Merge branch 'stable/for-linus-fixes-3.2' of git://git.kernel.org/pub/scm/linux/kerne...
[pandora-kernel.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "inode-map.h"
31
32 #define BTRFS_ROOT_TRANS_TAG 0
33
34 static noinline void put_transaction(struct btrfs_transaction *transaction)
35 {
36         WARN_ON(atomic_read(&transaction->use_count) == 0);
37         if (atomic_dec_and_test(&transaction->use_count)) {
38                 BUG_ON(!list_empty(&transaction->list));
39                 memset(transaction, 0, sizeof(*transaction));
40                 kmem_cache_free(btrfs_transaction_cachep, transaction);
41         }
42 }
43
44 static noinline void switch_commit_root(struct btrfs_root *root)
45 {
46         free_extent_buffer(root->commit_root);
47         root->commit_root = btrfs_root_node(root);
48 }
49
50 /*
51  * either allocate a new transaction or hop into the existing one
52  */
53 static noinline int join_transaction(struct btrfs_root *root, int nofail)
54 {
55         struct btrfs_transaction *cur_trans;
56
57         spin_lock(&root->fs_info->trans_lock);
58 loop:
59         if (root->fs_info->trans_no_join) {
60                 if (!nofail) {
61                         spin_unlock(&root->fs_info->trans_lock);
62                         return -EBUSY;
63                 }
64         }
65
66         cur_trans = root->fs_info->running_transaction;
67         if (cur_trans) {
68                 atomic_inc(&cur_trans->use_count);
69                 atomic_inc(&cur_trans->num_writers);
70                 cur_trans->num_joined++;
71                 spin_unlock(&root->fs_info->trans_lock);
72                 return 0;
73         }
74         spin_unlock(&root->fs_info->trans_lock);
75
76         cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
77         if (!cur_trans)
78                 return -ENOMEM;
79
80         spin_lock(&root->fs_info->trans_lock);
81         if (root->fs_info->running_transaction) {
82                 /*
83                  * someone started a transaction after we unlocked.  Make sure
84                  * to redo the trans_no_join checks above
85                  */
86                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
87                 cur_trans = root->fs_info->running_transaction;
88                 goto loop;
89         }
90
91         atomic_set(&cur_trans->num_writers, 1);
92         cur_trans->num_joined = 0;
93         init_waitqueue_head(&cur_trans->writer_wait);
94         init_waitqueue_head(&cur_trans->commit_wait);
95         cur_trans->in_commit = 0;
96         cur_trans->blocked = 0;
97         /*
98          * One for this trans handle, one so it will live on until we
99          * commit the transaction.
100          */
101         atomic_set(&cur_trans->use_count, 2);
102         cur_trans->commit_done = 0;
103         cur_trans->start_time = get_seconds();
104
105         cur_trans->delayed_refs.root = RB_ROOT;
106         cur_trans->delayed_refs.num_entries = 0;
107         cur_trans->delayed_refs.num_heads_ready = 0;
108         cur_trans->delayed_refs.num_heads = 0;
109         cur_trans->delayed_refs.flushing = 0;
110         cur_trans->delayed_refs.run_delayed_start = 0;
111         spin_lock_init(&cur_trans->commit_lock);
112         spin_lock_init(&cur_trans->delayed_refs.lock);
113
114         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
115         list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
116         extent_io_tree_init(&cur_trans->dirty_pages,
117                              root->fs_info->btree_inode->i_mapping);
118         root->fs_info->generation++;
119         cur_trans->transid = root->fs_info->generation;
120         root->fs_info->running_transaction = cur_trans;
121         spin_unlock(&root->fs_info->trans_lock);
122
123         return 0;
124 }
125
126 /*
127  * this does all the record keeping required to make sure that a reference
128  * counted root is properly recorded in a given transaction.  This is required
129  * to make sure the old root from before we joined the transaction is deleted
130  * when the transaction commits
131  */
132 static int record_root_in_trans(struct btrfs_trans_handle *trans,
133                                struct btrfs_root *root)
134 {
135         if (root->ref_cows && root->last_trans < trans->transid) {
136                 WARN_ON(root == root->fs_info->extent_root);
137                 WARN_ON(root->commit_root != root->node);
138
139                 /*
140                  * see below for in_trans_setup usage rules
141                  * we have the reloc mutex held now, so there
142                  * is only one writer in this function
143                  */
144                 root->in_trans_setup = 1;
145
146                 /* make sure readers find in_trans_setup before
147                  * they find our root->last_trans update
148                  */
149                 smp_wmb();
150
151                 spin_lock(&root->fs_info->fs_roots_radix_lock);
152                 if (root->last_trans == trans->transid) {
153                         spin_unlock(&root->fs_info->fs_roots_radix_lock);
154                         return 0;
155                 }
156                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
157                            (unsigned long)root->root_key.objectid,
158                            BTRFS_ROOT_TRANS_TAG);
159                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
160                 root->last_trans = trans->transid;
161
162                 /* this is pretty tricky.  We don't want to
163                  * take the relocation lock in btrfs_record_root_in_trans
164                  * unless we're really doing the first setup for this root in
165                  * this transaction.
166                  *
167                  * Normally we'd use root->last_trans as a flag to decide
168                  * if we want to take the expensive mutex.
169                  *
170                  * But, we have to set root->last_trans before we
171                  * init the relocation root, otherwise, we trip over warnings
172                  * in ctree.c.  The solution used here is to flag ourselves
173                  * with root->in_trans_setup.  When this is 1, we're still
174                  * fixing up the reloc trees and everyone must wait.
175                  *
176                  * When this is zero, they can trust root->last_trans and fly
177                  * through btrfs_record_root_in_trans without having to take the
178                  * lock.  smp_wmb() makes sure that all the writes above are
179                  * done before we pop in the zero below
180                  */
181                 btrfs_init_reloc_root(trans, root);
182                 smp_wmb();
183                 root->in_trans_setup = 0;
184         }
185         return 0;
186 }
187
188
189 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
190                                struct btrfs_root *root)
191 {
192         if (!root->ref_cows)
193                 return 0;
194
195         /*
196          * see record_root_in_trans for comments about in_trans_setup usage
197          * and barriers
198          */
199         smp_rmb();
200         if (root->last_trans == trans->transid &&
201             !root->in_trans_setup)
202                 return 0;
203
204         mutex_lock(&root->fs_info->reloc_mutex);
205         record_root_in_trans(trans, root);
206         mutex_unlock(&root->fs_info->reloc_mutex);
207
208         return 0;
209 }
210
211 /* wait for commit against the current transaction to become unblocked
212  * when this is done, it is safe to start a new transaction, but the current
213  * transaction might not be fully on disk.
214  */
215 static void wait_current_trans(struct btrfs_root *root)
216 {
217         struct btrfs_transaction *cur_trans;
218
219         spin_lock(&root->fs_info->trans_lock);
220         cur_trans = root->fs_info->running_transaction;
221         if (cur_trans && cur_trans->blocked) {
222                 atomic_inc(&cur_trans->use_count);
223                 spin_unlock(&root->fs_info->trans_lock);
224
225                 wait_event(root->fs_info->transaction_wait,
226                            !cur_trans->blocked);
227                 put_transaction(cur_trans);
228         } else {
229                 spin_unlock(&root->fs_info->trans_lock);
230         }
231 }
232
233 enum btrfs_trans_type {
234         TRANS_START,
235         TRANS_JOIN,
236         TRANS_USERSPACE,
237         TRANS_JOIN_NOLOCK,
238 };
239
240 static int may_wait_transaction(struct btrfs_root *root, int type)
241 {
242         if (root->fs_info->log_root_recovering)
243                 return 0;
244
245         if (type == TRANS_USERSPACE)
246                 return 1;
247
248         if (type == TRANS_START &&
249             !atomic_read(&root->fs_info->open_ioctl_trans))
250                 return 1;
251
252         return 0;
253 }
254
255 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
256                                                     u64 num_items, int type)
257 {
258         struct btrfs_trans_handle *h;
259         struct btrfs_transaction *cur_trans;
260         u64 num_bytes = 0;
261         int ret;
262
263         if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
264                 return ERR_PTR(-EROFS);
265
266         if (current->journal_info) {
267                 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
268                 h = current->journal_info;
269                 h->use_count++;
270                 h->orig_rsv = h->block_rsv;
271                 h->block_rsv = NULL;
272                 goto got_it;
273         }
274
275         /*
276          * Do the reservation before we join the transaction so we can do all
277          * the appropriate flushing if need be.
278          */
279         if (num_items > 0 && root != root->fs_info->chunk_root) {
280                 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
281                 ret = btrfs_block_rsv_add(root,
282                                           &root->fs_info->trans_block_rsv,
283                                           num_bytes);
284                 if (ret)
285                         return ERR_PTR(ret);
286         }
287 again:
288         h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
289         if (!h)
290                 return ERR_PTR(-ENOMEM);
291
292         if (may_wait_transaction(root, type))
293                 wait_current_trans(root);
294
295         do {
296                 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
297                 if (ret == -EBUSY)
298                         wait_current_trans(root);
299         } while (ret == -EBUSY);
300
301         if (ret < 0) {
302                 kmem_cache_free(btrfs_trans_handle_cachep, h);
303                 return ERR_PTR(ret);
304         }
305
306         cur_trans = root->fs_info->running_transaction;
307
308         h->transid = cur_trans->transid;
309         h->transaction = cur_trans;
310         h->blocks_used = 0;
311         h->bytes_reserved = 0;
312         h->delayed_ref_updates = 0;
313         h->use_count = 1;
314         h->block_rsv = NULL;
315         h->orig_rsv = NULL;
316
317         smp_mb();
318         if (cur_trans->blocked && may_wait_transaction(root, type)) {
319                 btrfs_commit_transaction(h, root);
320                 goto again;
321         }
322
323         if (num_bytes) {
324                 h->block_rsv = &root->fs_info->trans_block_rsv;
325                 h->bytes_reserved = num_bytes;
326         }
327
328 got_it:
329         btrfs_record_root_in_trans(h, root);
330
331         if (!current->journal_info && type != TRANS_USERSPACE)
332                 current->journal_info = h;
333         return h;
334 }
335
336 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
337                                                    int num_items)
338 {
339         return start_transaction(root, num_items, TRANS_START);
340 }
341 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
342 {
343         return start_transaction(root, 0, TRANS_JOIN);
344 }
345
346 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
347 {
348         return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
349 }
350
351 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
352 {
353         return start_transaction(root, 0, TRANS_USERSPACE);
354 }
355
356 /* wait for a transaction commit to be fully complete */
357 static noinline void wait_for_commit(struct btrfs_root *root,
358                                     struct btrfs_transaction *commit)
359 {
360         wait_event(commit->commit_wait, commit->commit_done);
361 }
362
363 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
364 {
365         struct btrfs_transaction *cur_trans = NULL, *t;
366         int ret;
367
368         ret = 0;
369         if (transid) {
370                 if (transid <= root->fs_info->last_trans_committed)
371                         goto out;
372
373                 /* find specified transaction */
374                 spin_lock(&root->fs_info->trans_lock);
375                 list_for_each_entry(t, &root->fs_info->trans_list, list) {
376                         if (t->transid == transid) {
377                                 cur_trans = t;
378                                 atomic_inc(&cur_trans->use_count);
379                                 break;
380                         }
381                         if (t->transid > transid)
382                                 break;
383                 }
384                 spin_unlock(&root->fs_info->trans_lock);
385                 ret = -EINVAL;
386                 if (!cur_trans)
387                         goto out;  /* bad transid */
388         } else {
389                 /* find newest transaction that is committing | committed */
390                 spin_lock(&root->fs_info->trans_lock);
391                 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
392                                             list) {
393                         if (t->in_commit) {
394                                 if (t->commit_done)
395                                         break;
396                                 cur_trans = t;
397                                 atomic_inc(&cur_trans->use_count);
398                                 break;
399                         }
400                 }
401                 spin_unlock(&root->fs_info->trans_lock);
402                 if (!cur_trans)
403                         goto out;  /* nothing committing|committed */
404         }
405
406         wait_for_commit(root, cur_trans);
407
408         put_transaction(cur_trans);
409         ret = 0;
410 out:
411         return ret;
412 }
413
414 void btrfs_throttle(struct btrfs_root *root)
415 {
416         if (!atomic_read(&root->fs_info->open_ioctl_trans))
417                 wait_current_trans(root);
418 }
419
420 static int should_end_transaction(struct btrfs_trans_handle *trans,
421                                   struct btrfs_root *root)
422 {
423         int ret;
424
425         ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
426         return ret ? 1 : 0;
427 }
428
429 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
430                                  struct btrfs_root *root)
431 {
432         struct btrfs_transaction *cur_trans = trans->transaction;
433         struct btrfs_block_rsv *rsv = trans->block_rsv;
434         int updates;
435
436         smp_mb();
437         if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
438                 return 1;
439
440         /*
441          * We need to do this in case we're deleting csums so the global block
442          * rsv get's used instead of the csum block rsv.
443          */
444         trans->block_rsv = NULL;
445
446         updates = trans->delayed_ref_updates;
447         trans->delayed_ref_updates = 0;
448         if (updates)
449                 btrfs_run_delayed_refs(trans, root, updates);
450
451         trans->block_rsv = rsv;
452
453         return should_end_transaction(trans, root);
454 }
455
456 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
457                           struct btrfs_root *root, int throttle, int lock)
458 {
459         struct btrfs_transaction *cur_trans = trans->transaction;
460         struct btrfs_fs_info *info = root->fs_info;
461         int count = 0;
462
463         if (--trans->use_count) {
464                 trans->block_rsv = trans->orig_rsv;
465                 return 0;
466         }
467
468         btrfs_trans_release_metadata(trans, root);
469         trans->block_rsv = NULL;
470         while (count < 4) {
471                 unsigned long cur = trans->delayed_ref_updates;
472                 trans->delayed_ref_updates = 0;
473                 if (cur &&
474                     trans->transaction->delayed_refs.num_heads_ready > 64) {
475                         trans->delayed_ref_updates = 0;
476
477                         /*
478                          * do a full flush if the transaction is trying
479                          * to close
480                          */
481                         if (trans->transaction->delayed_refs.flushing)
482                                 cur = 0;
483                         btrfs_run_delayed_refs(trans, root, cur);
484                 } else {
485                         break;
486                 }
487                 count++;
488         }
489
490         if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
491             should_end_transaction(trans, root)) {
492                 trans->transaction->blocked = 1;
493                 smp_wmb();
494         }
495
496         if (lock && cur_trans->blocked && !cur_trans->in_commit) {
497                 if (throttle) {
498                         /*
499                          * We may race with somebody else here so end up having
500                          * to call end_transaction on ourselves again, so inc
501                          * our use_count.
502                          */
503                         trans->use_count++;
504                         return btrfs_commit_transaction(trans, root);
505                 } else {
506                         wake_up_process(info->transaction_kthread);
507                 }
508         }
509
510         WARN_ON(cur_trans != info->running_transaction);
511         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
512         atomic_dec(&cur_trans->num_writers);
513
514         smp_mb();
515         if (waitqueue_active(&cur_trans->writer_wait))
516                 wake_up(&cur_trans->writer_wait);
517         put_transaction(cur_trans);
518
519         if (current->journal_info == trans)
520                 current->journal_info = NULL;
521         memset(trans, 0, sizeof(*trans));
522         kmem_cache_free(btrfs_trans_handle_cachep, trans);
523
524         if (throttle)
525                 btrfs_run_delayed_iputs(root);
526
527         return 0;
528 }
529
530 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
531                           struct btrfs_root *root)
532 {
533         int ret;
534
535         ret = __btrfs_end_transaction(trans, root, 0, 1);
536         if (ret)
537                 return ret;
538         return 0;
539 }
540
541 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
542                                    struct btrfs_root *root)
543 {
544         int ret;
545
546         ret = __btrfs_end_transaction(trans, root, 1, 1);
547         if (ret)
548                 return ret;
549         return 0;
550 }
551
552 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
553                                  struct btrfs_root *root)
554 {
555         int ret;
556
557         ret = __btrfs_end_transaction(trans, root, 0, 0);
558         if (ret)
559                 return ret;
560         return 0;
561 }
562
563 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
564                                 struct btrfs_root *root)
565 {
566         return __btrfs_end_transaction(trans, root, 1, 1);
567 }
568
569 /*
570  * when btree blocks are allocated, they have some corresponding bits set for
571  * them in one of two extent_io trees.  This is used to make sure all of
572  * those extents are sent to disk but does not wait on them
573  */
574 int btrfs_write_marked_extents(struct btrfs_root *root,
575                                struct extent_io_tree *dirty_pages, int mark)
576 {
577         int err = 0;
578         int werr = 0;
579         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
580         u64 start = 0;
581         u64 end;
582
583         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
584                                       mark)) {
585                 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark,
586                                    GFP_NOFS);
587                 err = filemap_fdatawrite_range(mapping, start, end);
588                 if (err)
589                         werr = err;
590                 cond_resched();
591                 start = end + 1;
592         }
593         if (err)
594                 werr = err;
595         return werr;
596 }
597
598 /*
599  * when btree blocks are allocated, they have some corresponding bits set for
600  * them in one of two extent_io trees.  This is used to make sure all of
601  * those extents are on disk for transaction or log commit.  We wait
602  * on all the pages and clear them from the dirty pages state tree
603  */
604 int btrfs_wait_marked_extents(struct btrfs_root *root,
605                               struct extent_io_tree *dirty_pages, int mark)
606 {
607         int err = 0;
608         int werr = 0;
609         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
610         u64 start = 0;
611         u64 end;
612
613         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
614                                       EXTENT_NEED_WAIT)) {
615                 clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS);
616                 err = filemap_fdatawait_range(mapping, start, end);
617                 if (err)
618                         werr = err;
619                 cond_resched();
620                 start = end + 1;
621         }
622         if (err)
623                 werr = err;
624         return werr;
625 }
626
627 /*
628  * when btree blocks are allocated, they have some corresponding bits set for
629  * them in one of two extent_io trees.  This is used to make sure all of
630  * those extents are on disk for transaction or log commit
631  */
632 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
633                                 struct extent_io_tree *dirty_pages, int mark)
634 {
635         int ret;
636         int ret2;
637
638         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
639         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
640
641         if (ret)
642                 return ret;
643         if (ret2)
644                 return ret2;
645         return 0;
646 }
647
648 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
649                                      struct btrfs_root *root)
650 {
651         if (!trans || !trans->transaction) {
652                 struct inode *btree_inode;
653                 btree_inode = root->fs_info->btree_inode;
654                 return filemap_write_and_wait(btree_inode->i_mapping);
655         }
656         return btrfs_write_and_wait_marked_extents(root,
657                                            &trans->transaction->dirty_pages,
658                                            EXTENT_DIRTY);
659 }
660
661 /*
662  * this is used to update the root pointer in the tree of tree roots.
663  *
664  * But, in the case of the extent allocation tree, updating the root
665  * pointer may allocate blocks which may change the root of the extent
666  * allocation tree.
667  *
668  * So, this loops and repeats and makes sure the cowonly root didn't
669  * change while the root pointer was being updated in the metadata.
670  */
671 static int update_cowonly_root(struct btrfs_trans_handle *trans,
672                                struct btrfs_root *root)
673 {
674         int ret;
675         u64 old_root_bytenr;
676         u64 old_root_used;
677         struct btrfs_root *tree_root = root->fs_info->tree_root;
678
679         old_root_used = btrfs_root_used(&root->root_item);
680         btrfs_write_dirty_block_groups(trans, root);
681
682         while (1) {
683                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
684                 if (old_root_bytenr == root->node->start &&
685                     old_root_used == btrfs_root_used(&root->root_item))
686                         break;
687
688                 btrfs_set_root_node(&root->root_item, root->node);
689                 ret = btrfs_update_root(trans, tree_root,
690                                         &root->root_key,
691                                         &root->root_item);
692                 BUG_ON(ret);
693
694                 old_root_used = btrfs_root_used(&root->root_item);
695                 ret = btrfs_write_dirty_block_groups(trans, root);
696                 BUG_ON(ret);
697         }
698
699         if (root != root->fs_info->extent_root)
700                 switch_commit_root(root);
701
702         return 0;
703 }
704
705 /*
706  * update all the cowonly tree roots on disk
707  */
708 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
709                                          struct btrfs_root *root)
710 {
711         struct btrfs_fs_info *fs_info = root->fs_info;
712         struct list_head *next;
713         struct extent_buffer *eb;
714         int ret;
715
716         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
717         BUG_ON(ret);
718
719         eb = btrfs_lock_root_node(fs_info->tree_root);
720         btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
721         btrfs_tree_unlock(eb);
722         free_extent_buffer(eb);
723
724         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
725         BUG_ON(ret);
726
727         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
728                 next = fs_info->dirty_cowonly_roots.next;
729                 list_del_init(next);
730                 root = list_entry(next, struct btrfs_root, dirty_list);
731
732                 update_cowonly_root(trans, root);
733         }
734
735         down_write(&fs_info->extent_commit_sem);
736         switch_commit_root(fs_info->extent_root);
737         up_write(&fs_info->extent_commit_sem);
738
739         return 0;
740 }
741
742 /*
743  * dead roots are old snapshots that need to be deleted.  This allocates
744  * a dirty root struct and adds it into the list of dead roots that need to
745  * be deleted
746  */
747 int btrfs_add_dead_root(struct btrfs_root *root)
748 {
749         spin_lock(&root->fs_info->trans_lock);
750         list_add(&root->root_list, &root->fs_info->dead_roots);
751         spin_unlock(&root->fs_info->trans_lock);
752         return 0;
753 }
754
755 /*
756  * update all the cowonly tree roots on disk
757  */
758 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
759                                     struct btrfs_root *root)
760 {
761         struct btrfs_root *gang[8];
762         struct btrfs_fs_info *fs_info = root->fs_info;
763         int i;
764         int ret;
765         int err = 0;
766
767         spin_lock(&fs_info->fs_roots_radix_lock);
768         while (1) {
769                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
770                                                  (void **)gang, 0,
771                                                  ARRAY_SIZE(gang),
772                                                  BTRFS_ROOT_TRANS_TAG);
773                 if (ret == 0)
774                         break;
775                 for (i = 0; i < ret; i++) {
776                         root = gang[i];
777                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
778                                         (unsigned long)root->root_key.objectid,
779                                         BTRFS_ROOT_TRANS_TAG);
780                         spin_unlock(&fs_info->fs_roots_radix_lock);
781
782                         btrfs_free_log(trans, root);
783                         btrfs_update_reloc_root(trans, root);
784                         btrfs_orphan_commit_root(trans, root);
785
786                         btrfs_save_ino_cache(root, trans);
787
788                         if (root->commit_root != root->node) {
789                                 mutex_lock(&root->fs_commit_mutex);
790                                 switch_commit_root(root);
791                                 btrfs_unpin_free_ino(root);
792                                 mutex_unlock(&root->fs_commit_mutex);
793
794                                 btrfs_set_root_node(&root->root_item,
795                                                     root->node);
796                         }
797
798                         err = btrfs_update_root(trans, fs_info->tree_root,
799                                                 &root->root_key,
800                                                 &root->root_item);
801                         spin_lock(&fs_info->fs_roots_radix_lock);
802                         if (err)
803                                 break;
804                 }
805         }
806         spin_unlock(&fs_info->fs_roots_radix_lock);
807         return err;
808 }
809
810 /*
811  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
812  * otherwise every leaf in the btree is read and defragged.
813  */
814 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
815 {
816         struct btrfs_fs_info *info = root->fs_info;
817         struct btrfs_trans_handle *trans;
818         int ret;
819         unsigned long nr;
820
821         if (xchg(&root->defrag_running, 1))
822                 return 0;
823
824         while (1) {
825                 trans = btrfs_start_transaction(root, 0);
826                 if (IS_ERR(trans))
827                         return PTR_ERR(trans);
828
829                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
830
831                 nr = trans->blocks_used;
832                 btrfs_end_transaction(trans, root);
833                 btrfs_btree_balance_dirty(info->tree_root, nr);
834                 cond_resched();
835
836                 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
837                         break;
838         }
839         root->defrag_running = 0;
840         return ret;
841 }
842
843 /*
844  * new snapshots need to be created at a very specific time in the
845  * transaction commit.  This does the actual creation
846  */
847 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
848                                    struct btrfs_fs_info *fs_info,
849                                    struct btrfs_pending_snapshot *pending)
850 {
851         struct btrfs_key key;
852         struct btrfs_root_item *new_root_item;
853         struct btrfs_root *tree_root = fs_info->tree_root;
854         struct btrfs_root *root = pending->root;
855         struct btrfs_root *parent_root;
856         struct btrfs_block_rsv *rsv;
857         struct inode *parent_inode;
858         struct dentry *parent;
859         struct dentry *dentry;
860         struct extent_buffer *tmp;
861         struct extent_buffer *old;
862         int ret;
863         u64 to_reserve = 0;
864         u64 index = 0;
865         u64 objectid;
866         u64 root_flags;
867
868         rsv = trans->block_rsv;
869
870         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
871         if (!new_root_item) {
872                 pending->error = -ENOMEM;
873                 goto fail;
874         }
875
876         ret = btrfs_find_free_objectid(tree_root, &objectid);
877         if (ret) {
878                 pending->error = ret;
879                 goto fail;
880         }
881
882         btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
883
884         if (to_reserve > 0) {
885                 ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv,
886                                                   to_reserve);
887                 if (ret) {
888                         pending->error = ret;
889                         goto fail;
890                 }
891         }
892
893         key.objectid = objectid;
894         key.offset = (u64)-1;
895         key.type = BTRFS_ROOT_ITEM_KEY;
896
897         trans->block_rsv = &pending->block_rsv;
898
899         dentry = pending->dentry;
900         parent = dget_parent(dentry);
901         parent_inode = parent->d_inode;
902         parent_root = BTRFS_I(parent_inode)->root;
903         record_root_in_trans(trans, parent_root);
904
905         /*
906          * insert the directory item
907          */
908         ret = btrfs_set_inode_index(parent_inode, &index);
909         BUG_ON(ret);
910         ret = btrfs_insert_dir_item(trans, parent_root,
911                                 dentry->d_name.name, dentry->d_name.len,
912                                 parent_inode, &key,
913                                 BTRFS_FT_DIR, index);
914         BUG_ON(ret);
915
916         btrfs_i_size_write(parent_inode, parent_inode->i_size +
917                                          dentry->d_name.len * 2);
918         ret = btrfs_update_inode(trans, parent_root, parent_inode);
919         BUG_ON(ret);
920
921         /*
922          * pull in the delayed directory update
923          * and the delayed inode item
924          * otherwise we corrupt the FS during
925          * snapshot
926          */
927         ret = btrfs_run_delayed_items(trans, root);
928         BUG_ON(ret);
929
930         record_root_in_trans(trans, root);
931         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
932         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
933         btrfs_check_and_init_root_item(new_root_item);
934
935         root_flags = btrfs_root_flags(new_root_item);
936         if (pending->readonly)
937                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
938         else
939                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
940         btrfs_set_root_flags(new_root_item, root_flags);
941
942         old = btrfs_lock_root_node(root);
943         btrfs_cow_block(trans, root, old, NULL, 0, &old);
944         btrfs_set_lock_blocking(old);
945
946         btrfs_copy_root(trans, root, old, &tmp, objectid);
947         btrfs_tree_unlock(old);
948         free_extent_buffer(old);
949
950         btrfs_set_root_node(new_root_item, tmp);
951         /* record when the snapshot was created in key.offset */
952         key.offset = trans->transid;
953         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
954         btrfs_tree_unlock(tmp);
955         free_extent_buffer(tmp);
956         BUG_ON(ret);
957
958         /*
959          * insert root back/forward references
960          */
961         ret = btrfs_add_root_ref(trans, tree_root, objectid,
962                                  parent_root->root_key.objectid,
963                                  btrfs_ino(parent_inode), index,
964                                  dentry->d_name.name, dentry->d_name.len);
965         BUG_ON(ret);
966         dput(parent);
967
968         key.offset = (u64)-1;
969         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
970         BUG_ON(IS_ERR(pending->snap));
971
972         btrfs_reloc_post_snapshot(trans, pending);
973 fail:
974         kfree(new_root_item);
975         trans->block_rsv = rsv;
976         btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
977         return 0;
978 }
979
980 /*
981  * create all the snapshots we've scheduled for creation
982  */
983 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
984                                              struct btrfs_fs_info *fs_info)
985 {
986         struct btrfs_pending_snapshot *pending;
987         struct list_head *head = &trans->transaction->pending_snapshots;
988         int ret;
989
990         list_for_each_entry(pending, head, list) {
991                 ret = create_pending_snapshot(trans, fs_info, pending);
992                 BUG_ON(ret);
993         }
994         return 0;
995 }
996
997 static void update_super_roots(struct btrfs_root *root)
998 {
999         struct btrfs_root_item *root_item;
1000         struct btrfs_super_block *super;
1001
1002         super = root->fs_info->super_copy;
1003
1004         root_item = &root->fs_info->chunk_root->root_item;
1005         super->chunk_root = root_item->bytenr;
1006         super->chunk_root_generation = root_item->generation;
1007         super->chunk_root_level = root_item->level;
1008
1009         root_item = &root->fs_info->tree_root->root_item;
1010         super->root = root_item->bytenr;
1011         super->generation = root_item->generation;
1012         super->root_level = root_item->level;
1013         if (btrfs_test_opt(root, SPACE_CACHE))
1014                 super->cache_generation = root_item->generation;
1015 }
1016
1017 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1018 {
1019         int ret = 0;
1020         spin_lock(&info->trans_lock);
1021         if (info->running_transaction)
1022                 ret = info->running_transaction->in_commit;
1023         spin_unlock(&info->trans_lock);
1024         return ret;
1025 }
1026
1027 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1028 {
1029         int ret = 0;
1030         spin_lock(&info->trans_lock);
1031         if (info->running_transaction)
1032                 ret = info->running_transaction->blocked;
1033         spin_unlock(&info->trans_lock);
1034         return ret;
1035 }
1036
1037 /*
1038  * wait for the current transaction commit to start and block subsequent
1039  * transaction joins
1040  */
1041 static void wait_current_trans_commit_start(struct btrfs_root *root,
1042                                             struct btrfs_transaction *trans)
1043 {
1044         wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1045 }
1046
1047 /*
1048  * wait for the current transaction to start and then become unblocked.
1049  * caller holds ref.
1050  */
1051 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1052                                          struct btrfs_transaction *trans)
1053 {
1054         wait_event(root->fs_info->transaction_wait,
1055                    trans->commit_done || (trans->in_commit && !trans->blocked));
1056 }
1057
1058 /*
1059  * commit transactions asynchronously. once btrfs_commit_transaction_async
1060  * returns, any subsequent transaction will not be allowed to join.
1061  */
1062 struct btrfs_async_commit {
1063         struct btrfs_trans_handle *newtrans;
1064         struct btrfs_root *root;
1065         struct delayed_work work;
1066 };
1067
1068 static void do_async_commit(struct work_struct *work)
1069 {
1070         struct btrfs_async_commit *ac =
1071                 container_of(work, struct btrfs_async_commit, work.work);
1072
1073         btrfs_commit_transaction(ac->newtrans, ac->root);
1074         kfree(ac);
1075 }
1076
1077 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1078                                    struct btrfs_root *root,
1079                                    int wait_for_unblock)
1080 {
1081         struct btrfs_async_commit *ac;
1082         struct btrfs_transaction *cur_trans;
1083
1084         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1085         if (!ac)
1086                 return -ENOMEM;
1087
1088         INIT_DELAYED_WORK(&ac->work, do_async_commit);
1089         ac->root = root;
1090         ac->newtrans = btrfs_join_transaction(root);
1091         if (IS_ERR(ac->newtrans)) {
1092                 int err = PTR_ERR(ac->newtrans);
1093                 kfree(ac);
1094                 return err;
1095         }
1096
1097         /* take transaction reference */
1098         cur_trans = trans->transaction;
1099         atomic_inc(&cur_trans->use_count);
1100
1101         btrfs_end_transaction(trans, root);
1102         schedule_delayed_work(&ac->work, 0);
1103
1104         /* wait for transaction to start and unblock */
1105         if (wait_for_unblock)
1106                 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1107         else
1108                 wait_current_trans_commit_start(root, cur_trans);
1109
1110         if (current->journal_info == trans)
1111                 current->journal_info = NULL;
1112
1113         put_transaction(cur_trans);
1114         return 0;
1115 }
1116
1117 /*
1118  * btrfs_transaction state sequence:
1119  *    in_commit = 0, blocked = 0  (initial)
1120  *    in_commit = 1, blocked = 1
1121  *    blocked = 0
1122  *    commit_done = 1
1123  */
1124 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1125                              struct btrfs_root *root)
1126 {
1127         unsigned long joined = 0;
1128         struct btrfs_transaction *cur_trans;
1129         struct btrfs_transaction *prev_trans = NULL;
1130         DEFINE_WAIT(wait);
1131         int ret;
1132         int should_grow = 0;
1133         unsigned long now = get_seconds();
1134         int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1135
1136         btrfs_run_ordered_operations(root, 0);
1137
1138         btrfs_trans_release_metadata(trans, root);
1139         trans->block_rsv = NULL;
1140
1141         /* make a pass through all the delayed refs we have so far
1142          * any runnings procs may add more while we are here
1143          */
1144         ret = btrfs_run_delayed_refs(trans, root, 0);
1145         BUG_ON(ret);
1146
1147         cur_trans = trans->transaction;
1148         /*
1149          * set the flushing flag so procs in this transaction have to
1150          * start sending their work down.
1151          */
1152         cur_trans->delayed_refs.flushing = 1;
1153
1154         ret = btrfs_run_delayed_refs(trans, root, 0);
1155         BUG_ON(ret);
1156
1157         spin_lock(&cur_trans->commit_lock);
1158         if (cur_trans->in_commit) {
1159                 spin_unlock(&cur_trans->commit_lock);
1160                 atomic_inc(&cur_trans->use_count);
1161                 btrfs_end_transaction(trans, root);
1162
1163                 wait_for_commit(root, cur_trans);
1164
1165                 put_transaction(cur_trans);
1166
1167                 return 0;
1168         }
1169
1170         trans->transaction->in_commit = 1;
1171         trans->transaction->blocked = 1;
1172         spin_unlock(&cur_trans->commit_lock);
1173         wake_up(&root->fs_info->transaction_blocked_wait);
1174
1175         spin_lock(&root->fs_info->trans_lock);
1176         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1177                 prev_trans = list_entry(cur_trans->list.prev,
1178                                         struct btrfs_transaction, list);
1179                 if (!prev_trans->commit_done) {
1180                         atomic_inc(&prev_trans->use_count);
1181                         spin_unlock(&root->fs_info->trans_lock);
1182
1183                         wait_for_commit(root, prev_trans);
1184
1185                         put_transaction(prev_trans);
1186                 } else {
1187                         spin_unlock(&root->fs_info->trans_lock);
1188                 }
1189         } else {
1190                 spin_unlock(&root->fs_info->trans_lock);
1191         }
1192
1193         if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1194                 should_grow = 1;
1195
1196         do {
1197                 int snap_pending = 0;
1198
1199                 joined = cur_trans->num_joined;
1200                 if (!list_empty(&trans->transaction->pending_snapshots))
1201                         snap_pending = 1;
1202
1203                 WARN_ON(cur_trans != trans->transaction);
1204
1205                 if (flush_on_commit || snap_pending) {
1206                         btrfs_start_delalloc_inodes(root, 1);
1207                         ret = btrfs_wait_ordered_extents(root, 0, 1);
1208                         BUG_ON(ret);
1209                 }
1210
1211                 ret = btrfs_run_delayed_items(trans, root);
1212                 BUG_ON(ret);
1213
1214                 /*
1215                  * rename don't use btrfs_join_transaction, so, once we
1216                  * set the transaction to blocked above, we aren't going
1217                  * to get any new ordered operations.  We can safely run
1218                  * it here and no for sure that nothing new will be added
1219                  * to the list
1220                  */
1221                 btrfs_run_ordered_operations(root, 1);
1222
1223                 prepare_to_wait(&cur_trans->writer_wait, &wait,
1224                                 TASK_UNINTERRUPTIBLE);
1225
1226                 if (atomic_read(&cur_trans->num_writers) > 1)
1227                         schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1228                 else if (should_grow)
1229                         schedule_timeout(1);
1230
1231                 finish_wait(&cur_trans->writer_wait, &wait);
1232         } while (atomic_read(&cur_trans->num_writers) > 1 ||
1233                  (should_grow && cur_trans->num_joined != joined));
1234
1235         /*
1236          * Ok now we need to make sure to block out any other joins while we
1237          * commit the transaction.  We could have started a join before setting
1238          * no_join so make sure to wait for num_writers to == 1 again.
1239          */
1240         spin_lock(&root->fs_info->trans_lock);
1241         root->fs_info->trans_no_join = 1;
1242         spin_unlock(&root->fs_info->trans_lock);
1243         wait_event(cur_trans->writer_wait,
1244                    atomic_read(&cur_trans->num_writers) == 1);
1245
1246         /*
1247          * the reloc mutex makes sure that we stop
1248          * the balancing code from coming in and moving
1249          * extents around in the middle of the commit
1250          */
1251         mutex_lock(&root->fs_info->reloc_mutex);
1252
1253         ret = btrfs_run_delayed_items(trans, root);
1254         BUG_ON(ret);
1255
1256         ret = create_pending_snapshots(trans, root->fs_info);
1257         BUG_ON(ret);
1258
1259         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1260         BUG_ON(ret);
1261
1262         /*
1263          * make sure none of the code above managed to slip in a
1264          * delayed item
1265          */
1266         btrfs_assert_delayed_root_empty(root);
1267
1268         WARN_ON(cur_trans != trans->transaction);
1269
1270         btrfs_scrub_pause(root);
1271         /* btrfs_commit_tree_roots is responsible for getting the
1272          * various roots consistent with each other.  Every pointer
1273          * in the tree of tree roots has to point to the most up to date
1274          * root for every subvolume and other tree.  So, we have to keep
1275          * the tree logging code from jumping in and changing any
1276          * of the trees.
1277          *
1278          * At this point in the commit, there can't be any tree-log
1279          * writers, but a little lower down we drop the trans mutex
1280          * and let new people in.  By holding the tree_log_mutex
1281          * from now until after the super is written, we avoid races
1282          * with the tree-log code.
1283          */
1284         mutex_lock(&root->fs_info->tree_log_mutex);
1285
1286         ret = commit_fs_roots(trans, root);
1287         BUG_ON(ret);
1288
1289         /* commit_fs_roots gets rid of all the tree log roots, it is now
1290          * safe to free the root of tree log roots
1291          */
1292         btrfs_free_log_root_tree(trans, root->fs_info);
1293
1294         ret = commit_cowonly_roots(trans, root);
1295         BUG_ON(ret);
1296
1297         btrfs_prepare_extent_commit(trans, root);
1298
1299         cur_trans = root->fs_info->running_transaction;
1300
1301         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1302                             root->fs_info->tree_root->node);
1303         switch_commit_root(root->fs_info->tree_root);
1304
1305         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1306                             root->fs_info->chunk_root->node);
1307         switch_commit_root(root->fs_info->chunk_root);
1308
1309         update_super_roots(root);
1310
1311         if (!root->fs_info->log_root_recovering) {
1312                 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1313                 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1314         }
1315
1316         memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1317                sizeof(*root->fs_info->super_copy));
1318
1319         trans->transaction->blocked = 0;
1320         spin_lock(&root->fs_info->trans_lock);
1321         root->fs_info->running_transaction = NULL;
1322         root->fs_info->trans_no_join = 0;
1323         spin_unlock(&root->fs_info->trans_lock);
1324         mutex_unlock(&root->fs_info->reloc_mutex);
1325
1326         wake_up(&root->fs_info->transaction_wait);
1327
1328         ret = btrfs_write_and_wait_transaction(trans, root);
1329         BUG_ON(ret);
1330         write_ctree_super(trans, root, 0);
1331
1332         /*
1333          * the super is written, we can safely allow the tree-loggers
1334          * to go about their business
1335          */
1336         mutex_unlock(&root->fs_info->tree_log_mutex);
1337
1338         btrfs_finish_extent_commit(trans, root);
1339
1340         cur_trans->commit_done = 1;
1341
1342         root->fs_info->last_trans_committed = cur_trans->transid;
1343
1344         wake_up(&cur_trans->commit_wait);
1345
1346         spin_lock(&root->fs_info->trans_lock);
1347         list_del_init(&cur_trans->list);
1348         spin_unlock(&root->fs_info->trans_lock);
1349
1350         put_transaction(cur_trans);
1351         put_transaction(cur_trans);
1352
1353         trace_btrfs_transaction_commit(root);
1354
1355         btrfs_scrub_continue(root);
1356
1357         if (current->journal_info == trans)
1358                 current->journal_info = NULL;
1359
1360         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1361
1362         if (current != root->fs_info->transaction_kthread)
1363                 btrfs_run_delayed_iputs(root);
1364
1365         return ret;
1366 }
1367
1368 /*
1369  * interface function to delete all the snapshots we have scheduled for deletion
1370  */
1371 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1372 {
1373         LIST_HEAD(list);
1374         struct btrfs_fs_info *fs_info = root->fs_info;
1375
1376         spin_lock(&fs_info->trans_lock);
1377         list_splice_init(&fs_info->dead_roots, &list);
1378         spin_unlock(&fs_info->trans_lock);
1379
1380         while (!list_empty(&list)) {
1381                 root = list_entry(list.next, struct btrfs_root, root_list);
1382                 list_del(&root->root_list);
1383
1384                 btrfs_kill_all_delayed_nodes(root);
1385
1386                 if (btrfs_header_backref_rev(root->node) <
1387                     BTRFS_MIXED_BACKREF_REV)
1388                         btrfs_drop_snapshot(root, NULL, 0);
1389                 else
1390                         btrfs_drop_snapshot(root, NULL, 1);
1391         }
1392         return 0;
1393 }