abbec80aaa44f946cd9c8682da1837a1d4cce00b
[pandora-kernel.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30
31 #define BTRFS_ROOT_TRANS_TAG 0
32
33 static noinline void put_transaction(struct btrfs_transaction *transaction)
34 {
35         WARN_ON(transaction->use_count == 0);
36         transaction->use_count--;
37         if (transaction->use_count == 0) {
38                 list_del_init(&transaction->list);
39                 memset(transaction, 0, sizeof(*transaction));
40                 kmem_cache_free(btrfs_transaction_cachep, transaction);
41         }
42 }
43
44 static noinline void switch_commit_root(struct btrfs_root *root)
45 {
46         free_extent_buffer(root->commit_root);
47         root->commit_root = btrfs_root_node(root);
48 }
49
50 /*
51  * either allocate a new transaction or hop into the existing one
52  */
53 static noinline int join_transaction(struct btrfs_root *root)
54 {
55         struct btrfs_transaction *cur_trans;
56         cur_trans = root->fs_info->running_transaction;
57         if (!cur_trans) {
58                 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
59                                              GFP_NOFS);
60                 BUG_ON(!cur_trans);
61                 root->fs_info->generation++;
62                 cur_trans->num_writers = 1;
63                 cur_trans->num_joined = 0;
64                 cur_trans->transid = root->fs_info->generation;
65                 init_waitqueue_head(&cur_trans->writer_wait);
66                 init_waitqueue_head(&cur_trans->commit_wait);
67                 cur_trans->in_commit = 0;
68                 cur_trans->blocked = 0;
69                 cur_trans->use_count = 1;
70                 cur_trans->commit_done = 0;
71                 cur_trans->start_time = get_seconds();
72
73                 cur_trans->delayed_refs.root = RB_ROOT;
74                 cur_trans->delayed_refs.num_entries = 0;
75                 cur_trans->delayed_refs.num_heads_ready = 0;
76                 cur_trans->delayed_refs.num_heads = 0;
77                 cur_trans->delayed_refs.flushing = 0;
78                 cur_trans->delayed_refs.run_delayed_start = 0;
79                 spin_lock_init(&cur_trans->delayed_refs.lock);
80
81                 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
82                 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
83                 extent_io_tree_init(&cur_trans->dirty_pages,
84                                      root->fs_info->btree_inode->i_mapping,
85                                      GFP_NOFS);
86                 spin_lock(&root->fs_info->new_trans_lock);
87                 root->fs_info->running_transaction = cur_trans;
88                 spin_unlock(&root->fs_info->new_trans_lock);
89         } else {
90                 cur_trans->num_writers++;
91                 cur_trans->num_joined++;
92         }
93
94         return 0;
95 }
96
97 /*
98  * this does all the record keeping required to make sure that a reference
99  * counted root is properly recorded in a given transaction.  This is required
100  * to make sure the old root from before we joined the transaction is deleted
101  * when the transaction commits
102  */
103 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
104                                          struct btrfs_root *root)
105 {
106         if (root->ref_cows && root->last_trans < trans->transid) {
107                 WARN_ON(root == root->fs_info->extent_root);
108                 WARN_ON(root->commit_root != root->node);
109
110                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
111                            (unsigned long)root->root_key.objectid,
112                            BTRFS_ROOT_TRANS_TAG);
113                 root->last_trans = trans->transid;
114                 btrfs_init_reloc_root(trans, root);
115         }
116         return 0;
117 }
118
119 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
120                                struct btrfs_root *root)
121 {
122         if (!root->ref_cows)
123                 return 0;
124
125         mutex_lock(&root->fs_info->trans_mutex);
126         if (root->last_trans == trans->transid) {
127                 mutex_unlock(&root->fs_info->trans_mutex);
128                 return 0;
129         }
130
131         record_root_in_trans(trans, root);
132         mutex_unlock(&root->fs_info->trans_mutex);
133         return 0;
134 }
135
136 /* wait for commit against the current transaction to become unblocked
137  * when this is done, it is safe to start a new transaction, but the current
138  * transaction might not be fully on disk.
139  */
140 static void wait_current_trans(struct btrfs_root *root)
141 {
142         struct btrfs_transaction *cur_trans;
143
144         cur_trans = root->fs_info->running_transaction;
145         if (cur_trans && cur_trans->blocked) {
146                 DEFINE_WAIT(wait);
147                 cur_trans->use_count++;
148                 while (1) {
149                         prepare_to_wait(&root->fs_info->transaction_wait, &wait,
150                                         TASK_UNINTERRUPTIBLE);
151                         if (!cur_trans->blocked)
152                                 break;
153                         mutex_unlock(&root->fs_info->trans_mutex);
154                         schedule();
155                         mutex_lock(&root->fs_info->trans_mutex);
156                 }
157                 finish_wait(&root->fs_info->transaction_wait, &wait);
158                 put_transaction(cur_trans);
159         }
160 }
161
162 enum btrfs_trans_type {
163         TRANS_START,
164         TRANS_JOIN,
165         TRANS_USERSPACE,
166 };
167
168 static int may_wait_transaction(struct btrfs_root *root, int type)
169 {
170         if (!root->fs_info->log_root_recovering &&
171             ((type == TRANS_START && !root->fs_info->open_ioctl_trans) ||
172              type == TRANS_USERSPACE))
173                 return 1;
174         return 0;
175 }
176
177 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
178                                                     u64 num_items, int type)
179 {
180         struct btrfs_trans_handle *h;
181         struct btrfs_transaction *cur_trans;
182         int ret;
183 again:
184         h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
185         if (!h)
186                 return ERR_PTR(-ENOMEM);
187
188         mutex_lock(&root->fs_info->trans_mutex);
189         if (may_wait_transaction(root, type))
190                 wait_current_trans(root);
191
192         ret = join_transaction(root);
193         BUG_ON(ret);
194
195         cur_trans = root->fs_info->running_transaction;
196         cur_trans->use_count++;
197         mutex_unlock(&root->fs_info->trans_mutex);
198
199         h->transid = cur_trans->transid;
200         h->transaction = cur_trans;
201         h->blocks_used = 0;
202         h->block_group = 0;
203         h->bytes_reserved = 0;
204         h->delayed_ref_updates = 0;
205         h->block_rsv = NULL;
206
207         smp_mb();
208         if (cur_trans->blocked && may_wait_transaction(root, type)) {
209                 btrfs_commit_transaction(h, root);
210                 goto again;
211         }
212
213         if (num_items > 0) {
214                 ret = btrfs_trans_reserve_metadata(h, root, num_items);
215                 if (ret == -EAGAIN) {
216                         btrfs_commit_transaction(h, root);
217                         goto again;
218                 }
219                 if (ret < 0) {
220                         btrfs_end_transaction(h, root);
221                         return ERR_PTR(ret);
222                 }
223         }
224
225         mutex_lock(&root->fs_info->trans_mutex);
226         record_root_in_trans(h, root);
227         mutex_unlock(&root->fs_info->trans_mutex);
228
229         if (!current->journal_info && type != TRANS_USERSPACE)
230                 current->journal_info = h;
231         return h;
232 }
233
234 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
235                                                    int num_items)
236 {
237         return start_transaction(root, num_items, TRANS_START);
238 }
239 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
240                                                    int num_blocks)
241 {
242         return start_transaction(root, 0, TRANS_JOIN);
243 }
244
245 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
246                                                          int num_blocks)
247 {
248         return start_transaction(r, 0, TRANS_USERSPACE);
249 }
250
251 /* wait for a transaction commit to be fully complete */
252 static noinline int wait_for_commit(struct btrfs_root *root,
253                                     struct btrfs_transaction *commit)
254 {
255         DEFINE_WAIT(wait);
256         mutex_lock(&root->fs_info->trans_mutex);
257         while (!commit->commit_done) {
258                 prepare_to_wait(&commit->commit_wait, &wait,
259                                 TASK_UNINTERRUPTIBLE);
260                 if (commit->commit_done)
261                         break;
262                 mutex_unlock(&root->fs_info->trans_mutex);
263                 schedule();
264                 mutex_lock(&root->fs_info->trans_mutex);
265         }
266         mutex_unlock(&root->fs_info->trans_mutex);
267         finish_wait(&commit->commit_wait, &wait);
268         return 0;
269 }
270
271 #if 0
272 /*
273  * rate limit against the drop_snapshot code.  This helps to slow down new
274  * operations if the drop_snapshot code isn't able to keep up.
275  */
276 static void throttle_on_drops(struct btrfs_root *root)
277 {
278         struct btrfs_fs_info *info = root->fs_info;
279         int harder_count = 0;
280
281 harder:
282         if (atomic_read(&info->throttles)) {
283                 DEFINE_WAIT(wait);
284                 int thr;
285                 thr = atomic_read(&info->throttle_gen);
286
287                 do {
288                         prepare_to_wait(&info->transaction_throttle,
289                                         &wait, TASK_UNINTERRUPTIBLE);
290                         if (!atomic_read(&info->throttles)) {
291                                 finish_wait(&info->transaction_throttle, &wait);
292                                 break;
293                         }
294                         schedule();
295                         finish_wait(&info->transaction_throttle, &wait);
296                 } while (thr == atomic_read(&info->throttle_gen));
297                 harder_count++;
298
299                 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
300                     harder_count < 2)
301                         goto harder;
302
303                 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
304                     harder_count < 10)
305                         goto harder;
306
307                 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
308                     harder_count < 20)
309                         goto harder;
310         }
311 }
312 #endif
313
314 void btrfs_throttle(struct btrfs_root *root)
315 {
316         mutex_lock(&root->fs_info->trans_mutex);
317         if (!root->fs_info->open_ioctl_trans)
318                 wait_current_trans(root);
319         mutex_unlock(&root->fs_info->trans_mutex);
320 }
321
322 static int should_end_transaction(struct btrfs_trans_handle *trans,
323                                   struct btrfs_root *root)
324 {
325         int ret;
326         ret = btrfs_block_rsv_check(trans, root,
327                                     &root->fs_info->global_block_rsv, 0, 5);
328         return ret ? 1 : 0;
329 }
330
331 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
332                                  struct btrfs_root *root)
333 {
334         struct btrfs_transaction *cur_trans = trans->transaction;
335         int updates;
336
337         if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
338                 return 1;
339
340         updates = trans->delayed_ref_updates;
341         trans->delayed_ref_updates = 0;
342         if (updates)
343                 btrfs_run_delayed_refs(trans, root, updates);
344
345         return should_end_transaction(trans, root);
346 }
347
348 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
349                           struct btrfs_root *root, int throttle)
350 {
351         struct btrfs_transaction *cur_trans = trans->transaction;
352         struct btrfs_fs_info *info = root->fs_info;
353         int count = 0;
354
355         while (count < 4) {
356                 unsigned long cur = trans->delayed_ref_updates;
357                 trans->delayed_ref_updates = 0;
358                 if (cur &&
359                     trans->transaction->delayed_refs.num_heads_ready > 64) {
360                         trans->delayed_ref_updates = 0;
361
362                         /*
363                          * do a full flush if the transaction is trying
364                          * to close
365                          */
366                         if (trans->transaction->delayed_refs.flushing)
367                                 cur = 0;
368                         btrfs_run_delayed_refs(trans, root, cur);
369                 } else {
370                         break;
371                 }
372                 count++;
373         }
374
375         btrfs_trans_release_metadata(trans, root);
376
377         if (!root->fs_info->open_ioctl_trans &&
378             should_end_transaction(trans, root))
379                 trans->transaction->blocked = 1;
380
381         if (cur_trans->blocked && !cur_trans->in_commit) {
382                 if (throttle)
383                         return btrfs_commit_transaction(trans, root);
384                 else
385                         wake_up_process(info->transaction_kthread);
386         }
387
388         mutex_lock(&info->trans_mutex);
389         WARN_ON(cur_trans != info->running_transaction);
390         WARN_ON(cur_trans->num_writers < 1);
391         cur_trans->num_writers--;
392
393         if (waitqueue_active(&cur_trans->writer_wait))
394                 wake_up(&cur_trans->writer_wait);
395         put_transaction(cur_trans);
396         mutex_unlock(&info->trans_mutex);
397
398         if (current->journal_info == trans)
399                 current->journal_info = NULL;
400         memset(trans, 0, sizeof(*trans));
401         kmem_cache_free(btrfs_trans_handle_cachep, trans);
402
403         if (throttle)
404                 btrfs_run_delayed_iputs(root);
405
406         return 0;
407 }
408
409 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
410                           struct btrfs_root *root)
411 {
412         return __btrfs_end_transaction(trans, root, 0);
413 }
414
415 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
416                                    struct btrfs_root *root)
417 {
418         return __btrfs_end_transaction(trans, root, 1);
419 }
420
421 /*
422  * when btree blocks are allocated, they have some corresponding bits set for
423  * them in one of two extent_io trees.  This is used to make sure all of
424  * those extents are sent to disk but does not wait on them
425  */
426 int btrfs_write_marked_extents(struct btrfs_root *root,
427                                struct extent_io_tree *dirty_pages, int mark)
428 {
429         int ret;
430         int err = 0;
431         int werr = 0;
432         struct page *page;
433         struct inode *btree_inode = root->fs_info->btree_inode;
434         u64 start = 0;
435         u64 end;
436         unsigned long index;
437
438         while (1) {
439                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
440                                             mark);
441                 if (ret)
442                         break;
443                 while (start <= end) {
444                         cond_resched();
445
446                         index = start >> PAGE_CACHE_SHIFT;
447                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
448                         page = find_get_page(btree_inode->i_mapping, index);
449                         if (!page)
450                                 continue;
451
452                         btree_lock_page_hook(page);
453                         if (!page->mapping) {
454                                 unlock_page(page);
455                                 page_cache_release(page);
456                                 continue;
457                         }
458
459                         if (PageWriteback(page)) {
460                                 if (PageDirty(page))
461                                         wait_on_page_writeback(page);
462                                 else {
463                                         unlock_page(page);
464                                         page_cache_release(page);
465                                         continue;
466                                 }
467                         }
468                         err = write_one_page(page, 0);
469                         if (err)
470                                 werr = err;
471                         page_cache_release(page);
472                 }
473         }
474         if (err)
475                 werr = err;
476         return werr;
477 }
478
479 /*
480  * when btree blocks are allocated, they have some corresponding bits set for
481  * them in one of two extent_io trees.  This is used to make sure all of
482  * those extents are on disk for transaction or log commit.  We wait
483  * on all the pages and clear them from the dirty pages state tree
484  */
485 int btrfs_wait_marked_extents(struct btrfs_root *root,
486                               struct extent_io_tree *dirty_pages, int mark)
487 {
488         int ret;
489         int err = 0;
490         int werr = 0;
491         struct page *page;
492         struct inode *btree_inode = root->fs_info->btree_inode;
493         u64 start = 0;
494         u64 end;
495         unsigned long index;
496
497         while (1) {
498                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
499                                             mark);
500                 if (ret)
501                         break;
502
503                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
504                 while (start <= end) {
505                         index = start >> PAGE_CACHE_SHIFT;
506                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
507                         page = find_get_page(btree_inode->i_mapping, index);
508                         if (!page)
509                                 continue;
510                         if (PageDirty(page)) {
511                                 btree_lock_page_hook(page);
512                                 wait_on_page_writeback(page);
513                                 err = write_one_page(page, 0);
514                                 if (err)
515                                         werr = err;
516                         }
517                         wait_on_page_writeback(page);
518                         page_cache_release(page);
519                         cond_resched();
520                 }
521         }
522         if (err)
523                 werr = err;
524         return werr;
525 }
526
527 /*
528  * when btree blocks are allocated, they have some corresponding bits set for
529  * them in one of two extent_io trees.  This is used to make sure all of
530  * those extents are on disk for transaction or log commit
531  */
532 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
533                                 struct extent_io_tree *dirty_pages, int mark)
534 {
535         int ret;
536         int ret2;
537
538         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
539         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
540         return ret || ret2;
541 }
542
543 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
544                                      struct btrfs_root *root)
545 {
546         if (!trans || !trans->transaction) {
547                 struct inode *btree_inode;
548                 btree_inode = root->fs_info->btree_inode;
549                 return filemap_write_and_wait(btree_inode->i_mapping);
550         }
551         return btrfs_write_and_wait_marked_extents(root,
552                                            &trans->transaction->dirty_pages,
553                                            EXTENT_DIRTY);
554 }
555
556 /*
557  * this is used to update the root pointer in the tree of tree roots.
558  *
559  * But, in the case of the extent allocation tree, updating the root
560  * pointer may allocate blocks which may change the root of the extent
561  * allocation tree.
562  *
563  * So, this loops and repeats and makes sure the cowonly root didn't
564  * change while the root pointer was being updated in the metadata.
565  */
566 static int update_cowonly_root(struct btrfs_trans_handle *trans,
567                                struct btrfs_root *root)
568 {
569         int ret;
570         u64 old_root_bytenr;
571         u64 old_root_used;
572         struct btrfs_root *tree_root = root->fs_info->tree_root;
573
574         old_root_used = btrfs_root_used(&root->root_item);
575         btrfs_write_dirty_block_groups(trans, root);
576
577         while (1) {
578                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
579                 if (old_root_bytenr == root->node->start &&
580                     old_root_used == btrfs_root_used(&root->root_item))
581                         break;
582
583                 btrfs_set_root_node(&root->root_item, root->node);
584                 ret = btrfs_update_root(trans, tree_root,
585                                         &root->root_key,
586                                         &root->root_item);
587                 BUG_ON(ret);
588
589                 old_root_used = btrfs_root_used(&root->root_item);
590                 ret = btrfs_write_dirty_block_groups(trans, root);
591                 BUG_ON(ret);
592         }
593
594         if (root != root->fs_info->extent_root)
595                 switch_commit_root(root);
596
597         return 0;
598 }
599
600 /*
601  * update all the cowonly tree roots on disk
602  */
603 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
604                                          struct btrfs_root *root)
605 {
606         struct btrfs_fs_info *fs_info = root->fs_info;
607         struct list_head *next;
608         struct extent_buffer *eb;
609         int ret;
610
611         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
612         BUG_ON(ret);
613
614         eb = btrfs_lock_root_node(fs_info->tree_root);
615         btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
616         btrfs_tree_unlock(eb);
617         free_extent_buffer(eb);
618
619         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
620         BUG_ON(ret);
621
622         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
623                 next = fs_info->dirty_cowonly_roots.next;
624                 list_del_init(next);
625                 root = list_entry(next, struct btrfs_root, dirty_list);
626
627                 update_cowonly_root(trans, root);
628         }
629
630         down_write(&fs_info->extent_commit_sem);
631         switch_commit_root(fs_info->extent_root);
632         up_write(&fs_info->extent_commit_sem);
633
634         return 0;
635 }
636
637 /*
638  * dead roots are old snapshots that need to be deleted.  This allocates
639  * a dirty root struct and adds it into the list of dead roots that need to
640  * be deleted
641  */
642 int btrfs_add_dead_root(struct btrfs_root *root)
643 {
644         mutex_lock(&root->fs_info->trans_mutex);
645         list_add(&root->root_list, &root->fs_info->dead_roots);
646         mutex_unlock(&root->fs_info->trans_mutex);
647         return 0;
648 }
649
650 /*
651  * update all the cowonly tree roots on disk
652  */
653 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
654                                     struct btrfs_root *root)
655 {
656         struct btrfs_root *gang[8];
657         struct btrfs_fs_info *fs_info = root->fs_info;
658         int i;
659         int ret;
660         int err = 0;
661
662         while (1) {
663                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
664                                                  (void **)gang, 0,
665                                                  ARRAY_SIZE(gang),
666                                                  BTRFS_ROOT_TRANS_TAG);
667                 if (ret == 0)
668                         break;
669                 for (i = 0; i < ret; i++) {
670                         root = gang[i];
671                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
672                                         (unsigned long)root->root_key.objectid,
673                                         BTRFS_ROOT_TRANS_TAG);
674
675                         btrfs_free_log(trans, root);
676                         btrfs_update_reloc_root(trans, root);
677                         btrfs_orphan_commit_root(trans, root);
678
679                         if (root->commit_root != root->node) {
680                                 switch_commit_root(root);
681                                 btrfs_set_root_node(&root->root_item,
682                                                     root->node);
683                         }
684
685                         err = btrfs_update_root(trans, fs_info->tree_root,
686                                                 &root->root_key,
687                                                 &root->root_item);
688                         if (err)
689                                 break;
690                 }
691         }
692         return err;
693 }
694
695 /*
696  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
697  * otherwise every leaf in the btree is read and defragged.
698  */
699 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
700 {
701         struct btrfs_fs_info *info = root->fs_info;
702         struct btrfs_trans_handle *trans;
703         int ret;
704         unsigned long nr;
705
706         if (xchg(&root->defrag_running, 1))
707                 return 0;
708
709         while (1) {
710                 trans = btrfs_start_transaction(root, 0);
711                 if (IS_ERR(trans))
712                         return PTR_ERR(trans);
713
714                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
715
716                 nr = trans->blocks_used;
717                 btrfs_end_transaction(trans, root);
718                 btrfs_btree_balance_dirty(info->tree_root, nr);
719                 cond_resched();
720
721                 if (root->fs_info->closing || ret != -EAGAIN)
722                         break;
723         }
724         root->defrag_running = 0;
725         return ret;
726 }
727
728 #if 0
729 /*
730  * when dropping snapshots, we generate a ton of delayed refs, and it makes
731  * sense not to join the transaction while it is trying to flush the current
732  * queue of delayed refs out.
733  *
734  * This is used by the drop snapshot code only
735  */
736 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
737 {
738         DEFINE_WAIT(wait);
739
740         mutex_lock(&info->trans_mutex);
741         while (info->running_transaction &&
742                info->running_transaction->delayed_refs.flushing) {
743                 prepare_to_wait(&info->transaction_wait, &wait,
744                                 TASK_UNINTERRUPTIBLE);
745                 mutex_unlock(&info->trans_mutex);
746
747                 schedule();
748
749                 mutex_lock(&info->trans_mutex);
750                 finish_wait(&info->transaction_wait, &wait);
751         }
752         mutex_unlock(&info->trans_mutex);
753         return 0;
754 }
755
756 /*
757  * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
758  * all of them
759  */
760 int btrfs_drop_dead_root(struct btrfs_root *root)
761 {
762         struct btrfs_trans_handle *trans;
763         struct btrfs_root *tree_root = root->fs_info->tree_root;
764         unsigned long nr;
765         int ret;
766
767         while (1) {
768                 /*
769                  * we don't want to jump in and create a bunch of
770                  * delayed refs if the transaction is starting to close
771                  */
772                 wait_transaction_pre_flush(tree_root->fs_info);
773                 trans = btrfs_start_transaction(tree_root, 1);
774
775                 /*
776                  * we've joined a transaction, make sure it isn't
777                  * closing right now
778                  */
779                 if (trans->transaction->delayed_refs.flushing) {
780                         btrfs_end_transaction(trans, tree_root);
781                         continue;
782                 }
783
784                 ret = btrfs_drop_snapshot(trans, root);
785                 if (ret != -EAGAIN)
786                         break;
787
788                 ret = btrfs_update_root(trans, tree_root,
789                                         &root->root_key,
790                                         &root->root_item);
791                 if (ret)
792                         break;
793
794                 nr = trans->blocks_used;
795                 ret = btrfs_end_transaction(trans, tree_root);
796                 BUG_ON(ret);
797
798                 btrfs_btree_balance_dirty(tree_root, nr);
799                 cond_resched();
800         }
801         BUG_ON(ret);
802
803         ret = btrfs_del_root(trans, tree_root, &root->root_key);
804         BUG_ON(ret);
805
806         nr = trans->blocks_used;
807         ret = btrfs_end_transaction(trans, tree_root);
808         BUG_ON(ret);
809
810         free_extent_buffer(root->node);
811         free_extent_buffer(root->commit_root);
812         kfree(root);
813
814         btrfs_btree_balance_dirty(tree_root, nr);
815         return ret;
816 }
817 #endif
818
819 /*
820  * new snapshots need to be created at a very specific time in the
821  * transaction commit.  This does the actual creation
822  */
823 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
824                                    struct btrfs_fs_info *fs_info,
825                                    struct btrfs_pending_snapshot *pending)
826 {
827         struct btrfs_key key;
828         struct btrfs_root_item *new_root_item;
829         struct btrfs_root *tree_root = fs_info->tree_root;
830         struct btrfs_root *root = pending->root;
831         struct btrfs_root *parent_root;
832         struct inode *parent_inode;
833         struct dentry *dentry;
834         struct extent_buffer *tmp;
835         struct extent_buffer *old;
836         int ret;
837         u64 to_reserve = 0;
838         u64 index = 0;
839         u64 objectid;
840
841         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
842         if (!new_root_item) {
843                 pending->error = -ENOMEM;
844                 goto fail;
845         }
846
847         ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
848         if (ret) {
849                 pending->error = ret;
850                 goto fail;
851         }
852
853         btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
854         btrfs_orphan_pre_snapshot(trans, pending, &to_reserve);
855
856         if (to_reserve > 0) {
857                 ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
858                                           to_reserve);
859                 if (ret) {
860                         pending->error = ret;
861                         goto fail;
862                 }
863         }
864
865         key.objectid = objectid;
866         key.offset = (u64)-1;
867         key.type = BTRFS_ROOT_ITEM_KEY;
868
869         trans->block_rsv = &pending->block_rsv;
870
871         dentry = pending->dentry;
872         parent_inode = dentry->d_parent->d_inode;
873         parent_root = BTRFS_I(parent_inode)->root;
874         record_root_in_trans(trans, parent_root);
875
876         /*
877          * insert the directory item
878          */
879         ret = btrfs_set_inode_index(parent_inode, &index);
880         BUG_ON(ret);
881         ret = btrfs_insert_dir_item(trans, parent_root,
882                                 dentry->d_name.name, dentry->d_name.len,
883                                 parent_inode->i_ino, &key,
884                                 BTRFS_FT_DIR, index);
885         BUG_ON(ret);
886
887         btrfs_i_size_write(parent_inode, parent_inode->i_size +
888                                          dentry->d_name.len * 2);
889         ret = btrfs_update_inode(trans, parent_root, parent_inode);
890         BUG_ON(ret);
891
892         record_root_in_trans(trans, root);
893         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
894         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
895
896         old = btrfs_lock_root_node(root);
897         btrfs_cow_block(trans, root, old, NULL, 0, &old);
898         btrfs_set_lock_blocking(old);
899
900         btrfs_copy_root(trans, root, old, &tmp, objectid);
901         btrfs_tree_unlock(old);
902         free_extent_buffer(old);
903
904         btrfs_set_root_node(new_root_item, tmp);
905         /* record when the snapshot was created in key.offset */
906         key.offset = trans->transid;
907         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
908         btrfs_tree_unlock(tmp);
909         free_extent_buffer(tmp);
910         BUG_ON(ret);
911
912         /*
913          * insert root back/forward references
914          */
915         ret = btrfs_add_root_ref(trans, tree_root, objectid,
916                                  parent_root->root_key.objectid,
917                                  parent_inode->i_ino, index,
918                                  dentry->d_name.name, dentry->d_name.len);
919         BUG_ON(ret);
920
921         key.offset = (u64)-1;
922         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
923         BUG_ON(IS_ERR(pending->snap));
924
925         btrfs_reloc_post_snapshot(trans, pending);
926         btrfs_orphan_post_snapshot(trans, pending);
927 fail:
928         kfree(new_root_item);
929         btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
930         return 0;
931 }
932
933 /*
934  * create all the snapshots we've scheduled for creation
935  */
936 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
937                                              struct btrfs_fs_info *fs_info)
938 {
939         struct btrfs_pending_snapshot *pending;
940         struct list_head *head = &trans->transaction->pending_snapshots;
941         int ret;
942
943         list_for_each_entry(pending, head, list) {
944                 ret = create_pending_snapshot(trans, fs_info, pending);
945                 BUG_ON(ret);
946         }
947         return 0;
948 }
949
950 static void update_super_roots(struct btrfs_root *root)
951 {
952         struct btrfs_root_item *root_item;
953         struct btrfs_super_block *super;
954
955         super = &root->fs_info->super_copy;
956
957         root_item = &root->fs_info->chunk_root->root_item;
958         super->chunk_root = root_item->bytenr;
959         super->chunk_root_generation = root_item->generation;
960         super->chunk_root_level = root_item->level;
961
962         root_item = &root->fs_info->tree_root->root_item;
963         super->root = root_item->bytenr;
964         super->generation = root_item->generation;
965         super->root_level = root_item->level;
966 }
967
968 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
969 {
970         int ret = 0;
971         spin_lock(&info->new_trans_lock);
972         if (info->running_transaction)
973                 ret = info->running_transaction->in_commit;
974         spin_unlock(&info->new_trans_lock);
975         return ret;
976 }
977
978 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
979 {
980         int ret = 0;
981         spin_lock(&info->new_trans_lock);
982         if (info->running_transaction)
983                 ret = info->running_transaction->blocked;
984         spin_unlock(&info->new_trans_lock);
985         return ret;
986 }
987
988 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
989                              struct btrfs_root *root)
990 {
991         unsigned long joined = 0;
992         unsigned long timeout = 1;
993         struct btrfs_transaction *cur_trans;
994         struct btrfs_transaction *prev_trans = NULL;
995         DEFINE_WAIT(wait);
996         int ret;
997         int should_grow = 0;
998         unsigned long now = get_seconds();
999         int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1000
1001         btrfs_run_ordered_operations(root, 0);
1002
1003         /* make a pass through all the delayed refs we have so far
1004          * any runnings procs may add more while we are here
1005          */
1006         ret = btrfs_run_delayed_refs(trans, root, 0);
1007         BUG_ON(ret);
1008
1009         btrfs_trans_release_metadata(trans, root);
1010
1011         cur_trans = trans->transaction;
1012         /*
1013          * set the flushing flag so procs in this transaction have to
1014          * start sending their work down.
1015          */
1016         cur_trans->delayed_refs.flushing = 1;
1017
1018         ret = btrfs_run_delayed_refs(trans, root, 0);
1019         BUG_ON(ret);
1020
1021         mutex_lock(&root->fs_info->trans_mutex);
1022         if (cur_trans->in_commit) {
1023                 cur_trans->use_count++;
1024                 mutex_unlock(&root->fs_info->trans_mutex);
1025                 btrfs_end_transaction(trans, root);
1026
1027                 ret = wait_for_commit(root, cur_trans);
1028                 BUG_ON(ret);
1029
1030                 mutex_lock(&root->fs_info->trans_mutex);
1031                 put_transaction(cur_trans);
1032                 mutex_unlock(&root->fs_info->trans_mutex);
1033
1034                 return 0;
1035         }
1036
1037         trans->transaction->in_commit = 1;
1038         trans->transaction->blocked = 1;
1039         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1040                 prev_trans = list_entry(cur_trans->list.prev,
1041                                         struct btrfs_transaction, list);
1042                 if (!prev_trans->commit_done) {
1043                         prev_trans->use_count++;
1044                         mutex_unlock(&root->fs_info->trans_mutex);
1045
1046                         wait_for_commit(root, prev_trans);
1047
1048                         mutex_lock(&root->fs_info->trans_mutex);
1049                         put_transaction(prev_trans);
1050                 }
1051         }
1052
1053         if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1054                 should_grow = 1;
1055
1056         do {
1057                 int snap_pending = 0;
1058                 joined = cur_trans->num_joined;
1059                 if (!list_empty(&trans->transaction->pending_snapshots))
1060                         snap_pending = 1;
1061
1062                 WARN_ON(cur_trans != trans->transaction);
1063                 if (cur_trans->num_writers > 1)
1064                         timeout = MAX_SCHEDULE_TIMEOUT;
1065                 else if (should_grow)
1066                         timeout = 1;
1067
1068                 mutex_unlock(&root->fs_info->trans_mutex);
1069
1070                 if (flush_on_commit || snap_pending) {
1071                         btrfs_start_delalloc_inodes(root, 1);
1072                         ret = btrfs_wait_ordered_extents(root, 0, 1);
1073                         BUG_ON(ret);
1074                 }
1075
1076                 /*
1077                  * rename don't use btrfs_join_transaction, so, once we
1078                  * set the transaction to blocked above, we aren't going
1079                  * to get any new ordered operations.  We can safely run
1080                  * it here and no for sure that nothing new will be added
1081                  * to the list
1082                  */
1083                 btrfs_run_ordered_operations(root, 1);
1084
1085                 prepare_to_wait(&cur_trans->writer_wait, &wait,
1086                                 TASK_UNINTERRUPTIBLE);
1087
1088                 smp_mb();
1089                 if (cur_trans->num_writers > 1 || should_grow)
1090                         schedule_timeout(timeout);
1091
1092                 mutex_lock(&root->fs_info->trans_mutex);
1093                 finish_wait(&cur_trans->writer_wait, &wait);
1094         } while (cur_trans->num_writers > 1 ||
1095                  (should_grow && cur_trans->num_joined != joined));
1096
1097         ret = create_pending_snapshots(trans, root->fs_info);
1098         BUG_ON(ret);
1099
1100         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1101         BUG_ON(ret);
1102
1103         WARN_ON(cur_trans != trans->transaction);
1104
1105         /* btrfs_commit_tree_roots is responsible for getting the
1106          * various roots consistent with each other.  Every pointer
1107          * in the tree of tree roots has to point to the most up to date
1108          * root for every subvolume and other tree.  So, we have to keep
1109          * the tree logging code from jumping in and changing any
1110          * of the trees.
1111          *
1112          * At this point in the commit, there can't be any tree-log
1113          * writers, but a little lower down we drop the trans mutex
1114          * and let new people in.  By holding the tree_log_mutex
1115          * from now until after the super is written, we avoid races
1116          * with the tree-log code.
1117          */
1118         mutex_lock(&root->fs_info->tree_log_mutex);
1119
1120         ret = commit_fs_roots(trans, root);
1121         BUG_ON(ret);
1122
1123         /* commit_fs_roots gets rid of all the tree log roots, it is now
1124          * safe to free the root of tree log roots
1125          */
1126         btrfs_free_log_root_tree(trans, root->fs_info);
1127
1128         ret = commit_cowonly_roots(trans, root);
1129         BUG_ON(ret);
1130
1131         btrfs_prepare_extent_commit(trans, root);
1132
1133         cur_trans = root->fs_info->running_transaction;
1134         spin_lock(&root->fs_info->new_trans_lock);
1135         root->fs_info->running_transaction = NULL;
1136         spin_unlock(&root->fs_info->new_trans_lock);
1137
1138         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1139                             root->fs_info->tree_root->node);
1140         switch_commit_root(root->fs_info->tree_root);
1141
1142         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1143                             root->fs_info->chunk_root->node);
1144         switch_commit_root(root->fs_info->chunk_root);
1145
1146         update_super_roots(root);
1147
1148         if (!root->fs_info->log_root_recovering) {
1149                 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1150                 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1151         }
1152
1153         memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1154                sizeof(root->fs_info->super_copy));
1155
1156         trans->transaction->blocked = 0;
1157
1158         wake_up(&root->fs_info->transaction_wait);
1159
1160         mutex_unlock(&root->fs_info->trans_mutex);
1161         ret = btrfs_write_and_wait_transaction(trans, root);
1162         BUG_ON(ret);
1163         write_ctree_super(trans, root, 0);
1164
1165         /*
1166          * the super is written, we can safely allow the tree-loggers
1167          * to go about their business
1168          */
1169         mutex_unlock(&root->fs_info->tree_log_mutex);
1170
1171         btrfs_finish_extent_commit(trans, root);
1172
1173         mutex_lock(&root->fs_info->trans_mutex);
1174
1175         cur_trans->commit_done = 1;
1176
1177         root->fs_info->last_trans_committed = cur_trans->transid;
1178
1179         wake_up(&cur_trans->commit_wait);
1180
1181         put_transaction(cur_trans);
1182         put_transaction(cur_trans);
1183
1184         mutex_unlock(&root->fs_info->trans_mutex);
1185
1186         if (current->journal_info == trans)
1187                 current->journal_info = NULL;
1188
1189         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1190
1191         if (current != root->fs_info->transaction_kthread)
1192                 btrfs_run_delayed_iputs(root);
1193
1194         return ret;
1195 }
1196
1197 /*
1198  * interface function to delete all the snapshots we have scheduled for deletion
1199  */
1200 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1201 {
1202         LIST_HEAD(list);
1203         struct btrfs_fs_info *fs_info = root->fs_info;
1204
1205         mutex_lock(&fs_info->trans_mutex);
1206         list_splice_init(&fs_info->dead_roots, &list);
1207         mutex_unlock(&fs_info->trans_mutex);
1208
1209         while (!list_empty(&list)) {
1210                 root = list_entry(list.next, struct btrfs_root, root_list);
1211                 list_del(&root->root_list);
1212
1213                 if (btrfs_header_backref_rev(root->node) <
1214                     BTRFS_MIXED_BACKREF_REV)
1215                         btrfs_drop_snapshot(root, NULL, 0);
1216                 else
1217                         btrfs_drop_snapshot(root, NULL, 1);
1218         }
1219         return 0;
1220 }