Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs...
[pandora-kernel.git] / fs / btrfs / super.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include "compat.h"
43 #include "ctree.h"
44 #include "disk-io.h"
45 #include "transaction.h"
46 #include "btrfs_inode.h"
47 #include "ioctl.h"
48 #include "print-tree.h"
49 #include "xattr.h"
50 #include "volumes.h"
51 #include "version.h"
52 #include "export.h"
53 #include "compression.h"
54
55 static const struct super_operations btrfs_super_ops;
56
57 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
58                                       char nbuf[16])
59 {
60         char *errstr = NULL;
61
62         switch (errno) {
63         case -EIO:
64                 errstr = "IO failure";
65                 break;
66         case -ENOMEM:
67                 errstr = "Out of memory";
68                 break;
69         case -EROFS:
70                 errstr = "Readonly filesystem";
71                 break;
72         default:
73                 if (nbuf) {
74                         if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
75                                 errstr = nbuf;
76                 }
77                 break;
78         }
79
80         return errstr;
81 }
82
83 static void __save_error_info(struct btrfs_fs_info *fs_info)
84 {
85         /*
86          * today we only save the error info into ram.  Long term we'll
87          * also send it down to the disk
88          */
89         fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
90 }
91
92 /* NOTE:
93  *      We move write_super stuff at umount in order to avoid deadlock
94  *      for umount hold all lock.
95  */
96 static void save_error_info(struct btrfs_fs_info *fs_info)
97 {
98         __save_error_info(fs_info);
99 }
100
101 /* btrfs handle error by forcing the filesystem readonly */
102 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
103 {
104         struct super_block *sb = fs_info->sb;
105
106         if (sb->s_flags & MS_RDONLY)
107                 return;
108
109         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
110                 sb->s_flags |= MS_RDONLY;
111                 printk(KERN_INFO "btrfs is forced readonly\n");
112         }
113 }
114
115 /*
116  * __btrfs_std_error decodes expected errors from the caller and
117  * invokes the approciate error response.
118  */
119 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
120                      unsigned int line, int errno)
121 {
122         struct super_block *sb = fs_info->sb;
123         char nbuf[16];
124         const char *errstr;
125
126         /*
127          * Special case: if the error is EROFS, and we're already
128          * under MS_RDONLY, then it is safe here.
129          */
130         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
131                 return;
132
133         errstr = btrfs_decode_error(fs_info, errno, nbuf);
134         printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
135                 sb->s_id, function, line, errstr);
136         save_error_info(fs_info);
137
138         btrfs_handle_error(fs_info);
139 }
140
141 static void btrfs_put_super(struct super_block *sb)
142 {
143         struct btrfs_root *root = btrfs_sb(sb);
144         int ret;
145
146         ret = close_ctree(root);
147         sb->s_fs_info = NULL;
148
149         (void)ret; /* FIXME: need to fix VFS to return error? */
150 }
151
152 enum {
153         Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
154         Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
155         Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
156         Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
157         Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
158         Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed, Opt_err,
159 };
160
161 static match_table_t tokens = {
162         {Opt_degraded, "degraded"},
163         {Opt_subvol, "subvol=%s"},
164         {Opt_subvolid, "subvolid=%d"},
165         {Opt_device, "device=%s"},
166         {Opt_nodatasum, "nodatasum"},
167         {Opt_nodatacow, "nodatacow"},
168         {Opt_nobarrier, "nobarrier"},
169         {Opt_max_inline, "max_inline=%s"},
170         {Opt_alloc_start, "alloc_start=%s"},
171         {Opt_thread_pool, "thread_pool=%d"},
172         {Opt_compress, "compress"},
173         {Opt_compress_type, "compress=%s"},
174         {Opt_compress_force, "compress-force"},
175         {Opt_compress_force_type, "compress-force=%s"},
176         {Opt_ssd, "ssd"},
177         {Opt_ssd_spread, "ssd_spread"},
178         {Opt_nossd, "nossd"},
179         {Opt_noacl, "noacl"},
180         {Opt_notreelog, "notreelog"},
181         {Opt_flushoncommit, "flushoncommit"},
182         {Opt_ratio, "metadata_ratio=%d"},
183         {Opt_discard, "discard"},
184         {Opt_space_cache, "space_cache"},
185         {Opt_clear_cache, "clear_cache"},
186         {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
187         {Opt_err, NULL},
188 };
189
190 /*
191  * Regular mount options parser.  Everything that is needed only when
192  * reading in a new superblock is parsed here.
193  */
194 int btrfs_parse_options(struct btrfs_root *root, char *options)
195 {
196         struct btrfs_fs_info *info = root->fs_info;
197         substring_t args[MAX_OPT_ARGS];
198         char *p, *num, *orig;
199         int intarg;
200         int ret = 0;
201         char *compress_type;
202         bool compress_force = false;
203
204         if (!options)
205                 return 0;
206
207         /*
208          * strsep changes the string, duplicate it because parse_options
209          * gets called twice
210          */
211         options = kstrdup(options, GFP_NOFS);
212         if (!options)
213                 return -ENOMEM;
214
215         orig = options;
216
217         while ((p = strsep(&options, ",")) != NULL) {
218                 int token;
219                 if (!*p)
220                         continue;
221
222                 token = match_token(p, tokens, args);
223                 switch (token) {
224                 case Opt_degraded:
225                         printk(KERN_INFO "btrfs: allowing degraded mounts\n");
226                         btrfs_set_opt(info->mount_opt, DEGRADED);
227                         break;
228                 case Opt_subvol:
229                 case Opt_subvolid:
230                 case Opt_device:
231                         /*
232                          * These are parsed by btrfs_parse_early_options
233                          * and can be happily ignored here.
234                          */
235                         break;
236                 case Opt_nodatasum:
237                         printk(KERN_INFO "btrfs: setting nodatasum\n");
238                         btrfs_set_opt(info->mount_opt, NODATASUM);
239                         break;
240                 case Opt_nodatacow:
241                         printk(KERN_INFO "btrfs: setting nodatacow\n");
242                         btrfs_set_opt(info->mount_opt, NODATACOW);
243                         btrfs_set_opt(info->mount_opt, NODATASUM);
244                         break;
245                 case Opt_compress_force:
246                 case Opt_compress_force_type:
247                         compress_force = true;
248                 case Opt_compress:
249                 case Opt_compress_type:
250                         if (token == Opt_compress ||
251                             token == Opt_compress_force ||
252                             strcmp(args[0].from, "zlib") == 0) {
253                                 compress_type = "zlib";
254                                 info->compress_type = BTRFS_COMPRESS_ZLIB;
255                         } else if (strcmp(args[0].from, "lzo") == 0) {
256                                 compress_type = "lzo";
257                                 info->compress_type = BTRFS_COMPRESS_LZO;
258                         } else {
259                                 ret = -EINVAL;
260                                 goto out;
261                         }
262
263                         btrfs_set_opt(info->mount_opt, COMPRESS);
264                         if (compress_force) {
265                                 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
266                                 pr_info("btrfs: force %s compression\n",
267                                         compress_type);
268                         } else
269                                 pr_info("btrfs: use %s compression\n",
270                                         compress_type);
271                         break;
272                 case Opt_ssd:
273                         printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
274                         btrfs_set_opt(info->mount_opt, SSD);
275                         break;
276                 case Opt_ssd_spread:
277                         printk(KERN_INFO "btrfs: use spread ssd "
278                                "allocation scheme\n");
279                         btrfs_set_opt(info->mount_opt, SSD);
280                         btrfs_set_opt(info->mount_opt, SSD_SPREAD);
281                         break;
282                 case Opt_nossd:
283                         printk(KERN_INFO "btrfs: not using ssd allocation "
284                                "scheme\n");
285                         btrfs_set_opt(info->mount_opt, NOSSD);
286                         btrfs_clear_opt(info->mount_opt, SSD);
287                         btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
288                         break;
289                 case Opt_nobarrier:
290                         printk(KERN_INFO "btrfs: turning off barriers\n");
291                         btrfs_set_opt(info->mount_opt, NOBARRIER);
292                         break;
293                 case Opt_thread_pool:
294                         intarg = 0;
295                         match_int(&args[0], &intarg);
296                         if (intarg) {
297                                 info->thread_pool_size = intarg;
298                                 printk(KERN_INFO "btrfs: thread pool %d\n",
299                                        info->thread_pool_size);
300                         }
301                         break;
302                 case Opt_max_inline:
303                         num = match_strdup(&args[0]);
304                         if (num) {
305                                 info->max_inline = memparse(num, NULL);
306                                 kfree(num);
307
308                                 if (info->max_inline) {
309                                         info->max_inline = max_t(u64,
310                                                 info->max_inline,
311                                                 root->sectorsize);
312                                 }
313                                 printk(KERN_INFO "btrfs: max_inline at %llu\n",
314                                         (unsigned long long)info->max_inline);
315                         }
316                         break;
317                 case Opt_alloc_start:
318                         num = match_strdup(&args[0]);
319                         if (num) {
320                                 info->alloc_start = memparse(num, NULL);
321                                 kfree(num);
322                                 printk(KERN_INFO
323                                         "btrfs: allocations start at %llu\n",
324                                         (unsigned long long)info->alloc_start);
325                         }
326                         break;
327                 case Opt_noacl:
328                         root->fs_info->sb->s_flags &= ~MS_POSIXACL;
329                         break;
330                 case Opt_notreelog:
331                         printk(KERN_INFO "btrfs: disabling tree log\n");
332                         btrfs_set_opt(info->mount_opt, NOTREELOG);
333                         break;
334                 case Opt_flushoncommit:
335                         printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
336                         btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
337                         break;
338                 case Opt_ratio:
339                         intarg = 0;
340                         match_int(&args[0], &intarg);
341                         if (intarg) {
342                                 info->metadata_ratio = intarg;
343                                 printk(KERN_INFO "btrfs: metadata ratio %d\n",
344                                        info->metadata_ratio);
345                         }
346                         break;
347                 case Opt_discard:
348                         btrfs_set_opt(info->mount_opt, DISCARD);
349                         break;
350                 case Opt_space_cache:
351                         printk(KERN_INFO "btrfs: enabling disk space caching\n");
352                         btrfs_set_opt(info->mount_opt, SPACE_CACHE);
353                         break;
354                 case Opt_clear_cache:
355                         printk(KERN_INFO "btrfs: force clearing of disk cache\n");
356                         btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
357                         break;
358                 case Opt_user_subvol_rm_allowed:
359                         btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
360                         break;
361                 case Opt_err:
362                         printk(KERN_INFO "btrfs: unrecognized mount option "
363                                "'%s'\n", p);
364                         ret = -EINVAL;
365                         goto out;
366                 default:
367                         break;
368                 }
369         }
370 out:
371         kfree(orig);
372         return ret;
373 }
374
375 /*
376  * Parse mount options that are required early in the mount process.
377  *
378  * All other options will be parsed on much later in the mount process and
379  * only when we need to allocate a new super block.
380  */
381 static int btrfs_parse_early_options(const char *options, fmode_t flags,
382                 void *holder, char **subvol_name, u64 *subvol_objectid,
383                 struct btrfs_fs_devices **fs_devices)
384 {
385         substring_t args[MAX_OPT_ARGS];
386         char *opts, *p;
387         int error = 0;
388         int intarg;
389
390         if (!options)
391                 goto out;
392
393         /*
394          * strsep changes the string, duplicate it because parse_options
395          * gets called twice
396          */
397         opts = kstrdup(options, GFP_KERNEL);
398         if (!opts)
399                 return -ENOMEM;
400
401         while ((p = strsep(&opts, ",")) != NULL) {
402                 int token;
403                 if (!*p)
404                         continue;
405
406                 token = match_token(p, tokens, args);
407                 switch (token) {
408                 case Opt_subvol:
409                         *subvol_name = match_strdup(&args[0]);
410                         break;
411                 case Opt_subvolid:
412                         intarg = 0;
413                         error = match_int(&args[0], &intarg);
414                         if (!error) {
415                                 /* we want the original fs_tree */
416                                 if (!intarg)
417                                         *subvol_objectid =
418                                                 BTRFS_FS_TREE_OBJECTID;
419                                 else
420                                         *subvol_objectid = intarg;
421                         }
422                         break;
423                 case Opt_device:
424                         error = btrfs_scan_one_device(match_strdup(&args[0]),
425                                         flags, holder, fs_devices);
426                         if (error)
427                                 goto out_free_opts;
428                         break;
429                 default:
430                         break;
431                 }
432         }
433
434  out_free_opts:
435         kfree(opts);
436  out:
437         /*
438          * If no subvolume name is specified we use the default one.  Allocate
439          * a copy of the string "." here so that code later in the
440          * mount path doesn't care if it's the default volume or another one.
441          */
442         if (!*subvol_name) {
443                 *subvol_name = kstrdup(".", GFP_KERNEL);
444                 if (!*subvol_name)
445                         return -ENOMEM;
446         }
447         return error;
448 }
449
450 static struct dentry *get_default_root(struct super_block *sb,
451                                        u64 subvol_objectid)
452 {
453         struct btrfs_root *root = sb->s_fs_info;
454         struct btrfs_root *new_root;
455         struct btrfs_dir_item *di;
456         struct btrfs_path *path;
457         struct btrfs_key location;
458         struct inode *inode;
459         struct dentry *dentry;
460         u64 dir_id;
461         int new = 0;
462
463         /*
464          * We have a specific subvol we want to mount, just setup location and
465          * go look up the root.
466          */
467         if (subvol_objectid) {
468                 location.objectid = subvol_objectid;
469                 location.type = BTRFS_ROOT_ITEM_KEY;
470                 location.offset = (u64)-1;
471                 goto find_root;
472         }
473
474         path = btrfs_alloc_path();
475         if (!path)
476                 return ERR_PTR(-ENOMEM);
477         path->leave_spinning = 1;
478
479         /*
480          * Find the "default" dir item which points to the root item that we
481          * will mount by default if we haven't been given a specific subvolume
482          * to mount.
483          */
484         dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
485         di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
486         if (IS_ERR(di))
487                 return ERR_CAST(di);
488         if (!di) {
489                 /*
490                  * Ok the default dir item isn't there.  This is weird since
491                  * it's always been there, but don't freak out, just try and
492                  * mount to root most subvolume.
493                  */
494                 btrfs_free_path(path);
495                 dir_id = BTRFS_FIRST_FREE_OBJECTID;
496                 new_root = root->fs_info->fs_root;
497                 goto setup_root;
498         }
499
500         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
501         btrfs_free_path(path);
502
503 find_root:
504         new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
505         if (IS_ERR(new_root))
506                 return ERR_CAST(new_root);
507
508         if (btrfs_root_refs(&new_root->root_item) == 0)
509                 return ERR_PTR(-ENOENT);
510
511         dir_id = btrfs_root_dirid(&new_root->root_item);
512 setup_root:
513         location.objectid = dir_id;
514         location.type = BTRFS_INODE_ITEM_KEY;
515         location.offset = 0;
516
517         inode = btrfs_iget(sb, &location, new_root, &new);
518         if (IS_ERR(inode))
519                 return ERR_CAST(inode);
520
521         /*
522          * If we're just mounting the root most subvol put the inode and return
523          * a reference to the dentry.  We will have already gotten a reference
524          * to the inode in btrfs_fill_super so we're good to go.
525          */
526         if (!new && sb->s_root->d_inode == inode) {
527                 iput(inode);
528                 return dget(sb->s_root);
529         }
530
531         if (new) {
532                 const struct qstr name = { .name = "/", .len = 1 };
533
534                 /*
535                  * New inode, we need to make the dentry a sibling of s_root so
536                  * everything gets cleaned up properly on unmount.
537                  */
538                 dentry = d_alloc(sb->s_root, &name);
539                 if (!dentry) {
540                         iput(inode);
541                         return ERR_PTR(-ENOMEM);
542                 }
543                 d_splice_alias(inode, dentry);
544         } else {
545                 /*
546                  * We found the inode in cache, just find a dentry for it and
547                  * put the reference to the inode we just got.
548                  */
549                 dentry = d_find_alias(inode);
550                 iput(inode);
551         }
552
553         return dentry;
554 }
555
556 static int btrfs_fill_super(struct super_block *sb,
557                             struct btrfs_fs_devices *fs_devices,
558                             void *data, int silent)
559 {
560         struct inode *inode;
561         struct dentry *root_dentry;
562         struct btrfs_root *tree_root;
563         struct btrfs_key key;
564         int err;
565
566         sb->s_maxbytes = MAX_LFS_FILESIZE;
567         sb->s_magic = BTRFS_SUPER_MAGIC;
568         sb->s_op = &btrfs_super_ops;
569         sb->s_d_op = &btrfs_dentry_operations;
570         sb->s_export_op = &btrfs_export_ops;
571         sb->s_xattr = btrfs_xattr_handlers;
572         sb->s_time_gran = 1;
573 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
574         sb->s_flags |= MS_POSIXACL;
575 #endif
576
577         tree_root = open_ctree(sb, fs_devices, (char *)data);
578
579         if (IS_ERR(tree_root)) {
580                 printk("btrfs: open_ctree failed\n");
581                 return PTR_ERR(tree_root);
582         }
583         sb->s_fs_info = tree_root;
584
585         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
586         key.type = BTRFS_INODE_ITEM_KEY;
587         key.offset = 0;
588         inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL);
589         if (IS_ERR(inode)) {
590                 err = PTR_ERR(inode);
591                 goto fail_close;
592         }
593
594         root_dentry = d_alloc_root(inode);
595         if (!root_dentry) {
596                 iput(inode);
597                 err = -ENOMEM;
598                 goto fail_close;
599         }
600
601         sb->s_root = root_dentry;
602
603         save_mount_options(sb, data);
604         return 0;
605
606 fail_close:
607         close_ctree(tree_root);
608         return err;
609 }
610
611 int btrfs_sync_fs(struct super_block *sb, int wait)
612 {
613         struct btrfs_trans_handle *trans;
614         struct btrfs_root *root = btrfs_sb(sb);
615         int ret;
616
617         if (!wait) {
618                 filemap_flush(root->fs_info->btree_inode->i_mapping);
619                 return 0;
620         }
621
622         btrfs_start_delalloc_inodes(root, 0);
623         btrfs_wait_ordered_extents(root, 0, 0);
624
625         trans = btrfs_start_transaction(root, 0);
626         ret = btrfs_commit_transaction(trans, root);
627         return ret;
628 }
629
630 static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
631 {
632         struct btrfs_root *root = btrfs_sb(vfs->mnt_sb);
633         struct btrfs_fs_info *info = root->fs_info;
634
635         if (btrfs_test_opt(root, DEGRADED))
636                 seq_puts(seq, ",degraded");
637         if (btrfs_test_opt(root, NODATASUM))
638                 seq_puts(seq, ",nodatasum");
639         if (btrfs_test_opt(root, NODATACOW))
640                 seq_puts(seq, ",nodatacow");
641         if (btrfs_test_opt(root, NOBARRIER))
642                 seq_puts(seq, ",nobarrier");
643         if (info->max_inline != 8192 * 1024)
644                 seq_printf(seq, ",max_inline=%llu",
645                            (unsigned long long)info->max_inline);
646         if (info->alloc_start != 0)
647                 seq_printf(seq, ",alloc_start=%llu",
648                            (unsigned long long)info->alloc_start);
649         if (info->thread_pool_size !=  min_t(unsigned long,
650                                              num_online_cpus() + 2, 8))
651                 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
652         if (btrfs_test_opt(root, COMPRESS))
653                 seq_puts(seq, ",compress");
654         if (btrfs_test_opt(root, NOSSD))
655                 seq_puts(seq, ",nossd");
656         if (btrfs_test_opt(root, SSD_SPREAD))
657                 seq_puts(seq, ",ssd_spread");
658         else if (btrfs_test_opt(root, SSD))
659                 seq_puts(seq, ",ssd");
660         if (btrfs_test_opt(root, NOTREELOG))
661                 seq_puts(seq, ",notreelog");
662         if (btrfs_test_opt(root, FLUSHONCOMMIT))
663                 seq_puts(seq, ",flushoncommit");
664         if (btrfs_test_opt(root, DISCARD))
665                 seq_puts(seq, ",discard");
666         if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
667                 seq_puts(seq, ",noacl");
668         return 0;
669 }
670
671 static int btrfs_test_super(struct super_block *s, void *data)
672 {
673         struct btrfs_root *test_root = data;
674         struct btrfs_root *root = btrfs_sb(s);
675
676         /*
677          * If this super block is going away, return false as it
678          * can't match as an existing super block.
679          */
680         if (!atomic_read(&s->s_active))
681                 return 0;
682         return root->fs_info->fs_devices == test_root->fs_info->fs_devices;
683 }
684
685 static int btrfs_set_super(struct super_block *s, void *data)
686 {
687         s->s_fs_info = data;
688
689         return set_anon_super(s, data);
690 }
691
692
693 /*
694  * Find a superblock for the given device / mount point.
695  *
696  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
697  *        for multiple device setup.  Make sure to keep it in sync.
698  */
699 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
700                 const char *dev_name, void *data)
701 {
702         struct block_device *bdev = NULL;
703         struct super_block *s;
704         struct dentry *root;
705         struct btrfs_fs_devices *fs_devices = NULL;
706         struct btrfs_root *tree_root = NULL;
707         struct btrfs_fs_info *fs_info = NULL;
708         fmode_t mode = FMODE_READ;
709         char *subvol_name = NULL;
710         u64 subvol_objectid = 0;
711         int error = 0;
712
713         if (!(flags & MS_RDONLY))
714                 mode |= FMODE_WRITE;
715
716         error = btrfs_parse_early_options(data, mode, fs_type,
717                                           &subvol_name, &subvol_objectid,
718                                           &fs_devices);
719         if (error)
720                 return ERR_PTR(error);
721
722         error = btrfs_scan_one_device(dev_name, mode, fs_type, &fs_devices);
723         if (error)
724                 goto error_free_subvol_name;
725
726         error = btrfs_open_devices(fs_devices, mode, fs_type);
727         if (error)
728                 goto error_free_subvol_name;
729
730         if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
731                 error = -EACCES;
732                 goto error_close_devices;
733         }
734
735         /*
736          * Setup a dummy root and fs_info for test/set super.  This is because
737          * we don't actually fill this stuff out until open_ctree, but we need
738          * it for searching for existing supers, so this lets us do that and
739          * then open_ctree will properly initialize everything later.
740          */
741         fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
742         tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
743         if (!fs_info || !tree_root) {
744                 error = -ENOMEM;
745                 goto error_close_devices;
746         }
747         fs_info->tree_root = tree_root;
748         fs_info->fs_devices = fs_devices;
749         tree_root->fs_info = fs_info;
750
751         bdev = fs_devices->latest_bdev;
752         s = sget(fs_type, btrfs_test_super, btrfs_set_super, tree_root);
753         if (IS_ERR(s))
754                 goto error_s;
755
756         if (s->s_root) {
757                 if ((flags ^ s->s_flags) & MS_RDONLY) {
758                         deactivate_locked_super(s);
759                         error = -EBUSY;
760                         goto error_close_devices;
761                 }
762
763                 btrfs_close_devices(fs_devices);
764         } else {
765                 char b[BDEVNAME_SIZE];
766
767                 s->s_flags = flags;
768                 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
769                 error = btrfs_fill_super(s, fs_devices, data,
770                                          flags & MS_SILENT ? 1 : 0);
771                 if (error) {
772                         deactivate_locked_super(s);
773                         goto error_free_subvol_name;
774                 }
775
776                 btrfs_sb(s)->fs_info->bdev_holder = fs_type;
777                 s->s_flags |= MS_ACTIVE;
778         }
779
780         root = get_default_root(s, subvol_objectid);
781         if (IS_ERR(root)) {
782                 error = PTR_ERR(root);
783                 deactivate_locked_super(s);
784                 goto error_free_subvol_name;
785         }
786         /* if they gave us a subvolume name bind mount into that */
787         if (strcmp(subvol_name, ".")) {
788                 struct dentry *new_root;
789                 mutex_lock(&root->d_inode->i_mutex);
790                 new_root = lookup_one_len(subvol_name, root,
791                                       strlen(subvol_name));
792                 mutex_unlock(&root->d_inode->i_mutex);
793
794                 if (IS_ERR(new_root)) {
795                         dput(root);
796                         deactivate_locked_super(s);
797                         error = PTR_ERR(new_root);
798                         goto error_free_subvol_name;
799                 }
800                 if (!new_root->d_inode) {
801                         dput(root);
802                         dput(new_root);
803                         deactivate_locked_super(s);
804                         error = -ENXIO;
805                         goto error_free_subvol_name;
806                 }
807                 dput(root);
808                 root = new_root;
809         }
810
811         kfree(subvol_name);
812         return root;
813
814 error_s:
815         error = PTR_ERR(s);
816 error_close_devices:
817         btrfs_close_devices(fs_devices);
818         kfree(fs_info);
819         kfree(tree_root);
820 error_free_subvol_name:
821         kfree(subvol_name);
822         return ERR_PTR(error);
823 }
824
825 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
826 {
827         struct btrfs_root *root = btrfs_sb(sb);
828         int ret;
829
830         ret = btrfs_parse_options(root, data);
831         if (ret)
832                 return -EINVAL;
833
834         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
835                 return 0;
836
837         if (*flags & MS_RDONLY) {
838                 sb->s_flags |= MS_RDONLY;
839
840                 ret =  btrfs_commit_super(root);
841                 WARN_ON(ret);
842         } else {
843                 if (root->fs_info->fs_devices->rw_devices == 0)
844                         return -EACCES;
845
846                 if (btrfs_super_log_root(&root->fs_info->super_copy) != 0)
847                         return -EINVAL;
848
849                 ret = btrfs_cleanup_fs_roots(root->fs_info);
850                 WARN_ON(ret);
851
852                 /* recover relocation */
853                 ret = btrfs_recover_relocation(root);
854                 WARN_ON(ret);
855
856                 sb->s_flags &= ~MS_RDONLY;
857         }
858
859         return 0;
860 }
861
862 /*
863  * The helper to calc the free space on the devices that can be used to store
864  * file data.
865  */
866 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
867 {
868         struct btrfs_fs_info *fs_info = root->fs_info;
869         struct btrfs_device_info *devices_info;
870         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
871         struct btrfs_device *device;
872         u64 skip_space;
873         u64 type;
874         u64 avail_space;
875         u64 used_space;
876         u64 min_stripe_size;
877         int min_stripes = 1;
878         int i = 0, nr_devices;
879         int ret;
880
881         nr_devices = fs_info->fs_devices->rw_devices;
882         BUG_ON(!nr_devices);
883
884         devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
885                                GFP_NOFS);
886         if (!devices_info)
887                 return -ENOMEM;
888
889         /* calc min stripe number for data space alloction */
890         type = btrfs_get_alloc_profile(root, 1);
891         if (type & BTRFS_BLOCK_GROUP_RAID0)
892                 min_stripes = 2;
893         else if (type & BTRFS_BLOCK_GROUP_RAID1)
894                 min_stripes = 2;
895         else if (type & BTRFS_BLOCK_GROUP_RAID10)
896                 min_stripes = 4;
897
898         if (type & BTRFS_BLOCK_GROUP_DUP)
899                 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
900         else
901                 min_stripe_size = BTRFS_STRIPE_LEN;
902
903         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
904                 if (!device->in_fs_metadata)
905                         continue;
906
907                 avail_space = device->total_bytes - device->bytes_used;
908
909                 /* align with stripe_len */
910                 do_div(avail_space, BTRFS_STRIPE_LEN);
911                 avail_space *= BTRFS_STRIPE_LEN;
912
913                 /*
914                  * In order to avoid overwritting the superblock on the drive,
915                  * btrfs starts at an offset of at least 1MB when doing chunk
916                  * allocation.
917                  */
918                 skip_space = 1024 * 1024;
919
920                 /* user can set the offset in fs_info->alloc_start. */
921                 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
922                     device->total_bytes)
923                         skip_space = max(fs_info->alloc_start, skip_space);
924
925                 /*
926                  * btrfs can not use the free space in [0, skip_space - 1],
927                  * we must subtract it from the total. In order to implement
928                  * it, we account the used space in this range first.
929                  */
930                 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
931                                                      &used_space);
932                 if (ret) {
933                         kfree(devices_info);
934                         return ret;
935                 }
936
937                 /* calc the free space in [0, skip_space - 1] */
938                 skip_space -= used_space;
939
940                 /*
941                  * we can use the free space in [0, skip_space - 1], subtract
942                  * it from the total.
943                  */
944                 if (avail_space && avail_space >= skip_space)
945                         avail_space -= skip_space;
946                 else
947                         avail_space = 0;
948
949                 if (avail_space < min_stripe_size)
950                         continue;
951
952                 devices_info[i].dev = device;
953                 devices_info[i].max_avail = avail_space;
954
955                 i++;
956         }
957
958         nr_devices = i;
959
960         btrfs_descending_sort_devices(devices_info, nr_devices);
961
962         i = nr_devices - 1;
963         avail_space = 0;
964         while (nr_devices >= min_stripes) {
965                 if (devices_info[i].max_avail >= min_stripe_size) {
966                         int j;
967                         u64 alloc_size;
968
969                         avail_space += devices_info[i].max_avail * min_stripes;
970                         alloc_size = devices_info[i].max_avail;
971                         for (j = i + 1 - min_stripes; j <= i; j++)
972                                 devices_info[j].max_avail -= alloc_size;
973                 }
974                 i--;
975                 nr_devices--;
976         }
977
978         kfree(devices_info);
979         *free_bytes = avail_space;
980         return 0;
981 }
982
983 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
984 {
985         struct btrfs_root *root = btrfs_sb(dentry->d_sb);
986         struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
987         struct list_head *head = &root->fs_info->space_info;
988         struct btrfs_space_info *found;
989         u64 total_used = 0;
990         u64 total_free_data = 0;
991         int bits = dentry->d_sb->s_blocksize_bits;
992         __be32 *fsid = (__be32 *)root->fs_info->fsid;
993         int ret;
994
995         /* holding chunk_muext to avoid allocating new chunks */
996         mutex_lock(&root->fs_info->chunk_mutex);
997         rcu_read_lock();
998         list_for_each_entry_rcu(found, head, list) {
999                 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1000                         total_free_data += found->disk_total - found->disk_used;
1001                         total_free_data -=
1002                                 btrfs_account_ro_block_groups_free_space(found);
1003                 }
1004
1005                 total_used += found->disk_used;
1006         }
1007         rcu_read_unlock();
1008
1009         buf->f_namelen = BTRFS_NAME_LEN;
1010         buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1011         buf->f_bfree = buf->f_blocks - (total_used >> bits);
1012         buf->f_bsize = dentry->d_sb->s_blocksize;
1013         buf->f_type = BTRFS_SUPER_MAGIC;
1014         buf->f_bavail = total_free_data;
1015         ret = btrfs_calc_avail_data_space(root, &total_free_data);
1016         if (ret) {
1017                 mutex_unlock(&root->fs_info->chunk_mutex);
1018                 return ret;
1019         }
1020         buf->f_bavail += total_free_data;
1021         buf->f_bavail = buf->f_bavail >> bits;
1022         mutex_unlock(&root->fs_info->chunk_mutex);
1023
1024         /* We treat it as constant endianness (it doesn't matter _which_)
1025            because we want the fsid to come out the same whether mounted
1026            on a big-endian or little-endian host */
1027         buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1028         buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1029         /* Mask in the root object ID too, to disambiguate subvols */
1030         buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1031         buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1032
1033         return 0;
1034 }
1035
1036 static struct file_system_type btrfs_fs_type = {
1037         .owner          = THIS_MODULE,
1038         .name           = "btrfs",
1039         .mount          = btrfs_mount,
1040         .kill_sb        = kill_anon_super,
1041         .fs_flags       = FS_REQUIRES_DEV,
1042 };
1043
1044 /*
1045  * used by btrfsctl to scan devices when no FS is mounted
1046  */
1047 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1048                                 unsigned long arg)
1049 {
1050         struct btrfs_ioctl_vol_args *vol;
1051         struct btrfs_fs_devices *fs_devices;
1052         int ret = -ENOTTY;
1053
1054         if (!capable(CAP_SYS_ADMIN))
1055                 return -EPERM;
1056
1057         vol = memdup_user((void __user *)arg, sizeof(*vol));
1058         if (IS_ERR(vol))
1059                 return PTR_ERR(vol);
1060
1061         switch (cmd) {
1062         case BTRFS_IOC_SCAN_DEV:
1063                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1064                                             &btrfs_fs_type, &fs_devices);
1065                 break;
1066         }
1067
1068         kfree(vol);
1069         return ret;
1070 }
1071
1072 static int btrfs_freeze(struct super_block *sb)
1073 {
1074         struct btrfs_root *root = btrfs_sb(sb);
1075         mutex_lock(&root->fs_info->transaction_kthread_mutex);
1076         mutex_lock(&root->fs_info->cleaner_mutex);
1077         return 0;
1078 }
1079
1080 static int btrfs_unfreeze(struct super_block *sb)
1081 {
1082         struct btrfs_root *root = btrfs_sb(sb);
1083         mutex_unlock(&root->fs_info->cleaner_mutex);
1084         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1085         return 0;
1086 }
1087
1088 static const struct super_operations btrfs_super_ops = {
1089         .drop_inode     = btrfs_drop_inode,
1090         .evict_inode    = btrfs_evict_inode,
1091         .put_super      = btrfs_put_super,
1092         .sync_fs        = btrfs_sync_fs,
1093         .show_options   = btrfs_show_options,
1094         .write_inode    = btrfs_write_inode,
1095         .dirty_inode    = btrfs_dirty_inode,
1096         .alloc_inode    = btrfs_alloc_inode,
1097         .destroy_inode  = btrfs_destroy_inode,
1098         .statfs         = btrfs_statfs,
1099         .remount_fs     = btrfs_remount,
1100         .freeze_fs      = btrfs_freeze,
1101         .unfreeze_fs    = btrfs_unfreeze,
1102 };
1103
1104 static const struct file_operations btrfs_ctl_fops = {
1105         .unlocked_ioctl  = btrfs_control_ioctl,
1106         .compat_ioctl = btrfs_control_ioctl,
1107         .owner   = THIS_MODULE,
1108         .llseek = noop_llseek,
1109 };
1110
1111 static struct miscdevice btrfs_misc = {
1112         .minor          = BTRFS_MINOR,
1113         .name           = "btrfs-control",
1114         .fops           = &btrfs_ctl_fops
1115 };
1116
1117 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1118 MODULE_ALIAS("devname:btrfs-control");
1119
1120 static int btrfs_interface_init(void)
1121 {
1122         return misc_register(&btrfs_misc);
1123 }
1124
1125 static void btrfs_interface_exit(void)
1126 {
1127         if (misc_deregister(&btrfs_misc) < 0)
1128                 printk(KERN_INFO "misc_deregister failed for control device");
1129 }
1130
1131 static int __init init_btrfs_fs(void)
1132 {
1133         int err;
1134
1135         err = btrfs_init_sysfs();
1136         if (err)
1137                 return err;
1138
1139         err = btrfs_init_compress();
1140         if (err)
1141                 goto free_sysfs;
1142
1143         err = btrfs_init_cachep();
1144         if (err)
1145                 goto free_compress;
1146
1147         err = extent_io_init();
1148         if (err)
1149                 goto free_cachep;
1150
1151         err = extent_map_init();
1152         if (err)
1153                 goto free_extent_io;
1154
1155         err = btrfs_interface_init();
1156         if (err)
1157                 goto free_extent_map;
1158
1159         err = register_filesystem(&btrfs_fs_type);
1160         if (err)
1161                 goto unregister_ioctl;
1162
1163         printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1164         return 0;
1165
1166 unregister_ioctl:
1167         btrfs_interface_exit();
1168 free_extent_map:
1169         extent_map_exit();
1170 free_extent_io:
1171         extent_io_exit();
1172 free_cachep:
1173         btrfs_destroy_cachep();
1174 free_compress:
1175         btrfs_exit_compress();
1176 free_sysfs:
1177         btrfs_exit_sysfs();
1178         return err;
1179 }
1180
1181 static void __exit exit_btrfs_fs(void)
1182 {
1183         btrfs_destroy_cachep();
1184         extent_map_exit();
1185         extent_io_exit();
1186         btrfs_interface_exit();
1187         unregister_filesystem(&btrfs_fs_type);
1188         btrfs_exit_sysfs();
1189         btrfs_cleanup_fs_uuids();
1190         btrfs_exit_compress();
1191 }
1192
1193 module_init(init_btrfs_fs)
1194 module_exit(exit_btrfs_fs)
1195
1196 MODULE_LICENSE("GPL");