Merge branch 'fbdev-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / fs / btrfs / ioctl.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include "compat.h"
45 #include "ctree.h"
46 #include "disk-io.h"
47 #include "transaction.h"
48 #include "btrfs_inode.h"
49 #include "ioctl.h"
50 #include "print-tree.h"
51 #include "volumes.h"
52 #include "locking.h"
53 #include "inode-map.h"
54
55 /* Mask out flags that are inappropriate for the given type of inode. */
56 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
57 {
58         if (S_ISDIR(mode))
59                 return flags;
60         else if (S_ISREG(mode))
61                 return flags & ~FS_DIRSYNC_FL;
62         else
63                 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
64 }
65
66 /*
67  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
68  */
69 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
70 {
71         unsigned int iflags = 0;
72
73         if (flags & BTRFS_INODE_SYNC)
74                 iflags |= FS_SYNC_FL;
75         if (flags & BTRFS_INODE_IMMUTABLE)
76                 iflags |= FS_IMMUTABLE_FL;
77         if (flags & BTRFS_INODE_APPEND)
78                 iflags |= FS_APPEND_FL;
79         if (flags & BTRFS_INODE_NODUMP)
80                 iflags |= FS_NODUMP_FL;
81         if (flags & BTRFS_INODE_NOATIME)
82                 iflags |= FS_NOATIME_FL;
83         if (flags & BTRFS_INODE_DIRSYNC)
84                 iflags |= FS_DIRSYNC_FL;
85         if (flags & BTRFS_INODE_NODATACOW)
86                 iflags |= FS_NOCOW_FL;
87
88         if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
89                 iflags |= FS_COMPR_FL;
90         else if (flags & BTRFS_INODE_NOCOMPRESS)
91                 iflags |= FS_NOCOMP_FL;
92
93         return iflags;
94 }
95
96 /*
97  * Update inode->i_flags based on the btrfs internal flags.
98  */
99 void btrfs_update_iflags(struct inode *inode)
100 {
101         struct btrfs_inode *ip = BTRFS_I(inode);
102
103         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
104
105         if (ip->flags & BTRFS_INODE_SYNC)
106                 inode->i_flags |= S_SYNC;
107         if (ip->flags & BTRFS_INODE_IMMUTABLE)
108                 inode->i_flags |= S_IMMUTABLE;
109         if (ip->flags & BTRFS_INODE_APPEND)
110                 inode->i_flags |= S_APPEND;
111         if (ip->flags & BTRFS_INODE_NOATIME)
112                 inode->i_flags |= S_NOATIME;
113         if (ip->flags & BTRFS_INODE_DIRSYNC)
114                 inode->i_flags |= S_DIRSYNC;
115 }
116
117 /*
118  * Inherit flags from the parent inode.
119  *
120  * Unlike extN we don't have any flags we don't want to inherit currently.
121  */
122 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
123 {
124         unsigned int flags;
125
126         if (!dir)
127                 return;
128
129         flags = BTRFS_I(dir)->flags;
130
131         if (S_ISREG(inode->i_mode))
132                 flags &= ~BTRFS_INODE_DIRSYNC;
133         else if (!S_ISDIR(inode->i_mode))
134                 flags &= (BTRFS_INODE_NODUMP | BTRFS_INODE_NOATIME);
135
136         BTRFS_I(inode)->flags = flags;
137         btrfs_update_iflags(inode);
138 }
139
140 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
141 {
142         struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode);
143         unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
144
145         if (copy_to_user(arg, &flags, sizeof(flags)))
146                 return -EFAULT;
147         return 0;
148 }
149
150 static int check_flags(unsigned int flags)
151 {
152         if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
153                       FS_NOATIME_FL | FS_NODUMP_FL | \
154                       FS_SYNC_FL | FS_DIRSYNC_FL | \
155                       FS_NOCOMP_FL | FS_COMPR_FL |
156                       FS_NOCOW_FL))
157                 return -EOPNOTSUPP;
158
159         if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
160                 return -EINVAL;
161
162         return 0;
163 }
164
165 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
166 {
167         struct inode *inode = file->f_path.dentry->d_inode;
168         struct btrfs_inode *ip = BTRFS_I(inode);
169         struct btrfs_root *root = ip->root;
170         struct btrfs_trans_handle *trans;
171         unsigned int flags, oldflags;
172         int ret;
173
174         if (btrfs_root_readonly(root))
175                 return -EROFS;
176
177         if (copy_from_user(&flags, arg, sizeof(flags)))
178                 return -EFAULT;
179
180         ret = check_flags(flags);
181         if (ret)
182                 return ret;
183
184         if (!inode_owner_or_capable(inode))
185                 return -EACCES;
186
187         mutex_lock(&inode->i_mutex);
188
189         flags = btrfs_mask_flags(inode->i_mode, flags);
190         oldflags = btrfs_flags_to_ioctl(ip->flags);
191         if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
192                 if (!capable(CAP_LINUX_IMMUTABLE)) {
193                         ret = -EPERM;
194                         goto out_unlock;
195                 }
196         }
197
198         ret = mnt_want_write(file->f_path.mnt);
199         if (ret)
200                 goto out_unlock;
201
202         if (flags & FS_SYNC_FL)
203                 ip->flags |= BTRFS_INODE_SYNC;
204         else
205                 ip->flags &= ~BTRFS_INODE_SYNC;
206         if (flags & FS_IMMUTABLE_FL)
207                 ip->flags |= BTRFS_INODE_IMMUTABLE;
208         else
209                 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
210         if (flags & FS_APPEND_FL)
211                 ip->flags |= BTRFS_INODE_APPEND;
212         else
213                 ip->flags &= ~BTRFS_INODE_APPEND;
214         if (flags & FS_NODUMP_FL)
215                 ip->flags |= BTRFS_INODE_NODUMP;
216         else
217                 ip->flags &= ~BTRFS_INODE_NODUMP;
218         if (flags & FS_NOATIME_FL)
219                 ip->flags |= BTRFS_INODE_NOATIME;
220         else
221                 ip->flags &= ~BTRFS_INODE_NOATIME;
222         if (flags & FS_DIRSYNC_FL)
223                 ip->flags |= BTRFS_INODE_DIRSYNC;
224         else
225                 ip->flags &= ~BTRFS_INODE_DIRSYNC;
226         if (flags & FS_NOCOW_FL)
227                 ip->flags |= BTRFS_INODE_NODATACOW;
228         else
229                 ip->flags &= ~BTRFS_INODE_NODATACOW;
230
231         /*
232          * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
233          * flag may be changed automatically if compression code won't make
234          * things smaller.
235          */
236         if (flags & FS_NOCOMP_FL) {
237                 ip->flags &= ~BTRFS_INODE_COMPRESS;
238                 ip->flags |= BTRFS_INODE_NOCOMPRESS;
239         } else if (flags & FS_COMPR_FL) {
240                 ip->flags |= BTRFS_INODE_COMPRESS;
241                 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
242         } else {
243                 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
244         }
245
246         trans = btrfs_join_transaction(root);
247         BUG_ON(IS_ERR(trans));
248
249         ret = btrfs_update_inode(trans, root, inode);
250         BUG_ON(ret);
251
252         btrfs_update_iflags(inode);
253         inode->i_ctime = CURRENT_TIME;
254         btrfs_end_transaction(trans, root);
255
256         mnt_drop_write(file->f_path.mnt);
257
258         ret = 0;
259  out_unlock:
260         mutex_unlock(&inode->i_mutex);
261         return ret;
262 }
263
264 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
265 {
266         struct inode *inode = file->f_path.dentry->d_inode;
267
268         return put_user(inode->i_generation, arg);
269 }
270
271 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
272 {
273         struct btrfs_root *root = fdentry(file)->d_sb->s_fs_info;
274         struct btrfs_fs_info *fs_info = root->fs_info;
275         struct btrfs_device *device;
276         struct request_queue *q;
277         struct fstrim_range range;
278         u64 minlen = ULLONG_MAX;
279         u64 num_devices = 0;
280         int ret;
281
282         if (!capable(CAP_SYS_ADMIN))
283                 return -EPERM;
284
285         rcu_read_lock();
286         list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
287                                 dev_list) {
288                 if (!device->bdev)
289                         continue;
290                 q = bdev_get_queue(device->bdev);
291                 if (blk_queue_discard(q)) {
292                         num_devices++;
293                         minlen = min((u64)q->limits.discard_granularity,
294                                      minlen);
295                 }
296         }
297         rcu_read_unlock();
298         if (!num_devices)
299                 return -EOPNOTSUPP;
300
301         if (copy_from_user(&range, arg, sizeof(range)))
302                 return -EFAULT;
303
304         range.minlen = max(range.minlen, minlen);
305         ret = btrfs_trim_fs(root, &range);
306         if (ret < 0)
307                 return ret;
308
309         if (copy_to_user(arg, &range, sizeof(range)))
310                 return -EFAULT;
311
312         return 0;
313 }
314
315 static noinline int create_subvol(struct btrfs_root *root,
316                                   struct dentry *dentry,
317                                   char *name, int namelen,
318                                   u64 *async_transid)
319 {
320         struct btrfs_trans_handle *trans;
321         struct btrfs_key key;
322         struct btrfs_root_item root_item;
323         struct btrfs_inode_item *inode_item;
324         struct extent_buffer *leaf;
325         struct btrfs_root *new_root;
326         struct dentry *parent = dget_parent(dentry);
327         struct inode *dir;
328         int ret;
329         int err;
330         u64 objectid;
331         u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
332         u64 index = 0;
333
334         ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
335         if (ret) {
336                 dput(parent);
337                 return ret;
338         }
339
340         dir = parent->d_inode;
341
342         /*
343          * 1 - inode item
344          * 2 - refs
345          * 1 - root item
346          * 2 - dir items
347          */
348         trans = btrfs_start_transaction(root, 6);
349         if (IS_ERR(trans)) {
350                 dput(parent);
351                 return PTR_ERR(trans);
352         }
353
354         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
355                                       0, objectid, NULL, 0, 0, 0);
356         if (IS_ERR(leaf)) {
357                 ret = PTR_ERR(leaf);
358                 goto fail;
359         }
360
361         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
362         btrfs_set_header_bytenr(leaf, leaf->start);
363         btrfs_set_header_generation(leaf, trans->transid);
364         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
365         btrfs_set_header_owner(leaf, objectid);
366
367         write_extent_buffer(leaf, root->fs_info->fsid,
368                             (unsigned long)btrfs_header_fsid(leaf),
369                             BTRFS_FSID_SIZE);
370         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
371                             (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
372                             BTRFS_UUID_SIZE);
373         btrfs_mark_buffer_dirty(leaf);
374
375         inode_item = &root_item.inode;
376         memset(inode_item, 0, sizeof(*inode_item));
377         inode_item->generation = cpu_to_le64(1);
378         inode_item->size = cpu_to_le64(3);
379         inode_item->nlink = cpu_to_le32(1);
380         inode_item->nbytes = cpu_to_le64(root->leafsize);
381         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
382
383         root_item.flags = 0;
384         root_item.byte_limit = 0;
385         inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT);
386
387         btrfs_set_root_bytenr(&root_item, leaf->start);
388         btrfs_set_root_generation(&root_item, trans->transid);
389         btrfs_set_root_level(&root_item, 0);
390         btrfs_set_root_refs(&root_item, 1);
391         btrfs_set_root_used(&root_item, leaf->len);
392         btrfs_set_root_last_snapshot(&root_item, 0);
393
394         memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
395         root_item.drop_level = 0;
396
397         btrfs_tree_unlock(leaf);
398         free_extent_buffer(leaf);
399         leaf = NULL;
400
401         btrfs_set_root_dirid(&root_item, new_dirid);
402
403         key.objectid = objectid;
404         key.offset = 0;
405         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
406         ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
407                                 &root_item);
408         if (ret)
409                 goto fail;
410
411         key.offset = (u64)-1;
412         new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
413         BUG_ON(IS_ERR(new_root));
414
415         btrfs_record_root_in_trans(trans, new_root);
416
417         ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
418         /*
419          * insert the directory item
420          */
421         ret = btrfs_set_inode_index(dir, &index);
422         BUG_ON(ret);
423
424         ret = btrfs_insert_dir_item(trans, root,
425                                     name, namelen, dir, &key,
426                                     BTRFS_FT_DIR, index);
427         if (ret)
428                 goto fail;
429
430         btrfs_i_size_write(dir, dir->i_size + namelen * 2);
431         ret = btrfs_update_inode(trans, root, dir);
432         BUG_ON(ret);
433
434         ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
435                                  objectid, root->root_key.objectid,
436                                  btrfs_ino(dir), index, name, namelen);
437
438         BUG_ON(ret);
439
440         d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
441 fail:
442         dput(parent);
443         if (async_transid) {
444                 *async_transid = trans->transid;
445                 err = btrfs_commit_transaction_async(trans, root, 1);
446         } else {
447                 err = btrfs_commit_transaction(trans, root);
448         }
449         if (err && !ret)
450                 ret = err;
451         return ret;
452 }
453
454 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry,
455                            char *name, int namelen, u64 *async_transid,
456                            bool readonly)
457 {
458         struct inode *inode;
459         struct dentry *parent;
460         struct btrfs_pending_snapshot *pending_snapshot;
461         struct btrfs_trans_handle *trans;
462         int ret;
463
464         if (!root->ref_cows)
465                 return -EINVAL;
466
467         pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
468         if (!pending_snapshot)
469                 return -ENOMEM;
470
471         btrfs_init_block_rsv(&pending_snapshot->block_rsv);
472         pending_snapshot->dentry = dentry;
473         pending_snapshot->root = root;
474         pending_snapshot->readonly = readonly;
475
476         trans = btrfs_start_transaction(root->fs_info->extent_root, 5);
477         if (IS_ERR(trans)) {
478                 ret = PTR_ERR(trans);
479                 goto fail;
480         }
481
482         ret = btrfs_snap_reserve_metadata(trans, pending_snapshot);
483         BUG_ON(ret);
484
485         list_add(&pending_snapshot->list,
486                  &trans->transaction->pending_snapshots);
487         if (async_transid) {
488                 *async_transid = trans->transid;
489                 ret = btrfs_commit_transaction_async(trans,
490                                      root->fs_info->extent_root, 1);
491         } else {
492                 ret = btrfs_commit_transaction(trans,
493                                                root->fs_info->extent_root);
494         }
495         BUG_ON(ret);
496
497         ret = pending_snapshot->error;
498         if (ret)
499                 goto fail;
500
501         ret = btrfs_orphan_cleanup(pending_snapshot->snap);
502         if (ret)
503                 goto fail;
504
505         parent = dget_parent(dentry);
506         inode = btrfs_lookup_dentry(parent->d_inode, dentry);
507         dput(parent);
508         if (IS_ERR(inode)) {
509                 ret = PTR_ERR(inode);
510                 goto fail;
511         }
512         BUG_ON(!inode);
513         d_instantiate(dentry, inode);
514         ret = 0;
515 fail:
516         kfree(pending_snapshot);
517         return ret;
518 }
519
520 /*  copy of check_sticky in fs/namei.c()
521 * It's inline, so penalty for filesystems that don't use sticky bit is
522 * minimal.
523 */
524 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
525 {
526         uid_t fsuid = current_fsuid();
527
528         if (!(dir->i_mode & S_ISVTX))
529                 return 0;
530         if (inode->i_uid == fsuid)
531                 return 0;
532         if (dir->i_uid == fsuid)
533                 return 0;
534         return !capable(CAP_FOWNER);
535 }
536
537 /*  copy of may_delete in fs/namei.c()
538  *      Check whether we can remove a link victim from directory dir, check
539  *  whether the type of victim is right.
540  *  1. We can't do it if dir is read-only (done in permission())
541  *  2. We should have write and exec permissions on dir
542  *  3. We can't remove anything from append-only dir
543  *  4. We can't do anything with immutable dir (done in permission())
544  *  5. If the sticky bit on dir is set we should either
545  *      a. be owner of dir, or
546  *      b. be owner of victim, or
547  *      c. have CAP_FOWNER capability
548  *  6. If the victim is append-only or immutable we can't do antyhing with
549  *     links pointing to it.
550  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
551  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
552  *  9. We can't remove a root or mountpoint.
553  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
554  *     nfs_async_unlink().
555  */
556
557 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
558 {
559         int error;
560
561         if (!victim->d_inode)
562                 return -ENOENT;
563
564         BUG_ON(victim->d_parent->d_inode != dir);
565         audit_inode_child(victim, dir);
566
567         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
568         if (error)
569                 return error;
570         if (IS_APPEND(dir))
571                 return -EPERM;
572         if (btrfs_check_sticky(dir, victim->d_inode)||
573                 IS_APPEND(victim->d_inode)||
574             IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
575                 return -EPERM;
576         if (isdir) {
577                 if (!S_ISDIR(victim->d_inode->i_mode))
578                         return -ENOTDIR;
579                 if (IS_ROOT(victim))
580                         return -EBUSY;
581         } else if (S_ISDIR(victim->d_inode->i_mode))
582                 return -EISDIR;
583         if (IS_DEADDIR(dir))
584                 return -ENOENT;
585         if (victim->d_flags & DCACHE_NFSFS_RENAMED)
586                 return -EBUSY;
587         return 0;
588 }
589
590 /* copy of may_create in fs/namei.c() */
591 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
592 {
593         if (child->d_inode)
594                 return -EEXIST;
595         if (IS_DEADDIR(dir))
596                 return -ENOENT;
597         return inode_permission(dir, MAY_WRITE | MAY_EXEC);
598 }
599
600 /*
601  * Create a new subvolume below @parent.  This is largely modeled after
602  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
603  * inside this filesystem so it's quite a bit simpler.
604  */
605 static noinline int btrfs_mksubvol(struct path *parent,
606                                    char *name, int namelen,
607                                    struct btrfs_root *snap_src,
608                                    u64 *async_transid, bool readonly)
609 {
610         struct inode *dir  = parent->dentry->d_inode;
611         struct dentry *dentry;
612         int error;
613
614         mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
615
616         dentry = lookup_one_len(name, parent->dentry, namelen);
617         error = PTR_ERR(dentry);
618         if (IS_ERR(dentry))
619                 goto out_unlock;
620
621         error = -EEXIST;
622         if (dentry->d_inode)
623                 goto out_dput;
624
625         error = mnt_want_write(parent->mnt);
626         if (error)
627                 goto out_dput;
628
629         error = btrfs_may_create(dir, dentry);
630         if (error)
631                 goto out_drop_write;
632
633         down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
634
635         if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
636                 goto out_up_read;
637
638         if (snap_src) {
639                 error = create_snapshot(snap_src, dentry,
640                                         name, namelen, async_transid, readonly);
641         } else {
642                 error = create_subvol(BTRFS_I(dir)->root, dentry,
643                                       name, namelen, async_transid);
644         }
645         if (!error)
646                 fsnotify_mkdir(dir, dentry);
647 out_up_read:
648         up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
649 out_drop_write:
650         mnt_drop_write(parent->mnt);
651 out_dput:
652         dput(dentry);
653 out_unlock:
654         mutex_unlock(&dir->i_mutex);
655         return error;
656 }
657
658 /*
659  * When we're defragging a range, we don't want to kick it off again
660  * if it is really just waiting for delalloc to send it down.
661  * If we find a nice big extent or delalloc range for the bytes in the
662  * file you want to defrag, we return 0 to let you know to skip this
663  * part of the file
664  */
665 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
666 {
667         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
668         struct extent_map *em = NULL;
669         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
670         u64 end;
671
672         read_lock(&em_tree->lock);
673         em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
674         read_unlock(&em_tree->lock);
675
676         if (em) {
677                 end = extent_map_end(em);
678                 free_extent_map(em);
679                 if (end - offset > thresh)
680                         return 0;
681         }
682         /* if we already have a nice delalloc here, just stop */
683         thresh /= 2;
684         end = count_range_bits(io_tree, &offset, offset + thresh,
685                                thresh, EXTENT_DELALLOC, 1);
686         if (end >= thresh)
687                 return 0;
688         return 1;
689 }
690
691 /*
692  * helper function to walk through a file and find extents
693  * newer than a specific transid, and smaller than thresh.
694  *
695  * This is used by the defragging code to find new and small
696  * extents
697  */
698 static int find_new_extents(struct btrfs_root *root,
699                             struct inode *inode, u64 newer_than,
700                             u64 *off, int thresh)
701 {
702         struct btrfs_path *path;
703         struct btrfs_key min_key;
704         struct btrfs_key max_key;
705         struct extent_buffer *leaf;
706         struct btrfs_file_extent_item *extent;
707         int type;
708         int ret;
709         u64 ino = btrfs_ino(inode);
710
711         path = btrfs_alloc_path();
712         if (!path)
713                 return -ENOMEM;
714
715         min_key.objectid = ino;
716         min_key.type = BTRFS_EXTENT_DATA_KEY;
717         min_key.offset = *off;
718
719         max_key.objectid = ino;
720         max_key.type = (u8)-1;
721         max_key.offset = (u64)-1;
722
723         path->keep_locks = 1;
724
725         while(1) {
726                 ret = btrfs_search_forward(root, &min_key, &max_key,
727                                            path, 0, newer_than);
728                 if (ret != 0)
729                         goto none;
730                 if (min_key.objectid != ino)
731                         goto none;
732                 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
733                         goto none;
734
735                 leaf = path->nodes[0];
736                 extent = btrfs_item_ptr(leaf, path->slots[0],
737                                         struct btrfs_file_extent_item);
738
739                 type = btrfs_file_extent_type(leaf, extent);
740                 if (type == BTRFS_FILE_EXTENT_REG &&
741                     btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
742                     check_defrag_in_cache(inode, min_key.offset, thresh)) {
743                         *off = min_key.offset;
744                         btrfs_free_path(path);
745                         return 0;
746                 }
747
748                 if (min_key.offset == (u64)-1)
749                         goto none;
750
751                 min_key.offset++;
752                 btrfs_release_path(path);
753         }
754 none:
755         btrfs_free_path(path);
756         return -ENOENT;
757 }
758
759 static int should_defrag_range(struct inode *inode, u64 start, u64 len,
760                                int thresh, u64 *last_len, u64 *skip,
761                                u64 *defrag_end)
762 {
763         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
764         struct extent_map *em = NULL;
765         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
766         int ret = 1;
767
768         /*
769          * make sure that once we start defragging and extent, we keep on
770          * defragging it
771          */
772         if (start < *defrag_end)
773                 return 1;
774
775         *skip = 0;
776
777         /*
778          * hopefully we have this extent in the tree already, try without
779          * the full extent lock
780          */
781         read_lock(&em_tree->lock);
782         em = lookup_extent_mapping(em_tree, start, len);
783         read_unlock(&em_tree->lock);
784
785         if (!em) {
786                 /* get the big lock and read metadata off disk */
787                 lock_extent(io_tree, start, start + len - 1, GFP_NOFS);
788                 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
789                 unlock_extent(io_tree, start, start + len - 1, GFP_NOFS);
790
791                 if (IS_ERR(em))
792                         return 0;
793         }
794
795         /* this will cover holes, and inline extents */
796         if (em->block_start >= EXTENT_MAP_LAST_BYTE)
797                 ret = 0;
798
799         /*
800          * we hit a real extent, if it is big don't bother defragging it again
801          */
802         if ((*last_len == 0 || *last_len >= thresh) && em->len >= thresh)
803                 ret = 0;
804
805         /*
806          * last_len ends up being a counter of how many bytes we've defragged.
807          * every time we choose not to defrag an extent, we reset *last_len
808          * so that the next tiny extent will force a defrag.
809          *
810          * The end result of this is that tiny extents before a single big
811          * extent will force at least part of that big extent to be defragged.
812          */
813         if (ret) {
814                 *last_len += len;
815                 *defrag_end = extent_map_end(em);
816         } else {
817                 *last_len = 0;
818                 *skip = extent_map_end(em);
819                 *defrag_end = 0;
820         }
821
822         free_extent_map(em);
823         return ret;
824 }
825
826 /*
827  * it doesn't do much good to defrag one or two pages
828  * at a time.  This pulls in a nice chunk of pages
829  * to COW and defrag.
830  *
831  * It also makes sure the delalloc code has enough
832  * dirty data to avoid making new small extents as part
833  * of the defrag
834  *
835  * It's a good idea to start RA on this range
836  * before calling this.
837  */
838 static int cluster_pages_for_defrag(struct inode *inode,
839                                     struct page **pages,
840                                     unsigned long start_index,
841                                     int num_pages)
842 {
843         unsigned long file_end;
844         u64 isize = i_size_read(inode);
845         u64 page_start;
846         u64 page_end;
847         int ret;
848         int i;
849         int i_done;
850         struct btrfs_ordered_extent *ordered;
851         struct extent_state *cached_state = NULL;
852
853         if (isize == 0)
854                 return 0;
855         file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
856
857         ret = btrfs_delalloc_reserve_space(inode,
858                                            num_pages << PAGE_CACHE_SHIFT);
859         if (ret)
860                 return ret;
861 again:
862         ret = 0;
863         i_done = 0;
864
865         /* step one, lock all the pages */
866         for (i = 0; i < num_pages; i++) {
867                 struct page *page;
868                 page = grab_cache_page(inode->i_mapping,
869                                             start_index + i);
870                 if (!page)
871                         break;
872
873                 if (!PageUptodate(page)) {
874                         btrfs_readpage(NULL, page);
875                         lock_page(page);
876                         if (!PageUptodate(page)) {
877                                 unlock_page(page);
878                                 page_cache_release(page);
879                                 ret = -EIO;
880                                 break;
881                         }
882                 }
883                 isize = i_size_read(inode);
884                 file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
885                 if (!isize || page->index > file_end ||
886                     page->mapping != inode->i_mapping) {
887                         /* whoops, we blew past eof, skip this page */
888                         unlock_page(page);
889                         page_cache_release(page);
890                         break;
891                 }
892                 pages[i] = page;
893                 i_done++;
894         }
895         if (!i_done || ret)
896                 goto out;
897
898         if (!(inode->i_sb->s_flags & MS_ACTIVE))
899                 goto out;
900
901         /*
902          * so now we have a nice long stream of locked
903          * and up to date pages, lets wait on them
904          */
905         for (i = 0; i < i_done; i++)
906                 wait_on_page_writeback(pages[i]);
907
908         page_start = page_offset(pages[0]);
909         page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
910
911         lock_extent_bits(&BTRFS_I(inode)->io_tree,
912                          page_start, page_end - 1, 0, &cached_state,
913                          GFP_NOFS);
914         ordered = btrfs_lookup_first_ordered_extent(inode, page_end - 1);
915         if (ordered &&
916             ordered->file_offset + ordered->len > page_start &&
917             ordered->file_offset < page_end) {
918                 btrfs_put_ordered_extent(ordered);
919                 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
920                                      page_start, page_end - 1,
921                                      &cached_state, GFP_NOFS);
922                 for (i = 0; i < i_done; i++) {
923                         unlock_page(pages[i]);
924                         page_cache_release(pages[i]);
925                 }
926                 btrfs_wait_ordered_range(inode, page_start,
927                                          page_end - page_start);
928                 goto again;
929         }
930         if (ordered)
931                 btrfs_put_ordered_extent(ordered);
932
933         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
934                           page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
935                           EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
936                           GFP_NOFS);
937
938         if (i_done != num_pages) {
939                 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
940                 btrfs_delalloc_release_space(inode,
941                                      (num_pages - i_done) << PAGE_CACHE_SHIFT);
942         }
943
944
945         btrfs_set_extent_delalloc(inode, page_start, page_end - 1,
946                                   &cached_state);
947
948         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
949                              page_start, page_end - 1, &cached_state,
950                              GFP_NOFS);
951
952         for (i = 0; i < i_done; i++) {
953                 clear_page_dirty_for_io(pages[i]);
954                 ClearPageChecked(pages[i]);
955                 set_page_extent_mapped(pages[i]);
956                 set_page_dirty(pages[i]);
957                 unlock_page(pages[i]);
958                 page_cache_release(pages[i]);
959         }
960         return i_done;
961 out:
962         for (i = 0; i < i_done; i++) {
963                 unlock_page(pages[i]);
964                 page_cache_release(pages[i]);
965         }
966         btrfs_delalloc_release_space(inode, num_pages << PAGE_CACHE_SHIFT);
967         return ret;
968
969 }
970
971 int btrfs_defrag_file(struct inode *inode, struct file *file,
972                       struct btrfs_ioctl_defrag_range_args *range,
973                       u64 newer_than, unsigned long max_to_defrag)
974 {
975         struct btrfs_root *root = BTRFS_I(inode)->root;
976         struct btrfs_super_block *disk_super;
977         struct file_ra_state *ra = NULL;
978         unsigned long last_index;
979         u64 features;
980         u64 last_len = 0;
981         u64 skip = 0;
982         u64 defrag_end = 0;
983         u64 newer_off = range->start;
984         int newer_left = 0;
985         unsigned long i;
986         int ret;
987         int defrag_count = 0;
988         int compress_type = BTRFS_COMPRESS_ZLIB;
989         int extent_thresh = range->extent_thresh;
990         int newer_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
991         u64 new_align = ~((u64)128 * 1024 - 1);
992         struct page **pages = NULL;
993
994         if (extent_thresh == 0)
995                 extent_thresh = 256 * 1024;
996
997         if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
998                 if (range->compress_type > BTRFS_COMPRESS_TYPES)
999                         return -EINVAL;
1000                 if (range->compress_type)
1001                         compress_type = range->compress_type;
1002         }
1003
1004         if (inode->i_size == 0)
1005                 return 0;
1006
1007         /*
1008          * if we were not given a file, allocate a readahead
1009          * context
1010          */
1011         if (!file) {
1012                 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1013                 if (!ra)
1014                         return -ENOMEM;
1015                 file_ra_state_init(ra, inode->i_mapping);
1016         } else {
1017                 ra = &file->f_ra;
1018         }
1019
1020         pages = kmalloc(sizeof(struct page *) * newer_cluster,
1021                         GFP_NOFS);
1022         if (!pages) {
1023                 ret = -ENOMEM;
1024                 goto out_ra;
1025         }
1026
1027         /* find the last page to defrag */
1028         if (range->start + range->len > range->start) {
1029                 last_index = min_t(u64, inode->i_size - 1,
1030                          range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1031         } else {
1032                 last_index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
1033         }
1034
1035         if (newer_than) {
1036                 ret = find_new_extents(root, inode, newer_than,
1037                                        &newer_off, 64 * 1024);
1038                 if (!ret) {
1039                         range->start = newer_off;
1040                         /*
1041                          * we always align our defrag to help keep
1042                          * the extents in the file evenly spaced
1043                          */
1044                         i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1045                         newer_left = newer_cluster;
1046                 } else
1047                         goto out_ra;
1048         } else {
1049                 i = range->start >> PAGE_CACHE_SHIFT;
1050         }
1051         if (!max_to_defrag)
1052                 max_to_defrag = last_index - 1;
1053
1054         while (i <= last_index && defrag_count < max_to_defrag) {
1055                 /*
1056                  * make sure we stop running if someone unmounts
1057                  * the FS
1058                  */
1059                 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1060                         break;
1061
1062                 if (!newer_than &&
1063                     !should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1064                                         PAGE_CACHE_SIZE,
1065                                         extent_thresh,
1066                                         &last_len, &skip,
1067                                         &defrag_end)) {
1068                         unsigned long next;
1069                         /*
1070                          * the should_defrag function tells us how much to skip
1071                          * bump our counter by the suggested amount
1072                          */
1073                         next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1074                         i = max(i + 1, next);
1075                         continue;
1076                 }
1077                 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1078                         BTRFS_I(inode)->force_compress = compress_type;
1079
1080                 btrfs_force_ra(inode->i_mapping, ra, file, i, newer_cluster);
1081
1082                 ret = cluster_pages_for_defrag(inode, pages, i, newer_cluster);
1083                 if (ret < 0)
1084                         goto out_ra;
1085
1086                 defrag_count += ret;
1087                 balance_dirty_pages_ratelimited_nr(inode->i_mapping, ret);
1088                 i += ret;
1089
1090                 if (newer_than) {
1091                         if (newer_off == (u64)-1)
1092                                 break;
1093
1094                         newer_off = max(newer_off + 1,
1095                                         (u64)i << PAGE_CACHE_SHIFT);
1096
1097                         ret = find_new_extents(root, inode,
1098                                                newer_than, &newer_off,
1099                                                64 * 1024);
1100                         if (!ret) {
1101                                 range->start = newer_off;
1102                                 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1103                                 newer_left = newer_cluster;
1104                         } else {
1105                                 break;
1106                         }
1107                 } else {
1108                         i++;
1109                 }
1110         }
1111
1112         if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1113                 filemap_flush(inode->i_mapping);
1114
1115         if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1116                 /* the filemap_flush will queue IO into the worker threads, but
1117                  * we have to make sure the IO is actually started and that
1118                  * ordered extents get created before we return
1119                  */
1120                 atomic_inc(&root->fs_info->async_submit_draining);
1121                 while (atomic_read(&root->fs_info->nr_async_submits) ||
1122                       atomic_read(&root->fs_info->async_delalloc_pages)) {
1123                         wait_event(root->fs_info->async_submit_wait,
1124                            (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1125                             atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1126                 }
1127                 atomic_dec(&root->fs_info->async_submit_draining);
1128
1129                 mutex_lock(&inode->i_mutex);
1130                 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1131                 mutex_unlock(&inode->i_mutex);
1132         }
1133
1134         disk_super = &root->fs_info->super_copy;
1135         features = btrfs_super_incompat_flags(disk_super);
1136         if (range->compress_type == BTRFS_COMPRESS_LZO) {
1137                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1138                 btrfs_set_super_incompat_flags(disk_super, features);
1139         }
1140
1141         if (!file)
1142                 kfree(ra);
1143         return defrag_count;
1144
1145 out_ra:
1146         if (!file)
1147                 kfree(ra);
1148         kfree(pages);
1149         return ret;
1150 }
1151
1152 static noinline int btrfs_ioctl_resize(struct btrfs_root *root,
1153                                         void __user *arg)
1154 {
1155         u64 new_size;
1156         u64 old_size;
1157         u64 devid = 1;
1158         struct btrfs_ioctl_vol_args *vol_args;
1159         struct btrfs_trans_handle *trans;
1160         struct btrfs_device *device = NULL;
1161         char *sizestr;
1162         char *devstr = NULL;
1163         int ret = 0;
1164         int mod = 0;
1165
1166         if (root->fs_info->sb->s_flags & MS_RDONLY)
1167                 return -EROFS;
1168
1169         if (!capable(CAP_SYS_ADMIN))
1170                 return -EPERM;
1171
1172         vol_args = memdup_user(arg, sizeof(*vol_args));
1173         if (IS_ERR(vol_args))
1174                 return PTR_ERR(vol_args);
1175
1176         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1177
1178         mutex_lock(&root->fs_info->volume_mutex);
1179         sizestr = vol_args->name;
1180         devstr = strchr(sizestr, ':');
1181         if (devstr) {
1182                 char *end;
1183                 sizestr = devstr + 1;
1184                 *devstr = '\0';
1185                 devstr = vol_args->name;
1186                 devid = simple_strtoull(devstr, &end, 10);
1187                 printk(KERN_INFO "resizing devid %llu\n",
1188                        (unsigned long long)devid);
1189         }
1190         device = btrfs_find_device(root, devid, NULL, NULL);
1191         if (!device) {
1192                 printk(KERN_INFO "resizer unable to find device %llu\n",
1193                        (unsigned long long)devid);
1194                 ret = -EINVAL;
1195                 goto out_unlock;
1196         }
1197         if (!strcmp(sizestr, "max"))
1198                 new_size = device->bdev->bd_inode->i_size;
1199         else {
1200                 if (sizestr[0] == '-') {
1201                         mod = -1;
1202                         sizestr++;
1203                 } else if (sizestr[0] == '+') {
1204                         mod = 1;
1205                         sizestr++;
1206                 }
1207                 new_size = memparse(sizestr, NULL);
1208                 if (new_size == 0) {
1209                         ret = -EINVAL;
1210                         goto out_unlock;
1211                 }
1212         }
1213
1214         old_size = device->total_bytes;
1215
1216         if (mod < 0) {
1217                 if (new_size > old_size) {
1218                         ret = -EINVAL;
1219                         goto out_unlock;
1220                 }
1221                 new_size = old_size - new_size;
1222         } else if (mod > 0) {
1223                 new_size = old_size + new_size;
1224         }
1225
1226         if (new_size < 256 * 1024 * 1024) {
1227                 ret = -EINVAL;
1228                 goto out_unlock;
1229         }
1230         if (new_size > device->bdev->bd_inode->i_size) {
1231                 ret = -EFBIG;
1232                 goto out_unlock;
1233         }
1234
1235         do_div(new_size, root->sectorsize);
1236         new_size *= root->sectorsize;
1237
1238         printk(KERN_INFO "new size for %s is %llu\n",
1239                 device->name, (unsigned long long)new_size);
1240
1241         if (new_size > old_size) {
1242                 trans = btrfs_start_transaction(root, 0);
1243                 if (IS_ERR(trans)) {
1244                         ret = PTR_ERR(trans);
1245                         goto out_unlock;
1246                 }
1247                 ret = btrfs_grow_device(trans, device, new_size);
1248                 btrfs_commit_transaction(trans, root);
1249         } else {
1250                 ret = btrfs_shrink_device(device, new_size);
1251         }
1252
1253 out_unlock:
1254         mutex_unlock(&root->fs_info->volume_mutex);
1255         kfree(vol_args);
1256         return ret;
1257 }
1258
1259 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1260                                                     char *name,
1261                                                     unsigned long fd,
1262                                                     int subvol,
1263                                                     u64 *transid,
1264                                                     bool readonly)
1265 {
1266         struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
1267         struct file *src_file;
1268         int namelen;
1269         int ret = 0;
1270
1271         if (root->fs_info->sb->s_flags & MS_RDONLY)
1272                 return -EROFS;
1273
1274         namelen = strlen(name);
1275         if (strchr(name, '/')) {
1276                 ret = -EINVAL;
1277                 goto out;
1278         }
1279
1280         if (subvol) {
1281                 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1282                                      NULL, transid, readonly);
1283         } else {
1284                 struct inode *src_inode;
1285                 src_file = fget(fd);
1286                 if (!src_file) {
1287                         ret = -EINVAL;
1288                         goto out;
1289                 }
1290
1291                 src_inode = src_file->f_path.dentry->d_inode;
1292                 if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
1293                         printk(KERN_INFO "btrfs: Snapshot src from "
1294                                "another FS\n");
1295                         ret = -EINVAL;
1296                         fput(src_file);
1297                         goto out;
1298                 }
1299                 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1300                                      BTRFS_I(src_inode)->root,
1301                                      transid, readonly);
1302                 fput(src_file);
1303         }
1304 out:
1305         return ret;
1306 }
1307
1308 static noinline int btrfs_ioctl_snap_create(struct file *file,
1309                                             void __user *arg, int subvol)
1310 {
1311         struct btrfs_ioctl_vol_args *vol_args;
1312         int ret;
1313
1314         vol_args = memdup_user(arg, sizeof(*vol_args));
1315         if (IS_ERR(vol_args))
1316                 return PTR_ERR(vol_args);
1317         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1318
1319         ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1320                                               vol_args->fd, subvol,
1321                                               NULL, false);
1322
1323         kfree(vol_args);
1324         return ret;
1325 }
1326
1327 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1328                                                void __user *arg, int subvol)
1329 {
1330         struct btrfs_ioctl_vol_args_v2 *vol_args;
1331         int ret;
1332         u64 transid = 0;
1333         u64 *ptr = NULL;
1334         bool readonly = false;
1335
1336         vol_args = memdup_user(arg, sizeof(*vol_args));
1337         if (IS_ERR(vol_args))
1338                 return PTR_ERR(vol_args);
1339         vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1340
1341         if (vol_args->flags &
1342             ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY)) {
1343                 ret = -EOPNOTSUPP;
1344                 goto out;
1345         }
1346
1347         if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1348                 ptr = &transid;
1349         if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1350                 readonly = true;
1351
1352         ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1353                                               vol_args->fd, subvol,
1354                                               ptr, readonly);
1355
1356         if (ret == 0 && ptr &&
1357             copy_to_user(arg +
1358                          offsetof(struct btrfs_ioctl_vol_args_v2,
1359                                   transid), ptr, sizeof(*ptr)))
1360                 ret = -EFAULT;
1361 out:
1362         kfree(vol_args);
1363         return ret;
1364 }
1365
1366 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1367                                                 void __user *arg)
1368 {
1369         struct inode *inode = fdentry(file)->d_inode;
1370         struct btrfs_root *root = BTRFS_I(inode)->root;
1371         int ret = 0;
1372         u64 flags = 0;
1373
1374         if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1375                 return -EINVAL;
1376
1377         down_read(&root->fs_info->subvol_sem);
1378         if (btrfs_root_readonly(root))
1379                 flags |= BTRFS_SUBVOL_RDONLY;
1380         up_read(&root->fs_info->subvol_sem);
1381
1382         if (copy_to_user(arg, &flags, sizeof(flags)))
1383                 ret = -EFAULT;
1384
1385         return ret;
1386 }
1387
1388 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1389                                               void __user *arg)
1390 {
1391         struct inode *inode = fdentry(file)->d_inode;
1392         struct btrfs_root *root = BTRFS_I(inode)->root;
1393         struct btrfs_trans_handle *trans;
1394         u64 root_flags;
1395         u64 flags;
1396         int ret = 0;
1397
1398         if (root->fs_info->sb->s_flags & MS_RDONLY)
1399                 return -EROFS;
1400
1401         if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1402                 return -EINVAL;
1403
1404         if (copy_from_user(&flags, arg, sizeof(flags)))
1405                 return -EFAULT;
1406
1407         if (flags & BTRFS_SUBVOL_CREATE_ASYNC)
1408                 return -EINVAL;
1409
1410         if (flags & ~BTRFS_SUBVOL_RDONLY)
1411                 return -EOPNOTSUPP;
1412
1413         if (!inode_owner_or_capable(inode))
1414                 return -EACCES;
1415
1416         down_write(&root->fs_info->subvol_sem);
1417
1418         /* nothing to do */
1419         if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1420                 goto out;
1421
1422         root_flags = btrfs_root_flags(&root->root_item);
1423         if (flags & BTRFS_SUBVOL_RDONLY)
1424                 btrfs_set_root_flags(&root->root_item,
1425                                      root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1426         else
1427                 btrfs_set_root_flags(&root->root_item,
1428                                      root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1429
1430         trans = btrfs_start_transaction(root, 1);
1431         if (IS_ERR(trans)) {
1432                 ret = PTR_ERR(trans);
1433                 goto out_reset;
1434         }
1435
1436         ret = btrfs_update_root(trans, root->fs_info->tree_root,
1437                                 &root->root_key, &root->root_item);
1438
1439         btrfs_commit_transaction(trans, root);
1440 out_reset:
1441         if (ret)
1442                 btrfs_set_root_flags(&root->root_item, root_flags);
1443 out:
1444         up_write(&root->fs_info->subvol_sem);
1445         return ret;
1446 }
1447
1448 /*
1449  * helper to check if the subvolume references other subvolumes
1450  */
1451 static noinline int may_destroy_subvol(struct btrfs_root *root)
1452 {
1453         struct btrfs_path *path;
1454         struct btrfs_key key;
1455         int ret;
1456
1457         path = btrfs_alloc_path();
1458         if (!path)
1459                 return -ENOMEM;
1460
1461         key.objectid = root->root_key.objectid;
1462         key.type = BTRFS_ROOT_REF_KEY;
1463         key.offset = (u64)-1;
1464
1465         ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1466                                 &key, path, 0, 0);
1467         if (ret < 0)
1468                 goto out;
1469         BUG_ON(ret == 0);
1470
1471         ret = 0;
1472         if (path->slots[0] > 0) {
1473                 path->slots[0]--;
1474                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1475                 if (key.objectid == root->root_key.objectid &&
1476                     key.type == BTRFS_ROOT_REF_KEY)
1477                         ret = -ENOTEMPTY;
1478         }
1479 out:
1480         btrfs_free_path(path);
1481         return ret;
1482 }
1483
1484 static noinline int key_in_sk(struct btrfs_key *key,
1485                               struct btrfs_ioctl_search_key *sk)
1486 {
1487         struct btrfs_key test;
1488         int ret;
1489
1490         test.objectid = sk->min_objectid;
1491         test.type = sk->min_type;
1492         test.offset = sk->min_offset;
1493
1494         ret = btrfs_comp_cpu_keys(key, &test);
1495         if (ret < 0)
1496                 return 0;
1497
1498         test.objectid = sk->max_objectid;
1499         test.type = sk->max_type;
1500         test.offset = sk->max_offset;
1501
1502         ret = btrfs_comp_cpu_keys(key, &test);
1503         if (ret > 0)
1504                 return 0;
1505         return 1;
1506 }
1507
1508 static noinline int copy_to_sk(struct btrfs_root *root,
1509                                struct btrfs_path *path,
1510                                struct btrfs_key *key,
1511                                struct btrfs_ioctl_search_key *sk,
1512                                char *buf,
1513                                unsigned long *sk_offset,
1514                                int *num_found)
1515 {
1516         u64 found_transid;
1517         struct extent_buffer *leaf;
1518         struct btrfs_ioctl_search_header sh;
1519         unsigned long item_off;
1520         unsigned long item_len;
1521         int nritems;
1522         int i;
1523         int slot;
1524         int ret = 0;
1525
1526         leaf = path->nodes[0];
1527         slot = path->slots[0];
1528         nritems = btrfs_header_nritems(leaf);
1529
1530         if (btrfs_header_generation(leaf) > sk->max_transid) {
1531                 i = nritems;
1532                 goto advance_key;
1533         }
1534         found_transid = btrfs_header_generation(leaf);
1535
1536         for (i = slot; i < nritems; i++) {
1537                 item_off = btrfs_item_ptr_offset(leaf, i);
1538                 item_len = btrfs_item_size_nr(leaf, i);
1539
1540                 if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1541                         item_len = 0;
1542
1543                 if (sizeof(sh) + item_len + *sk_offset >
1544                     BTRFS_SEARCH_ARGS_BUFSIZE) {
1545                         ret = 1;
1546                         goto overflow;
1547                 }
1548
1549                 btrfs_item_key_to_cpu(leaf, key, i);
1550                 if (!key_in_sk(key, sk))
1551                         continue;
1552
1553                 sh.objectid = key->objectid;
1554                 sh.offset = key->offset;
1555                 sh.type = key->type;
1556                 sh.len = item_len;
1557                 sh.transid = found_transid;
1558
1559                 /* copy search result header */
1560                 memcpy(buf + *sk_offset, &sh, sizeof(sh));
1561                 *sk_offset += sizeof(sh);
1562
1563                 if (item_len) {
1564                         char *p = buf + *sk_offset;
1565                         /* copy the item */
1566                         read_extent_buffer(leaf, p,
1567                                            item_off, item_len);
1568                         *sk_offset += item_len;
1569                 }
1570                 (*num_found)++;
1571
1572                 if (*num_found >= sk->nr_items)
1573                         break;
1574         }
1575 advance_key:
1576         ret = 0;
1577         if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1578                 key->offset++;
1579         else if (key->type < (u8)-1 && key->type < sk->max_type) {
1580                 key->offset = 0;
1581                 key->type++;
1582         } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1583                 key->offset = 0;
1584                 key->type = 0;
1585                 key->objectid++;
1586         } else
1587                 ret = 1;
1588 overflow:
1589         return ret;
1590 }
1591
1592 static noinline int search_ioctl(struct inode *inode,
1593                                  struct btrfs_ioctl_search_args *args)
1594 {
1595         struct btrfs_root *root;
1596         struct btrfs_key key;
1597         struct btrfs_key max_key;
1598         struct btrfs_path *path;
1599         struct btrfs_ioctl_search_key *sk = &args->key;
1600         struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1601         int ret;
1602         int num_found = 0;
1603         unsigned long sk_offset = 0;
1604
1605         path = btrfs_alloc_path();
1606         if (!path)
1607                 return -ENOMEM;
1608
1609         if (sk->tree_id == 0) {
1610                 /* search the root of the inode that was passed */
1611                 root = BTRFS_I(inode)->root;
1612         } else {
1613                 key.objectid = sk->tree_id;
1614                 key.type = BTRFS_ROOT_ITEM_KEY;
1615                 key.offset = (u64)-1;
1616                 root = btrfs_read_fs_root_no_name(info, &key);
1617                 if (IS_ERR(root)) {
1618                         printk(KERN_ERR "could not find root %llu\n",
1619                                sk->tree_id);
1620                         btrfs_free_path(path);
1621                         return -ENOENT;
1622                 }
1623         }
1624
1625         key.objectid = sk->min_objectid;
1626         key.type = sk->min_type;
1627         key.offset = sk->min_offset;
1628
1629         max_key.objectid = sk->max_objectid;
1630         max_key.type = sk->max_type;
1631         max_key.offset = sk->max_offset;
1632
1633         path->keep_locks = 1;
1634
1635         while(1) {
1636                 ret = btrfs_search_forward(root, &key, &max_key, path, 0,
1637                                            sk->min_transid);
1638                 if (ret != 0) {
1639                         if (ret > 0)
1640                                 ret = 0;
1641                         goto err;
1642                 }
1643                 ret = copy_to_sk(root, path, &key, sk, args->buf,
1644                                  &sk_offset, &num_found);
1645                 btrfs_release_path(path);
1646                 if (ret || num_found >= sk->nr_items)
1647                         break;
1648
1649         }
1650         ret = 0;
1651 err:
1652         sk->nr_items = num_found;
1653         btrfs_free_path(path);
1654         return ret;
1655 }
1656
1657 static noinline int btrfs_ioctl_tree_search(struct file *file,
1658                                            void __user *argp)
1659 {
1660          struct btrfs_ioctl_search_args *args;
1661          struct inode *inode;
1662          int ret;
1663
1664         if (!capable(CAP_SYS_ADMIN))
1665                 return -EPERM;
1666
1667         args = memdup_user(argp, sizeof(*args));
1668         if (IS_ERR(args))
1669                 return PTR_ERR(args);
1670
1671         inode = fdentry(file)->d_inode;
1672         ret = search_ioctl(inode, args);
1673         if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1674                 ret = -EFAULT;
1675         kfree(args);
1676         return ret;
1677 }
1678
1679 /*
1680  * Search INODE_REFs to identify path name of 'dirid' directory
1681  * in a 'tree_id' tree. and sets path name to 'name'.
1682  */
1683 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1684                                 u64 tree_id, u64 dirid, char *name)
1685 {
1686         struct btrfs_root *root;
1687         struct btrfs_key key;
1688         char *ptr;
1689         int ret = -1;
1690         int slot;
1691         int len;
1692         int total_len = 0;
1693         struct btrfs_inode_ref *iref;
1694         struct extent_buffer *l;
1695         struct btrfs_path *path;
1696
1697         if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1698                 name[0]='\0';
1699                 return 0;
1700         }
1701
1702         path = btrfs_alloc_path();
1703         if (!path)
1704                 return -ENOMEM;
1705
1706         ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1707
1708         key.objectid = tree_id;
1709         key.type = BTRFS_ROOT_ITEM_KEY;
1710         key.offset = (u64)-1;
1711         root = btrfs_read_fs_root_no_name(info, &key);
1712         if (IS_ERR(root)) {
1713                 printk(KERN_ERR "could not find root %llu\n", tree_id);
1714                 ret = -ENOENT;
1715                 goto out;
1716         }
1717
1718         key.objectid = dirid;
1719         key.type = BTRFS_INODE_REF_KEY;
1720         key.offset = (u64)-1;
1721
1722         while(1) {
1723                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1724                 if (ret < 0)
1725                         goto out;
1726
1727                 l = path->nodes[0];
1728                 slot = path->slots[0];
1729                 if (ret > 0 && slot > 0)
1730                         slot--;
1731                 btrfs_item_key_to_cpu(l, &key, slot);
1732
1733                 if (ret > 0 && (key.objectid != dirid ||
1734                                 key.type != BTRFS_INODE_REF_KEY)) {
1735                         ret = -ENOENT;
1736                         goto out;
1737                 }
1738
1739                 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1740                 len = btrfs_inode_ref_name_len(l, iref);
1741                 ptr -= len + 1;
1742                 total_len += len + 1;
1743                 if (ptr < name)
1744                         goto out;
1745
1746                 *(ptr + len) = '/';
1747                 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
1748
1749                 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1750                         break;
1751
1752                 btrfs_release_path(path);
1753                 key.objectid = key.offset;
1754                 key.offset = (u64)-1;
1755                 dirid = key.objectid;
1756
1757         }
1758         if (ptr < name)
1759                 goto out;
1760         memcpy(name, ptr, total_len);
1761         name[total_len]='\0';
1762         ret = 0;
1763 out:
1764         btrfs_free_path(path);
1765         return ret;
1766 }
1767
1768 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
1769                                            void __user *argp)
1770 {
1771          struct btrfs_ioctl_ino_lookup_args *args;
1772          struct inode *inode;
1773          int ret;
1774
1775         if (!capable(CAP_SYS_ADMIN))
1776                 return -EPERM;
1777
1778         args = memdup_user(argp, sizeof(*args));
1779         if (IS_ERR(args))
1780                 return PTR_ERR(args);
1781
1782         inode = fdentry(file)->d_inode;
1783
1784         if (args->treeid == 0)
1785                 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
1786
1787         ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
1788                                         args->treeid, args->objectid,
1789                                         args->name);
1790
1791         if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1792                 ret = -EFAULT;
1793
1794         kfree(args);
1795         return ret;
1796 }
1797
1798 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
1799                                              void __user *arg)
1800 {
1801         struct dentry *parent = fdentry(file);
1802         struct dentry *dentry;
1803         struct inode *dir = parent->d_inode;
1804         struct inode *inode;
1805         struct btrfs_root *root = BTRFS_I(dir)->root;
1806         struct btrfs_root *dest = NULL;
1807         struct btrfs_ioctl_vol_args *vol_args;
1808         struct btrfs_trans_handle *trans;
1809         int namelen;
1810         int ret;
1811         int err = 0;
1812
1813         vol_args = memdup_user(arg, sizeof(*vol_args));
1814         if (IS_ERR(vol_args))
1815                 return PTR_ERR(vol_args);
1816
1817         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1818         namelen = strlen(vol_args->name);
1819         if (strchr(vol_args->name, '/') ||
1820             strncmp(vol_args->name, "..", namelen) == 0) {
1821                 err = -EINVAL;
1822                 goto out;
1823         }
1824
1825         err = mnt_want_write(file->f_path.mnt);
1826         if (err)
1827                 goto out;
1828
1829         mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
1830         dentry = lookup_one_len(vol_args->name, parent, namelen);
1831         if (IS_ERR(dentry)) {
1832                 err = PTR_ERR(dentry);
1833                 goto out_unlock_dir;
1834         }
1835
1836         if (!dentry->d_inode) {
1837                 err = -ENOENT;
1838                 goto out_dput;
1839         }
1840
1841         inode = dentry->d_inode;
1842         dest = BTRFS_I(inode)->root;
1843         if (!capable(CAP_SYS_ADMIN)){
1844                 /*
1845                  * Regular user.  Only allow this with a special mount
1846                  * option, when the user has write+exec access to the
1847                  * subvol root, and when rmdir(2) would have been
1848                  * allowed.
1849                  *
1850                  * Note that this is _not_ check that the subvol is
1851                  * empty or doesn't contain data that we wouldn't
1852                  * otherwise be able to delete.
1853                  *
1854                  * Users who want to delete empty subvols should try
1855                  * rmdir(2).
1856                  */
1857                 err = -EPERM;
1858                 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1859                         goto out_dput;
1860
1861                 /*
1862                  * Do not allow deletion if the parent dir is the same
1863                  * as the dir to be deleted.  That means the ioctl
1864                  * must be called on the dentry referencing the root
1865                  * of the subvol, not a random directory contained
1866                  * within it.
1867                  */
1868                 err = -EINVAL;
1869                 if (root == dest)
1870                         goto out_dput;
1871
1872                 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
1873                 if (err)
1874                         goto out_dput;
1875
1876                 /* check if subvolume may be deleted by a non-root user */
1877                 err = btrfs_may_delete(dir, dentry, 1);
1878                 if (err)
1879                         goto out_dput;
1880         }
1881
1882         if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1883                 err = -EINVAL;
1884                 goto out_dput;
1885         }
1886
1887         mutex_lock(&inode->i_mutex);
1888         err = d_invalidate(dentry);
1889         if (err)
1890                 goto out_unlock;
1891
1892         down_write(&root->fs_info->subvol_sem);
1893
1894         err = may_destroy_subvol(dest);
1895         if (err)
1896                 goto out_up_write;
1897
1898         trans = btrfs_start_transaction(root, 0);
1899         if (IS_ERR(trans)) {
1900                 err = PTR_ERR(trans);
1901                 goto out_up_write;
1902         }
1903         trans->block_rsv = &root->fs_info->global_block_rsv;
1904
1905         ret = btrfs_unlink_subvol(trans, root, dir,
1906                                 dest->root_key.objectid,
1907                                 dentry->d_name.name,
1908                                 dentry->d_name.len);
1909         BUG_ON(ret);
1910
1911         btrfs_record_root_in_trans(trans, dest);
1912
1913         memset(&dest->root_item.drop_progress, 0,
1914                 sizeof(dest->root_item.drop_progress));
1915         dest->root_item.drop_level = 0;
1916         btrfs_set_root_refs(&dest->root_item, 0);
1917
1918         if (!xchg(&dest->orphan_item_inserted, 1)) {
1919                 ret = btrfs_insert_orphan_item(trans,
1920                                         root->fs_info->tree_root,
1921                                         dest->root_key.objectid);
1922                 BUG_ON(ret);
1923         }
1924
1925         ret = btrfs_end_transaction(trans, root);
1926         BUG_ON(ret);
1927         inode->i_flags |= S_DEAD;
1928 out_up_write:
1929         up_write(&root->fs_info->subvol_sem);
1930 out_unlock:
1931         mutex_unlock(&inode->i_mutex);
1932         if (!err) {
1933                 shrink_dcache_sb(root->fs_info->sb);
1934                 btrfs_invalidate_inodes(dest);
1935                 d_delete(dentry);
1936         }
1937 out_dput:
1938         dput(dentry);
1939 out_unlock_dir:
1940         mutex_unlock(&dir->i_mutex);
1941         mnt_drop_write(file->f_path.mnt);
1942 out:
1943         kfree(vol_args);
1944         return err;
1945 }
1946
1947 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
1948 {
1949         struct inode *inode = fdentry(file)->d_inode;
1950         struct btrfs_root *root = BTRFS_I(inode)->root;
1951         struct btrfs_ioctl_defrag_range_args *range;
1952         int ret;
1953
1954         if (btrfs_root_readonly(root))
1955                 return -EROFS;
1956
1957         ret = mnt_want_write(file->f_path.mnt);
1958         if (ret)
1959                 return ret;
1960
1961         switch (inode->i_mode & S_IFMT) {
1962         case S_IFDIR:
1963                 if (!capable(CAP_SYS_ADMIN)) {
1964                         ret = -EPERM;
1965                         goto out;
1966                 }
1967                 ret = btrfs_defrag_root(root, 0);
1968                 if (ret)
1969                         goto out;
1970                 ret = btrfs_defrag_root(root->fs_info->extent_root, 0);
1971                 break;
1972         case S_IFREG:
1973                 if (!(file->f_mode & FMODE_WRITE)) {
1974                         ret = -EINVAL;
1975                         goto out;
1976                 }
1977
1978                 range = kzalloc(sizeof(*range), GFP_KERNEL);
1979                 if (!range) {
1980                         ret = -ENOMEM;
1981                         goto out;
1982                 }
1983
1984                 if (argp) {
1985                         if (copy_from_user(range, argp,
1986                                            sizeof(*range))) {
1987                                 ret = -EFAULT;
1988                                 kfree(range);
1989                                 goto out;
1990                         }
1991                         /* compression requires us to start the IO */
1992                         if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1993                                 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
1994                                 range->extent_thresh = (u32)-1;
1995                         }
1996                 } else {
1997                         /* the rest are all set to zero by kzalloc */
1998                         range->len = (u64)-1;
1999                 }
2000                 ret = btrfs_defrag_file(fdentry(file)->d_inode, file,
2001                                         range, 0, 0);
2002                 if (ret > 0)
2003                         ret = 0;
2004                 kfree(range);
2005                 break;
2006         default:
2007                 ret = -EINVAL;
2008         }
2009 out:
2010         mnt_drop_write(file->f_path.mnt);
2011         return ret;
2012 }
2013
2014 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2015 {
2016         struct btrfs_ioctl_vol_args *vol_args;
2017         int ret;
2018
2019         if (!capable(CAP_SYS_ADMIN))
2020                 return -EPERM;
2021
2022         vol_args = memdup_user(arg, sizeof(*vol_args));
2023         if (IS_ERR(vol_args))
2024                 return PTR_ERR(vol_args);
2025
2026         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2027         ret = btrfs_init_new_device(root, vol_args->name);
2028
2029         kfree(vol_args);
2030         return ret;
2031 }
2032
2033 static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
2034 {
2035         struct btrfs_ioctl_vol_args *vol_args;
2036         int ret;
2037
2038         if (!capable(CAP_SYS_ADMIN))
2039                 return -EPERM;
2040
2041         if (root->fs_info->sb->s_flags & MS_RDONLY)
2042                 return -EROFS;
2043
2044         vol_args = memdup_user(arg, sizeof(*vol_args));
2045         if (IS_ERR(vol_args))
2046                 return PTR_ERR(vol_args);
2047
2048         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2049         ret = btrfs_rm_device(root, vol_args->name);
2050
2051         kfree(vol_args);
2052         return ret;
2053 }
2054
2055 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2056 {
2057         struct btrfs_ioctl_fs_info_args *fi_args;
2058         struct btrfs_device *device;
2059         struct btrfs_device *next;
2060         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2061         int ret = 0;
2062
2063         if (!capable(CAP_SYS_ADMIN))
2064                 return -EPERM;
2065
2066         fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2067         if (!fi_args)
2068                 return -ENOMEM;
2069
2070         fi_args->num_devices = fs_devices->num_devices;
2071         memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2072
2073         mutex_lock(&fs_devices->device_list_mutex);
2074         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2075                 if (device->devid > fi_args->max_id)
2076                         fi_args->max_id = device->devid;
2077         }
2078         mutex_unlock(&fs_devices->device_list_mutex);
2079
2080         if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2081                 ret = -EFAULT;
2082
2083         kfree(fi_args);
2084         return ret;
2085 }
2086
2087 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2088 {
2089         struct btrfs_ioctl_dev_info_args *di_args;
2090         struct btrfs_device *dev;
2091         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2092         int ret = 0;
2093         char *s_uuid = NULL;
2094         char empty_uuid[BTRFS_UUID_SIZE] = {0};
2095
2096         if (!capable(CAP_SYS_ADMIN))
2097                 return -EPERM;
2098
2099         di_args = memdup_user(arg, sizeof(*di_args));
2100         if (IS_ERR(di_args))
2101                 return PTR_ERR(di_args);
2102
2103         if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0)
2104                 s_uuid = di_args->uuid;
2105
2106         mutex_lock(&fs_devices->device_list_mutex);
2107         dev = btrfs_find_device(root, di_args->devid, s_uuid, NULL);
2108         mutex_unlock(&fs_devices->device_list_mutex);
2109
2110         if (!dev) {
2111                 ret = -ENODEV;
2112                 goto out;
2113         }
2114
2115         di_args->devid = dev->devid;
2116         di_args->bytes_used = dev->bytes_used;
2117         di_args->total_bytes = dev->total_bytes;
2118         memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2119         strncpy(di_args->path, dev->name, sizeof(di_args->path));
2120
2121 out:
2122         if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2123                 ret = -EFAULT;
2124
2125         kfree(di_args);
2126         return ret;
2127 }
2128
2129 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
2130                                        u64 off, u64 olen, u64 destoff)
2131 {
2132         struct inode *inode = fdentry(file)->d_inode;
2133         struct btrfs_root *root = BTRFS_I(inode)->root;
2134         struct file *src_file;
2135         struct inode *src;
2136         struct btrfs_trans_handle *trans;
2137         struct btrfs_path *path;
2138         struct extent_buffer *leaf;
2139         char *buf;
2140         struct btrfs_key key;
2141         u32 nritems;
2142         int slot;
2143         int ret;
2144         u64 len = olen;
2145         u64 bs = root->fs_info->sb->s_blocksize;
2146         u64 hint_byte;
2147
2148         /*
2149          * TODO:
2150          * - split compressed inline extents.  annoying: we need to
2151          *   decompress into destination's address_space (the file offset
2152          *   may change, so source mapping won't do), then recompress (or
2153          *   otherwise reinsert) a subrange.
2154          * - allow ranges within the same file to be cloned (provided
2155          *   they don't overlap)?
2156          */
2157
2158         /* the destination must be opened for writing */
2159         if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
2160                 return -EINVAL;
2161
2162         if (btrfs_root_readonly(root))
2163                 return -EROFS;
2164
2165         ret = mnt_want_write(file->f_path.mnt);
2166         if (ret)
2167                 return ret;
2168
2169         src_file = fget(srcfd);
2170         if (!src_file) {
2171                 ret = -EBADF;
2172                 goto out_drop_write;
2173         }
2174
2175         src = src_file->f_dentry->d_inode;
2176
2177         ret = -EINVAL;
2178         if (src == inode)
2179                 goto out_fput;
2180
2181         /* the src must be open for reading */
2182         if (!(src_file->f_mode & FMODE_READ))
2183                 goto out_fput;
2184
2185         ret = -EISDIR;
2186         if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
2187                 goto out_fput;
2188
2189         ret = -EXDEV;
2190         if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root)
2191                 goto out_fput;
2192
2193         ret = -ENOMEM;
2194         buf = vmalloc(btrfs_level_size(root, 0));
2195         if (!buf)
2196                 goto out_fput;
2197
2198         path = btrfs_alloc_path();
2199         if (!path) {
2200                 vfree(buf);
2201                 goto out_fput;
2202         }
2203         path->reada = 2;
2204
2205         if (inode < src) {
2206                 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
2207                 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
2208         } else {
2209                 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
2210                 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2211         }
2212
2213         /* determine range to clone */
2214         ret = -EINVAL;
2215         if (off + len > src->i_size || off + len < off)
2216                 goto out_unlock;
2217         if (len == 0)
2218                 olen = len = src->i_size - off;
2219         /* if we extend to eof, continue to block boundary */
2220         if (off + len == src->i_size)
2221                 len = ALIGN(src->i_size, bs) - off;
2222
2223         /* verify the end result is block aligned */
2224         if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
2225             !IS_ALIGNED(destoff, bs))
2226                 goto out_unlock;
2227
2228         /* do any pending delalloc/csum calc on src, one way or
2229            another, and lock file content */
2230         while (1) {
2231                 struct btrfs_ordered_extent *ordered;
2232                 lock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
2233                 ordered = btrfs_lookup_first_ordered_extent(src, off+len);
2234                 if (!ordered &&
2235                     !test_range_bit(&BTRFS_I(src)->io_tree, off, off+len,
2236                                    EXTENT_DELALLOC, 0, NULL))
2237                         break;
2238                 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
2239                 if (ordered)
2240                         btrfs_put_ordered_extent(ordered);
2241                 btrfs_wait_ordered_range(src, off, len);
2242         }
2243
2244         /* clone data */
2245         key.objectid = btrfs_ino(src);
2246         key.type = BTRFS_EXTENT_DATA_KEY;
2247         key.offset = 0;
2248
2249         while (1) {
2250                 /*
2251                  * note the key will change type as we walk through the
2252                  * tree.
2253                  */
2254                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2255                 if (ret < 0)
2256                         goto out;
2257
2258                 nritems = btrfs_header_nritems(path->nodes[0]);
2259                 if (path->slots[0] >= nritems) {
2260                         ret = btrfs_next_leaf(root, path);
2261                         if (ret < 0)
2262                                 goto out;
2263                         if (ret > 0)
2264                                 break;
2265                         nritems = btrfs_header_nritems(path->nodes[0]);
2266                 }
2267                 leaf = path->nodes[0];
2268                 slot = path->slots[0];
2269
2270                 btrfs_item_key_to_cpu(leaf, &key, slot);
2271                 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2272                     key.objectid != btrfs_ino(src))
2273                         break;
2274
2275                 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2276                         struct btrfs_file_extent_item *extent;
2277                         int type;
2278                         u32 size;
2279                         struct btrfs_key new_key;
2280                         u64 disko = 0, diskl = 0;
2281                         u64 datao = 0, datal = 0;
2282                         u8 comp;
2283                         u64 endoff;
2284
2285                         size = btrfs_item_size_nr(leaf, slot);
2286                         read_extent_buffer(leaf, buf,
2287                                            btrfs_item_ptr_offset(leaf, slot),
2288                                            size);
2289
2290                         extent = btrfs_item_ptr(leaf, slot,
2291                                                 struct btrfs_file_extent_item);
2292                         comp = btrfs_file_extent_compression(leaf, extent);
2293                         type = btrfs_file_extent_type(leaf, extent);
2294                         if (type == BTRFS_FILE_EXTENT_REG ||
2295                             type == BTRFS_FILE_EXTENT_PREALLOC) {
2296                                 disko = btrfs_file_extent_disk_bytenr(leaf,
2297                                                                       extent);
2298                                 diskl = btrfs_file_extent_disk_num_bytes(leaf,
2299                                                                  extent);
2300                                 datao = btrfs_file_extent_offset(leaf, extent);
2301                                 datal = btrfs_file_extent_num_bytes(leaf,
2302                                                                     extent);
2303                         } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2304                                 /* take upper bound, may be compressed */
2305                                 datal = btrfs_file_extent_ram_bytes(leaf,
2306                                                                     extent);
2307                         }
2308                         btrfs_release_path(path);
2309
2310                         if (key.offset + datal <= off ||
2311                             key.offset >= off+len)
2312                                 goto next;
2313
2314                         memcpy(&new_key, &key, sizeof(new_key));
2315                         new_key.objectid = btrfs_ino(inode);
2316                         if (off <= key.offset)
2317                                 new_key.offset = key.offset + destoff - off;
2318                         else
2319                                 new_key.offset = destoff;
2320
2321                         trans = btrfs_start_transaction(root, 1);
2322                         if (IS_ERR(trans)) {
2323                                 ret = PTR_ERR(trans);
2324                                 goto out;
2325                         }
2326
2327                         if (type == BTRFS_FILE_EXTENT_REG ||
2328                             type == BTRFS_FILE_EXTENT_PREALLOC) {
2329                                 if (off > key.offset) {
2330                                         datao += off - key.offset;
2331                                         datal -= off - key.offset;
2332                                 }
2333
2334                                 if (key.offset + datal > off + len)
2335                                         datal = off + len - key.offset;
2336
2337                                 ret = btrfs_drop_extents(trans, inode,
2338                                                          new_key.offset,
2339                                                          new_key.offset + datal,
2340                                                          &hint_byte, 1);
2341                                 BUG_ON(ret);
2342
2343                                 ret = btrfs_insert_empty_item(trans, root, path,
2344                                                               &new_key, size);
2345                                 BUG_ON(ret);
2346
2347                                 leaf = path->nodes[0];
2348                                 slot = path->slots[0];
2349                                 write_extent_buffer(leaf, buf,
2350                                             btrfs_item_ptr_offset(leaf, slot),
2351                                             size);
2352
2353                                 extent = btrfs_item_ptr(leaf, slot,
2354                                                 struct btrfs_file_extent_item);
2355
2356                                 /* disko == 0 means it's a hole */
2357                                 if (!disko)
2358                                         datao = 0;
2359
2360                                 btrfs_set_file_extent_offset(leaf, extent,
2361                                                              datao);
2362                                 btrfs_set_file_extent_num_bytes(leaf, extent,
2363                                                                 datal);
2364                                 if (disko) {
2365                                         inode_add_bytes(inode, datal);
2366                                         ret = btrfs_inc_extent_ref(trans, root,
2367                                                         disko, diskl, 0,
2368                                                         root->root_key.objectid,
2369                                                         btrfs_ino(inode),
2370                                                         new_key.offset - datao);
2371                                         BUG_ON(ret);
2372                                 }
2373                         } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2374                                 u64 skip = 0;
2375                                 u64 trim = 0;
2376                                 if (off > key.offset) {
2377                                         skip = off - key.offset;
2378                                         new_key.offset += skip;
2379                                 }
2380
2381                                 if (key.offset + datal > off+len)
2382                                         trim = key.offset + datal - (off+len);
2383
2384                                 if (comp && (skip || trim)) {
2385                                         ret = -EINVAL;
2386                                         btrfs_end_transaction(trans, root);
2387                                         goto out;
2388                                 }
2389                                 size -= skip + trim;
2390                                 datal -= skip + trim;
2391
2392                                 ret = btrfs_drop_extents(trans, inode,
2393                                                          new_key.offset,
2394                                                          new_key.offset + datal,
2395                                                          &hint_byte, 1);
2396                                 BUG_ON(ret);
2397
2398                                 ret = btrfs_insert_empty_item(trans, root, path,
2399                                                               &new_key, size);
2400                                 BUG_ON(ret);
2401
2402                                 if (skip) {
2403                                         u32 start =
2404                                           btrfs_file_extent_calc_inline_size(0);
2405                                         memmove(buf+start, buf+start+skip,
2406                                                 datal);
2407                                 }
2408
2409                                 leaf = path->nodes[0];
2410                                 slot = path->slots[0];
2411                                 write_extent_buffer(leaf, buf,
2412                                             btrfs_item_ptr_offset(leaf, slot),
2413                                             size);
2414                                 inode_add_bytes(inode, datal);
2415                         }
2416
2417                         btrfs_mark_buffer_dirty(leaf);
2418                         btrfs_release_path(path);
2419
2420                         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2421
2422                         /*
2423                          * we round up to the block size at eof when
2424                          * determining which extents to clone above,
2425                          * but shouldn't round up the file size
2426                          */
2427                         endoff = new_key.offset + datal;
2428                         if (endoff > destoff+olen)
2429                                 endoff = destoff+olen;
2430                         if (endoff > inode->i_size)
2431                                 btrfs_i_size_write(inode, endoff);
2432
2433                         BTRFS_I(inode)->flags = BTRFS_I(src)->flags;
2434                         ret = btrfs_update_inode(trans, root, inode);
2435                         BUG_ON(ret);
2436                         btrfs_end_transaction(trans, root);
2437                 }
2438 next:
2439                 btrfs_release_path(path);
2440                 key.offset++;
2441         }
2442         ret = 0;
2443 out:
2444         btrfs_release_path(path);
2445         unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
2446 out_unlock:
2447         mutex_unlock(&src->i_mutex);
2448         mutex_unlock(&inode->i_mutex);
2449         vfree(buf);
2450         btrfs_free_path(path);
2451 out_fput:
2452         fput(src_file);
2453 out_drop_write:
2454         mnt_drop_write(file->f_path.mnt);
2455         return ret;
2456 }
2457
2458 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
2459 {
2460         struct btrfs_ioctl_clone_range_args args;
2461
2462         if (copy_from_user(&args, argp, sizeof(args)))
2463                 return -EFAULT;
2464         return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
2465                                  args.src_length, args.dest_offset);
2466 }
2467
2468 /*
2469  * there are many ways the trans_start and trans_end ioctls can lead
2470  * to deadlocks.  They should only be used by applications that
2471  * basically own the machine, and have a very in depth understanding
2472  * of all the possible deadlocks and enospc problems.
2473  */
2474 static long btrfs_ioctl_trans_start(struct file *file)
2475 {
2476         struct inode *inode = fdentry(file)->d_inode;
2477         struct btrfs_root *root = BTRFS_I(inode)->root;
2478         struct btrfs_trans_handle *trans;
2479         int ret;
2480
2481         ret = -EPERM;
2482         if (!capable(CAP_SYS_ADMIN))
2483                 goto out;
2484
2485         ret = -EINPROGRESS;
2486         if (file->private_data)
2487                 goto out;
2488
2489         ret = -EROFS;
2490         if (btrfs_root_readonly(root))
2491                 goto out;
2492
2493         ret = mnt_want_write(file->f_path.mnt);
2494         if (ret)
2495                 goto out;
2496
2497         atomic_inc(&root->fs_info->open_ioctl_trans);
2498
2499         ret = -ENOMEM;
2500         trans = btrfs_start_ioctl_transaction(root);
2501         if (IS_ERR(trans))
2502                 goto out_drop;
2503
2504         file->private_data = trans;
2505         return 0;
2506
2507 out_drop:
2508         atomic_dec(&root->fs_info->open_ioctl_trans);
2509         mnt_drop_write(file->f_path.mnt);
2510 out:
2511         return ret;
2512 }
2513
2514 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2515 {
2516         struct inode *inode = fdentry(file)->d_inode;
2517         struct btrfs_root *root = BTRFS_I(inode)->root;
2518         struct btrfs_root *new_root;
2519         struct btrfs_dir_item *di;
2520         struct btrfs_trans_handle *trans;
2521         struct btrfs_path *path;
2522         struct btrfs_key location;
2523         struct btrfs_disk_key disk_key;
2524         struct btrfs_super_block *disk_super;
2525         u64 features;
2526         u64 objectid = 0;
2527         u64 dir_id;
2528
2529         if (!capable(CAP_SYS_ADMIN))
2530                 return -EPERM;
2531
2532         if (copy_from_user(&objectid, argp, sizeof(objectid)))
2533                 return -EFAULT;
2534
2535         if (!objectid)
2536                 objectid = root->root_key.objectid;
2537
2538         location.objectid = objectid;
2539         location.type = BTRFS_ROOT_ITEM_KEY;
2540         location.offset = (u64)-1;
2541
2542         new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
2543         if (IS_ERR(new_root))
2544                 return PTR_ERR(new_root);
2545
2546         if (btrfs_root_refs(&new_root->root_item) == 0)
2547                 return -ENOENT;
2548
2549         path = btrfs_alloc_path();
2550         if (!path)
2551                 return -ENOMEM;
2552         path->leave_spinning = 1;
2553
2554         trans = btrfs_start_transaction(root, 1);
2555         if (IS_ERR(trans)) {
2556                 btrfs_free_path(path);
2557                 return PTR_ERR(trans);
2558         }
2559
2560         dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
2561         di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
2562                                    dir_id, "default", 7, 1);
2563         if (IS_ERR_OR_NULL(di)) {
2564                 btrfs_free_path(path);
2565                 btrfs_end_transaction(trans, root);
2566                 printk(KERN_ERR "Umm, you don't have the default dir item, "
2567                        "this isn't going to work\n");
2568                 return -ENOENT;
2569         }
2570
2571         btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2572         btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2573         btrfs_mark_buffer_dirty(path->nodes[0]);
2574         btrfs_free_path(path);
2575
2576         disk_super = &root->fs_info->super_copy;
2577         features = btrfs_super_incompat_flags(disk_super);
2578         if (!(features & BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL)) {
2579                 features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL;
2580                 btrfs_set_super_incompat_flags(disk_super, features);
2581         }
2582         btrfs_end_transaction(trans, root);
2583
2584         return 0;
2585 }
2586
2587 static void get_block_group_info(struct list_head *groups_list,
2588                                  struct btrfs_ioctl_space_info *space)
2589 {
2590         struct btrfs_block_group_cache *block_group;
2591
2592         space->total_bytes = 0;
2593         space->used_bytes = 0;
2594         space->flags = 0;
2595         list_for_each_entry(block_group, groups_list, list) {
2596                 space->flags = block_group->flags;
2597                 space->total_bytes += block_group->key.offset;
2598                 space->used_bytes +=
2599                         btrfs_block_group_used(&block_group->item);
2600         }
2601 }
2602
2603 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
2604 {
2605         struct btrfs_ioctl_space_args space_args;
2606         struct btrfs_ioctl_space_info space;
2607         struct btrfs_ioctl_space_info *dest;
2608         struct btrfs_ioctl_space_info *dest_orig;
2609         struct btrfs_ioctl_space_info __user *user_dest;
2610         struct btrfs_space_info *info;
2611         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
2612                        BTRFS_BLOCK_GROUP_SYSTEM,
2613                        BTRFS_BLOCK_GROUP_METADATA,
2614                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
2615         int num_types = 4;
2616         int alloc_size;
2617         int ret = 0;
2618         u64 slot_count = 0;
2619         int i, c;
2620
2621         if (copy_from_user(&space_args,
2622                            (struct btrfs_ioctl_space_args __user *)arg,
2623                            sizeof(space_args)))
2624                 return -EFAULT;
2625
2626         for (i = 0; i < num_types; i++) {
2627                 struct btrfs_space_info *tmp;
2628
2629                 info = NULL;
2630                 rcu_read_lock();
2631                 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2632                                         list) {
2633                         if (tmp->flags == types[i]) {
2634                                 info = tmp;
2635                                 break;
2636                         }
2637                 }
2638                 rcu_read_unlock();
2639
2640                 if (!info)
2641                         continue;
2642
2643                 down_read(&info->groups_sem);
2644                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2645                         if (!list_empty(&info->block_groups[c]))
2646                                 slot_count++;
2647                 }
2648                 up_read(&info->groups_sem);
2649         }
2650
2651         /* space_slots == 0 means they are asking for a count */
2652         if (space_args.space_slots == 0) {
2653                 space_args.total_spaces = slot_count;
2654                 goto out;
2655         }
2656
2657         slot_count = min_t(u64, space_args.space_slots, slot_count);
2658
2659         alloc_size = sizeof(*dest) * slot_count;
2660
2661         /* we generally have at most 6 or so space infos, one for each raid
2662          * level.  So, a whole page should be more than enough for everyone
2663          */
2664         if (alloc_size > PAGE_CACHE_SIZE)
2665                 return -ENOMEM;
2666
2667         space_args.total_spaces = 0;
2668         dest = kmalloc(alloc_size, GFP_NOFS);
2669         if (!dest)
2670                 return -ENOMEM;
2671         dest_orig = dest;
2672
2673         /* now we have a buffer to copy into */
2674         for (i = 0; i < num_types; i++) {
2675                 struct btrfs_space_info *tmp;
2676
2677                 if (!slot_count)
2678                         break;
2679
2680                 info = NULL;
2681                 rcu_read_lock();
2682                 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2683                                         list) {
2684                         if (tmp->flags == types[i]) {
2685                                 info = tmp;
2686                                 break;
2687                         }
2688                 }
2689                 rcu_read_unlock();
2690
2691                 if (!info)
2692                         continue;
2693                 down_read(&info->groups_sem);
2694                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2695                         if (!list_empty(&info->block_groups[c])) {
2696                                 get_block_group_info(&info->block_groups[c],
2697                                                      &space);
2698                                 memcpy(dest, &space, sizeof(space));
2699                                 dest++;
2700                                 space_args.total_spaces++;
2701                                 slot_count--;
2702                         }
2703                         if (!slot_count)
2704                                 break;
2705                 }
2706                 up_read(&info->groups_sem);
2707         }
2708
2709         user_dest = (struct btrfs_ioctl_space_info *)
2710                 (arg + sizeof(struct btrfs_ioctl_space_args));
2711
2712         if (copy_to_user(user_dest, dest_orig, alloc_size))
2713                 ret = -EFAULT;
2714
2715         kfree(dest_orig);
2716 out:
2717         if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
2718                 ret = -EFAULT;
2719
2720         return ret;
2721 }
2722
2723 /*
2724  * there are many ways the trans_start and trans_end ioctls can lead
2725  * to deadlocks.  They should only be used by applications that
2726  * basically own the machine, and have a very in depth understanding
2727  * of all the possible deadlocks and enospc problems.
2728  */
2729 long btrfs_ioctl_trans_end(struct file *file)
2730 {
2731         struct inode *inode = fdentry(file)->d_inode;
2732         struct btrfs_root *root = BTRFS_I(inode)->root;
2733         struct btrfs_trans_handle *trans;
2734
2735         trans = file->private_data;
2736         if (!trans)
2737                 return -EINVAL;
2738         file->private_data = NULL;
2739
2740         btrfs_end_transaction(trans, root);
2741
2742         atomic_dec(&root->fs_info->open_ioctl_trans);
2743
2744         mnt_drop_write(file->f_path.mnt);
2745         return 0;
2746 }
2747
2748 static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp)
2749 {
2750         struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
2751         struct btrfs_trans_handle *trans;
2752         u64 transid;
2753         int ret;
2754
2755         trans = btrfs_start_transaction(root, 0);
2756         if (IS_ERR(trans))
2757                 return PTR_ERR(trans);
2758         transid = trans->transid;
2759         ret = btrfs_commit_transaction_async(trans, root, 0);
2760         if (ret) {
2761                 btrfs_end_transaction(trans, root);
2762                 return ret;
2763         }
2764
2765         if (argp)
2766                 if (copy_to_user(argp, &transid, sizeof(transid)))
2767                         return -EFAULT;
2768         return 0;
2769 }
2770
2771 static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp)
2772 {
2773         struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
2774         u64 transid;
2775
2776         if (argp) {
2777                 if (copy_from_user(&transid, argp, sizeof(transid)))
2778                         return -EFAULT;
2779         } else {
2780                 transid = 0;  /* current trans */
2781         }
2782         return btrfs_wait_for_commit(root, transid);
2783 }
2784
2785 static long btrfs_ioctl_scrub(struct btrfs_root *root, void __user *arg)
2786 {
2787         int ret;
2788         struct btrfs_ioctl_scrub_args *sa;
2789
2790         if (!capable(CAP_SYS_ADMIN))
2791                 return -EPERM;
2792
2793         sa = memdup_user(arg, sizeof(*sa));
2794         if (IS_ERR(sa))
2795                 return PTR_ERR(sa);
2796
2797         ret = btrfs_scrub_dev(root, sa->devid, sa->start, sa->end,
2798                               &sa->progress, sa->flags & BTRFS_SCRUB_READONLY);
2799
2800         if (copy_to_user(arg, sa, sizeof(*sa)))
2801                 ret = -EFAULT;
2802
2803         kfree(sa);
2804         return ret;
2805 }
2806
2807 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
2808 {
2809         if (!capable(CAP_SYS_ADMIN))
2810                 return -EPERM;
2811
2812         return btrfs_scrub_cancel(root);
2813 }
2814
2815 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
2816                                        void __user *arg)
2817 {
2818         struct btrfs_ioctl_scrub_args *sa;
2819         int ret;
2820
2821         if (!capable(CAP_SYS_ADMIN))
2822                 return -EPERM;
2823
2824         sa = memdup_user(arg, sizeof(*sa));
2825         if (IS_ERR(sa))
2826                 return PTR_ERR(sa);
2827
2828         ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
2829
2830         if (copy_to_user(arg, sa, sizeof(*sa)))
2831                 ret = -EFAULT;
2832
2833         kfree(sa);
2834         return ret;
2835 }
2836
2837 long btrfs_ioctl(struct file *file, unsigned int
2838                 cmd, unsigned long arg)
2839 {
2840         struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
2841         void __user *argp = (void __user *)arg;
2842
2843         switch (cmd) {
2844         case FS_IOC_GETFLAGS:
2845                 return btrfs_ioctl_getflags(file, argp);
2846         case FS_IOC_SETFLAGS:
2847                 return btrfs_ioctl_setflags(file, argp);
2848         case FS_IOC_GETVERSION:
2849                 return btrfs_ioctl_getversion(file, argp);
2850         case FITRIM:
2851                 return btrfs_ioctl_fitrim(file, argp);
2852         case BTRFS_IOC_SNAP_CREATE:
2853                 return btrfs_ioctl_snap_create(file, argp, 0);
2854         case BTRFS_IOC_SNAP_CREATE_V2:
2855                 return btrfs_ioctl_snap_create_v2(file, argp, 0);
2856         case BTRFS_IOC_SUBVOL_CREATE:
2857                 return btrfs_ioctl_snap_create(file, argp, 1);
2858         case BTRFS_IOC_SNAP_DESTROY:
2859                 return btrfs_ioctl_snap_destroy(file, argp);
2860         case BTRFS_IOC_SUBVOL_GETFLAGS:
2861                 return btrfs_ioctl_subvol_getflags(file, argp);
2862         case BTRFS_IOC_SUBVOL_SETFLAGS:
2863                 return btrfs_ioctl_subvol_setflags(file, argp);
2864         case BTRFS_IOC_DEFAULT_SUBVOL:
2865                 return btrfs_ioctl_default_subvol(file, argp);
2866         case BTRFS_IOC_DEFRAG:
2867                 return btrfs_ioctl_defrag(file, NULL);
2868         case BTRFS_IOC_DEFRAG_RANGE:
2869                 return btrfs_ioctl_defrag(file, argp);
2870         case BTRFS_IOC_RESIZE:
2871                 return btrfs_ioctl_resize(root, argp);
2872         case BTRFS_IOC_ADD_DEV:
2873                 return btrfs_ioctl_add_dev(root, argp);
2874         case BTRFS_IOC_RM_DEV:
2875                 return btrfs_ioctl_rm_dev(root, argp);
2876         case BTRFS_IOC_FS_INFO:
2877                 return btrfs_ioctl_fs_info(root, argp);
2878         case BTRFS_IOC_DEV_INFO:
2879                 return btrfs_ioctl_dev_info(root, argp);
2880         case BTRFS_IOC_BALANCE:
2881                 return btrfs_balance(root->fs_info->dev_root);
2882         case BTRFS_IOC_CLONE:
2883                 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
2884         case BTRFS_IOC_CLONE_RANGE:
2885                 return btrfs_ioctl_clone_range(file, argp);
2886         case BTRFS_IOC_TRANS_START:
2887                 return btrfs_ioctl_trans_start(file);
2888         case BTRFS_IOC_TRANS_END:
2889                 return btrfs_ioctl_trans_end(file);
2890         case BTRFS_IOC_TREE_SEARCH:
2891                 return btrfs_ioctl_tree_search(file, argp);
2892         case BTRFS_IOC_INO_LOOKUP:
2893                 return btrfs_ioctl_ino_lookup(file, argp);
2894         case BTRFS_IOC_SPACE_INFO:
2895                 return btrfs_ioctl_space_info(root, argp);
2896         case BTRFS_IOC_SYNC:
2897                 btrfs_sync_fs(file->f_dentry->d_sb, 1);
2898                 return 0;
2899         case BTRFS_IOC_START_SYNC:
2900                 return btrfs_ioctl_start_sync(file, argp);
2901         case BTRFS_IOC_WAIT_SYNC:
2902                 return btrfs_ioctl_wait_sync(file, argp);
2903         case BTRFS_IOC_SCRUB:
2904                 return btrfs_ioctl_scrub(root, argp);
2905         case BTRFS_IOC_SCRUB_CANCEL:
2906                 return btrfs_ioctl_scrub_cancel(root, argp);
2907         case BTRFS_IOC_SCRUB_PROGRESS:
2908                 return btrfs_ioctl_scrub_progress(root, argp);
2909         }
2910
2911         return -ENOTTY;
2912 }