654755b189519f0b5f183642e813da2fffa92c57
[pandora-kernel.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "inode-map.h"
31
32 #define BTRFS_ROOT_TRANS_TAG 0
33
34 static noinline void put_transaction(struct btrfs_transaction *transaction)
35 {
36         WARN_ON(atomic_read(&transaction->use_count) == 0);
37         if (atomic_dec_and_test(&transaction->use_count)) {
38                 BUG_ON(!list_empty(&transaction->list));
39                 memset(transaction, 0, sizeof(*transaction));
40                 kmem_cache_free(btrfs_transaction_cachep, transaction);
41         }
42 }
43
44 static noinline void switch_commit_root(struct btrfs_root *root)
45 {
46         free_extent_buffer(root->commit_root);
47         root->commit_root = btrfs_root_node(root);
48 }
49
50 /*
51  * either allocate a new transaction or hop into the existing one
52  */
53 static noinline int join_transaction(struct btrfs_root *root, int nofail)
54 {
55         struct btrfs_transaction *cur_trans;
56
57         spin_lock(&root->fs_info->trans_lock);
58         if (root->fs_info->trans_no_join) {
59                 if (!nofail) {
60                         spin_unlock(&root->fs_info->trans_lock);
61                         return -EBUSY;
62                 }
63         }
64
65         cur_trans = root->fs_info->running_transaction;
66         if (cur_trans) {
67                 atomic_inc(&cur_trans->use_count);
68                 atomic_inc(&cur_trans->num_writers);
69                 cur_trans->num_joined++;
70                 spin_unlock(&root->fs_info->trans_lock);
71                 return 0;
72         }
73         spin_unlock(&root->fs_info->trans_lock);
74
75         cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
76         if (!cur_trans)
77                 return -ENOMEM;
78         spin_lock(&root->fs_info->trans_lock);
79         if (root->fs_info->running_transaction) {
80                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
81                 cur_trans = root->fs_info->running_transaction;
82                 atomic_inc(&cur_trans->use_count);
83                 atomic_inc(&cur_trans->num_writers);
84                 cur_trans->num_joined++;
85                 spin_unlock(&root->fs_info->trans_lock);
86                 return 0;
87         }
88         atomic_set(&cur_trans->num_writers, 1);
89         cur_trans->num_joined = 0;
90         init_waitqueue_head(&cur_trans->writer_wait);
91         init_waitqueue_head(&cur_trans->commit_wait);
92         cur_trans->in_commit = 0;
93         cur_trans->blocked = 0;
94         /*
95          * One for this trans handle, one so it will live on until we
96          * commit the transaction.
97          */
98         atomic_set(&cur_trans->use_count, 2);
99         cur_trans->commit_done = 0;
100         cur_trans->start_time = get_seconds();
101
102         cur_trans->delayed_refs.root = RB_ROOT;
103         cur_trans->delayed_refs.num_entries = 0;
104         cur_trans->delayed_refs.num_heads_ready = 0;
105         cur_trans->delayed_refs.num_heads = 0;
106         cur_trans->delayed_refs.flushing = 0;
107         cur_trans->delayed_refs.run_delayed_start = 0;
108         spin_lock_init(&cur_trans->commit_lock);
109         spin_lock_init(&cur_trans->delayed_refs.lock);
110
111         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
112         list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
113         extent_io_tree_init(&cur_trans->dirty_pages,
114                              root->fs_info->btree_inode->i_mapping);
115         root->fs_info->generation++;
116         cur_trans->transid = root->fs_info->generation;
117         root->fs_info->running_transaction = cur_trans;
118         spin_unlock(&root->fs_info->trans_lock);
119
120         return 0;
121 }
122
123 /*
124  * this does all the record keeping required to make sure that a reference
125  * counted root is properly recorded in a given transaction.  This is required
126  * to make sure the old root from before we joined the transaction is deleted
127  * when the transaction commits
128  */
129 static int record_root_in_trans(struct btrfs_trans_handle *trans,
130                                struct btrfs_root *root)
131 {
132         if (root->ref_cows && root->last_trans < trans->transid) {
133                 WARN_ON(root == root->fs_info->extent_root);
134                 WARN_ON(root->commit_root != root->node);
135
136                 /*
137                  * see below for in_trans_setup usage rules
138                  * we have the reloc mutex held now, so there
139                  * is only one writer in this function
140                  */
141                 root->in_trans_setup = 1;
142
143                 /* make sure readers find in_trans_setup before
144                  * they find our root->last_trans update
145                  */
146                 smp_wmb();
147
148                 spin_lock(&root->fs_info->fs_roots_radix_lock);
149                 if (root->last_trans == trans->transid) {
150                         spin_unlock(&root->fs_info->fs_roots_radix_lock);
151                         return 0;
152                 }
153                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
154                            (unsigned long)root->root_key.objectid,
155                            BTRFS_ROOT_TRANS_TAG);
156                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
157                 root->last_trans = trans->transid;
158
159                 /* this is pretty tricky.  We don't want to
160                  * take the relocation lock in btrfs_record_root_in_trans
161                  * unless we're really doing the first setup for this root in
162                  * this transaction.
163                  *
164                  * Normally we'd use root->last_trans as a flag to decide
165                  * if we want to take the expensive mutex.
166                  *
167                  * But, we have to set root->last_trans before we
168                  * init the relocation root, otherwise, we trip over warnings
169                  * in ctree.c.  The solution used here is to flag ourselves
170                  * with root->in_trans_setup.  When this is 1, we're still
171                  * fixing up the reloc trees and everyone must wait.
172                  *
173                  * When this is zero, they can trust root->last_trans and fly
174                  * through btrfs_record_root_in_trans without having to take the
175                  * lock.  smp_wmb() makes sure that all the writes above are
176                  * done before we pop in the zero below
177                  */
178                 btrfs_init_reloc_root(trans, root);
179                 smp_wmb();
180                 root->in_trans_setup = 0;
181         }
182         return 0;
183 }
184
185
186 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
187                                struct btrfs_root *root)
188 {
189         if (!root->ref_cows)
190                 return 0;
191
192         /*
193          * see record_root_in_trans for comments about in_trans_setup usage
194          * and barriers
195          */
196         smp_rmb();
197         if (root->last_trans == trans->transid &&
198             !root->in_trans_setup)
199                 return 0;
200
201         mutex_lock(&root->fs_info->reloc_mutex);
202         record_root_in_trans(trans, root);
203         mutex_unlock(&root->fs_info->reloc_mutex);
204
205         return 0;
206 }
207
208 /* wait for commit against the current transaction to become unblocked
209  * when this is done, it is safe to start a new transaction, but the current
210  * transaction might not be fully on disk.
211  */
212 static void wait_current_trans(struct btrfs_root *root)
213 {
214         struct btrfs_transaction *cur_trans;
215
216         spin_lock(&root->fs_info->trans_lock);
217         cur_trans = root->fs_info->running_transaction;
218         if (cur_trans && cur_trans->blocked) {
219                 DEFINE_WAIT(wait);
220                 atomic_inc(&cur_trans->use_count);
221                 spin_unlock(&root->fs_info->trans_lock);
222                 while (1) {
223                         prepare_to_wait(&root->fs_info->transaction_wait, &wait,
224                                         TASK_UNINTERRUPTIBLE);
225                         if (!cur_trans->blocked)
226                                 break;
227                         schedule();
228                 }
229                 finish_wait(&root->fs_info->transaction_wait, &wait);
230                 put_transaction(cur_trans);
231         } else {
232                 spin_unlock(&root->fs_info->trans_lock);
233         }
234 }
235
236 enum btrfs_trans_type {
237         TRANS_START,
238         TRANS_JOIN,
239         TRANS_USERSPACE,
240         TRANS_JOIN_NOLOCK,
241 };
242
243 static int may_wait_transaction(struct btrfs_root *root, int type)
244 {
245         if (root->fs_info->log_root_recovering)
246                 return 0;
247
248         if (type == TRANS_USERSPACE)
249                 return 1;
250
251         if (type == TRANS_START &&
252             !atomic_read(&root->fs_info->open_ioctl_trans))
253                 return 1;
254
255         return 0;
256 }
257
258 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
259                                                     u64 num_items, int type)
260 {
261         struct btrfs_trans_handle *h;
262         struct btrfs_transaction *cur_trans;
263         u64 num_bytes = 0;
264         int ret;
265
266         if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
267                 return ERR_PTR(-EROFS);
268
269         if (current->journal_info) {
270                 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
271                 h = current->journal_info;
272                 h->use_count++;
273                 h->orig_rsv = h->block_rsv;
274                 h->block_rsv = NULL;
275                 goto got_it;
276         }
277
278         /*
279          * Do the reservation before we join the transaction so we can do all
280          * the appropriate flushing if need be.
281          */
282         if (num_items > 0 && root != root->fs_info->chunk_root) {
283                 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
284                 ret = btrfs_block_rsv_add(NULL, root,
285                                           &root->fs_info->trans_block_rsv,
286                                           num_bytes);
287                 if (ret)
288                         return ERR_PTR(ret);
289         }
290 again:
291         h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
292         if (!h)
293                 return ERR_PTR(-ENOMEM);
294
295         if (may_wait_transaction(root, type))
296                 wait_current_trans(root);
297
298         do {
299                 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
300                 if (ret == -EBUSY)
301                         wait_current_trans(root);
302         } while (ret == -EBUSY);
303
304         if (ret < 0) {
305                 kmem_cache_free(btrfs_trans_handle_cachep, h);
306                 return ERR_PTR(ret);
307         }
308
309         cur_trans = root->fs_info->running_transaction;
310
311         h->transid = cur_trans->transid;
312         h->transaction = cur_trans;
313         h->blocks_used = 0;
314         h->bytes_reserved = 0;
315         h->delayed_ref_updates = 0;
316         h->use_count = 1;
317         h->block_rsv = NULL;
318         h->orig_rsv = NULL;
319
320         smp_mb();
321         if (cur_trans->blocked && may_wait_transaction(root, type)) {
322                 btrfs_commit_transaction(h, root);
323                 goto again;
324         }
325
326         if (num_bytes) {
327                 h->block_rsv = &root->fs_info->trans_block_rsv;
328                 h->bytes_reserved = num_bytes;
329         }
330
331 got_it:
332         btrfs_record_root_in_trans(h, root);
333
334         if (!current->journal_info && type != TRANS_USERSPACE)
335                 current->journal_info = h;
336         return h;
337 }
338
339 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
340                                                    int num_items)
341 {
342         return start_transaction(root, num_items, TRANS_START);
343 }
344 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
345 {
346         return start_transaction(root, 0, TRANS_JOIN);
347 }
348
349 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
350 {
351         return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
352 }
353
354 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
355 {
356         return start_transaction(root, 0, TRANS_USERSPACE);
357 }
358
359 /* wait for a transaction commit to be fully complete */
360 static noinline int wait_for_commit(struct btrfs_root *root,
361                                     struct btrfs_transaction *commit)
362 {
363         DEFINE_WAIT(wait);
364         while (!commit->commit_done) {
365                 prepare_to_wait(&commit->commit_wait, &wait,
366                                 TASK_UNINTERRUPTIBLE);
367                 if (commit->commit_done)
368                         break;
369                 schedule();
370         }
371         finish_wait(&commit->commit_wait, &wait);
372         return 0;
373 }
374
375 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
376 {
377         struct btrfs_transaction *cur_trans = NULL, *t;
378         int ret;
379
380         ret = 0;
381         if (transid) {
382                 if (transid <= root->fs_info->last_trans_committed)
383                         goto out;
384
385                 /* find specified transaction */
386                 spin_lock(&root->fs_info->trans_lock);
387                 list_for_each_entry(t, &root->fs_info->trans_list, list) {
388                         if (t->transid == transid) {
389                                 cur_trans = t;
390                                 atomic_inc(&cur_trans->use_count);
391                                 break;
392                         }
393                         if (t->transid > transid)
394                                 break;
395                 }
396                 spin_unlock(&root->fs_info->trans_lock);
397                 ret = -EINVAL;
398                 if (!cur_trans)
399                         goto out;  /* bad transid */
400         } else {
401                 /* find newest transaction that is committing | committed */
402                 spin_lock(&root->fs_info->trans_lock);
403                 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
404                                             list) {
405                         if (t->in_commit) {
406                                 if (t->commit_done)
407                                         break;
408                                 cur_trans = t;
409                                 atomic_inc(&cur_trans->use_count);
410                                 break;
411                         }
412                 }
413                 spin_unlock(&root->fs_info->trans_lock);
414                 if (!cur_trans)
415                         goto out;  /* nothing committing|committed */
416         }
417
418         wait_for_commit(root, cur_trans);
419
420         put_transaction(cur_trans);
421         ret = 0;
422 out:
423         return ret;
424 }
425
426 void btrfs_throttle(struct btrfs_root *root)
427 {
428         if (!atomic_read(&root->fs_info->open_ioctl_trans))
429                 wait_current_trans(root);
430 }
431
432 static int should_end_transaction(struct btrfs_trans_handle *trans,
433                                   struct btrfs_root *root)
434 {
435         int ret;
436         ret = btrfs_block_rsv_check(trans, root,
437                                     &root->fs_info->global_block_rsv, 0, 5);
438         return ret ? 1 : 0;
439 }
440
441 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
442                                  struct btrfs_root *root)
443 {
444         struct btrfs_transaction *cur_trans = trans->transaction;
445         int updates;
446
447         smp_mb();
448         if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
449                 return 1;
450
451         updates = trans->delayed_ref_updates;
452         trans->delayed_ref_updates = 0;
453         if (updates)
454                 btrfs_run_delayed_refs(trans, root, updates);
455
456         return should_end_transaction(trans, root);
457 }
458
459 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
460                           struct btrfs_root *root, int throttle, int lock)
461 {
462         struct btrfs_transaction *cur_trans = trans->transaction;
463         struct btrfs_fs_info *info = root->fs_info;
464         int count = 0;
465
466         if (--trans->use_count) {
467                 trans->block_rsv = trans->orig_rsv;
468                 return 0;
469         }
470
471         while (count < 4) {
472                 unsigned long cur = trans->delayed_ref_updates;
473                 trans->delayed_ref_updates = 0;
474                 if (cur &&
475                     trans->transaction->delayed_refs.num_heads_ready > 64) {
476                         trans->delayed_ref_updates = 0;
477
478                         /*
479                          * do a full flush if the transaction is trying
480                          * to close
481                          */
482                         if (trans->transaction->delayed_refs.flushing)
483                                 cur = 0;
484                         btrfs_run_delayed_refs(trans, root, cur);
485                 } else {
486                         break;
487                 }
488                 count++;
489         }
490
491         btrfs_trans_release_metadata(trans, root);
492
493         if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
494             should_end_transaction(trans, root)) {
495                 trans->transaction->blocked = 1;
496                 smp_wmb();
497         }
498
499         if (lock && cur_trans->blocked && !cur_trans->in_commit) {
500                 if (throttle)
501                         return btrfs_commit_transaction(trans, root);
502                 else
503                         wake_up_process(info->transaction_kthread);
504         }
505
506         WARN_ON(cur_trans != info->running_transaction);
507         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
508         atomic_dec(&cur_trans->num_writers);
509
510         smp_mb();
511         if (waitqueue_active(&cur_trans->writer_wait))
512                 wake_up(&cur_trans->writer_wait);
513         put_transaction(cur_trans);
514
515         if (current->journal_info == trans)
516                 current->journal_info = NULL;
517         memset(trans, 0, sizeof(*trans));
518         kmem_cache_free(btrfs_trans_handle_cachep, trans);
519
520         if (throttle)
521                 btrfs_run_delayed_iputs(root);
522
523         return 0;
524 }
525
526 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
527                           struct btrfs_root *root)
528 {
529         int ret;
530
531         ret = __btrfs_end_transaction(trans, root, 0, 1);
532         if (ret)
533                 return ret;
534         return 0;
535 }
536
537 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
538                                    struct btrfs_root *root)
539 {
540         int ret;
541
542         ret = __btrfs_end_transaction(trans, root, 1, 1);
543         if (ret)
544                 return ret;
545         return 0;
546 }
547
548 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
549                                  struct btrfs_root *root)
550 {
551         int ret;
552
553         ret = __btrfs_end_transaction(trans, root, 0, 0);
554         if (ret)
555                 return ret;
556         return 0;
557 }
558
559 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
560                                 struct btrfs_root *root)
561 {
562         return __btrfs_end_transaction(trans, root, 1, 1);
563 }
564
565 /*
566  * when btree blocks are allocated, they have some corresponding bits set for
567  * them in one of two extent_io trees.  This is used to make sure all of
568  * those extents are sent to disk but does not wait on them
569  */
570 int btrfs_write_marked_extents(struct btrfs_root *root,
571                                struct extent_io_tree *dirty_pages, int mark)
572 {
573         int ret;
574         int err = 0;
575         int werr = 0;
576         struct page *page;
577         struct inode *btree_inode = root->fs_info->btree_inode;
578         u64 start = 0;
579         u64 end;
580         unsigned long index;
581
582         while (1) {
583                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
584                                             mark);
585                 if (ret)
586                         break;
587                 while (start <= end) {
588                         cond_resched();
589
590                         index = start >> PAGE_CACHE_SHIFT;
591                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
592                         page = find_get_page(btree_inode->i_mapping, index);
593                         if (!page)
594                                 continue;
595
596                         btree_lock_page_hook(page);
597                         if (!page->mapping) {
598                                 unlock_page(page);
599                                 page_cache_release(page);
600                                 continue;
601                         }
602
603                         if (PageWriteback(page)) {
604                                 if (PageDirty(page))
605                                         wait_on_page_writeback(page);
606                                 else {
607                                         unlock_page(page);
608                                         page_cache_release(page);
609                                         continue;
610                                 }
611                         }
612                         err = write_one_page(page, 0);
613                         if (err)
614                                 werr = err;
615                         page_cache_release(page);
616                 }
617         }
618         if (err)
619                 werr = err;
620         return werr;
621 }
622
623 /*
624  * when btree blocks are allocated, they have some corresponding bits set for
625  * them in one of two extent_io trees.  This is used to make sure all of
626  * those extents are on disk for transaction or log commit.  We wait
627  * on all the pages and clear them from the dirty pages state tree
628  */
629 int btrfs_wait_marked_extents(struct btrfs_root *root,
630                               struct extent_io_tree *dirty_pages, int mark)
631 {
632         int ret;
633         int err = 0;
634         int werr = 0;
635         struct page *page;
636         struct inode *btree_inode = root->fs_info->btree_inode;
637         u64 start = 0;
638         u64 end;
639         unsigned long index;
640
641         while (1) {
642                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
643                                             mark);
644                 if (ret)
645                         break;
646
647                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
648                 while (start <= end) {
649                         index = start >> PAGE_CACHE_SHIFT;
650                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
651                         page = find_get_page(btree_inode->i_mapping, index);
652                         if (!page)
653                                 continue;
654                         if (PageDirty(page)) {
655                                 btree_lock_page_hook(page);
656                                 wait_on_page_writeback(page);
657                                 err = write_one_page(page, 0);
658                                 if (err)
659                                         werr = err;
660                         }
661                         wait_on_page_writeback(page);
662                         page_cache_release(page);
663                         cond_resched();
664                 }
665         }
666         if (err)
667                 werr = err;
668         return werr;
669 }
670
671 /*
672  * when btree blocks are allocated, they have some corresponding bits set for
673  * them in one of two extent_io trees.  This is used to make sure all of
674  * those extents are on disk for transaction or log commit
675  */
676 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
677                                 struct extent_io_tree *dirty_pages, int mark)
678 {
679         int ret;
680         int ret2;
681
682         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
683         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
684         return ret || ret2;
685 }
686
687 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
688                                      struct btrfs_root *root)
689 {
690         if (!trans || !trans->transaction) {
691                 struct inode *btree_inode;
692                 btree_inode = root->fs_info->btree_inode;
693                 return filemap_write_and_wait(btree_inode->i_mapping);
694         }
695         return btrfs_write_and_wait_marked_extents(root,
696                                            &trans->transaction->dirty_pages,
697                                            EXTENT_DIRTY);
698 }
699
700 /*
701  * this is used to update the root pointer in the tree of tree roots.
702  *
703  * But, in the case of the extent allocation tree, updating the root
704  * pointer may allocate blocks which may change the root of the extent
705  * allocation tree.
706  *
707  * So, this loops and repeats and makes sure the cowonly root didn't
708  * change while the root pointer was being updated in the metadata.
709  */
710 static int update_cowonly_root(struct btrfs_trans_handle *trans,
711                                struct btrfs_root *root)
712 {
713         int ret;
714         u64 old_root_bytenr;
715         u64 old_root_used;
716         struct btrfs_root *tree_root = root->fs_info->tree_root;
717
718         old_root_used = btrfs_root_used(&root->root_item);
719         btrfs_write_dirty_block_groups(trans, root);
720
721         while (1) {
722                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
723                 if (old_root_bytenr == root->node->start &&
724                     old_root_used == btrfs_root_used(&root->root_item))
725                         break;
726
727                 btrfs_set_root_node(&root->root_item, root->node);
728                 ret = btrfs_update_root(trans, tree_root,
729                                         &root->root_key,
730                                         &root->root_item);
731                 BUG_ON(ret);
732
733                 old_root_used = btrfs_root_used(&root->root_item);
734                 ret = btrfs_write_dirty_block_groups(trans, root);
735                 BUG_ON(ret);
736         }
737
738         if (root != root->fs_info->extent_root)
739                 switch_commit_root(root);
740
741         return 0;
742 }
743
744 /*
745  * update all the cowonly tree roots on disk
746  */
747 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
748                                          struct btrfs_root *root)
749 {
750         struct btrfs_fs_info *fs_info = root->fs_info;
751         struct list_head *next;
752         struct extent_buffer *eb;
753         int ret;
754
755         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
756         BUG_ON(ret);
757
758         eb = btrfs_lock_root_node(fs_info->tree_root);
759         btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
760         btrfs_tree_unlock(eb);
761         free_extent_buffer(eb);
762
763         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
764         BUG_ON(ret);
765
766         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
767                 next = fs_info->dirty_cowonly_roots.next;
768                 list_del_init(next);
769                 root = list_entry(next, struct btrfs_root, dirty_list);
770
771                 update_cowonly_root(trans, root);
772         }
773
774         down_write(&fs_info->extent_commit_sem);
775         switch_commit_root(fs_info->extent_root);
776         up_write(&fs_info->extent_commit_sem);
777
778         return 0;
779 }
780
781 /*
782  * dead roots are old snapshots that need to be deleted.  This allocates
783  * a dirty root struct and adds it into the list of dead roots that need to
784  * be deleted
785  */
786 int btrfs_add_dead_root(struct btrfs_root *root)
787 {
788         spin_lock(&root->fs_info->trans_lock);
789         list_add(&root->root_list, &root->fs_info->dead_roots);
790         spin_unlock(&root->fs_info->trans_lock);
791         return 0;
792 }
793
794 /*
795  * update all the cowonly tree roots on disk
796  */
797 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
798                                     struct btrfs_root *root)
799 {
800         struct btrfs_root *gang[8];
801         struct btrfs_fs_info *fs_info = root->fs_info;
802         int i;
803         int ret;
804         int err = 0;
805
806         spin_lock(&fs_info->fs_roots_radix_lock);
807         while (1) {
808                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
809                                                  (void **)gang, 0,
810                                                  ARRAY_SIZE(gang),
811                                                  BTRFS_ROOT_TRANS_TAG);
812                 if (ret == 0)
813                         break;
814                 for (i = 0; i < ret; i++) {
815                         root = gang[i];
816                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
817                                         (unsigned long)root->root_key.objectid,
818                                         BTRFS_ROOT_TRANS_TAG);
819                         spin_unlock(&fs_info->fs_roots_radix_lock);
820
821                         btrfs_free_log(trans, root);
822                         btrfs_update_reloc_root(trans, root);
823                         btrfs_orphan_commit_root(trans, root);
824
825                         btrfs_save_ino_cache(root, trans);
826
827                         if (root->commit_root != root->node) {
828                                 mutex_lock(&root->fs_commit_mutex);
829                                 switch_commit_root(root);
830                                 btrfs_unpin_free_ino(root);
831                                 mutex_unlock(&root->fs_commit_mutex);
832
833                                 btrfs_set_root_node(&root->root_item,
834                                                     root->node);
835                         }
836
837                         err = btrfs_update_root(trans, fs_info->tree_root,
838                                                 &root->root_key,
839                                                 &root->root_item);
840                         spin_lock(&fs_info->fs_roots_radix_lock);
841                         if (err)
842                                 break;
843                 }
844         }
845         spin_unlock(&fs_info->fs_roots_radix_lock);
846         return err;
847 }
848
849 /*
850  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
851  * otherwise every leaf in the btree is read and defragged.
852  */
853 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
854 {
855         struct btrfs_fs_info *info = root->fs_info;
856         struct btrfs_trans_handle *trans;
857         int ret;
858         unsigned long nr;
859
860         if (xchg(&root->defrag_running, 1))
861                 return 0;
862
863         while (1) {
864                 trans = btrfs_start_transaction(root, 0);
865                 if (IS_ERR(trans))
866                         return PTR_ERR(trans);
867
868                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
869
870                 nr = trans->blocks_used;
871                 btrfs_end_transaction(trans, root);
872                 btrfs_btree_balance_dirty(info->tree_root, nr);
873                 cond_resched();
874
875                 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
876                         break;
877         }
878         root->defrag_running = 0;
879         return ret;
880 }
881
882 /*
883  * new snapshots need to be created at a very specific time in the
884  * transaction commit.  This does the actual creation
885  */
886 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
887                                    struct btrfs_fs_info *fs_info,
888                                    struct btrfs_pending_snapshot *pending)
889 {
890         struct btrfs_key key;
891         struct btrfs_root_item *new_root_item;
892         struct btrfs_root *tree_root = fs_info->tree_root;
893         struct btrfs_root *root = pending->root;
894         struct btrfs_root *parent_root;
895         struct inode *parent_inode;
896         struct dentry *parent;
897         struct dentry *dentry;
898         struct extent_buffer *tmp;
899         struct extent_buffer *old;
900         int ret;
901         u64 to_reserve = 0;
902         u64 index = 0;
903         u64 objectid;
904         u64 root_flags;
905
906         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
907         if (!new_root_item) {
908                 pending->error = -ENOMEM;
909                 goto fail;
910         }
911
912         ret = btrfs_find_free_objectid(tree_root, &objectid);
913         if (ret) {
914                 pending->error = ret;
915                 goto fail;
916         }
917
918         btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
919         btrfs_orphan_pre_snapshot(trans, pending, &to_reserve);
920
921         if (to_reserve > 0) {
922                 ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
923                                           to_reserve);
924                 if (ret) {
925                         pending->error = ret;
926                         goto fail;
927                 }
928         }
929
930         key.objectid = objectid;
931         key.offset = (u64)-1;
932         key.type = BTRFS_ROOT_ITEM_KEY;
933
934         trans->block_rsv = &pending->block_rsv;
935
936         dentry = pending->dentry;
937         parent = dget_parent(dentry);
938         parent_inode = parent->d_inode;
939         parent_root = BTRFS_I(parent_inode)->root;
940         record_root_in_trans(trans, parent_root);
941
942         /*
943          * insert the directory item
944          */
945         ret = btrfs_set_inode_index(parent_inode, &index);
946         BUG_ON(ret);
947         ret = btrfs_insert_dir_item(trans, parent_root,
948                                 dentry->d_name.name, dentry->d_name.len,
949                                 parent_inode, &key,
950                                 BTRFS_FT_DIR, index);
951         BUG_ON(ret);
952
953         btrfs_i_size_write(parent_inode, parent_inode->i_size +
954                                          dentry->d_name.len * 2);
955         ret = btrfs_update_inode(trans, parent_root, parent_inode);
956         BUG_ON(ret);
957
958         /*
959          * pull in the delayed directory update
960          * and the delayed inode item
961          * otherwise we corrupt the FS during
962          * snapshot
963          */
964         ret = btrfs_run_delayed_items(trans, root);
965         BUG_ON(ret);
966
967         record_root_in_trans(trans, root);
968         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
969         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
970         btrfs_check_and_init_root_item(new_root_item);
971
972         root_flags = btrfs_root_flags(new_root_item);
973         if (pending->readonly)
974                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
975         else
976                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
977         btrfs_set_root_flags(new_root_item, root_flags);
978
979         old = btrfs_lock_root_node(root);
980         btrfs_cow_block(trans, root, old, NULL, 0, &old);
981         btrfs_set_lock_blocking(old);
982
983         btrfs_copy_root(trans, root, old, &tmp, objectid);
984         btrfs_tree_unlock(old);
985         free_extent_buffer(old);
986
987         btrfs_set_root_node(new_root_item, tmp);
988         /* record when the snapshot was created in key.offset */
989         key.offset = trans->transid;
990         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
991         btrfs_tree_unlock(tmp);
992         free_extent_buffer(tmp);
993         BUG_ON(ret);
994
995         /*
996          * insert root back/forward references
997          */
998         ret = btrfs_add_root_ref(trans, tree_root, objectid,
999                                  parent_root->root_key.objectid,
1000                                  btrfs_ino(parent_inode), index,
1001                                  dentry->d_name.name, dentry->d_name.len);
1002         BUG_ON(ret);
1003         dput(parent);
1004
1005         key.offset = (u64)-1;
1006         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1007         BUG_ON(IS_ERR(pending->snap));
1008
1009         btrfs_reloc_post_snapshot(trans, pending);
1010         btrfs_orphan_post_snapshot(trans, pending);
1011 fail:
1012         kfree(new_root_item);
1013         btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1014         return 0;
1015 }
1016
1017 /*
1018  * create all the snapshots we've scheduled for creation
1019  */
1020 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1021                                              struct btrfs_fs_info *fs_info)
1022 {
1023         struct btrfs_pending_snapshot *pending;
1024         struct list_head *head = &trans->transaction->pending_snapshots;
1025         int ret;
1026
1027         list_for_each_entry(pending, head, list) {
1028                 ret = create_pending_snapshot(trans, fs_info, pending);
1029                 BUG_ON(ret);
1030         }
1031         return 0;
1032 }
1033
1034 static void update_super_roots(struct btrfs_root *root)
1035 {
1036         struct btrfs_root_item *root_item;
1037         struct btrfs_super_block *super;
1038
1039         super = &root->fs_info->super_copy;
1040
1041         root_item = &root->fs_info->chunk_root->root_item;
1042         super->chunk_root = root_item->bytenr;
1043         super->chunk_root_generation = root_item->generation;
1044         super->chunk_root_level = root_item->level;
1045
1046         root_item = &root->fs_info->tree_root->root_item;
1047         super->root = root_item->bytenr;
1048         super->generation = root_item->generation;
1049         super->root_level = root_item->level;
1050         if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE))
1051                 super->cache_generation = root_item->generation;
1052 }
1053
1054 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1055 {
1056         int ret = 0;
1057         spin_lock(&info->trans_lock);
1058         if (info->running_transaction)
1059                 ret = info->running_transaction->in_commit;
1060         spin_unlock(&info->trans_lock);
1061         return ret;
1062 }
1063
1064 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1065 {
1066         int ret = 0;
1067         spin_lock(&info->trans_lock);
1068         if (info->running_transaction)
1069                 ret = info->running_transaction->blocked;
1070         spin_unlock(&info->trans_lock);
1071         return ret;
1072 }
1073
1074 /*
1075  * wait for the current transaction commit to start and block subsequent
1076  * transaction joins
1077  */
1078 static void wait_current_trans_commit_start(struct btrfs_root *root,
1079                                             struct btrfs_transaction *trans)
1080 {
1081         DEFINE_WAIT(wait);
1082
1083         if (trans->in_commit)
1084                 return;
1085
1086         while (1) {
1087                 prepare_to_wait(&root->fs_info->transaction_blocked_wait, &wait,
1088                                 TASK_UNINTERRUPTIBLE);
1089                 if (trans->in_commit) {
1090                         finish_wait(&root->fs_info->transaction_blocked_wait,
1091                                     &wait);
1092                         break;
1093                 }
1094                 schedule();
1095                 finish_wait(&root->fs_info->transaction_blocked_wait, &wait);
1096         }
1097 }
1098
1099 /*
1100  * wait for the current transaction to start and then become unblocked.
1101  * caller holds ref.
1102  */
1103 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1104                                          struct btrfs_transaction *trans)
1105 {
1106         DEFINE_WAIT(wait);
1107
1108         if (trans->commit_done || (trans->in_commit && !trans->blocked))
1109                 return;
1110
1111         while (1) {
1112                 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
1113                                 TASK_UNINTERRUPTIBLE);
1114                 if (trans->commit_done ||
1115                     (trans->in_commit && !trans->blocked)) {
1116                         finish_wait(&root->fs_info->transaction_wait,
1117                                     &wait);
1118                         break;
1119                 }
1120                 schedule();
1121                 finish_wait(&root->fs_info->transaction_wait,
1122                             &wait);
1123         }
1124 }
1125
1126 /*
1127  * commit transactions asynchronously. once btrfs_commit_transaction_async
1128  * returns, any subsequent transaction will not be allowed to join.
1129  */
1130 struct btrfs_async_commit {
1131         struct btrfs_trans_handle *newtrans;
1132         struct btrfs_root *root;
1133         struct delayed_work work;
1134 };
1135
1136 static void do_async_commit(struct work_struct *work)
1137 {
1138         struct btrfs_async_commit *ac =
1139                 container_of(work, struct btrfs_async_commit, work.work);
1140
1141         btrfs_commit_transaction(ac->newtrans, ac->root);
1142         kfree(ac);
1143 }
1144
1145 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1146                                    struct btrfs_root *root,
1147                                    int wait_for_unblock)
1148 {
1149         struct btrfs_async_commit *ac;
1150         struct btrfs_transaction *cur_trans;
1151
1152         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1153         if (!ac)
1154                 return -ENOMEM;
1155
1156         INIT_DELAYED_WORK(&ac->work, do_async_commit);
1157         ac->root = root;
1158         ac->newtrans = btrfs_join_transaction(root);
1159         if (IS_ERR(ac->newtrans)) {
1160                 int err = PTR_ERR(ac->newtrans);
1161                 kfree(ac);
1162                 return err;
1163         }
1164
1165         /* take transaction reference */
1166         cur_trans = trans->transaction;
1167         atomic_inc(&cur_trans->use_count);
1168
1169         btrfs_end_transaction(trans, root);
1170         schedule_delayed_work(&ac->work, 0);
1171
1172         /* wait for transaction to start and unblock */
1173         if (wait_for_unblock)
1174                 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1175         else
1176                 wait_current_trans_commit_start(root, cur_trans);
1177
1178         if (current->journal_info == trans)
1179                 current->journal_info = NULL;
1180
1181         put_transaction(cur_trans);
1182         return 0;
1183 }
1184
1185 /*
1186  * btrfs_transaction state sequence:
1187  *    in_commit = 0, blocked = 0  (initial)
1188  *    in_commit = 1, blocked = 1
1189  *    blocked = 0
1190  *    commit_done = 1
1191  */
1192 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1193                              struct btrfs_root *root)
1194 {
1195         unsigned long joined = 0;
1196         struct btrfs_transaction *cur_trans;
1197         struct btrfs_transaction *prev_trans = NULL;
1198         DEFINE_WAIT(wait);
1199         int ret;
1200         int should_grow = 0;
1201         unsigned long now = get_seconds();
1202         int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1203
1204         btrfs_run_ordered_operations(root, 0);
1205
1206         /* make a pass through all the delayed refs we have so far
1207          * any runnings procs may add more while we are here
1208          */
1209         ret = btrfs_run_delayed_refs(trans, root, 0);
1210         BUG_ON(ret);
1211
1212         btrfs_trans_release_metadata(trans, root);
1213
1214         cur_trans = trans->transaction;
1215         /*
1216          * set the flushing flag so procs in this transaction have to
1217          * start sending their work down.
1218          */
1219         cur_trans->delayed_refs.flushing = 1;
1220
1221         ret = btrfs_run_delayed_refs(trans, root, 0);
1222         BUG_ON(ret);
1223
1224         spin_lock(&cur_trans->commit_lock);
1225         if (cur_trans->in_commit) {
1226                 spin_unlock(&cur_trans->commit_lock);
1227                 atomic_inc(&cur_trans->use_count);
1228                 btrfs_end_transaction(trans, root);
1229
1230                 ret = wait_for_commit(root, cur_trans);
1231                 BUG_ON(ret);
1232
1233                 put_transaction(cur_trans);
1234
1235                 return 0;
1236         }
1237
1238         trans->transaction->in_commit = 1;
1239         trans->transaction->blocked = 1;
1240         spin_unlock(&cur_trans->commit_lock);
1241         wake_up(&root->fs_info->transaction_blocked_wait);
1242
1243         spin_lock(&root->fs_info->trans_lock);
1244         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1245                 prev_trans = list_entry(cur_trans->list.prev,
1246                                         struct btrfs_transaction, list);
1247                 if (!prev_trans->commit_done) {
1248                         atomic_inc(&prev_trans->use_count);
1249                         spin_unlock(&root->fs_info->trans_lock);
1250
1251                         wait_for_commit(root, prev_trans);
1252
1253                         put_transaction(prev_trans);
1254                 } else {
1255                         spin_unlock(&root->fs_info->trans_lock);
1256                 }
1257         } else {
1258                 spin_unlock(&root->fs_info->trans_lock);
1259         }
1260
1261         if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1262                 should_grow = 1;
1263
1264         do {
1265                 int snap_pending = 0;
1266
1267                 joined = cur_trans->num_joined;
1268                 if (!list_empty(&trans->transaction->pending_snapshots))
1269                         snap_pending = 1;
1270
1271                 WARN_ON(cur_trans != trans->transaction);
1272
1273                 if (flush_on_commit || snap_pending) {
1274                         btrfs_start_delalloc_inodes(root, 1);
1275                         ret = btrfs_wait_ordered_extents(root, 0, 1);
1276                         BUG_ON(ret);
1277                 }
1278
1279                 ret = btrfs_run_delayed_items(trans, root);
1280                 BUG_ON(ret);
1281
1282                 /*
1283                  * rename don't use btrfs_join_transaction, so, once we
1284                  * set the transaction to blocked above, we aren't going
1285                  * to get any new ordered operations.  We can safely run
1286                  * it here and no for sure that nothing new will be added
1287                  * to the list
1288                  */
1289                 btrfs_run_ordered_operations(root, 1);
1290
1291                 prepare_to_wait(&cur_trans->writer_wait, &wait,
1292                                 TASK_UNINTERRUPTIBLE);
1293
1294                 if (atomic_read(&cur_trans->num_writers) > 1)
1295                         schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1296                 else if (should_grow)
1297                         schedule_timeout(1);
1298
1299                 finish_wait(&cur_trans->writer_wait, &wait);
1300         } while (atomic_read(&cur_trans->num_writers) > 1 ||
1301                  (should_grow && cur_trans->num_joined != joined));
1302
1303         /*
1304          * Ok now we need to make sure to block out any other joins while we
1305          * commit the transaction.  We could have started a join before setting
1306          * no_join so make sure to wait for num_writers to == 1 again.
1307          */
1308         spin_lock(&root->fs_info->trans_lock);
1309         root->fs_info->trans_no_join = 1;
1310         spin_unlock(&root->fs_info->trans_lock);
1311         wait_event(cur_trans->writer_wait,
1312                    atomic_read(&cur_trans->num_writers) == 1);
1313
1314         /*
1315          * the reloc mutex makes sure that we stop
1316          * the balancing code from coming in and moving
1317          * extents around in the middle of the commit
1318          */
1319         mutex_lock(&root->fs_info->reloc_mutex);
1320
1321         ret = btrfs_run_delayed_items(trans, root);
1322         BUG_ON(ret);
1323
1324         ret = create_pending_snapshots(trans, root->fs_info);
1325         BUG_ON(ret);
1326
1327         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1328         BUG_ON(ret);
1329
1330         /*
1331          * make sure none of the code above managed to slip in a
1332          * delayed item
1333          */
1334         btrfs_assert_delayed_root_empty(root);
1335
1336         WARN_ON(cur_trans != trans->transaction);
1337
1338         btrfs_scrub_pause(root);
1339         /* btrfs_commit_tree_roots is responsible for getting the
1340          * various roots consistent with each other.  Every pointer
1341          * in the tree of tree roots has to point to the most up to date
1342          * root for every subvolume and other tree.  So, we have to keep
1343          * the tree logging code from jumping in and changing any
1344          * of the trees.
1345          *
1346          * At this point in the commit, there can't be any tree-log
1347          * writers, but a little lower down we drop the trans mutex
1348          * and let new people in.  By holding the tree_log_mutex
1349          * from now until after the super is written, we avoid races
1350          * with the tree-log code.
1351          */
1352         mutex_lock(&root->fs_info->tree_log_mutex);
1353
1354         ret = commit_fs_roots(trans, root);
1355         BUG_ON(ret);
1356
1357         /* commit_fs_roots gets rid of all the tree log roots, it is now
1358          * safe to free the root of tree log roots
1359          */
1360         btrfs_free_log_root_tree(trans, root->fs_info);
1361
1362         ret = commit_cowonly_roots(trans, root);
1363         BUG_ON(ret);
1364
1365         btrfs_prepare_extent_commit(trans, root);
1366
1367         cur_trans = root->fs_info->running_transaction;
1368
1369         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1370                             root->fs_info->tree_root->node);
1371         switch_commit_root(root->fs_info->tree_root);
1372
1373         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1374                             root->fs_info->chunk_root->node);
1375         switch_commit_root(root->fs_info->chunk_root);
1376
1377         update_super_roots(root);
1378
1379         if (!root->fs_info->log_root_recovering) {
1380                 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1381                 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1382         }
1383
1384         memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1385                sizeof(root->fs_info->super_copy));
1386
1387         trans->transaction->blocked = 0;
1388         spin_lock(&root->fs_info->trans_lock);
1389         root->fs_info->running_transaction = NULL;
1390         root->fs_info->trans_no_join = 0;
1391         spin_unlock(&root->fs_info->trans_lock);
1392         mutex_unlock(&root->fs_info->reloc_mutex);
1393
1394         wake_up(&root->fs_info->transaction_wait);
1395
1396         ret = btrfs_write_and_wait_transaction(trans, root);
1397         BUG_ON(ret);
1398         write_ctree_super(trans, root, 0);
1399
1400         /*
1401          * the super is written, we can safely allow the tree-loggers
1402          * to go about their business
1403          */
1404         mutex_unlock(&root->fs_info->tree_log_mutex);
1405
1406         btrfs_finish_extent_commit(trans, root);
1407
1408         cur_trans->commit_done = 1;
1409
1410         root->fs_info->last_trans_committed = cur_trans->transid;
1411
1412         wake_up(&cur_trans->commit_wait);
1413
1414         spin_lock(&root->fs_info->trans_lock);
1415         list_del_init(&cur_trans->list);
1416         spin_unlock(&root->fs_info->trans_lock);
1417
1418         put_transaction(cur_trans);
1419         put_transaction(cur_trans);
1420
1421         trace_btrfs_transaction_commit(root);
1422
1423         btrfs_scrub_continue(root);
1424
1425         if (current->journal_info == trans)
1426                 current->journal_info = NULL;
1427
1428         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1429
1430         if (current != root->fs_info->transaction_kthread)
1431                 btrfs_run_delayed_iputs(root);
1432
1433         return ret;
1434 }
1435
1436 /*
1437  * interface function to delete all the snapshots we have scheduled for deletion
1438  */
1439 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1440 {
1441         LIST_HEAD(list);
1442         struct btrfs_fs_info *fs_info = root->fs_info;
1443
1444         spin_lock(&fs_info->trans_lock);
1445         list_splice_init(&fs_info->dead_roots, &list);
1446         spin_unlock(&fs_info->trans_lock);
1447
1448         while (!list_empty(&list)) {
1449                 root = list_entry(list.next, struct btrfs_root, root_list);
1450                 list_del(&root->root_list);
1451
1452                 btrfs_kill_all_delayed_nodes(root);
1453
1454                 if (btrfs_header_backref_rev(root->node) <
1455                     BTRFS_MIXED_BACKREF_REV)
1456                         btrfs_drop_snapshot(root, NULL, 0);
1457                 else
1458                         btrfs_drop_snapshot(root, NULL, 1);
1459         }
1460         return 0;
1461 }