Merge branch 'for-3.2-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[pandora-kernel.git] / fs / btrfs / scrub.c
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28
29 /*
30  * This is only the first step towards a full-features scrub. It reads all
31  * extent and super block and verifies the checksums. In case a bad checksum
32  * is found or the extent cannot be read, good data will be written back if
33  * any can be found.
34  *
35  * Future enhancements:
36  *  - In case an unrepairable extent is encountered, track which files are
37  *    affected and report them
38  *  - In case of a read error on files with nodatasum, map the file and read
39  *    the extent to trigger a writeback of the good copy
40  *  - track and record media errors, throw out bad devices
41  *  - add a mode to also read unallocated space
42  */
43
44 struct scrub_bio;
45 struct scrub_page;
46 struct scrub_dev;
47 static void scrub_bio_end_io(struct bio *bio, int err);
48 static void scrub_checksum(struct btrfs_work *work);
49 static int scrub_checksum_data(struct scrub_dev *sdev,
50                                struct scrub_page *spag, void *buffer);
51 static int scrub_checksum_tree_block(struct scrub_dev *sdev,
52                                      struct scrub_page *spag, u64 logical,
53                                      void *buffer);
54 static int scrub_checksum_super(struct scrub_bio *sbio, void *buffer);
55 static int scrub_fixup_check(struct scrub_bio *sbio, int ix);
56 static void scrub_fixup_end_io(struct bio *bio, int err);
57 static int scrub_fixup_io(int rw, struct block_device *bdev, sector_t sector,
58                           struct page *page);
59 static void scrub_fixup(struct scrub_bio *sbio, int ix);
60
61 #define SCRUB_PAGES_PER_BIO     16      /* 64k per bio */
62 #define SCRUB_BIOS_PER_DEV      16      /* 1 MB per device in flight */
63
64 struct scrub_page {
65         u64                     flags;  /* extent flags */
66         u64                     generation;
67         int                     mirror_num;
68         int                     have_csum;
69         u8                      csum[BTRFS_CSUM_SIZE];
70 };
71
72 struct scrub_bio {
73         int                     index;
74         struct scrub_dev        *sdev;
75         struct bio              *bio;
76         int                     err;
77         u64                     logical;
78         u64                     physical;
79         struct scrub_page       spag[SCRUB_PAGES_PER_BIO];
80         u64                     count;
81         int                     next_free;
82         struct btrfs_work       work;
83 };
84
85 struct scrub_dev {
86         struct scrub_bio        *bios[SCRUB_BIOS_PER_DEV];
87         struct btrfs_device     *dev;
88         int                     first_free;
89         int                     curr;
90         atomic_t                in_flight;
91         atomic_t                fixup_cnt;
92         spinlock_t              list_lock;
93         wait_queue_head_t       list_wait;
94         u16                     csum_size;
95         struct list_head        csum_list;
96         atomic_t                cancel_req;
97         int                     readonly;
98         /*
99          * statistics
100          */
101         struct btrfs_scrub_progress stat;
102         spinlock_t              stat_lock;
103 };
104
105 struct scrub_fixup_nodatasum {
106         struct scrub_dev        *sdev;
107         u64                     logical;
108         struct btrfs_root       *root;
109         struct btrfs_work       work;
110         int                     mirror_num;
111 };
112
113 struct scrub_warning {
114         struct btrfs_path       *path;
115         u64                     extent_item_size;
116         char                    *scratch_buf;
117         char                    *msg_buf;
118         const char              *errstr;
119         sector_t                sector;
120         u64                     logical;
121         struct btrfs_device     *dev;
122         int                     msg_bufsize;
123         int                     scratch_bufsize;
124 };
125
126 static void scrub_free_csums(struct scrub_dev *sdev)
127 {
128         while (!list_empty(&sdev->csum_list)) {
129                 struct btrfs_ordered_sum *sum;
130                 sum = list_first_entry(&sdev->csum_list,
131                                        struct btrfs_ordered_sum, list);
132                 list_del(&sum->list);
133                 kfree(sum);
134         }
135 }
136
137 static void scrub_free_bio(struct bio *bio)
138 {
139         int i;
140         struct page *last_page = NULL;
141
142         if (!bio)
143                 return;
144
145         for (i = 0; i < bio->bi_vcnt; ++i) {
146                 if (bio->bi_io_vec[i].bv_page == last_page)
147                         continue;
148                 last_page = bio->bi_io_vec[i].bv_page;
149                 __free_page(last_page);
150         }
151         bio_put(bio);
152 }
153
154 static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev)
155 {
156         int i;
157
158         if (!sdev)
159                 return;
160
161         for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
162                 struct scrub_bio *sbio = sdev->bios[i];
163
164                 if (!sbio)
165                         break;
166
167                 scrub_free_bio(sbio->bio);
168                 kfree(sbio);
169         }
170
171         scrub_free_csums(sdev);
172         kfree(sdev);
173 }
174
175 static noinline_for_stack
176 struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
177 {
178         struct scrub_dev *sdev;
179         int             i;
180         struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
181
182         sdev = kzalloc(sizeof(*sdev), GFP_NOFS);
183         if (!sdev)
184                 goto nomem;
185         sdev->dev = dev;
186         for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
187                 struct scrub_bio *sbio;
188
189                 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
190                 if (!sbio)
191                         goto nomem;
192                 sdev->bios[i] = sbio;
193
194                 sbio->index = i;
195                 sbio->sdev = sdev;
196                 sbio->count = 0;
197                 sbio->work.func = scrub_checksum;
198
199                 if (i != SCRUB_BIOS_PER_DEV-1)
200                         sdev->bios[i]->next_free = i + 1;
201                 else
202                         sdev->bios[i]->next_free = -1;
203         }
204         sdev->first_free = 0;
205         sdev->curr = -1;
206         atomic_set(&sdev->in_flight, 0);
207         atomic_set(&sdev->fixup_cnt, 0);
208         atomic_set(&sdev->cancel_req, 0);
209         sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy);
210         INIT_LIST_HEAD(&sdev->csum_list);
211
212         spin_lock_init(&sdev->list_lock);
213         spin_lock_init(&sdev->stat_lock);
214         init_waitqueue_head(&sdev->list_wait);
215         return sdev;
216
217 nomem:
218         scrub_free_dev(sdev);
219         return ERR_PTR(-ENOMEM);
220 }
221
222 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx)
223 {
224         u64 isize;
225         u32 nlink;
226         int ret;
227         int i;
228         struct extent_buffer *eb;
229         struct btrfs_inode_item *inode_item;
230         struct scrub_warning *swarn = ctx;
231         struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
232         struct inode_fs_paths *ipath = NULL;
233         struct btrfs_root *local_root;
234         struct btrfs_key root_key;
235
236         root_key.objectid = root;
237         root_key.type = BTRFS_ROOT_ITEM_KEY;
238         root_key.offset = (u64)-1;
239         local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
240         if (IS_ERR(local_root)) {
241                 ret = PTR_ERR(local_root);
242                 goto err;
243         }
244
245         ret = inode_item_info(inum, 0, local_root, swarn->path);
246         if (ret) {
247                 btrfs_release_path(swarn->path);
248                 goto err;
249         }
250
251         eb = swarn->path->nodes[0];
252         inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
253                                         struct btrfs_inode_item);
254         isize = btrfs_inode_size(eb, inode_item);
255         nlink = btrfs_inode_nlink(eb, inode_item);
256         btrfs_release_path(swarn->path);
257
258         ipath = init_ipath(4096, local_root, swarn->path);
259         if (IS_ERR(ipath)) {
260                 ret = PTR_ERR(ipath);
261                 ipath = NULL;
262                 goto err;
263         }
264         ret = paths_from_inode(inum, ipath);
265
266         if (ret < 0)
267                 goto err;
268
269         /*
270          * we deliberately ignore the bit ipath might have been too small to
271          * hold all of the paths here
272          */
273         for (i = 0; i < ipath->fspath->elem_cnt; ++i)
274                 printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
275                         "%s, sector %llu, root %llu, inode %llu, offset %llu, "
276                         "length %llu, links %u (path: %s)\n", swarn->errstr,
277                         swarn->logical, swarn->dev->name,
278                         (unsigned long long)swarn->sector, root, inum, offset,
279                         min(isize - offset, (u64)PAGE_SIZE), nlink,
280                         (char *)(unsigned long)ipath->fspath->val[i]);
281
282         free_ipath(ipath);
283         return 0;
284
285 err:
286         printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
287                 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
288                 "resolving failed with ret=%d\n", swarn->errstr,
289                 swarn->logical, swarn->dev->name,
290                 (unsigned long long)swarn->sector, root, inum, offset, ret);
291
292         free_ipath(ipath);
293         return 0;
294 }
295
296 static void scrub_print_warning(const char *errstr, struct scrub_bio *sbio,
297                                 int ix)
298 {
299         struct btrfs_device *dev = sbio->sdev->dev;
300         struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
301         struct btrfs_path *path;
302         struct btrfs_key found_key;
303         struct extent_buffer *eb;
304         struct btrfs_extent_item *ei;
305         struct scrub_warning swarn;
306         u32 item_size;
307         int ret;
308         u64 ref_root;
309         u8 ref_level;
310         unsigned long ptr = 0;
311         const int bufsize = 4096;
312         u64 extent_offset;
313
314         path = btrfs_alloc_path();
315
316         swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
317         swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
318         swarn.sector = (sbio->physical + ix * PAGE_SIZE) >> 9;
319         swarn.logical = sbio->logical + ix * PAGE_SIZE;
320         swarn.errstr = errstr;
321         swarn.dev = dev;
322         swarn.msg_bufsize = bufsize;
323         swarn.scratch_bufsize = bufsize;
324
325         if (!path || !swarn.scratch_buf || !swarn.msg_buf)
326                 goto out;
327
328         ret = extent_from_logical(fs_info, swarn.logical, path, &found_key);
329         if (ret < 0)
330                 goto out;
331
332         extent_offset = swarn.logical - found_key.objectid;
333         swarn.extent_item_size = found_key.offset;
334
335         eb = path->nodes[0];
336         ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
337         item_size = btrfs_item_size_nr(eb, path->slots[0]);
338
339         if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
340                 do {
341                         ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
342                                                         &ref_root, &ref_level);
343                         printk(KERN_WARNING "%s at logical %llu on dev %s, "
344                                 "sector %llu: metadata %s (level %d) in tree "
345                                 "%llu\n", errstr, swarn.logical, dev->name,
346                                 (unsigned long long)swarn.sector,
347                                 ref_level ? "node" : "leaf",
348                                 ret < 0 ? -1 : ref_level,
349                                 ret < 0 ? -1 : ref_root);
350                 } while (ret != 1);
351         } else {
352                 swarn.path = path;
353                 iterate_extent_inodes(fs_info, path, found_key.objectid,
354                                         extent_offset,
355                                         scrub_print_warning_inode, &swarn);
356         }
357
358 out:
359         btrfs_free_path(path);
360         kfree(swarn.scratch_buf);
361         kfree(swarn.msg_buf);
362 }
363
364 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx)
365 {
366         struct page *page = NULL;
367         unsigned long index;
368         struct scrub_fixup_nodatasum *fixup = ctx;
369         int ret;
370         int corrected = 0;
371         struct btrfs_key key;
372         struct inode *inode = NULL;
373         u64 end = offset + PAGE_SIZE - 1;
374         struct btrfs_root *local_root;
375
376         key.objectid = root;
377         key.type = BTRFS_ROOT_ITEM_KEY;
378         key.offset = (u64)-1;
379         local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key);
380         if (IS_ERR(local_root))
381                 return PTR_ERR(local_root);
382
383         key.type = BTRFS_INODE_ITEM_KEY;
384         key.objectid = inum;
385         key.offset = 0;
386         inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL);
387         if (IS_ERR(inode))
388                 return PTR_ERR(inode);
389
390         index = offset >> PAGE_CACHE_SHIFT;
391
392         page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
393         if (!page) {
394                 ret = -ENOMEM;
395                 goto out;
396         }
397
398         if (PageUptodate(page)) {
399                 struct btrfs_mapping_tree *map_tree;
400                 if (PageDirty(page)) {
401                         /*
402                          * we need to write the data to the defect sector. the
403                          * data that was in that sector is not in memory,
404                          * because the page was modified. we must not write the
405                          * modified page to that sector.
406                          *
407                          * TODO: what could be done here: wait for the delalloc
408                          *       runner to write out that page (might involve
409                          *       COW) and see whether the sector is still
410                          *       referenced afterwards.
411                          *
412                          * For the meantime, we'll treat this error
413                          * incorrectable, although there is a chance that a
414                          * later scrub will find the bad sector again and that
415                          * there's no dirty page in memory, then.
416                          */
417                         ret = -EIO;
418                         goto out;
419                 }
420                 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
421                 ret = repair_io_failure(map_tree, offset, PAGE_SIZE,
422                                         fixup->logical, page,
423                                         fixup->mirror_num);
424                 unlock_page(page);
425                 corrected = !ret;
426         } else {
427                 /*
428                  * we need to get good data first. the general readpage path
429                  * will call repair_io_failure for us, we just have to make
430                  * sure we read the bad mirror.
431                  */
432                 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
433                                         EXTENT_DAMAGED, GFP_NOFS);
434                 if (ret) {
435                         /* set_extent_bits should give proper error */
436                         WARN_ON(ret > 0);
437                         if (ret > 0)
438                                 ret = -EFAULT;
439                         goto out;
440                 }
441
442                 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
443                                                 btrfs_get_extent,
444                                                 fixup->mirror_num);
445                 wait_on_page_locked(page);
446
447                 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
448                                                 end, EXTENT_DAMAGED, 0, NULL);
449                 if (!corrected)
450                         clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
451                                                 EXTENT_DAMAGED, GFP_NOFS);
452         }
453
454 out:
455         if (page)
456                 put_page(page);
457         if (inode)
458                 iput(inode);
459
460         if (ret < 0)
461                 return ret;
462
463         if (ret == 0 && corrected) {
464                 /*
465                  * we only need to call readpage for one of the inodes belonging
466                  * to this extent. so make iterate_extent_inodes stop
467                  */
468                 return 1;
469         }
470
471         return -EIO;
472 }
473
474 static void scrub_fixup_nodatasum(struct btrfs_work *work)
475 {
476         int ret;
477         struct scrub_fixup_nodatasum *fixup;
478         struct scrub_dev *sdev;
479         struct btrfs_trans_handle *trans = NULL;
480         struct btrfs_fs_info *fs_info;
481         struct btrfs_path *path;
482         int uncorrectable = 0;
483
484         fixup = container_of(work, struct scrub_fixup_nodatasum, work);
485         sdev = fixup->sdev;
486         fs_info = fixup->root->fs_info;
487
488         path = btrfs_alloc_path();
489         if (!path) {
490                 spin_lock(&sdev->stat_lock);
491                 ++sdev->stat.malloc_errors;
492                 spin_unlock(&sdev->stat_lock);
493                 uncorrectable = 1;
494                 goto out;
495         }
496
497         trans = btrfs_join_transaction(fixup->root);
498         if (IS_ERR(trans)) {
499                 uncorrectable = 1;
500                 goto out;
501         }
502
503         /*
504          * the idea is to trigger a regular read through the standard path. we
505          * read a page from the (failed) logical address by specifying the
506          * corresponding copynum of the failed sector. thus, that readpage is
507          * expected to fail.
508          * that is the point where on-the-fly error correction will kick in
509          * (once it's finished) and rewrite the failed sector if a good copy
510          * can be found.
511          */
512         ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
513                                                 path, scrub_fixup_readpage,
514                                                 fixup);
515         if (ret < 0) {
516                 uncorrectable = 1;
517                 goto out;
518         }
519         WARN_ON(ret != 1);
520
521         spin_lock(&sdev->stat_lock);
522         ++sdev->stat.corrected_errors;
523         spin_unlock(&sdev->stat_lock);
524
525 out:
526         if (trans && !IS_ERR(trans))
527                 btrfs_end_transaction(trans, fixup->root);
528         if (uncorrectable) {
529                 spin_lock(&sdev->stat_lock);
530                 ++sdev->stat.uncorrectable_errors;
531                 spin_unlock(&sdev->stat_lock);
532                 printk_ratelimited(KERN_ERR "btrfs: unable to fixup "
533                                         "(nodatasum) error at logical %llu\n",
534                                         fixup->logical);
535         }
536
537         btrfs_free_path(path);
538         kfree(fixup);
539
540         /* see caller why we're pretending to be paused in the scrub counters */
541         mutex_lock(&fs_info->scrub_lock);
542         atomic_dec(&fs_info->scrubs_running);
543         atomic_dec(&fs_info->scrubs_paused);
544         mutex_unlock(&fs_info->scrub_lock);
545         atomic_dec(&sdev->fixup_cnt);
546         wake_up(&fs_info->scrub_pause_wait);
547         wake_up(&sdev->list_wait);
548 }
549
550 /*
551  * scrub_recheck_error gets called when either verification of the page
552  * failed or the bio failed to read, e.g. with EIO. In the latter case,
553  * recheck_error gets called for every page in the bio, even though only
554  * one may be bad
555  */
556 static int scrub_recheck_error(struct scrub_bio *sbio, int ix)
557 {
558         struct scrub_dev *sdev = sbio->sdev;
559         u64 sector = (sbio->physical + ix * PAGE_SIZE) >> 9;
560         static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
561                                         DEFAULT_RATELIMIT_BURST);
562
563         if (sbio->err) {
564                 if (scrub_fixup_io(READ, sbio->sdev->dev->bdev, sector,
565                                    sbio->bio->bi_io_vec[ix].bv_page) == 0) {
566                         if (scrub_fixup_check(sbio, ix) == 0)
567                                 return 0;
568                 }
569                 if (__ratelimit(&_rs))
570                         scrub_print_warning("i/o error", sbio, ix);
571         } else {
572                 if (__ratelimit(&_rs))
573                         scrub_print_warning("checksum error", sbio, ix);
574         }
575
576         spin_lock(&sdev->stat_lock);
577         ++sdev->stat.read_errors;
578         spin_unlock(&sdev->stat_lock);
579
580         scrub_fixup(sbio, ix);
581         return 1;
582 }
583
584 static int scrub_fixup_check(struct scrub_bio *sbio, int ix)
585 {
586         int ret = 1;
587         struct page *page;
588         void *buffer;
589         u64 flags = sbio->spag[ix].flags;
590
591         page = sbio->bio->bi_io_vec[ix].bv_page;
592         buffer = kmap_atomic(page, KM_USER0);
593         if (flags & BTRFS_EXTENT_FLAG_DATA) {
594                 ret = scrub_checksum_data(sbio->sdev,
595                                           sbio->spag + ix, buffer);
596         } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
597                 ret = scrub_checksum_tree_block(sbio->sdev,
598                                                 sbio->spag + ix,
599                                                 sbio->logical + ix * PAGE_SIZE,
600                                                 buffer);
601         } else {
602                 WARN_ON(1);
603         }
604         kunmap_atomic(buffer, KM_USER0);
605
606         return ret;
607 }
608
609 static void scrub_fixup_end_io(struct bio *bio, int err)
610 {
611         complete((struct completion *)bio->bi_private);
612 }
613
614 static void scrub_fixup(struct scrub_bio *sbio, int ix)
615 {
616         struct scrub_dev *sdev = sbio->sdev;
617         struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
618         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
619         struct btrfs_bio *bbio = NULL;
620         struct scrub_fixup_nodatasum *fixup;
621         u64 logical = sbio->logical + ix * PAGE_SIZE;
622         u64 length;
623         int i;
624         int ret;
625         DECLARE_COMPLETION_ONSTACK(complete);
626
627         if ((sbio->spag[ix].flags & BTRFS_EXTENT_FLAG_DATA) &&
628             (sbio->spag[ix].have_csum == 0)) {
629                 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
630                 if (!fixup)
631                         goto uncorrectable;
632                 fixup->sdev = sdev;
633                 fixup->logical = logical;
634                 fixup->root = fs_info->extent_root;
635                 fixup->mirror_num = sbio->spag[ix].mirror_num;
636                 /*
637                  * increment scrubs_running to prevent cancel requests from
638                  * completing as long as a fixup worker is running. we must also
639                  * increment scrubs_paused to prevent deadlocking on pause
640                  * requests used for transactions commits (as the worker uses a
641                  * transaction context). it is safe to regard the fixup worker
642                  * as paused for all matters practical. effectively, we only
643                  * avoid cancellation requests from completing.
644                  */
645                 mutex_lock(&fs_info->scrub_lock);
646                 atomic_inc(&fs_info->scrubs_running);
647                 atomic_inc(&fs_info->scrubs_paused);
648                 mutex_unlock(&fs_info->scrub_lock);
649                 atomic_inc(&sdev->fixup_cnt);
650                 fixup->work.func = scrub_fixup_nodatasum;
651                 btrfs_queue_worker(&fs_info->scrub_workers, &fixup->work);
652                 return;
653         }
654
655         length = PAGE_SIZE;
656         ret = btrfs_map_block(map_tree, REQ_WRITE, logical, &length,
657                               &bbio, 0);
658         if (ret || !bbio || length < PAGE_SIZE) {
659                 printk(KERN_ERR
660                        "scrub_fixup: btrfs_map_block failed us for %llu\n",
661                        (unsigned long long)logical);
662                 WARN_ON(1);
663                 kfree(bbio);
664                 return;
665         }
666
667         if (bbio->num_stripes == 1)
668                 /* there aren't any replicas */
669                 goto uncorrectable;
670
671         /*
672          * first find a good copy
673          */
674         for (i = 0; i < bbio->num_stripes; ++i) {
675                 if (i + 1 == sbio->spag[ix].mirror_num)
676                         continue;
677
678                 if (scrub_fixup_io(READ, bbio->stripes[i].dev->bdev,
679                                    bbio->stripes[i].physical >> 9,
680                                    sbio->bio->bi_io_vec[ix].bv_page)) {
681                         /* I/O-error, this is not a good copy */
682                         continue;
683                 }
684
685                 if (scrub_fixup_check(sbio, ix) == 0)
686                         break;
687         }
688         if (i == bbio->num_stripes)
689                 goto uncorrectable;
690
691         if (!sdev->readonly) {
692                 /*
693                  * bi_io_vec[ix].bv_page now contains good data, write it back
694                  */
695                 if (scrub_fixup_io(WRITE, sdev->dev->bdev,
696                                    (sbio->physical + ix * PAGE_SIZE) >> 9,
697                                    sbio->bio->bi_io_vec[ix].bv_page)) {
698                         /* I/O-error, writeback failed, give up */
699                         goto uncorrectable;
700                 }
701         }
702
703         kfree(bbio);
704         spin_lock(&sdev->stat_lock);
705         ++sdev->stat.corrected_errors;
706         spin_unlock(&sdev->stat_lock);
707
708         printk_ratelimited(KERN_ERR "btrfs: fixed up error at logical %llu\n",
709                                (unsigned long long)logical);
710         return;
711
712 uncorrectable:
713         kfree(bbio);
714         spin_lock(&sdev->stat_lock);
715         ++sdev->stat.uncorrectable_errors;
716         spin_unlock(&sdev->stat_lock);
717
718         printk_ratelimited(KERN_ERR "btrfs: unable to fixup (regular) error at "
719                                 "logical %llu\n", (unsigned long long)logical);
720 }
721
722 static int scrub_fixup_io(int rw, struct block_device *bdev, sector_t sector,
723                          struct page *page)
724 {
725         struct bio *bio = NULL;
726         int ret;
727         DECLARE_COMPLETION_ONSTACK(complete);
728
729         bio = bio_alloc(GFP_NOFS, 1);
730         bio->bi_bdev = bdev;
731         bio->bi_sector = sector;
732         bio_add_page(bio, page, PAGE_SIZE, 0);
733         bio->bi_end_io = scrub_fixup_end_io;
734         bio->bi_private = &complete;
735         submit_bio(rw, bio);
736
737         /* this will also unplug the queue */
738         wait_for_completion(&complete);
739
740         ret = !test_bit(BIO_UPTODATE, &bio->bi_flags);
741         bio_put(bio);
742         return ret;
743 }
744
745 static void scrub_bio_end_io(struct bio *bio, int err)
746 {
747         struct scrub_bio *sbio = bio->bi_private;
748         struct scrub_dev *sdev = sbio->sdev;
749         struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
750
751         sbio->err = err;
752         sbio->bio = bio;
753
754         btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
755 }
756
757 static void scrub_checksum(struct btrfs_work *work)
758 {
759         struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
760         struct scrub_dev *sdev = sbio->sdev;
761         struct page *page;
762         void *buffer;
763         int i;
764         u64 flags;
765         u64 logical;
766         int ret;
767
768         if (sbio->err) {
769                 ret = 0;
770                 for (i = 0; i < sbio->count; ++i)
771                         ret |= scrub_recheck_error(sbio, i);
772                 if (!ret) {
773                         spin_lock(&sdev->stat_lock);
774                         ++sdev->stat.unverified_errors;
775                         spin_unlock(&sdev->stat_lock);
776                 }
777
778                 sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1);
779                 sbio->bio->bi_flags |= 1 << BIO_UPTODATE;
780                 sbio->bio->bi_phys_segments = 0;
781                 sbio->bio->bi_idx = 0;
782
783                 for (i = 0; i < sbio->count; i++) {
784                         struct bio_vec *bi;
785                         bi = &sbio->bio->bi_io_vec[i];
786                         bi->bv_offset = 0;
787                         bi->bv_len = PAGE_SIZE;
788                 }
789                 goto out;
790         }
791         for (i = 0; i < sbio->count; ++i) {
792                 page = sbio->bio->bi_io_vec[i].bv_page;
793                 buffer = kmap_atomic(page, KM_USER0);
794                 flags = sbio->spag[i].flags;
795                 logical = sbio->logical + i * PAGE_SIZE;
796                 ret = 0;
797                 if (flags & BTRFS_EXTENT_FLAG_DATA) {
798                         ret = scrub_checksum_data(sdev, sbio->spag + i, buffer);
799                 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
800                         ret = scrub_checksum_tree_block(sdev, sbio->spag + i,
801                                                         logical, buffer);
802                 } else if (flags & BTRFS_EXTENT_FLAG_SUPER) {
803                         BUG_ON(i);
804                         (void)scrub_checksum_super(sbio, buffer);
805                 } else {
806                         WARN_ON(1);
807                 }
808                 kunmap_atomic(buffer, KM_USER0);
809                 if (ret) {
810                         ret = scrub_recheck_error(sbio, i);
811                         if (!ret) {
812                                 spin_lock(&sdev->stat_lock);
813                                 ++sdev->stat.unverified_errors;
814                                 spin_unlock(&sdev->stat_lock);
815                         }
816                 }
817         }
818
819 out:
820         scrub_free_bio(sbio->bio);
821         sbio->bio = NULL;
822         spin_lock(&sdev->list_lock);
823         sbio->next_free = sdev->first_free;
824         sdev->first_free = sbio->index;
825         spin_unlock(&sdev->list_lock);
826         atomic_dec(&sdev->in_flight);
827         wake_up(&sdev->list_wait);
828 }
829
830 static int scrub_checksum_data(struct scrub_dev *sdev,
831                                struct scrub_page *spag, void *buffer)
832 {
833         u8 csum[BTRFS_CSUM_SIZE];
834         u32 crc = ~(u32)0;
835         int fail = 0;
836         struct btrfs_root *root = sdev->dev->dev_root;
837
838         if (!spag->have_csum)
839                 return 0;
840
841         crc = btrfs_csum_data(root, buffer, crc, PAGE_SIZE);
842         btrfs_csum_final(crc, csum);
843         if (memcmp(csum, spag->csum, sdev->csum_size))
844                 fail = 1;
845
846         spin_lock(&sdev->stat_lock);
847         ++sdev->stat.data_extents_scrubbed;
848         sdev->stat.data_bytes_scrubbed += PAGE_SIZE;
849         if (fail)
850                 ++sdev->stat.csum_errors;
851         spin_unlock(&sdev->stat_lock);
852
853         return fail;
854 }
855
856 static int scrub_checksum_tree_block(struct scrub_dev *sdev,
857                                      struct scrub_page *spag, u64 logical,
858                                      void *buffer)
859 {
860         struct btrfs_header *h;
861         struct btrfs_root *root = sdev->dev->dev_root;
862         struct btrfs_fs_info *fs_info = root->fs_info;
863         u8 csum[BTRFS_CSUM_SIZE];
864         u32 crc = ~(u32)0;
865         int fail = 0;
866         int crc_fail = 0;
867
868         /*
869          * we don't use the getter functions here, as we
870          * a) don't have an extent buffer and
871          * b) the page is already kmapped
872          */
873         h = (struct btrfs_header *)buffer;
874
875         if (logical != le64_to_cpu(h->bytenr))
876                 ++fail;
877
878         if (spag->generation != le64_to_cpu(h->generation))
879                 ++fail;
880
881         if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
882                 ++fail;
883
884         if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
885                    BTRFS_UUID_SIZE))
886                 ++fail;
887
888         crc = btrfs_csum_data(root, buffer + BTRFS_CSUM_SIZE, crc,
889                               PAGE_SIZE - BTRFS_CSUM_SIZE);
890         btrfs_csum_final(crc, csum);
891         if (memcmp(csum, h->csum, sdev->csum_size))
892                 ++crc_fail;
893
894         spin_lock(&sdev->stat_lock);
895         ++sdev->stat.tree_extents_scrubbed;
896         sdev->stat.tree_bytes_scrubbed += PAGE_SIZE;
897         if (crc_fail)
898                 ++sdev->stat.csum_errors;
899         if (fail)
900                 ++sdev->stat.verify_errors;
901         spin_unlock(&sdev->stat_lock);
902
903         return fail || crc_fail;
904 }
905
906 static int scrub_checksum_super(struct scrub_bio *sbio, void *buffer)
907 {
908         struct btrfs_super_block *s;
909         u64 logical;
910         struct scrub_dev *sdev = sbio->sdev;
911         struct btrfs_root *root = sdev->dev->dev_root;
912         struct btrfs_fs_info *fs_info = root->fs_info;
913         u8 csum[BTRFS_CSUM_SIZE];
914         u32 crc = ~(u32)0;
915         int fail = 0;
916
917         s = (struct btrfs_super_block *)buffer;
918         logical = sbio->logical;
919
920         if (logical != le64_to_cpu(s->bytenr))
921                 ++fail;
922
923         if (sbio->spag[0].generation != le64_to_cpu(s->generation))
924                 ++fail;
925
926         if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
927                 ++fail;
928
929         crc = btrfs_csum_data(root, buffer + BTRFS_CSUM_SIZE, crc,
930                               PAGE_SIZE - BTRFS_CSUM_SIZE);
931         btrfs_csum_final(crc, csum);
932         if (memcmp(csum, s->csum, sbio->sdev->csum_size))
933                 ++fail;
934
935         if (fail) {
936                 /*
937                  * if we find an error in a super block, we just report it.
938                  * They will get written with the next transaction commit
939                  * anyway
940                  */
941                 spin_lock(&sdev->stat_lock);
942                 ++sdev->stat.super_errors;
943                 spin_unlock(&sdev->stat_lock);
944         }
945
946         return fail;
947 }
948
949 static int scrub_submit(struct scrub_dev *sdev)
950 {
951         struct scrub_bio *sbio;
952
953         if (sdev->curr == -1)
954                 return 0;
955
956         sbio = sdev->bios[sdev->curr];
957         sbio->err = 0;
958         sdev->curr = -1;
959         atomic_inc(&sdev->in_flight);
960
961         submit_bio(READ, sbio->bio);
962
963         return 0;
964 }
965
966 static int scrub_page(struct scrub_dev *sdev, u64 logical, u64 len,
967                       u64 physical, u64 flags, u64 gen, int mirror_num,
968                       u8 *csum, int force)
969 {
970         struct scrub_bio *sbio;
971         struct page *page;
972         int ret;
973
974 again:
975         /*
976          * grab a fresh bio or wait for one to become available
977          */
978         while (sdev->curr == -1) {
979                 spin_lock(&sdev->list_lock);
980                 sdev->curr = sdev->first_free;
981                 if (sdev->curr != -1) {
982                         sdev->first_free = sdev->bios[sdev->curr]->next_free;
983                         sdev->bios[sdev->curr]->next_free = -1;
984                         sdev->bios[sdev->curr]->count = 0;
985                         spin_unlock(&sdev->list_lock);
986                 } else {
987                         spin_unlock(&sdev->list_lock);
988                         wait_event(sdev->list_wait, sdev->first_free != -1);
989                 }
990         }
991         sbio = sdev->bios[sdev->curr];
992         if (sbio->count == 0) {
993                 struct bio *bio;
994
995                 sbio->physical = physical;
996                 sbio->logical = logical;
997                 bio = bio_alloc(GFP_NOFS, SCRUB_PAGES_PER_BIO);
998                 if (!bio)
999                         return -ENOMEM;
1000
1001                 bio->bi_private = sbio;
1002                 bio->bi_end_io = scrub_bio_end_io;
1003                 bio->bi_bdev = sdev->dev->bdev;
1004                 bio->bi_sector = sbio->physical >> 9;
1005                 sbio->err = 0;
1006                 sbio->bio = bio;
1007         } else if (sbio->physical + sbio->count * PAGE_SIZE != physical ||
1008                    sbio->logical + sbio->count * PAGE_SIZE != logical) {
1009                 ret = scrub_submit(sdev);
1010                 if (ret)
1011                         return ret;
1012                 goto again;
1013         }
1014         sbio->spag[sbio->count].flags = flags;
1015         sbio->spag[sbio->count].generation = gen;
1016         sbio->spag[sbio->count].have_csum = 0;
1017         sbio->spag[sbio->count].mirror_num = mirror_num;
1018
1019         page = alloc_page(GFP_NOFS);
1020         if (!page)
1021                 return -ENOMEM;
1022
1023         ret = bio_add_page(sbio->bio, page, PAGE_SIZE, 0);
1024         if (!ret) {
1025                 __free_page(page);
1026                 ret = scrub_submit(sdev);
1027                 if (ret)
1028                         return ret;
1029                 goto again;
1030         }
1031
1032         if (csum) {
1033                 sbio->spag[sbio->count].have_csum = 1;
1034                 memcpy(sbio->spag[sbio->count].csum, csum, sdev->csum_size);
1035         }
1036         ++sbio->count;
1037         if (sbio->count == SCRUB_PAGES_PER_BIO || force) {
1038                 int ret;
1039
1040                 ret = scrub_submit(sdev);
1041                 if (ret)
1042                         return ret;
1043         }
1044
1045         return 0;
1046 }
1047
1048 static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
1049                            u8 *csum)
1050 {
1051         struct btrfs_ordered_sum *sum = NULL;
1052         int ret = 0;
1053         unsigned long i;
1054         unsigned long num_sectors;
1055         u32 sectorsize = sdev->dev->dev_root->sectorsize;
1056
1057         while (!list_empty(&sdev->csum_list)) {
1058                 sum = list_first_entry(&sdev->csum_list,
1059                                        struct btrfs_ordered_sum, list);
1060                 if (sum->bytenr > logical)
1061                         return 0;
1062                 if (sum->bytenr + sum->len > logical)
1063                         break;
1064
1065                 ++sdev->stat.csum_discards;
1066                 list_del(&sum->list);
1067                 kfree(sum);
1068                 sum = NULL;
1069         }
1070         if (!sum)
1071                 return 0;
1072
1073         num_sectors = sum->len / sectorsize;
1074         for (i = 0; i < num_sectors; ++i) {
1075                 if (sum->sums[i].bytenr == logical) {
1076                         memcpy(csum, &sum->sums[i].sum, sdev->csum_size);
1077                         ret = 1;
1078                         break;
1079                 }
1080         }
1081         if (ret && i == num_sectors - 1) {
1082                 list_del(&sum->list);
1083                 kfree(sum);
1084         }
1085         return ret;
1086 }
1087
1088 /* scrub extent tries to collect up to 64 kB for each bio */
1089 static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
1090                         u64 physical, u64 flags, u64 gen, int mirror_num)
1091 {
1092         int ret;
1093         u8 csum[BTRFS_CSUM_SIZE];
1094
1095         while (len) {
1096                 u64 l = min_t(u64, len, PAGE_SIZE);
1097                 int have_csum = 0;
1098
1099                 if (flags & BTRFS_EXTENT_FLAG_DATA) {
1100                         /* push csums to sbio */
1101                         have_csum = scrub_find_csum(sdev, logical, l, csum);
1102                         if (have_csum == 0)
1103                                 ++sdev->stat.no_csum;
1104                 }
1105                 ret = scrub_page(sdev, logical, l, physical, flags, gen,
1106                                  mirror_num, have_csum ? csum : NULL, 0);
1107                 if (ret)
1108                         return ret;
1109                 len -= l;
1110                 logical += l;
1111                 physical += l;
1112         }
1113         return 0;
1114 }
1115
1116 static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
1117         struct map_lookup *map, int num, u64 base, u64 length)
1118 {
1119         struct btrfs_path *path;
1120         struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1121         struct btrfs_root *root = fs_info->extent_root;
1122         struct btrfs_root *csum_root = fs_info->csum_root;
1123         struct btrfs_extent_item *extent;
1124         struct blk_plug plug;
1125         u64 flags;
1126         int ret;
1127         int slot;
1128         int i;
1129         u64 nstripes;
1130         struct extent_buffer *l;
1131         struct btrfs_key key;
1132         u64 physical;
1133         u64 logical;
1134         u64 generation;
1135         int mirror_num;
1136         struct reada_control *reada1;
1137         struct reada_control *reada2;
1138         struct btrfs_key key_start;
1139         struct btrfs_key key_end;
1140
1141         u64 increment = map->stripe_len;
1142         u64 offset;
1143
1144         nstripes = length;
1145         offset = 0;
1146         do_div(nstripes, map->stripe_len);
1147         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1148                 offset = map->stripe_len * num;
1149                 increment = map->stripe_len * map->num_stripes;
1150                 mirror_num = 1;
1151         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1152                 int factor = map->num_stripes / map->sub_stripes;
1153                 offset = map->stripe_len * (num / map->sub_stripes);
1154                 increment = map->stripe_len * factor;
1155                 mirror_num = num % map->sub_stripes + 1;
1156         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1157                 increment = map->stripe_len;
1158                 mirror_num = num % map->num_stripes + 1;
1159         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1160                 increment = map->stripe_len;
1161                 mirror_num = num % map->num_stripes + 1;
1162         } else {
1163                 increment = map->stripe_len;
1164                 mirror_num = 1;
1165         }
1166
1167         path = btrfs_alloc_path();
1168         if (!path)
1169                 return -ENOMEM;
1170
1171         path->search_commit_root = 1;
1172         path->skip_locking = 1;
1173
1174         /*
1175          * trigger the readahead for extent tree csum tree and wait for
1176          * completion. During readahead, the scrub is officially paused
1177          * to not hold off transaction commits
1178          */
1179         logical = base + offset;
1180
1181         wait_event(sdev->list_wait,
1182                    atomic_read(&sdev->in_flight) == 0);
1183         atomic_inc(&fs_info->scrubs_paused);
1184         wake_up(&fs_info->scrub_pause_wait);
1185
1186         /* FIXME it might be better to start readahead at commit root */
1187         key_start.objectid = logical;
1188         key_start.type = BTRFS_EXTENT_ITEM_KEY;
1189         key_start.offset = (u64)0;
1190         key_end.objectid = base + offset + nstripes * increment;
1191         key_end.type = BTRFS_EXTENT_ITEM_KEY;
1192         key_end.offset = (u64)0;
1193         reada1 = btrfs_reada_add(root, &key_start, &key_end);
1194
1195         key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1196         key_start.type = BTRFS_EXTENT_CSUM_KEY;
1197         key_start.offset = logical;
1198         key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1199         key_end.type = BTRFS_EXTENT_CSUM_KEY;
1200         key_end.offset = base + offset + nstripes * increment;
1201         reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
1202
1203         if (!IS_ERR(reada1))
1204                 btrfs_reada_wait(reada1);
1205         if (!IS_ERR(reada2))
1206                 btrfs_reada_wait(reada2);
1207
1208         mutex_lock(&fs_info->scrub_lock);
1209         while (atomic_read(&fs_info->scrub_pause_req)) {
1210                 mutex_unlock(&fs_info->scrub_lock);
1211                 wait_event(fs_info->scrub_pause_wait,
1212                    atomic_read(&fs_info->scrub_pause_req) == 0);
1213                 mutex_lock(&fs_info->scrub_lock);
1214         }
1215         atomic_dec(&fs_info->scrubs_paused);
1216         mutex_unlock(&fs_info->scrub_lock);
1217         wake_up(&fs_info->scrub_pause_wait);
1218
1219         /*
1220          * collect all data csums for the stripe to avoid seeking during
1221          * the scrub. This might currently (crc32) end up to be about 1MB
1222          */
1223         blk_start_plug(&plug);
1224
1225         /*
1226          * now find all extents for each stripe and scrub them
1227          */
1228         logical = base + offset;
1229         physical = map->stripes[num].physical;
1230         ret = 0;
1231         for (i = 0; i < nstripes; ++i) {
1232                 /*
1233                  * canceled?
1234                  */
1235                 if (atomic_read(&fs_info->scrub_cancel_req) ||
1236                     atomic_read(&sdev->cancel_req)) {
1237                         ret = -ECANCELED;
1238                         goto out;
1239                 }
1240                 /*
1241                  * check to see if we have to pause
1242                  */
1243                 if (atomic_read(&fs_info->scrub_pause_req)) {
1244                         /* push queued extents */
1245                         scrub_submit(sdev);
1246                         wait_event(sdev->list_wait,
1247                                    atomic_read(&sdev->in_flight) == 0);
1248                         atomic_inc(&fs_info->scrubs_paused);
1249                         wake_up(&fs_info->scrub_pause_wait);
1250                         mutex_lock(&fs_info->scrub_lock);
1251                         while (atomic_read(&fs_info->scrub_pause_req)) {
1252                                 mutex_unlock(&fs_info->scrub_lock);
1253                                 wait_event(fs_info->scrub_pause_wait,
1254                                    atomic_read(&fs_info->scrub_pause_req) == 0);
1255                                 mutex_lock(&fs_info->scrub_lock);
1256                         }
1257                         atomic_dec(&fs_info->scrubs_paused);
1258                         mutex_unlock(&fs_info->scrub_lock);
1259                         wake_up(&fs_info->scrub_pause_wait);
1260                 }
1261
1262                 ret = btrfs_lookup_csums_range(csum_root, logical,
1263                                                logical + map->stripe_len - 1,
1264                                                &sdev->csum_list, 1);
1265                 if (ret)
1266                         goto out;
1267
1268                 key.objectid = logical;
1269                 key.type = BTRFS_EXTENT_ITEM_KEY;
1270                 key.offset = (u64)0;
1271
1272                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1273                 if (ret < 0)
1274                         goto out;
1275                 if (ret > 0) {
1276                         ret = btrfs_previous_item(root, path, 0,
1277                                                   BTRFS_EXTENT_ITEM_KEY);
1278                         if (ret < 0)
1279                                 goto out;
1280                         if (ret > 0) {
1281                                 /* there's no smaller item, so stick with the
1282                                  * larger one */
1283                                 btrfs_release_path(path);
1284                                 ret = btrfs_search_slot(NULL, root, &key,
1285                                                         path, 0, 0);
1286                                 if (ret < 0)
1287                                         goto out;
1288                         }
1289                 }
1290
1291                 while (1) {
1292                         l = path->nodes[0];
1293                         slot = path->slots[0];
1294                         if (slot >= btrfs_header_nritems(l)) {
1295                                 ret = btrfs_next_leaf(root, path);
1296                                 if (ret == 0)
1297                                         continue;
1298                                 if (ret < 0)
1299                                         goto out;
1300
1301                                 break;
1302                         }
1303                         btrfs_item_key_to_cpu(l, &key, slot);
1304
1305                         if (key.objectid + key.offset <= logical)
1306                                 goto next;
1307
1308                         if (key.objectid >= logical + map->stripe_len)
1309                                 break;
1310
1311                         if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
1312                                 goto next;
1313
1314                         extent = btrfs_item_ptr(l, slot,
1315                                                 struct btrfs_extent_item);
1316                         flags = btrfs_extent_flags(l, extent);
1317                         generation = btrfs_extent_generation(l, extent);
1318
1319                         if (key.objectid < logical &&
1320                             (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
1321                                 printk(KERN_ERR
1322                                        "btrfs scrub: tree block %llu spanning "
1323                                        "stripes, ignored. logical=%llu\n",
1324                                        (unsigned long long)key.objectid,
1325                                        (unsigned long long)logical);
1326                                 goto next;
1327                         }
1328
1329                         /*
1330                          * trim extent to this stripe
1331                          */
1332                         if (key.objectid < logical) {
1333                                 key.offset -= logical - key.objectid;
1334                                 key.objectid = logical;
1335                         }
1336                         if (key.objectid + key.offset >
1337                             logical + map->stripe_len) {
1338                                 key.offset = logical + map->stripe_len -
1339                                              key.objectid;
1340                         }
1341
1342                         ret = scrub_extent(sdev, key.objectid, key.offset,
1343                                            key.objectid - logical + physical,
1344                                            flags, generation, mirror_num);
1345                         if (ret)
1346                                 goto out;
1347
1348 next:
1349                         path->slots[0]++;
1350                 }
1351                 btrfs_release_path(path);
1352                 logical += increment;
1353                 physical += map->stripe_len;
1354                 spin_lock(&sdev->stat_lock);
1355                 sdev->stat.last_physical = physical;
1356                 spin_unlock(&sdev->stat_lock);
1357         }
1358         /* push queued extents */
1359         scrub_submit(sdev);
1360
1361 out:
1362         blk_finish_plug(&plug);
1363         btrfs_free_path(path);
1364         return ret < 0 ? ret : 0;
1365 }
1366
1367 static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
1368         u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length)
1369 {
1370         struct btrfs_mapping_tree *map_tree =
1371                 &sdev->dev->dev_root->fs_info->mapping_tree;
1372         struct map_lookup *map;
1373         struct extent_map *em;
1374         int i;
1375         int ret = -EINVAL;
1376
1377         read_lock(&map_tree->map_tree.lock);
1378         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
1379         read_unlock(&map_tree->map_tree.lock);
1380
1381         if (!em)
1382                 return -EINVAL;
1383
1384         map = (struct map_lookup *)em->bdev;
1385         if (em->start != chunk_offset)
1386                 goto out;
1387
1388         if (em->len < length)
1389                 goto out;
1390
1391         for (i = 0; i < map->num_stripes; ++i) {
1392                 if (map->stripes[i].dev == sdev->dev) {
1393                         ret = scrub_stripe(sdev, map, i, chunk_offset, length);
1394                         if (ret)
1395                                 goto out;
1396                 }
1397         }
1398 out:
1399         free_extent_map(em);
1400
1401         return ret;
1402 }
1403
1404 static noinline_for_stack
1405 int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
1406 {
1407         struct btrfs_dev_extent *dev_extent = NULL;
1408         struct btrfs_path *path;
1409         struct btrfs_root *root = sdev->dev->dev_root;
1410         struct btrfs_fs_info *fs_info = root->fs_info;
1411         u64 length;
1412         u64 chunk_tree;
1413         u64 chunk_objectid;
1414         u64 chunk_offset;
1415         int ret;
1416         int slot;
1417         struct extent_buffer *l;
1418         struct btrfs_key key;
1419         struct btrfs_key found_key;
1420         struct btrfs_block_group_cache *cache;
1421
1422         path = btrfs_alloc_path();
1423         if (!path)
1424                 return -ENOMEM;
1425
1426         path->reada = 2;
1427         path->search_commit_root = 1;
1428         path->skip_locking = 1;
1429
1430         key.objectid = sdev->dev->devid;
1431         key.offset = 0ull;
1432         key.type = BTRFS_DEV_EXTENT_KEY;
1433
1434
1435         while (1) {
1436                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1437                 if (ret < 0)
1438                         break;
1439                 if (ret > 0) {
1440                         if (path->slots[0] >=
1441                             btrfs_header_nritems(path->nodes[0])) {
1442                                 ret = btrfs_next_leaf(root, path);
1443                                 if (ret)
1444                                         break;
1445                         }
1446                 }
1447
1448                 l = path->nodes[0];
1449                 slot = path->slots[0];
1450
1451                 btrfs_item_key_to_cpu(l, &found_key, slot);
1452
1453                 if (found_key.objectid != sdev->dev->devid)
1454                         break;
1455
1456                 if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
1457                         break;
1458
1459                 if (found_key.offset >= end)
1460                         break;
1461
1462                 if (found_key.offset < key.offset)
1463                         break;
1464
1465                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1466                 length = btrfs_dev_extent_length(l, dev_extent);
1467
1468                 if (found_key.offset + length <= start) {
1469                         key.offset = found_key.offset + length;
1470                         btrfs_release_path(path);
1471                         continue;
1472                 }
1473
1474                 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
1475                 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
1476                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
1477
1478                 /*
1479                  * get a reference on the corresponding block group to prevent
1480                  * the chunk from going away while we scrub it
1481                  */
1482                 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
1483                 if (!cache) {
1484                         ret = -ENOENT;
1485                         break;
1486                 }
1487                 ret = scrub_chunk(sdev, chunk_tree, chunk_objectid,
1488                                   chunk_offset, length);
1489                 btrfs_put_block_group(cache);
1490                 if (ret)
1491                         break;
1492
1493                 key.offset = found_key.offset + length;
1494                 btrfs_release_path(path);
1495         }
1496
1497         btrfs_free_path(path);
1498
1499         /*
1500          * ret can still be 1 from search_slot or next_leaf,
1501          * that's not an error
1502          */
1503         return ret < 0 ? ret : 0;
1504 }
1505
1506 static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
1507 {
1508         int     i;
1509         u64     bytenr;
1510         u64     gen;
1511         int     ret;
1512         struct btrfs_device *device = sdev->dev;
1513         struct btrfs_root *root = device->dev_root;
1514
1515         gen = root->fs_info->last_trans_committed;
1516
1517         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1518                 bytenr = btrfs_sb_offset(i);
1519                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
1520                         break;
1521
1522                 ret = scrub_page(sdev, bytenr, PAGE_SIZE, bytenr,
1523                                  BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1);
1524                 if (ret)
1525                         return ret;
1526         }
1527         wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
1528
1529         return 0;
1530 }
1531
1532 /*
1533  * get a reference count on fs_info->scrub_workers. start worker if necessary
1534  */
1535 static noinline_for_stack int scrub_workers_get(struct btrfs_root *root)
1536 {
1537         struct btrfs_fs_info *fs_info = root->fs_info;
1538         int ret = 0;
1539
1540         mutex_lock(&fs_info->scrub_lock);
1541         if (fs_info->scrub_workers_refcnt == 0) {
1542                 btrfs_init_workers(&fs_info->scrub_workers, "scrub",
1543                            fs_info->thread_pool_size, &fs_info->generic_worker);
1544                 fs_info->scrub_workers.idle_thresh = 4;
1545                 ret = btrfs_start_workers(&fs_info->scrub_workers);
1546                 if (ret)
1547                         goto out;
1548         }
1549         ++fs_info->scrub_workers_refcnt;
1550 out:
1551         mutex_unlock(&fs_info->scrub_lock);
1552
1553         return ret;
1554 }
1555
1556 static noinline_for_stack void scrub_workers_put(struct btrfs_root *root)
1557 {
1558         struct btrfs_fs_info *fs_info = root->fs_info;
1559
1560         mutex_lock(&fs_info->scrub_lock);
1561         if (--fs_info->scrub_workers_refcnt == 0)
1562                 btrfs_stop_workers(&fs_info->scrub_workers);
1563         WARN_ON(fs_info->scrub_workers_refcnt < 0);
1564         mutex_unlock(&fs_info->scrub_lock);
1565 }
1566
1567
1568 int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
1569                     struct btrfs_scrub_progress *progress, int readonly)
1570 {
1571         struct scrub_dev *sdev;
1572         struct btrfs_fs_info *fs_info = root->fs_info;
1573         int ret;
1574         struct btrfs_device *dev;
1575
1576         if (btrfs_fs_closing(root->fs_info))
1577                 return -EINVAL;
1578
1579         /*
1580          * check some assumptions
1581          */
1582         if (root->sectorsize != PAGE_SIZE ||
1583             root->sectorsize != root->leafsize ||
1584             root->sectorsize != root->nodesize) {
1585                 printk(KERN_ERR "btrfs_scrub: size assumptions fail\n");
1586                 return -EINVAL;
1587         }
1588
1589         ret = scrub_workers_get(root);
1590         if (ret)
1591                 return ret;
1592
1593         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1594         dev = btrfs_find_device(root, devid, NULL, NULL);
1595         if (!dev || dev->missing) {
1596                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1597                 scrub_workers_put(root);
1598                 return -ENODEV;
1599         }
1600         mutex_lock(&fs_info->scrub_lock);
1601
1602         if (!dev->in_fs_metadata) {
1603                 mutex_unlock(&fs_info->scrub_lock);
1604                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1605                 scrub_workers_put(root);
1606                 return -ENODEV;
1607         }
1608
1609         if (dev->scrub_device) {
1610                 mutex_unlock(&fs_info->scrub_lock);
1611                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1612                 scrub_workers_put(root);
1613                 return -EINPROGRESS;
1614         }
1615         sdev = scrub_setup_dev(dev);
1616         if (IS_ERR(sdev)) {
1617                 mutex_unlock(&fs_info->scrub_lock);
1618                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1619                 scrub_workers_put(root);
1620                 return PTR_ERR(sdev);
1621         }
1622         sdev->readonly = readonly;
1623         dev->scrub_device = sdev;
1624
1625         atomic_inc(&fs_info->scrubs_running);
1626         mutex_unlock(&fs_info->scrub_lock);
1627         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1628
1629         down_read(&fs_info->scrub_super_lock);
1630         ret = scrub_supers(sdev);
1631         up_read(&fs_info->scrub_super_lock);
1632
1633         if (!ret)
1634                 ret = scrub_enumerate_chunks(sdev, start, end);
1635
1636         wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
1637         atomic_dec(&fs_info->scrubs_running);
1638         wake_up(&fs_info->scrub_pause_wait);
1639
1640         wait_event(sdev->list_wait, atomic_read(&sdev->fixup_cnt) == 0);
1641
1642         if (progress)
1643                 memcpy(progress, &sdev->stat, sizeof(*progress));
1644
1645         mutex_lock(&fs_info->scrub_lock);
1646         dev->scrub_device = NULL;
1647         mutex_unlock(&fs_info->scrub_lock);
1648
1649         scrub_free_dev(sdev);
1650         scrub_workers_put(root);
1651
1652         return ret;
1653 }
1654
1655 int btrfs_scrub_pause(struct btrfs_root *root)
1656 {
1657         struct btrfs_fs_info *fs_info = root->fs_info;
1658
1659         mutex_lock(&fs_info->scrub_lock);
1660         atomic_inc(&fs_info->scrub_pause_req);
1661         while (atomic_read(&fs_info->scrubs_paused) !=
1662                atomic_read(&fs_info->scrubs_running)) {
1663                 mutex_unlock(&fs_info->scrub_lock);
1664                 wait_event(fs_info->scrub_pause_wait,
1665                            atomic_read(&fs_info->scrubs_paused) ==
1666                            atomic_read(&fs_info->scrubs_running));
1667                 mutex_lock(&fs_info->scrub_lock);
1668         }
1669         mutex_unlock(&fs_info->scrub_lock);
1670
1671         return 0;
1672 }
1673
1674 int btrfs_scrub_continue(struct btrfs_root *root)
1675 {
1676         struct btrfs_fs_info *fs_info = root->fs_info;
1677
1678         atomic_dec(&fs_info->scrub_pause_req);
1679         wake_up(&fs_info->scrub_pause_wait);
1680         return 0;
1681 }
1682
1683 int btrfs_scrub_pause_super(struct btrfs_root *root)
1684 {
1685         down_write(&root->fs_info->scrub_super_lock);
1686         return 0;
1687 }
1688
1689 int btrfs_scrub_continue_super(struct btrfs_root *root)
1690 {
1691         up_write(&root->fs_info->scrub_super_lock);
1692         return 0;
1693 }
1694
1695 int btrfs_scrub_cancel(struct btrfs_root *root)
1696 {
1697         struct btrfs_fs_info *fs_info = root->fs_info;
1698
1699         mutex_lock(&fs_info->scrub_lock);
1700         if (!atomic_read(&fs_info->scrubs_running)) {
1701                 mutex_unlock(&fs_info->scrub_lock);
1702                 return -ENOTCONN;
1703         }
1704
1705         atomic_inc(&fs_info->scrub_cancel_req);
1706         while (atomic_read(&fs_info->scrubs_running)) {
1707                 mutex_unlock(&fs_info->scrub_lock);
1708                 wait_event(fs_info->scrub_pause_wait,
1709                            atomic_read(&fs_info->scrubs_running) == 0);
1710                 mutex_lock(&fs_info->scrub_lock);
1711         }
1712         atomic_dec(&fs_info->scrub_cancel_req);
1713         mutex_unlock(&fs_info->scrub_lock);
1714
1715         return 0;
1716 }
1717
1718 int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
1719 {
1720         struct btrfs_fs_info *fs_info = root->fs_info;
1721         struct scrub_dev *sdev;
1722
1723         mutex_lock(&fs_info->scrub_lock);
1724         sdev = dev->scrub_device;
1725         if (!sdev) {
1726                 mutex_unlock(&fs_info->scrub_lock);
1727                 return -ENOTCONN;
1728         }
1729         atomic_inc(&sdev->cancel_req);
1730         while (dev->scrub_device) {
1731                 mutex_unlock(&fs_info->scrub_lock);
1732                 wait_event(fs_info->scrub_pause_wait,
1733                            dev->scrub_device == NULL);
1734                 mutex_lock(&fs_info->scrub_lock);
1735         }
1736         mutex_unlock(&fs_info->scrub_lock);
1737
1738         return 0;
1739 }
1740 int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
1741 {
1742         struct btrfs_fs_info *fs_info = root->fs_info;
1743         struct btrfs_device *dev;
1744         int ret;
1745
1746         /*
1747          * we have to hold the device_list_mutex here so the device
1748          * does not go away in cancel_dev. FIXME: find a better solution
1749          */
1750         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1751         dev = btrfs_find_device(root, devid, NULL, NULL);
1752         if (!dev) {
1753                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1754                 return -ENODEV;
1755         }
1756         ret = btrfs_scrub_cancel_dev(root, dev);
1757         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1758
1759         return ret;
1760 }
1761
1762 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
1763                          struct btrfs_scrub_progress *progress)
1764 {
1765         struct btrfs_device *dev;
1766         struct scrub_dev *sdev = NULL;
1767
1768         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1769         dev = btrfs_find_device(root, devid, NULL, NULL);
1770         if (dev)
1771                 sdev = dev->scrub_device;
1772         if (sdev)
1773                 memcpy(progress, &sdev->stat, sizeof(*progress));
1774         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1775
1776         return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV;
1777 }