Merge branch 'stable/bug.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[pandora-kernel.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "inode-map.h"
31
32 #define BTRFS_ROOT_TRANS_TAG 0
33
34 static noinline void put_transaction(struct btrfs_transaction *transaction)
35 {
36         WARN_ON(atomic_read(&transaction->use_count) == 0);
37         if (atomic_dec_and_test(&transaction->use_count)) {
38                 BUG_ON(!list_empty(&transaction->list));
39                 memset(transaction, 0, sizeof(*transaction));
40                 kmem_cache_free(btrfs_transaction_cachep, transaction);
41         }
42 }
43
44 static noinline void switch_commit_root(struct btrfs_root *root)
45 {
46         free_extent_buffer(root->commit_root);
47         root->commit_root = btrfs_root_node(root);
48 }
49
50 /*
51  * either allocate a new transaction or hop into the existing one
52  */
53 static noinline int join_transaction(struct btrfs_root *root, int nofail)
54 {
55         struct btrfs_transaction *cur_trans;
56
57         spin_lock(&root->fs_info->trans_lock);
58         if (root->fs_info->trans_no_join) {
59                 if (!nofail) {
60                         spin_unlock(&root->fs_info->trans_lock);
61                         return -EBUSY;
62                 }
63         }
64
65         cur_trans = root->fs_info->running_transaction;
66         if (cur_trans) {
67                 atomic_inc(&cur_trans->use_count);
68                 atomic_inc(&cur_trans->num_writers);
69                 cur_trans->num_joined++;
70                 spin_unlock(&root->fs_info->trans_lock);
71                 return 0;
72         }
73         spin_unlock(&root->fs_info->trans_lock);
74
75         cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
76         if (!cur_trans)
77                 return -ENOMEM;
78         spin_lock(&root->fs_info->trans_lock);
79         if (root->fs_info->running_transaction) {
80                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
81                 cur_trans = root->fs_info->running_transaction;
82                 atomic_inc(&cur_trans->use_count);
83                 atomic_inc(&cur_trans->num_writers);
84                 cur_trans->num_joined++;
85                 spin_unlock(&root->fs_info->trans_lock);
86                 return 0;
87         }
88         atomic_set(&cur_trans->num_writers, 1);
89         cur_trans->num_joined = 0;
90         init_waitqueue_head(&cur_trans->writer_wait);
91         init_waitqueue_head(&cur_trans->commit_wait);
92         cur_trans->in_commit = 0;
93         cur_trans->blocked = 0;
94         /*
95          * One for this trans handle, one so it will live on until we
96          * commit the transaction.
97          */
98         atomic_set(&cur_trans->use_count, 2);
99         cur_trans->commit_done = 0;
100         cur_trans->start_time = get_seconds();
101
102         cur_trans->delayed_refs.root = RB_ROOT;
103         cur_trans->delayed_refs.num_entries = 0;
104         cur_trans->delayed_refs.num_heads_ready = 0;
105         cur_trans->delayed_refs.num_heads = 0;
106         cur_trans->delayed_refs.flushing = 0;
107         cur_trans->delayed_refs.run_delayed_start = 0;
108         spin_lock_init(&cur_trans->commit_lock);
109         spin_lock_init(&cur_trans->delayed_refs.lock);
110
111         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
112         list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
113         extent_io_tree_init(&cur_trans->dirty_pages,
114                              root->fs_info->btree_inode->i_mapping);
115         root->fs_info->generation++;
116         cur_trans->transid = root->fs_info->generation;
117         root->fs_info->running_transaction = cur_trans;
118         spin_unlock(&root->fs_info->trans_lock);
119
120         return 0;
121 }
122
123 /*
124  * this does all the record keeping required to make sure that a reference
125  * counted root is properly recorded in a given transaction.  This is required
126  * to make sure the old root from before we joined the transaction is deleted
127  * when the transaction commits
128  */
129 static int record_root_in_trans(struct btrfs_trans_handle *trans,
130                                struct btrfs_root *root)
131 {
132         if (root->ref_cows && root->last_trans < trans->transid) {
133                 WARN_ON(root == root->fs_info->extent_root);
134                 WARN_ON(root->commit_root != root->node);
135
136                 /*
137                  * see below for in_trans_setup usage rules
138                  * we have the reloc mutex held now, so there
139                  * is only one writer in this function
140                  */
141                 root->in_trans_setup = 1;
142
143                 /* make sure readers find in_trans_setup before
144                  * they find our root->last_trans update
145                  */
146                 smp_wmb();
147
148                 spin_lock(&root->fs_info->fs_roots_radix_lock);
149                 if (root->last_trans == trans->transid) {
150                         spin_unlock(&root->fs_info->fs_roots_radix_lock);
151                         return 0;
152                 }
153                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
154                            (unsigned long)root->root_key.objectid,
155                            BTRFS_ROOT_TRANS_TAG);
156                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
157                 root->last_trans = trans->transid;
158
159                 /* this is pretty tricky.  We don't want to
160                  * take the relocation lock in btrfs_record_root_in_trans
161                  * unless we're really doing the first setup for this root in
162                  * this transaction.
163                  *
164                  * Normally we'd use root->last_trans as a flag to decide
165                  * if we want to take the expensive mutex.
166                  *
167                  * But, we have to set root->last_trans before we
168                  * init the relocation root, otherwise, we trip over warnings
169                  * in ctree.c.  The solution used here is to flag ourselves
170                  * with root->in_trans_setup.  When this is 1, we're still
171                  * fixing up the reloc trees and everyone must wait.
172                  *
173                  * When this is zero, they can trust root->last_trans and fly
174                  * through btrfs_record_root_in_trans without having to take the
175                  * lock.  smp_wmb() makes sure that all the writes above are
176                  * done before we pop in the zero below
177                  */
178                 btrfs_init_reloc_root(trans, root);
179                 smp_wmb();
180                 root->in_trans_setup = 0;
181         }
182         return 0;
183 }
184
185
186 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
187                                struct btrfs_root *root)
188 {
189         if (!root->ref_cows)
190                 return 0;
191
192         /*
193          * see record_root_in_trans for comments about in_trans_setup usage
194          * and barriers
195          */
196         smp_rmb();
197         if (root->last_trans == trans->transid &&
198             !root->in_trans_setup)
199                 return 0;
200
201         mutex_lock(&root->fs_info->reloc_mutex);
202         record_root_in_trans(trans, root);
203         mutex_unlock(&root->fs_info->reloc_mutex);
204
205         return 0;
206 }
207
208 /* wait for commit against the current transaction to become unblocked
209  * when this is done, it is safe to start a new transaction, but the current
210  * transaction might not be fully on disk.
211  */
212 static void wait_current_trans(struct btrfs_root *root)
213 {
214         struct btrfs_transaction *cur_trans;
215
216         spin_lock(&root->fs_info->trans_lock);
217         cur_trans = root->fs_info->running_transaction;
218         if (cur_trans && cur_trans->blocked) {
219                 DEFINE_WAIT(wait);
220                 atomic_inc(&cur_trans->use_count);
221                 spin_unlock(&root->fs_info->trans_lock);
222                 while (1) {
223                         prepare_to_wait(&root->fs_info->transaction_wait, &wait,
224                                         TASK_UNINTERRUPTIBLE);
225                         if (!cur_trans->blocked)
226                                 break;
227                         schedule();
228                 }
229                 finish_wait(&root->fs_info->transaction_wait, &wait);
230                 put_transaction(cur_trans);
231         } else {
232                 spin_unlock(&root->fs_info->trans_lock);
233         }
234 }
235
236 enum btrfs_trans_type {
237         TRANS_START,
238         TRANS_JOIN,
239         TRANS_USERSPACE,
240         TRANS_JOIN_NOLOCK,
241 };
242
243 static int may_wait_transaction(struct btrfs_root *root, int type)
244 {
245         if (root->fs_info->log_root_recovering)
246                 return 0;
247
248         if (type == TRANS_USERSPACE)
249                 return 1;
250
251         if (type == TRANS_START &&
252             !atomic_read(&root->fs_info->open_ioctl_trans))
253                 return 1;
254
255         return 0;
256 }
257
258 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
259                                                     u64 num_items, int type)
260 {
261         struct btrfs_trans_handle *h;
262         struct btrfs_transaction *cur_trans;
263         int retries = 0;
264         int ret;
265
266         if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
267                 return ERR_PTR(-EROFS);
268
269         if (current->journal_info) {
270                 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
271                 h = current->journal_info;
272                 h->use_count++;
273                 h->orig_rsv = h->block_rsv;
274                 h->block_rsv = NULL;
275                 goto got_it;
276         }
277 again:
278         h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
279         if (!h)
280                 return ERR_PTR(-ENOMEM);
281
282         if (may_wait_transaction(root, type))
283                 wait_current_trans(root);
284
285         do {
286                 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
287                 if (ret == -EBUSY)
288                         wait_current_trans(root);
289         } while (ret == -EBUSY);
290
291         if (ret < 0) {
292                 kmem_cache_free(btrfs_trans_handle_cachep, h);
293                 return ERR_PTR(ret);
294         }
295
296         cur_trans = root->fs_info->running_transaction;
297
298         h->transid = cur_trans->transid;
299         h->transaction = cur_trans;
300         h->blocks_used = 0;
301         h->bytes_reserved = 0;
302         h->delayed_ref_updates = 0;
303         h->use_count = 1;
304         h->block_rsv = NULL;
305         h->orig_rsv = NULL;
306
307         smp_mb();
308         if (cur_trans->blocked && may_wait_transaction(root, type)) {
309                 btrfs_commit_transaction(h, root);
310                 goto again;
311         }
312
313         if (num_items > 0) {
314                 ret = btrfs_trans_reserve_metadata(h, root, num_items);
315                 if (ret == -EAGAIN && !retries) {
316                         retries++;
317                         btrfs_commit_transaction(h, root);
318                         goto again;
319                 } else if (ret == -EAGAIN) {
320                         /*
321                          * We have already retried and got EAGAIN, so really we
322                          * don't have space, so set ret to -ENOSPC.
323                          */
324                         ret = -ENOSPC;
325                 }
326
327                 if (ret < 0) {
328                         btrfs_end_transaction(h, root);
329                         return ERR_PTR(ret);
330                 }
331         }
332
333 got_it:
334         btrfs_record_root_in_trans(h, root);
335
336         if (!current->journal_info && type != TRANS_USERSPACE)
337                 current->journal_info = h;
338         return h;
339 }
340
341 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
342                                                    int num_items)
343 {
344         return start_transaction(root, num_items, TRANS_START);
345 }
346 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
347 {
348         return start_transaction(root, 0, TRANS_JOIN);
349 }
350
351 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
352 {
353         return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
354 }
355
356 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
357 {
358         return start_transaction(root, 0, TRANS_USERSPACE);
359 }
360
361 /* wait for a transaction commit to be fully complete */
362 static noinline int wait_for_commit(struct btrfs_root *root,
363                                     struct btrfs_transaction *commit)
364 {
365         DEFINE_WAIT(wait);
366         while (!commit->commit_done) {
367                 prepare_to_wait(&commit->commit_wait, &wait,
368                                 TASK_UNINTERRUPTIBLE);
369                 if (commit->commit_done)
370                         break;
371                 schedule();
372         }
373         finish_wait(&commit->commit_wait, &wait);
374         return 0;
375 }
376
377 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
378 {
379         struct btrfs_transaction *cur_trans = NULL, *t;
380         int ret;
381
382         ret = 0;
383         if (transid) {
384                 if (transid <= root->fs_info->last_trans_committed)
385                         goto out;
386
387                 /* find specified transaction */
388                 spin_lock(&root->fs_info->trans_lock);
389                 list_for_each_entry(t, &root->fs_info->trans_list, list) {
390                         if (t->transid == transid) {
391                                 cur_trans = t;
392                                 atomic_inc(&cur_trans->use_count);
393                                 break;
394                         }
395                         if (t->transid > transid)
396                                 break;
397                 }
398                 spin_unlock(&root->fs_info->trans_lock);
399                 ret = -EINVAL;
400                 if (!cur_trans)
401                         goto out;  /* bad transid */
402         } else {
403                 /* find newest transaction that is committing | committed */
404                 spin_lock(&root->fs_info->trans_lock);
405                 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
406                                             list) {
407                         if (t->in_commit) {
408                                 if (t->commit_done)
409                                         break;
410                                 cur_trans = t;
411                                 atomic_inc(&cur_trans->use_count);
412                                 break;
413                         }
414                 }
415                 spin_unlock(&root->fs_info->trans_lock);
416                 if (!cur_trans)
417                         goto out;  /* nothing committing|committed */
418         }
419
420         wait_for_commit(root, cur_trans);
421
422         put_transaction(cur_trans);
423         ret = 0;
424 out:
425         return ret;
426 }
427
428 void btrfs_throttle(struct btrfs_root *root)
429 {
430         if (!atomic_read(&root->fs_info->open_ioctl_trans))
431                 wait_current_trans(root);
432 }
433
434 static int should_end_transaction(struct btrfs_trans_handle *trans,
435                                   struct btrfs_root *root)
436 {
437         int ret;
438         ret = btrfs_block_rsv_check(trans, root,
439                                     &root->fs_info->global_block_rsv, 0, 5);
440         return ret ? 1 : 0;
441 }
442
443 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
444                                  struct btrfs_root *root)
445 {
446         struct btrfs_transaction *cur_trans = trans->transaction;
447         int updates;
448
449         smp_mb();
450         if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
451                 return 1;
452
453         updates = trans->delayed_ref_updates;
454         trans->delayed_ref_updates = 0;
455         if (updates)
456                 btrfs_run_delayed_refs(trans, root, updates);
457
458         return should_end_transaction(trans, root);
459 }
460
461 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
462                           struct btrfs_root *root, int throttle, int lock)
463 {
464         struct btrfs_transaction *cur_trans = trans->transaction;
465         struct btrfs_fs_info *info = root->fs_info;
466         int count = 0;
467
468         if (--trans->use_count) {
469                 trans->block_rsv = trans->orig_rsv;
470                 return 0;
471         }
472
473         while (count < 4) {
474                 unsigned long cur = trans->delayed_ref_updates;
475                 trans->delayed_ref_updates = 0;
476                 if (cur &&
477                     trans->transaction->delayed_refs.num_heads_ready > 64) {
478                         trans->delayed_ref_updates = 0;
479
480                         /*
481                          * do a full flush if the transaction is trying
482                          * to close
483                          */
484                         if (trans->transaction->delayed_refs.flushing)
485                                 cur = 0;
486                         btrfs_run_delayed_refs(trans, root, cur);
487                 } else {
488                         break;
489                 }
490                 count++;
491         }
492
493         btrfs_trans_release_metadata(trans, root);
494
495         if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
496             should_end_transaction(trans, root)) {
497                 trans->transaction->blocked = 1;
498                 smp_wmb();
499         }
500
501         if (lock && cur_trans->blocked && !cur_trans->in_commit) {
502                 if (throttle)
503                         return btrfs_commit_transaction(trans, root);
504                 else
505                         wake_up_process(info->transaction_kthread);
506         }
507
508         WARN_ON(cur_trans != info->running_transaction);
509         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
510         atomic_dec(&cur_trans->num_writers);
511
512         smp_mb();
513         if (waitqueue_active(&cur_trans->writer_wait))
514                 wake_up(&cur_trans->writer_wait);
515         put_transaction(cur_trans);
516
517         if (current->journal_info == trans)
518                 current->journal_info = NULL;
519         memset(trans, 0, sizeof(*trans));
520         kmem_cache_free(btrfs_trans_handle_cachep, trans);
521
522         if (throttle)
523                 btrfs_run_delayed_iputs(root);
524
525         return 0;
526 }
527
528 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
529                           struct btrfs_root *root)
530 {
531         int ret;
532
533         ret = __btrfs_end_transaction(trans, root, 0, 1);
534         if (ret)
535                 return ret;
536         return 0;
537 }
538
539 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
540                                    struct btrfs_root *root)
541 {
542         int ret;
543
544         ret = __btrfs_end_transaction(trans, root, 1, 1);
545         if (ret)
546                 return ret;
547         return 0;
548 }
549
550 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
551                                  struct btrfs_root *root)
552 {
553         int ret;
554
555         ret = __btrfs_end_transaction(trans, root, 0, 0);
556         if (ret)
557                 return ret;
558         return 0;
559 }
560
561 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
562                                 struct btrfs_root *root)
563 {
564         return __btrfs_end_transaction(trans, root, 1, 1);
565 }
566
567 /*
568  * when btree blocks are allocated, they have some corresponding bits set for
569  * them in one of two extent_io trees.  This is used to make sure all of
570  * those extents are sent to disk but does not wait on them
571  */
572 int btrfs_write_marked_extents(struct btrfs_root *root,
573                                struct extent_io_tree *dirty_pages, int mark)
574 {
575         int ret;
576         int err = 0;
577         int werr = 0;
578         struct page *page;
579         struct inode *btree_inode = root->fs_info->btree_inode;
580         u64 start = 0;
581         u64 end;
582         unsigned long index;
583
584         while (1) {
585                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
586                                             mark);
587                 if (ret)
588                         break;
589                 while (start <= end) {
590                         cond_resched();
591
592                         index = start >> PAGE_CACHE_SHIFT;
593                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
594                         page = find_get_page(btree_inode->i_mapping, index);
595                         if (!page)
596                                 continue;
597
598                         btree_lock_page_hook(page);
599                         if (!page->mapping) {
600                                 unlock_page(page);
601                                 page_cache_release(page);
602                                 continue;
603                         }
604
605                         if (PageWriteback(page)) {
606                                 if (PageDirty(page))
607                                         wait_on_page_writeback(page);
608                                 else {
609                                         unlock_page(page);
610                                         page_cache_release(page);
611                                         continue;
612                                 }
613                         }
614                         err = write_one_page(page, 0);
615                         if (err)
616                                 werr = err;
617                         page_cache_release(page);
618                 }
619         }
620         if (err)
621                 werr = err;
622         return werr;
623 }
624
625 /*
626  * when btree blocks are allocated, they have some corresponding bits set for
627  * them in one of two extent_io trees.  This is used to make sure all of
628  * those extents are on disk for transaction or log commit.  We wait
629  * on all the pages and clear them from the dirty pages state tree
630  */
631 int btrfs_wait_marked_extents(struct btrfs_root *root,
632                               struct extent_io_tree *dirty_pages, int mark)
633 {
634         int ret;
635         int err = 0;
636         int werr = 0;
637         struct page *page;
638         struct inode *btree_inode = root->fs_info->btree_inode;
639         u64 start = 0;
640         u64 end;
641         unsigned long index;
642
643         while (1) {
644                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
645                                             mark);
646                 if (ret)
647                         break;
648
649                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
650                 while (start <= end) {
651                         index = start >> PAGE_CACHE_SHIFT;
652                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
653                         page = find_get_page(btree_inode->i_mapping, index);
654                         if (!page)
655                                 continue;
656                         if (PageDirty(page)) {
657                                 btree_lock_page_hook(page);
658                                 wait_on_page_writeback(page);
659                                 err = write_one_page(page, 0);
660                                 if (err)
661                                         werr = err;
662                         }
663                         wait_on_page_writeback(page);
664                         page_cache_release(page);
665                         cond_resched();
666                 }
667         }
668         if (err)
669                 werr = err;
670         return werr;
671 }
672
673 /*
674  * when btree blocks are allocated, they have some corresponding bits set for
675  * them in one of two extent_io trees.  This is used to make sure all of
676  * those extents are on disk for transaction or log commit
677  */
678 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
679                                 struct extent_io_tree *dirty_pages, int mark)
680 {
681         int ret;
682         int ret2;
683
684         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
685         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
686         return ret || ret2;
687 }
688
689 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
690                                      struct btrfs_root *root)
691 {
692         if (!trans || !trans->transaction) {
693                 struct inode *btree_inode;
694                 btree_inode = root->fs_info->btree_inode;
695                 return filemap_write_and_wait(btree_inode->i_mapping);
696         }
697         return btrfs_write_and_wait_marked_extents(root,
698                                            &trans->transaction->dirty_pages,
699                                            EXTENT_DIRTY);
700 }
701
702 /*
703  * this is used to update the root pointer in the tree of tree roots.
704  *
705  * But, in the case of the extent allocation tree, updating the root
706  * pointer may allocate blocks which may change the root of the extent
707  * allocation tree.
708  *
709  * So, this loops and repeats and makes sure the cowonly root didn't
710  * change while the root pointer was being updated in the metadata.
711  */
712 static int update_cowonly_root(struct btrfs_trans_handle *trans,
713                                struct btrfs_root *root)
714 {
715         int ret;
716         u64 old_root_bytenr;
717         u64 old_root_used;
718         struct btrfs_root *tree_root = root->fs_info->tree_root;
719
720         old_root_used = btrfs_root_used(&root->root_item);
721         btrfs_write_dirty_block_groups(trans, root);
722
723         while (1) {
724                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
725                 if (old_root_bytenr == root->node->start &&
726                     old_root_used == btrfs_root_used(&root->root_item))
727                         break;
728
729                 btrfs_set_root_node(&root->root_item, root->node);
730                 ret = btrfs_update_root(trans, tree_root,
731                                         &root->root_key,
732                                         &root->root_item);
733                 BUG_ON(ret);
734
735                 old_root_used = btrfs_root_used(&root->root_item);
736                 ret = btrfs_write_dirty_block_groups(trans, root);
737                 BUG_ON(ret);
738         }
739
740         if (root != root->fs_info->extent_root)
741                 switch_commit_root(root);
742
743         return 0;
744 }
745
746 /*
747  * update all the cowonly tree roots on disk
748  */
749 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
750                                          struct btrfs_root *root)
751 {
752         struct btrfs_fs_info *fs_info = root->fs_info;
753         struct list_head *next;
754         struct extent_buffer *eb;
755         int ret;
756
757         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
758         BUG_ON(ret);
759
760         eb = btrfs_lock_root_node(fs_info->tree_root);
761         btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
762         btrfs_tree_unlock(eb);
763         free_extent_buffer(eb);
764
765         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
766         BUG_ON(ret);
767
768         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
769                 next = fs_info->dirty_cowonly_roots.next;
770                 list_del_init(next);
771                 root = list_entry(next, struct btrfs_root, dirty_list);
772
773                 update_cowonly_root(trans, root);
774         }
775
776         down_write(&fs_info->extent_commit_sem);
777         switch_commit_root(fs_info->extent_root);
778         up_write(&fs_info->extent_commit_sem);
779
780         return 0;
781 }
782
783 /*
784  * dead roots are old snapshots that need to be deleted.  This allocates
785  * a dirty root struct and adds it into the list of dead roots that need to
786  * be deleted
787  */
788 int btrfs_add_dead_root(struct btrfs_root *root)
789 {
790         spin_lock(&root->fs_info->trans_lock);
791         list_add(&root->root_list, &root->fs_info->dead_roots);
792         spin_unlock(&root->fs_info->trans_lock);
793         return 0;
794 }
795
796 /*
797  * update all the cowonly tree roots on disk
798  */
799 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
800                                     struct btrfs_root *root)
801 {
802         struct btrfs_root *gang[8];
803         struct btrfs_fs_info *fs_info = root->fs_info;
804         int i;
805         int ret;
806         int err = 0;
807
808         spin_lock(&fs_info->fs_roots_radix_lock);
809         while (1) {
810                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
811                                                  (void **)gang, 0,
812                                                  ARRAY_SIZE(gang),
813                                                  BTRFS_ROOT_TRANS_TAG);
814                 if (ret == 0)
815                         break;
816                 for (i = 0; i < ret; i++) {
817                         root = gang[i];
818                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
819                                         (unsigned long)root->root_key.objectid,
820                                         BTRFS_ROOT_TRANS_TAG);
821                         spin_unlock(&fs_info->fs_roots_radix_lock);
822
823                         btrfs_free_log(trans, root);
824                         btrfs_update_reloc_root(trans, root);
825                         btrfs_orphan_commit_root(trans, root);
826
827                         btrfs_save_ino_cache(root, trans);
828
829                         if (root->commit_root != root->node) {
830                                 mutex_lock(&root->fs_commit_mutex);
831                                 switch_commit_root(root);
832                                 btrfs_unpin_free_ino(root);
833                                 mutex_unlock(&root->fs_commit_mutex);
834
835                                 btrfs_set_root_node(&root->root_item,
836                                                     root->node);
837                         }
838
839                         err = btrfs_update_root(trans, fs_info->tree_root,
840                                                 &root->root_key,
841                                                 &root->root_item);
842                         spin_lock(&fs_info->fs_roots_radix_lock);
843                         if (err)
844                                 break;
845                 }
846         }
847         spin_unlock(&fs_info->fs_roots_radix_lock);
848         return err;
849 }
850
851 /*
852  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
853  * otherwise every leaf in the btree is read and defragged.
854  */
855 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
856 {
857         struct btrfs_fs_info *info = root->fs_info;
858         struct btrfs_trans_handle *trans;
859         int ret;
860         unsigned long nr;
861
862         if (xchg(&root->defrag_running, 1))
863                 return 0;
864
865         while (1) {
866                 trans = btrfs_start_transaction(root, 0);
867                 if (IS_ERR(trans))
868                         return PTR_ERR(trans);
869
870                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
871
872                 nr = trans->blocks_used;
873                 btrfs_end_transaction(trans, root);
874                 btrfs_btree_balance_dirty(info->tree_root, nr);
875                 cond_resched();
876
877                 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
878                         break;
879         }
880         root->defrag_running = 0;
881         return ret;
882 }
883
884 /*
885  * new snapshots need to be created at a very specific time in the
886  * transaction commit.  This does the actual creation
887  */
888 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
889                                    struct btrfs_fs_info *fs_info,
890                                    struct btrfs_pending_snapshot *pending)
891 {
892         struct btrfs_key key;
893         struct btrfs_root_item *new_root_item;
894         struct btrfs_root *tree_root = fs_info->tree_root;
895         struct btrfs_root *root = pending->root;
896         struct btrfs_root *parent_root;
897         struct inode *parent_inode;
898         struct dentry *parent;
899         struct dentry *dentry;
900         struct extent_buffer *tmp;
901         struct extent_buffer *old;
902         int ret;
903         u64 to_reserve = 0;
904         u64 index = 0;
905         u64 objectid;
906         u64 root_flags;
907
908         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
909         if (!new_root_item) {
910                 pending->error = -ENOMEM;
911                 goto fail;
912         }
913
914         ret = btrfs_find_free_objectid(tree_root, &objectid);
915         if (ret) {
916                 pending->error = ret;
917                 goto fail;
918         }
919
920         btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
921         btrfs_orphan_pre_snapshot(trans, pending, &to_reserve);
922
923         if (to_reserve > 0) {
924                 ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
925                                           to_reserve);
926                 if (ret) {
927                         pending->error = ret;
928                         goto fail;
929                 }
930         }
931
932         key.objectid = objectid;
933         key.offset = (u64)-1;
934         key.type = BTRFS_ROOT_ITEM_KEY;
935
936         trans->block_rsv = &pending->block_rsv;
937
938         dentry = pending->dentry;
939         parent = dget_parent(dentry);
940         parent_inode = parent->d_inode;
941         parent_root = BTRFS_I(parent_inode)->root;
942         record_root_in_trans(trans, parent_root);
943
944         /*
945          * insert the directory item
946          */
947         ret = btrfs_set_inode_index(parent_inode, &index);
948         BUG_ON(ret);
949         ret = btrfs_insert_dir_item(trans, parent_root,
950                                 dentry->d_name.name, dentry->d_name.len,
951                                 parent_inode, &key,
952                                 BTRFS_FT_DIR, index);
953         BUG_ON(ret);
954
955         btrfs_i_size_write(parent_inode, parent_inode->i_size +
956                                          dentry->d_name.len * 2);
957         ret = btrfs_update_inode(trans, parent_root, parent_inode);
958         BUG_ON(ret);
959
960         /*
961          * pull in the delayed directory update
962          * and the delayed inode item
963          * otherwise we corrupt the FS during
964          * snapshot
965          */
966         ret = btrfs_run_delayed_items(trans, root);
967         BUG_ON(ret);
968
969         record_root_in_trans(trans, root);
970         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
971         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
972         btrfs_check_and_init_root_item(new_root_item);
973
974         root_flags = btrfs_root_flags(new_root_item);
975         if (pending->readonly)
976                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
977         else
978                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
979         btrfs_set_root_flags(new_root_item, root_flags);
980
981         old = btrfs_lock_root_node(root);
982         btrfs_cow_block(trans, root, old, NULL, 0, &old);
983         btrfs_set_lock_blocking(old);
984
985         btrfs_copy_root(trans, root, old, &tmp, objectid);
986         btrfs_tree_unlock(old);
987         free_extent_buffer(old);
988
989         btrfs_set_root_node(new_root_item, tmp);
990         /* record when the snapshot was created in key.offset */
991         key.offset = trans->transid;
992         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
993         btrfs_tree_unlock(tmp);
994         free_extent_buffer(tmp);
995         BUG_ON(ret);
996
997         /*
998          * insert root back/forward references
999          */
1000         ret = btrfs_add_root_ref(trans, tree_root, objectid,
1001                                  parent_root->root_key.objectid,
1002                                  btrfs_ino(parent_inode), index,
1003                                  dentry->d_name.name, dentry->d_name.len);
1004         BUG_ON(ret);
1005         dput(parent);
1006
1007         key.offset = (u64)-1;
1008         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1009         BUG_ON(IS_ERR(pending->snap));
1010
1011         btrfs_reloc_post_snapshot(trans, pending);
1012         btrfs_orphan_post_snapshot(trans, pending);
1013 fail:
1014         kfree(new_root_item);
1015         btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1016         return 0;
1017 }
1018
1019 /*
1020  * create all the snapshots we've scheduled for creation
1021  */
1022 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1023                                              struct btrfs_fs_info *fs_info)
1024 {
1025         struct btrfs_pending_snapshot *pending;
1026         struct list_head *head = &trans->transaction->pending_snapshots;
1027         int ret;
1028
1029         list_for_each_entry(pending, head, list) {
1030                 ret = create_pending_snapshot(trans, fs_info, pending);
1031                 BUG_ON(ret);
1032         }
1033         return 0;
1034 }
1035
1036 static void update_super_roots(struct btrfs_root *root)
1037 {
1038         struct btrfs_root_item *root_item;
1039         struct btrfs_super_block *super;
1040
1041         super = &root->fs_info->super_copy;
1042
1043         root_item = &root->fs_info->chunk_root->root_item;
1044         super->chunk_root = root_item->bytenr;
1045         super->chunk_root_generation = root_item->generation;
1046         super->chunk_root_level = root_item->level;
1047
1048         root_item = &root->fs_info->tree_root->root_item;
1049         super->root = root_item->bytenr;
1050         super->generation = root_item->generation;
1051         super->root_level = root_item->level;
1052         if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE))
1053                 super->cache_generation = root_item->generation;
1054 }
1055
1056 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1057 {
1058         int ret = 0;
1059         spin_lock(&info->trans_lock);
1060         if (info->running_transaction)
1061                 ret = info->running_transaction->in_commit;
1062         spin_unlock(&info->trans_lock);
1063         return ret;
1064 }
1065
1066 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1067 {
1068         int ret = 0;
1069         spin_lock(&info->trans_lock);
1070         if (info->running_transaction)
1071                 ret = info->running_transaction->blocked;
1072         spin_unlock(&info->trans_lock);
1073         return ret;
1074 }
1075
1076 /*
1077  * wait for the current transaction commit to start and block subsequent
1078  * transaction joins
1079  */
1080 static void wait_current_trans_commit_start(struct btrfs_root *root,
1081                                             struct btrfs_transaction *trans)
1082 {
1083         DEFINE_WAIT(wait);
1084
1085         if (trans->in_commit)
1086                 return;
1087
1088         while (1) {
1089                 prepare_to_wait(&root->fs_info->transaction_blocked_wait, &wait,
1090                                 TASK_UNINTERRUPTIBLE);
1091                 if (trans->in_commit) {
1092                         finish_wait(&root->fs_info->transaction_blocked_wait,
1093                                     &wait);
1094                         break;
1095                 }
1096                 schedule();
1097                 finish_wait(&root->fs_info->transaction_blocked_wait, &wait);
1098         }
1099 }
1100
1101 /*
1102  * wait for the current transaction to start and then become unblocked.
1103  * caller holds ref.
1104  */
1105 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1106                                          struct btrfs_transaction *trans)
1107 {
1108         DEFINE_WAIT(wait);
1109
1110         if (trans->commit_done || (trans->in_commit && !trans->blocked))
1111                 return;
1112
1113         while (1) {
1114                 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
1115                                 TASK_UNINTERRUPTIBLE);
1116                 if (trans->commit_done ||
1117                     (trans->in_commit && !trans->blocked)) {
1118                         finish_wait(&root->fs_info->transaction_wait,
1119                                     &wait);
1120                         break;
1121                 }
1122                 schedule();
1123                 finish_wait(&root->fs_info->transaction_wait,
1124                             &wait);
1125         }
1126 }
1127
1128 /*
1129  * commit transactions asynchronously. once btrfs_commit_transaction_async
1130  * returns, any subsequent transaction will not be allowed to join.
1131  */
1132 struct btrfs_async_commit {
1133         struct btrfs_trans_handle *newtrans;
1134         struct btrfs_root *root;
1135         struct delayed_work work;
1136 };
1137
1138 static void do_async_commit(struct work_struct *work)
1139 {
1140         struct btrfs_async_commit *ac =
1141                 container_of(work, struct btrfs_async_commit, work.work);
1142
1143         btrfs_commit_transaction(ac->newtrans, ac->root);
1144         kfree(ac);
1145 }
1146
1147 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1148                                    struct btrfs_root *root,
1149                                    int wait_for_unblock)
1150 {
1151         struct btrfs_async_commit *ac;
1152         struct btrfs_transaction *cur_trans;
1153
1154         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1155         if (!ac)
1156                 return -ENOMEM;
1157
1158         INIT_DELAYED_WORK(&ac->work, do_async_commit);
1159         ac->root = root;
1160         ac->newtrans = btrfs_join_transaction(root);
1161         if (IS_ERR(ac->newtrans)) {
1162                 int err = PTR_ERR(ac->newtrans);
1163                 kfree(ac);
1164                 return err;
1165         }
1166
1167         /* take transaction reference */
1168         cur_trans = trans->transaction;
1169         atomic_inc(&cur_trans->use_count);
1170
1171         btrfs_end_transaction(trans, root);
1172         schedule_delayed_work(&ac->work, 0);
1173
1174         /* wait for transaction to start and unblock */
1175         if (wait_for_unblock)
1176                 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1177         else
1178                 wait_current_trans_commit_start(root, cur_trans);
1179
1180         if (current->journal_info == trans)
1181                 current->journal_info = NULL;
1182
1183         put_transaction(cur_trans);
1184         return 0;
1185 }
1186
1187 /*
1188  * btrfs_transaction state sequence:
1189  *    in_commit = 0, blocked = 0  (initial)
1190  *    in_commit = 1, blocked = 1
1191  *    blocked = 0
1192  *    commit_done = 1
1193  */
1194 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1195                              struct btrfs_root *root)
1196 {
1197         unsigned long joined = 0;
1198         struct btrfs_transaction *cur_trans;
1199         struct btrfs_transaction *prev_trans = NULL;
1200         DEFINE_WAIT(wait);
1201         int ret;
1202         int should_grow = 0;
1203         unsigned long now = get_seconds();
1204         int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1205
1206         btrfs_run_ordered_operations(root, 0);
1207
1208         /* make a pass through all the delayed refs we have so far
1209          * any runnings procs may add more while we are here
1210          */
1211         ret = btrfs_run_delayed_refs(trans, root, 0);
1212         BUG_ON(ret);
1213
1214         btrfs_trans_release_metadata(trans, root);
1215
1216         cur_trans = trans->transaction;
1217         /*
1218          * set the flushing flag so procs in this transaction have to
1219          * start sending their work down.
1220          */
1221         cur_trans->delayed_refs.flushing = 1;
1222
1223         ret = btrfs_run_delayed_refs(trans, root, 0);
1224         BUG_ON(ret);
1225
1226         spin_lock(&cur_trans->commit_lock);
1227         if (cur_trans->in_commit) {
1228                 spin_unlock(&cur_trans->commit_lock);
1229                 atomic_inc(&cur_trans->use_count);
1230                 btrfs_end_transaction(trans, root);
1231
1232                 ret = wait_for_commit(root, cur_trans);
1233                 BUG_ON(ret);
1234
1235                 put_transaction(cur_trans);
1236
1237                 return 0;
1238         }
1239
1240         trans->transaction->in_commit = 1;
1241         trans->transaction->blocked = 1;
1242         spin_unlock(&cur_trans->commit_lock);
1243         wake_up(&root->fs_info->transaction_blocked_wait);
1244
1245         spin_lock(&root->fs_info->trans_lock);
1246         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1247                 prev_trans = list_entry(cur_trans->list.prev,
1248                                         struct btrfs_transaction, list);
1249                 if (!prev_trans->commit_done) {
1250                         atomic_inc(&prev_trans->use_count);
1251                         spin_unlock(&root->fs_info->trans_lock);
1252
1253                         wait_for_commit(root, prev_trans);
1254
1255                         put_transaction(prev_trans);
1256                 } else {
1257                         spin_unlock(&root->fs_info->trans_lock);
1258                 }
1259         } else {
1260                 spin_unlock(&root->fs_info->trans_lock);
1261         }
1262
1263         if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1264                 should_grow = 1;
1265
1266         do {
1267                 int snap_pending = 0;
1268
1269                 joined = cur_trans->num_joined;
1270                 if (!list_empty(&trans->transaction->pending_snapshots))
1271                         snap_pending = 1;
1272
1273                 WARN_ON(cur_trans != trans->transaction);
1274
1275                 if (flush_on_commit || snap_pending) {
1276                         btrfs_start_delalloc_inodes(root, 1);
1277                         ret = btrfs_wait_ordered_extents(root, 0, 1);
1278                         BUG_ON(ret);
1279                 }
1280
1281                 ret = btrfs_run_delayed_items(trans, root);
1282                 BUG_ON(ret);
1283
1284                 /*
1285                  * rename don't use btrfs_join_transaction, so, once we
1286                  * set the transaction to blocked above, we aren't going
1287                  * to get any new ordered operations.  We can safely run
1288                  * it here and no for sure that nothing new will be added
1289                  * to the list
1290                  */
1291                 btrfs_run_ordered_operations(root, 1);
1292
1293                 prepare_to_wait(&cur_trans->writer_wait, &wait,
1294                                 TASK_UNINTERRUPTIBLE);
1295
1296                 if (atomic_read(&cur_trans->num_writers) > 1)
1297                         schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1298                 else if (should_grow)
1299                         schedule_timeout(1);
1300
1301                 finish_wait(&cur_trans->writer_wait, &wait);
1302         } while (atomic_read(&cur_trans->num_writers) > 1 ||
1303                  (should_grow && cur_trans->num_joined != joined));
1304
1305         /*
1306          * Ok now we need to make sure to block out any other joins while we
1307          * commit the transaction.  We could have started a join before setting
1308          * no_join so make sure to wait for num_writers to == 1 again.
1309          */
1310         spin_lock(&root->fs_info->trans_lock);
1311         root->fs_info->trans_no_join = 1;
1312         spin_unlock(&root->fs_info->trans_lock);
1313         wait_event(cur_trans->writer_wait,
1314                    atomic_read(&cur_trans->num_writers) == 1);
1315
1316         /*
1317          * the reloc mutex makes sure that we stop
1318          * the balancing code from coming in and moving
1319          * extents around in the middle of the commit
1320          */
1321         mutex_lock(&root->fs_info->reloc_mutex);
1322
1323         ret = btrfs_run_delayed_items(trans, root);
1324         BUG_ON(ret);
1325
1326         ret = create_pending_snapshots(trans, root->fs_info);
1327         BUG_ON(ret);
1328
1329         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1330         BUG_ON(ret);
1331
1332         /*
1333          * make sure none of the code above managed to slip in a
1334          * delayed item
1335          */
1336         btrfs_assert_delayed_root_empty(root);
1337
1338         WARN_ON(cur_trans != trans->transaction);
1339
1340         btrfs_scrub_pause(root);
1341         /* btrfs_commit_tree_roots is responsible for getting the
1342          * various roots consistent with each other.  Every pointer
1343          * in the tree of tree roots has to point to the most up to date
1344          * root for every subvolume and other tree.  So, we have to keep
1345          * the tree logging code from jumping in and changing any
1346          * of the trees.
1347          *
1348          * At this point in the commit, there can't be any tree-log
1349          * writers, but a little lower down we drop the trans mutex
1350          * and let new people in.  By holding the tree_log_mutex
1351          * from now until after the super is written, we avoid races
1352          * with the tree-log code.
1353          */
1354         mutex_lock(&root->fs_info->tree_log_mutex);
1355
1356         ret = commit_fs_roots(trans, root);
1357         BUG_ON(ret);
1358
1359         /* commit_fs_roots gets rid of all the tree log roots, it is now
1360          * safe to free the root of tree log roots
1361          */
1362         btrfs_free_log_root_tree(trans, root->fs_info);
1363
1364         ret = commit_cowonly_roots(trans, root);
1365         BUG_ON(ret);
1366
1367         btrfs_prepare_extent_commit(trans, root);
1368
1369         cur_trans = root->fs_info->running_transaction;
1370
1371         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1372                             root->fs_info->tree_root->node);
1373         switch_commit_root(root->fs_info->tree_root);
1374
1375         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1376                             root->fs_info->chunk_root->node);
1377         switch_commit_root(root->fs_info->chunk_root);
1378
1379         update_super_roots(root);
1380
1381         if (!root->fs_info->log_root_recovering) {
1382                 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1383                 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1384         }
1385
1386         memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1387                sizeof(root->fs_info->super_copy));
1388
1389         trans->transaction->blocked = 0;
1390         spin_lock(&root->fs_info->trans_lock);
1391         root->fs_info->running_transaction = NULL;
1392         root->fs_info->trans_no_join = 0;
1393         spin_unlock(&root->fs_info->trans_lock);
1394         mutex_unlock(&root->fs_info->reloc_mutex);
1395
1396         wake_up(&root->fs_info->transaction_wait);
1397
1398         ret = btrfs_write_and_wait_transaction(trans, root);
1399         BUG_ON(ret);
1400         write_ctree_super(trans, root, 0);
1401
1402         /*
1403          * the super is written, we can safely allow the tree-loggers
1404          * to go about their business
1405          */
1406         mutex_unlock(&root->fs_info->tree_log_mutex);
1407
1408         btrfs_finish_extent_commit(trans, root);
1409
1410         cur_trans->commit_done = 1;
1411
1412         root->fs_info->last_trans_committed = cur_trans->transid;
1413
1414         wake_up(&cur_trans->commit_wait);
1415
1416         spin_lock(&root->fs_info->trans_lock);
1417         list_del_init(&cur_trans->list);
1418         spin_unlock(&root->fs_info->trans_lock);
1419
1420         put_transaction(cur_trans);
1421         put_transaction(cur_trans);
1422
1423         trace_btrfs_transaction_commit(root);
1424
1425         btrfs_scrub_continue(root);
1426
1427         if (current->journal_info == trans)
1428                 current->journal_info = NULL;
1429
1430         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1431
1432         if (current != root->fs_info->transaction_kthread)
1433                 btrfs_run_delayed_iputs(root);
1434
1435         return ret;
1436 }
1437
1438 /*
1439  * interface function to delete all the snapshots we have scheduled for deletion
1440  */
1441 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1442 {
1443         LIST_HEAD(list);
1444         struct btrfs_fs_info *fs_info = root->fs_info;
1445
1446         spin_lock(&fs_info->trans_lock);
1447         list_splice_init(&fs_info->dead_roots, &list);
1448         spin_unlock(&fs_info->trans_lock);
1449
1450         while (!list_empty(&list)) {
1451                 root = list_entry(list.next, struct btrfs_root, root_list);
1452                 list_del(&root->root_list);
1453
1454                 btrfs_kill_all_delayed_nodes(root);
1455
1456                 if (btrfs_header_backref_rev(root->node) <
1457                     BTRFS_MIXED_BACKREF_REV)
1458                         btrfs_drop_snapshot(root, NULL, 0);
1459                 else
1460                         btrfs_drop_snapshot(root, NULL, 1);
1461         }
1462         return 0;
1463 }