1960
1961 again:
1962         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1963         key.offset = (u64)-1;
1964         key.type = BTRFS_CHUNK_ITEM_KEY;
1965
1966         while (1) {
1967                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1968                 if (ret < 0)
1969                         goto error;
1970                 BUG_ON(ret == 0);
1971
1972                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
1973                                           key.type);
1974                 if (ret < 0)
1975                         goto error;
1976                 if (ret > 0)
1977                         break;
1978
1979                 leaf = path->nodes[0];
1980                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1981
1982                 chunk = btrfs_item_ptr(leaf, path->slots[0],
1983                                        struct btrfs_chunk);
1984                 chunk_type = btrfs_chunk_type(leaf, chunk);
1985                 btrfs_release_path(chunk_root, path);
1986
1987                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1988                         ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1989                                                    found_key.objectid,
1990                                                    found_key.offset);
1991                         if (ret == -ENOSPC)
1992                                 failed++;
1993                         else if (ret)
1994                                 BUG();
1995                 }
1996
1997                 if (found_key.offset == 0)
1998                         break;
1999                 key.offset = found_key.offset - 1;
2000         }
2001         ret = 0;
2002         if (failed && !retried) {
2003                 failed = 0;
2004                 retried = true;
2005                 goto again;
2006         } else if (failed && retried) {
2007                 WARN_ON(1);
2008                 ret = -ENOSPC;
2009         }
2010 error:
2011         btrfs_free_path(path);
2012         return ret;
2013 }
2014
2015 static u64 div_factor(u64 num, int factor)
2016 {
2017         if (factor == 10)
2018                 return num;
2019         num *= factor;
2020         do_div(num, 10);
2021         return num;
2022 }
2023
2024 int btrfs_balance(struct btrfs_root *dev_root)
2025 {
2026         int ret;
2027         struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
2028         struct btrfs_device *device;
2029         u64 old_size;
2030         u64 size_to_free;
2031         struct btrfs_path *path;
2032         struct btrfs_key key;
2033         struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
2034         struct btrfs_trans_handle *trans;
2035         struct btrfs_key found_key;
2036
2037         if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
2038                 return -EROFS;
2039
2040         if (!capable(CAP_SYS_ADMIN))
2041                 return -EPERM;
2042
2043         mutex_lock(&dev_root->fs_info->volume_mutex);
2044         dev_root = dev_root->fs_info->dev_root;
2045
2046         /* step one make some room on all the devices */
2047         list_for_each_entry(device, devices, dev_list) {
2048                 old_size = device->total_bytes;
2049                 size_to_free = div_factor(old_size, 1);
2050                 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2051                 if (!device->writeable ||
2052                     device->total_bytes - device->bytes_used > size_to_free)
2053                         continue;
2054
2055                 ret = btrfs_shrink_device(device, old_size - size_to_free);
2056                 if (ret == -ENOSPC)
2057                         break;
2058                 BUG_ON(ret);
2059
2060                 trans = btrfs_start_transaction(dev_root, 0);
2061                 BUG_ON(IS_ERR(trans));
2062
2063                 ret = btrfs_grow_device(trans, device, old_size);
2064                 BUG_ON(ret);
2065
2066                 btrfs_end_transaction(trans, dev_root);
2067         }
2068
2069         /* step two, relocate all the chunks */
2070         path = btrfs_alloc_path();
2071         BUG_ON(!path);
2072
2073         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2074         key.offset = (u64)-1;
2075         key.type = BTRFS_CHUNK_ITEM_KEY;
2076
2077         while (1) {
2078                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2079                 if (ret < 0)
2080                         goto error;
2081
2082                 /*
2083                  * this shouldn't happen, it means the last relocate
2084                  * failed
2085                  */
2086                 if (ret == 0)
2087                         break;
2088
2089                 ret = btrfs_previous_item(chunk_root, path, 0,
2090                                           BTRFS_CHUNK_ITEM_KEY);
2091                 if (ret)
2092                         break;
2093
2094                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2095                                       path->slots[0]);
2096                 if (found_key.objectid != key.objectid)
2097                         break;
2098
2099                 /* chunk zero is special */
2100                 if (found_key.offset == 0)
2101                         break;
2102
2103                 btrfs_release_path(chunk_root, path);
2104                 ret = btrfs_relocate_chunk(chunk_root,
2105                                            chunk_root->root_key.objectid,
2106                                            found_key.objectid,
2107                                            found_key.offset);
2108                 BUG_ON(ret && ret != -ENOSPC);
2109                 key.offset = found_key.offset - 1;
2110         }
2111         ret = 0;
2112 error:
2113         btrfs_free_path(path);
2114         mutex_unlock(&dev_root->fs_info->volume_mutex);
2115         return ret;
2116 }
2117
2118 /*
2119  * shrinking a device means finding all of the device extents past
2120  * the new size, and then following the back refs to the chunks.
2121  * The chunk relocation code actually frees the device extent
2122  */
2123 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
2124 {
2125         struct btrfs_trans_handle *trans;
2126         struct btrfs_root *root = device->dev_root;
2127         struct btrfs_dev_extent *dev_extent = NULL;
2128         struct btrfs_path *path;
2129         u64 length;
2130         u64 chunk_tree;
2131         u64 chunk_objectid;
2132         u64 chunk_offset;
2133         int ret;
2134         int slot;
2135         int failed = 0;
2136         bool retried = false;
2137         struct extent_buffer *l;
2138         struct btrfs_key key;
2139         struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2140         u64 old_total = btrfs_super_total_bytes(super_copy);
2141         u64 old_size = device->total_bytes;
2142         u64 diff = device->total_bytes - new_size;
2143
2144         if (new_size >= device->total_bytes)
2145                 return -EINVAL;
2146
2147         path = btrfs_alloc_path();
2148         if (!path)
2149                 return -ENOMEM;
2150
2151         path->reada = 2;
2152
2153         lock_chunks(root);
2154
2155         device->total_bytes = new_size;
2156         if (device->writeable)
2157                 device->fs_devices->total_rw_bytes -= diff;
2158         unlock_chunks(root);
2159
2160 again:
2161         key.objectid = device->devid;
2162         key.offset = (u64)-1;
2163         key.type = BTRFS_DEV_EXTENT_KEY;
2164
2165         while (1) {
2166                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2167                 if (ret < 0)
2168                         goto done;
2169
2170                 ret = btrfs_previous_item(root, path, 0, key.type);
2171                 if (ret < 0)
2172                         goto done;
2173                 if (ret) {
2174                         ret = 0;
2175                         btrfs_release_path(root, path);
2176                         break;
2177                 }
2178
2179                 l = path->nodes[0];
2180                 slot = path->slots[0];
2181                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2182
2183                 if (key.objectid != device->devid) {
2184                         btrfs_release_path(root, path);
2185                         break;
2186                 }
2187
2188                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2189                 length = btrfs_dev_extent_length(l, dev_extent);
2190
2191                 if (key.offset + length <= new_size) {
2192                         btrfs_release_path(root, path);
2193                         break;
2194                 }
2195
2196                 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2197                 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2198                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2199                 btrfs_release_path(root, path);
2200
2201                 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
2202                                            chunk_offset);
2203                 if (ret && ret != -ENOSPC)
2204                         goto done;
2205                 if (ret == -ENOSPC)
2206                         failed++;
2207                 key.offset -= 1;
2208         }
2209
2210         if (failed && !retried) {
2211                 failed = 0;
2212                 retried = true;
2213                 goto again;
2214         } else if (failed && retried) {
2215                 ret = -ENOSPC;
2216                 lock_chunks(root);
2217
2218                 device->total_bytes = old_size;
2219                 if (device->writeable)
2220                         device->fs_devices->total_rw_bytes += diff;
2221                 unlock_chunks(root);
2222                 goto done;
2223         }
2224
2225         /* Shrinking succeeded, else we would be at "done". */
2226         trans = btrfs_start_transaction(root, 0);
2227         if (IS_ERR(trans)) {
2228                 ret = PTR_ERR(trans);
2229                 goto done;
2230         }
2231
2232         lock_chunks(root);
2233
2234         device->disk_total_bytes = new_size;
2235         /* Now btrfs_update_device() will change the on-disk size. */
2236         ret = btrfs_update_device(trans, device);
2237         if (ret) {
2238                 unlock_chunks(root);
2239                 btrfs_end_transaction(trans, root);
2240                 goto done;
2241         }
2242         WARN_ON(diff > old_total);
2243         btrfs_set_super_total_bytes(super_copy, old_total - diff);
2244         unlock_chunks(root);
2245         btrfs_end_transaction(trans, root);
2246 done:
2247         btrfs_free_path(path);
2248         return ret;
2249 }
2250
2251 static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
2252                            struct btrfs_root *root,
2253                            struct btrfs_key *key,
2254                            struct btrfs_chunk *chunk, int item_size)
2255 {
2256         struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2257         struct btrfs_disk_key disk_key;
2258         u32 array_size;
2259         u8 *ptr;
2260
2261         array_size = btrfs_super_sys_array_size(super_copy);
2262         if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2263                 return -EFBIG;
2264
2265         ptr = super_copy->sys_chunk_array + array_size;
2266         btrfs_cpu_key_to_disk(&disk_key, key);
2267         memcpy(ptr, &disk_key, sizeof(disk_key));
2268         ptr += sizeof(disk_key);
2269         memcpy(ptr, chunk, item_size);
2270         item_size += sizeof(disk_key);
2271         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2272         return 0;
2273 }
2274
2275 static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size,
2276                                         int num_stripes, int sub_stripes)
2277 {
2278         if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
2279                 return calc_size;
2280         else if (type & BTRFS_BLOCK_GROUP_RAID10)
2281                 return calc_size * (num_stripes / sub_stripes);
2282         else
2283                 return calc_size * num_stripes;
2284 }
2285
2286 /* Used to sort the devices by max_avail(descending sort) */
2287 int btrfs_cmp_device_free_bytes(const void *dev_info1, const void *dev_info2)
2288 {
2289         if (((struct btrfs_device_info *)dev_info1)->max_avail >
2290             ((struct btrfs_device_info *)dev_info2)->max_avail)
2291                 return -1;
2292         else if (((struct btrfs_device_info *)dev_info1)->max_avail <
2293                  ((struct btrfs_device_info *)dev_info2)->max_avail)
2294                 return 1;
2295         else
2296                 return 0;
2297 }
2298
2299 static int __btrfs_calc_nstripes(struct btrfs_fs_devices *fs_devices, u64 type,
2300                                  int *num_stripes, int *min_stripes,
2301                                  int *sub_stripes)
2302 {
2303         *num_stripes = 1;
2304         *min_stripes = 1;
2305         *sub_stripes = 0;
2306
2307         if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
2308                 *num_stripes = fs_devices->rw_devices;
2309                 *min_stripes = 2;
2310         }
2311         if (type & (BTRFS_BLOCK_GROUP_DUP)) {
2312                 *num_stripes = 2;
2313                 *min_stripes = 2;
2314         }
2315         if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
2316                 if (fs_devices->rw_devices < 2)
2317                         return -ENOSPC;
2318                 *num_stripes = 2;
2319                 *min_stripes = 2;
2320         }
2321         if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2322                 *num_stripes = fs_devices->rw_devices;
2323                 if (*num_stripes < 4)
2324                         return -ENOSPC;
2325                 *num_stripes &= ~(u32)1;
2326                 *sub_stripes = 2;
2327                 *min_stripes = 4;
2328         }
2329
2330         return 0;
2331 }
2332
2333 static u64 __btrfs_calc_stripe_size(struct btrfs_fs_devices *fs_devices,
2334                                     u64 proposed_size, u64 type,
2335                                     int num_stripes, int small_stripe)
2336 {
2337         int min_stripe_size = 1 * 1024 * 1024;
2338         u64 calc_size = proposed_size;
2339         u64 max_chunk_size = calc_size;
2340         int ncopies = 1;
2341
2342         if (type & (BTRFS_BLOCK_GROUP_RAID1 |
2343                     BTRFS_BLOCK_GROUP_DUP |
2344                     BTRFS_BLOCK_GROUP_RAID10))
2345                 ncopies = 2;
2346
2347         if (type & BTRFS_BLOCK_GROUP_DATA) {
2348                 max_chunk_size = 10 * calc_size;
2349                 min_stripe_size = 64 * 1024 * 1024;
2350         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
2351                 max_chunk_size = 256 * 1024 * 1024;
2352                 min_stripe_size = 32 * 1024 * 1024;
2353         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2354                 calc_size = 8 * 1024 * 1024;
2355                 max_chunk_size = calc_size * 2;
2356                 min_stripe_size = 1 * 1024 * 1024;
2357         }
2358
2359         /* we don't want a chunk larger than 10% of writeable space */
2360         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2361                              max_chunk_size);
2362
2363         if (calc_size * num_stripes > max_chunk_size * ncopies) {
2364                 calc_size = max_chunk_size * ncopies;
2365                 do_div(calc_size, num_stripes);
2366                 do_div(calc_size, BTRFS_STRIPE_LEN);
2367                 calc_size *= BTRFS_STRIPE_LEN;
2368         }
2369
2370         /* we don't want tiny stripes */
2371         if (!small_stripe)
2372                 calc_size = max_t(u64, min_stripe_size, calc_size);
2373
2374         /*
2375          * we're about to do_div by the BTRFS_STRIPE_LEN so lets make sure
2376          * we end up with something bigger than a stripe
2377          */
2378         calc_size = max_t(u64, calc_size, BTRFS_STRIPE_LEN);
2379
2380         do_div(calc_size, BTRFS_STRIPE_LEN);
2381         calc_size *= BTRFS_STRIPE_LEN;
2382
2383         return calc_size;
2384 }
2385
2386 static struct map_lookup *__shrink_map_lookup_stripes(struct map_lookup *map,
2387                                                       int num_stripes)
2388 {
2389         struct map_lookup *new;
2390         size_t len = map_lookup_size(num_stripes);
2391
2392         BUG_ON(map->num_stripes < num_stripes);
2393
2394         if (map->num_stripes == num_stripes)
2395                 return map;
2396
2397         new = kmalloc(len, GFP_NOFS);
2398         if (!new) {
2399                 /* just change map->num_stripes */
2400                 map->num_stripes = num_stripes;
2401                 return map;
2402         }
2403
2404         memcpy(new, map, len);
2405         new->num_stripes = num_stripes;
2406         kfree(map);
2407         return new;
2408 }
2409
2410 /*
2411  * helper to allocate device space from btrfs_device_info, in which we stored
2412  * max free space information of every device. It is used when we can not
2413  * allocate chunks by default size.
2414  *
2415  * By this helper, we can allocate a new chunk as larger as possible.
2416  */
2417 static int __btrfs_alloc_tiny_space(struct btrfs_trans_handle *trans,
2418                                     struct btrfs_fs_devices *fs_devices,
2419                                     struct btrfs_device_info *devices,
2420                                     int nr_device, u64 type,
2421                                     struct map_lookup **map_lookup,
2422                                     int min_stripes, u64 *stripe_size)
2423 {
2424         int i, index, sort_again = 0;
2425         int min_devices = min_stripes;
2426         u64 max_avail, min_free;
2427         struct map_lookup *map = *map_lookup;
2428         int ret;
2429
2430         if (nr_device < min_stripes)
2431                 return -ENOSPC;
2432
2433         btrfs_descending_sort_devices(devices, nr_device);
2434
2435         max_avail = devices[0].max_avail;
2436         if (!max_avail)
2437                 return -ENOSPC;
2438
2439         for (i = 0; i < nr_device; i++) {
2440                 /*
2441                  * if dev_offset = 0, it means the free space of this device
2442                  * is less than what we need, and we didn't search max avail
2443                  * extent on this device, so do it now.
2444                  */
2445                 if (!devices[i].dev_offset) {
2446                         ret = find_free_dev_extent(trans, devices[i].dev,
2447                                                    max_avail,
2448                                                    &devices[i].dev_offset,
2449                                                    &devices[i].max_avail);
2450                         if (ret != 0 && ret != -ENOSPC)
2451                                 return ret;
2452                         sort_again = 1;
2453                 }
2454         }
2455
2456         /* we update the max avail free extent of each devices, sort again */
2457         if (sort_again)
2458                 btrfs_descending_sort_devices(devices, nr_device);
2459
2460         if (type & BTRFS_BLOCK_GROUP_DUP)
2461                 min_devices = 1;
2462
2463         if (!devices[min_devices - 1].max_avail)
2464                 return -ENOSPC;
2465
2466         max_avail = devices[min_devices - 1].max_avail;
2467         if (type & BTRFS_BLOCK_GROUP_DUP)
2468                 do_div(max_avail, 2);
2469
2470         max_avail = __btrfs_calc_stripe_size(fs_devices, max_avail, type,
2471                                              min_stripes, 1);
2472         if (type & BTRFS_BLOCK_GROUP_DUP)
2473                 min_free = max_avail * 2;
2474         else
2475                 min_free = max_avail;
2476
2477         if (min_free > devices[min_devices - 1].max_avail)
2478                 return -ENOSPC;
2479
2480         map = __shrink_map_lookup_stripes(map, min_stripes);
2481         *stripe_size = max_avail;
2482
2483         index = 0;
2484         for (i = 0; i < min_stripes; i++) {
2485                 map->stripes[i].dev = devices[index].dev;
2486                 map->stripes[i].physical = devices[index].dev_offset;
2487                 if (type & BTRFS_BLOCK_GROUP_DUP) {
2488                         i++;
2489                         map->stripes[i].dev = devices[index].dev;
2490                         map->stripes[i].physical = devices[index].dev_offset +
2491                                                    max_avail;
2492                 }
2493                 index++;
2494         }
2495         *map_lookup = map;
2496
2497         return 0;
2498 }
2499
2500 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2501                                struct btrfs_root *extent_root,
2502                                struct map_lookup **map_ret,
2503                                u64 *num_bytes, u64 *stripe_size,
2504                                u64 start, u64 type)
2505 {
2506         struct btrfs_fs_info *info = extent_root->fs_info;
2507         struct btrfs_device *device = NULL;
2508         struct btrfs_fs_devices *fs_devices = info->fs_devices;
2509         struct list_head *cur;
2510         struct map_lookup *map;
2511         struct extent_map_tree *em_tree;
2512         struct extent_map *em;
2513         struct btrfs_device_info *devices_info;
2514         struct list_head private_devs;
2515         u64 calc_size = 1024 * 1024 * 1024;
2516         u64 min_free;
2517         u64 avail;
2518         u64 dev_offset;
2519         int num_stripes;
2520         int min_stripes;
2521         int sub_stripes;
2522         int min_devices;        /* the min number of devices we need */
2523         int i;
2524         int ret;
2525         int index;
2526
2527         if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2528             (type & BTRFS_BLOCK_GROUP_DUP)) {
2529                 WARN_ON(1);
2530                 type &= ~BTRFS_BLOCK_GROUP_DUP;
2531         }
2532         if (list_empty(&fs_devices->alloc_list))
2533                 return -ENOSPC;
2534
2535         ret = __btrfs_calc_nstripes(fs_devices, type, &num_stripes,
2536                                     &min_stripes, &sub_stripes);
2537         if (ret)
2538                 return ret;
2539
2540         devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
2541                                GFP_NOFS);
2542         if (!devices_info)
2543                 return -ENOMEM;
2544
2545         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2546         if (!map) {
2547                 ret = -ENOMEM;
2548                 goto error;
2549         }
2550         map->num_stripes = num_stripes;
2551
2552         cur = fs_devices->alloc_list.next;
2553         index = 0;
2554         i = 0;
2555
2556         calc_size = __btrfs_calc_stripe_size(fs_devices, calc_size, type,
2557                                              num_stripes, 0);
2558
2559         if (type & BTRFS_BLOCK_GROUP_DUP) {
2560                 min_free = calc_size * 2;
2561                 min_devices = 1;
2562         } else {
2563                 min_free = calc_size;
2564                 min_devices = min_stripes;
2565         }
2566
2567         INIT_LIST_HEAD(&private_devs);
2568         while (index < num_stripes) {
2569                 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2570                 BUG_ON(!device->writeable);
2571                 if (device->total_bytes > device->bytes_used)
2572                         avail = device->total_bytes - device->bytes_used;
2573                 else
2574                         avail = 0;
2575                 cur = cur->next;
2576
2577                 if (device->in_fs_metadata && avail >= min_free) {
2578                         ret = find_free_dev_extent(trans, device, min_free,
2579                                                    &devices_info[i].dev_offset,
2580                                                    &devices_info[i].max_avail);
2581                         if (ret == 0) {
2582                                 list_move_tail(&device->dev_alloc_list,
2583                                                &private_devs);
2584                                 map->stripes[index].dev = device;
2585                                 map->stripes[index].physical =
2586                                                 devices_info[i].dev_offset;
2587                                 index++;
2588                                 if (type & BTRFS_BLOCK_GROUP_DUP) {
2589                                         map->stripes[index].dev = device;
2590                                         map->stripes[index].physical =
2591                                                 devices_info[i].dev_offset +
2592                                                 calc_size;
2593                                         index++;
2594                                 }
2595                         } else if (ret != -ENOSPC)
2596                                 goto error;
2597
2598                         devices_info[i].dev = device;
2599                         i++;
2600                 } else if (device->in_fs_metadata &&
2601                            avail >= BTRFS_STRIPE_LEN) {
2602                         devices_info[i].dev = device;
2603                         devices_info[i].max_avail = avail;
2604                         i++;
2605                 }
2606
2607                 if (cur == &fs_devices->alloc_list)
2608                         break;
2609         }
2610
2611         list_splice(&private_devs, &fs_devices->alloc_list);
2612         if (index < num_stripes) {
2613                 if (index >= min_stripes) {
2614                         num_stripes = index;
2615                         if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2616                                 num_stripes /= sub_stripes;
2617                                 num_stripes *= sub_stripes;
2618                         }
2619
2620                         map = __shrink_map_lookup_stripes(map, num_stripes);
2621                 } else if (i >= min_devices) {
2622                         ret = __btrfs_alloc_tiny_space(trans, fs_devices,
2623                                                        devices_info, i, type,
2624                                                        &map, min_stripes,
2625                                                        &calc_size);
2626                         if (ret)
2627                                 goto error;
2628                 } else {
2629                         ret = -ENOSPC;
2630                         goto error;
2631                 }
2632         }
2633         map->sector_size = extent_root->sectorsize;
2634         map->stripe_len = BTRFS_STRIPE_LEN;
2635         map->io_align = BTRFS_STRIPE_LEN;
2636         map->io_width = BTRFS_STRIPE_LEN;
2637         map->type = type;
2638         map->sub_stripes = sub_stripes;
2639
2640         *map_ret = map;
2641         *stripe_size = calc_size;
2642         *num_bytes = chunk_bytes_by_type(type, calc_size,
2643                                          map->num_stripes, sub_stripes);
2644
2645         em = alloc_extent_map(GFP_NOFS);
2646         if (!em) {
2647                 ret = -ENOMEM;
2648                 goto error;
2649         }
2650         em->bdev = (struct block_device *)map;
2651         em->start = start;
2652         em->len = *num_bytes;
2653         em->block_start = 0;
2654         em->block_len = em->len;
2655
2656         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
2657         write_lock(&em_tree->lock);
2658         ret = add_extent_mapping(em_tree, em);
2659         write_unlock(&em_tree->lock);
2660         BUG_ON(ret);
2661         free_extent_map(em);
2662
2663         ret = btrfs_make_block_group(trans, extent_root, 0, type,
2664                                      BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2665                                      start, *num_bytes);
2666         BUG_ON(ret);
2667
2668         index = 0;
2669         while (index < map->num_stripes) {
2670                 device = map->stripes[index].dev;
2671                 dev_offset = map->stripes[index].physical;
2672
2673                 ret = btrfs_alloc_dev_extent(trans, device,
2674                                 info->chunk_root->root_key.objectid,
2675                                 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2676                                 start, dev_offset, calc_size);
2677                 BUG_ON(ret);
2678                 index++;
2679         }
2680
2681         kfree(devices_info);
2682         return 0;
2683
2684 error:
2685         kfree(map);
2686         kfree(devices_info);
2687         return ret;
2688 }
2689
2690 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2691                                 struct btrfs_root *extent_root,
2692                                 struct map_lookup *map, u64 chunk_offset,
2693                                 u64 chunk_size, u64 stripe_size)
2694 {
2695         u64 dev_offset;
2696         struct btrfs_key key;
2697         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2698         struct btrfs_device *device;
2699         struct btrfs_chunk *chunk;
2700         struct btrfs_stripe *stripe;
2701         size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2702         int index = 0;
2703         int ret;
2704
2705         chunk = kzalloc(item_size, GFP_NOFS);
2706         if (!chunk)
2707                 return -ENOMEM;
2708
2709         index = 0;
2710         while (index < map->num_stripes) {
2711                 device = map->stripes[index].dev;
2712                 device->bytes_used += stripe_size;
2713                 ret = btrfs_update_device(trans, device);
2714                 BUG_ON(ret);
2715                 index++;
2716         }
2717
2718         index = 0;
2719         stripe = &chunk->stripe;
2720         while (index < map->num_stripes) {
2721                 device = map->stripes[index].dev;
2722                 dev_offset = map->stripes[index].physical;
2723
2724                 btrfs_set_stack_stripe_devid(stripe, device->devid);
2725                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
2726                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2727                 stripe++;
2728                 index++;
2729         }
2730
2731         btrfs_set_stack_chunk_length(chunk, chunk_size);
2732         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2733         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2734         btrfs_set_stack_chunk_type(chunk, map->type);
2735         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2736         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2737         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
2738         btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2739         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
2740
2741         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2742         key.type = BTRFS_CHUNK_ITEM_KEY;
2743         key.offset = chunk_offset;
2744
2745         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2746         BUG_ON(ret);
2747
2748         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2749                 ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2750                                              item_size);
2751                 BUG_ON(ret);
2752         }
2753         kfree(chunk);
2754         return 0;
2755 }
2756
2757 /*
2758  * Chunk allocation falls into two parts. The first part does works
2759  * that make the new allocated chunk useable, but not do any operation
2760  * that modifies the chunk tree. The second part does the works that
2761  * require modifying the chunk tree. This division is important for the
2762  * bootstrap process of adding storage to a seed btrfs.
2763  */
2764 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2765                       struct btrfs_root *extent_root, u64 type)
2766 {
2767         u64 chunk_offset;
2768         u64 chunk_size;
2769         u64 stripe_size;
2770         struct map_lookup *map;
2771         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2772         int ret;
2773
2774         ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2775                               &chunk_offset);
2776         if (ret)
2777                 return ret;
2778
2779         ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2780                                   &stripe_size, chunk_offset, type);
2781         if (ret)
2782                 return ret;
2783
2784         ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2785                                    chunk_size, stripe_size);
2786         BUG_ON(ret);
2787         return 0;
2788 }
2789
2790 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2791                                          struct btrfs_root *root,
2792                                          struct btrfs_device *device)
2793 {
2794         u64 chunk_offset;
2795         u64 sys_chunk_offset;
2796         u64 chunk_size;
2797         u64 sys_chunk_size;
2798         u64 stripe_size;
2799         u64 sys_stripe_size;
2800         u64 alloc_profile;
2801         struct map_lookup *map;
2802         struct map_lookup *sys_map;
2803         struct btrfs_fs_info *fs_info = root->fs_info;
2804         struct btrfs_root *extent_root = fs_info->extent_root;
2805         int ret;
2806
2807         ret = find_next_chunk(fs_info->chunk_root,
2808                               BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2809         BUG_ON(ret);
2810
2811         alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2812                         (fs_info->metadata_alloc_profile &
2813                          fs_info->avail_metadata_alloc_bits);
2814         alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2815
2816         ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2817                                   &stripe_size, chunk_offset, alloc_profile);
2818         BUG_ON(ret);
2819
2820         sys_chunk_offset = chunk_offset + chunk_size;
2821
2822         alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2823                         (fs_info->system_alloc_profile &
2824                          fs_info->avail_system_alloc_bits);
2825         alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2826
2827         ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2828                                   &sys_chunk_size, &sys_stripe_size,
2829                                   sys_chunk_offset, alloc_profile);
2830         BUG_ON(ret);
2831
2832         ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2833         BUG_ON(ret);
2834
2835         /*
2836          * Modifying chunk tree needs allocating new blocks from both
2837          * system block group and metadata block group. So we only can
2838          * do operations require modifying the chunk tree after both
2839          * block groups were created.
2840          */
2841         ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2842                                    chunk_size, stripe_size);
2843         BUG_ON(ret);
2844
2845         ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2846                                    sys_chunk_offset, sys_chunk_size,
2847                                    sys_stripe_size);
2848         BUG_ON(ret);
2849         return 0;
2850 }
2851
2852 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2853 {
2854         struct extent_map *em;
2855         struct map_lookup *map;
2856         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2857         int readonly = 0;
2858         int i;
2859
2860         read_lock(&map_tree->map_tree.lock);
2861         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2862         read_unlock(&map_tree->map_tree.lock);
2863         if (!em)
2864                 return 1;
2865
2866         if (btrfs_test_opt(root, DEGRADED)) {
2867                 free_extent_map(em);
2868                 return 0;
2869         }
2870
2871         map = (struct map_lookup *)em->bdev;
2872         for (i = 0; i < map->num_stripes; i++) {
2873                 if (!map->stripes[i].dev->writeable) {
2874                         readonly = 1;
2875                         break;
2876                 }
2877         }
2878         free_extent_map(em);
2879         return readonly;
2880 }
2881
2882 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2883 {
2884         extent_map_tree_init(&tree->map_tree, GFP_NOFS);
2885 }
2886
2887 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2888 {
2889         struct extent_map *em;
2890
2891         while (1) {
2892                 write_lock(&tree->map_tree.lock);
2893                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2894                 if (em)
2895                         remove_extent_mapping(&tree->map_tree, em);
2896                 write_unlock(&tree->map_tree.lock);
2897                 if (!em)
2898                         break;
2899                 kfree(em->bdev);
2900                 /* once for us */
2901                 free_extent_map(em);
2902                 /* once for the tree */
2903                 free_extent_map(em);
2904         }
2905 }
2906
2907 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2908 {
2909         struct extent_map *em;
2910         struct map_lookup *map;
2911         struct extent_map_tree *em_tree = &map_tree->map_tree;
2912         int ret;
2913
2914         read_lock(&em_tree->lock);
2915         em = lookup_extent_mapping(em_tree, logical, len);
2916         read_unlock(&em_tree->lock);
2917         BUG_ON(!em);
2918
2919         BUG_ON(em->start > logical || em->start + em->len < logical);
2920         map = (struct map_lookup *)em->bdev;
2921         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2922                 ret = map->num_stripes;
2923         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2924                 ret = map->sub_stripes;
2925         else
2926                 ret = 1;
2927         free_extent_map(em);
2928         return ret;
2929 }
2930
2931 static int find_live_mirror(struct map_lookup *map, int first, int num,
2932                             int optimal)
2933 {
2934         int i;
2935         if (map->stripes[optimal].dev->bdev)
2936                 return optimal;
2937         for (i = first; i < first + num; i++) {
2938                 if (map->stripes[i].dev->bdev)
2939                         return i;
2940         }
2941         /* we couldn't find one that doesn't fail.  Just return something
2942          * and the io error handling code will clean up eventually
2943          */
2944         return optimal;
2945 }
2946
2947 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2948                              u64 logical, u64 *length,
2949                              struct btrfs_multi_bio **multi_ret,
2950                              int mirror_num, struct page *unplug_page)
2951 {
2952         struct extent_map *em;
2953         struct map_lookup *map;
2954         struct extent_map_tree *em_tree = &map_tree->map_tree;
2955         u64 offset;
2956         u64 stripe_offset;
2957         u64 stripe_nr;
2958         int stripes_allocated = 8;
2959         int stripes_required = 1;
2960         int stripe_index;
2961         int i;
2962         int num_stripes;
2963         int max_errors = 0;
2964         struct btrfs_multi_bio *multi = NULL;
2965
2966         if (multi_ret && !(rw & REQ_WRITE))
2967                 stripes_allocated = 1;
2968 again:
2969         if (multi_ret) {
2970                 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2971                                 GFP_NOFS);
2972                 if (!multi)
2973                         return -ENOMEM;
2974
2975                 atomic_set(&multi->error, 0);
2976         }
2977
2978         read_lock(&em_tree->lock);
2979         em = lookup_extent_mapping(em_tree, logical, *length);
2980         read_unlock(&em_tree->lock);
2981
2982         if (!em && unplug_page) {
2983                 kfree(multi);
2984                 return 0;
2985         }
2986
2987         if (!em) {
2988                 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2989                        (unsigned long long)logical,
2990                        (unsigned long long)*length);
2991                 BUG();
2992         }
2993
2994         BUG_ON(em->start > logical || em->start + em->len < logical);
2995         map = (struct map_lookup *)em->bdev;
2996         offset = logical - em->start;
2997
2998         if (mirror_num > map->num_stripes)
2999                 mirror_num = 0;
3000
3001         /* if our multi bio struct is too small, back off and try again */
3002         if (rw & REQ_WRITE) {
3003                 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
3004                                  BTRFS_BLOCK_GROUP_DUP)) {
3005                         stripes_required = map->num_stripes;
3006                         max_errors = 1;
3007                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3008                         stripes_required = map->sub_stripes;
3009                         max_errors = 1;
3010                 }
3011         }
3012         if (multi_ret && (rw & REQ_WRITE) &&
3013             stripes_allocated < stripes_required) {
3014                 stripes_allocated = map->num_stripes;
3015                 free_extent_map(em);
3016                 kfree(multi);
3017                 goto again;
3018         }
3019         stripe_nr = offset;
3020         /*
3021          * stripe_nr counts the total number of stripes we have to stride
3022          * to get to this block
3023          */
3024         do_div(stripe_nr, map->stripe_len);
3025
3026         stripe_offset = stripe_nr * map->stripe_len;
3027         BUG_ON(offset < stripe_offset);
3028
3029         /* stripe_offset is the offset of this block in its stripe*/
3030         stripe_offset = offset - stripe_offset;
3031
3032         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
3033                          BTRFS_BLOCK_GROUP_RAID10 |
3034                          BTRFS_BLOCK_GROUP_DUP)) {
3035                 /* we limit the length of each bio to what fits in a stripe */
3036                 *length = min_t(u64, em->len - offset,
3037                               map->stripe_len - stripe_offset);
3038         } else {
3039                 *length = em->len - offset;
3040         }
3041
3042         if (!multi_ret && !unplug_page)
3043                 goto out;
3044
3045         num_stripes = 1;
3046         stripe_index = 0;
3047         if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3048                 if (unplug_page || (rw & REQ_WRITE))
3049                         num_stripes = map->num_stripes;
3050                 else if (mirror_num)
3051                         stripe_index = mirror_num - 1;
3052                 else {
3053                         stripe_index = find_live_mirror(map, 0,
3054                                             map->num_stripes,
3055                                             current->pid % map->num_stripes);
3056                 }
3057
3058         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3059                 if (rw & REQ_WRITE)
3060                         num_stripes = map->num_stripes;
3061                 else if (mirror_num)
3062                         stripe_index = mirror_num - 1;
3063
3064         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3065                 int factor = map->num_stripes / map->sub_stripes;
3066
3067                 stripe_index = do_div(stripe_nr, factor);
3068                 stripe_index *= map->sub_stripes;
3069
3070                 if (unplug_page || (rw & REQ_WRITE))
3071                         num_stripes = map->sub_stripes;
3072                 else if (mirror_num)
3073                         stripe_index += mirror_num - 1;
3074                 else {
3075                         stripe_index = find_live_mirror(map, stripe_index,
3076                                               map->sub_stripes, stripe_index +
3077                                               current->pid % map->sub_stripes);
3078                 }
3079         } else {
3080                 /*
3081                  * after this do_div call, stripe_nr is the number of stripes
3082                  * on this device we have to walk to find the data, and
3083                  * stripe_index is the number of our device in the stripe array
3084                  */
3085                 stripe_index = do_div(stripe_nr, map->num_stripes);
3086         }
3087         BUG_ON(stripe_index >= map->num_stripes);
3088
3089         for (i = 0; i < num_stripes; i++) {
3090                 if (unplug_page) {
3091                         struct btrfs_device *device;
3092                         struct backing_dev_info *bdi;
3093
3094                         device = map->stripes[stripe_index].dev;
3095                         if (device->bdev) {
3096                                 bdi = blk_get_backing_dev_info(device->bdev);
3097                                 if (bdi->unplug_io_fn)
3098                                         bdi->unplug_io_fn(bdi, unplug_page);
3099                         }
3100                 } else {
3101                         multi->stripes[i].physical =
3102                                 map->stripes[stripe_index].physical +
3103                                 stripe_offset + stripe_nr * map->stripe_len;
3104                         multi->stripes[i].dev = map->stripes[stripe_index].dev;
3105                 }
3106                 stripe_index++;
3107         }
3108         if (multi_ret) {
3109                 *multi_ret = multi;
3110                 multi->num_stripes = num_stripes;
3111                 multi->max_errors = max_errors;
3112         }
3113 out:
3114         free_extent_map(em);
3115         return 0;
3116 }
3117
3118 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3119                       u64 logical, u64 *length,
3120                       struct btrfs_multi_bio **multi_ret, int mirror_num)
3121 {
3122         return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
3123                                  mirror_num, NULL);
3124 }
3125
3126 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3127                      u64 chunk_start, u64 physical, u64 devid,
3128                      u64 **logical, int *naddrs, int *stripe_len)
3129 {
3130         struct extent_map_tree *em_tree = &map_tree->map_tree;
3131         struct extent_map *em;
3132         struct map_lookup *map;
3133         u64 *buf;
3134         u64 bytenr;
3135         u64 length;
3136         u64 stripe_nr;
3137         int i, j, nr = 0;
3138
3139         read_lock(&em_tree->lock);
3140         em = lookup_extent_mapping(em_tree, chunk_start, 1);
3141         read_unlock(&em_tree->lock);
3142
3143         BUG_ON(!em || em->start != chunk_start);
3144         map = (struct map_lookup *)em->bdev;
3145
3146         length = em->len;
3147         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3148                 do_div(length, map->num_stripes / map->sub_stripes);
3149         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3150                 do_div(length, map->num_stripes);
3151
3152         buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
3153         BUG_ON(!buf);
3154
3155         for (i = 0; i < map->num_stripes; i++) {
3156                 if (devid && map->stripes[i].dev->devid != devid)
3157                         continue;
3158                 if (map->stripes[i].physical > physical ||
3159                     map->stripes[i].physical + length <= physical)
3160                         continue;
3161
3162                 stripe_nr = physical - map->stripes[i].physical;
3163                 do_div(stripe_nr, map->stripe_len);
3164
3165                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3166                         stripe_nr = stripe_nr * map->num_stripes + i;
3167                         do_div(stripe_nr, map->sub_stripes);
3168                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3169                         stripe_nr = stripe_nr * map->num_stripes + i;
3170                 }
3171                 bytenr = chunk_start + stripe_nr * map->stripe_len;
3172                 WARN_ON(nr >= map->num_stripes);
3173                 for (j = 0; j < nr; j++) {
3174                         if (buf[j] == bytenr)
3175                                 break;
3176                 }
3177                 if (j == nr) {
3178                         WARN_ON(nr >= map->num_stripes);
3179                         buf[nr++] = bytenr;
3180                 }
3181         }
3182
3183         *logical = buf;
3184         *naddrs = nr;
3185         *stripe_len = map->stripe_len;
3186
3187         free_extent_map(em);
3188         return 0;
3189 }
3190
3191 int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
3192                       u64 logical, struct page *page)
3193 {
3194         u64 length = PAGE_CACHE_SIZE;
3195         return __btrfs_map_block(map_tree, READ, logical, &length,
3196                                  NULL, 0, page);
3197 }
3198
3199 static void end_bio_multi_stripe(struct bio *bio, int err)
3200 {
3201         struct btrfs_multi_bio *multi = bio->bi_private;
3202         int is_orig_bio = 0;
3203
3204         if (err)
3205                 atomic_inc(&multi->error);
3206
3207         if (bio == multi->orig_bio)
3208                 is_orig_bio = 1;
3209
3210         if (atomic_dec_and_test(&multi->stripes_pending)) {
3211                 if (!is_orig_bio) {
3212                         bio_put(bio);
3213                         bio = multi->orig_bio;
3214                 }
3215                 bio->bi_private = multi->private;
3216                 bio->bi_end_io = multi->end_io;
3217                 /* only send an error to the higher layers if it is
3218                  * beyond the tolerance of the multi-bio
3219                  */
3220                 if (atomic_read(&multi->error) > multi->max_errors) {
3221                         err = -EIO;
3222                 } else if (err) {
3223                         /*
3224                          * this bio is actually up to date, we didn't
3225                          * go over the max number of errors
3226                          */
3227                         set_bit(BIO_UPTODATE, &bio->bi_flags);
3228                         err = 0;
3229                 }
3230                 kfree(multi);
3231
3232                 bio_endio(bio, err);
3233         } else if (!is_orig_bio) {
3234                 bio_put(bio);
3235         }
3236 }
3237
3238 struct async_sched {
3239         struct bio *bio;
3240         int rw;
3241         struct btrfs_fs_info *info;
3242         struct btrfs_work work;
3243 };
3244
3245 /*
3246  * see run_scheduled_bios for a description of why bios are collected for
3247  * async submit.
3248  *
3249  * This will add one bio to the pending list for a device and make sure
3250  * the work struct is scheduled.
3251  */
3252 static noinline int schedule_bio(struct btrfs_root *root,
3253                                  struct btrfs_device *device,
3254                                  int rw, struct bio *bio)
3255 {
3256         int should_queue = 1;
3257         struct btrfs_pending_bios *pending_bios;
3258
3259         /* don't bother with additional async steps for reads, right now */
3260         if (!(rw & REQ_WRITE)) {
3261                 bio_get(bio);
3262                 submit_bio(rw, bio);
3263                 bio_put(bio);
3264                 return 0;
3265         }
3266
3267         /*
3268          * nr_async_bios allows us to reliably return congestion to the
3269          * higher layers.  Otherwise, the async bio makes it appear we have
3270          * made progress against dirty pages when we've really just put it
3271          * on a queue for later
3272          */
3273         atomic_inc(&root->fs_info->nr_async_bios);
3274         WARN_ON(bio->bi_next);
3275         bio->bi_next = NULL;
3276         bio->bi_rw |= rw;
3277
3278         spin_lock(&device->io_lock);
3279         if (bio->bi_rw & REQ_SYNC)
3280                 pending_bios = &device->pending_sync_bios;
3281         else
3282                 pending_bios = &device->pending_bios;
3283
3284         if (pending_bios->tail)
3285                 pending_bios->tail->bi_next = bio;
3286
3287         pending_bios->tail = bio;
3288         if (!pending_bios->head)
3289                 pending_bios->head = bio;
3290         if (device->running_pending)
3291                 should_queue = 0;
3292
3293         spin_unlock(&device->io_lock);
3294
3295         if (should_queue)
3296                 btrfs_queue_worker(&root->fs_info->submit_workers,
3297                                    &device->work);
3298         return 0;
3299 }
3300
3301 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
3302                   int mirror_num, int async_submit)
3303 {
3304         struct btrfs_mapping_tree *map_tree;
3305         struct btrfs_device *dev;
3306         struct bio *first_bio = bio;
3307         u64 logical = (u64)bio->bi_sector << 9;
3308         u64 length = 0;
3309         u64 map_length;
3310         struct btrfs_multi_bio *multi = NULL;
3311         int ret;
3312         int dev_nr = 0;
3313         int total_devs = 1;
3314
3315         length = bio->bi_size;
3316         map_tree = &root->fs_info->mapping_tree;
3317         map_length = length;
3318
3319         ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
3320                               mirror_num);
3321         BUG_ON(ret);
3322
3323         total_devs = multi->num_stripes;
3324         if (map_length < length) {
3325                 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
3326                        "len %llu\n", (unsigned long long)logical,
3327                        (unsigned long long)length,
3328                        (unsigned long long)map_length);
3329                 BUG();
3330         }
3331         multi->end_io = first_bio->bi_end_io;
3332         multi->private = first_bio->bi_private;
3333         multi->orig_bio = first_bio;
3334         atomic_set(&multi->stripes_pending, multi->num_stripes);
3335
3336         while (dev_nr < total_devs) {
3337                 if (total_devs > 1) {
3338                         if (dev_nr < total_devs - 1) {
3339                                 bio = bio_clone(first_bio, GFP_NOFS);
3340                                 BUG_ON(!bio);
3341                         } else {
3342                                 bio = first_bio;
3343                         }
3344                         bio->bi_private = multi;
3345                         bio->bi_end_io = end_bio_multi_stripe;
3346                 }
3347                 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
3348                 dev = multi->stripes[dev_nr].dev;
3349                 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
3350                         bio->bi_bdev = dev->bdev;
3351                         if (async_submit)
3352                                 schedule_bio(root, dev, rw, bio);
3353                         else
3354                                 submit_bio(rw, bio);
3355                 } else {
3356                         bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
3357                         bio->bi_sector = logical >> 9;
3358                         bio_endio(bio, -EIO);
3359                 }
3360                 dev_nr++;
3361         }
3362         if (total_devs == 1)
3363                 kfree(multi);
3364         return 0;
3365 }
3366
3367 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
3368                                        u8 *uuid, u8 *fsid)
3369 {
3370         struct btrfs_device *device;
3371         struct btrfs_fs_devices *cur_devices;
3372
3373         cur_devices = root->fs_info->fs_devices;
3374         while (cur_devices) {
3375                 if (!fsid ||
3376                     !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3377                         device = __find_device(&cur_devices->devices,
3378                                                devid, uuid);
3379                         if (device)
3380                                 return device;
3381                 }
3382                 cur_devices = cur_devices->seed;
3383         }
3384         return NULL;
3385 }
3386
3387 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
3388                                             u64 devid, u8 *dev_uuid)
3389 {
3390         struct btrfs_device *device;
3391         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
3392
3393         device = kzalloc(sizeof(*device), GFP_NOFS);
3394         if (!device)
3395                 return NULL;
3396         list_add(&device->dev_list,
3397                  &fs_devices->devices);
3398         device->barriers = 1;
3399         device->dev_root = root->fs_info->dev_root;
3400         device->devid = devid;
3401         device->work.func = pending_bios_fn;
3402         device->fs_devices = fs_devices;
3403         device->missing = 1;
3404         fs_devices->num_devices++;
3405         fs_devices->missing_devices++;
3406         spin_lock_init(&device->io_lock);
3407         INIT_LIST_HEAD(&device->dev_alloc_list);
3408         memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
3409         return device;
3410 }
3411
3412 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
3413                           struct extent_buffer *leaf,
3414                           struct btrfs_chunk *chunk)
3415 {
3416         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3417         struct map_lookup *map;
3418         struct extent_map *em;
3419         u64 logical;
3420         u64 length;
3421         u64 devid;
3422         u8 uuid[BTRFS_UUID_SIZE];
3423         int num_stripes;
3424         int ret;
3425         int i;
3426
3427         logical = key->offset;
3428         length = btrfs_chunk_length(leaf, chunk);
3429
3430         read_lock(&map_tree->map_tree.lock);
3431         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
3432         read_unlock(&map_tree->map_tree.lock);
3433
3434         /* already mapped? */
3435         if (em && em->start <= logical && em->start + em->len > logical) {
3436                 free_extent_map(em);
3437                 return 0;
3438         } else if (em) {
3439                 free_extent_map(em);
3440         }
3441
3442         em = alloc_extent_map(GFP_NOFS);
3443         if (!em)
3444                 return -ENOMEM;
3445         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3446         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3447         if (!map) {
3448                 free_extent_map(em);
3449                 return -ENOMEM;
3450         }
3451
3452         em->bdev = (struct block_device *)map;
3453         em->start = logical;
3454         em->len = length;
3455         em->block_start = 0;
3456         em->block_len = em->len;
3457
3458         map->num_stripes = num_stripes;
3459         map->io_width = btrfs_chunk_io_width(leaf, chunk);
3460         map->io_align = btrfs_chunk_io_align(leaf, chunk);
3461         map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3462         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3463         map->type = btrfs_chunk_type(leaf, chunk);
3464         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
3465         for (i = 0; i < num_stripes; i++) {
3466                 map->stripes[i].physical =
3467                         btrfs_stripe_offset_nr(leaf, chunk, i);
3468                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
3469                 read_extent_buffer(leaf, uuid, (unsigned long)
3470                                    btrfs_stripe_dev_uuid_nr(chunk, i),
3471                                    BTRFS_UUID_SIZE);
3472                 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3473                                                         NULL);
3474                 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
3475                         kfree(map);
3476                         free_extent_map(em);
3477                         return -EIO;
3478                 }
3479                 if (!map->stripes[i].dev) {
3480                         map->stripes[i].dev =
3481                                 add_missing_dev(root, devid, uuid);
3482                         if (!map->stripes[i].dev) {
3483                                 kfree(map);
3484                                 free_extent_map(em);
3485                                 return -EIO;
3486                         }
3487                 }
3488                 map->stripes[i].dev->in_fs_metadata = 1;
3489         }
3490
3491         write_lock(&map_tree->map_tree.lock);
3492         ret = add_extent_mapping(&map_tree->map_tree, em);
3493         write_unlock(&map_tree->map_tree.lock);
3494         BUG_ON(ret);
3495         free_extent_map(em);
3496
3497         return 0;
3498 }
3499
3500 static int fill_device_from_item(struct extent_buffer *leaf,
3501                                  struct btrfs_dev_item *dev_item,
3502                                  struct btrfs_device *device)
3503 {
3504         unsigned long ptr;
3505
3506         device->devid = btrfs_device_id(leaf, dev_item);
3507         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3508         device->total_bytes = device->disk_total_bytes;
3509         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3510         device->type = btrfs_device_type(leaf, dev_item);
3511         device->io_align = btrfs_device_io_align(leaf, dev_item);
3512         device->io_width = btrfs_device_io_width(leaf, dev_item);
3513         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
3514
3515         ptr = (unsigned long)btrfs_device_uuid(dev_item);
3516         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
3517
3518         return 0;
3519 }
3520
3521 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3522 {
3523         struct btrfs_fs_devices *fs_devices;
3524         int ret;
3525
3526         mutex_lock(&uuid_mutex);
3527
3528         fs_devices = root->fs_info->fs_devices->seed;
3529         while (fs_devices) {
3530                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3531                         ret = 0;
3532                         goto out;
3533                 }
3534                 fs_devices = fs_devices->seed;
3535         }
3536
3537         fs_devices = find_fsid(fsid);
3538         if (!fs_devices) {
3539                 ret = -ENOENT;
3540                 goto out;
3541         }
3542
3543         fs_devices = clone_fs_devices(fs_devices);
3544         if (IS_ERR(fs_devices)) {
3545                 ret = PTR_ERR(fs_devices);
3546                 goto out;
3547         }
3548
3549         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
3550                                    root->fs_info->bdev_holder);
3551         if (ret)
3552                 goto out;
3553
3554         if (!fs_devices->seeding) {
3555                 __btrfs_close_devices(fs_devices);
3556                 free_fs_devices(fs_devices);
3557                 ret = -EINVAL;
3558                 goto out;
3559         }
3560
3561         fs_devices->seed = root->fs_info->fs_devices->seed;
3562         root->fs_info->fs_devices->seed = fs_devices;
3563 out:
3564         mutex_unlock(&uuid_mutex);
3565         return ret;
3566 }
3567
3568 static int read_one_dev(struct btrfs_root *root,
3569                         struct extent_buffer *leaf,
3570                         struct btrfs_dev_item *dev_item)
3571 {
3572         struct btrfs_device *device;
3573         u64 devid;
3574         int ret;
3575         u8 fs_uuid[BTRFS_UUID_SIZE];
3576         u8 dev_uuid[BTRFS_UUID_SIZE];
3577
3578         devid = btrfs_device_id(leaf, dev_item);
3579         read_extent_buffer(leaf, dev_uuid,
3580                            (unsigned long)btrfs_device_uuid(dev_item),
3581                            BTRFS_UUID_SIZE);
3582         read_extent_buffer(leaf, fs_uuid,
3583                            (unsigned long)btrfs_device_fsid(dev_item),
3584                            BTRFS_UUID_SIZE);
3585
3586         if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3587                 ret = open_seed_devices(root, fs_uuid);
3588                 if (ret && !btrfs_test_opt(root, DEGRADED))
3589                         return ret;
3590         }
3591
3592         device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3593         if (!device || !device->bdev) {
3594                 if (!btrfs_test_opt(root, DEGRADED))
3595                         return -EIO;
3596
3597                 if (!device) {
3598                         printk(KERN_WARNING "warning devid %llu missing\n",
3599                                (unsigned long long)devid);
3600                         device = add_missing_dev(root, devid, dev_uuid);
3601                         if (!device)
3602                                 return -ENOMEM;
3603                 } else if (!device->missing) {
3604                         /*
3605                          * this happens when a device that was properly setup
3606                          * in the device info lists suddenly goes bad.
3607                          * device->bdev is NULL, and so we have to set
3608                          * device->missing to one here
3609                          */
3610                         root->fs_info->fs_devices->missing_devices++;
3611                         device->missing = 1;
3612                 }
3613         }
3614
3615         if (device->fs_devices != root->fs_info->fs_devices) {
3616                 BUG_ON(device->writeable);
3617                 if (device->generation !=
3618                     btrfs_device_generation(leaf, dev_item))
3619                         return -EINVAL;
3620         }
3621
3622         fill_device_from_item(leaf, dev_item, device);
3623         device->dev_root = root->fs_info->dev_root;
3624         device->in_fs_metadata = 1;
3625         if (device->writeable)
3626                 device->fs_devices->total_rw_bytes += device->total_bytes;
3627         ret = 0;
3628         return ret;
3629 }
3630
3631 int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
3632 {
3633         struct btrfs_dev_item *dev_item;
3634
3635         dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
3636                                                      dev_item);
3637         return read_one_dev(root, buf, dev_item);
3638 }
3639
3640 int btrfs_read_sys_array(struct btrfs_root *root)
3641 {
3642         struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
3643         struct extent_buffer *sb;
3644         struct btrfs_disk_key *disk_key;
3645         struct btrfs_chunk *chunk;
3646         u8 *ptr;
3647         unsigned long sb_ptr;
3648         int ret = 0;
3649         u32 num_stripes;
3650         u32 array_size;
3651         u32 len = 0;
3652         u32 cur;
3653         struct btrfs_key key;
3654
3655         sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
3656                                           BTRFS_SUPER_INFO_SIZE);
3657         if (!sb)
3658                 return -ENOMEM;
3659         btrfs_set_buffer_uptodate(sb);
3660         btrfs_set_buffer_lockdep_class(sb, 0);
3661
3662         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
3663         array_size = btrfs_super_sys_array_size(super_copy);
3664
3665         ptr = super_copy->sys_chunk_array;
3666         sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3667         cur = 0;
3668
3669         while (cur < array_size) {
3670                 disk_key = (struct btrfs_disk_key *)ptr;
3671                 btrfs_disk_key_to_cpu(&key, disk_key);
3672
3673                 len = sizeof(*disk_key); ptr += len;
3674                 sb_ptr += len;
3675                 cur += len;
3676
3677                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3678                         chunk = (struct btrfs_chunk *)sb_ptr;
3679                         ret = read_one_chunk(root, &key, sb, chunk);
3680                         if (ret)
3681                                 break;
3682                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3683                         len = btrfs_chunk_item_size(num_stripes);
3684                 } else {
3685                         ret = -EIO;
3686                         break;
3687                 }
3688                 ptr += len;
3689                 sb_ptr += len;
3690                 cur += len;
3691         }
3692         free_extent_buffer(sb);
3693         return ret;
3694 }
3695
3696 int btrfs_read_chunk_tree(struct btrfs_root *root)
3697 {
3698         struct btrfs_path *path;
3699         struct extent_buffer *leaf;
3700         struct btrfs_key key;
3701         struct btrfs_key found_key;
3702         int ret;
3703         int slot;
3704
3705         root = root->fs_info->chunk_root;
3706
3707         path = btrfs_alloc_path();
3708         if (!path)
3709                 return -ENOMEM;
3710
3711         /* first we search for all of the device items, and then we
3712          * read in all of the chunk items.  This way we can create chunk
3713          * mappings that reference all of the devices that are afound
3714          */
3715         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3716         key.offset = 0;
3717         key.type = 0;
3718 again:
3719         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3720         if (ret < 0)
3721                 goto error;
3722         while (1) {
3723                 leaf = path->nodes[0];
3724                 slot = path->slots[0];
3725                 if (slot >= btrfs_header_nritems(leaf)) {
3726                         ret = btrfs_next_leaf(root, path);
3727                         if (ret == 0)
3728                                 continue;
3729                         if (ret < 0)
3730                                 goto error;
3731                         break;
3732                 }
3733                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3734                 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3735                         if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3736                                 break;
3737                         if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3738                                 struct btrfs_dev_item *dev_item;
3739                                 dev_item = btrfs_item_ptr(leaf, slot,
3740                                                   struct btrfs_dev_item);
3741                                 ret = read_one_dev(root, leaf, dev_item);
3742                                 if (ret)
3743                                         goto error;
3744                         }
3745                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3746                         struct btrfs_chunk *chunk;
3747                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3748                         ret = read_one_chunk(root, &found_key, leaf, chunk);
3749                         if (ret)
3750                                 goto error;
3751                 }
3752                 path->slots[0]++;
3753         }
3754         if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3755                 key.objectid = 0;
3756                 btrfs_release_path(root, path);
3757                 goto again;
3758         }
3759         ret = 0;
3760 error:
3761         btrfs_free_path(path);
3762         return ret;
3763 }