2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <asm/div64.h>
29 #include "extent_map.h"
31 #include "transaction.h"
32 #include "print-tree.h"
34 #include "async-thread.h"
44 struct btrfs_bio_stripe stripes[];
47 static int init_first_rw_device(struct btrfs_trans_handle *trans,
48 struct btrfs_root *root,
49 struct btrfs_device *device);
50 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
52 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
53 (sizeof(struct btrfs_bio_stripe) * (n)))
55 static DEFINE_MUTEX(uuid_mutex);
56 static LIST_HEAD(fs_uuids);
58 void btrfs_lock_volumes(void)
60 mutex_lock(&uuid_mutex);
63 void btrfs_unlock_volumes(void)
65 mutex_unlock(&uuid_mutex);
68 static void lock_chunks(struct btrfs_root *root)
70 mutex_lock(&root->fs_info->chunk_mutex);
73 static void unlock_chunks(struct btrfs_root *root)
75 mutex_unlock(&root->fs_info->chunk_mutex);
78 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
80 struct btrfs_device *device;
81 WARN_ON(fs_devices->opened);
82 while (!list_empty(&fs_devices->devices)) {
83 device = list_entry(fs_devices->devices.next,
84 struct btrfs_device, dev_list);
85 list_del(&device->dev_list);
92 int btrfs_cleanup_fs_uuids(void)
94 struct btrfs_fs_devices *fs_devices;
96 while (!list_empty(&fs_uuids)) {
97 fs_devices = list_entry(fs_uuids.next,
98 struct btrfs_fs_devices, list);
99 list_del(&fs_devices->list);
100 free_fs_devices(fs_devices);
105 static noinline struct btrfs_device *__find_device(struct list_head *head,
108 struct btrfs_device *dev;
110 list_for_each_entry(dev, head, dev_list) {
111 if (dev->devid == devid &&
112 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
119 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
121 struct btrfs_fs_devices *fs_devices;
123 list_for_each_entry(fs_devices, &fs_uuids, list) {
124 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
130 static void requeue_list(struct btrfs_pending_bios *pending_bios,
131 struct bio *head, struct bio *tail)
134 struct bio *old_head;
136 old_head = pending_bios->head;
137 pending_bios->head = head;
138 if (pending_bios->tail)
139 tail->bi_next = old_head;
141 pending_bios->tail = tail;
145 * we try to collect pending bios for a device so we don't get a large
146 * number of procs sending bios down to the same device. This greatly
147 * improves the schedulers ability to collect and merge the bios.
149 * But, it also turns into a long list of bios to process and that is sure
150 * to eventually make the worker thread block. The solution here is to
151 * make some progress and then put this work struct back at the end of
152 * the list if the block device is congested. This way, multiple devices
153 * can make progress from a single worker thread.
155 static noinline int run_scheduled_bios(struct btrfs_device *device)
158 struct backing_dev_info *bdi;
159 struct btrfs_fs_info *fs_info;
160 struct btrfs_pending_bios *pending_bios;
164 unsigned long num_run;
165 unsigned long num_sync_run;
166 unsigned long batch_run = 0;
168 unsigned long last_waited = 0;
171 bdi = blk_get_backing_dev_info(device->bdev);
172 fs_info = device->dev_root->fs_info;
173 limit = btrfs_async_submit_limit(fs_info);
174 limit = limit * 2 / 3;
176 /* we want to make sure that every time we switch from the sync
177 * list to the normal list, we unplug
182 spin_lock(&device->io_lock);
187 /* take all the bios off the list at once and process them
188 * later on (without the lock held). But, remember the
189 * tail and other pointers so the bios can be properly reinserted
190 * into the list if we hit congestion
192 if (!force_reg && device->pending_sync_bios.head) {
193 pending_bios = &device->pending_sync_bios;
196 pending_bios = &device->pending_bios;
200 pending = pending_bios->head;
201 tail = pending_bios->tail;
202 WARN_ON(pending && !tail);
205 * if pending was null this time around, no bios need processing
206 * at all and we can stop. Otherwise it'll loop back up again
207 * and do an additional check so no bios are missed.
209 * device->running_pending is used to synchronize with the
212 if (device->pending_sync_bios.head == NULL &&
213 device->pending_bios.head == NULL) {
215 device->running_pending = 0;
218 device->running_pending = 1;
221 pending_bios->head = NULL;
222 pending_bios->tail = NULL;
224 spin_unlock(&device->io_lock);
227 * if we're doing the regular priority list, make sure we unplug
228 * for any high prio bios we've sent down
230 if (pending_bios == &device->pending_bios && num_sync_run > 0) {
232 blk_run_backing_dev(bdi, NULL);
238 /* we want to work on both lists, but do more bios on the
239 * sync list than the regular list
242 pending_bios != &device->pending_sync_bios &&
243 device->pending_sync_bios.head) ||
244 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
245 device->pending_bios.head)) {
246 spin_lock(&device->io_lock);
247 requeue_list(pending_bios, pending, tail);
252 pending = pending->bi_next;
254 atomic_dec(&fs_info->nr_async_bios);
256 if (atomic_read(&fs_info->nr_async_bios) < limit &&
257 waitqueue_active(&fs_info->async_submit_wait))
258 wake_up(&fs_info->async_submit_wait);
260 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
262 if (cur->bi_rw & REQ_SYNC)
265 submit_bio(cur->bi_rw, cur);
268 if (need_resched()) {
270 blk_run_backing_dev(bdi, NULL);
277 * we made progress, there is more work to do and the bdi
278 * is now congested. Back off and let other work structs
281 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
282 fs_info->fs_devices->open_devices > 1) {
283 struct io_context *ioc;
285 ioc = current->io_context;
288 * the main goal here is that we don't want to
289 * block if we're going to be able to submit
290 * more requests without blocking.
292 * This code does two great things, it pokes into
293 * the elevator code from a filesystem _and_
294 * it makes assumptions about how batching works.
296 if (ioc && ioc->nr_batch_requests > 0 &&
297 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
299 ioc->last_waited == last_waited)) {
301 * we want to go through our batch of
302 * requests and stop. So, we copy out
303 * the ioc->last_waited time and test
304 * against it before looping
306 last_waited = ioc->last_waited;
307 if (need_resched()) {
309 blk_run_backing_dev(bdi, NULL);
316 spin_lock(&device->io_lock);
317 requeue_list(pending_bios, pending, tail);
318 device->running_pending = 1;
320 spin_unlock(&device->io_lock);
321 btrfs_requeue_work(&device->work);
328 blk_run_backing_dev(bdi, NULL);
331 * IO has already been through a long path to get here. Checksumming,
332 * async helper threads, perhaps compression. We've done a pretty
333 * good job of collecting a batch of IO and should just unplug
334 * the device right away.
336 * This will help anyone who is waiting on the IO, they might have
337 * already unplugged, but managed to do so before the bio they
338 * cared about found its way down here.
340 blk_run_backing_dev(bdi, NULL);
346 spin_lock(&device->io_lock);
347 if (device->pending_bios.head || device->pending_sync_bios.head)
349 spin_unlock(&device->io_lock);
355 static void pending_bios_fn(struct btrfs_work *work)
357 struct btrfs_device *device;
359 device = container_of(work, struct btrfs_device, work);
360 run_scheduled_bios(device);
363 static noinline int device_list_add(const char *path,
364 struct btrfs_super_block *disk_super,
365 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
367 struct btrfs_device *device;
368 struct btrfs_fs_devices *fs_devices;
369 u64 found_transid = btrfs_super_generation(disk_super);
372 fs_devices = find_fsid(disk_super->fsid);
374 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
377 INIT_LIST_HEAD(&fs_devices->devices);
378 INIT_LIST_HEAD(&fs_devices->alloc_list);
379 list_add(&fs_devices->list, &fs_uuids);
380 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
381 fs_devices->latest_devid = devid;
382 fs_devices->latest_trans = found_transid;
383 mutex_init(&fs_devices->device_list_mutex);
386 device = __find_device(&fs_devices->devices, devid,
387 disk_super->dev_item.uuid);
390 if (fs_devices->opened)
393 device = kzalloc(sizeof(*device), GFP_NOFS);
395 /* we can safely leave the fs_devices entry around */
398 device->devid = devid;
399 device->work.func = pending_bios_fn;
400 memcpy(device->uuid, disk_super->dev_item.uuid,
402 spin_lock_init(&device->io_lock);
403 device->name = kstrdup(path, GFP_NOFS);
408 INIT_LIST_HEAD(&device->dev_alloc_list);
410 mutex_lock(&fs_devices->device_list_mutex);
411 list_add(&device->dev_list, &fs_devices->devices);
412 mutex_unlock(&fs_devices->device_list_mutex);
414 device->fs_devices = fs_devices;
415 fs_devices->num_devices++;
416 } else if (!device->name || strcmp(device->name, path)) {
417 name = kstrdup(path, GFP_NOFS);
422 if (device->missing) {
423 fs_devices->missing_devices--;
428 if (found_transid > fs_devices->latest_trans) {
429 fs_devices->latest_devid = devid;
430 fs_devices->latest_trans = found_transid;
432 *fs_devices_ret = fs_devices;
436 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
438 struct btrfs_fs_devices *fs_devices;
439 struct btrfs_device *device;
440 struct btrfs_device *orig_dev;
442 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
444 return ERR_PTR(-ENOMEM);
446 INIT_LIST_HEAD(&fs_devices->devices);
447 INIT_LIST_HEAD(&fs_devices->alloc_list);
448 INIT_LIST_HEAD(&fs_devices->list);
449 mutex_init(&fs_devices->device_list_mutex);
450 fs_devices->latest_devid = orig->latest_devid;
451 fs_devices->latest_trans = orig->latest_trans;
452 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
454 mutex_lock(&orig->device_list_mutex);
455 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
456 device = kzalloc(sizeof(*device), GFP_NOFS);
460 device->name = kstrdup(orig_dev->name, GFP_NOFS);
466 device->devid = orig_dev->devid;
467 device->work.func = pending_bios_fn;
468 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
469 spin_lock_init(&device->io_lock);
470 INIT_LIST_HEAD(&device->dev_list);
471 INIT_LIST_HEAD(&device->dev_alloc_list);
473 list_add(&device->dev_list, &fs_devices->devices);
474 device->fs_devices = fs_devices;
475 fs_devices->num_devices++;
477 mutex_unlock(&orig->device_list_mutex);
480 mutex_unlock(&orig->device_list_mutex);
481 free_fs_devices(fs_devices);
482 return ERR_PTR(-ENOMEM);
485 int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
487 struct btrfs_device *device, *next;
489 mutex_lock(&uuid_mutex);
491 mutex_lock(&fs_devices->device_list_mutex);
492 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
493 if (device->in_fs_metadata)
497 blkdev_put(device->bdev, device->mode);
499 fs_devices->open_devices--;
501 if (device->writeable) {
502 list_del_init(&device->dev_alloc_list);
503 device->writeable = 0;
504 fs_devices->rw_devices--;
506 list_del_init(&device->dev_list);
507 fs_devices->num_devices--;
511 mutex_unlock(&fs_devices->device_list_mutex);
513 if (fs_devices->seed) {
514 fs_devices = fs_devices->seed;
518 mutex_unlock(&uuid_mutex);
522 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
524 struct btrfs_device *device;
526 if (--fs_devices->opened > 0)
529 list_for_each_entry(device, &fs_devices->devices, dev_list) {
531 blkdev_put(device->bdev, device->mode);
532 fs_devices->open_devices--;
534 if (device->writeable) {
535 list_del_init(&device->dev_alloc_list);
536 fs_devices->rw_devices--;
540 device->writeable = 0;
541 device->in_fs_metadata = 0;
543 WARN_ON(fs_devices->open_devices);
544 WARN_ON(fs_devices->rw_devices);
545 fs_devices->opened = 0;
546 fs_devices->seeding = 0;
551 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
553 struct btrfs_fs_devices *seed_devices = NULL;
556 mutex_lock(&uuid_mutex);
557 ret = __btrfs_close_devices(fs_devices);
558 if (!fs_devices->opened) {
559 seed_devices = fs_devices->seed;
560 fs_devices->seed = NULL;
562 mutex_unlock(&uuid_mutex);
564 while (seed_devices) {
565 fs_devices = seed_devices;
566 seed_devices = fs_devices->seed;
567 __btrfs_close_devices(fs_devices);
568 free_fs_devices(fs_devices);
573 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
574 fmode_t flags, void *holder)
576 struct block_device *bdev;
577 struct list_head *head = &fs_devices->devices;
578 struct btrfs_device *device;
579 struct block_device *latest_bdev = NULL;
580 struct buffer_head *bh;
581 struct btrfs_super_block *disk_super;
582 u64 latest_devid = 0;
583 u64 latest_transid = 0;
590 list_for_each_entry(device, head, dev_list) {
596 bdev = blkdev_get_by_path(device->name, flags, holder);
598 printk(KERN_INFO "open %s failed\n", device->name);
601 set_blocksize(bdev, 4096);
603 bh = btrfs_read_dev_super(bdev);
609 disk_super = (struct btrfs_super_block *)bh->b_data;
610 devid = btrfs_stack_device_id(&disk_super->dev_item);
611 if (devid != device->devid)
614 if (memcmp(device->uuid, disk_super->dev_item.uuid,
618 device->generation = btrfs_super_generation(disk_super);
619 if (!latest_transid || device->generation > latest_transid) {
620 latest_devid = devid;
621 latest_transid = device->generation;
625 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
626 device->writeable = 0;
628 device->writeable = !bdev_read_only(bdev);
633 device->in_fs_metadata = 0;
634 device->mode = flags;
636 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
637 fs_devices->rotating = 1;
639 fs_devices->open_devices++;
640 if (device->writeable) {
641 fs_devices->rw_devices++;
642 list_add(&device->dev_alloc_list,
643 &fs_devices->alloc_list);
650 blkdev_put(bdev, flags);
654 if (fs_devices->open_devices == 0) {
658 fs_devices->seeding = seeding;
659 fs_devices->opened = 1;
660 fs_devices->latest_bdev = latest_bdev;
661 fs_devices->latest_devid = latest_devid;
662 fs_devices->latest_trans = latest_transid;
663 fs_devices->total_rw_bytes = 0;
668 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
669 fmode_t flags, void *holder)
673 mutex_lock(&uuid_mutex);
674 if (fs_devices->opened) {
675 fs_devices->opened++;
678 ret = __btrfs_open_devices(fs_devices, flags, holder);
680 mutex_unlock(&uuid_mutex);
684 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
685 struct btrfs_fs_devices **fs_devices_ret)
687 struct btrfs_super_block *disk_super;
688 struct block_device *bdev;
689 struct buffer_head *bh;
694 mutex_lock(&uuid_mutex);
697 bdev = blkdev_get_by_path(path, flags, holder);
704 ret = set_blocksize(bdev, 4096);
707 bh = btrfs_read_dev_super(bdev);
712 disk_super = (struct btrfs_super_block *)bh->b_data;
713 devid = btrfs_stack_device_id(&disk_super->dev_item);
714 transid = btrfs_super_generation(disk_super);
715 if (disk_super->label[0])
716 printk(KERN_INFO "device label %s ", disk_super->label);
718 /* FIXME, make a readl uuid parser */
719 printk(KERN_INFO "device fsid %llx-%llx ",
720 *(unsigned long long *)disk_super->fsid,
721 *(unsigned long long *)(disk_super->fsid + 8));
723 printk(KERN_CONT "devid %llu transid %llu %s\n",
724 (unsigned long long)devid, (unsigned long long)transid, path);
725 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
729 blkdev_put(bdev, flags);
731 mutex_unlock(&uuid_mutex);
735 /* helper to account the used device space in the range */
736 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
737 u64 end, u64 *length)
739 struct btrfs_key key;
740 struct btrfs_root *root = device->dev_root;
741 struct btrfs_dev_extent *dev_extent;
742 struct btrfs_path *path;
746 struct extent_buffer *l;
750 if (start >= device->total_bytes)
753 path = btrfs_alloc_path();
758 key.objectid = device->devid;
760 key.type = BTRFS_DEV_EXTENT_KEY;
762 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
766 ret = btrfs_previous_item(root, path, key.objectid, key.type);
773 slot = path->slots[0];
774 if (slot >= btrfs_header_nritems(l)) {
775 ret = btrfs_next_leaf(root, path);
783 btrfs_item_key_to_cpu(l, &key, slot);
785 if (key.objectid < device->devid)
788 if (key.objectid > device->devid)
791 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
794 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
795 extent_end = key.offset + btrfs_dev_extent_length(l,
797 if (key.offset <= start && extent_end > end) {
798 *length = end - start + 1;
800 } else if (key.offset <= start && extent_end > start)
801 *length += extent_end - start;
802 else if (key.offset > start && extent_end <= end)
803 *length += extent_end - key.offset;
804 else if (key.offset > start && key.offset <= end) {
805 *length += end - key.offset + 1;
807 } else if (key.offset > end)
815 btrfs_free_path(path);
820 * find_free_dev_extent - find free space in the specified device
821 * @trans: transaction handler
822 * @device: the device which we search the free space in
823 * @num_bytes: the size of the free space that we need
824 * @start: store the start of the free space.
825 * @len: the size of the free space. that we find, or the size of the max
826 * free space if we don't find suitable free space
828 * this uses a pretty simple search, the expectation is that it is
829 * called very infrequently and that a given device has a small number
832 * @start is used to store the start of the free space if we find. But if we
833 * don't find suitable free space, it will be used to store the start position
834 * of the max free space.
836 * @len is used to store the size of the free space that we find.
837 * But if we don't find suitable free space, it is used to store the size of
838 * the max free space.
840 int find_free_dev_extent(struct btrfs_trans_handle *trans,
841 struct btrfs_device *device, u64 num_bytes,
842 u64 *start, u64 *len)
844 struct btrfs_key key;
845 struct btrfs_root *root = device->dev_root;
846 struct btrfs_dev_extent *dev_extent;
847 struct btrfs_path *path;
853 u64 search_end = device->total_bytes;
856 struct extent_buffer *l;
858 /* FIXME use last free of some kind */
860 /* we don't want to overwrite the superblock on the drive,
861 * so we make sure to start at an offset of at least 1MB
863 search_start = 1024 * 1024;
865 if (root->fs_info->alloc_start + num_bytes <= search_end)
866 search_start = max(root->fs_info->alloc_start, search_start);
868 max_hole_start = search_start;
871 if (search_start >= search_end) {
876 path = btrfs_alloc_path();
883 key.objectid = device->devid;
884 key.offset = search_start;
885 key.type = BTRFS_DEV_EXTENT_KEY;
887 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
891 ret = btrfs_previous_item(root, path, key.objectid, key.type);
898 slot = path->slots[0];
899 if (slot >= btrfs_header_nritems(l)) {
900 ret = btrfs_next_leaf(root, path);
908 btrfs_item_key_to_cpu(l, &key, slot);
910 if (key.objectid < device->devid)
913 if (key.objectid > device->devid)
916 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
919 if (key.offset > search_start) {
920 hole_size = key.offset - search_start;
922 if (hole_size > max_hole_size) {
923 max_hole_start = search_start;
924 max_hole_size = hole_size;
928 * If this free space is greater than which we need,
929 * it must be the max free space that we have found
930 * until now, so max_hole_start must point to the start
931 * of this free space and the length of this free space
932 * is stored in max_hole_size. Thus, we return
933 * max_hole_start and max_hole_size and go back to the
936 if (hole_size >= num_bytes) {
942 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
943 extent_end = key.offset + btrfs_dev_extent_length(l,
945 if (extent_end > search_start)
946 search_start = extent_end;
952 hole_size = search_end- search_start;
953 if (hole_size > max_hole_size) {
954 max_hole_start = search_start;
955 max_hole_size = hole_size;
959 if (hole_size < num_bytes)
965 btrfs_free_path(path);
967 *start = max_hole_start;
969 *len = max_hole_size;
973 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
974 struct btrfs_device *device,
978 struct btrfs_path *path;
979 struct btrfs_root *root = device->dev_root;
980 struct btrfs_key key;
981 struct btrfs_key found_key;
982 struct extent_buffer *leaf = NULL;
983 struct btrfs_dev_extent *extent = NULL;
985 path = btrfs_alloc_path();
989 key.objectid = device->devid;
991 key.type = BTRFS_DEV_EXTENT_KEY;
993 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
995 ret = btrfs_previous_item(root, path, key.objectid,
996 BTRFS_DEV_EXTENT_KEY);
998 leaf = path->nodes[0];
999 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1000 extent = btrfs_item_ptr(leaf, path->slots[0],
1001 struct btrfs_dev_extent);
1002 BUG_ON(found_key.offset > start || found_key.offset +
1003 btrfs_dev_extent_length(leaf, extent) < start);
1005 } else if (ret == 0) {
1006 leaf = path->nodes[0];
1007 extent = btrfs_item_ptr(leaf, path->slots[0],
1008 struct btrfs_dev_extent);
1012 if (device->bytes_used > 0)
1013 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
1014 ret = btrfs_del_item(trans, root, path);
1017 btrfs_free_path(path);
1021 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1022 struct btrfs_device *device,
1023 u64 chunk_tree, u64 chunk_objectid,
1024 u64 chunk_offset, u64 start, u64 num_bytes)
1027 struct btrfs_path *path;
1028 struct btrfs_root *root = device->dev_root;
1029 struct btrfs_dev_extent *extent;
1030 struct extent_buffer *leaf;
1031 struct btrfs_key key;
1033 WARN_ON(!device->in_fs_metadata);
1034 path = btrfs_alloc_path();
1038 key.objectid = device->devid;
1040 key.type = BTRFS_DEV_EXTENT_KEY;
1041 ret = btrfs_insert_empty_item(trans, root, path, &key,
1045 leaf = path->nodes[0];
1046 extent = btrfs_item_ptr(leaf, path->slots[0],
1047 struct btrfs_dev_extent);
1048 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1049 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1050 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1052 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1053 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1056 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1057 btrfs_mark_buffer_dirty(leaf);
1058 btrfs_free_path(path);
1062 static noinline int find_next_chunk(struct btrfs_root *root,
1063 u64 objectid, u64 *offset)
1065 struct btrfs_path *path;
1067 struct btrfs_key key;
1068 struct btrfs_chunk *chunk;
1069 struct btrfs_key found_key;
1071 path = btrfs_alloc_path();
1074 key.objectid = objectid;
1075 key.offset = (u64)-1;
1076 key.type = BTRFS_CHUNK_ITEM_KEY;
1078 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1084 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1088 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1090 if (found_key.objectid != objectid)
1093 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1094 struct btrfs_chunk);
1095 *offset = found_key.offset +
1096 btrfs_chunk_length(path->nodes[0], chunk);
1101 btrfs_free_path(path);
1105 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
1108 struct btrfs_key key;
1109 struct btrfs_key found_key;
1110 struct btrfs_path *path;
1112 root = root->fs_info->chunk_root;
1114 path = btrfs_alloc_path();
1118 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1119 key.type = BTRFS_DEV_ITEM_KEY;
1120 key.offset = (u64)-1;
1122 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1128 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1129 BTRFS_DEV_ITEM_KEY);
1133 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1135 *objectid = found_key.offset + 1;
1139 btrfs_free_path(path);
1144 * the device information is stored in the chunk root
1145 * the btrfs_device struct should be fully filled in
1147 int btrfs_add_device(struct btrfs_trans_handle *trans,
1148 struct btrfs_root *root,
1149 struct btrfs_device *device)
1152 struct btrfs_path *path;
1153 struct btrfs_dev_item *dev_item;
1154 struct extent_buffer *leaf;
1155 struct btrfs_key key;
1158 root = root->fs_info->chunk_root;
1160 path = btrfs_alloc_path();
1164 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1165 key.type = BTRFS_DEV_ITEM_KEY;
1166 key.offset = device->devid;
1168 ret = btrfs_insert_empty_item(trans, root, path, &key,
1173 leaf = path->nodes[0];
1174 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1176 btrfs_set_device_id(leaf, dev_item, device->devid);
1177 btrfs_set_device_generation(leaf, dev_item, 0);
1178 btrfs_set_device_type(leaf, dev_item, device->type);
1179 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1180 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1181 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1182 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1183 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1184 btrfs_set_device_group(leaf, dev_item, 0);
1185 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1186 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1187 btrfs_set_device_start_offset(leaf, dev_item, 0);
1189 ptr = (unsigned long)btrfs_device_uuid(dev_item);
1190 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1191 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1192 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1193 btrfs_mark_buffer_dirty(leaf);
1197 btrfs_free_path(path);
1201 static int btrfs_rm_dev_item(struct btrfs_root *root,
1202 struct btrfs_device *device)
1205 struct btrfs_path *path;
1206 struct btrfs_key key;
1207 struct btrfs_trans_handle *trans;
1209 root = root->fs_info->chunk_root;
1211 path = btrfs_alloc_path();
1215 trans = btrfs_start_transaction(root, 0);
1216 if (IS_ERR(trans)) {
1217 btrfs_free_path(path);
1218 return PTR_ERR(trans);
1220 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1221 key.type = BTRFS_DEV_ITEM_KEY;
1222 key.offset = device->devid;
1225 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1234 ret = btrfs_del_item(trans, root, path);
1238 btrfs_free_path(path);
1239 unlock_chunks(root);
1240 btrfs_commit_transaction(trans, root);
1244 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1246 struct btrfs_device *device;
1247 struct btrfs_device *next_device;
1248 struct block_device *bdev;
1249 struct buffer_head *bh = NULL;
1250 struct btrfs_super_block *disk_super;
1257 mutex_lock(&uuid_mutex);
1258 mutex_lock(&root->fs_info->volume_mutex);
1260 all_avail = root->fs_info->avail_data_alloc_bits |
1261 root->fs_info->avail_system_alloc_bits |
1262 root->fs_info->avail_metadata_alloc_bits;
1264 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1265 root->fs_info->fs_devices->num_devices <= 4) {
1266 printk(KERN_ERR "btrfs: unable to go below four devices "
1272 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1273 root->fs_info->fs_devices->num_devices <= 2) {
1274 printk(KERN_ERR "btrfs: unable to go below two "
1275 "devices on raid1\n");
1280 if (strcmp(device_path, "missing") == 0) {
1281 struct list_head *devices;
1282 struct btrfs_device *tmp;
1285 devices = &root->fs_info->fs_devices->devices;
1286 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1287 list_for_each_entry(tmp, devices, dev_list) {
1288 if (tmp->in_fs_metadata && !tmp->bdev) {
1293 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1298 printk(KERN_ERR "btrfs: no missing devices found to "
1303 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1304 root->fs_info->bdev_holder);
1306 ret = PTR_ERR(bdev);
1310 set_blocksize(bdev, 4096);
1311 bh = btrfs_read_dev_super(bdev);
1316 disk_super = (struct btrfs_super_block *)bh->b_data;
1317 devid = btrfs_stack_device_id(&disk_super->dev_item);
1318 dev_uuid = disk_super->dev_item.uuid;
1319 device = btrfs_find_device(root, devid, dev_uuid,
1327 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1328 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1334 if (device->writeable) {
1335 list_del_init(&device->dev_alloc_list);
1336 root->fs_info->fs_devices->rw_devices--;
1339 ret = btrfs_shrink_device(device, 0);
1343 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1347 device->in_fs_metadata = 0;
1350 * the device list mutex makes sure that we don't change
1351 * the device list while someone else is writing out all
1352 * the device supers.
1354 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1355 list_del_init(&device->dev_list);
1356 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1358 device->fs_devices->num_devices--;
1360 if (device->missing)
1361 root->fs_info->fs_devices->missing_devices--;
1363 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1364 struct btrfs_device, dev_list);
1365 if (device->bdev == root->fs_info->sb->s_bdev)
1366 root->fs_info->sb->s_bdev = next_device->bdev;
1367 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1368 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1371 blkdev_put(device->bdev, device->mode);
1372 device->bdev = NULL;
1373 device->fs_devices->open_devices--;
1376 num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1377 btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1379 if (device->fs_devices->open_devices == 0) {
1380 struct btrfs_fs_devices *fs_devices;
1381 fs_devices = root->fs_info->fs_devices;
1382 while (fs_devices) {
1383 if (fs_devices->seed == device->fs_devices)
1385 fs_devices = fs_devices->seed;
1387 fs_devices->seed = device->fs_devices->seed;
1388 device->fs_devices->seed = NULL;
1389 __btrfs_close_devices(device->fs_devices);
1390 free_fs_devices(device->fs_devices);
1394 * at this point, the device is zero sized. We want to
1395 * remove it from the devices list and zero out the old super
1397 if (device->writeable) {
1398 /* make sure this device isn't detected as part of
1401 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1402 set_buffer_dirty(bh);
1403 sync_dirty_buffer(bh);
1406 kfree(device->name);
1414 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1416 mutex_unlock(&root->fs_info->volume_mutex);
1417 mutex_unlock(&uuid_mutex);
1422 * does all the dirty work required for changing file system's UUID.
1424 static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1425 struct btrfs_root *root)
1427 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1428 struct btrfs_fs_devices *old_devices;
1429 struct btrfs_fs_devices *seed_devices;
1430 struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1431 struct btrfs_device *device;
1434 BUG_ON(!mutex_is_locked(&uuid_mutex));
1435 if (!fs_devices->seeding)
1438 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1442 old_devices = clone_fs_devices(fs_devices);
1443 if (IS_ERR(old_devices)) {
1444 kfree(seed_devices);
1445 return PTR_ERR(old_devices);
1448 list_add(&old_devices->list, &fs_uuids);
1450 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1451 seed_devices->opened = 1;
1452 INIT_LIST_HEAD(&seed_devices->devices);
1453 INIT_LIST_HEAD(&seed_devices->alloc_list);
1454 mutex_init(&seed_devices->device_list_mutex);
1455 list_splice_init(&fs_devices->devices, &seed_devices->devices);
1456 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1457 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1458 device->fs_devices = seed_devices;
1461 fs_devices->seeding = 0;
1462 fs_devices->num_devices = 0;
1463 fs_devices->open_devices = 0;
1464 fs_devices->seed = seed_devices;
1466 generate_random_uuid(fs_devices->fsid);
1467 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1468 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1469 super_flags = btrfs_super_flags(disk_super) &
1470 ~BTRFS_SUPER_FLAG_SEEDING;
1471 btrfs_set_super_flags(disk_super, super_flags);
1477 * strore the expected generation for seed devices in device items.
1479 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1480 struct btrfs_root *root)
1482 struct btrfs_path *path;
1483 struct extent_buffer *leaf;
1484 struct btrfs_dev_item *dev_item;
1485 struct btrfs_device *device;
1486 struct btrfs_key key;
1487 u8 fs_uuid[BTRFS_UUID_SIZE];
1488 u8 dev_uuid[BTRFS_UUID_SIZE];
1492 path = btrfs_alloc_path();
1496 root = root->fs_info->chunk_root;
1497 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1499 key.type = BTRFS_DEV_ITEM_KEY;
1502 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1506 leaf = path->nodes[0];
1508 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1509 ret = btrfs_next_leaf(root, path);
1514 leaf = path->nodes[0];
1515 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1516 btrfs_release_path(root, path);
1520 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1521 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1522 key.type != BTRFS_DEV_ITEM_KEY)
1525 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1526 struct btrfs_dev_item);
1527 devid = btrfs_device_id(leaf, dev_item);
1528 read_extent_buffer(leaf, dev_uuid,
1529 (unsigned long)btrfs_device_uuid(dev_item),
1531 read_extent_buffer(leaf, fs_uuid,
1532 (unsigned long)btrfs_device_fsid(dev_item),
1534 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1537 if (device->fs_devices->seeding) {
1538 btrfs_set_device_generation(leaf, dev_item,
1539 device->generation);
1540 btrfs_mark_buffer_dirty(leaf);
1548 btrfs_free_path(path);
1552 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1554 struct btrfs_trans_handle *trans;
1555 struct btrfs_device *device;
1556 struct block_device *bdev;
1557 struct list_head *devices;
1558 struct super_block *sb = root->fs_info->sb;
1560 int seeding_dev = 0;
1563 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1566 bdev = blkdev_get_by_path(device_path, FMODE_EXCL,
1567 root->fs_info->bdev_holder);
1569 return PTR_ERR(bdev);
1571 if (root->fs_info->fs_devices->seeding) {
1573 down_write(&sb->s_umount);
1574 mutex_lock(&uuid_mutex);
1577 filemap_write_and_wait(bdev->bd_inode->i_mapping);
1578 mutex_lock(&root->fs_info->volume_mutex);
1580 devices = &root->fs_info->fs_devices->devices;
1582 * we have the volume lock, so we don't need the extra
1583 * device list mutex while reading the list here.
1585 list_for_each_entry(device, devices, dev_list) {
1586 if (device->bdev == bdev) {
1592 device = kzalloc(sizeof(*device), GFP_NOFS);
1594 /* we can safely leave the fs_devices entry around */
1599 device->name = kstrdup(device_path, GFP_NOFS);
1600 if (!device->name) {
1606 ret = find_next_devid(root, &device->devid);
1608 kfree(device->name);
1613 trans = btrfs_start_transaction(root, 0);
1614 if (IS_ERR(trans)) {
1615 kfree(device->name);
1617 ret = PTR_ERR(trans);
1623 device->writeable = 1;
1624 device->work.func = pending_bios_fn;
1625 generate_random_uuid(device->uuid);
1626 spin_lock_init(&device->io_lock);
1627 device->generation = trans->transid;
1628 device->io_width = root->sectorsize;
1629 device->io_align = root->sectorsize;
1630 device->sector_size = root->sectorsize;
1631 device->total_bytes = i_size_read(bdev->bd_inode);
1632 device->disk_total_bytes = device->total_bytes;
1633 device->dev_root = root->fs_info->dev_root;
1634 device->bdev = bdev;
1635 device->in_fs_metadata = 1;
1637 set_blocksize(device->bdev, 4096);
1640 sb->s_flags &= ~MS_RDONLY;
1641 ret = btrfs_prepare_sprout(trans, root);
1645 device->fs_devices = root->fs_info->fs_devices;
1648 * we don't want write_supers to jump in here with our device
1651 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1652 list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1653 list_add(&device->dev_alloc_list,
1654 &root->fs_info->fs_devices->alloc_list);
1655 root->fs_info->fs_devices->num_devices++;
1656 root->fs_info->fs_devices->open_devices++;
1657 root->fs_info->fs_devices->rw_devices++;
1658 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1660 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1661 root->fs_info->fs_devices->rotating = 1;
1663 total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1664 btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1665 total_bytes + device->total_bytes);
1667 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1668 btrfs_set_super_num_devices(&root->fs_info->super_copy,
1670 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1673 ret = init_first_rw_device(trans, root, device);
1675 ret = btrfs_finish_sprout(trans, root);
1678 ret = btrfs_add_device(trans, root, device);
1682 * we've got more storage, clear any full flags on the space
1685 btrfs_clear_space_info_full(root->fs_info);
1687 unlock_chunks(root);
1688 btrfs_commit_transaction(trans, root);
1691 mutex_unlock(&uuid_mutex);
1692 up_write(&sb->s_umount);
1694 ret = btrfs_relocate_sys_chunks(root);
1698 mutex_unlock(&root->fs_info->volume_mutex);
1701 blkdev_put(bdev, FMODE_EXCL);
1703 mutex_unlock(&uuid_mutex);
1704 up_write(&sb->s_umount);
1709 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1710 struct btrfs_device *device)
1713 struct btrfs_path *path;
1714 struct btrfs_root *root;
1715 struct btrfs_dev_item *dev_item;
1716 struct extent_buffer *leaf;
1717 struct btrfs_key key;
1719 root = device->dev_root->fs_info->chunk_root;
1721 path = btrfs_alloc_path();
1725 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1726 key.type = BTRFS_DEV_ITEM_KEY;
1727 key.offset = device->devid;
1729 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1738 leaf = path->nodes[0];
1739 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1741 btrfs_set_device_id(leaf, dev_item, device->devid);
1742 btrfs_set_device_type(leaf, dev_item, device->type);
1743 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1744 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1745 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1746 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1747 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1748 btrfs_mark_buffer_dirty(leaf);
1751 btrfs_free_path(path);
1755 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1756 struct btrfs_device *device, u64 new_size)
1758 struct btrfs_super_block *super_copy =
1759 &device->dev_root->fs_info->super_copy;
1760 u64 old_total = btrfs_super_total_bytes(super_copy);
1761 u64 diff = new_size - device->total_bytes;
1763 if (!device->writeable)
1765 if (new_size <= device->total_bytes)
1768 btrfs_set_super_total_bytes(super_copy, old_total + diff);
1769 device->fs_devices->total_rw_bytes += diff;
1771 device->total_bytes = new_size;
1772 device->disk_total_bytes = new_size;
1773 btrfs_clear_space_info_full(device->dev_root->fs_info);
1775 return btrfs_update_device(trans, device);
1778 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1779 struct btrfs_device *device, u64 new_size)
1782 lock_chunks(device->dev_root);
1783 ret = __btrfs_grow_device(trans, device, new_size);
1784 unlock_chunks(device->dev_root);
1788 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1789 struct btrfs_root *root,
1790 u64 chunk_tree, u64 chunk_objectid,
1794 struct btrfs_path *path;
1795 struct btrfs_key key;
1797 root = root->fs_info->chunk_root;
1798 path = btrfs_alloc_path();
1802 key.objectid = chunk_objectid;
1803 key.offset = chunk_offset;
1804 key.type = BTRFS_CHUNK_ITEM_KEY;
1806 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1809 ret = btrfs_del_item(trans, root, path);
1812 btrfs_free_path(path);
1816 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1819 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1820 struct btrfs_disk_key *disk_key;
1821 struct btrfs_chunk *chunk;
1828 struct btrfs_key key;
1830 array_size = btrfs_super_sys_array_size(super_copy);
1832 ptr = super_copy->sys_chunk_array;
1835 while (cur < array_size) {
1836 disk_key = (struct btrfs_disk_key *)ptr;
1837 btrfs_disk_key_to_cpu(&key, disk_key);
1839 len = sizeof(*disk_key);
1841 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1842 chunk = (struct btrfs_chunk *)(ptr + len);
1843 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1844 len += btrfs_chunk_item_size(num_stripes);
1849 if (key.objectid == chunk_objectid &&
1850 key.offset == chunk_offset) {
1851 memmove(ptr, ptr + len, array_size - (cur + len));
1853 btrfs_set_super_sys_array_size(super_copy, array_size);
1862 static int btrfs_relocate_chunk(struct btrfs_root *root,
1863 u64 chunk_tree, u64 chunk_objectid,
1866 struct extent_map_tree *em_tree;
1867 struct btrfs_root *extent_root;
1868 struct btrfs_trans_handle *trans;
1869 struct extent_map *em;
1870 struct map_lookup *map;
1874 root = root->fs_info->chunk_root;
1875 extent_root = root->fs_info->extent_root;
1876 em_tree = &root->fs_info->mapping_tree.map_tree;
1878 ret = btrfs_can_relocate(extent_root, chunk_offset);
1882 /* step one, relocate all the extents inside this chunk */
1883 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1887 trans = btrfs_start_transaction(root, 0);
1888 BUG_ON(IS_ERR(trans));
1893 * step two, delete the device extents and the
1894 * chunk tree entries
1896 read_lock(&em_tree->lock);
1897 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1898 read_unlock(&em_tree->lock);
1900 BUG_ON(em->start > chunk_offset ||
1901 em->start + em->len < chunk_offset);
1902 map = (struct map_lookup *)em->bdev;
1904 for (i = 0; i < map->num_stripes; i++) {
1905 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1906 map->stripes[i].physical);
1909 if (map->stripes[i].dev) {
1910 ret = btrfs_update_device(trans, map->stripes[i].dev);
1914 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1919 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1920 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1924 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1927 write_lock(&em_tree->lock);
1928 remove_extent_mapping(em_tree, em);
1929 write_unlock(&em_tree->lock);
1934 /* once for the tree */
1935 free_extent_map(em);
1937 free_extent_map(em);
1939 unlock_chunks(root);
1940 btrfs_end_transaction(trans, root);
1944 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1946 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1947 struct btrfs_path *path;
1948 struct extent_buffer *leaf;
1949 struct btrfs_chunk *chunk;
1950 struct btrfs_key key;
1951 struct btrfs_key found_key;
1952 u64 chunk_tree = chunk_root->root_key.objectid;
1954 bool retried = false;
1958 path = btrfs_alloc_path();
1963 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1964 key.offset = (u64)-1;
1965 key.type = BTRFS_CHUNK_ITEM_KEY;
1968 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1973 ret = btrfs_previous_item(chunk_root, path, key.objectid,
1980 leaf = path->nodes[0];
1981 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1983 chunk = btrfs_item_ptr(leaf, path->slots[0],
1984 struct btrfs_chunk);
1985 chunk_type = btrfs_chunk_type(leaf, chunk);
1986 btrfs_release_path(chunk_root, path);
1988 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1989 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1998 if (found_key.offset == 0)
2000 key.offset = found_key.offset - 1;
2003 if (failed && !retried) {
2007 } else if (failed && retried) {
2012 btrfs_free_path(path);
2016 static u64 div_factor(u64 num, int factor)
2025 int btrfs_balance(struct btrfs_root *dev_root)
2028 struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
2029 struct btrfs_device *device;
2032 struct btrfs_path *path;
2033 struct btrfs_key key;
2034 struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
2035 struct btrfs_trans_handle *trans;
2036 struct btrfs_key found_key;
2038 if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
2041 if (!capable(CAP_SYS_ADMIN))
2044 mutex_lock(&dev_root->fs_info->volume_mutex);
2045 dev_root = dev_root->fs_info->dev_root;
2047 /* step one make some room on all the devices */
2048 list_for_each_entry(device, devices, dev_list) {
2049 old_size = device->total_bytes;
2050 size_to_free = div_factor(old_size, 1);
2051 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2052 if (!device->writeable ||
2053 device->total_bytes - device->bytes_used > size_to_free)
2056 ret = btrfs_shrink_device(device, old_size - size_to_free);
2061 trans = btrfs_start_transaction(dev_root, 0);
2062 BUG_ON(IS_ERR(trans));
2064 ret = btrfs_grow_device(trans, device, old_size);
2067 btrfs_end_transaction(trans, dev_root);
2070 /* step two, relocate all the chunks */
2071 path = btrfs_alloc_path();
2074 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2075 key.offset = (u64)-1;
2076 key.type = BTRFS_CHUNK_ITEM_KEY;
2079 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2084 * this shouldn't happen, it means the last relocate
2090 ret = btrfs_previous_item(chunk_root, path, 0,
2091 BTRFS_CHUNK_ITEM_KEY);
2095 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2097 if (found_key.objectid != key.objectid)
2100 /* chunk zero is special */
2101 if (found_key.offset == 0)
2104 btrfs_release_path(chunk_root, path);
2105 ret = btrfs_relocate_chunk(chunk_root,
2106 chunk_root->root_key.objectid,
2109 BUG_ON(ret && ret != -ENOSPC);
2110 key.offset = found_key.offset - 1;
2114 btrfs_free_path(path);
2115 mutex_unlock(&dev_root->fs_info->volume_mutex);
2120 * shrinking a device means finding all of the device extents past
2121 * the new size, and then following the back refs to the chunks.
2122 * The chunk relocation code actually frees the device extent
2124 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
2126 struct btrfs_trans_handle *trans;
2127 struct btrfs_root *root = device->dev_root;
2128 struct btrfs_dev_extent *dev_extent = NULL;
2129 struct btrfs_path *path;
2137 bool retried = false;
2138 struct extent_buffer *l;
2139 struct btrfs_key key;
2140 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2141 u64 old_total = btrfs_super_total_bytes(super_copy);
2142 u64 old_size = device->total_bytes;
2143 u64 diff = device->total_bytes - new_size;
2145 if (new_size >= device->total_bytes)
2148 path = btrfs_alloc_path();
2156 device->total_bytes = new_size;
2157 if (device->writeable)
2158 device->fs_devices->total_rw_bytes -= diff;
2159 unlock_chunks(root);
2162 key.objectid = device->devid;
2163 key.offset = (u64)-1;
2164 key.type = BTRFS_DEV_EXTENT_KEY;
2167 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2171 ret = btrfs_previous_item(root, path, 0, key.type);
2176 btrfs_release_path(root, path);
2181 slot = path->slots[0];
2182 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2184 if (key.objectid != device->devid) {
2185 btrfs_release_path(root, path);
2189 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2190 length = btrfs_dev_extent_length(l, dev_extent);
2192 if (key.offset + length <= new_size) {
2193 btrfs_release_path(root, path);
2197 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2198 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2199 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2200 btrfs_release_path(root, path);
2202 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
2204 if (ret && ret != -ENOSPC)
2211 if (failed && !retried) {
2215 } else if (failed && retried) {
2219 device->total_bytes = old_size;
2220 if (device->writeable)
2221 device->fs_devices->total_rw_bytes += diff;
2222 unlock_chunks(root);
2226 /* Shrinking succeeded, else we would be at "done". */
2227 trans = btrfs_start_transaction(root, 0);
2228 if (IS_ERR(trans)) {
2229 ret = PTR_ERR(trans);
2235 device->disk_total_bytes = new_size;
2236 /* Now btrfs_update_device() will change the on-disk size. */
2237 ret = btrfs_update_device(trans, device);
2239 unlock_chunks(root);
2240 btrfs_end_transaction(trans, root);
2243 WARN_ON(diff > old_total);
2244 btrfs_set_super_total_bytes(super_copy, old_total - diff);
2245 unlock_chunks(root);
2246 btrfs_end_transaction(trans, root);
2248 btrfs_free_path(path);
2252 static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
2253 struct btrfs_root *root,
2254 struct btrfs_key *key,
2255 struct btrfs_chunk *chunk, int item_size)
2257 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2258 struct btrfs_disk_key disk_key;
2262 array_size = btrfs_super_sys_array_size(super_copy);
2263 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2266 ptr = super_copy->sys_chunk_array + array_size;
2267 btrfs_cpu_key_to_disk(&disk_key, key);
2268 memcpy(ptr, &disk_key, sizeof(disk_key));
2269 ptr += sizeof(disk_key);
2270 memcpy(ptr, chunk, item_size);
2271 item_size += sizeof(disk_key);
2272 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2276 static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size,
2277 int num_stripes, int sub_stripes)
2279 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
2281 else if (type & BTRFS_BLOCK_GROUP_RAID10)
2282 return calc_size * (num_stripes / sub_stripes);
2284 return calc_size * num_stripes;
2287 /* Used to sort the devices by max_avail(descending sort) */
2288 int btrfs_cmp_device_free_bytes(const void *dev_info1, const void *dev_info2)
2290 if (((struct btrfs_device_info *)dev_info1)->max_avail >
2291 ((struct btrfs_device_info *)dev_info2)->max_avail)
2293 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
2294 ((struct btrfs_device_info *)dev_info2)->max_avail)
2300 static int __btrfs_calc_nstripes(struct btrfs_fs_devices *fs_devices, u64 type,
2301 int *num_stripes, int *min_stripes,
2308 if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
2309 *num_stripes = fs_devices->rw_devices;
2312 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
2316 if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
2317 if (fs_devices->rw_devices < 2)
2322 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2323 *num_stripes = fs_devices->rw_devices;
2324 if (*num_stripes < 4)
2326 *num_stripes &= ~(u32)1;
2334 static u64 __btrfs_calc_stripe_size(struct btrfs_fs_devices *fs_devices,
2335 u64 proposed_size, u64 type,
2336 int num_stripes, int small_stripe)
2338 int min_stripe_size = 1 * 1024 * 1024;
2339 u64 calc_size = proposed_size;
2340 u64 max_chunk_size = calc_size;
2343 if (type & (BTRFS_BLOCK_GROUP_RAID1 |
2344 BTRFS_BLOCK_GROUP_DUP |
2345 BTRFS_BLOCK_GROUP_RAID10))
2348 if (type & BTRFS_BLOCK_GROUP_DATA) {
2349 max_chunk_size = 10 * calc_size;
2350 min_stripe_size = 64 * 1024 * 1024;
2351 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
2352 max_chunk_size = 256 * 1024 * 1024;
2353 min_stripe_size = 32 * 1024 * 1024;
2354 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2355 calc_size = 8 * 1024 * 1024;
2356 max_chunk_size = calc_size * 2;
2357 min_stripe_size = 1 * 1024 * 1024;
2360 /* we don't want a chunk larger than 10% of writeable space */
2361 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2364 if (calc_size * num_stripes > max_chunk_size * ncopies) {
2365 calc_size = max_chunk_size * ncopies;
2366 do_div(calc_size, num_stripes);
2367 do_div(calc_size, BTRFS_STRIPE_LEN);
2368 calc_size *= BTRFS_STRIPE_LEN;
2371 /* we don't want tiny stripes */
2373 calc_size = max_t(u64, min_stripe_size, calc_size);
2376 * we're about to do_div by the BTRFS_STRIPE_LEN so lets make sure
2377 * we end up with something bigger than a stripe
2379 calc_size = max_t(u64, calc_size, BTRFS_STRIPE_LEN);
2381 do_div(calc_size, BTRFS_STRIPE_LEN);
2382 calc_size *= BTRFS_STRIPE_LEN;
2387 static struct map_lookup *__shrink_map_lookup_stripes(struct map_lookup *map,
2390 struct map_lookup *new;
2391 size_t len = map_lookup_size(num_stripes);
2393 BUG_ON(map->num_stripes < num_stripes);
2395 if (map->num_stripes == num_stripes)
2398 new = kmalloc(len, GFP_NOFS);
2400 /* just change map->num_stripes */
2401 map->num_stripes = num_stripes;
2405 memcpy(new, map, len);
2406 new->num_stripes = num_stripes;
2412 * helper to allocate device space from btrfs_device_info, in which we stored
2413 * max free space information of every device. It is used when we can not
2414 * allocate chunks by default size.
2416 * By this helper, we can allocate a new chunk as larger as possible.
2418 static int __btrfs_alloc_tiny_space(struct btrfs_trans_handle *trans,
2419 struct btrfs_fs_devices *fs_devices,
2420 struct btrfs_device_info *devices,
2421 int nr_device, u64 type,
2422 struct map_lookup **map_lookup,
2423 int min_stripes, u64 *stripe_size)
2425 int i, index, sort_again = 0;
2426 int min_devices = min_stripes;
2427 u64 max_avail, min_free;
2428 struct map_lookup *map = *map_lookup;
2431 if (nr_device < min_stripes)
2434 btrfs_descending_sort_devices(devices, nr_device);
2436 max_avail = devices[0].max_avail;
2440 for (i = 0; i < nr_device; i++) {
2442 * if dev_offset = 0, it means the free space of this device
2443 * is less than what we need, and we didn't search max avail
2444 * extent on this device, so do it now.
2446 if (!devices[i].dev_offset) {
2447 ret = find_free_dev_extent(trans, devices[i].dev,
2449 &devices[i].dev_offset,
2450 &devices[i].max_avail);
2451 if (ret != 0 && ret != -ENOSPC)
2457 /* we update the max avail free extent of each devices, sort again */
2459 btrfs_descending_sort_devices(devices, nr_device);
2461 if (type & BTRFS_BLOCK_GROUP_DUP)
2464 if (!devices[min_devices - 1].max_avail)
2467 max_avail = devices[min_devices - 1].max_avail;
2468 if (type & BTRFS_BLOCK_GROUP_DUP)
2469 do_div(max_avail, 2);
2471 max_avail = __btrfs_calc_stripe_size(fs_devices, max_avail, type,
2473 if (type & BTRFS_BLOCK_GROUP_DUP)
2474 min_free = max_avail * 2;
2476 min_free = max_avail;
2478 if (min_free > devices[min_devices - 1].max_avail)
2481 map = __shrink_map_lookup_stripes(map, min_stripes);
2482 *stripe_size = max_avail;
2485 for (i = 0; i < min_stripes; i++) {
2486 map->stripes[i].dev = devices[index].dev;
2487 map->stripes[i].physical = devices[index].dev_offset;
2488 if (type & BTRFS_BLOCK_GROUP_DUP) {
2490 map->stripes[i].dev = devices[index].dev;
2491 map->stripes[i].physical = devices[index].dev_offset +
2501 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2502 struct btrfs_root *extent_root,
2503 struct map_lookup **map_ret,
2504 u64 *num_bytes, u64 *stripe_size,
2505 u64 start, u64 type)
2507 struct btrfs_fs_info *info = extent_root->fs_info;
2508 struct btrfs_device *device = NULL;
2509 struct btrfs_fs_devices *fs_devices = info->fs_devices;
2510 struct list_head *cur;
2511 struct map_lookup *map;
2512 struct extent_map_tree *em_tree;
2513 struct extent_map *em;
2514 struct btrfs_device_info *devices_info;
2515 struct list_head private_devs;
2516 u64 calc_size = 1024 * 1024 * 1024;
2523 int min_devices; /* the min number of devices we need */
2528 if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2529 (type & BTRFS_BLOCK_GROUP_DUP)) {
2531 type &= ~BTRFS_BLOCK_GROUP_DUP;
2533 if (list_empty(&fs_devices->alloc_list))
2536 ret = __btrfs_calc_nstripes(fs_devices, type, &num_stripes,
2537 &min_stripes, &sub_stripes);
2541 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
2546 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2551 map->num_stripes = num_stripes;
2553 cur = fs_devices->alloc_list.next;
2557 calc_size = __btrfs_calc_stripe_size(fs_devices, calc_size, type,
2560 if (type & BTRFS_BLOCK_GROUP_DUP) {
2561 min_free = calc_size * 2;
2564 min_free = calc_size;
2565 min_devices = min_stripes;
2568 INIT_LIST_HEAD(&private_devs);
2569 while (index < num_stripes) {
2570 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2571 BUG_ON(!device->writeable);
2572 if (device->total_bytes > device->bytes_used)
2573 avail = device->total_bytes - device->bytes_used;
2578 if (device->in_fs_metadata && avail >= min_free) {
2579 ret = find_free_dev_extent(trans, device, min_free,
2580 &devices_info[i].dev_offset,
2581 &devices_info[i].max_avail);
2583 list_move_tail(&device->dev_alloc_list,
2585 map->stripes[index].dev = device;
2586 map->stripes[index].physical =
2587 devices_info[i].dev_offset;
2589 if (type & BTRFS_BLOCK_GROUP_DUP) {
2590 map->stripes[index].dev = device;
2591 map->stripes[index].physical =
2592 devices_info[i].dev_offset +
2596 } else if (ret != -ENOSPC)
2599 devices_info[i].dev = device;
2601 } else if (device->in_fs_metadata &&
2602 avail >= BTRFS_STRIPE_LEN) {
2603 devices_info[i].dev = device;
2604 devices_info[i].max_avail = avail;
2608 if (cur == &fs_devices->alloc_list)
2612 list_splice(&private_devs, &fs_devices->alloc_list);
2613 if (index < num_stripes) {
2614 if (index >= min_stripes) {
2615 num_stripes = index;
2616 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2617 num_stripes /= sub_stripes;
2618 num_stripes *= sub_stripes;
2621 map = __shrink_map_lookup_stripes(map, num_stripes);
2622 } else if (i >= min_devices) {
2623 ret = __btrfs_alloc_tiny_space(trans, fs_devices,
2624 devices_info, i, type,
2634 map->sector_size = extent_root->sectorsize;
2635 map->stripe_len = BTRFS_STRIPE_LEN;
2636 map->io_align = BTRFS_STRIPE_LEN;
2637 map->io_width = BTRFS_STRIPE_LEN;
2639 map->sub_stripes = sub_stripes;
2642 *stripe_size = calc_size;
2643 *num_bytes = chunk_bytes_by_type(type, calc_size,
2644 map->num_stripes, sub_stripes);
2646 em = alloc_extent_map(GFP_NOFS);
2651 em->bdev = (struct block_device *)map;
2653 em->len = *num_bytes;
2654 em->block_start = 0;
2655 em->block_len = em->len;
2657 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
2658 write_lock(&em_tree->lock);
2659 ret = add_extent_mapping(em_tree, em);
2660 write_unlock(&em_tree->lock);
2662 free_extent_map(em);
2664 ret = btrfs_make_block_group(trans, extent_root, 0, type,
2665 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2670 while (index < map->num_stripes) {
2671 device = map->stripes[index].dev;
2672 dev_offset = map->stripes[index].physical;
2674 ret = btrfs_alloc_dev_extent(trans, device,
2675 info->chunk_root->root_key.objectid,
2676 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2677 start, dev_offset, calc_size);
2682 kfree(devices_info);
2687 kfree(devices_info);
2691 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2692 struct btrfs_root *extent_root,
2693 struct map_lookup *map, u64 chunk_offset,
2694 u64 chunk_size, u64 stripe_size)
2697 struct btrfs_key key;
2698 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2699 struct btrfs_device *device;
2700 struct btrfs_chunk *chunk;
2701 struct btrfs_stripe *stripe;
2702 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2706 chunk = kzalloc(item_size, GFP_NOFS);
2711 while (index < map->num_stripes) {
2712 device = map->stripes[index].dev;
2713 device->bytes_used += stripe_size;
2714 ret = btrfs_update_device(trans, device);
2720 stripe = &chunk->stripe;
2721 while (index < map->num_stripes) {
2722 device = map->stripes[index].dev;
2723 dev_offset = map->stripes[index].physical;
2725 btrfs_set_stack_stripe_devid(stripe, device->devid);
2726 btrfs_set_stack_stripe_offset(stripe, dev_offset);
2727 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2732 btrfs_set_stack_chunk_length(chunk, chunk_size);
2733 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2734 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2735 btrfs_set_stack_chunk_type(chunk, map->type);
2736 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2737 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2738 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
2739 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2740 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
2742 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2743 key.type = BTRFS_CHUNK_ITEM_KEY;
2744 key.offset = chunk_offset;
2746 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2749 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2750 ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2759 * Chunk allocation falls into two parts. The first part does works
2760 * that make the new allocated chunk useable, but not do any operation
2761 * that modifies the chunk tree. The second part does the works that
2762 * require modifying the chunk tree. This division is important for the
2763 * bootstrap process of adding storage to a seed btrfs.
2765 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2766 struct btrfs_root *extent_root, u64 type)
2771 struct map_lookup *map;
2772 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2775 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2780 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2781 &stripe_size, chunk_offset, type);
2785 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2786 chunk_size, stripe_size);
2791 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2792 struct btrfs_root *root,
2793 struct btrfs_device *device)
2796 u64 sys_chunk_offset;
2800 u64 sys_stripe_size;
2802 struct map_lookup *map;
2803 struct map_lookup *sys_map;
2804 struct btrfs_fs_info *fs_info = root->fs_info;
2805 struct btrfs_root *extent_root = fs_info->extent_root;
2808 ret = find_next_chunk(fs_info->chunk_root,
2809 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2812 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2813 (fs_info->metadata_alloc_profile &
2814 fs_info->avail_metadata_alloc_bits);
2815 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2817 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2818 &stripe_size, chunk_offset, alloc_profile);
2821 sys_chunk_offset = chunk_offset + chunk_size;
2823 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2824 (fs_info->system_alloc_profile &
2825 fs_info->avail_system_alloc_bits);
2826 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2828 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2829 &sys_chunk_size, &sys_stripe_size,
2830 sys_chunk_offset, alloc_profile);
2833 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2837 * Modifying chunk tree needs allocating new blocks from both
2838 * system block group and metadata block group. So we only can
2839 * do operations require modifying the chunk tree after both
2840 * block groups were created.
2842 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2843 chunk_size, stripe_size);
2846 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2847 sys_chunk_offset, sys_chunk_size,
2853 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2855 struct extent_map *em;
2856 struct map_lookup *map;
2857 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2861 read_lock(&map_tree->map_tree.lock);
2862 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2863 read_unlock(&map_tree->map_tree.lock);
2867 if (btrfs_test_opt(root, DEGRADED)) {
2868 free_extent_map(em);
2872 map = (struct map_lookup *)em->bdev;
2873 for (i = 0; i < map->num_stripes; i++) {
2874 if (!map->stripes[i].dev->writeable) {
2879 free_extent_map(em);
2883 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2885 extent_map_tree_init(&tree->map_tree, GFP_NOFS);
2888 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2890 struct extent_map *em;
2893 write_lock(&tree->map_tree.lock);
2894 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2896 remove_extent_mapping(&tree->map_tree, em);
2897 write_unlock(&tree->map_tree.lock);
2902 free_extent_map(em);
2903 /* once for the tree */
2904 free_extent_map(em);
2908 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2910 struct extent_map *em;
2911 struct map_lookup *map;
2912 struct extent_map_tree *em_tree = &map_tree->map_tree;
2915 read_lock(&em_tree->lock);
2916 em = lookup_extent_mapping(em_tree, logical, len);
2917 read_unlock(&em_tree->lock);
2920 BUG_ON(em->start > logical || em->start + em->len < logical);
2921 map = (struct map_lookup *)em->bdev;
2922 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2923 ret = map->num_stripes;
2924 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2925 ret = map->sub_stripes;
2928 free_extent_map(em);
2932 static int find_live_mirror(struct map_lookup *map, int first, int num,
2936 if (map->stripes[optimal].dev->bdev)
2938 for (i = first; i < first + num; i++) {
2939 if (map->stripes[i].dev->bdev)
2942 /* we couldn't find one that doesn't fail. Just return something
2943 * and the io error handling code will clean up eventually
2948 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2949 u64 logical, u64 *length,
2950 struct btrfs_multi_bio **multi_ret,
2951 int mirror_num, struct page *unplug_page)
2953 struct extent_map *em;
2954 struct map_lookup *map;
2955 struct extent_map_tree *em_tree = &map_tree->map_tree;
2959 int stripes_allocated = 8;
2960 int stripes_required = 1;
2965 struct btrfs_multi_bio *multi = NULL;
2967 if (multi_ret && !(rw & REQ_WRITE))
2968 stripes_allocated = 1;
2971 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2976 atomic_set(&multi->error, 0);
2979 read_lock(&em_tree->lock);
2980 em = lookup_extent_mapping(em_tree, logical, *length);
2981 read_unlock(&em_tree->lock);
2983 if (!em && unplug_page) {
2989 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2990 (unsigned long long)logical,
2991 (unsigned long long)*length);
2995 BUG_ON(em->start > logical || em->start + em->len < logical);
2996 map = (struct map_lookup *)em->bdev;
2997 offset = logical - em->start;
2999 if (mirror_num > map->num_stripes)
3002 /* if our multi bio struct is too small, back off and try again */
3003 if (rw & REQ_WRITE) {
3004 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
3005 BTRFS_BLOCK_GROUP_DUP)) {
3006 stripes_required = map->num_stripes;
3008 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3009 stripes_required = map->sub_stripes;
3013 if (multi_ret && (rw & REQ_WRITE) &&
3014 stripes_allocated < stripes_required) {
3015 stripes_allocated = map->num_stripes;
3016 free_extent_map(em);
3022 * stripe_nr counts the total number of stripes we have to stride
3023 * to get to this block
3025 do_div(stripe_nr, map->stripe_len);
3027 stripe_offset = stripe_nr * map->stripe_len;
3028 BUG_ON(offset < stripe_offset);
3030 /* stripe_offset is the offset of this block in its stripe*/
3031 stripe_offset = offset - stripe_offset;
3033 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
3034 BTRFS_BLOCK_GROUP_RAID10 |
3035 BTRFS_BLOCK_GROUP_DUP)) {
3036 /* we limit the length of each bio to what fits in a stripe */
3037 *length = min_t(u64, em->len - offset,
3038 map->stripe_len - stripe_offset);
3040 *length = em->len - offset;
3043 if (!multi_ret && !unplug_page)
3048 if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3049 if (unplug_page || (rw & REQ_WRITE))
3050 num_stripes = map->num_stripes;
3051 else if (mirror_num)
3052 stripe_index = mirror_num - 1;
3054 stripe_index = find_live_mirror(map, 0,
3056 current->pid % map->num_stripes);
3059 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3061 num_stripes = map->num_stripes;
3062 else if (mirror_num)
3063 stripe_index = mirror_num - 1;
3065 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3066 int factor = map->num_stripes / map->sub_stripes;
3068 stripe_index = do_div(stripe_nr, factor);
3069 stripe_index *= map->sub_stripes;
3071 if (unplug_page || (rw & REQ_WRITE))
3072 num_stripes = map->sub_stripes;
3073 else if (mirror_num)
3074 stripe_index += mirror_num - 1;
3076 stripe_index = find_live_mirror(map, stripe_index,
3077 map->sub_stripes, stripe_index +
3078 current->pid % map->sub_stripes);
3082 * after this do_div call, stripe_nr is the number of stripes
3083 * on this device we have to walk to find the data, and
3084 * stripe_index is the number of our device in the stripe array
3086 stripe_index = do_div(stripe_nr, map->num_stripes);
3088 BUG_ON(stripe_index >= map->num_stripes);
3090 for (i = 0; i < num_stripes; i++) {
3092 struct btrfs_device *device;
3093 struct backing_dev_info *bdi;
3095 device = map->stripes[stripe_index].dev;
3097 bdi = blk_get_backing_dev_info(device->bdev);
3098 if (bdi->unplug_io_fn)
3099 bdi->unplug_io_fn(bdi, unplug_page);
3102 multi->stripes[i].physical =
3103 map->stripes[stripe_index].physical +
3104 stripe_offset + stripe_nr * map->stripe_len;
3105 multi->stripes[i].dev = map->stripes[stripe_index].dev;
3111 multi->num_stripes = num_stripes;
3112 multi->max_errors = max_errors;
3115 free_extent_map(em);
3119 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3120 u64 logical, u64 *length,
3121 struct btrfs_multi_bio **multi_ret, int mirror_num)
3123 return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
3127 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3128 u64 chunk_start, u64 physical, u64 devid,
3129 u64 **logical, int *naddrs, int *stripe_len)
3131 struct extent_map_tree *em_tree = &map_tree->map_tree;
3132 struct extent_map *em;
3133 struct map_lookup *map;
3140 read_lock(&em_tree->lock);
3141 em = lookup_extent_mapping(em_tree, chunk_start, 1);
3142 read_unlock(&em_tree->lock);
3144 BUG_ON(!em || em->start != chunk_start);
3145 map = (struct map_lookup *)em->bdev;
3148 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3149 do_div(length, map->num_stripes / map->sub_stripes);
3150 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3151 do_div(length, map->num_stripes);
3153 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
3156 for (i = 0; i < map->num_stripes; i++) {
3157 if (devid && map->stripes[i].dev->devid != devid)
3159 if (map->stripes[i].physical > physical ||
3160 map->stripes[i].physical + length <= physical)
3163 stripe_nr = physical - map->stripes[i].physical;
3164 do_div(stripe_nr, map->stripe_len);
3166 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3167 stripe_nr = stripe_nr * map->num_stripes + i;
3168 do_div(stripe_nr, map->sub_stripes);
3169 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3170 stripe_nr = stripe_nr * map->num_stripes + i;
3172 bytenr = chunk_start + stripe_nr * map->stripe_len;
3173 WARN_ON(nr >= map->num_stripes);
3174 for (j = 0; j < nr; j++)&n