Btrfs: check return value of btrfs_alloc_path()
[pandora-kernel.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53 #include "free-space-cache.h"
54
55 struct btrfs_iget_args {
56         u64 ino;
57         struct btrfs_root *root;
58 };
59
60 static const struct inode_operations btrfs_dir_inode_operations;
61 static const struct inode_operations btrfs_symlink_inode_operations;
62 static const struct inode_operations btrfs_dir_ro_inode_operations;
63 static const struct inode_operations btrfs_special_inode_operations;
64 static const struct inode_operations btrfs_file_inode_operations;
65 static const struct address_space_operations btrfs_aops;
66 static const struct address_space_operations btrfs_symlink_aops;
67 static const struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
69
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74 struct kmem_cache *btrfs_free_space_cachep;
75
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
79         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
80         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
81         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
82         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
83         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
84         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
85 };
86
87 static int btrfs_setsize(struct inode *inode, loff_t newsize);
88 static int btrfs_truncate(struct inode *inode);
89 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
90 static noinline int cow_file_range(struct inode *inode,
91                                    struct page *locked_page,
92                                    u64 start, u64 end, int *page_started,
93                                    unsigned long *nr_written, int unlock);
94
95 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
96                                      struct inode *inode,  struct inode *dir)
97 {
98         int err;
99
100         err = btrfs_init_acl(trans, inode, dir);
101         if (!err)
102                 err = btrfs_xattr_security_init(trans, inode, dir);
103         return err;
104 }
105
106 /*
107  * this does all the hard work for inserting an inline extent into
108  * the btree.  The caller should have done a btrfs_drop_extents so that
109  * no overlapping inline items exist in the btree
110  */
111 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
112                                 struct btrfs_root *root, struct inode *inode,
113                                 u64 start, size_t size, size_t compressed_size,
114                                 struct page **compressed_pages)
115 {
116         struct btrfs_key key;
117         struct btrfs_path *path;
118         struct extent_buffer *leaf;
119         struct page *page = NULL;
120         char *kaddr;
121         unsigned long ptr;
122         struct btrfs_file_extent_item *ei;
123         int err = 0;
124         int ret;
125         size_t cur_size = size;
126         size_t datasize;
127         unsigned long offset;
128         int compress_type = BTRFS_COMPRESS_NONE;
129
130         if (compressed_size && compressed_pages) {
131                 compress_type = root->fs_info->compress_type;
132                 cur_size = compressed_size;
133         }
134
135         path = btrfs_alloc_path();
136         if (!path)
137                 return -ENOMEM;
138
139         path->leave_spinning = 1;
140         btrfs_set_trans_block_group(trans, inode);
141
142         key.objectid = inode->i_ino;
143         key.offset = start;
144         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
145         datasize = btrfs_file_extent_calc_inline_size(cur_size);
146
147         inode_add_bytes(inode, size);
148         ret = btrfs_insert_empty_item(trans, root, path, &key,
149                                       datasize);
150         BUG_ON(ret);
151         if (ret) {
152                 err = ret;
153                 goto fail;
154         }
155         leaf = path->nodes[0];
156         ei = btrfs_item_ptr(leaf, path->slots[0],
157                             struct btrfs_file_extent_item);
158         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
159         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
160         btrfs_set_file_extent_encryption(leaf, ei, 0);
161         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
162         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
163         ptr = btrfs_file_extent_inline_start(ei);
164
165         if (compress_type != BTRFS_COMPRESS_NONE) {
166                 struct page *cpage;
167                 int i = 0;
168                 while (compressed_size > 0) {
169                         cpage = compressed_pages[i];
170                         cur_size = min_t(unsigned long, compressed_size,
171                                        PAGE_CACHE_SIZE);
172
173                         kaddr = kmap_atomic(cpage, KM_USER0);
174                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
175                         kunmap_atomic(kaddr, KM_USER0);
176
177                         i++;
178                         ptr += cur_size;
179                         compressed_size -= cur_size;
180                 }
181                 btrfs_set_file_extent_compression(leaf, ei,
182                                                   compress_type);
183         } else {
184                 page = find_get_page(inode->i_mapping,
185                                      start >> PAGE_CACHE_SHIFT);
186                 btrfs_set_file_extent_compression(leaf, ei, 0);
187                 kaddr = kmap_atomic(page, KM_USER0);
188                 offset = start & (PAGE_CACHE_SIZE - 1);
189                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
190                 kunmap_atomic(kaddr, KM_USER0);
191                 page_cache_release(page);
192         }
193         btrfs_mark_buffer_dirty(leaf);
194         btrfs_free_path(path);
195
196         /*
197          * we're an inline extent, so nobody can
198          * extend the file past i_size without locking
199          * a page we already have locked.
200          *
201          * We must do any isize and inode updates
202          * before we unlock the pages.  Otherwise we
203          * could end up racing with unlink.
204          */
205         BTRFS_I(inode)->disk_i_size = inode->i_size;
206         btrfs_update_inode(trans, root, inode);
207
208         return 0;
209 fail:
210         btrfs_free_path(path);
211         return err;
212 }
213
214
215 /*
216  * conditionally insert an inline extent into the file.  This
217  * does the checks required to make sure the data is small enough
218  * to fit as an inline extent.
219  */
220 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
221                                  struct btrfs_root *root,
222                                  struct inode *inode, u64 start, u64 end,
223                                  size_t compressed_size,
224                                  struct page **compressed_pages)
225 {
226         u64 isize = i_size_read(inode);
227         u64 actual_end = min(end + 1, isize);
228         u64 inline_len = actual_end - start;
229         u64 aligned_end = (end + root->sectorsize - 1) &
230                         ~((u64)root->sectorsize - 1);
231         u64 hint_byte;
232         u64 data_len = inline_len;
233         int ret;
234
235         if (compressed_size)
236                 data_len = compressed_size;
237
238         if (start > 0 ||
239             actual_end >= PAGE_CACHE_SIZE ||
240             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241             (!compressed_size &&
242             (actual_end & (root->sectorsize - 1)) == 0) ||
243             end + 1 < isize ||
244             data_len > root->fs_info->max_inline) {
245                 return 1;
246         }
247
248         ret = btrfs_drop_extents(trans, inode, start, aligned_end,
249                                  &hint_byte, 1);
250         BUG_ON(ret);
251
252         if (isize > actual_end)
253                 inline_len = min_t(u64, isize, actual_end);
254         ret = insert_inline_extent(trans, root, inode, start,
255                                    inline_len, compressed_size,
256                                    compressed_pages);
257         BUG_ON(ret);
258         btrfs_delalloc_release_metadata(inode, end + 1 - start);
259         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
260         return 0;
261 }
262
263 struct async_extent {
264         u64 start;
265         u64 ram_size;
266         u64 compressed_size;
267         struct page **pages;
268         unsigned long nr_pages;
269         int compress_type;
270         struct list_head list;
271 };
272
273 struct async_cow {
274         struct inode *inode;
275         struct btrfs_root *root;
276         struct page *locked_page;
277         u64 start;
278         u64 end;
279         struct list_head extents;
280         struct btrfs_work work;
281 };
282
283 static noinline int add_async_extent(struct async_cow *cow,
284                                      u64 start, u64 ram_size,
285                                      u64 compressed_size,
286                                      struct page **pages,
287                                      unsigned long nr_pages,
288                                      int compress_type)
289 {
290         struct async_extent *async_extent;
291
292         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
293         BUG_ON(!async_extent);
294         async_extent->start = start;
295         async_extent->ram_size = ram_size;
296         async_extent->compressed_size = compressed_size;
297         async_extent->pages = pages;
298         async_extent->nr_pages = nr_pages;
299         async_extent->compress_type = compress_type;
300         list_add_tail(&async_extent->list, &cow->extents);
301         return 0;
302 }
303
304 /*
305  * we create compressed extents in two phases.  The first
306  * phase compresses a range of pages that have already been
307  * locked (both pages and state bits are locked).
308  *
309  * This is done inside an ordered work queue, and the compression
310  * is spread across many cpus.  The actual IO submission is step
311  * two, and the ordered work queue takes care of making sure that
312  * happens in the same order things were put onto the queue by
313  * writepages and friends.
314  *
315  * If this code finds it can't get good compression, it puts an
316  * entry onto the work queue to write the uncompressed bytes.  This
317  * makes sure that both compressed inodes and uncompressed inodes
318  * are written in the same order that pdflush sent them down.
319  */
320 static noinline int compress_file_range(struct inode *inode,
321                                         struct page *locked_page,
322                                         u64 start, u64 end,
323                                         struct async_cow *async_cow,
324                                         int *num_added)
325 {
326         struct btrfs_root *root = BTRFS_I(inode)->root;
327         struct btrfs_trans_handle *trans;
328         u64 num_bytes;
329         u64 blocksize = root->sectorsize;
330         u64 actual_end;
331         u64 isize = i_size_read(inode);
332         int ret = 0;
333         struct page **pages = NULL;
334         unsigned long nr_pages;
335         unsigned long nr_pages_ret = 0;
336         unsigned long total_compressed = 0;
337         unsigned long total_in = 0;
338         unsigned long max_compressed = 128 * 1024;
339         unsigned long max_uncompressed = 128 * 1024;
340         int i;
341         int will_compress;
342         int compress_type = root->fs_info->compress_type;
343
344         actual_end = min_t(u64, isize, end + 1);
345 again:
346         will_compress = 0;
347         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
348         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
349
350         /*
351          * we don't want to send crud past the end of i_size through
352          * compression, that's just a waste of CPU time.  So, if the
353          * end of the file is before the start of our current
354          * requested range of bytes, we bail out to the uncompressed
355          * cleanup code that can deal with all of this.
356          *
357          * It isn't really the fastest way to fix things, but this is a
358          * very uncommon corner.
359          */
360         if (actual_end <= start)
361                 goto cleanup_and_bail_uncompressed;
362
363         total_compressed = actual_end - start;
364
365         /* we want to make sure that amount of ram required to uncompress
366          * an extent is reasonable, so we limit the total size in ram
367          * of a compressed extent to 128k.  This is a crucial number
368          * because it also controls how easily we can spread reads across
369          * cpus for decompression.
370          *
371          * We also want to make sure the amount of IO required to do
372          * a random read is reasonably small, so we limit the size of
373          * a compressed extent to 128k.
374          */
375         total_compressed = min(total_compressed, max_uncompressed);
376         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
377         num_bytes = max(blocksize,  num_bytes);
378         total_in = 0;
379         ret = 0;
380
381         /*
382          * we do compression for mount -o compress and when the
383          * inode has not been flagged as nocompress.  This flag can
384          * change at any time if we discover bad compression ratios.
385          */
386         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
387             (btrfs_test_opt(root, COMPRESS) ||
388              (BTRFS_I(inode)->force_compress) ||
389              (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
390                 WARN_ON(pages);
391                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
392                 BUG_ON(!pages);
393
394                 if (BTRFS_I(inode)->force_compress)
395                         compress_type = BTRFS_I(inode)->force_compress;
396
397                 ret = btrfs_compress_pages(compress_type,
398                                            inode->i_mapping, start,
399                                            total_compressed, pages,
400                                            nr_pages, &nr_pages_ret,
401                                            &total_in,
402                                            &total_compressed,
403                                            max_compressed);
404
405                 if (!ret) {
406                         unsigned long offset = total_compressed &
407                                 (PAGE_CACHE_SIZE - 1);
408                         struct page *page = pages[nr_pages_ret - 1];
409                         char *kaddr;
410
411                         /* zero the tail end of the last page, we might be
412                          * sending it down to disk
413                          */
414                         if (offset) {
415                                 kaddr = kmap_atomic(page, KM_USER0);
416                                 memset(kaddr + offset, 0,
417                                        PAGE_CACHE_SIZE - offset);
418                                 kunmap_atomic(kaddr, KM_USER0);
419                         }
420                         will_compress = 1;
421                 }
422         }
423         if (start == 0) {
424                 trans = btrfs_join_transaction(root, 1);
425                 BUG_ON(IS_ERR(trans));
426                 btrfs_set_trans_block_group(trans, inode);
427                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
428
429                 /* lets try to make an inline extent */
430                 if (ret || total_in < (actual_end - start)) {
431                         /* we didn't compress the entire range, try
432                          * to make an uncompressed inline extent.
433                          */
434                         ret = cow_file_range_inline(trans, root, inode,
435                                                     start, end, 0, NULL);
436                 } else {
437                         /* try making a compressed inline extent */
438                         ret = cow_file_range_inline(trans, root, inode,
439                                                     start, end,
440                                                     total_compressed, pages);
441                 }
442                 if (ret == 0) {
443                         /*
444                          * inline extent creation worked, we don't need
445                          * to create any more async work items.  Unlock
446                          * and free up our temp pages.
447                          */
448                         extent_clear_unlock_delalloc(inode,
449                              &BTRFS_I(inode)->io_tree,
450                              start, end, NULL,
451                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
452                              EXTENT_CLEAR_DELALLOC |
453                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
454
455                         btrfs_end_transaction(trans, root);
456                         goto free_pages_out;
457                 }
458                 btrfs_end_transaction(trans, root);
459         }
460
461         if (will_compress) {
462                 /*
463                  * we aren't doing an inline extent round the compressed size
464                  * up to a block size boundary so the allocator does sane
465                  * things
466                  */
467                 total_compressed = (total_compressed + blocksize - 1) &
468                         ~(blocksize - 1);
469
470                 /*
471                  * one last check to make sure the compression is really a
472                  * win, compare the page count read with the blocks on disk
473                  */
474                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
475                         ~(PAGE_CACHE_SIZE - 1);
476                 if (total_compressed >= total_in) {
477                         will_compress = 0;
478                 } else {
479                         num_bytes = total_in;
480                 }
481         }
482         if (!will_compress && pages) {
483                 /*
484                  * the compression code ran but failed to make things smaller,
485                  * free any pages it allocated and our page pointer array
486                  */
487                 for (i = 0; i < nr_pages_ret; i++) {
488                         WARN_ON(pages[i]->mapping);
489                         page_cache_release(pages[i]);
490                 }
491                 kfree(pages);
492                 pages = NULL;
493                 total_compressed = 0;
494                 nr_pages_ret = 0;
495
496                 /* flag the file so we don't compress in the future */
497                 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
498                     !(BTRFS_I(inode)->force_compress)) {
499                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
500                 }
501         }
502         if (will_compress) {
503                 *num_added += 1;
504
505                 /* the async work queues will take care of doing actual
506                  * allocation on disk for these compressed pages,
507                  * and will submit them to the elevator.
508                  */
509                 add_async_extent(async_cow, start, num_bytes,
510                                  total_compressed, pages, nr_pages_ret,
511                                  compress_type);
512
513                 if (start + num_bytes < end) {
514                         start += num_bytes;
515                         pages = NULL;
516                         cond_resched();
517                         goto again;
518                 }
519         } else {
520 cleanup_and_bail_uncompressed:
521                 /*
522                  * No compression, but we still need to write the pages in
523                  * the file we've been given so far.  redirty the locked
524                  * page if it corresponds to our extent and set things up
525                  * for the async work queue to run cow_file_range to do
526                  * the normal delalloc dance
527                  */
528                 if (page_offset(locked_page) >= start &&
529                     page_offset(locked_page) <= end) {
530                         __set_page_dirty_nobuffers(locked_page);
531                         /* unlocked later on in the async handlers */
532                 }
533                 add_async_extent(async_cow, start, end - start + 1,
534                                  0, NULL, 0, BTRFS_COMPRESS_NONE);
535                 *num_added += 1;
536         }
537
538 out:
539         return 0;
540
541 free_pages_out:
542         for (i = 0; i < nr_pages_ret; i++) {
543                 WARN_ON(pages[i]->mapping);
544                 page_cache_release(pages[i]);
545         }
546         kfree(pages);
547
548         goto out;
549 }
550
551 /*
552  * phase two of compressed writeback.  This is the ordered portion
553  * of the code, which only gets called in the order the work was
554  * queued.  We walk all the async extents created by compress_file_range
555  * and send them down to the disk.
556  */
557 static noinline int submit_compressed_extents(struct inode *inode,
558                                               struct async_cow *async_cow)
559 {
560         struct async_extent *async_extent;
561         u64 alloc_hint = 0;
562         struct btrfs_trans_handle *trans;
563         struct btrfs_key ins;
564         struct extent_map *em;
565         struct btrfs_root *root = BTRFS_I(inode)->root;
566         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
567         struct extent_io_tree *io_tree;
568         int ret = 0;
569
570         if (list_empty(&async_cow->extents))
571                 return 0;
572
573
574         while (!list_empty(&async_cow->extents)) {
575                 async_extent = list_entry(async_cow->extents.next,
576                                           struct async_extent, list);
577                 list_del(&async_extent->list);
578
579                 io_tree = &BTRFS_I(inode)->io_tree;
580
581 retry:
582                 /* did the compression code fall back to uncompressed IO? */
583                 if (!async_extent->pages) {
584                         int page_started = 0;
585                         unsigned long nr_written = 0;
586
587                         lock_extent(io_tree, async_extent->start,
588                                          async_extent->start +
589                                          async_extent->ram_size - 1, GFP_NOFS);
590
591                         /* allocate blocks */
592                         ret = cow_file_range(inode, async_cow->locked_page,
593                                              async_extent->start,
594                                              async_extent->start +
595                                              async_extent->ram_size - 1,
596                                              &page_started, &nr_written, 0);
597
598                         /*
599                          * if page_started, cow_file_range inserted an
600                          * inline extent and took care of all the unlocking
601                          * and IO for us.  Otherwise, we need to submit
602                          * all those pages down to the drive.
603                          */
604                         if (!page_started && !ret)
605                                 extent_write_locked_range(io_tree,
606                                                   inode, async_extent->start,
607                                                   async_extent->start +
608                                                   async_extent->ram_size - 1,
609                                                   btrfs_get_extent,
610                                                   WB_SYNC_ALL);
611                         kfree(async_extent);
612                         cond_resched();
613                         continue;
614                 }
615
616                 lock_extent(io_tree, async_extent->start,
617                             async_extent->start + async_extent->ram_size - 1,
618                             GFP_NOFS);
619
620                 trans = btrfs_join_transaction(root, 1);
621                 BUG_ON(IS_ERR(trans));
622                 ret = btrfs_reserve_extent(trans, root,
623                                            async_extent->compressed_size,
624                                            async_extent->compressed_size,
625                                            0, alloc_hint,
626                                            (u64)-1, &ins, 1);
627                 btrfs_end_transaction(trans, root);
628
629                 if (ret) {
630                         int i;
631                         for (i = 0; i < async_extent->nr_pages; i++) {
632                                 WARN_ON(async_extent->pages[i]->mapping);
633                                 page_cache_release(async_extent->pages[i]);
634                         }
635                         kfree(async_extent->pages);
636                         async_extent->nr_pages = 0;
637                         async_extent->pages = NULL;
638                         unlock_extent(io_tree, async_extent->start,
639                                       async_extent->start +
640                                       async_extent->ram_size - 1, GFP_NOFS);
641                         goto retry;
642                 }
643
644                 /*
645                  * here we're doing allocation and writeback of the
646                  * compressed pages
647                  */
648                 btrfs_drop_extent_cache(inode, async_extent->start,
649                                         async_extent->start +
650                                         async_extent->ram_size - 1, 0);
651
652                 em = alloc_extent_map(GFP_NOFS);
653                 BUG_ON(!em);
654                 em->start = async_extent->start;
655                 em->len = async_extent->ram_size;
656                 em->orig_start = em->start;
657
658                 em->block_start = ins.objectid;
659                 em->block_len = ins.offset;
660                 em->bdev = root->fs_info->fs_devices->latest_bdev;
661                 em->compress_type = async_extent->compress_type;
662                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
663                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
664
665                 while (1) {
666                         write_lock(&em_tree->lock);
667                         ret = add_extent_mapping(em_tree, em);
668                         write_unlock(&em_tree->lock);
669                         if (ret != -EEXIST) {
670                                 free_extent_map(em);
671                                 break;
672                         }
673                         btrfs_drop_extent_cache(inode, async_extent->start,
674                                                 async_extent->start +
675                                                 async_extent->ram_size - 1, 0);
676                 }
677
678                 ret = btrfs_add_ordered_extent_compress(inode,
679                                                 async_extent->start,
680                                                 ins.objectid,
681                                                 async_extent->ram_size,
682                                                 ins.offset,
683                                                 BTRFS_ORDERED_COMPRESSED,
684                                                 async_extent->compress_type);
685                 BUG_ON(ret);
686
687                 /*
688                  * clear dirty, set writeback and unlock the pages.
689                  */
690                 extent_clear_unlock_delalloc(inode,
691                                 &BTRFS_I(inode)->io_tree,
692                                 async_extent->start,
693                                 async_extent->start +
694                                 async_extent->ram_size - 1,
695                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
696                                 EXTENT_CLEAR_UNLOCK |
697                                 EXTENT_CLEAR_DELALLOC |
698                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
699
700                 ret = btrfs_submit_compressed_write(inode,
701                                     async_extent->start,
702                                     async_extent->ram_size,
703                                     ins.objectid,
704                                     ins.offset, async_extent->pages,
705                                     async_extent->nr_pages);
706
707                 BUG_ON(ret);
708                 alloc_hint = ins.objectid + ins.offset;
709                 kfree(async_extent);
710                 cond_resched();
711         }
712
713         return 0;
714 }
715
716 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
717                                       u64 num_bytes)
718 {
719         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
720         struct extent_map *em;
721         u64 alloc_hint = 0;
722
723         read_lock(&em_tree->lock);
724         em = search_extent_mapping(em_tree, start, num_bytes);
725         if (em) {
726                 /*
727                  * if block start isn't an actual block number then find the
728                  * first block in this inode and use that as a hint.  If that
729                  * block is also bogus then just don't worry about it.
730                  */
731                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
732                         free_extent_map(em);
733                         em = search_extent_mapping(em_tree, 0, 0);
734                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
735                                 alloc_hint = em->block_start;
736                         if (em)
737                                 free_extent_map(em);
738                 } else {
739                         alloc_hint = em->block_start;
740                         free_extent_map(em);
741                 }
742         }
743         read_unlock(&em_tree->lock);
744
745         return alloc_hint;
746 }
747
748 /*
749  * when extent_io.c finds a delayed allocation range in the file,
750  * the call backs end up in this code.  The basic idea is to
751  * allocate extents on disk for the range, and create ordered data structs
752  * in ram to track those extents.
753  *
754  * locked_page is the page that writepage had locked already.  We use
755  * it to make sure we don't do extra locks or unlocks.
756  *
757  * *page_started is set to one if we unlock locked_page and do everything
758  * required to start IO on it.  It may be clean and already done with
759  * IO when we return.
760  */
761 static noinline int cow_file_range(struct inode *inode,
762                                    struct page *locked_page,
763                                    u64 start, u64 end, int *page_started,
764                                    unsigned long *nr_written,
765                                    int unlock)
766 {
767         struct btrfs_root *root = BTRFS_I(inode)->root;
768         struct btrfs_trans_handle *trans;
769         u64 alloc_hint = 0;
770         u64 num_bytes;
771         unsigned long ram_size;
772         u64 disk_num_bytes;
773         u64 cur_alloc_size;
774         u64 blocksize = root->sectorsize;
775         struct btrfs_key ins;
776         struct extent_map *em;
777         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
778         int ret = 0;
779
780         BUG_ON(root == root->fs_info->tree_root);
781         trans = btrfs_join_transaction(root, 1);
782         BUG_ON(IS_ERR(trans));
783         btrfs_set_trans_block_group(trans, inode);
784         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
785
786         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
787         num_bytes = max(blocksize,  num_bytes);
788         disk_num_bytes = num_bytes;
789         ret = 0;
790
791         if (start == 0) {
792                 /* lets try to make an inline extent */
793                 ret = cow_file_range_inline(trans, root, inode,
794                                             start, end, 0, NULL);
795                 if (ret == 0) {
796                         extent_clear_unlock_delalloc(inode,
797                                      &BTRFS_I(inode)->io_tree,
798                                      start, end, NULL,
799                                      EXTENT_CLEAR_UNLOCK_PAGE |
800                                      EXTENT_CLEAR_UNLOCK |
801                                      EXTENT_CLEAR_DELALLOC |
802                                      EXTENT_CLEAR_DIRTY |
803                                      EXTENT_SET_WRITEBACK |
804                                      EXTENT_END_WRITEBACK);
805
806                         *nr_written = *nr_written +
807                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
808                         *page_started = 1;
809                         ret = 0;
810                         goto out;
811                 }
812         }
813
814         BUG_ON(disk_num_bytes >
815                btrfs_super_total_bytes(&root->fs_info->super_copy));
816
817         alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
818         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
819
820         while (disk_num_bytes > 0) {
821                 unsigned long op;
822
823                 cur_alloc_size = disk_num_bytes;
824                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
825                                            root->sectorsize, 0, alloc_hint,
826                                            (u64)-1, &ins, 1);
827                 BUG_ON(ret);
828
829                 em = alloc_extent_map(GFP_NOFS);
830                 BUG_ON(!em);
831                 em->start = start;
832                 em->orig_start = em->start;
833                 ram_size = ins.offset;
834                 em->len = ins.offset;
835
836                 em->block_start = ins.objectid;
837                 em->block_len = ins.offset;
838                 em->bdev = root->fs_info->fs_devices->latest_bdev;
839                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
840
841                 while (1) {
842                         write_lock(&em_tree->lock);
843                         ret = add_extent_mapping(em_tree, em);
844                         write_unlock(&em_tree->lock);
845                         if (ret != -EEXIST) {
846                                 free_extent_map(em);
847                                 break;
848                         }
849                         btrfs_drop_extent_cache(inode, start,
850                                                 start + ram_size - 1, 0);
851                 }
852
853                 cur_alloc_size = ins.offset;
854                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
855                                                ram_size, cur_alloc_size, 0);
856                 BUG_ON(ret);
857
858                 if (root->root_key.objectid ==
859                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
860                         ret = btrfs_reloc_clone_csums(inode, start,
861                                                       cur_alloc_size);
862                         BUG_ON(ret);
863                 }
864
865                 if (disk_num_bytes < cur_alloc_size)
866                         break;
867
868                 /* we're not doing compressed IO, don't unlock the first
869                  * page (which the caller expects to stay locked), don't
870                  * clear any dirty bits and don't set any writeback bits
871                  *
872                  * Do set the Private2 bit so we know this page was properly
873                  * setup for writepage
874                  */
875                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
876                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
877                         EXTENT_SET_PRIVATE2;
878
879                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
880                                              start, start + ram_size - 1,
881                                              locked_page, op);
882                 disk_num_bytes -= cur_alloc_size;
883                 num_bytes -= cur_alloc_size;
884                 alloc_hint = ins.objectid + ins.offset;
885                 start += cur_alloc_size;
886         }
887 out:
888         ret = 0;
889         btrfs_end_transaction(trans, root);
890
891         return ret;
892 }
893
894 /*
895  * work queue call back to started compression on a file and pages
896  */
897 static noinline void async_cow_start(struct btrfs_work *work)
898 {
899         struct async_cow *async_cow;
900         int num_added = 0;
901         async_cow = container_of(work, struct async_cow, work);
902
903         compress_file_range(async_cow->inode, async_cow->locked_page,
904                             async_cow->start, async_cow->end, async_cow,
905                             &num_added);
906         if (num_added == 0)
907                 async_cow->inode = NULL;
908 }
909
910 /*
911  * work queue call back to submit previously compressed pages
912  */
913 static noinline void async_cow_submit(struct btrfs_work *work)
914 {
915         struct async_cow *async_cow;
916         struct btrfs_root *root;
917         unsigned long nr_pages;
918
919         async_cow = container_of(work, struct async_cow, work);
920
921         root = async_cow->root;
922         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
923                 PAGE_CACHE_SHIFT;
924
925         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
926
927         if (atomic_read(&root->fs_info->async_delalloc_pages) <
928             5 * 1042 * 1024 &&
929             waitqueue_active(&root->fs_info->async_submit_wait))
930                 wake_up(&root->fs_info->async_submit_wait);
931
932         if (async_cow->inode)
933                 submit_compressed_extents(async_cow->inode, async_cow);
934 }
935
936 static noinline void async_cow_free(struct btrfs_work *work)
937 {
938         struct async_cow *async_cow;
939         async_cow = container_of(work, struct async_cow, work);
940         kfree(async_cow);
941 }
942
943 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
944                                 u64 start, u64 end, int *page_started,
945                                 unsigned long *nr_written)
946 {
947         struct async_cow *async_cow;
948         struct btrfs_root *root = BTRFS_I(inode)->root;
949         unsigned long nr_pages;
950         u64 cur_end;
951         int limit = 10 * 1024 * 1042;
952
953         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
954                          1, 0, NULL, GFP_NOFS);
955         while (start < end) {
956                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
957                 async_cow->inode = inode;
958                 async_cow->root = root;
959                 async_cow->locked_page = locked_page;
960                 async_cow->start = start;
961
962                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
963                         cur_end = end;
964                 else
965                         cur_end = min(end, start + 512 * 1024 - 1);
966
967                 async_cow->end = cur_end;
968                 INIT_LIST_HEAD(&async_cow->extents);
969
970                 async_cow->work.func = async_cow_start;
971                 async_cow->work.ordered_func = async_cow_submit;
972                 async_cow->work.ordered_free = async_cow_free;
973                 async_cow->work.flags = 0;
974
975                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
976                         PAGE_CACHE_SHIFT;
977                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
978
979                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
980                                    &async_cow->work);
981
982                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
983                         wait_event(root->fs_info->async_submit_wait,
984                            (atomic_read(&root->fs_info->async_delalloc_pages) <
985                             limit));
986                 }
987
988                 while (atomic_read(&root->fs_info->async_submit_draining) &&
989                       atomic_read(&root->fs_info->async_delalloc_pages)) {
990                         wait_event(root->fs_info->async_submit_wait,
991                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
992                            0));
993                 }
994
995                 *nr_written += nr_pages;
996                 start = cur_end + 1;
997         }
998         *page_started = 1;
999         return 0;
1000 }
1001
1002 static noinline int csum_exist_in_range(struct btrfs_root *root,
1003                                         u64 bytenr, u64 num_bytes)
1004 {
1005         int ret;
1006         struct btrfs_ordered_sum *sums;
1007         LIST_HEAD(list);
1008
1009         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1010                                        bytenr + num_bytes - 1, &list);
1011         if (ret == 0 && list_empty(&list))
1012                 return 0;
1013
1014         while (!list_empty(&list)) {
1015                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1016                 list_del(&sums->list);
1017                 kfree(sums);
1018         }
1019         return 1;
1020 }
1021
1022 /*
1023  * when nowcow writeback call back.  This checks for snapshots or COW copies
1024  * of the extents that exist in the file, and COWs the file as required.
1025  *
1026  * If no cow copies or snapshots exist, we write directly to the existing
1027  * blocks on disk
1028  */
1029 static noinline int run_delalloc_nocow(struct inode *inode,
1030                                        struct page *locked_page,
1031                               u64 start, u64 end, int *page_started, int force,
1032                               unsigned long *nr_written)
1033 {
1034         struct btrfs_root *root = BTRFS_I(inode)->root;
1035         struct btrfs_trans_handle *trans;
1036         struct extent_buffer *leaf;
1037         struct btrfs_path *path;
1038         struct btrfs_file_extent_item *fi;
1039         struct btrfs_key found_key;
1040         u64 cow_start;
1041         u64 cur_offset;
1042         u64 extent_end;
1043         u64 extent_offset;
1044         u64 disk_bytenr;
1045         u64 num_bytes;
1046         int extent_type;
1047         int ret;
1048         int type;
1049         int nocow;
1050         int check_prev = 1;
1051         bool nolock = false;
1052
1053         path = btrfs_alloc_path();
1054         BUG_ON(!path);
1055         if (root == root->fs_info->tree_root) {
1056                 nolock = true;
1057                 trans = btrfs_join_transaction_nolock(root, 1);
1058         } else {
1059                 trans = btrfs_join_transaction(root, 1);
1060         }
1061         BUG_ON(IS_ERR(trans));
1062
1063         cow_start = (u64)-1;
1064         cur_offset = start;
1065         while (1) {
1066                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1067                                                cur_offset, 0);
1068                 BUG_ON(ret < 0);
1069                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1070                         leaf = path->nodes[0];
1071                         btrfs_item_key_to_cpu(leaf, &found_key,
1072                                               path->slots[0] - 1);
1073                         if (found_key.objectid == inode->i_ino &&
1074                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1075                                 path->slots[0]--;
1076                 }
1077                 check_prev = 0;
1078 next_slot:
1079                 leaf = path->nodes[0];
1080                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1081                         ret = btrfs_next_leaf(root, path);
1082                         if (ret < 0)
1083                                 BUG_ON(1);
1084                         if (ret > 0)
1085                                 break;
1086                         leaf = path->nodes[0];
1087                 }
1088
1089                 nocow = 0;
1090                 disk_bytenr = 0;
1091                 num_bytes = 0;
1092                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1093
1094                 if (found_key.objectid > inode->i_ino ||
1095                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1096                     found_key.offset > end)
1097                         break;
1098
1099                 if (found_key.offset > cur_offset) {
1100                         extent_end = found_key.offset;
1101                         extent_type = 0;
1102                         goto out_check;
1103                 }
1104
1105                 fi = btrfs_item_ptr(leaf, path->slots[0],
1106                                     struct btrfs_file_extent_item);
1107                 extent_type = btrfs_file_extent_type(leaf, fi);
1108
1109                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1110                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1111                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1112                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1113                         extent_end = found_key.offset +
1114                                 btrfs_file_extent_num_bytes(leaf, fi);
1115                         if (extent_end <= start) {
1116                                 path->slots[0]++;
1117                                 goto next_slot;
1118                         }
1119                         if (disk_bytenr == 0)
1120                                 goto out_check;
1121                         if (btrfs_file_extent_compression(leaf, fi) ||
1122                             btrfs_file_extent_encryption(leaf, fi) ||
1123                             btrfs_file_extent_other_encoding(leaf, fi))
1124                                 goto out_check;
1125                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1126                                 goto out_check;
1127                         if (btrfs_extent_readonly(root, disk_bytenr))
1128                                 goto out_check;
1129                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1130                                                   found_key.offset -
1131                                                   extent_offset, disk_bytenr))
1132                                 goto out_check;
1133                         disk_bytenr += extent_offset;
1134                         disk_bytenr += cur_offset - found_key.offset;
1135                         num_bytes = min(end + 1, extent_end) - cur_offset;
1136                         /*
1137                          * force cow if csum exists in the range.
1138                          * this ensure that csum for a given extent are
1139                          * either valid or do not exist.
1140                          */
1141                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1142                                 goto out_check;
1143                         nocow = 1;
1144                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1145                         extent_end = found_key.offset +
1146                                 btrfs_file_extent_inline_len(leaf, fi);
1147                         extent_end = ALIGN(extent_end, root->sectorsize);
1148                 } else {
1149                         BUG_ON(1);
1150                 }
1151 out_check:
1152                 if (extent_end <= start) {
1153                         path->slots[0]++;
1154                         goto next_slot;
1155                 }
1156                 if (!nocow) {
1157                         if (cow_start == (u64)-1)
1158                                 cow_start = cur_offset;
1159                         cur_offset = extent_end;
1160                         if (cur_offset > end)
1161                                 break;
1162                         path->slots[0]++;
1163                         goto next_slot;
1164                 }
1165
1166                 btrfs_release_path(root, path);
1167                 if (cow_start != (u64)-1) {
1168                         ret = cow_file_range(inode, locked_page, cow_start,
1169                                         found_key.offset - 1, page_started,
1170                                         nr_written, 1);
1171                         BUG_ON(ret);
1172                         cow_start = (u64)-1;
1173                 }
1174
1175                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1176                         struct extent_map *em;
1177                         struct extent_map_tree *em_tree;
1178                         em_tree = &BTRFS_I(inode)->extent_tree;
1179                         em = alloc_extent_map(GFP_NOFS);
1180                         BUG_ON(!em);
1181                         em->start = cur_offset;
1182                         em->orig_start = em->start;
1183                         em->len = num_bytes;
1184                         em->block_len = num_bytes;
1185                         em->block_start = disk_bytenr;
1186                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1187                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1188                         while (1) {
1189                                 write_lock(&em_tree->lock);
1190                                 ret = add_extent_mapping(em_tree, em);
1191                                 write_unlock(&em_tree->lock);
1192                                 if (ret != -EEXIST) {
1193                                         free_extent_map(em);
1194                                         break;
1195                                 }
1196                                 btrfs_drop_extent_cache(inode, em->start,
1197                                                 em->start + em->len - 1, 0);
1198                         }
1199                         type = BTRFS_ORDERED_PREALLOC;
1200                 } else {
1201                         type = BTRFS_ORDERED_NOCOW;
1202                 }
1203
1204                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1205                                                num_bytes, num_bytes, type);
1206                 BUG_ON(ret);
1207
1208                 if (root->root_key.objectid ==
1209                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1210                         ret = btrfs_reloc_clone_csums(inode, cur_offset,
1211                                                       num_bytes);
1212                         BUG_ON(ret);
1213                 }
1214
1215                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1216                                 cur_offset, cur_offset + num_bytes - 1,
1217                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1218                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1219                                 EXTENT_SET_PRIVATE2);
1220                 cur_offset = extent_end;
1221                 if (cur_offset > end)
1222                         break;
1223         }
1224         btrfs_release_path(root, path);
1225
1226         if (cur_offset <= end && cow_start == (u64)-1)
1227                 cow_start = cur_offset;
1228         if (cow_start != (u64)-1) {
1229                 ret = cow_file_range(inode, locked_page, cow_start, end,
1230                                      page_started, nr_written, 1);
1231                 BUG_ON(ret);
1232         }
1233
1234         if (nolock) {
1235                 ret = btrfs_end_transaction_nolock(trans, root);
1236                 BUG_ON(ret);
1237         } else {
1238                 ret = btrfs_end_transaction(trans, root);
1239                 BUG_ON(ret);
1240         }
1241         btrfs_free_path(path);
1242         return 0;
1243 }
1244
1245 /*
1246  * extent_io.c call back to do delayed allocation processing
1247  */
1248 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1249                               u64 start, u64 end, int *page_started,
1250                               unsigned long *nr_written)
1251 {
1252         int ret;
1253         struct btrfs_root *root = BTRFS_I(inode)->root;
1254
1255         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1256                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1257                                          page_started, 1, nr_written);
1258         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1259                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1260                                          page_started, 0, nr_written);
1261         else if (!btrfs_test_opt(root, COMPRESS) &&
1262                  !(BTRFS_I(inode)->force_compress) &&
1263                  !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1264                 ret = cow_file_range(inode, locked_page, start, end,
1265                                       page_started, nr_written, 1);
1266         else
1267                 ret = cow_file_range_async(inode, locked_page, start, end,
1268                                            page_started, nr_written);
1269         return ret;
1270 }
1271
1272 static int btrfs_split_extent_hook(struct inode *inode,
1273                                    struct extent_state *orig, u64 split)
1274 {
1275         /* not delalloc, ignore it */
1276         if (!(orig->state & EXTENT_DELALLOC))
1277                 return 0;
1278
1279         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1280         return 0;
1281 }
1282
1283 /*
1284  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1285  * extents so we can keep track of new extents that are just merged onto old
1286  * extents, such as when we are doing sequential writes, so we can properly
1287  * account for the metadata space we'll need.
1288  */
1289 static int btrfs_merge_extent_hook(struct inode *inode,
1290                                    struct extent_state *new,
1291                                    struct extent_state *other)
1292 {
1293         /* not delalloc, ignore it */
1294         if (!(other->state & EXTENT_DELALLOC))
1295                 return 0;
1296
1297         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1298         return 0;
1299 }
1300
1301 /*
1302  * extent_io.c set_bit_hook, used to track delayed allocation
1303  * bytes in this file, and to maintain the list of inodes that
1304  * have pending delalloc work to be done.
1305  */
1306 static int btrfs_set_bit_hook(struct inode *inode,
1307                               struct extent_state *state, int *bits)
1308 {
1309
1310         /*
1311          * set_bit and clear bit hooks normally require _irqsave/restore
1312          * but in this case, we are only testeing for the DELALLOC
1313          * bit, which is only set or cleared with irqs on
1314          */
1315         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1316                 struct btrfs_root *root = BTRFS_I(inode)->root;
1317                 u64 len = state->end + 1 - state->start;
1318                 int do_list = (root->root_key.objectid !=
1319                                BTRFS_ROOT_TREE_OBJECTID);
1320
1321                 if (*bits & EXTENT_FIRST_DELALLOC)
1322                         *bits &= ~EXTENT_FIRST_DELALLOC;
1323                 else
1324                         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1325
1326                 spin_lock(&root->fs_info->delalloc_lock);
1327                 BTRFS_I(inode)->delalloc_bytes += len;
1328                 root->fs_info->delalloc_bytes += len;
1329                 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1330                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1331                                       &root->fs_info->delalloc_inodes);
1332                 }
1333                 spin_unlock(&root->fs_info->delalloc_lock);
1334         }
1335         return 0;
1336 }
1337
1338 /*
1339  * extent_io.c clear_bit_hook, see set_bit_hook for why
1340  */
1341 static int btrfs_clear_bit_hook(struct inode *inode,
1342                                 struct extent_state *state, int *bits)
1343 {
1344         /*
1345          * set_bit and clear bit hooks normally require _irqsave/restore
1346          * but in this case, we are only testeing for the DELALLOC
1347          * bit, which is only set or cleared with irqs on
1348          */
1349         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1350                 struct btrfs_root *root = BTRFS_I(inode)->root;
1351                 u64 len = state->end + 1 - state->start;
1352                 int do_list = (root->root_key.objectid !=
1353                                BTRFS_ROOT_TREE_OBJECTID);
1354
1355                 if (*bits & EXTENT_FIRST_DELALLOC)
1356                         *bits &= ~EXTENT_FIRST_DELALLOC;
1357                 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1358                         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1359
1360                 if (*bits & EXTENT_DO_ACCOUNTING)
1361                         btrfs_delalloc_release_metadata(inode, len);
1362
1363                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1364                     && do_list)
1365                         btrfs_free_reserved_data_space(inode, len);
1366
1367                 spin_lock(&root->fs_info->delalloc_lock);
1368                 root->fs_info->delalloc_bytes -= len;
1369                 BTRFS_I(inode)->delalloc_bytes -= len;
1370
1371                 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1372                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1373                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1374                 }
1375                 spin_unlock(&root->fs_info->delalloc_lock);
1376         }
1377         return 0;
1378 }
1379
1380 /*
1381  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1382  * we don't create bios that span stripes or chunks
1383  */
1384 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1385                          size_t size, struct bio *bio,
1386                          unsigned long bio_flags)
1387 {
1388         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1389         struct btrfs_mapping_tree *map_tree;
1390         u64 logical = (u64)bio->bi_sector << 9;
1391         u64 length = 0;
1392         u64 map_length;
1393         int ret;
1394
1395         if (bio_flags & EXTENT_BIO_COMPRESSED)
1396                 return 0;
1397
1398         length = bio->bi_size;
1399         map_tree = &root->fs_info->mapping_tree;
1400         map_length = length;
1401         ret = btrfs_map_block(map_tree, READ, logical,
1402                               &map_length, NULL, 0);
1403
1404         if (map_length < length + size)
1405                 return 1;
1406         return ret;
1407 }
1408
1409 /*
1410  * in order to insert checksums into the metadata in large chunks,
1411  * we wait until bio submission time.   All the pages in the bio are
1412  * checksummed and sums are attached onto the ordered extent record.
1413  *
1414  * At IO completion time the cums attached on the ordered extent record
1415  * are inserted into the btree
1416  */
1417 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1418                                     struct bio *bio, int mirror_num,
1419                                     unsigned long bio_flags,
1420                                     u64 bio_offset)
1421 {
1422         struct btrfs_root *root = BTRFS_I(inode)->root;
1423         int ret = 0;
1424
1425         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1426         BUG_ON(ret);
1427         return 0;
1428 }
1429
1430 /*
1431  * in order to insert checksums into the metadata in large chunks,
1432  * we wait until bio submission time.   All the pages in the bio are
1433  * checksummed and sums are attached onto the ordered extent record.
1434  *
1435  * At IO completion time the cums attached on the ordered extent record
1436  * are inserted into the btree
1437  */
1438 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1439                           int mirror_num, unsigned long bio_flags,
1440                           u64 bio_offset)
1441 {
1442         struct btrfs_root *root = BTRFS_I(inode)->root;
1443         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1444 }
1445
1446 /*
1447  * extent_io.c submission hook. This does the right thing for csum calculation
1448  * on write, or reading the csums from the tree before a read
1449  */
1450 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1451                           int mirror_num, unsigned long bio_flags,
1452                           u64 bio_offset)
1453 {
1454         struct btrfs_root *root = BTRFS_I(inode)->root;
1455         int ret = 0;
1456         int skip_sum;
1457
1458         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1459
1460         if (root == root->fs_info->tree_root)
1461                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1462         else
1463                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1464         BUG_ON(ret);
1465
1466         if (!(rw & REQ_WRITE)) {
1467                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1468                         return btrfs_submit_compressed_read(inode, bio,
1469                                                     mirror_num, bio_flags);
1470                 } else if (!skip_sum) {
1471                         ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1472                         if (ret)
1473                                 return ret;
1474                 }
1475                 goto mapit;
1476         } else if (!skip_sum) {
1477                 /* csum items have already been cloned */
1478                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1479                         goto mapit;
1480                 /* we're doing a write, do the async checksumming */
1481                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1482                                    inode, rw, bio, mirror_num,
1483                                    bio_flags, bio_offset,
1484                                    __btrfs_submit_bio_start,
1485                                    __btrfs_submit_bio_done);
1486         }
1487
1488 mapit:
1489         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1490 }
1491
1492 /*
1493  * given a list of ordered sums record them in the inode.  This happens
1494  * at IO completion time based on sums calculated at bio submission time.
1495  */
1496 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1497                              struct inode *inode, u64 file_offset,
1498                              struct list_head *list)
1499 {
1500         struct btrfs_ordered_sum *sum;
1501
1502         btrfs_set_trans_block_group(trans, inode);
1503
1504         list_for_each_entry(sum, list, list) {
1505                 btrfs_csum_file_blocks(trans,
1506                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1507         }
1508         return 0;
1509 }
1510
1511 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1512                               struct extent_state **cached_state)
1513 {
1514         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1515                 WARN_ON(1);
1516         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1517                                    cached_state, GFP_NOFS);
1518 }
1519
1520 /* see btrfs_writepage_start_hook for details on why this is required */
1521 struct btrfs_writepage_fixup {
1522         struct page *page;
1523         struct btrfs_work work;
1524 };
1525
1526 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1527 {
1528         struct btrfs_writepage_fixup *fixup;
1529         struct btrfs_ordered_extent *ordered;
1530         struct extent_state *cached_state = NULL;
1531         struct page *page;
1532         struct inode *inode;
1533         u64 page_start;
1534         u64 page_end;
1535
1536         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1537         page = fixup->page;
1538 again:
1539         lock_page(page);
1540         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1541                 ClearPageChecked(page);
1542                 goto out_page;
1543         }
1544
1545         inode = page->mapping->host;
1546         page_start = page_offset(page);
1547         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1548
1549         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1550                          &cached_state, GFP_NOFS);
1551
1552         /* already ordered? We're done */
1553         if (PagePrivate2(page))
1554                 goto out;
1555
1556         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1557         if (ordered) {
1558                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1559                                      page_end, &cached_state, GFP_NOFS);
1560                 unlock_page(page);
1561                 btrfs_start_ordered_extent(inode, ordered, 1);
1562                 goto again;
1563         }
1564
1565         BUG();
1566         btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1567         ClearPageChecked(page);
1568 out:
1569         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1570                              &cached_state, GFP_NOFS);
1571 out_page:
1572         unlock_page(page);
1573         page_cache_release(page);
1574         kfree(fixup);
1575 }
1576
1577 /*
1578  * There are a few paths in the higher layers of the kernel that directly
1579  * set the page dirty bit without asking the filesystem if it is a
1580  * good idea.  This causes problems because we want to make sure COW
1581  * properly happens and the data=ordered rules are followed.
1582  *
1583  * In our case any range that doesn't have the ORDERED bit set
1584  * hasn't been properly setup for IO.  We kick off an async process
1585  * to fix it up.  The async helper will wait for ordered extents, set
1586  * the delalloc bit and make it safe to write the page.
1587  */
1588 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1589 {
1590         struct inode *inode = page->mapping->host;
1591         struct btrfs_writepage_fixup *fixup;
1592         struct btrfs_root *root = BTRFS_I(inode)->root;
1593
1594         /* this page is properly in the ordered list */
1595         if (TestClearPagePrivate2(page))
1596                 return 0;
1597
1598         if (PageChecked(page))
1599                 return -EAGAIN;
1600
1601         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1602         if (!fixup)
1603                 return -EAGAIN;
1604
1605         SetPageChecked(page);
1606         page_cache_get(page);
1607         fixup->work.func = btrfs_writepage_fixup_worker;
1608         fixup->page = page;
1609         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1610         return -EAGAIN;
1611 }
1612
1613 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1614                                        struct inode *inode, u64 file_pos,
1615                                        u64 disk_bytenr, u64 disk_num_bytes,
1616                                        u64 num_bytes, u64 ram_bytes,
1617                                        u8 compression, u8 encryption,
1618                                        u16 other_encoding, int extent_type)
1619 {
1620         struct btrfs_root *root = BTRFS_I(inode)->root;
1621         struct btrfs_file_extent_item *fi;
1622         struct btrfs_path *path;
1623         struct extent_buffer *leaf;
1624         struct btrfs_key ins;
1625         u64 hint;
1626         int ret;
1627
1628         path = btrfs_alloc_path();
1629         BUG_ON(!path);
1630
1631         path->leave_spinning = 1;
1632
1633         /*
1634          * we may be replacing one extent in the tree with another.
1635          * The new extent is pinned in the extent map, and we don't want
1636          * to drop it from the cache until it is completely in the btree.
1637          *
1638          * So, tell btrfs_drop_extents to leave this extent in the cache.
1639          * the caller is expected to unpin it and allow it to be merged
1640          * with the others.
1641          */
1642         ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1643                                  &hint, 0);
1644         BUG_ON(ret);
1645
1646         ins.objectid = inode->i_ino;
1647         ins.offset = file_pos;
1648         ins.type = BTRFS_EXTENT_DATA_KEY;
1649         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1650         BUG_ON(ret);
1651         leaf = path->nodes[0];
1652         fi = btrfs_item_ptr(leaf, path->slots[0],
1653                             struct btrfs_file_extent_item);
1654         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1655         btrfs_set_file_extent_type(leaf, fi, extent_type);
1656         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1657         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1658         btrfs_set_file_extent_offset(leaf, fi, 0);
1659         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1660         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1661         btrfs_set_file_extent_compression(leaf, fi, compression);
1662         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1663         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1664
1665         btrfs_unlock_up_safe(path, 1);
1666         btrfs_set_lock_blocking(leaf);
1667
1668         btrfs_mark_buffer_dirty(leaf);
1669
1670         inode_add_bytes(inode, num_bytes);
1671
1672         ins.objectid = disk_bytenr;
1673         ins.offset = disk_num_bytes;
1674         ins.type = BTRFS_EXTENT_ITEM_KEY;
1675         ret = btrfs_alloc_reserved_file_extent(trans, root,
1676                                         root->root_key.objectid,
1677                                         inode->i_ino, file_pos, &ins);
1678         BUG_ON(ret);
1679         btrfs_free_path(path);
1680
1681         return 0;
1682 }
1683
1684 /*
1685  * helper function for btrfs_finish_ordered_io, this
1686  * just reads in some of the csum leaves to prime them into ram
1687  * before we start the transaction.  It limits the amount of btree
1688  * reads required while inside the transaction.
1689  */
1690 /* as ordered data IO finishes, this gets called so we can finish
1691  * an ordered extent if the range of bytes in the file it covers are
1692  * fully written.
1693  */
1694 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1695 {
1696         struct btrfs_root *root = BTRFS_I(inode)->root;
1697         struct btrfs_trans_handle *trans = NULL;
1698         struct btrfs_ordered_extent *ordered_extent = NULL;
1699         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1700         struct extent_state *cached_state = NULL;
1701         int compress_type = 0;
1702         int ret;
1703         bool nolock = false;
1704
1705         ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1706                                              end - start + 1);
1707         if (!ret)
1708                 return 0;
1709         BUG_ON(!ordered_extent);
1710
1711         nolock = (root == root->fs_info->tree_root);
1712
1713         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1714                 BUG_ON(!list_empty(&ordered_extent->list));
1715                 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1716                 if (!ret) {
1717                         if (nolock)
1718                                 trans = btrfs_join_transaction_nolock(root, 1);
1719                         else
1720                                 trans = btrfs_join_transaction(root, 1);
1721                         BUG_ON(IS_ERR(trans));
1722                         btrfs_set_trans_block_group(trans, inode);
1723                         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1724                         ret = btrfs_update_inode(trans, root, inode);
1725                         BUG_ON(ret);
1726                 }
1727                 goto out;
1728         }
1729
1730         lock_extent_bits(io_tree, ordered_extent->file_offset,
1731                          ordered_extent->file_offset + ordered_extent->len - 1,
1732                          0, &cached_state, GFP_NOFS);
1733
1734         if (nolock)
1735                 trans = btrfs_join_transaction_nolock(root, 1);
1736         else
1737                 trans = btrfs_join_transaction(root, 1);
1738         BUG_ON(IS_ERR(trans));
1739         btrfs_set_trans_block_group(trans, inode);
1740         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1741
1742         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1743                 compress_type = ordered_extent->compress_type;
1744         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1745                 BUG_ON(compress_type);
1746                 ret = btrfs_mark_extent_written(trans, inode,
1747                                                 ordered_extent->file_offset,
1748                                                 ordered_extent->file_offset +
1749                                                 ordered_extent->len);
1750                 BUG_ON(ret);
1751         } else {
1752                 BUG_ON(root == root->fs_info->tree_root);
1753                 ret = insert_reserved_file_extent(trans, inode,
1754                                                 ordered_extent->file_offset,
1755                                                 ordered_extent->start,
1756                                                 ordered_extent->disk_len,
1757                                                 ordered_extent->len,
1758                                                 ordered_extent->len,
1759                                                 compress_type, 0, 0,
1760                                                 BTRFS_FILE_EXTENT_REG);
1761                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1762                                    ordered_extent->file_offset,
1763                                    ordered_extent->len);
1764                 BUG_ON(ret);
1765         }
1766         unlock_extent_cached(io_tree, ordered_extent->file_offset,
1767                              ordered_extent->file_offset +
1768                              ordered_extent->len - 1, &cached_state, GFP_NOFS);
1769
1770         add_pending_csums(trans, inode, ordered_extent->file_offset,
1771                           &ordered_extent->list);
1772
1773         btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1774         ret = btrfs_update_inode(trans, root, inode);
1775         BUG_ON(ret);
1776 out:
1777         if (nolock) {
1778                 if (trans)
1779                         btrfs_end_transaction_nolock(trans, root);
1780         } else {
1781                 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1782                 if (trans)
1783                         btrfs_end_transaction(trans, root);
1784         }
1785
1786         /* once for us */
1787         btrfs_put_ordered_extent(ordered_extent);
1788         /* once for the tree */
1789         btrfs_put_ordered_extent(ordered_extent);
1790
1791         return 0;
1792 }
1793
1794 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1795                                 struct extent_state *state, int uptodate)
1796 {
1797         trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1798
1799         ClearPagePrivate2(page);
1800         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1801 }
1802
1803 /*
1804  * When IO fails, either with EIO or csum verification fails, we
1805  * try other mirrors that might have a good copy of the data.  This
1806  * io_failure_record is used to record state as we go through all the
1807  * mirrors.  If another mirror has good data, the page is set up to date
1808  * and things continue.  If a good mirror can't be found, the original
1809  * bio end_io callback is called to indicate things have failed.
1810  */
1811 struct io_failure_record {
1812         struct page *page;
1813         u64 start;
1814         u64 len;
1815         u64 logical;
1816         unsigned long bio_flags;
1817         int last_mirror;
1818 };
1819
1820 static int btrfs_io_failed_hook(struct bio *failed_bio,
1821                          struct page *page, u64 start, u64 end,
1822                          struct extent_state *state)
1823 {
1824         struct io_failure_record *failrec = NULL;
1825         u64 private;
1826         struct extent_map *em;
1827         struct inode *inode = page->mapping->host;
1828         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1829         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1830         struct bio *bio;
1831         int num_copies;
1832         int ret;
1833         int rw;
1834         u64 logical;
1835
1836         ret = get_state_private(failure_tree, start, &private);
1837         if (ret) {
1838                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1839                 if (!failrec)
1840                         return -ENOMEM;
1841                 failrec->start = start;
1842                 failrec->len = end - start + 1;
1843                 failrec->last_mirror = 0;
1844                 failrec->bio_flags = 0;
1845
1846                 read_lock(&em_tree->lock);
1847                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1848                 if (em->start > start || em->start + em->len < start) {
1849                         free_extent_map(em);
1850                         em = NULL;
1851                 }
1852                 read_unlock(&em_tree->lock);
1853
1854                 if (!em || IS_ERR(em)) {
1855                         kfree(failrec);
1856                         return -EIO;
1857                 }
1858                 logical = start - em->start;
1859                 logical = em->block_start + logical;
1860                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1861                         logical = em->block_start;
1862                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1863                         extent_set_compress_type(&failrec->bio_flags,
1864                                                  em->compress_type);
1865                 }
1866                 failrec->logical = logical;
1867                 free_extent_map(em);
1868                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1869                                 EXTENT_DIRTY, GFP_NOFS);
1870                 set_state_private(failure_tree, start,
1871                                  (u64)(unsigned long)failrec);
1872         } else {
1873                 failrec = (struct io_failure_record *)(unsigned long)private;
1874         }
1875         num_copies = btrfs_num_copies(
1876                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1877                               failrec->logical, failrec->len);
1878         failrec->last_mirror++;
1879         if (!state) {
1880                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1881                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1882                                                     failrec->start,
1883                                                     EXTENT_LOCKED);
1884                 if (state && state->start != failrec->start)
1885                         state = NULL;
1886                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1887         }
1888         if (!state || failrec->last_mirror > num_copies) {
1889                 set_state_private(failure_tree, failrec->start, 0);
1890                 clear_extent_bits(failure_tree, failrec->start,
1891                                   failrec->start + failrec->len - 1,
1892                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1893                 kfree(failrec);
1894                 return -EIO;
1895         }
1896         bio = bio_alloc(GFP_NOFS, 1);
1897         bio->bi_private = state;
1898         bio->bi_end_io = failed_bio->bi_end_io;
1899         bio->bi_sector = failrec->logical >> 9;
1900         bio->bi_bdev = failed_bio->bi_bdev;
1901         bio->bi_size = 0;
1902
1903         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1904         if (failed_bio->bi_rw & REQ_WRITE)
1905                 rw = WRITE;
1906         else
1907                 rw = READ;
1908
1909         ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1910                                                       failrec->last_mirror,
1911                                                       failrec->bio_flags, 0);
1912         return ret;
1913 }
1914
1915 /*
1916  * each time an IO finishes, we do a fast check in the IO failure tree
1917  * to see if we need to process or clean up an io_failure_record
1918  */
1919 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1920 {
1921         u64 private;
1922         u64 private_failure;
1923         struct io_failure_record *failure;
1924         int ret;
1925
1926         private = 0;
1927         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1928                              (u64)-1, 1, EXTENT_DIRTY, 0)) {
1929                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1930                                         start, &private_failure);
1931                 if (ret == 0) {
1932                         failure = (struct io_failure_record *)(unsigned long)
1933                                    private_failure;
1934                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1935                                           failure->start, 0);
1936                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1937                                           failure->start,
1938                                           failure->start + failure->len - 1,
1939                                           EXTENT_DIRTY | EXTENT_LOCKED,
1940                                           GFP_NOFS);
1941                         kfree(failure);
1942                 }
1943         }
1944         return 0;
1945 }
1946
1947 /*
1948  * when reads are done, we need to check csums to verify the data is correct
1949  * if there's a match, we allow the bio to finish.  If not, we go through
1950  * the io_failure_record routines to find good copies
1951  */
1952 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1953                                struct extent_state *state)
1954 {
1955         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1956         struct inode *inode = page->mapping->host;
1957         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1958         char *kaddr;
1959         u64 private = ~(u32)0;
1960         int ret;
1961         struct btrfs_root *root = BTRFS_I(inode)->root;
1962         u32 csum = ~(u32)0;
1963
1964         if (PageChecked(page)) {
1965                 ClearPageChecked(page);
1966                 goto good;
1967         }
1968
1969         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1970                 return 0;
1971
1972         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1973             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1974                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1975                                   GFP_NOFS);
1976                 return 0;
1977         }
1978
1979         if (state && state->start == start) {
1980                 private = state->private;
1981                 ret = 0;
1982         } else {
1983                 ret = get_state_private(io_tree, start, &private);
1984         }
1985         kaddr = kmap_atomic(page, KM_USER0);
1986         if (ret)
1987                 goto zeroit;
1988
1989         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1990         btrfs_csum_final(csum, (char *)&csum);
1991         if (csum != private)
1992                 goto zeroit;
1993
1994         kunmap_atomic(kaddr, KM_USER0);
1995 good:
1996         /* if the io failure tree for this inode is non-empty,
1997          * check to see if we've recovered from a failed IO
1998          */
1999         btrfs_clean_io_failures(inode, start);
2000         return 0;
2001
2002 zeroit:
2003         if (printk_ratelimit()) {
2004                 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
2005                        "private %llu\n", page->mapping->host->i_ino,
2006                        (unsigned long long)start, csum,
2007                        (unsigned long long)private);
2008         }
2009         memset(kaddr + offset, 1, end - start + 1);
2010         flush_dcache_page(page);
2011         kunmap_atomic(kaddr, KM_USER0);
2012         if (private == 0)
2013                 return 0;
2014         return -EIO;
2015 }
2016
2017 struct delayed_iput {
2018         struct list_head list;
2019         struct inode *inode;
2020 };
2021
2022 void btrfs_add_delayed_iput(struct inode *inode)
2023 {
2024         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2025         struct delayed_iput *delayed;
2026
2027         if (atomic_add_unless(&inode->i_count, -1, 1))
2028                 return;
2029
2030         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2031         delayed->inode = inode;
2032
2033         spin_lock(&fs_info->delayed_iput_lock);
2034         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2035         spin_unlock(&fs_info->delayed_iput_lock);
2036 }
2037
2038 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2039 {
2040         LIST_HEAD(list);
2041         struct btrfs_fs_info *fs_info = root->fs_info;
2042         struct delayed_iput *delayed;
2043         int empty;
2044
2045         spin_lock(&fs_info->delayed_iput_lock);
2046         empty = list_empty(&fs_info->delayed_iputs);
2047         spin_unlock(&fs_info->delayed_iput_lock);
2048         if (empty)
2049                 return;
2050
2051         down_read(&root->fs_info->cleanup_work_sem);
2052         spin_lock(&fs_info->delayed_iput_lock);
2053         list_splice_init(&fs_info->delayed_iputs, &list);
2054         spin_unlock(&fs_info->delayed_iput_lock);
2055
2056         while (!list_empty(&list)) {
2057                 delayed = list_entry(list.next, struct delayed_iput, list);
2058                 list_del(&delayed->list);
2059                 iput(delayed->inode);
2060                 kfree(delayed);
2061         }
2062         up_read(&root->fs_info->cleanup_work_sem);
2063 }
2064
2065 /*
2066  * calculate extra metadata reservation when snapshotting a subvolume
2067  * contains orphan files.
2068  */
2069 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2070                                 struct btrfs_pending_snapshot *pending,
2071                                 u64 *bytes_to_reserve)
2072 {
2073         struct btrfs_root *root;
2074         struct btrfs_block_rsv *block_rsv;
2075         u64 num_bytes;
2076         int index;
2077
2078         root = pending->root;
2079         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2080                 return;
2081
2082         block_rsv = root->orphan_block_rsv;
2083
2084         /* orphan block reservation for the snapshot */
2085         num_bytes = block_rsv->size;
2086
2087         /*
2088          * after the snapshot is created, COWing tree blocks may use more
2089          * space than it frees. So we should make sure there is enough
2090          * reserved space.
2091          */
2092         index = trans->transid & 0x1;
2093         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2094                 num_bytes += block_rsv->size -
2095                              (block_rsv->reserved + block_rsv->freed[index]);
2096         }
2097
2098         *bytes_to_reserve += num_bytes;
2099 }
2100
2101 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2102                                 struct btrfs_pending_snapshot *pending)
2103 {
2104         struct btrfs_root *root = pending->root;
2105         struct btrfs_root *snap = pending->snap;
2106         struct btrfs_block_rsv *block_rsv;
2107         u64 num_bytes;
2108         int index;
2109         int ret;
2110
2111         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2112                 return;
2113
2114         /* refill source subvolume's orphan block reservation */
2115         block_rsv = root->orphan_block_rsv;
2116         index = trans->transid & 0x1;
2117         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2118                 num_bytes = block_rsv->size -
2119                             (block_rsv->reserved + block_rsv->freed[index]);
2120                 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2121                                               root->orphan_block_rsv,
2122                                               num_bytes);
2123                 BUG_ON(ret);
2124         }
2125
2126         /* setup orphan block reservation for the snapshot */
2127         block_rsv = btrfs_alloc_block_rsv(snap);
2128         BUG_ON(!block_rsv);
2129
2130         btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2131         snap->orphan_block_rsv = block_rsv;
2132
2133         num_bytes = root->orphan_block_rsv->size;
2134         ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2135                                       block_rsv, num_bytes);
2136         BUG_ON(ret);
2137
2138 #if 0
2139         /* insert orphan item for the snapshot */
2140         WARN_ON(!root->orphan_item_inserted);
2141         ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2142                                        snap->root_key.objectid);
2143         BUG_ON(ret);
2144         snap->orphan_item_inserted = 1;
2145 #endif
2146 }
2147
2148 enum btrfs_orphan_cleanup_state {
2149         ORPHAN_CLEANUP_STARTED  = 1,
2150         ORPHAN_CLEANUP_DONE     = 2,
2151 };
2152
2153 /*
2154  * This is called in transaction commmit time. If there are no orphan
2155  * files in the subvolume, it removes orphan item and frees block_rsv
2156  * structure.
2157  */
2158 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2159                               struct btrfs_root *root)
2160 {
2161         int ret;
2162
2163         if (!list_empty(&root->orphan_list) ||
2164             root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2165                 return;
2166
2167         if (root->orphan_item_inserted &&
2168             btrfs_root_refs(&root->root_item) > 0) {
2169                 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2170                                             root->root_key.objectid);
2171                 BUG_ON(ret);
2172                 root->orphan_item_inserted = 0;
2173         }
2174
2175         if (root->orphan_block_rsv) {
2176                 WARN_ON(root->orphan_block_rsv->size > 0);
2177                 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2178                 root->orphan_block_rsv = NULL;
2179         }
2180 }
2181
2182 /*
2183  * This creates an orphan entry for the given inode in case something goes
2184  * wrong in the middle of an unlink/truncate.
2185  *
2186  * NOTE: caller of this function should reserve 5 units of metadata for
2187  *       this function.
2188  */
2189 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2190 {
2191         struct btrfs_root *root = BTRFS_I(inode)->root;
2192         struct btrfs_block_rsv *block_rsv = NULL;
2193         int reserve = 0;
2194         int insert = 0;
2195         int ret;
2196
2197         if (!root->orphan_block_rsv) {
2198                 block_rsv = btrfs_alloc_block_rsv(root);
2199                 BUG_ON(!block_rsv);
2200         }
2201
2202         spin_lock(&root->orphan_lock);
2203         if (!root->orphan_block_rsv) {
2204                 root->orphan_block_rsv = block_rsv;
2205         } else if (block_rsv) {
2206                 btrfs_free_block_rsv(root, block_rsv);
2207                 block_rsv = NULL;
2208         }
2209
2210         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2211                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2212 #if 0
2213                 /*
2214                  * For proper ENOSPC handling, we should do orphan
2215                  * cleanup when mounting. But this introduces backward
2216                  * compatibility issue.
2217                  */
2218                 if (!xchg(&root->orphan_item_inserted, 1))
2219                         insert = 2;
2220                 else
2221                         insert = 1;
2222 #endif
2223                 insert = 1;
2224         } else {
2225                 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
2226         }
2227
2228         if (!BTRFS_I(inode)->orphan_meta_reserved) {
2229                 BTRFS_I(inode)->orphan_meta_reserved = 1;
2230                 reserve = 1;
2231         }
2232         spin_unlock(&root->orphan_lock);
2233
2234         if (block_rsv)
2235                 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2236
2237         /* grab metadata reservation from transaction handle */
2238         if (reserve) {
2239                 ret = btrfs_orphan_reserve_metadata(trans, inode);
2240                 BUG_ON(ret);
2241         }
2242
2243         /* insert an orphan item to track this unlinked/truncated file */
2244         if (insert >= 1) {
2245                 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2246                 BUG_ON(ret);
2247         }
2248
2249         /* insert an orphan item to track subvolume contains orphan files */
2250         if (insert >= 2) {
2251                 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2252                                                root->root_key.objectid);
2253                 BUG_ON(ret);
2254         }
2255         return 0;
2256 }
2257
2258 /*
2259  * We have done the truncate/delete so we can go ahead and remove the orphan
2260  * item for this particular inode.
2261  */
2262 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2263 {
2264         struct btrfs_root *root = BTRFS_I(inode)->root;
2265         int delete_item = 0;
2266         int release_rsv = 0;
2267         int ret = 0;
2268
2269         spin_lock(&root->orphan_lock);
2270         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2271                 list_del_init(&BTRFS_I(inode)->i_orphan);
2272                 delete_item = 1;
2273         }
2274
2275         if (BTRFS_I(inode)->orphan_meta_reserved) {
2276                 BTRFS_I(inode)->orphan_meta_reserved = 0;
2277                 release_rsv = 1;
2278         }
2279         spin_unlock(&root->orphan_lock);
2280
2281         if (trans && delete_item) {
2282                 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2283                 BUG_ON(ret);
2284         }
2285
2286         if (release_rsv)
2287                 btrfs_orphan_release_metadata(inode);
2288
2289         return 0;
2290 }
2291
2292 /*
2293  * this cleans up any orphans that may be left on the list from the last use
2294  * of this root.
2295  */
2296 int btrfs_orphan_cleanup(struct btrfs_root *root)
2297 {
2298         struct btrfs_path *path;
2299         struct extent_buffer *leaf;
2300         struct btrfs_key key, found_key;
2301         struct btrfs_trans_handle *trans;
2302         struct inode *inode;
2303         int ret = 0, nr_unlink = 0, nr_truncate = 0;
2304
2305         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2306                 return 0;
2307
2308         path = btrfs_alloc_path();
2309         if (!path) {
2310                 ret = -ENOMEM;
2311                 goto out;
2312         }
2313         path->reada = -1;
2314
2315         key.objectid = BTRFS_ORPHAN_OBJECTID;
2316         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2317         key.offset = (u64)-1;
2318
2319         while (1) {
2320                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2321                 if (ret < 0)
2322                         goto out;
2323
2324                 /*
2325                  * if ret == 0 means we found what we were searching for, which
2326                  * is weird, but possible, so only screw with path if we didnt
2327                  * find the key and see if we have stuff that matches
2328                  */
2329                 if (ret > 0) {
2330                         ret = 0;
2331                         if (path->slots[0] == 0)
2332                                 break;
2333                         path->slots[0]--;
2334                 }
2335
2336                 /* pull out the item */
2337                 leaf = path->nodes[0];
2338                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2339
2340                 /* make sure the item matches what we want */
2341                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2342                         break;
2343                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2344                         break;
2345
2346                 /* release the path since we're done with it */
2347                 btrfs_release_path(root, path);
2348
2349                 /*
2350                  * this is where we are basically btrfs_lookup, without the
2351                  * crossing root thing.  we store the inode number in the
2352                  * offset of the orphan item.
2353                  */
2354                 found_key.objectid = found_key.offset;
2355                 found_key.type = BTRFS_INODE_ITEM_KEY;
2356                 found_key.offset = 0;
2357                 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2358                 if (IS_ERR(inode)) {
2359                         ret = PTR_ERR(inode);
2360                         goto out;
2361                 }
2362
2363                 /*
2364                  * add this inode to the orphan list so btrfs_orphan_del does
2365                  * the proper thing when we hit it
2366                  */
2367                 spin_lock(&root->orphan_lock);
2368                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2369                 spin_unlock(&root->orphan_lock);
2370
2371                 /*
2372                  * if this is a bad inode, means we actually succeeded in
2373                  * removing the inode, but not the orphan record, which means
2374                  * we need to manually delete the orphan since iput will just
2375                  * do a destroy_inode
2376                  */
2377                 if (is_bad_inode(inode)) {
2378                         trans = btrfs_start_transaction(root, 0);
2379                         if (IS_ERR(trans)) {
2380                                 ret = PTR_ERR(trans);
2381                                 goto out;
2382                         }
2383                         btrfs_orphan_del(trans, inode);
2384                         btrfs_end_transaction(trans, root);
2385                         iput(inode);
2386                         continue;
2387                 }
2388
2389                 /* if we have links, this was a truncate, lets do that */
2390                 if (inode->i_nlink) {
2391                         if (!S_ISREG(inode->i_mode)) {
2392                                 WARN_ON(1);
2393                                 iput(inode);
2394                                 continue;
2395                         }
2396                         nr_truncate++;
2397                         ret = btrfs_truncate(inode);
2398                 } else {
2399                         nr_unlink++;
2400                 }
2401
2402                 /* this will do delete_inode and everything for us */
2403                 iput(inode);
2404                 if (ret)
2405                         goto out;
2406         }
2407         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2408
2409         if (root->orphan_block_rsv)
2410                 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2411                                         (u64)-1);
2412
2413         if (root->orphan_block_rsv || root->orphan_item_inserted) {
2414                 trans = btrfs_join_transaction(root, 1);
2415                 if (!IS_ERR(trans))
2416                         btrfs_end_transaction(trans, root);
2417         }
2418
2419         if (nr_unlink)
2420                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2421         if (nr_truncate)
2422                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2423
2424 out:
2425         if (ret)
2426                 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2427         btrfs_free_path(path);
2428         return ret;
2429 }
2430
2431 /*
2432  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2433  * don't find any xattrs, we know there can't be any acls.
2434  *
2435  * slot is the slot the inode is in, objectid is the objectid of the inode
2436  */
2437 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2438                                           int slot, u64 objectid)
2439 {
2440         u32 nritems = btrfs_header_nritems(leaf);
2441         struct btrfs_key found_key;
2442         int scanned = 0;
2443
2444         slot++;
2445         while (slot < nritems) {
2446                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2447
2448                 /* we found a different objectid, there must not be acls */
2449                 if (found_key.objectid != objectid)
2450                         return 0;
2451
2452                 /* we found an xattr, assume we've got an acl */
2453                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2454                         return 1;
2455
2456                 /*
2457                  * we found a key greater than an xattr key, there can't
2458                  * be any acls later on
2459                  */
2460                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2461                         return 0;
2462
2463                 slot++;
2464                 scanned++;
2465
2466                 /*
2467                  * it goes inode, inode backrefs, xattrs, extents,
2468                  * so if there are a ton of hard links to an inode there can
2469                  * be a lot of backrefs.  Don't waste time searching too hard,
2470                  * this is just an optimization
2471                  */
2472                 if (scanned >= 8)
2473                         break;
2474         }
2475         /* we hit the end of the leaf before we found an xattr or
2476          * something larger than an xattr.  We have to assume the inode
2477          * has acls
2478          */
2479         return 1;
2480 }
2481
2482 /*
2483  * read an inode from the btree into the in-memory inode
2484  */
2485 static void btrfs_read_locked_inode(struct inode *inode)
2486 {
2487         struct btrfs_path *path;
2488         struct extent_buffer *leaf;
2489         struct btrfs_inode_item *inode_item;
2490         struct btrfs_timespec *tspec;
2491         struct btrfs_root *root = BTRFS_I(inode)->root;
2492         struct btrfs_key location;
2493         int maybe_acls;
2494         u64 alloc_group_block;
2495         u32 rdev;
2496         int ret;
2497
2498         path = btrfs_alloc_path();
2499         BUG_ON(!path);
2500         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2501
2502         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2503         if (ret)
2504                 goto make_bad;
2505
2506         leaf = path->nodes[0];
2507         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2508                                     struct btrfs_inode_item);
2509
2510         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2511         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2512         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2513         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2514         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2515
2516         tspec = btrfs_inode_atime(inode_item);
2517         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2518         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2519
2520         tspec = btrfs_inode_mtime(inode_item);
2521         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2522         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2523
2524         tspec = btrfs_inode_ctime(inode_item);
2525         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2526         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2527
2528         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2529         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2530         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2531         inode->i_generation = BTRFS_I(inode)->generation;
2532         inode->i_rdev = 0;
2533         rdev = btrfs_inode_rdev(leaf, inode_item);
2534
2535         BTRFS_I(inode)->index_cnt = (u64)-1;
2536         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2537
2538         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2539
2540         /*
2541          * try to precache a NULL acl entry for files that don't have
2542          * any xattrs or acls
2543          */
2544         maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2545         if (!maybe_acls)
2546                 cache_no_acl(inode);
2547
2548         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2549                                                 alloc_group_block, 0);
2550         btrfs_free_path(path);
2551         inode_item = NULL;
2552
2553         switch (inode->i_mode & S_IFMT) {
2554         case S_IFREG:
2555                 inode->i_mapping->a_ops = &btrfs_aops;
2556                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2557                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2558                 inode->i_fop = &btrfs_file_operations;
2559                 inode->i_op = &btrfs_file_inode_operations;
2560                 break;
2561         case S_IFDIR:
2562                 inode->i_fop = &btrfs_dir_file_operations;
2563                 if (root == root->fs_info->tree_root)
2564                         inode->i_op = &btrfs_dir_ro_inode_operations;
2565                 else
2566                         inode->i_op = &btrfs_dir_inode_operations;
2567                 break;
2568         case S_IFLNK:
2569                 inode->i_op = &btrfs_symlink_inode_operations;
2570                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2571                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2572                 break;
2573         default:
2574                 inode->i_op = &btrfs_special_inode_operations;
2575                 init_special_inode(inode, inode->i_mode, rdev);
2576                 break;
2577         }
2578
2579         btrfs_update_iflags(inode);
2580         return;
2581
2582 make_bad:
2583         btrfs_free_path(path);
2584         make_bad_inode(inode);
2585 }
2586
2587 /*
2588  * given a leaf and an inode, copy the inode fields into the leaf
2589  */
2590 static void fill_inode_item(struct btrfs_trans_handle *trans,
2591                             struct extent_buffer *leaf,
2592                             struct btrfs_inode_item *item,
2593                             struct inode *inode)
2594 {
2595         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2596         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2597         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2598         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2599         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2600
2601         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2602                                inode->i_atime.tv_sec);
2603         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2604                                 inode->i_atime.tv_nsec);
2605
2606         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2607                                inode->i_mtime.tv_sec);
2608         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2609                                 inode->i_mtime.tv_nsec);
2610
2611         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2612                                inode->i_ctime.tv_sec);
2613         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2614                                 inode->i_ctime.tv_nsec);
2615
2616         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2617         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2618         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2619         btrfs_set_inode_transid(leaf, item, trans->transid);
2620         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2621         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2622         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2623 }
2624
2625 /*
2626  * copy everything in the in-memory inode into the btree.
2627  */
2628 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2629                                 struct btrfs_root *root, struct inode *inode)
2630 {
2631         struct btrfs_inode_item *inode_item;
2632         struct btrfs_path *path;
2633         struct extent_buffer *leaf;
2634         int ret;
2635
2636         path = btrfs_alloc_path();
2637         BUG_ON(!path);
2638         path->leave_spinning = 1;
2639         ret = btrfs_lookup_inode(trans, root, path,
2640                                  &BTRFS_I(inode)->location, 1);
2641         if (ret) {
2642                 if (ret > 0)
2643                         ret = -ENOENT;
2644                 goto failed;
2645         }
2646
2647         btrfs_unlock_up_safe(path, 1);
2648         leaf = path->nodes[0];
2649         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2650                                   struct btrfs_inode_item);
2651
2652         fill_inode_item(trans, leaf, inode_item, inode);
2653         btrfs_mark_buffer_dirty(leaf);
2654         btrfs_set_inode_last_trans(trans, inode);
2655         ret = 0;
2656 failed:
2657         btrfs_free_path(path);
2658         return ret;
2659 }
2660
2661
2662 /*
2663  * unlink helper that gets used here in inode.c and in the tree logging
2664  * recovery code.  It remove a link in a directory with a given name, and
2665  * also drops the back refs in the inode to the directory
2666  */
2667 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2668                        struct btrfs_root *root,
2669                        struct inode *dir, struct inode *inode,
2670                        const char *name, int name_len)
2671 {
2672         struct btrfs_path *path;
2673         int ret = 0;
2674         struct extent_buffer *leaf;
2675         struct btrfs_dir_item *di;
2676         struct btrfs_key key;
2677         u64 index;
2678
2679         path = btrfs_alloc_path();
2680         if (!path) {
2681                 ret = -ENOMEM;
2682                 goto out;
2683         }
2684
2685         path->leave_spinning = 1;
2686         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2687                                     name, name_len, -1);
2688         if (IS_ERR(di)) {
2689                 ret = PTR_ERR(di);
2690                 goto err;
2691         }
2692         if (!di) {
2693                 ret = -ENOENT;
2694                 goto err;
2695         }
2696         leaf = path->nodes[0];
2697         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2698         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2699         if (ret)
2700                 goto err;
2701         btrfs_release_path(root, path);
2702
2703         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2704                                   inode->i_ino,
2705                                   dir->i_ino, &index);
2706         if (ret) {
2707                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2708                        "inode %lu parent %lu\n", name_len, name,
2709                        inode->i_ino, dir->i_ino);
2710                 goto err;
2711         }
2712
2713         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2714                                          index, name, name_len, -1);
2715         if (IS_ERR(di)) {
2716                 ret = PTR_ERR(di);
2717                 goto err;
2718         }
2719         if (!di) {
2720                 ret = -ENOENT;
2721                 goto err;
2722         }
2723         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2724         btrfs_release_path(root, path);
2725
2726         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2727                                          inode, dir->i_ino);
2728         BUG_ON(ret != 0 && ret != -ENOENT);
2729
2730         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2731                                            dir, index);
2732         if (ret == -ENOENT)
2733                 ret = 0;
2734 err:
2735         btrfs_free_path(path);
2736         if (ret)
2737                 goto out;
2738
2739         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2740         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2741         btrfs_update_inode(trans, root, dir);
2742         btrfs_drop_nlink(inode);
2743         ret = btrfs_update_inode(trans, root, inode);
2744 out:
2745         return ret;
2746 }
2747
2748 /* helper to check if there is any shared block in the path */
2749 static int check_path_shared(struct btrfs_root *root,
2750                              struct btrfs_path *path)
2751 {
2752         struct extent_buffer *eb;
2753         int level;
2754         u64 refs = 1;
2755
2756         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2757                 int ret;
2758
2759                 if (!path->nodes[level])
2760                         break;
2761                 eb = path->nodes[level];
2762                 if (!btrfs_block_can_be_shared(root, eb))
2763                         continue;
2764                 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2765                                                &refs, NULL);
2766                 if (refs > 1)
2767                         return 1;
2768         }
2769         return 0;
2770 }
2771
2772 /*
2773  * helper to start transaction for unlink and rmdir.
2774  *
2775  * unlink and rmdir are special in btrfs, they do not always free space.
2776  * so in enospc case, we should make sure they will free space before
2777  * allowing them to use the global metadata reservation.
2778  */
2779 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2780                                                        struct dentry *dentry)
2781 {
2782         struct btrfs_trans_handle *trans;
2783         struct btrfs_root *root = BTRFS_I(dir)->root;
2784         struct btrfs_path *path;
2785         struct btrfs_inode_ref *ref;
2786         struct btrfs_dir_item *di;
2787         struct inode *inode = dentry->d_inode;
2788         u64 index;
2789         int check_link = 1;
2790         int err = -ENOSPC;
2791         int ret;
2792
2793         trans = btrfs_start_transaction(root, 10);
2794         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2795                 return trans;
2796
2797         if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2798                 return ERR_PTR(-ENOSPC);
2799
2800         /* check if there is someone else holds reference */
2801         if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2802                 return ERR_PTR(-ENOSPC);
2803
2804         if (atomic_read(&inode->i_count) > 2)
2805                 return ERR_PTR(-ENOSPC);
2806
2807         if (xchg(&root->fs_info->enospc_unlink, 1))
2808                 return ERR_PTR(-ENOSPC);
2809
2810         path = btrfs_alloc_path();
2811         if (!path) {
2812                 root->fs_info->enospc_unlink = 0;
2813                 return ERR_PTR(-ENOMEM);
2814         }
2815
2816         trans = btrfs_start_transaction(root, 0);
2817         if (IS_ERR(trans)) {
2818                 btrfs_free_path(path);
2819                 root->fs_info->enospc_unlink = 0;
2820                 return trans;
2821         }
2822
2823         path->skip_locking = 1;
2824         path->search_commit_root = 1;
2825
2826         ret = btrfs_lookup_inode(trans, root, path,
2827                                 &BTRFS_I(dir)->location, 0);
2828         if (ret < 0) {
2829                 err = ret;
2830                 goto out;
2831         }
2832         if (ret == 0) {
2833                 if (check_path_shared(root, path))
2834                         goto out;
2835         } else {
2836                 check_link = 0;
2837         }
2838         btrfs_release_path(root, path);
2839
2840         ret = btrfs_lookup_inode(trans, root, path,
2841                                 &BTRFS_I(inode)->location, 0);
2842         if (ret < 0) {
2843                 err = ret;
2844                 goto out;
2845         }
2846         if (ret == 0) {
2847                 if (check_path_shared(root, path))
2848                         goto out;
2849         } else {
2850                 check_link = 0;
2851         }
2852         btrfs_release_path(root, path);
2853
2854         if (ret == 0 && S_ISREG(inode->i_mode)) {
2855                 ret = btrfs_lookup_file_extent(trans, root, path,
2856                                                inode->i_ino, (u64)-1, 0);
2857                 if (ret < 0) {
2858                         err = ret;
2859                         goto out;
2860                 }
2861                 BUG_ON(ret == 0);
2862                 if (check_path_shared(root, path))
2863                         goto out;
2864                 btrfs_release_path(root, path);
2865         }
2866
2867         if (!check_link) {
2868                 err = 0;
2869                 goto out;
2870         }
2871
2872         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2873                                 dentry->d_name.name, dentry->d_name.len, 0);
2874         if (IS_ERR(di)) {
2875                 err = PTR_ERR(di);
2876                 goto out;
2877         }
2878         if (di) {
2879                 if (check_path_shared(root, path))
2880                         goto out;
2881         } else {
2882                 err = 0;
2883                 goto out;
2884         }
2885         btrfs_release_path(root, path);
2886
2887         ref = btrfs_lookup_inode_ref(trans, root, path,
2888                                 dentry->d_name.name, dentry->d_name.len,
2889                                 inode->i_ino, dir->i_ino, 0);
2890         if (IS_ERR(ref)) {
2891                 err = PTR_ERR(ref);
2892                 goto out;
2893         }
2894         BUG_ON(!ref);
2895         if (check_path_shared(root, path))
2896                 goto out;
2897         index = btrfs_inode_ref_index(path->nodes[0], ref);
2898         btrfs_release_path(root, path);
2899
2900         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2901                                 dentry->d_name.name, dentry->d_name.len, 0);
2902         if (IS_ERR(di)) {
2903                 err = PTR_ERR(di);
2904                 goto out;
2905         }
2906         BUG_ON(ret == -ENOENT);
2907         if (check_path_shared(root, path))
2908                 goto out;
2909
2910         err = 0;
2911 out:
2912         btrfs_free_path(path);
2913         if (err) {
2914                 btrfs_end_transaction(trans, root);
2915                 root->fs_info->enospc_unlink = 0;
2916                 return ERR_PTR(err);
2917         }
2918
2919         trans->block_rsv = &root->fs_info->global_block_rsv;
2920         return trans;
2921 }
2922
2923 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2924                                struct btrfs_root *root)
2925 {
2926         if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2927                 BUG_ON(!root->fs_info->enospc_unlink);
2928                 root->fs_info->enospc_unlink = 0;
2929         }
2930         btrfs_end_transaction_throttle(trans, root);
2931 }
2932
2933 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2934 {
2935         struct btrfs_root *root = BTRFS_I(dir)->root;
2936         struct btrfs_trans_handle *trans;
2937         struct inode *inode = dentry->d_inode;
2938         int ret;
2939         unsigned long nr = 0;
2940
2941         trans = __unlink_start_trans(dir, dentry);
2942         if (IS_ERR(trans))
2943                 return PTR_ERR(trans);
2944
2945         btrfs_set_trans_block_group(trans, dir);
2946
2947         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2948
2949         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2950                                  dentry->d_name.name, dentry->d_name.len);
2951         BUG_ON(ret);
2952
2953         if (inode->i_nlink == 0) {
2954                 ret = btrfs_orphan_add(trans, inode);
2955                 BUG_ON(ret);
2956         }
2957
2958         nr = trans->blocks_used;
2959         __unlink_end_trans(trans, root);
2960         btrfs_btree_balance_dirty(root, nr);
2961         return ret;
2962 }
2963
2964 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2965                         struct btrfs_root *root,
2966                         struct inode *dir, u64 objectid,
2967                         const char *name, int name_len)
2968 {
2969         struct btrfs_path *path;
2970         struct extent_buffer *leaf;
2971         struct btrfs_dir_item *di;
2972         struct btrfs_key key;
2973         u64 index;
2974         int ret;
2975
2976         path = btrfs_alloc_path();
2977         if (!path)
2978                 return -ENOMEM;
2979
2980         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2981                                    name, name_len, -1);
2982         BUG_ON(!di || IS_ERR(di));
2983
2984         leaf = path->nodes[0];
2985         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2986         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2987         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2988         BUG_ON(ret);
2989         btrfs_release_path(root, path);
2990
2991         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2992                                  objectid, root->root_key.objectid,
2993                                  dir->i_ino, &index, name, name_len);
2994         if (ret < 0) {
2995                 BUG_ON(ret != -ENOENT);
2996                 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2997                                                  name, name_len);
2998                 BUG_ON(!di || IS_ERR(di));
2999
3000                 leaf = path->nodes[0];
3001                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3002                 btrfs_release_path(root, path);
3003                 index = key.offset;
3004         }
3005
3006         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
3007                                          index, name, name_len, -1);
3008         BUG_ON(!di || IS_ERR(di));
3009
3010         leaf = path->nodes[0];
3011         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3012         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3013         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3014         BUG_ON(ret);
3015         btrfs_release_path(root, path);
3016
3017         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3018         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3019         ret = btrfs_update_inode(trans, root, dir);
3020         BUG_ON(ret);
3021
3022         btrfs_free_path(path);
3023         return 0;
3024 }
3025
3026 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3027 {
3028         struct inode *inode = dentry->d_inode;
3029         int err = 0;
3030         struct btrfs_root *root = BTRFS_I(dir)->root;
3031         struct btrfs_trans_handle *trans;
3032         unsigned long nr = 0;
3033
3034         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3035             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
3036                 return -ENOTEMPTY;
3037
3038         trans = __unlink_start_trans(dir, dentry);
3039         if (IS_ERR(trans))
3040                 return PTR_ERR(trans);
3041
3042         btrfs_set_trans_block_group(trans, dir);
3043
3044         if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3045                 err = btrfs_unlink_subvol(trans, root, dir,
3046                                           BTRFS_I(inode)->location.objectid,
3047                                           dentry->d_name.name,
3048                                           dentry->d_name.len);
3049                 goto out;
3050         }
3051
3052         err = btrfs_orphan_add(trans, inode);
3053         if (err)
3054                 goto out;
3055
3056         /* now the directory is empty */
3057         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3058                                  dentry->d_name.name, dentry->d_name.len);
3059         if (!err)
3060                 btrfs_i_size_write(inode, 0);
3061 out:
3062         nr = trans->blocks_used;
3063         __unlink_end_trans(trans, root);
3064         btrfs_btree_balance_dirty(root, nr);
3065
3066         return err;
3067 }
3068
3069 #if 0
3070 /*
3071  * when truncating bytes in a file, it is possible to avoid reading
3072  * the leaves that contain only checksum items.  This can be the
3073  * majority of the IO required to delete a large file, but it must
3074  * be done carefully.
3075  *
3076  * The keys in the level just above the leaves are checked to make sure
3077  * the lowest key in a given leaf is a csum key, and starts at an offset
3078  * after the new  size.
3079  *
3080  * Then the key for the next leaf is checked to make sure it also has
3081  * a checksum item for the same file.  If it does, we know our target leaf
3082  * contains only checksum items, and it can be safely freed without reading
3083  * it.
3084  *
3085  * This is just an optimization targeted at large files.  It may do
3086  * nothing.  It will return 0 unless things went badly.
3087  */
3088 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3089                                      struct btrfs_root *root,
3090                                      struct btrfs_path *path,
3091                                      struct inode *inode, u64 new_size)
3092 {
3093         struct btrfs_key key;
3094         int ret;
3095         int nritems;
3096         struct btrfs_key found_key;
3097         struct btrfs_key other_key;
3098         struct btrfs_leaf_ref *ref;
3099         u64 leaf_gen;
3100         u64 leaf_start;
3101
3102         path->lowest_level = 1;
3103         key.objectid = inode->i_ino;
3104         key.type = BTRFS_CSUM_ITEM_KEY;
3105         key.offset = new_size;
3106 again:
3107         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3108         if (ret < 0)
3109                 goto out;
3110
3111         if (path->nodes[1] == NULL) {
3112                 ret = 0;
3113                 goto out;
3114         }
3115         ret = 0;
3116         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3117         nritems = btrfs_header_nritems(path->nodes[1]);
3118
3119         if (!nritems)
3120                 goto out;
3121
3122         if (path->slots[1] >= nritems)
3123                 goto next_node;
3124
3125         /* did we find a key greater than anything we want to delete? */
3126         if (found_key.objectid > inode->i_ino ||
3127            (found_key.objectid == inode->i_ino && found_key.type > key.type))
3128                 goto out;
3129
3130         /* we check the next key in the node to make sure the leave contains
3131          * only checksum items.  This comparison doesn't work if our
3132          * leaf is the last one in the node
3133          */
3134         if (path->slots[1] + 1 >= nritems) {
3135 next_node:
3136                 /* search forward from the last key in the node, this
3137                  * will bring us into the next node in the tree
3138                  */
3139                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3140
3141                 /* unlikely, but we inc below, so check to be safe */
3142                 if (found_key.offset == (u64)-1)
3143                         goto out;
3144
3145                 /* search_forward needs a path with locks held, do the
3146                  * search again for the original key.  It is possible
3147                  * this will race with a balance and return a path that
3148                  * we could modify, but this drop is just an optimization
3149                  * and is allowed to miss some leaves.
3150                  */
3151                 btrfs_release_path(root, path);
3152                 found_key.offset++;
3153
3154                 /* setup a max key for search_forward */
3155                 other_key.offset = (u64)-1;
3156                 other_key.type = key.type;
3157                 other_key.objectid = key.objectid;
3158
3159                 path->keep_locks = 1;
3160                 ret = btrfs_search_forward(root, &found_key, &other_key,
3161                                            path, 0, 0);
3162                 path->keep_locks = 0;
3163                 if (ret || found_key.objectid != key.objectid ||
3164                     found_key.type != key.type) {
3165                         ret = 0;
3166                         goto out;
3167                 }
3168
3169                 key.offset = found_key.offset;
3170                 btrfs_release_path(root, path);
3171                 cond_resched();
3172                 goto again;
3173         }
3174
3175         /* we know there's one more slot after us in the tree,
3176          * read that key so we can verify it is also a checksum item
3177          */
3178         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3179
3180         if (found_key.objectid < inode->i_ino)
3181                 goto next_key;
3182
3183         if (found_key.type != key.type || found_key.offset < new_size)
3184                 goto next_key;
3185
3186         /*
3187          * if the key for the next leaf isn't a csum key from this objectid,
3188          * we can't be sure there aren't good items inside this leaf.
3189          * Bail out
3190          */
3191         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3192                 goto out;
3193
3194         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3195         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3196         /*
3197          * it is safe to delete this leaf, it contains only
3198          * csum items from this inode at an offset >= new_size
3199          */
3200         ret = btrfs_del_leaf(trans, root, path, leaf_start);
3201         BUG_ON(ret);
3202
3203         if (root->ref_cows && leaf_gen < trans->transid) {
3204                 ref = btrfs_alloc_leaf_ref(root, 0);
3205                 if (ref) {
3206                         ref->root_gen = root->root_key.offset;
3207                         ref->bytenr = leaf_start;
3208                         ref->owner = 0;
3209                         ref->generation = leaf_gen;
3210                         ref->nritems = 0;
3211
3212                         btrfs_sort_leaf_ref(ref);
3213
3214                         ret = btrfs_add_leaf_ref(root, ref, 0);
3215                         WARN_ON(ret);
3216                         btrfs_free_leaf_ref(root, ref);
3217                 } else {
3218                         WARN_ON(1);
3219                 }
3220         }
3221 next_key:
3222         btrfs_release_path(root, path);
3223
3224         if (other_key.objectid == inode->i_ino &&
3225             other_key.type == key.type && other_key.offset > key.offset) {
3226                 key.offset = other_key.offset;
3227                 cond_resched();
3228                 goto again;
3229         }
3230         ret = 0;
3231 out:
3232         /* fixup any changes we've made to the path */
3233         path->lowest_level = 0;
3234         path->keep_locks = 0;
3235         btrfs_release_path(root, path);
3236         return ret;
3237 }
3238
3239 #endif
3240
3241 /*
3242  * this can truncate away extent items, csum items and directory items.
3243  * It starts at a high offset and removes keys until it can't find
3244  * any higher than new_size
3245  *
3246  * csum items that cross the new i_size are truncated to the new size
3247  * as well.
3248  *
3249  * min_type is the minimum key type to truncate down to.  If set to 0, this
3250  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3251  */
3252 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3253                                struct btrfs_root *root,
3254                                struct inode *inode,
3255                                u64 new_size, u32 min_type)
3256 {
3257         struct btrfs_path *path;
3258         struct extent_buffer *leaf;
3259         struct btrfs_file_extent_item *fi;
3260         struct btrfs_key key;
3261         struct btrfs_key found_key;
3262         u64 extent_start = 0;
3263         u64 extent_num_bytes = 0;
3264         u64 extent_offset = 0;
3265         u64 item_end = 0;
3266         u64 mask = root->sectorsize - 1;
3267         u32 found_type = (u8)-1;
3268         int found_extent;
3269         int del_item;
3270         int pending_del_nr = 0;
3271         int pending_del_slot = 0;
3272         int extent_type = -1;
3273         int encoding;
3274         int ret;
3275         int err = 0;
3276
3277         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3278
3279         if (root->ref_cows || root == root->fs_info->tree_root)
3280                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3281
3282         path = btrfs_alloc_path();
3283         BUG_ON(!path);
3284         path->reada = -1;
3285
3286         key.objectid = inode->i_ino;
3287         key.offset = (u64)-1;
3288         key.type = (u8)-1;
3289
3290 search_again:
3291         path->leave_spinning = 1;
3292         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3293         if (ret < 0) {
3294                 err = ret;
3295                 goto out;
3296         }
3297
3298         if (ret > 0) {
3299                 /* there are no items in the tree for us to truncate, we're
3300                  * done
3301                  */
3302                 if (path->slots[0] == 0)
3303                         goto out;
3304                 path->slots[0]--;
3305         }
3306
3307         while (1) {
3308                 fi = NULL;
3309                 leaf = path->nodes[0];
3310                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3311                 found_type = btrfs_key_type(&found_key);
3312                 encoding = 0;
3313
3314                 if (found_key.objectid != inode->i_ino)
3315                         break;
3316
3317                 if (found_type < min_type)
3318                         break;
3319
3320                 item_end = found_key.offset;
3321                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3322                         fi = btrfs_item_ptr(leaf, path->slots[0],
3323                                             struct btrfs_file_extent_item);
3324                         extent_type = btrfs_file_extent_type(leaf, fi);
3325                         encoding = btrfs_file_extent_compression(leaf, fi);
3326                         encoding |= btrfs_file_extent_encryption(leaf, fi);
3327                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3328
3329                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3330                                 item_end +=
3331                                     btrfs_file_extent_num_bytes(leaf, fi);
3332                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3333                                 item_end += btrfs_file_extent_inline_len(leaf,
3334                                                                          fi);
3335                         }
3336                         item_end--;
3337                 }
3338                 if (found_type > min_type) {
3339                         del_item = 1;
3340                 } else {
3341                         if (item_end < new_size)
3342                                 break;
3343                         if (found_key.offset >= new_size)
3344                                 del_item = 1;
3345                         else
3346                                 del_item = 0;
3347                 }
3348                 found_extent = 0;
3349                 /* FIXME, shrink the extent if the ref count is only 1 */
3350                 if (found_type != BTRFS_EXTENT_DATA_KEY)
3351                         goto delete;
3352
3353                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3354                         u64 num_dec;
3355                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3356                         if (!del_item && !encoding) {
3357                                 u64 orig_num_bytes =
3358                                         btrfs_file_extent_num_bytes(leaf, fi);
3359                                 extent_num_bytes = new_size -
3360                                         found_key.offset + root->sectorsize - 1;
3361                                 extent_num_bytes = extent_num_bytes &
3362                                         ~((u64)root->sectorsize - 1);
3363                                 btrfs_set_file_extent_num_bytes(leaf, fi,
3364                                                          extent_num_bytes);
3365                                 num_dec = (orig_num_bytes -
3366                                            extent_num_bytes);
3367                                 if (root->ref_cows && extent_start != 0)
3368                                         inode_sub_bytes(inode, num_dec);
3369                                 btrfs_mark_buffer_dirty(leaf);
3370                         } else {
3371                                 extent_num_bytes =
3372                                         btrfs_file_extent_disk_num_bytes(leaf,
3373                                                                          fi);
3374                                 extent_offset = found_key.offset -
3375                                         btrfs_file_extent_offset(leaf, fi);
3376
3377                                 /* FIXME blocksize != 4096 */
3378                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3379                                 if (extent_start != 0) {
3380                                         found_extent = 1;
3381                                         if (root->ref_cows)
3382                                                 inode_sub_bytes(inode, num_dec);
3383                                 }
3384                         }
3385                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3386                         /*
3387                          * we can't truncate inline items that have had
3388                          * special encodings
3389                          */
3390                         if (!del_item &&
3391                             btrfs_file_extent_compression(leaf, fi) == 0 &&
3392                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
3393                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3394                                 u32 size = new_size - found_key.offset;
3395
3396                                 if (root->ref_cows) {
3397                                         inode_sub_bytes(inode, item_end + 1 -
3398                                                         new_size);
3399                                 }
3400                                 size =
3401                                     btrfs_file_extent_calc_inline_size(size);
3402                                 ret = btrfs_truncate_item(trans, root, path,
3403                                                           size, 1);
3404                                 BUG_ON(ret);
3405                         } else if (root->ref_cows) {
3406                                 inode_sub_bytes(inode, item_end + 1 -
3407                                                 found_key.offset);
3408                         }
3409                 }
3410 delete:
3411                 if (del_item) {
3412                         if (!pending_del_nr) {
3413                                 /* no pending yet, add ourselves */
3414                                 pending_del_slot = path->slots[0];
3415                                 pending_del_nr = 1;
3416                         } else if (pending_del_nr &&
3417                                    path->slots[0] + 1 == pending_del_slot) {
3418                                 /* hop on the pending chunk */
3419                                 pending_del_nr++;
3420                                 pending_del_slot = path->slots[0];
3421                         } else {
3422                                 BUG();
3423                         }
3424                 } else {
3425                         break;
3426                 }
3427                 if (found_extent && (root->ref_cows ||
3428                                      root == root->fs_info->tree_root)) {
3429                         btrfs_set_path_blocking(path);
3430                         ret = btrfs_free_extent(trans, root, extent_start,
3431                                                 extent_num_bytes, 0,
3432                                                 btrfs_header_owner(leaf),
3433                                                 inode->i_ino, extent_offset);
3434                         BUG_ON(ret);
3435                 }
3436
3437                 if (found_type == BTRFS_INODE_ITEM_KEY)
3438                         break;
3439
3440                 if (path->slots[0] == 0 ||
3441                     path->slots[0] != pending_del_slot) {
3442                         if (root->ref_cows) {
3443                                 err = -EAGAIN;
3444                                 goto out;
3445                         }
3446                         if (pending_del_nr) {
3447                                 ret = btrfs_del_items(trans, root, path,
3448                                                 pending_del_slot,
3449                                                 pending_del_nr);
3450                                 BUG_ON(ret);
3451                                 pending_del_nr = 0;
3452                         }
3453                         btrfs_release_path(root, path);
3454                         goto search_again;
3455                 } else {
3456                         path->slots[0]--;
3457                 }
3458         }
3459 out:
3460         if (pending_del_nr) {
3461                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3462                                       pending_del_nr);
3463                 BUG_ON(ret);
3464         }
3465         btrfs_free_path(path);
3466         return err;
3467 }
3468
3469 /*
3470  * taken from block_truncate_page, but does cow as it zeros out
3471  * any bytes left in the last page in the file.
3472  */
3473 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3474 {
3475         struct inode *inode = mapping->host;
3476         struct btrfs_root *root = BTRFS_I(inode)->root;
3477         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3478         struct btrfs_ordered_extent *ordered;
3479         struct extent_state *cached_state = NULL;
3480         char *kaddr;
3481         u32 blocksize = root->sectorsize;
3482         pgoff_t index = from >> PAGE_CACHE_SHIFT;
3483         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3484         struct page *page;
3485         int ret = 0;
3486         u64 page_start;
3487         u64 page_end;
3488
3489         if ((offset & (blocksize - 1)) == 0)
3490                 goto out;
3491         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3492         if (ret)
3493                 goto out;
3494
3495         ret = -ENOMEM;
3496 again:
3497         page = grab_cache_page(mapping, index);
3498         if (!page) {
3499                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3500                 goto out;
3501         }
3502
3503         page_start = page_offset(page);
3504         page_end = page_start + PAGE_CACHE_SIZE - 1;
3505
3506         if (!PageUptodate(page)) {
3507                 ret = btrfs_readpage(NULL, page);
3508                 lock_page(page);
3509                 if (page->mapping != mapping) {
3510                         unlock_page(page);
3511                         page_cache_release(page);
3512                         goto again;
3513                 }
3514                 if (!PageUptodate(page)) {
3515                         ret = -EIO;
3516                         goto out_unlock;
3517                 }
3518         }
3519         wait_on_page_writeback(page);
3520
3521         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3522                          GFP_NOFS);
3523         set_page_extent_mapped(page);
3524
3525         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3526         if (ordered) {
3527                 unlock_extent_cached(io_tree, page_start, page_end,
3528                                      &cached_state, GFP_NOFS);
3529                 unlock_page(page);
3530                 page_cache_release(page);
3531                 btrfs_start_ordered_extent(inode, ordered, 1);
3532                 btrfs_put_ordered_extent(ordered);
3533                 goto again;
3534         }
3535
3536         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3537                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3538                           0, 0, &cached_state, GFP_NOFS);
3539
3540         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3541                                         &cached_state);
3542         if (ret) {
3543                 unlock_extent_cached(io_tree, page_start, page_end,
3544                                      &cached_state, GFP_NOFS);
3545                 goto out_unlock;
3546         }
3547
3548         ret = 0;
3549         if (offset != PAGE_CACHE_SIZE) {
3550                 kaddr = kmap(page);
3551                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3552                 flush_dcache_page(page);
3553                 kunmap(page);
3554         }
3555         ClearPageChecked(page);
3556         set_page_dirty(page);
3557         unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3558                              GFP_NOFS);
3559
3560 out_unlock:
3561         if (ret)
3562                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3563         unlock_page(page);
3564         page_cache_release(page);
3565 out:
3566         return ret;
3567 }
3568
3569 /*
3570  * This function puts in dummy file extents for the area we're creating a hole
3571  * for.  So if we are truncating this file to a larger size we need to insert
3572  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3573  * the range between oldsize and size
3574  */
3575 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3576 {
3577         struct btrfs_trans_handle *trans;
3578         struct btrfs_root *root = BTRFS_I(inode)->root;
3579         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3580         struct extent_map *em = NULL;
3581         struct extent_state *cached_state = NULL;
3582         u64 mask = root->sectorsize - 1;
3583         u64 hole_start = (oldsize + mask) & ~mask;
3584         u64 block_end = (size + mask) & ~mask;
3585         u64 last_byte;
3586         u64 cur_offset;
3587         u64 hole_size;
3588         int err = 0;
3589
3590         if (size <= hole_start)
3591                 return 0;
3592
3593         while (1) {
3594                 struct btrfs_ordered_extent *ordered;
3595                 btrfs_wait_ordered_range(inode, hole_start,
3596                                          block_end - hole_start);
3597                 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3598                                  &cached_state, GFP_NOFS);
3599                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3600                 if (!ordered)
3601                         break;
3602                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3603                                      &cached_state, GFP_NOFS);
3604                 btrfs_put_ordered_extent(ordered);
3605         }
3606
3607         cur_offset = hole_start;
3608         while (1) {
3609                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3610                                 block_end - cur_offset, 0);
3611                 BUG_ON(IS_ERR(em) || !em);
3612                 last_byte = min(extent_map_end(em), block_end);
3613                 last_byte = (last_byte + mask) & ~mask;
3614                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3615                         u64 hint_byte = 0;
3616                         hole_size = last_byte - cur_offset;
3617
3618                         trans = btrfs_start_transaction(root, 2);
3619                         if (IS_ERR(trans)) {
3620                                 err = PTR_ERR(trans);
3621                                 break;
3622                         }
3623                         btrfs_set_trans_block_group(trans, inode);
3624
3625                         err = btrfs_drop_extents(trans, inode, cur_offset,
3626                                                  cur_offset + hole_size,
3627                                                  &hint_byte, 1);
3628                         if (err)
3629                                 break;
3630
3631                         err = btrfs_insert_file_extent(trans, root,
3632                                         inode->i_ino, cur_offset, 0,
3633                                         0, hole_size, 0, hole_size,
3634                                         0, 0, 0);
3635                         if (err)
3636                                 break;
3637
3638                         btrfs_drop_extent_cache(inode, hole_start,
3639                                         last_byte - 1, 0);
3640
3641                         btrfs_end_transaction(trans, root);
3642                 }
3643                 free_extent_map(em);
3644                 em = NULL;
3645                 cur_offset = last_byte;
3646                 if (cur_offset >= block_end)
3647                         break;
3648         }
3649
3650         free_extent_map(em);
3651         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3652                              GFP_NOFS);
3653         return err;
3654 }
3655
3656 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3657 {
3658         loff_t oldsize = i_size_read(inode);
3659         int ret;
3660
3661         if (newsize == oldsize)
3662                 return 0;
3663
3664         if (newsize > oldsize) {
3665                 i_size_write(inode, newsize);
3666                 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3667                 truncate_pagecache(inode, oldsize, newsize);
3668                 ret = btrfs_cont_expand(inode, oldsize, newsize);
3669                 if (ret) {
3670                         btrfs_setsize(inode, oldsize);
3671                         return ret;
3672                 }
3673
3674                 mark_inode_dirty(inode);
3675         } else {
3676
3677                 /*
3678                  * We're truncating a file that used to have good data down to
3679                  * zero. Make sure it gets into the ordered flush list so that
3680                  * any new writes get down to disk quickly.
3681                  */
3682                 if (newsize == 0)
3683                         BTRFS_I(inode)->ordered_data_close = 1;
3684
3685                 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3686                 truncate_setsize(inode, newsize);
3687                 ret = btrfs_truncate(inode);
3688         }
3689
3690         return ret;
3691 }
3692
3693 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3694 {
3695         struct inode *inode = dentry->d_inode;
3696         struct btrfs_root *root = BTRFS_I(inode)->root;
3697         int err;
3698
3699         if (btrfs_root_readonly(root))
3700                 return -EROFS;
3701
3702         err = inode_change_ok(inode, attr);
3703         if (err)
3704                 return err;
3705
3706         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3707                 err = btrfs_setsize(inode, attr->ia_size);
3708                 if (err)
3709                         return err;
3710         }
3711
3712         if (attr->ia_valid) {
3713                 setattr_copy(inode, attr);
3714                 mark_inode_dirty(inode);
3715
3716                 if (attr->ia_valid & ATTR_MODE)
3717                         err = btrfs_acl_chmod(inode);
3718         }
3719
3720         return err;
3721 }
3722
3723 void btrfs_evict_inode(struct inode *inode)
3724 {
3725         struct btrfs_trans_handle *trans;
3726         struct btrfs_root *root = BTRFS_I(inode)->root;
3727         unsigned long nr;
3728         int ret;
3729
3730         trace_btrfs_inode_evict(inode);
3731
3732         truncate_inode_pages(&inode->i_data, 0);
3733         if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3734                                root == root->fs_info->tree_root))
3735                 goto no_delete;
3736
3737         if (is_bad_inode(inode)) {
3738                 btrfs_orphan_del(NULL, inode);
3739                 goto no_delete;
3740         }
3741         /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3742         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3743
3744         if (root->fs_info->log_root_recovering) {
3745                 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3746                 goto no_delete;
3747         }
3748
3749         if (inode->i_nlink > 0) {
3750                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3751                 goto no_delete;
3752         }
3753
3754         btrfs_i_size_write(inode, 0);
3755
3756         while (1) {
3757                 trans = btrfs_start_transaction(root, 0);
3758                 BUG_ON(IS_ERR(trans));
3759                 btrfs_set_trans_block_group(trans, inode);
3760                 trans->block_rsv = root->orphan_block_rsv;
3761
3762                 ret = btrfs_block_rsv_check(trans, root,
3763                                             root->orphan_block_rsv, 0, 5);
3764                 if (ret) {
3765                         BUG_ON(ret != -EAGAIN);
3766                         ret = btrfs_commit_transaction(trans, root);
3767                         BUG_ON(ret);
3768                         continue;
3769                 }
3770
3771                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3772                 if (ret != -EAGAIN)
3773                         break;
3774
3775                 nr = trans->blocks_used;
3776                 btrfs_end_transaction(trans, root);
3777                 trans = NULL;
3778                 btrfs_btree_balance_dirty(root, nr);
3779
3780         }
3781
3782         if (ret == 0) {
3783                 ret = btrfs_orphan_del(trans, inode);
3784                 BUG_ON(ret);
3785         }
3786
3787         nr = trans->blocks_used;
3788         btrfs_end_transaction(trans, root);
3789         btrfs_btree_balance_dirty(root, nr);
3790 no_delete:
3791         end_writeback(inode);
3792         return;
3793 }
3794
3795 /*
3796  * this returns the key found in the dir entry in the location pointer.
3797  * If no dir entries were found, location->objectid is 0.
3798  */
3799 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3800                                struct btrfs_key *location)
3801 {
3802         const char *name = dentry->d_name.name;
3803         int namelen = dentry->d_name.len;
3804         struct btrfs_dir_item *di;
3805         struct btrfs_path *path;
3806         struct btrfs_root *root = BTRFS_I(dir)->root;
3807         int ret = 0;
3808
3809         path = btrfs_alloc_path();
3810         BUG_ON(!path);
3811
3812         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3813                                     namelen, 0);
3814         if (IS_ERR(di))
3815                 ret = PTR_ERR(di);
3816
3817         if (!di || IS_ERR(di))
3818                 goto out_err;
3819
3820         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3821 out:
3822         btrfs_free_path(path);
3823         return ret;
3824 out_err:
3825         location->objectid = 0;
3826         goto out;
3827 }
3828
3829 /*
3830  * when we hit a tree root in a directory, the btrfs part of the inode
3831  * needs to be changed to reflect the root directory of the tree root.  This
3832  * is kind of like crossing a mount point.
3833  */
3834 static int fixup_tree_root_location(struct btrfs_root *root,
3835                                     struct inode *dir,
3836                                     struct dentry *dentry,
3837                                     struct btrfs_key *location,
3838                                     struct btrfs_root **sub_root)
3839 {
3840         struct btrfs_path *path;
3841         struct btrfs_root *new_root;
3842         struct btrfs_root_ref *ref;
3843         struct extent_buffer *leaf;
3844         int ret;
3845         int err = 0;
3846
3847         path = btrfs_alloc_path();
3848         if (!path) {
3849                 err = -ENOMEM;
3850                 goto out;
3851         }
3852
3853         err = -ENOENT;
3854         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3855                                   BTRFS_I(dir)->root->root_key.objectid,
3856                                   location->objectid);
3857         if (ret) {
3858                 if (ret < 0)
3859                         err = ret;
3860                 goto out;
3861         }
3862
3863         leaf = path->nodes[0];
3864         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3865         if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3866             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3867                 goto out;
3868
3869         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3870                                    (unsigned long)(ref + 1),
3871                                    dentry->d_name.len);
3872         if (ret)
3873                 goto out;
3874
3875         btrfs_release_path(root->fs_info->tree_root, path);
3876
3877         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3878         if (IS_ERR(new_root)) {
3879                 err = PTR_ERR(new_root);
3880                 goto out;
3881         }
3882
3883         if (btrfs_root_refs(&new_root->root_item) == 0) {
3884                 err = -ENOENT;
3885                 goto out;
3886         }
3887
3888         *sub_root = new_root;
3889         location->objectid = btrfs_root_dirid(&new_root->root_item);
3890         location->type = BTRFS_INODE_ITEM_KEY;
3891         location->offset = 0;
3892         err = 0;
3893 out:
3894         btrfs_free_path(path);
3895         return err;
3896 }
3897
3898 static void inode_tree_add(struct inode *inode)
3899 {
3900         struct btrfs_root *root = BTRFS_I(inode)->root;
3901         struct btrfs_inode *entry;
3902         struct rb_node **p;
3903         struct rb_node *parent;
3904 again:
3905         p = &root->inode_tree.rb_node;
3906         parent = NULL;
3907
3908         if (inode_unhashed(inode))
3909                 return;
3910
3911         spin_lock(&root->inode_lock);
3912         while (*p) {
3913                 parent = *p;
3914                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3915
3916                 if (inode->i_ino < entry->vfs_inode.i_ino)
3917                         p = &parent->rb_left;
3918                 else if (inode->i_ino > entry->vfs_inode.i_ino)
3919                         p = &parent->rb_right;
3920                 else {
3921                         WARN_ON(!(entry->vfs_inode.i_state &
3922                                   (I_WILL_FREE | I_FREEING)));
3923                         rb_erase(parent, &root->inode_tree);
3924                         RB_CLEAR_NODE(parent);
3925                         spin_unlock(&root->inode_lock);
3926                         goto again;
3927                 }
3928         }
3929         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3930         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3931         spin_unlock(&root->inode_lock);
3932 }
3933
3934 static void inode_tree_del(struct inode *inode)
3935 {
3936         struct btrfs_root *root = BTRFS_I(inode)->root;
3937         int empty = 0;
3938
3939         spin_lock(&root->inode_lock);
3940         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3941                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3942                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3943                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3944         }
3945         spin_unlock(&root->inode_lock);
3946
3947         /*
3948          * Free space cache has inodes in the tree root, but the tree root has a
3949          * root_refs of 0, so this could end up dropping the tree root as a
3950          * snapshot, so we need the extra !root->fs_info->tree_root check to
3951          * make sure we don't drop it.
3952          */
3953         if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3954             root != root->fs_info->tree_root) {
3955                 synchronize_srcu(&root->fs_info->subvol_srcu);
3956                 spin_lock(&root->inode_lock);
3957                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3958                 spin_unlock(&root->inode_lock);
3959                 if (empty)
3960                         btrfs_add_dead_root(root);
3961         }
3962 }
3963
3964 int btrfs_invalidate_inodes(struct btrfs_root *root)
3965 {
3966         struct rb_node *node;
3967         struct rb_node *prev;
3968         struct btrfs_inode *entry;
3969         struct inode *inode;
3970         u64 objectid = 0;
3971
3972         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3973
3974         spin_lock(&root->inode_lock);
3975 again:
3976         node = root->inode_tree.rb_node;
3977         prev = NULL;
3978         while (node) {
3979                 prev = node;
3980                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3981
3982                 if (objectid < entry->vfs_inode.i_ino)
3983                         node = node->rb_left;
3984                 else if (objectid > entry->vfs_inode.i_ino)
3985                         node = node->rb_right;
3986                 else
3987                         break;
3988         }
3989         if (!node) {
3990                 while (prev) {
3991                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
3992                         if (objectid <= entry->vfs_inode.i_ino) {
3993                                 node = prev;
3994                                 break;
3995                         }
3996                         prev = rb_next(prev);
3997                 }
3998         }
3999         while (node) {
4000                 entry = rb_entry(node, struct btrfs_inode, rb_node);
4001                 objectid = entry->vfs_inode.i_ino + 1;
4002                 inode = igrab(&entry->vfs_inode);
4003                 if (inode) {
4004                         spin_unlock(&root->inode_lock);
4005                         if (atomic_read(&inode->i_count) > 1)
4006                                 d_prune_aliases(inode);
4007                         /*
4008                          * btrfs_drop_inode will have it removed from
4009                          * the inode cache when its usage count
4010                          * hits zero.
4011                          */
4012                         iput(inode);
4013                         cond_resched();
4014                         spin_lock(&root->inode_lock);
4015                         goto again;
4016                 }
4017
4018                 if (cond_resched_lock(&root->inode_lock))
4019                         goto again;
4020
4021                 node = rb_next(node);
4022         }
4023         spin_unlock(&root->inode_lock);
4024         return 0;
4025 }
4026
4027 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4028 {
4029         struct btrfs_iget_args *args = p;
4030         inode->i_ino = args->ino;
4031         BTRFS_I(inode)->root = args->root;
4032         btrfs_set_inode_space_info(args->root, inode);
4033         return 0;
4034 }
4035
4036 static int btrfs_find_actor(struct inode *inode, void *opaque)
4037 {
4038         struct btrfs_iget_args *args = opaque;
4039         return args->ino == inode->i_ino &&
4040                 args->root == BTRFS_I(inode)->root;
4041 }
4042
4043 static struct inode *btrfs_iget_locked(struct super_block *s,
4044                                        u64 objectid,
4045                                        struct btrfs_root *root)
4046 {
4047         struct inode *inode;
4048         struct btrfs_iget_args args;
4049         args.ino = objectid;
4050         args.root = root;
4051
4052         inode = iget5_locked(s, objectid, btrfs_find_actor,
4053                              btrfs_init_locked_inode,
4054                              (void *)&args);
4055         return inode;
4056 }
4057
4058 /* Get an inode object given its location and corresponding root.
4059  * Returns in *is_new if the inode was read from disk
4060  */
4061 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4062                          struct btrfs_root *root, int *new)
4063 {
4064         struct inode *inode;
4065
4066         inode = btrfs_iget_locked(s, location->objectid, root);
4067         if (!inode)
4068                 return ERR_PTR(-ENOMEM);
4069
4070         if (inode->i_state & I_NEW) {
4071                 BTRFS_I(inode)->root = root;
4072                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4073                 btrfs_read_locked_inode(inode);
4074
4075                 inode_tree_add(inode);
4076                 unlock_new_inode(inode);
4077                 if (new)
4078                         *new = 1;
4079         }
4080
4081         return inode;
4082 }
4083
4084 static struct inode *new_simple_dir(struct super_block *s,
4085                                     struct btrfs_key *key,
4086                                     struct btrfs_root *root)
4087 {
4088         struct inode *inode = new_inode(s);
4089
4090         if (!inode)
4091                 return ERR_PTR(-ENOMEM);
4092
4093         BTRFS_I(inode)->root = root;
4094         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4095         BTRFS_I(inode)->dummy_inode = 1;
4096
4097         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4098         inode->i_op = &simple_dir_inode_operations;
4099         inode->i_fop = &simple_dir_operations;
4100         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4101         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4102
4103         return inode;
4104 }
4105
4106 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4107 {
4108         struct inode *inode;
4109         struct btrfs_root *root = BTRFS_I(dir)->root;
4110         struct btrfs_root *sub_root = root;
4111         struct btrfs_key location;
4112         int index;
4113         int ret;
4114
4115         if (dentry->d_name.len > BTRFS_NAME_LEN)
4116                 return ERR_PTR(-ENAMETOOLONG);
4117
4118         ret = btrfs_inode_by_name(dir, dentry, &location);
4119
4120         if (ret < 0)
4121                 return ERR_PTR(ret);
4122
4123         if (location.objectid == 0)
4124                 return NULL;
4125
4126         if (location.type == BTRFS_INODE_ITEM_KEY) {
4127                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4128                 return inode;
4129         }
4130
4131         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4132
4133         index = srcu_read_lock(&root->fs_info->subvol_srcu);
4134         ret = fixup_tree_root_location(root, dir, dentry,
4135                                        &location, &sub_root);
4136         if (ret < 0) {
4137                 if (ret != -ENOENT)
4138                         inode = ERR_PTR(ret);
4139                 else
4140                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
4141         } else {
4142                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4143         }
4144         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4145
4146         if (!IS_ERR(inode) && root != sub_root) {
4147                 down_read(&root->fs_info->cleanup_work_sem);
4148                 if (!(inode->i_sb->s_flags & MS_RDONLY))
4149                         ret = btrfs_orphan_cleanup(sub_root);
4150                 up_read(&root->fs_info->cleanup_work_sem);
4151                 if (ret)
4152                         inode = ERR_PTR(ret);
4153         }
4154
4155         return inode;
4156 }
4157
4158 static int btrfs_dentry_delete(const struct dentry *dentry)
4159 {
4160         struct btrfs_root *root;
4161
4162         if (!dentry->d_inode && !IS_ROOT(dentry))
4163                 dentry = dentry->d_parent;
4164
4165         if (dentry->d_inode) {
4166                 root = BTRFS_I(dentry->d_inode)->root;
4167                 if (btrfs_root_refs(&root->root_item) == 0)
4168                         return 1;
4169         }
4170         return 0;
4171 }
4172
4173 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4174                                    struct nameidata *nd)
4175 {
4176         struct inode *inode;
4177
4178         inode = btrfs_lookup_dentry(dir, dentry);
4179         if (IS_ERR(inode))
4180                 return ERR_CAST(inode);
4181
4182         return d_splice_alias(inode, dentry);
4183 }
4184
4185 static unsigned char btrfs_filetype_table[] = {
4186         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4187 };
4188
4189 static int btrfs_real_readdir(struct file *filp, void *dirent,
4190                               filldir_t filldir)
4191 {
4192         struct inode *inode = filp->f_dentry->d_inode;
4193         struct btrfs_root *root = BTRFS_I(inode)->root;
4194         struct btrfs_item *item;
4195         struct btrfs_dir_item *di;
4196         struct btrfs_key key;
4197         struct btrfs_key found_key;
4198         struct btrfs_path *path;
4199         int ret;
4200         u32 nritems;
4201         struct extent_buffer *leaf;
4202         int slot;
4203         int advance;
4204         unsigned char d_type;
4205         int over = 0;
4206         u32 di_cur;
4207         u32 di_total;
4208         u32 di_len;
4209         int key_type = BTRFS_DIR_INDEX_KEY;
4210         char tmp_name[32];
4211         char *name_ptr;
4212         int name_len;
4213
4214         /* FIXME, use a real flag for deciding about the key type */
4215         if (root->fs_info->tree_root == root)
4216                 key_type = BTRFS_DIR_ITEM_KEY;
4217
4218         /* special case for "." */
4219         if (filp->f_pos == 0) {
4220                 over = filldir(dirent, ".", 1,
4221                                1, inode->i_ino,
4222                                DT_DIR);
4223                 if (over)
4224                         return 0;
4225                 filp->f_pos = 1;
4226         }
4227         /* special case for .., just use the back ref */
4228         if (filp->f_pos == 1) {
4229                 u64 pino = parent_ino(filp->f_path.dentry);
4230                 over = filldir(dirent, "..", 2,
4231                                2, pino, DT_DIR);
4232                 if (over)
4233                         return 0;
4234                 filp->f_pos = 2;
4235         }
4236         path = btrfs_alloc_path();
4237         path->reada = 2;
4238
4239         btrfs_set_key_type(&key, key_type);
4240         key.offset = filp->f_pos;
4241         key.objectid = inode->i_ino;
4242
4243         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4244         if (ret < 0)
4245                 goto err;
4246         advance = 0;
4247
4248         while (1) {
4249                 leaf = path->nodes[0];
4250                 nritems = btrfs_header_nritems(leaf);
4251                 slot = path->slots[0];
4252                 if (advance || slot >= nritems) {
4253                         if (slot >= nritems - 1) {
4254                                 ret = btrfs_next_leaf(root, path);
4255                                 if (ret)
4256                                         break;
4257                                 leaf = path->nodes[0];
4258                                 nritems = btrfs_header_nritems(leaf);
4259                                 slot = path->slots[0];
4260                         } else {
4261                                 slot++;
4262                                 path->slots[0]++;
4263                         }
4264                 }
4265
4266                 advance = 1;
4267                 item = btrfs_item_nr(leaf, slot);
4268                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4269
4270                 if (found_key.objectid != key.objectid)
4271                         break;
4272                 if (btrfs_key_type(&found_key) != key_type)
4273                         break;
4274                 if (found_key.offset < filp->f_pos)
4275                         continue;
4276
4277                 filp->f_pos = found_key.offset;
4278
4279                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4280                 di_cur = 0;
4281                 di_total = btrfs_item_size(leaf, item);
4282
4283                 while (di_cur < di_total) {
4284                         struct btrfs_key location;
4285
4286                         if (verify_dir_item(root, leaf, di))
4287                                 break;
4288
4289                         name_len = btrfs_dir_name_len(leaf, di);
4290                         if (name_len <= sizeof(tmp_name)) {
4291                                 name_ptr = tmp_name;
4292                         } else {
4293                                 name_ptr = kmalloc(name_len, GFP_NOFS);
4294                                 if (!name_ptr) {
4295                                         ret = -ENOMEM;
4296                                         goto err;
4297                                 }
4298                         }
4299                         read_extent_buffer(leaf, name_ptr,
4300                                            (unsigned long)(di + 1), name_len);
4301
4302                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4303                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
4304
4305                         /* is this a reference to our own snapshot? If so
4306                          * skip it
4307                          */
4308                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
4309                             location.objectid == root->root_key.objectid) {
4310                                 over = 0;
4311                                 goto skip;
4312                         }
4313                         over = filldir(dirent, name_ptr, name_len,
4314                                        found_key.offset, location.objectid,
4315                                        d_type);
4316
4317 skip:
4318                         if (name_ptr != tmp_name)
4319                                 kfree(name_ptr);
4320
4321                         if (over)
4322                                 goto nopos;
4323                         di_len = btrfs_dir_name_len(leaf, di) +
4324                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
4325                         di_cur += di_len;
4326                         di = (struct btrfs_dir_item *)((char *)di + di_len);
4327                 }
4328         }
4329
4330         /* Reached end of directory/root. Bump pos past the last item. */
4331         if (key_type == BTRFS_DIR_INDEX_KEY)
4332                 /*
4333                  * 32-bit glibc will use getdents64, but then strtol -
4334                  * so the last number we can serve is this.
4335                  */
4336                 filp->f_pos = 0x7fffffff;
4337         else
4338                 filp->f_pos++;
4339 nopos:
4340         ret = 0;
4341 err:
4342         btrfs_free_path(path);
4343         return ret;
4344 }
4345
4346 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4347 {
4348         struct btrfs_root *root = BTRFS_I(inode)->root;
4349         struct btrfs_trans_handle *trans;
4350         int ret = 0;
4351         bool nolock = false;
4352
4353         if (BTRFS_I(inode)->dummy_inode)
4354                 return 0;
4355
4356         smp_mb();
4357         nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4358
4359         if (wbc->sync_mode == WB_SYNC_ALL) {
4360                 if (nolock)
4361                         trans = btrfs_join_transaction_nolock(root, 1);
4362                 else
4363                         trans = btrfs_join_transaction(root, 1);
4364                 if (IS_ERR(trans))
4365                         return PTR_ERR(trans);
4366                 btrfs_set_trans_block_group(trans, inode);
4367                 if (nolock)
4368                         ret = btrfs_end_transaction_nolock(trans, root);
4369                 else
4370                         ret = btrfs_commit_transaction(trans, root);
4371         }
4372         return ret;
4373 }
4374
4375 /*
4376  * This is somewhat expensive, updating the tree every time the
4377  * inode changes.  But, it is most likely to find the inode in cache.
4378  * FIXME, needs more benchmarking...there are no reasons other than performance
4379  * to keep or drop this code.
4380  */
4381 void btrfs_dirty_inode(struct inode *inode)
4382 {
4383         struct btrfs_root *root = BTRFS_I(inode)->root;
4384         struct btrfs_trans_handle *trans;
4385         int ret;
4386
4387         if (BTRFS_I(inode)->dummy_inode)
4388                 return;
4389
4390         trans = btrfs_join_transaction(root, 1);
4391         BUG_ON(IS_ERR(trans));
4392         btrfs_set_trans_block_group(trans, inode);
4393
4394         ret = btrfs_update_inode(trans, root, inode);
4395         if (ret && ret == -ENOSPC) {
4396                 /* whoops, lets try again with the full transaction */
4397                 btrfs_end_transaction(trans, root);
4398                 trans = btrfs_start_transaction(root, 1);
4399                 if (IS_ERR(trans)) {
4400                         if (printk_ratelimit()) {
4401                                 printk(KERN_ERR "btrfs: fail to "
4402                                        "dirty  inode %lu error %ld\n",
4403                                        inode->i_ino, PTR_ERR(trans));
4404                         }
4405                         return;
4406                 }
4407                 btrfs_set_trans_block_group(trans, inode);
4408
4409                 ret = btrfs_update_inode(trans, root, inode);
4410                 if (ret) {
4411                         if (printk_ratelimit()) {
4412                                 printk(KERN_ERR "btrfs: fail to "
4413                                        "dirty  inode %lu error %d\n",
4414                                        inode->i_ino, ret);
4415                         }
4416                 }
4417         }
4418         btrfs_end_transaction(trans, root);
4419 }
4420
4421 /*
4422  * find the highest existing sequence number in a directory
4423  * and then set the in-memory index_cnt variable to reflect
4424  * free sequence numbers
4425  */
4426 static int btrfs_set_inode_index_count(struct inode *inode)
4427 {
4428         struct btrfs_root *root = BTRFS_I(inode)->root;
4429         struct btrfs_key key, found_key;
4430         struct btrfs_path *path;
4431         struct extent_buffer *leaf;
4432         int ret;
4433
4434         key.objectid = inode->i_ino;
4435         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4436         key.offset = (u64)-1;
4437
4438         path = btrfs_alloc_path();
4439         if (!path)
4440                 return -ENOMEM;
4441
4442         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4443         if (ret < 0)
4444                 goto out;
4445         /* FIXME: we should be able to handle this */
4446         if (ret == 0)
4447                 goto out;
4448         ret = 0;
4449
4450         /*
4451          * MAGIC NUMBER EXPLANATION:
4452          * since we search a directory based on f_pos we have to start at 2
4453          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4454          * else has to start at 2
4455          */
4456         if (path->slots[0] == 0) {
4457                 BTRFS_I(inode)->index_cnt = 2;
4458                 goto out;
4459         }
4460
4461         path->slots[0]--;
4462
4463         leaf = path->nodes[0];
4464         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4465
4466         if (found_key.objectid != inode->i_ino ||
4467             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4468                 BTRFS_I(inode)->index_cnt = 2;
4469                 goto out;
4470         }
4471
4472         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4473 out:
4474         btrfs_free_path(path);
4475         return ret;
4476 }
4477
4478 /*
4479  * helper to find a free sequence number in a given directory.  This current
4480  * code is very simple, later versions will do smarter things in the btree
4481  */
4482 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4483 {
4484         int ret = 0;
4485
4486         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4487                 ret = btrfs_set_inode_index_count(dir);
4488                 if (ret)
4489                         return ret;
4490         }
4491
4492         *index = BTRFS_I(dir)->index_cnt;
4493         BTRFS_I(dir)->index_cnt++;
4494
4495         return ret;
4496 }
4497
4498 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4499                                      struct btrfs_root *root,
4500                                      struct inode *dir,
4501                                      const char *name, int name_len,
4502                                      u64 ref_objectid, u64 objectid,
4503                                      u64 alloc_hint, int mode, u64 *index)
4504 {
4505         struct inode *inode;
4506         struct btrfs_inode_item *inode_item;
4507         struct btrfs_key *location;
4508         struct btrfs_path *path;
4509         struct btrfs_inode_ref *ref;
4510         struct btrfs_key key[2];
4511         u32 sizes[2];
4512         unsigned long ptr;
4513         int ret;
4514         int owner;
4515
4516         path = btrfs_alloc_path();
4517         BUG_ON(!path);
4518
4519         inode = new_inode(root->fs_info->sb);
4520         if (!inode)
4521                 return ERR_PTR(-ENOMEM);
4522
4523         if (dir) {
4524                 trace_btrfs_inode_request(dir);
4525
4526                 ret = btrfs_set_inode_index(dir, index);
4527                 if (ret) {
4528                         iput(inode);
4529                         return ERR_PTR(ret);
4530                 }
4531         }
4532         /*
4533          * index_cnt is ignored for everything but a dir,
4534          * btrfs_get_inode_index_count has an explanation for the magic
4535          * number
4536          */
4537         BTRFS_I(inode)->index_cnt = 2;
4538         BTRFS_I(inode)->root = root;
4539         BTRFS_I(inode)->generation = trans->transid;
4540         inode->i_generation = BTRFS_I(inode)->generation;
4541         btrfs_set_inode_space_info(root, inode);
4542
4543         if (mode & S_IFDIR)
4544                 owner = 0;
4545         else
4546                 owner = 1;
4547         BTRFS_I(inode)->block_group =
4548                         btrfs_find_block_group(root, 0, alloc_hint, owner);
4549
4550         key[0].objectid = objectid;
4551         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4552         key[0].offset = 0;
4553
4554         key[1].objectid = objectid;
4555         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4556         key[1].offset = ref_objectid;
4557
4558         sizes[0] = sizeof(struct btrfs_inode_item);
4559         sizes[1] = name_len + sizeof(*ref);
4560
4561         path->leave_spinning = 1;
4562         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4563         if (ret != 0)
4564                 goto fail;
4565
4566         inode_init_owner(inode, dir, mode);
4567         inode->i_ino = objectid;
4568         inode_set_bytes(inode, 0);
4569         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4570         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4571                                   struct btrfs_inode_item);
4572         fill_inode_item(trans, path->nodes[0], inode_item, inode);
4573
4574         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4575                              struct btrfs_inode_ref);
4576         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4577         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4578         ptr = (unsigned long)(ref + 1);
4579         write_extent_buffer(path->nodes[0], name, ptr, name_len);
4580
4581         btrfs_mark_buffer_dirty(path->nodes[0]);
4582         btrfs_free_path(path);
4583
4584         location = &BTRFS_I(inode)->location;
4585         location->objectid = objectid;
4586         location->offset = 0;
4587         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4588
4589         btrfs_inherit_iflags(inode, dir);
4590
4591         if ((mode & S_IFREG)) {
4592                 if (btrfs_test_opt(root, NODATASUM))
4593                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4594                 if (btrfs_test_opt(root, NODATACOW) ||
4595                     (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4596                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4597         }
4598
4599         insert_inode_hash(inode);
4600         inode_tree_add(inode);
4601
4602         trace_btrfs_inode_new(inode);
4603
4604         return inode;
4605 fail:
4606         if (dir)
4607                 BTRFS_I(dir)->index_cnt--;
4608         btrfs_free_path(path);
4609         iput(inode);
4610         return ERR_PTR(ret);
4611 }
4612
4613 static inline u8 btrfs_inode_type(struct inode *inode)
4614 {
4615         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4616 }
4617
4618 /*
4619  * utility function to add 'inode' into 'parent_inode' with
4620  * a give name and a given sequence number.
4621  * if 'add_backref' is true, also insert a backref from the
4622  * inode to the parent directory.
4623  */
4624 int btrfs_add_link(struct btrfs_trans_handle *trans,
4625                    struct inode *parent_inode, struct inode *inode,
4626                    const char *name, int name_len, int add_backref, u64 index)
4627 {
4628         int ret = 0;
4629         struct btrfs_key key;
4630         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4631
4632         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4633                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4634         } else {
4635                 key.objectid = inode->i_ino;
4636                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4637                 key.offset = 0;
4638         }
4639
4640         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4641                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4642                                          key.objectid, root->root_key.objectid,
4643                                          parent_inode->i_ino,
4644                                          index, name, name_len);
4645         } else if (add_backref) {
4646                 ret = btrfs_insert_inode_ref(trans, root,
4647                                              name, name_len, inode->i_ino,
4648                                              parent_inode->i_ino, index);
4649         }
4650
4651         if (ret == 0) {
4652                 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4653                                             parent_inode->i_ino, &key,
4654                                             btrfs_inode_type(inode), index);
4655                 BUG_ON(ret);
4656
4657                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4658                                    name_len * 2);
4659                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4660                 ret = btrfs_update_inode(trans, root, parent_inode);
4661         }
4662         return ret;
4663 }
4664
4665 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4666                             struct inode *dir, struct dentry *dentry,
4667                             struct inode *inode, int backref, u64 index)
4668 {
4669         int err = btrfs_add_link(trans, dir, inode,
4670                                  dentry->d_name.name, dentry->d_name.len,
4671                                  backref, index);
4672         if (!err) {
4673                 d_instantiate(dentry, inode);
4674                 return 0;
4675         }
4676         if (err > 0)
4677                 err = -EEXIST;
4678         return err;
4679 }
4680
4681 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4682                         int mode, dev_t rdev)
4683 {
4684         struct btrfs_trans_handle *trans;
4685         struct btrfs_root *root = BTRFS_I(dir)->root;
4686         struct inode *inode = NULL;
4687         int err;
4688         int drop_inode = 0;
4689         u64 objectid;
4690         unsigned long nr = 0;
4691         u64 index = 0;
4692
4693         if (!new_valid_dev(rdev))
4694                 return -EINVAL;
4695
4696         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4697         if (err)
4698                 return err;
4699
4700         /*
4701          * 2 for inode item and ref
4702          * 2 for dir items
4703          * 1 for xattr if selinux is on
4704          */
4705         trans = btrfs_start_transaction(root, 5);
4706         if (IS_ERR(trans))
4707                 return PTR_ERR(trans);
4708
4709         btrfs_set_trans_block_group(trans, dir);
4710
4711         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4712                                 dentry->d_name.len, dir->i_ino, objectid,
4713                                 BTRFS_I(dir)->block_group, mode, &index);
4714         err = PTR_ERR(inode);
4715         if (IS_ERR(inode))
4716                 goto out_unlock;
4717
4718         err = btrfs_init_inode_security(trans, inode, dir);
4719         if (err) {
4720                 drop_inode = 1;
4721                 goto out_unlock;
4722         }
4723
4724         btrfs_set_trans_block_group(trans, inode);
4725         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4726         if (err)
4727                 drop_inode = 1;
4728         else {
4729                 inode->i_op = &btrfs_special_inode_operations;
4730                 init_special_inode(inode, inode->i_mode, rdev);
4731                 btrfs_update_inode(trans, root, inode);
4732         }
4733         btrfs_update_inode_block_group(trans, inode);
4734         btrfs_update_inode_block_group(trans, dir);
4735 out_unlock:
4736         nr = trans->blocks_used;
4737         btrfs_end_transaction_throttle(trans, root);
4738         btrfs_btree_balance_dirty(root, nr);
4739         if (drop_inode) {
4740                 inode_dec_link_count(inode);
4741                 iput(inode);
4742         }
4743         return err;
4744 }
4745
4746 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4747                         int mode, struct nameidata *nd)
4748 {
4749         struct btrfs_trans_handle *trans;
4750         struct btrfs_root *root = BTRFS_I(dir)->root;
4751         struct inode *inode = NULL;
4752         int drop_inode = 0;
4753         int err;
4754         unsigned long nr = 0;
4755         u64 objectid;
4756         u64 index = 0;
4757
4758         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4759         if (err)
4760                 return err;
4761         /*
4762          * 2 for inode item and ref
4763          * 2 for dir items
4764          * 1 for xattr if selinux is on
4765          */
4766         trans = btrfs_start_transaction(root, 5);
4767         if (IS_ERR(trans))
4768                 return PTR_ERR(trans);
4769
4770         btrfs_set_trans_block_group(trans, dir);
4771
4772         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4773                                 dentry->d_name.len, dir->i_ino, objectid,
4774                                 BTRFS_I(dir)->block_group, mode, &index);
4775         err = PTR_ERR(inode);
4776         if (IS_ERR(inode))
4777                 goto out_unlock;
4778
4779         err = btrfs_init_inode_security(trans, inode, dir);
4780         if (err) {
4781                 drop_inode = 1;
4782                 goto out_unlock;
4783         }
4784
4785         btrfs_set_trans_block_group(trans, inode);
4786         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4787         if (err)
4788                 drop_inode = 1;
4789         else {
4790                 inode->i_mapping->a_ops = &btrfs_aops;
4791                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4792                 inode->i_fop = &btrfs_file_operations;
4793                 inode->i_op = &btrfs_file_inode_operations;
4794                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4795         }
4796         btrfs_update_inode_block_group(trans, inode);
4797         btrfs_update_inode_block_group(trans, dir);
4798 out_unlock:
4799         nr = trans->blocks_used;
4800         btrfs_end_transaction_throttle(trans, root);
4801         if (drop_inode) {
4802                 inode_dec_link_count(inode);
4803                 iput(inode);
4804         }
4805         btrfs_btree_balance_dirty(root, nr);
4806         return err;
4807 }
4808
4809 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4810                       struct dentry *dentry)
4811 {
4812         struct btrfs_trans_handle *trans;
4813         struct btrfs_root *root = BTRFS_I(dir)->root;
4814         struct inode *inode = old_dentry->d_inode;
4815         u64 index;
4816         unsigned long nr = 0;
4817         int err;
4818         int drop_inode = 0;
4819
4820         if (inode->i_nlink == 0)
4821                 return -ENOENT;
4822
4823         /* do not allow sys_link's with other subvols of the same device */
4824         if (root->objectid != BTRFS_I(inode)->root->objectid)
4825                 return -EXDEV;
4826
4827         btrfs_inc_nlink(inode);
4828         inode->i_ctime = CURRENT_TIME;
4829
4830         err = btrfs_set_inode_index(dir, &index);
4831         if (err)
4832                 goto fail;
4833
4834         /*
4835          * 2 items for inode and inode ref
4836          * 2 items for dir items
4837          * 1 item for parent inode
4838          */
4839         trans = btrfs_start_transaction(root, 5);
4840         if (IS_ERR(trans)) {
4841                 err = PTR_ERR(trans);
4842                 goto fail;
4843         }
4844
4845         btrfs_set_trans_block_group(trans, dir);
4846         ihold(inode);
4847
4848         err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4849
4850         if (err) {
4851                 drop_inode = 1;
4852         } else {
4853                 struct dentry *parent = dget_parent(dentry);
4854                 btrfs_update_inode_block_group(trans, dir);
4855                 err = btrfs_update_inode(trans, root, inode);
4856                 BUG_ON(err);
4857                 btrfs_log_new_name(trans, inode, NULL, parent);
4858                 dput(parent);
4859         }
4860
4861         nr = trans->blocks_used;
4862         btrfs_end_transaction_throttle(trans, root);
4863 fail:
4864         if (drop_inode) {
4865                 inode_dec_link_count(inode);
4866                 iput(inode);
4867         }
4868         btrfs_btree_balance_dirty(root, nr);
4869         return err;
4870 }
4871
4872 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4873 {
4874         struct inode *inode = NULL;
4875         struct btrfs_trans_handle *trans;
4876         struct btrfs_root *root = BTRFS_I(dir)->root;
4877         int err = 0;
4878         int drop_on_err = 0;
4879         u64 objectid = 0;
4880         u64 index = 0;
4881         unsigned long nr = 1;
4882
4883         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4884         if (err)
4885                 return err;
4886
4887         /*
4888          * 2 items for inode and ref
4889          * 2 items for dir items
4890          * 1 for xattr if selinux is on
4891          */
4892         trans = btrfs_start_transaction(root, 5);
4893         if (IS_ERR(trans))
4894                 return PTR_ERR(trans);
4895         btrfs_set_trans_block_group(trans, dir);
4896
4897         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4898                                 dentry->d_name.len, dir->i_ino, objectid,
4899                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4900                                 &index);
4901         if (IS_ERR(inode)) {
4902                 err = PTR_ERR(inode);
4903                 goto out_fail;
4904         }
4905
4906         drop_on_err = 1;
4907
4908         err = btrfs_init_inode_security(trans, inode, dir);
4909         if (err)
4910                 goto out_fail;
4911
4912         inode->i_op = &btrfs_dir_inode_operations;
4913         inode->i_fop = &btrfs_dir_file_operations;
4914         btrfs_set_trans_block_group(trans, inode);
4915
4916         btrfs_i_size_write(inode, 0);
4917         err = btrfs_update_inode(trans, root, inode);
4918         if (err)
4919                 goto out_fail;
4920
4921         err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4922                              dentry->d_name.len, 0, index);
4923         if (err)
4924                 goto out_fail;
4925
4926         d_instantiate(dentry, inode);
4927         drop_on_err = 0;
4928         btrfs_update_inode_block_group(trans, inode);
4929         btrfs_update_inode_block_group(trans, dir);
4930
4931 out_fail:
4932         nr = trans->blocks_used;
4933         btrfs_end_transaction_throttle(trans, root);
4934         if (drop_on_err)
4935                 iput(inode);
4936         btrfs_btree_balance_dirty(root, nr);
4937         return err;
4938 }
4939
4940 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4941  * and an extent that you want to insert, deal with overlap and insert
4942  * the new extent into the tree.
4943  */
4944 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4945                                 struct extent_map *existing,
4946                                 struct extent_map *em,
4947                                 u64 map_start, u64 map_len)
4948 {
4949         u64 start_diff;
4950
4951         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4952         start_diff = map_start - em->start;
4953         em->start = map_start;
4954         em->len = map_len;
4955         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4956             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4957                 em->block_start += start_diff;
4958                 em->block_len -= start_diff;
4959         }
4960         return add_extent_mapping(em_tree, em);
4961 }
4962
4963 static noinline int uncompress_inline(struct btrfs_path *path,
4964                                       struct inode *inode, struct page *page,
4965                                       size_t pg_offset, u64 extent_offset,
4966                                       struct btrfs_file_extent_item *item)
4967 {
4968         int ret;
4969         struct extent_buffer *leaf = path->nodes[0];
4970         char *tmp;
4971         size_t max_size;
4972         unsigned long inline_size;
4973         unsigned long ptr;
4974         int compress_type;
4975
4976         WARN_ON(pg_offset != 0);
4977         compress_type = btrfs_file_extent_compression(leaf, item);
4978         max_size = btrfs_file_extent_ram_bytes(leaf, item);
4979         inline_size = btrfs_file_extent_inline_item_len(leaf,
4980                                         btrfs_item_nr(leaf, path->slots[0]));
4981         tmp = kmalloc(inline_size, GFP_NOFS);
4982         ptr = btrfs_file_extent_inline_start(item);
4983
4984         read_extent_buffer(leaf, tmp, ptr, inline_size);
4985
4986         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4987         ret = btrfs_decompress(compress_type, tmp, page,
4988                                extent_offset, inline_size, max_size);
4989         if (ret) {
4990                 char *kaddr = kmap_atomic(page, KM_USER0);
4991                 unsigned long copy_size = min_t(u64,
4992                                   PAGE_CACHE_SIZE - pg_offset,
4993                                   max_size - extent_offset);
4994                 memset(kaddr + pg_offset, 0, copy_size);
4995                 kunmap_atomic(kaddr, KM_USER0);
4996         }
4997         kfree(tmp);
4998         return 0;
4999 }
5000
5001 /*
5002  * a bit scary, this does extent mapping from logical file offset to the disk.
5003  * the ugly parts come from merging extents from the disk with the in-ram
5004  * representation.  This gets more complex because of the data=ordered code,
5005  * where the in-ram extents might be locked pending data=ordered completion.
5006  *
5007  * This also copies inline extents directly into the page.
5008  */
5009
5010 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5011                                     size_t pg_offset, u64 start, u64 len,
5012                                     int create)
5013 {
5014         int ret;
5015         int err = 0;
5016         u64 bytenr;
5017         u64 extent_start = 0;
5018         u64 extent_end = 0;
5019         u64 objectid = inode->i_ino;
5020         u32 found_type;
5021         struct btrfs_path *path = NULL;
5022         struct btrfs_root *root = BTRFS_I(inode)->root;
5023         struct btrfs_file_extent_item *item;
5024         struct extent_buffer *leaf;
5025         struct btrfs_key found_key;
5026         struct extent_map *em = NULL;
5027         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5028         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5029         struct btrfs_trans_handle *trans = NULL;
5030         int compress_type;
5031
5032 again:
5033         read_lock(&em_tree->lock);
5034         em = lookup_extent_mapping(em_tree, start, len);
5035         if (em)
5036                 em->bdev = root->fs_info->fs_devices->latest_bdev;
5037         read_unlock(&em_tree->lock);
5038
5039         if (em) {
5040                 if (em->start > start || em->start + em->len <= start)
5041                         free_extent_map(em);
5042                 else if (em->block_start == EXTENT_MAP_INLINE && page)
5043                         free_extent_map(em);
5044                 else
5045                         goto out;
5046         }
5047         em = alloc_extent_map(GFP_NOFS);
5048         if (!em) {
5049                 err = -ENOMEM;
5050                 goto out;
5051         }
5052         em->bdev = root->fs_info->fs_devices->latest_bdev;
5053         em->start = EXTENT_MAP_HOLE;
5054         em->orig_start = EXTENT_MAP_HOLE;
5055         em->len = (u64)-1;
5056         em->block_len = (u64)-1;
5057
5058         if (!path) {
5059                 path = btrfs_alloc_path();
5060                 BUG_ON(!path);
5061         }
5062
5063         ret = btrfs_lookup_file_extent(trans, root, path,
5064                                        objectid, start, trans != NULL);
5065         if (ret < 0) {
5066                 err = ret;
5067                 goto out;
5068         }
5069
5070         if (ret != 0) {
5071                 if (path->slots[0] == 0)
5072                         goto not_found;
5073                 path->slots[0]--;
5074         }
5075
5076         leaf = path->nodes[0];
5077         item = btrfs_item_ptr(leaf, path->slots[0],
5078                               struct btrfs_file_extent_item);
5079         /* are we inside the extent that was found? */
5080         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5081         found_type = btrfs_key_type(&found_key);
5082         if (found_key.objectid != objectid ||
5083             found_type != BTRFS_EXTENT_DATA_KEY) {
5084                 goto not_found;
5085         }
5086
5087         found_type = btrfs_file_extent_type(leaf, item);
5088         extent_start = found_key.offset;
5089         compress_type = btrfs_file_extent_compression(leaf, item);
5090         if (found_type == BTRFS_FILE_EXTENT_REG ||
5091             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5092                 extent_end = extent_start +
5093                        btrfs_file_extent_num_bytes(leaf, item);
5094         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5095                 size_t size;
5096                 size = btrfs_file_extent_inline_len(leaf, item);
5097                 extent_end = (extent_start + size + root->sectorsize - 1) &
5098                         ~((u64)root->sectorsize - 1);
5099         }
5100
5101         if (start >= extent_end) {
5102                 path->slots[0]++;
5103                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5104                         ret = btrfs_next_leaf(root, path);
5105                         if (ret < 0) {
5106                                 err = ret;
5107                                 goto out;
5108                         }
5109                         if (ret > 0)
5110                                 goto not_found;
5111                         leaf = path->nodes[0];
5112                 }
5113                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5114                 if (found_key.objectid != objectid ||
5115                     found_key.type != BTRFS_EXTENT_DATA_KEY)
5116                         goto not_found;
5117                 if (start + len <= found_key.offset)
5118                         goto not_found;
5119                 em->start = start;
5120                 em->len = found_key.offset - start;
5121                 goto not_found_em;
5122         }
5123
5124         if (found_type == BTRFS_FILE_EXTENT_REG ||
5125             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5126                 em->start = extent_start;
5127                 em->len = extent_end - extent_start;
5128                 em->orig_start = extent_start -
5129                                  btrfs_file_extent_offset(leaf, item);
5130                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5131                 if (bytenr == 0) {
5132                         em->block_start = EXTENT_MAP_HOLE;
5133                         goto insert;
5134                 }
5135                 if (compress_type != BTRFS_COMPRESS_NONE) {
5136                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5137                         em->compress_type = compress_type;
5138                         em->block_start = bytenr;
5139                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5140                                                                          item);
5141                 } else {
5142                         bytenr += btrfs_file_extent_offset(leaf, item);
5143                         em->block_start = bytenr;
5144                         em->block_len = em->len;
5145                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5146                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5147                 }
5148                 goto insert;
5149         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5150                 unsigned long ptr;
5151                 char *map;
5152                 size_t size;
5153                 size_t extent_offset;
5154                 size_t copy_size;
5155
5156                 em->block_start = EXTENT_MAP_INLINE;
5157                 if (!page || create) {
5158                         em->start = extent_start;
5159                         em->len = extent_end - extent_start;
5160                         goto out;
5161                 }
5162
5163                 size = btrfs_file_extent_inline_len(leaf, item);
5164                 extent_offset = page_offset(page) + pg_offset - extent_start;
5165                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5166                                 size - extent_offset);
5167                 em->start = extent_start + extent_offset;
5168                 em->len = (copy_size + root->sectorsize - 1) &
5169                         ~((u64)root->sectorsize - 1);
5170                 em->orig_start = EXTENT_MAP_INLINE;
5171                 if (compress_type) {
5172                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5173                         em->compress_type = compress_type;
5174                 }
5175                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5176                 if (create == 0 && !PageUptodate(page)) {
5177                         if (btrfs_file_extent_compression(leaf, item) !=
5178                             BTRFS_COMPRESS_NONE) {
5179                                 ret = uncompress_inline(path, inode, page,
5180                                                         pg_offset,
5181                                                         extent_offset, item);
5182                                 BUG_ON(ret);
5183                         } else {
5184                                 map = kmap(page);
5185                                 read_extent_buffer(leaf, map + pg_offset, ptr,
5186                                                    copy_size);
5187                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5188                                         memset(map + pg_offset + copy_size, 0,
5189                                                PAGE_CACHE_SIZE - pg_offset -
5190                                                copy_size);
5191                                 }
5192                                 kunmap(page);
5193                         }
5194                         flush_dcache_page(page);
5195                 } else if (create && PageUptodate(page)) {
5196                         WARN_ON(1);
5197                         if (!trans) {
5198                                 kunmap(page);
5199                                 free_extent_map(em);
5200                                 em = NULL;
5201                                 btrfs_release_path(root, path);
5202                                 trans = btrfs_join_transaction(root, 1);
5203                                 if (IS_ERR(trans))
5204                                         return ERR_CAST(trans);
5205                                 goto again;
5206                         }
5207                         map = kmap(page);
5208                         write_extent_buffer(leaf, map + pg_offset, ptr,
5209                                             copy_size);
5210                         kunmap(page);
5211                         btrfs_mark_buffer_dirty(leaf);
5212                 }
5213                 set_extent_uptodate(io_tree, em->start,
5214                                     extent_map_end(em) - 1, GFP_NOFS);
5215                 goto insert;
5216         } else {
5217                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5218                 WARN_ON(1);
5219         }
5220 not_found:
5221         em->start = start;
5222         em->len = len;
5223 not_found_em:
5224         em->block_start = EXTENT_MAP_HOLE;
5225         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5226 insert:
5227         btrfs_release_path(root, path);
5228         if (em->start > start || extent_map_end(em) <= start) {
5229                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5230                        "[%llu %llu]\n", (unsigned long long)em->start,
5231                        (unsigned long long)em->len,
5232                        (unsigned long long)start,
5233                        (unsigned long long)len);
5234                 err = -EIO;
5235                 goto out;
5236         }
5237
5238         err = 0;
5239         write_lock(&em_tree->lock);
5240         ret = add_extent_mapping(em_tree, em);
5241         /* it is possible that someone inserted the extent into the tree
5242          * while we had the lock dropped.  It is also possible that
5243          * an overlapping map exists in the tree
5244          */
5245         if (ret == -EEXIST) {
5246                 struct extent_map *existing;
5247
5248                 ret = 0;
5249
5250                 existing = lookup_extent_mapping(em_tree, start, len);
5251                 if (existing && (existing->start > start ||
5252                     existing->start + existing->len <= start)) {
5253                         free_extent_map(existing);
5254                         existing = NULL;
5255                 }
5256                 if (!existing) {
5257                         existing = lookup_extent_mapping(em_tree, em->start,
5258                                                          em->len);
5259                         if (existing) {
5260                                 err = merge_extent_mapping(em_tree, existing,
5261                                                            em, start,
5262                                                            root->sectorsize);
5263                                 free_extent_map(existing);
5264                                 if (err) {
5265                                         free_extent_map(em);
5266                                         em = NULL;
5267                                 }
5268                         } else {
5269                                 err = -EIO;
5270                                 free_extent_map(em);
5271                                 em = NULL;
5272                         }
5273                 } else {
5274                         free_extent_map(em);
5275                         em = existing;
5276                         err = 0;
5277                 }
5278         }
5279         write_unlock(&em_tree->lock);
5280 out:
5281
5282         trace_btrfs_get_extent(root, em);
5283
5284         if (path)
5285                 btrfs_free_path(path);
5286         if (trans) {
5287                 ret = btrfs_end_transaction(trans, root);
5288                 if (!err)
5289                         err = ret;
5290         }
5291         if (err) {
5292                 free_extent_map(em);
5293                 return ERR_PTR(err);
5294         }
5295         return em;
5296 }
5297
5298 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5299                                            size_t pg_offset, u64 start, u64 len,
5300                                            int create)
5301 {
5302         struct extent_map *em;
5303         struct extent_map *hole_em = NULL;
5304         u64 range_start = start;
5305         u64 end;
5306         u64 found;
5307         u64 found_end;
5308         int err = 0;
5309
5310         em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5311         if (IS_ERR(em))
5312                 return em;
5313         if (em) {
5314                 /*
5315                  * if our em maps to a hole, there might
5316                  * actually be delalloc bytes behind it
5317                  */
5318                 if (em->block_start != EXTENT_MAP_HOLE)
5319                         return em;
5320                 else
5321                         hole_em = em;
5322         }
5323
5324         /* check to see if we've wrapped (len == -1 or similar) */
5325         end = start + len;
5326         if (end < start)
5327                 end = (u64)-1;
5328         else
5329                 end -= 1;
5330
5331         em = NULL;
5332
5333         /* ok, we didn't find anything, lets look for delalloc */
5334         found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5335                                  end, len, EXTENT_DELALLOC, 1);
5336         found_end = range_start + found;
5337         if (found_end < range_start)
5338                 found_end = (u64)-1;
5339
5340         /*
5341          * we didn't find anything useful, return
5342          * the original results from get_extent()
5343          */
5344         if (range_start > end || found_end <= start) {
5345                 em = hole_em;
5346                 hole_em = NULL;
5347                 goto out;
5348         }
5349
5350         /* adjust the range_start to make sure it doesn't
5351          * go backwards from the start they passed in
5352          */
5353         range_start = max(start,range_start);
5354         found = found_end - range_start;
5355
5356         if (found > 0) {
5357                 u64 hole_start = start;
5358                 u64 hole_len = len;
5359
5360                 em = alloc_extent_map(GFP_NOFS);
5361                 if (!em) {
5362                         err = -ENOMEM;
5363                         goto out;
5364                 }
5365                 /*
5366                  * when btrfs_get_extent can't find anything it
5367                  * returns one huge hole
5368                  *
5369                  * make sure what it found really fits our range, and
5370                  * adjust to make sure it is based on the start from
5371                  * the caller
5372                  */
5373                 if (hole_em) {
5374                         u64 calc_end = extent_map_end(hole_em);
5375
5376                         if (calc_end <= start || (hole_em->start > end)) {
5377                                 free_extent_map(hole_em);
5378                                 hole_em = NULL;
5379                         } else {
5380                                 hole_start = max(hole_em->start, start);
5381                                 hole_len = calc_end - hole_start;
5382                         }
5383                 }
5384                 em->bdev = NULL;
5385                 if (hole_em && range_start > hole_start) {
5386                         /* our hole starts before our delalloc, so we
5387                          * have to return just the parts of the hole
5388                          * that go until  the delalloc starts
5389                          */
5390                         em->len = min(hole_len,
5391                                       range_start - hole_start);
5392                         em->start = hole_start;
5393                         em->orig_start = hole_start;
5394                         /*
5395                          * don't adjust block start at all,
5396                          * it is fixed at EXTENT_MAP_HOLE
5397                          */
5398                         em->block_start = hole_em->block_start;
5399                         em->block_len = hole_len;
5400                 } else {
5401                         em->start = range_start;
5402                         em->len = found;
5403                         em->orig_start = range_start;
5404                         em->block_start = EXTENT_MAP_DELALLOC;
5405                         em->block_len = found;
5406                 }
5407         } else if (hole_em) {
5408                 return hole_em;
5409         }
5410 out:
5411
5412         free_extent_map(hole_em);
5413         if (err) {
5414                 free_extent_map(em);
5415                 return ERR_PTR(err);
5416         }
5417         return em;
5418 }
5419
5420 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5421                                                   u64 start, u64 len)
5422 {
5423         struct btrfs_root *root = BTRFS_I(inode)->root;
5424         struct btrfs_trans_handle *trans;
5425         struct extent_map *em;
5426         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5427         struct btrfs_key ins;
5428         u64 alloc_hint;
5429         int ret;
5430
5431         btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5432
5433         trans = btrfs_join_transaction(root, 0);
5434         if (IS_ERR(trans))
5435                 return ERR_CAST(trans);
5436
5437         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5438
5439         alloc_hint = get_extent_allocation_hint(inode, start, len);
5440         ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5441                                    alloc_hint, (u64)-1, &ins, 1);
5442         if (ret) {
5443                 em = ERR_PTR(ret);
5444                 goto out;
5445         }
5446
5447         em = alloc_extent_map(GFP_NOFS);
5448         if (!em) {
5449                 em = ERR_PTR(-ENOMEM);
5450                 goto out;
5451         }
5452
5453         em->start = start;
5454         em->orig_start = em->start;
5455         em->len = ins.offset;
5456
5457         em->block_start = ins.objectid;
5458         em->block_len = ins.offset;
5459         em->bdev = root->fs_info->fs_devices->latest_bdev;
5460         set_bit(EXTENT_FLAG_PINNED, &em->flags);
5461
5462         while (1) {
5463                 write_lock(&em_tree->lock);
5464                 ret = add_extent_mapping(em_tree, em);
5465                 write_unlock(&em_tree->lock);
5466                 if (ret != -EEXIST)
5467                         break;
5468                 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5469         }
5470
5471         ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5472                                            ins.offset, ins.offset, 0);
5473         if (ret) {
5474                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5475                 em = ERR_PTR(ret);
5476         }
5477 out:
5478         btrfs_end_transaction(trans, root);
5479         return em;
5480 }
5481
5482 /*
5483  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5484  * block must be cow'd
5485  */
5486 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5487                                       struct inode *inode, u64 offset, u64 len)
5488 {
5489         struct btrfs_path *path;
5490         int ret;
5491         struct extent_buffer *leaf;
5492         struct btrfs_root *root = BTRFS_I(inode)->root;
5493         struct btrfs_file_extent_item *fi;
5494         struct btrfs_key key;
5495         u64 disk_bytenr;
5496         u64 backref_offset;
5497         u64 extent_end;
5498         u64 num_bytes;
5499         int slot;
5500         int found_type;
5501
5502         path = btrfs_alloc_path();
5503         if (!path)
5504                 return -ENOMEM;
5505
5506         ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5507                                        offset, 0);
5508         if (ret < 0)
5509                 goto out;
5510
5511         slot = path->slots[0];
5512         if (ret == 1) {
5513                 if (slot == 0) {
5514                         /* can't find the item, must cow */
5515                         ret = 0;
5516                         goto out;
5517                 }
5518                 slot--;
5519         }
5520         ret = 0;
5521         leaf = path->nodes[0];
5522         btrfs_item_key_to_cpu(leaf, &key, slot);
5523         if (key.objectid != inode->i_ino ||
5524             key.type != BTRFS_EXTENT_DATA_KEY) {
5525                 /* not our file or wrong item type, must cow */
5526                 goto out;
5527         }
5528
5529         if (key.offset > offset) {
5530                 /* Wrong offset, must cow */
5531                 goto out;
5532         }
5533
5534         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5535         found_type = btrfs_file_extent_type(leaf, fi);
5536         if (found_type != BTRFS_FILE_EXTENT_REG &&
5537             found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5538                 /* not a regular extent, must cow */
5539                 goto out;
5540         }
5541         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5542         backref_offset = btrfs_file_extent_offset(leaf, fi);
5543
5544         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5545         if (extent_end < offset + len) {
5546                 /* extent doesn't include our full range, must cow */
5547                 goto out;
5548         }
5549
5550         if (btrfs_extent_readonly(root, disk_bytenr))
5551                 goto out;
5552
5553         /*
5554          * look for other files referencing this extent, if we
5555          * find any we must cow
5556          */
5557         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5558                                   key.offset - backref_offset, disk_bytenr))
5559                 goto out;
5560
5561         /*
5562          * adjust disk_bytenr and num_bytes to cover just the bytes
5563          * in this extent we are about to write.  If there
5564          * are any csums in that range we have to cow in order
5565          * to keep the csums correct
5566          */
5567         disk_bytenr += backref_offset;
5568         disk_bytenr += offset - key.offset;
5569         num_bytes = min(offset + len, extent_end) - offset;
5570         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5571                                 goto out;
5572         /*
5573          * all of the above have passed, it is safe to overwrite this extent
5574          * without cow
5575          */
5576         ret = 1;
5577 out:
5578         btrfs_free_path(path);
5579         return ret;
5580 }
5581
5582 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5583                                    struct buffer_head *bh_result, int create)
5584 {
5585         struct extent_map *em;
5586         struct btrfs_root *root = BTRFS_I(inode)->root;
5587         u64 start = iblock << inode->i_blkbits;
5588         u64 len = bh_result->b_size;
5589         struct btrfs_trans_handle *trans;
5590
5591         em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5592         if (IS_ERR(em))
5593                 return PTR_ERR(em);
5594
5595         /*
5596          * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5597          * io.  INLINE is special, and we could probably kludge it in here, but
5598          * it's still buffered so for safety lets just fall back to the generic
5599          * buffered path.
5600          *
5601          * For COMPRESSED we _have_ to read the entire extent in so we can
5602          * decompress it, so there will be buffering required no matter what we
5603          * do, so go ahead and fallback to buffered.
5604          *
5605          * We return -ENOTBLK because thats what makes DIO go ahead and go back
5606          * to buffered IO.  Don't blame me, this is the price we pay for using
5607          * the generic code.
5608          */
5609         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5610             em->block_start == EXTENT_MAP_INLINE) {
5611                 free_extent_map(em);
5612                 return -ENOTBLK;
5613         }
5614
5615         /* Just a good old fashioned hole, return */
5616         if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5617                         test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5618                 free_extent_map(em);
5619                 /* DIO will do one hole at a time, so just unlock a sector */
5620                 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5621                               start + root->sectorsize - 1, GFP_NOFS);
5622                 return 0;
5623         }
5624
5625         /*
5626          * We don't allocate a new extent in the following cases
5627          *
5628          * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5629          * existing extent.
5630          * 2) The extent is marked as PREALLOC.  We're good to go here and can
5631          * just use the extent.
5632          *
5633          */
5634         if (!create) {
5635                 len = em->len - (start - em->start);
5636                 goto map;
5637         }
5638
5639         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5640             ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5641              em->block_start != EXTENT_MAP_HOLE)) {
5642                 int type;
5643                 int ret;
5644                 u64 block_start;
5645
5646                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5647                         type = BTRFS_ORDERED_PREALLOC;
5648                 else
5649                         type = BTRFS_ORDERED_NOCOW;
5650                 len = min(len, em->len - (start - em->start));
5651                 block_start = em->block_start + (start - em->start);
5652
5653                 /*
5654                  * we're not going to log anything, but we do need
5655                  * to make sure the current transaction stays open
5656                  * while we look for nocow cross refs
5657                  */
5658                 trans = btrfs_join_transaction(root, 0);
5659                 if (IS_ERR(trans))
5660                         goto must_cow;
5661
5662                 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5663                         ret = btrfs_add_ordered_extent_dio(inode, start,
5664                                            block_start, len, len, type);
5665                         btrfs_end_transaction(trans, root);
5666                         if (ret) {
5667                                 free_extent_map(em);
5668                                 return ret;
5669                         }
5670                         goto unlock;
5671                 }
5672                 btrfs_end_transaction(trans, root);
5673         }
5674 must_cow:
5675         /*
5676          * this will cow the extent, reset the len in case we changed
5677          * it above
5678          */
5679         len = bh_result->b_size;
5680         free_extent_map(em);
5681         em = btrfs_new_extent_direct(inode, start, len);
5682         if (IS_ERR(em))
5683                 return PTR_ERR(em);
5684         len = min(len, em->len - (start - em->start));
5685 unlock:
5686         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5687                           EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5688                           0, NULL, GFP_NOFS);
5689 map:
5690         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5691                 inode->i_blkbits;
5692         bh_result->b_size = len;
5693         bh_result->b_bdev = em->bdev;
5694         set_buffer_mapped(bh_result);
5695         if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5696                 set_buffer_new(bh_result);
5697
5698         free_extent_map(em);
5699
5700         return 0;
5701 }
5702
5703 struct btrfs_dio_private {
5704         struct inode *inode;
5705         u64 logical_offset;
5706         u64 disk_bytenr;
5707         u64 bytes;
5708         u32 *csums;
5709         void *private;
5710
5711         /* number of bios pending for this dio */
5712         atomic_t pending_bios;
5713
5714         /* IO errors */
5715         int errors;
5716
5717         struct bio *orig_bio;
5718 };
5719
5720 static void btrfs_endio_direct_read(struct bio *bio, int err)
5721 {
5722         struct btrfs_dio_private *dip = bio->bi_private;
5723         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5724         struct bio_vec *bvec = bio->bi_io_vec;
5725         struct inode *inode = dip->inode;
5726         struct btrfs_root *root = BTRFS_I(inode)->root;
5727         u64 start;
5728         u32 *private = dip->csums;
5729
5730         start = dip->logical_offset;
5731         do {
5732                 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5733                         struct page *page = bvec->bv_page;
5734                         char *kaddr;
5735                         u32 csum = ~(u32)0;
5736                         unsigned long flags;
5737
5738                         local_irq_save(flags);
5739                         kaddr = kmap_atomic(page, KM_IRQ0);
5740                         csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5741                                                csum, bvec->bv_len);
5742                         btrfs_csum_final(csum, (char *)&csum);
5743                         kunmap_atomic(kaddr, KM_IRQ0);
5744                         local_irq_restore(flags);
5745
5746                         flush_dcache_page(bvec->bv_page);
5747                         if (csum != *private) {
5748                                 printk(KERN_ERR "btrfs csum failed ino %lu off"
5749                                       " %llu csum %u private %u\n",
5750                                       inode->i_ino, (unsigned long long)start,
5751                                       csum, *private);
5752                                 err = -EIO;
5753                         }
5754                 }
5755
5756                 start += bvec->bv_len;
5757                 private++;
5758                 bvec++;
5759         } while (bvec <= bvec_end);
5760
5761         unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5762                       dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5763         bio->bi_private = dip->private;
5764
5765         kfree(dip->csums);
5766         kfree(dip);
5767
5768         /* If we had a csum failure make sure to clear the uptodate flag */
5769         if (err)
5770                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5771         dio_end_io(bio, err);
5772 }
5773
5774 static void btrfs_endio_direct_write(struct bio *bio, int err)
5775 {
5776         struct btrfs_dio_private *dip = bio->bi_private;
5777         struct inode *inode = dip->inode;
5778         struct btrfs_root *root = BTRFS_I(inode)->root;
5779         struct btrfs_trans_handle *trans;
5780         struct btrfs_ordered_extent *ordered = NULL;
5781         struct extent_state *cached_state = NULL;
5782         u64 ordered_offset = dip->logical_offset;
5783         u64 ordered_bytes = dip->bytes;
5784         int ret;
5785
5786         if (err)
5787                 goto out_done;
5788 again:
5789         ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5790                                                    &ordered_offset,
5791                                                    ordered_bytes);
5792         if (!ret)
5793                 goto out_test;
5794
5795         BUG_ON(!ordered);
5796
5797         trans = btrfs_join_transaction(root, 1);
5798         if (IS_ERR(trans)) {
5799                 err = -ENOMEM;
5800                 goto out;
5801         }
5802         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5803
5804         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5805                 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5806                 if (!ret)
5807                         ret = btrfs_update_inode(trans, root, inode);
5808                 err = ret;
5809                 goto out;
5810         }
5811
5812         lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5813                          ordered->file_offset + ordered->len - 1, 0,
5814                          &cached_state, GFP_NOFS);
5815
5816         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5817                 ret = btrfs_mark_extent_written(trans, inode,
5818                                                 ordered->file_offset,
5819                                                 ordered->file_offset +
5820                                                 ordered->len);
5821                 if (ret) {
5822                         err = ret;
5823                         goto out_unlock;
5824                 }
5825         } else {
5826                 ret = insert_reserved_file_extent(trans, inode,
5827                                                   ordered->file_offset,
5828                                                   ordered->start,
5829                                                   ordered->disk_len,
5830                                                   ordered->len,
5831                                                   ordered->len,
5832                                                   0, 0, 0,
5833                                                   BTRFS_FILE_EXTENT_REG);
5834                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5835                                    ordered->file_offset, ordered->len);
5836                 if (ret) {
5837                         err = ret;
5838                         WARN_ON(1);
5839                         goto out_unlock;
5840                 }
5841         }
5842
5843         add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5844         btrfs_ordered_update_i_size(inode, 0, ordered);
5845         btrfs_update_inode(trans, root, inode);
5846 out_unlock:
5847         unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5848                              ordered->file_offset + ordered->len - 1,
5849                              &cached_state, GFP_NOFS);
5850 out:
5851         btrfs_delalloc_release_metadata(inode, ordered->len);
5852         btrfs_end_transaction(trans, root);
5853         ordered_offset = ordered->file_offset + ordered->len;
5854         btrfs_put_ordered_extent(ordered);
5855         btrfs_put_ordered_extent(ordered);
5856
5857 out_test:
5858         /*
5859          * our bio might span multiple ordered extents.  If we haven't
5860          * completed the accounting for the whole dio, go back and try again
5861          */
5862         if (ordered_offset < dip->logical_offset + dip->bytes) {
5863                 ordered_bytes = dip->logical_offset + dip->bytes -
5864                         ordered_offset;
5865                 goto again;
5866         }
5867 out_done:
5868         bio->bi_private = dip->private;
5869
5870         kfree(dip->csums);
5871         kfree(dip);
5872
5873         /* If we had an error make sure to clear the uptodate flag */
5874         if (err)
5875                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5876         dio_end_io(bio, err);
5877 }
5878
5879 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5880                                     struct bio *bio, int mirror_num,
5881                                     unsigned long bio_flags, u64 offset)
5882 {
5883         int ret;
5884         struct btrfs_root *root = BTRFS_I(inode)->root;
5885         ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5886         BUG_ON(ret);
5887         return 0;
5888 }
5889
5890 static void btrfs_end_dio_bio(struct bio *bio, int err)
5891 {
5892         struct btrfs_dio_private *dip = bio->bi_private;
5893
5894         if (err) {
5895                 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
5896                       "sector %#Lx len %u err no %d\n",
5897                       dip->inode->i_ino, bio->bi_rw,
5898                       (unsigned long long)bio->bi_sector, bio->bi_size, err);
5899                 dip->errors = 1;
5900
5901                 /*
5902                  * before atomic variable goto zero, we must make sure
5903                  * dip->errors is perceived to be set.
5904                  */
5905                 smp_mb__before_atomic_dec();
5906         }
5907
5908         /* if there are more bios still pending for this dio, just exit */
5909         if (!atomic_dec_and_test(&dip->pending_bios))
5910                 goto out;
5911
5912         if (dip->errors)
5913                 bio_io_error(dip->orig_bio);
5914         else {
5915                 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5916                 bio_endio(dip->orig_bio, 0);
5917         }
5918 out:
5919         bio_put(bio);
5920 }
5921
5922 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5923                                        u64 first_sector, gfp_t gfp_flags)
5924 {
5925         int nr_vecs = bio_get_nr_vecs(bdev);
5926         return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5927 }
5928
5929 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5930                                          int rw, u64 file_offset, int skip_sum,
5931                                          u32 *csums)
5932 {
5933         int write = rw & REQ_WRITE;
5934         struct btrfs_root *root = BTRFS_I(inode)->root;
5935         int ret;
5936
5937         bio_get(bio);
5938         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5939         if (ret)
5940                 goto err;
5941
5942         if (write && !skip_sum) {
5943                 ret = btrfs_wq_submit_bio(root->fs_info,
5944                                    inode, rw, bio, 0, 0,
5945                                    file_offset,
5946                                    __btrfs_submit_bio_start_direct_io,
5947                                    __btrfs_submit_bio_done);
5948                 goto err;
5949         } else if (!skip_sum) {
5950                 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
5951                                           file_offset, csums);
5952                 if (ret)
5953                         goto err;
5954         }
5955
5956         ret = btrfs_map_bio(root, rw, bio, 0, 1);
5957 err:
5958         bio_put(bio);
5959         return ret;
5960 }
5961
5962 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5963                                     int skip_sum)
5964 {
5965         struct inode *inode = dip->inode;
5966         struct btrfs_root *root = BTRFS_I(inode)->root;
5967         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5968         struct bio *bio;
5969         struct bio *orig_bio = dip->orig_bio;
5970         struct bio_vec *bvec = orig_bio->bi_io_vec;
5971         u64 start_sector = orig_bio->bi_sector;
5972         u64 file_offset = dip->logical_offset;
5973         u64 submit_len = 0;
5974         u64 map_length;
5975         int nr_pages = 0;
5976         u32 *csums = dip->csums;
5977         int ret = 0;
5978         int write = rw & REQ_WRITE;
5979
5980         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5981         if (!bio)
5982                 return -ENOMEM;
5983         bio->bi_private = dip;
5984         bio->bi_end_io = btrfs_end_dio_bio;
5985         atomic_inc(&dip->pending_bios);
5986
5987         map_length = orig_bio->bi_size;
5988         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5989                               &map_length, NULL, 0);
5990         if (ret) {
5991                 bio_put(bio);
5992                 return -EIO;
5993         }
5994
5995         while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5996                 if (unlikely(map_length < submit_len + bvec->bv_len ||
5997                     bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5998                                  bvec->bv_offset) < bvec->bv_len)) {
5999                         /*
6000                          * inc the count before we submit the bio so
6001                          * we know the end IO handler won't happen before
6002                          * we inc the count. Otherwise, the dip might get freed
6003                          * before we're done setting it up
6004                          */
6005                         atomic_inc(&dip->pending_bios);
6006                         ret = __btrfs_submit_dio_bio(bio, inode, rw,
6007                                                      file_offset, skip_sum,
6008                                                      csums);
6009                         if (ret) {
6010                                 bio_put(bio);
6011                                 atomic_dec(&dip->pending_bios);
6012                                 goto out_err;
6013                         }
6014
6015                         /* Write's use the ordered csums */
6016                         if (!write && !skip_sum)
6017                                 csums = csums + nr_pages;
6018                         start_sector += submit_len >> 9;
6019                         file_offset += submit_len;
6020
6021                         submit_len = 0;
6022                         nr_pages = 0;
6023
6024                         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6025                                                   start_sector, GFP_NOFS);
6026                         if (!bio)
6027                                 goto out_err;
6028                         bio->bi_private = dip;
6029                         bio->bi_end_io = btrfs_end_dio_bio;
6030
6031                         map_length = orig_bio->bi_size;
6032                         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6033                                               &map_length, NULL, 0);
6034                         if (ret) {
6035                                 bio_put(bio);
6036                                 goto out_err;
6037                         }
6038                 } else {
6039                         submit_len += bvec->bv_len;
6040                         nr_pages ++;
6041                         bvec++;
6042                 }
6043         }
6044
6045         ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6046                                      csums);
6047         if (!ret)
6048                 return 0;
6049
6050         bio_put(bio);
6051 out_err:
6052         dip->errors = 1;
6053         /*
6054          * before atomic variable goto zero, we must
6055          * make sure dip->errors is perceived to be set.
6056          */
6057         smp_mb__before_atomic_dec();
6058         if (atomic_dec_and_test(&dip->pending_bios))
6059                 bio_io_error(dip->orig_bio);
6060
6061         /* bio_end_io() will handle error, so we needn't return it */
6062         return 0;
6063 }
6064
6065 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6066                                 loff_t file_offset)
6067 {
6068         struct btrfs_root *root = BTRFS_I(inode)->root;
6069         struct btrfs_dio_private *dip;
6070         struct bio_vec *bvec = bio->bi_io_vec;
6071         int skip_sum;
6072         int write = rw & REQ_WRITE;
6073         int ret = 0;
6074
6075         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6076
6077         dip = kmalloc(sizeof(*dip), GFP_NOFS);
6078         if (!dip) {
6079                 ret = -ENOMEM;
6080                 goto free_ordered;
6081         }
6082         dip->csums = NULL;
6083
6084         /* Write's use the ordered csum stuff, so we don't need dip->csums */
6085         if (!write && !skip_sum) {
6086                 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6087                 if (!dip->csums) {
6088                         kfree(dip);
6089                         ret = -ENOMEM;
6090                         goto free_ordered;
6091                 }
6092         }
6093
6094         dip->private = bio->bi_private;
6095         dip->inode = inode;
6096         dip->logical_offset = file_offset;
6097
6098         dip->bytes = 0;
6099         do {
6100                 dip->bytes += bvec->bv_len;
6101                 bvec++;
6102         } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6103
6104         dip->disk_bytenr = (u64)bio->bi_sector << 9;
6105         bio->bi_private = dip;
6106         dip->errors = 0;
6107         dip->orig_bio = bio;
6108         atomic_set(&dip->pending_bios, 0);
6109
6110         if (write)
6111                 bio->bi_end_io = btrfs_endio_direct_write;
6112         else
6113                 bio->bi_end_io = btrfs_endio_direct_read;
6114
6115         ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6116         if (!ret)
6117                 return;
6118 free_ordered:
6119         /*
6120          * If this is a write, we need to clean up the reserved space and kill
6121          * the ordered extent.
6122          */
6123         if (write) {
6124                 struct btrfs_ordered_extent *ordered;
6125                 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6126                 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6127                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6128                         btrfs_free_reserved_extent(root, ordered->start,
6129                                                    ordered->disk_len);
6130                 btrfs_put_ordered_extent(ordered);
6131                 btrfs_put_ordered_extent(ordered);
6132         }
6133         bio_endio(bio, ret);
6134 }
6135
6136 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6137                         const struct iovec *iov, loff_t offset,
6138                         unsigned long nr_segs)
6139 {
6140         int seg;
6141         size_t size;
6142         unsigned long addr;
6143         unsigned blocksize_mask = root->sectorsize - 1;
6144         ssize_t retval = -EINVAL;
6145         loff_t end = offset;
6146
6147         if (offset & blocksize_mask)
6148                 goto out;
6149
6150         /* Check the memory alignment.  Blocks cannot straddle pages */
6151         for (seg = 0; seg < nr_segs; seg++) {
6152                 addr = (unsigned long)iov[seg].iov_base;
6153                 size = iov[seg].iov_len;
6154                 end += size;
6155                 if ((addr & blocksize_mask) || (size & blocksize_mask)) 
6156                         goto out;
6157         }
6158         retval = 0;
6159 out:
6160         return retval;
6161 }
6162 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6163                         const struct iovec *iov, loff_t offset,
6164                         unsigned long nr_segs)
6165 {
6166         struct file *file = iocb->ki_filp;
6167         struct inode *inode = file->f_mapping->host;
6168         struct btrfs_ordered_extent *ordered;
6169         struct extent_state *cached_state = NULL;
6170         u64 lockstart, lockend;
6171         ssize_t ret;
6172         int writing = rw & WRITE;
6173         int write_bits = 0;
6174         size_t count = iov_length(iov, nr_segs);
6175
6176         if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6177                             offset, nr_segs)) {
6178                 return 0;
6179         }
6180
6181         lockstart = offset;
6182         lockend = offset + count - 1;
6183
6184         if (writing) {
6185                 ret = btrfs_delalloc_reserve_space(inode, count);
6186                 if (ret)
6187                         goto out;
6188         }
6189
6190         while (1) {
6191                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6192                                  0, &cached_state, GFP_NOFS);
6193                 /*
6194                  * We're concerned with the entire range that we're going to be
6195                  * doing DIO to, so we need to make sure theres no ordered
6196                  * extents in this range.
6197                  */
6198                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6199                                                      lockend - lockstart + 1);
6200                 if (!ordered)
6201                         break;
6202                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6203                                      &cached_state, GFP_NOFS);
6204                 btrfs_start_ordered_extent(inode, ordered, 1);
6205                 btrfs_put_ordered_extent(ordered);
6206                 cond_resched();
6207         }
6208
6209         /*
6210          * we don't use btrfs_set_extent_delalloc because we don't want
6211          * the dirty or uptodate bits
6212          */
6213         if (writing) {
6214                 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6215                 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6216                                      EXTENT_DELALLOC, 0, NULL, &cached_state,
6217                                      GFP_NOFS);
6218                 if (ret) {
6219                         clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6220                                          lockend, EXTENT_LOCKED | write_bits,
6221                                          1, 0, &cached_state, GFP_NOFS);
6222                         goto out;
6223                 }
6224         }
6225
6226         free_extent_state(cached_state);
6227         cached_state = NULL;
6228
6229         ret = __blockdev_direct_IO(rw, iocb, inode,
6230                    BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6231                    iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6232                    btrfs_submit_direct, 0);
6233
6234         if (ret < 0 && ret != -EIOCBQUEUED) {
6235                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6236                               offset + iov_length(iov, nr_segs) - 1,
6237                               EXTENT_LOCKED | write_bits, 1, 0,
6238                               &cached_state, GFP_NOFS);
6239         } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6240                 /*
6241                  * We're falling back to buffered, unlock the section we didn't
6242                  * do IO on.
6243                  */
6244                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6245                               offset + iov_length(iov, nr_segs) - 1,
6246                               EXTENT_LOCKED | write_bits, 1, 0,
6247                               &cached_state, GFP_NOFS);
6248         }
6249 out:
6250         free_extent_state(cached_state);
6251         return ret;
6252 }
6253
6254 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6255                 __u64 start, __u64 len)
6256 {
6257         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6258 }
6259
6260 int btrfs_readpage(struct file *file, struct page *page)
6261 {
6262         struct extent_io_tree *tree;
6263         tree = &BTRFS_I(page->mapping->host)->io_tree;
6264         return extent_read_full_page(tree, page, btrfs_get_extent);
6265 }
6266
6267 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6268 {
6269         struct extent_io_tree *tree;
6270
6271
6272         if (current->flags & PF_MEMALLOC) {
6273                 redirty_page_for_writepage(wbc, page);
6274                 unlock_page(page);
6275                 return 0;
6276         }
6277         tree = &BTRFS_I(page->mapping->host)->io_tree;
6278         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6279 }
6280
6281 int btrfs_writepages(struct address_space *mapping,
6282                      struct writeback_control *wbc)
6283 {
6284         struct extent_io_tree *tree;
6285
6286         tree = &BTRFS_I(mapping->host)->io_tree;
6287         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6288 }
6289
6290 static int
6291 btrfs_readpages(struct file *file, struct address_space *mapping,
6292                 struct list_head *pages, unsigned nr_pages)
6293 {
6294         struct extent_io_tree *tree;
6295         tree = &BTRFS_I(mapping->host)->io_tree;
6296         return extent_readpages(tree, mapping, pages, nr_pages,
6297                                 btrfs_get_extent);
6298 }
6299 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6300 {
6301         struct extent_io_tree *tree;
6302         struct extent_map_tree *map;
6303         int ret;
6304
6305         tree = &BTRFS_I(page->mapping->host)->io_tree;
6306         map = &BTRFS_I(page->mapping->host)->extent_tree;
6307         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6308         if (ret == 1) {
6309                 ClearPagePrivate(page);
6310                 set_page_private(page, 0);
6311                 page_cache_release(page);
6312         }
6313         return ret;
6314 }
6315
6316 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6317 {
6318         if (PageWriteback(page) || PageDirty(page))
6319                 return 0;
6320         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6321 }
6322
6323 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6324 {
6325         struct extent_io_tree *tree;
6326         struct btrfs_ordered_extent *ordered;
6327         struct extent_state *cached_state = NULL;
6328         u64 page_start = page_offset(page);
6329         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6330
6331
6332         /*
6333          * we have the page locked, so new writeback can't start,
6334          * and the dirty bit won't be cleared while we are here.
6335          *
6336          * Wait for IO on this page so that we can safely clear
6337          * the PagePrivate2 bit and do ordered accounting
6338          */
6339         wait_on_page_writeback(page);
6340
6341         tree = &BTRFS_I(page->mapping->host)->io_tree;
6342         if (offset) {
6343                 btrfs_releasepage(page, GFP_NOFS);
6344                 return;
6345         }
6346         lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6347                          GFP_NOFS);
6348         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6349                                            page_offset(page));
6350         if (ordered) {
6351                 /*
6352                  * IO on this page will never be started, so we need
6353                  * to account for any ordered extents now
6354                  */
6355                 clear_extent_bit(tree, page_start, page_end,
6356                                  EXTENT_DIRTY | EXTENT_DELALLOC |
6357                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6358                                  &cached_state, GFP_NOFS);
6359                 /*
6360                  * whoever cleared the private bit is responsible
6361                  * for the finish_ordered_io
6362                  */
6363                 if (TestClearPagePrivate2(page)) {
6364                         btrfs_finish_ordered_io(page->mapping->host,
6365                                                 page_start, page_end);
6366                 }
6367                 btrfs_put_ordered_extent(ordered);
6368                 cached_state = NULL;
6369                 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6370                                  GFP_NOFS);
6371         }
6372         clear_extent_bit(tree, page_start, page_end,
6373                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6374                  EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6375         __btrfs_releasepage(page, GFP_NOFS);
6376
6377         ClearPageChecked(page);
6378         if (PagePrivate(page)) {
6379                 ClearPagePrivate(page);
6380                 set_page_private(page, 0);
6381                 page_cache_release(page);
6382         }
6383 }
6384
6385 /*
6386  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6387  * called from a page fault handler when a page is first dirtied. Hence we must
6388  * be careful to check for EOF conditions here. We set the page up correctly
6389  * for a written page which means we get ENOSPC checking when writing into
6390  * holes and correct delalloc and unwritten extent mapping on filesystems that
6391  * support these features.
6392  *
6393  * We are not allowed to take the i_mutex here so we have to play games to
6394  * protect against truncate races as the page could now be beyond EOF.  Because
6395  * vmtruncate() writes the inode size before removing pages, once we have the
6396  * page lock we can determine safely if the page is beyond EOF. If it is not
6397  * beyond EOF, then the page is guaranteed safe against truncation until we
6398  * unlock the page.
6399  */
6400 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6401 {
6402         struct page *page = vmf->page;
6403         struct inode *inode = fdentry(vma->vm_file)->d_inode;
6404         struct btrfs_root *root = BTRFS_I(inode)->root;
6405         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6406         struct btrfs_ordered_extent *ordered;
6407         struct extent_state *cached_state = NULL;
6408         char *kaddr;
6409         unsigned long zero_start;
6410         loff_t size;
6411         int ret;
6412         u64 page_start;
6413         u64 page_end;
6414
6415         ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6416         if (ret) {
6417                 if (ret == -ENOMEM)
6418                         ret = VM_FAULT_OOM;
6419                 else /* -ENOSPC, -EIO, etc */
6420                         ret = VM_FAULT_SIGBUS;
6421                 goto out;
6422         }
6423
6424         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6425 again:
6426         lock_page(page);
6427         size = i_size_read(inode);
6428         page_start = page_offset(page);
6429         page_end = page_start + PAGE_CACHE_SIZE - 1;
6430
6431         if ((page->mapping != inode->i_mapping) ||
6432             (page_start >= size)) {
6433                 /* page got truncated out from underneath us */
6434                 goto out_unlock;
6435         }
6436         wait_on_page_writeback(page);
6437
6438         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6439                          GFP_NOFS);
6440         set_page_extent_mapped(page);
6441
6442         /*
6443          * we can't set the delalloc bits if there are pending ordered
6444          * extents.  Drop our locks and wait for them to finish
6445          */
6446         ordered = btrfs_lookup_ordered_extent(inode, page_start);
6447         if (ordered) {
6448                 unlock_extent_cached(io_tree, page_start, page_end,
6449                                      &cached_state, GFP_NOFS);
6450                 unlock_page(page);
6451                 btrfs_start_ordered_extent(inode, ordered, 1);
6452                 btrfs_put_ordered_extent(ordered);
6453                 goto again;
6454         }
6455
6456         /*
6457          * XXX - page_mkwrite gets called every time the page is dirtied, even
6458          * if it was already dirty, so for space accounting reasons we need to
6459          * clear any delalloc bits for the range we are fixing to save.  There
6460          * is probably a better way to do this, but for now keep consistent with
6461          * prepare_pages in the normal write path.
6462          */
6463         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6464                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6465                           0, 0, &cached_state, GFP_NOFS);
6466
6467         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6468                                         &cached_state);
6469         if (ret) {
6470                 unlock_extent_cached(io_tree, page_start, page_end,
6471                                      &cached_state, GFP_NOFS);
6472                 ret = VM_FAULT_SIGBUS;
6473                 goto out_unlock;
6474         }
6475         ret = 0;
6476
6477         /* page is wholly or partially inside EOF */
6478         if (page_start + PAGE_CACHE_SIZE > size)
6479                 zero_start = size & ~PAGE_CACHE_MASK;
6480         else
6481                 zero_start = PAGE_CACHE_SIZE;
6482
6483         if (zero_start != PAGE_CACHE_SIZE) {
6484                 kaddr = kmap(page);
6485                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6486                 flush_dcache_page(page);
6487                 kunmap(page);
6488         }
6489         ClearPageChecked(page);
6490         set_page_dirty(page);
6491         SetPageUptodate(page);
6492
6493         BTRFS_I(inode)->last_trans = root->fs_info->generation;
6494         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6495
6496         unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6497
6498 out_unlock:
6499         if (!ret)
6500                 return VM_FAULT_LOCKED;
6501         unlock_page(page);
6502         btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6503 out:
6504         return ret;
6505 }
6506
6507 static int btrfs_truncate(struct inode *inode)
6508 {
6509         struct btrfs_root *root = BTRFS_I(inode)->root;
6510         int ret;
6511         int err = 0;
6512         struct btrfs_trans_handle *trans;
6513         unsigned long nr;
6514         u64 mask = root->sectorsize - 1;
6515
6516         ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6517         if (ret)
6518                 return ret;
6519
6520         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6521         btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6522
6523         trans = btrfs_start_transaction(root, 5);
6524         if (IS_ERR(trans))
6525                 return PTR_ERR(trans);
6526
6527         btrfs_set_trans_block_group(trans, inode);
6528
6529         ret = btrfs_orphan_add(trans, inode);
6530         if (ret) {
6531                 btrfs_end_transaction(trans, root);
6532                 return ret;
6533         }
6534
6535         nr = trans->blocks_used;
6536         btrfs_end_transaction(trans, root);
6537         btrfs_btree_balance_dirty(root, nr);
6538
6539         /* Now start a transaction for the truncate */
6540         trans = btrfs_start_transaction(root, 0);
6541         if (IS_ERR(trans))
6542                 return PTR_ERR(trans);
6543         btrfs_set_trans_block_group(trans, inode);
6544         trans->block_rsv = root->orphan_block_rsv;
6545
6546         /*
6547          * setattr is responsible for setting the ordered_data_close flag,
6548          * but that is only tested during the last file release.  That
6549          * could happen well after the next commit, leaving a great big
6550          * window where new writes may get lost if someone chooses to write
6551          * to this file after truncating to zero
6552          *
6553          * The inode doesn't have any dirty data here, and so if we commit
6554          * this is a noop.  If someone immediately starts writing to the inode
6555          * it is very likely we'll catch some of their writes in this
6556          * transaction, and the commit will find this file on the ordered
6557          * data list with good things to send down.
6558          *
6559          * This is a best effort solution, there is still a window where
6560          * using truncate to replace the contents of the file will
6561          * end up with a zero length file after a crash.
6562          */
6563         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6564                 btrfs_add_ordered_operation(trans, root, inode);
6565
6566         while (1) {
6567                 if (!trans) {
6568                         trans = btrfs_start_transaction(root, 0);
6569                         if (IS_ERR(trans))
6570                                 return PTR_ERR(trans);
6571                         btrfs_set_trans_block_group(trans, inode);
6572                         trans->block_rsv = root->orphan_block_rsv;
6573                 }
6574
6575                 ret = btrfs_block_rsv_check(trans, root,
6576                                             root->orphan_block_rsv, 0, 5);
6577                 if (ret == -EAGAIN) {
6578                         ret = btrfs_commit_transaction(trans, root);
6579                         if (ret)
6580                                 return ret;
6581                         trans = NULL;
6582                         continue;
6583                 } else if (ret) {
6584                         err = ret;
6585                         break;
6586                 }
6587
6588                 ret = btrfs_truncate_inode_items(trans, root, inode,
6589                                                  inode->i_size,
6590                                                  BTRFS_EXTENT_DATA_KEY);
6591                 if (ret != -EAGAIN) {
6592                         err = ret;
6593                         break;
6594                 }
6595
6596                 ret = btrfs_update_inode(trans, root, inode);
6597                 if (ret) {
6598                         err = ret;
6599                         break;
6600                 }
6601
6602                 nr = trans->blocks_used;
6603                 btrfs_end_transaction(trans, root);
6604                 trans = NULL;
6605                 btrfs_btree_balance_dirty(root, nr);
6606         }
6607
6608         if (ret == 0 && inode->i_nlink > 0) {
6609                 ret = btrfs_orphan_del(trans, inode);
6610                 if (ret)
6611                         err = ret;
6612         } else if (ret && inode->i_nlink > 0) {
6613                 /*
6614                  * Failed to do the truncate, remove us from the in memory
6615                  * orphan list.
6616                  */
6617                 ret = btrfs_orphan_del(NULL, inode);
6618         }
6619
6620         ret = btrfs_update_inode(trans, root, inode);
6621         if (ret && !err)
6622                 err = ret;
6623
6624         nr = trans->blocks_used;
6625         ret = btrfs_end_transaction_throttle(trans, root);
6626         if (ret && !err)
6627                 err = ret;
6628         btrfs_btree_balance_dirty(root, nr);
6629
6630         return err;
6631 }
6632
6633 /*
6634  * create a new subvolume directory/inode (helper for the ioctl).
6635  */
6636 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6637                              struct btrfs_root *new_root,
6638                              u64 new_dirid, u64 alloc_hint)
6639 {
6640         struct inode *inode;
6641         int err;
6642         u64 index = 0;
6643
6644         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6645                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6646         if (IS_ERR(inode))
6647                 return PTR_ERR(inode);
6648         inode->i_op = &btrfs_dir_inode_operations;
6649         inode->i_fop = &btrfs_dir_file_operations;
6650
6651         inode->i_nlink = 1;
6652         btrfs_i_size_write(inode, 0);
6653
6654         err = btrfs_update_inode(trans, new_root, inode);
6655         BUG_ON(err);
6656
6657         iput(inode);
6658         return 0;
6659 }
6660
6661 /* helper function for file defrag and space balancing.  This
6662  * forces readahead on a given range of bytes in an inode
6663  */
6664 unsigned long btrfs_force_ra(struct address_space *mapping,
6665                               struct file_ra_state *ra, struct file *file,
6666                               pgoff_t offset, pgoff_t last_index)
6667 {
6668         pgoff_t req_size = last_index - offset + 1;
6669
6670         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6671         return offset + req_size;
6672 }
6673
6674 struct inode *btrfs_alloc_inode(struct super_block *sb)
6675 {
6676         struct btrfs_inode *ei;
6677         struct inode *inode;
6678
6679         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6680         if (!ei)
6681                 return NULL;
6682
6683         ei->root = NULL;
6684         ei->space_info = NULL;
6685         ei->generation = 0;
6686         ei->sequence = 0;
6687         ei->last_trans = 0;
6688         ei->last_sub_trans = 0;
6689         ei->logged_trans = 0;
6690         ei->delalloc_bytes = 0;
6691         ei->reserved_bytes = 0;
6692         ei->disk_i_size = 0;
6693         ei->flags = 0;
6694         ei->index_cnt = (u64)-1;
6695         ei->last_unlink_trans = 0;
6696
6697         atomic_set(&ei->outstanding_extents, 0);
6698         atomic_set(&ei->reserved_extents, 0);
6699
6700         ei->ordered_data_close = 0;
6701         ei->orphan_meta_reserved = 0;
6702         ei->dummy_inode = 0;
6703         ei->force_compress = BTRFS_COMPRESS_NONE;
6704
6705         inode = &ei->vfs_inode;
6706         extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6707         extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6708         extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6709         mutex_init(&ei->log_mutex);
6710         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6711         INIT_LIST_HEAD(&ei->i_orphan);
6712         INIT_LIST_HEAD(&ei->delalloc_inodes);
6713         INIT_LIST_HEAD(&ei->ordered_operations);
6714         RB_CLEAR_NODE(&ei->rb_node);
6715
6716         return inode;
6717 }
6718
6719 static void btrfs_i_callback(struct rcu_head *head)
6720 {
6721         struct inode *inode = container_of(head, struct inode, i_rcu);
6722         INIT_LIST_HEAD(&inode->i_dentry);
6723         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6724 }
6725
6726 void btrfs_destroy_inode(struct inode *inode)
6727 {
6728         struct btrfs_ordered_extent *ordered;
6729         struct btrfs_root *root = BTRFS_I(inode)->root;
6730
6731         WARN_ON(!list_empty(&inode->i_dentry));
6732         WARN_ON(inode->i_data.nrpages);
6733         WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6734         WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
6735
6736         /*
6737          * This can happen where we create an inode, but somebody else also
6738          * created the same inode and we need to destroy the one we already
6739          * created.
6740          */
6741         if (!root)
6742                 goto free;
6743
6744         /*
6745          * Make sure we're properly removed from the ordered operation
6746          * lists.
6747          */
6748         smp_mb();
6749         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6750                 spin_lock(&root->fs_info->ordered_extent_lock);
6751                 list_del_init(&BTRFS_I(inode)->ordered_operations);
6752                 spin_unlock(&root->fs_info->ordered_extent_lock);
6753         }
6754
6755         if (root == root->fs_info->tree_root) {
6756                 struct btrfs_block_group_cache *block_group;
6757
6758                 block_group = btrfs_lookup_block_group(root->fs_info,
6759                                                 BTRFS_I(inode)->block_group);
6760                 if (block_group && block_group->inode == inode) {
6761                         spin_lock(&block_group->lock);
6762                         block_group->inode = NULL;
6763                         spin_unlock(&block_group->lock);
6764                         btrfs_put_block_group(block_group);
6765                 } else if (block_group) {
6766                         btrfs_put_block_group(block_group);
6767                 }
6768         }
6769
6770         spin_lock(&root->orphan_lock);
6771         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6772                 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6773                        inode->i_ino);
6774                 list_del_init(&BTRFS_I(inode)->i_orphan);
6775         }
6776         spin_unlock(&root->orphan_lock);
6777
6778         while (1) {
6779                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6780                 if (!ordered)
6781                         break;
6782                 else {
6783                         printk(KERN_ERR "btrfs found ordered "
6784                                "extent %llu %llu on inode cleanup\n",
6785                                (unsigned long long)ordered->file_offset,
6786                                (unsigned long long)ordered->len);
6787                         btrfs_remove_ordered_extent(inode, ordered);
6788                         btrfs_put_ordered_extent(ordered);
6789                         btrfs_put_ordered_extent(ordered);
6790                 }
6791         }
6792         inode_tree_del(inode);
6793         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6794 free:
6795         call_rcu(&inode->i_rcu, btrfs_i_callback);
6796 }
6797
6798 int btrfs_drop_inode(struct inode *inode)
6799 {
6800         struct btrfs_root *root = BTRFS_I(inode)->root;
6801
6802         if (btrfs_root_refs(&root->root_item) == 0 &&
6803             root != root->fs_info->tree_root)
6804                 return 1;
6805         else
6806                 return generic_drop_inode(inode);
6807 }
6808
6809 static void init_once(void *foo)
6810 {
6811         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6812
6813         inode_init_once(&ei->vfs_inode);
6814 }
6815
6816 void btrfs_destroy_cachep(void)
6817 {
6818         if (btrfs_inode_cachep)
6819                 kmem_cache_destroy(btrfs_inode_cachep);
6820         if (btrfs_trans_handle_cachep)
6821                 kmem_cache_destroy(btrfs_trans_handle_cachep);
6822         if (btrfs_transaction_cachep)
6823                 kmem_cache_destroy(btrfs_transaction_cachep);
6824         if (btrfs_path_cachep)
6825                 kmem_cache_destroy(btrfs_path_cachep);
6826         if (btrfs_free_space_cachep)
6827                 kmem_cache_destroy(btrfs_free_space_cachep);
6828 }
6829
6830 int btrfs_init_cachep(void)
6831 {
6832         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6833                         sizeof(struct btrfs_inode), 0,
6834                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6835         if (!btrfs_inode_cachep)
6836                 goto fail;
6837
6838         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6839                         sizeof(struct btrfs_trans_handle), 0,
6840                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6841         if (!btrfs_trans_handle_cachep)
6842                 goto fail;
6843
6844         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6845                         sizeof(struct btrfs_transaction), 0,
6846                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6847         if (!btrfs_transaction_cachep)
6848                 goto fail;
6849
6850         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6851                         sizeof(struct btrfs_path), 0,
6852                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6853         if (!btrfs_path_cachep)
6854                 goto fail;
6855
6856         btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6857                         sizeof(struct btrfs_free_space), 0,
6858                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6859         if (!btrfs_free_space_cachep)
6860                 goto fail;
6861
6862         return 0;
6863 fail:
6864         btrfs_destroy_cachep();
6865         return -ENOMEM;
6866 }
6867
6868 static int btrfs_getattr(struct vfsmount *mnt,
6869                          struct dentry *dentry, struct kstat *stat)
6870 {
6871         struct inode *inode = dentry->d_inode;
6872         generic_fillattr(inode, stat);
6873         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6874         stat->blksize = PAGE_CACHE_SIZE;
6875         stat->blocks = (inode_get_bytes(inode) +
6876                         BTRFS_I(inode)->delalloc_bytes) >> 9;
6877         return 0;
6878 }
6879
6880 /*
6881  * If a file is moved, it will inherit the cow and compression flags of the new
6882  * directory.
6883  */
6884 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6885 {
6886         struct btrfs_inode *b_dir = BTRFS_I(dir);
6887         struct btrfs_inode *b_inode = BTRFS_I(inode);
6888
6889         if (b_dir->flags & BTRFS_INODE_NODATACOW)
6890                 b_inode->flags |= BTRFS_INODE_NODATACOW;
6891         else
6892                 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6893
6894         if (b_dir->flags & BTRFS_INODE_COMPRESS)
6895                 b_inode->flags |= BTRFS_INODE_COMPRESS;
6896         else
6897                 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6898 }
6899
6900 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6901                            struct inode *new_dir, struct dentry *new_dentry)
6902 {
6903         struct btrfs_trans_handle *trans;
6904         struct btrfs_root *root = BTRFS_I(old_dir)->root;
6905         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6906         struct inode *new_inode = new_dentry->d_inode;
6907         struct inode *old_inode = old_dentry->d_inode;
6908         struct timespec ctime = CURRENT_TIME;
6909         u64 index = 0;
6910         u64 root_objectid;
6911         int ret;
6912
6913         if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6914                 return -EPERM;
6915
6916         /* we only allow rename subvolume link between subvolumes */
6917         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6918                 return -EXDEV;
6919
6920         if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6921             (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6922                 return -ENOTEMPTY;
6923
6924         if (S_ISDIR(old_inode->i_mode) && new_inode &&
6925             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6926                 return -ENOTEMPTY;
6927         /*
6928          * we're using rename to replace one file with another.
6929          * and the replacement file is large.  Start IO on it now so
6930          * we don't add too much work to the end of the transaction
6931          */
6932         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6933             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6934                 filemap_flush(old_inode->i_mapping);
6935
6936         /* close the racy window with snapshot create/destroy ioctl */
6937         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6938                 down_read(&root->fs_info->subvol_sem);
6939         /*
6940          * We want to reserve the absolute worst case amount of items.  So if
6941          * both inodes are subvols and we need to unlink them then that would
6942          * require 4 item modifications, but if they are both normal inodes it
6943          * would require 5 item modifications, so we'll assume their normal
6944          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6945          * should cover the worst case number of items we'll modify.
6946          */
6947         trans = btrfs_start_transaction(root, 20);
6948         if (IS_ERR(trans))
6949                 return PTR_ERR(trans);
6950
6951         btrfs_set_trans_block_group(trans, new_dir);
6952
6953         if (dest != root)
6954                 btrfs_record_root_in_trans(trans, dest);
6955
6956         ret = btrfs_set_inode_index(new_dir, &index);
6957         if (ret)
6958                 goto out_fail;
6959
6960         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6961                 /* force full log commit if subvolume involved. */
6962                 root->fs_info->last_trans_log_full_commit = trans->transid;
6963         } else {
6964                 ret = btrfs_insert_inode_ref(trans, dest,
6965                                              new_dentry->d_name.name,
6966                                              new_dentry->d_name.len,
6967                                              old_inode->i_ino,
6968                                              new_dir->i_ino, index);
6969                 if (ret)
6970                         goto out_fail;
6971                 /*
6972                  * this is an ugly little race, but the rename is required
6973                  * to make sure that if we crash, the inode is either at the
6974                  * old name or the new one.  pinning the log transaction lets
6975                  * us make sure we don't allow a log commit to come in after
6976                  * we unlink the name but before we add the new name back in.
6977                  */
6978                 btrfs_pin_log_trans(root);
6979         }
6980         /*
6981          * make sure the inode gets flushed if it is replacing
6982          * something.
6983          */
6984         if (new_inode && new_inode->i_size &&
6985             old_inode && S_ISREG(old_inode->i_mode)) {
6986                 btrfs_add_ordered_operation(trans, root, old_inode);
6987         }
6988
6989         old_dir->i_ctime = old_dir->i_mtime = ctime;
6990         new_dir->i_ctime = new_dir->i_mtime = ctime;
6991         old_inode->i_ctime = ctime;
6992
6993         if (old_dentry->d_parent != new_dentry->d_parent)
6994                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6995
6996         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6997                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6998                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6999                                         old_dentry->d_name.name,
7000                                         old_dentry->d_name.len);
7001         } else {
7002                 btrfs_inc_nlink(old_dentry->d_inode);
7003                 ret = btrfs_unlink_inode(trans, root, old_dir,
7004                                          old_dentry->d_inode,
7005                                          old_dentry->d_name.name,
7006                                          old_dentry->d_name.len);
7007         }
7008         BUG_ON(ret);
7009
7010         if (new_inode) {
7011                 new_inode->i_ctime = CURRENT_TIME;
7012                 if (unlikely(new_inode->i_ino ==
7013                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7014                         root_objectid = BTRFS_I(new_inode)->location.objectid;
7015                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
7016                                                 root_objectid,
7017                                                 new_dentry->d_name.name,
7018                                                 new_dentry->d_name.len);
7019                         BUG_ON(new_inode->i_nlink == 0);
7020                 } else {
7021                         ret = btrfs_unlink_inode(trans, dest, new_dir,
7022                                                  new_dentry->d_inode,
7023                                                  new_dentry->d_name.name,
7024                                                  new_dentry->d_name.len);
7025                 }
7026                 BUG_ON(ret);
7027                 if (new_inode->i_nlink == 0) {
7028                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7029                         BUG_ON(ret);
7030                 }
7031         }
7032
7033         fixup_inode_flags(new_dir, old_inode);
7034
7035         ret = btrfs_add_link(trans, new_dir, old_inode,
7036                              new_dentry->d_name.name,
7037                              new_dentry->d_name.len, 0, index);
7038         BUG_ON(ret);
7039
7040         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
7041                 struct dentry *parent = dget_parent(new_dentry);
7042                 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7043                 dput(parent);
7044                 btrfs_end_log_trans(root);
7045         }
7046 out_fail:
7047         btrfs_end_transaction_throttle(trans, root);
7048
7049         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
7050                 up_read(&root->fs_info->subvol_sem);
7051
7052         return ret;
7053 }
7054
7055 /*
7056  * some fairly slow code that needs optimization. This walks the list
7057  * of all the inodes with pending delalloc and forces them to disk.
7058  */
7059 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7060 {
7061         struct list_head *head = &root->fs_info->delalloc_inodes;
7062         struct btrfs_inode *binode;
7063         struct inode *inode;
7064
7065         if (root->fs_info->sb->s_flags & MS_RDONLY)
7066                 return -EROFS;
7067
7068         spin_lock(&root->fs_info->delalloc_lock);
7069         while (!list_empty(head)) {
7070                 binode = list_entry(head->next, struct btrfs_inode,
7071                                     delalloc_inodes);
7072                 inode = igrab(&binode->vfs_inode);
7073                 if (!inode)
7074                         list_del_init(&binode->delalloc_inodes);
7075                 spin_unlock(&root->fs_info->delalloc_lock);
7076                 if (inode) {
7077                         filemap_flush(inode->i_mapping);
7078                         if (delay_iput)
7079                                 btrfs_add_delayed_iput(inode);
7080                         else
7081                                 iput(inode);
7082                 }
7083                 cond_resched();
7084                 spin_lock(&root->fs_info->delalloc_lock);
7085         }
7086         spin_unlock(&root->fs_info->delalloc_lock);
7087
7088         /* the filemap_flush will queue IO into the worker threads, but
7089          * we have to make sure the IO is actually started and that
7090          * ordered extents get created before we return
7091          */
7092         atomic_inc(&root->fs_info->async_submit_draining);
7093         while (atomic_read(&root->fs_info->nr_async_submits) ||
7094               atomic_read(&root->fs_info->async_delalloc_pages)) {
7095                 wait_event(root->fs_info->async_submit_wait,
7096                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7097                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7098         }
7099         atomic_dec(&root->fs_info->async_submit_draining);
7100         return 0;
7101 }
7102
7103 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7104                                    int sync)
7105 {
7106         struct btrfs_inode *binode;
7107         struct inode *inode = NULL;
7108
7109         spin_lock(&root->fs_info->delalloc_lock);
7110         while (!list_empty(&root->fs_info->delalloc_inodes)) {
7111                 binode = list_entry(root->fs_info->delalloc_inodes.next,
7112                                     struct btrfs_inode, delalloc_inodes);
7113                 inode = igrab(&binode->vfs_inode);
7114                 if (inode) {
7115                         list_move_tail(&binode->delalloc_inodes,
7116                                        &root->fs_info->delalloc_inodes);
7117                         break;
7118                 }
7119
7120                 list_del_init(&binode->delalloc_inodes);
7121                 cond_resched_lock(&root->fs_info->delalloc_lock);
7122         }
7123         spin_unlock(&root->fs_info->delalloc_lock);
7124
7125         if (inode) {
7126                 if (sync) {
7127                         filemap_write_and_wait(inode->i_mapping);
7128                         /*
7129                          * We have to do this because compression doesn't
7130                          * actually set PG_writeback until it submits the pages
7131                          * for IO, which happens in an async thread, so we could
7132                          * race and not actually wait for any writeback pages
7133                          * because they've not been submitted yet.  Technically
7134                          * this could still be the case for the ordered stuff
7135                          * since the async thread may not have started to do its
7136                          * work yet.  If this becomes the case then we need to
7137                          * figure out a way to make sure that in writepage we
7138                          * wait for any async pages to be submitted before
7139                          * returning so that fdatawait does what its supposed to
7140                          * do.
7141                          */
7142                         btrfs_wait_ordered_range(inode, 0, (u64)-1);
7143                 } else {
7144                         filemap_flush(inode->i_mapping);
7145                 }
7146                 if (delay_iput)
7147                         btrfs_add_delayed_iput(inode);
7148                 else
7149                         iput(inode);
7150                 return 1;
7151         }
7152         return 0;
7153 }
7154
7155 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7156                          const char *symname)
7157 {
7158         struct btrfs_trans_handle *trans;
7159         struct btrfs_root *root = BTRFS_I(dir)->root;
7160         struct btrfs_path *path;
7161         struct btrfs_key key;
7162         struct inode *inode = NULL;
7163         int err;
7164         int drop_inode = 0;
7165         u64 objectid;
7166         u64 index = 0 ;
7167         int name_len;
7168         int datasize;
7169         unsigned long ptr;
7170         struct btrfs_file_extent_item *ei;
7171         struct extent_buffer *leaf;
7172         unsigned long nr = 0;
7173
7174         name_len = strlen(symname) + 1;
7175         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7176                 return -ENAMETOOLONG;
7177
7178         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
7179         if (err)
7180                 return err;
7181         /*
7182          * 2 items for inode item and ref
7183          * 2 items for dir items
7184          * 1 item for xattr if selinux is on
7185          */
7186         trans = btrfs_start_transaction(root, 5);
7187         if (IS_ERR(trans))
7188                 return PTR_ERR(trans);
7189
7190         btrfs_set_trans_block_group(trans, dir);
7191
7192         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7193                                 dentry->d_name.len, dir->i_ino, objectid,
7194                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7195                                 &index);
7196         err = PTR_ERR(inode);
7197         if (IS_ERR(inode))
7198                 goto out_unlock;
7199
7200         err = btrfs_init_inode_security(trans, inode, dir);
7201         if (err) {
7202                 drop_inode = 1;
7203                 goto out_unlock;
7204         }
7205
7206         btrfs_set_trans_block_group(trans, inode);
7207         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7208         if (err)
7209                 drop_inode = 1;
7210         else {
7211                 inode->i_mapping->a_ops = &btrfs_aops;
7212                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7213                 inode->i_fop = &btrfs_file_operations;
7214                 inode->i_op = &btrfs_file_inode_operations;
7215                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7216         }
7217         btrfs_update_inode_block_group(trans, inode);
7218         btrfs_update_inode_block_group(trans, dir);
7219         if (drop_inode)
7220                 goto out_unlock;
7221
7222         path = btrfs_alloc_path();
7223         BUG_ON(!path);
7224         key.objectid = inode->i_ino;
7225         key.offset = 0;
7226         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7227         datasize = btrfs_file_extent_calc_inline_size(name_len);
7228         err = btrfs_insert_empty_item(trans, root, path, &key,
7229                                       datasize);
7230         if (err) {
7231                 drop_inode = 1;
7232                 goto out_unlock;
7233         }
7234         leaf = path->nodes[0];
7235         ei = btrfs_item_ptr(leaf, path->slots[0],
7236                             struct btrfs_file_extent_item);
7237         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7238         btrfs_set_file_extent_type(leaf, ei,
7239                                    BTRFS_FILE_EXTENT_INLINE);
7240         btrfs_set_file_extent_encryption(leaf, ei, 0);
7241         btrfs_set_file_extent_compression(leaf, ei, 0);
7242         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7243         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7244
7245         ptr = btrfs_file_extent_inline_start(ei);
7246         write_extent_buffer(leaf, symname, ptr, name_len);
7247         btrfs_mark_buffer_dirty(leaf);
7248         btrfs_free_path(path);
7249
7250         inode->i_op = &btrfs_symlink_inode_operations;
7251         inode->i_mapping->a_ops = &btrfs_symlink_aops;
7252         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7253         inode_set_bytes(inode, name_len);
7254         btrfs_i_size_write(inode, name_len - 1);
7255         err = btrfs_update_inode(trans, root, inode);
7256         if (err)
7257                 drop_inode = 1;
7258
7259 out_unlock:
7260         nr = trans->blocks_used;
7261         btrfs_end_transaction_throttle(trans, root);
7262         if (drop_inode) {
7263                 inode_dec_link_count(inode);
7264                 iput(inode);
7265         }
7266         btrfs_btree_balance_dirty(root, nr);
7267         return err;
7268 }
7269
7270 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7271                                        u64 start, u64 num_bytes, u64 min_size,
7272                                        loff_t actual_len, u64 *alloc_hint,
7273                                        struct btrfs_trans_handle *trans)
7274 {
7275         struct btrfs_root *root = BTRFS_I(inode)->root;
7276         struct btrfs_key ins;
7277         u64 cur_offset = start;
7278         u64 i_size;
7279         int ret = 0;
7280         bool own_trans = true;
7281
7282         if (trans)
7283                 own_trans = false;
7284         while (num_bytes > 0) {
7285                 if (own_trans) {
7286                         trans = btrfs_start_transaction(root, 3);
7287                         if (IS_ERR(trans)) {
7288                                 ret = PTR_ERR(trans);
7289                                 break;
7290                         }
7291                 }
7292
7293                 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7294                                            0, *alloc_hint, (u64)-1, &ins, 1);
7295                 if (ret) {
7296                         if (own_trans)
7297                                 btrfs_end_transaction(trans, root);
7298                         break;
7299                 }
7300
7301                 ret = insert_reserved_file_extent(trans, inode,
7302                                                   cur_offset, ins.objectid,
7303                                                   ins.offset, ins.offset,
7304                                                   ins.offset, 0, 0, 0,
7305                                                   BTRFS_FILE_EXTENT_PREALLOC);
7306                 BUG_ON(ret);
7307                 btrfs_drop_extent_cache(inode, cur_offset,
7308                                         cur_offset + ins.offset -1, 0);
7309
7310                 num_bytes -= ins.offset;
7311                 cur_offset += ins.offset;
7312                 *alloc_hint = ins.objectid + ins.offset;
7313
7314                 inode->i_ctime = CURRENT_TIME;
7315                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7316                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7317                     (actual_len > inode->i_size) &&
7318                     (cur_offset > inode->i_size)) {
7319                         if (cur_offset > actual_len)
7320                                 i_size = actual_len;
7321                         else
7322                                 i_size = cur_offset;
7323                         i_size_write(inode, i_size);
7324                         btrfs_ordered_update_i_size(inode, i_size, NULL);
7325                 }
7326
7327                 ret = btrfs_update_inode(trans, root, inode);
7328                 BUG_ON(ret);
7329
7330                 if (own_trans)
7331                         btrfs_end_transaction(trans, root);
7332         }
7333         return ret;
7334 }
7335
7336 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7337                               u64 start, u64 num_bytes, u64 min_size,
7338                               loff_t actual_len, u64 *alloc_hint)
7339 {
7340         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7341                                            min_size, actual_len, alloc_hint,
7342                                            NULL);
7343 }
7344
7345 int btrfs_prealloc_file_range_trans(struct inode *inode,
7346                                     struct btrfs_trans_handle *trans, int mode,
7347                                     u64 start, u64 num_bytes, u64 min_size,
7348                                     loff_t actual_len, u64 *alloc_hint)
7349 {
7350         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7351                                            min_size, actual_len, alloc_hint, trans);
7352 }
7353
7354 static int btrfs_set_page_dirty(struct page *page)
7355 {
7356         return __set_page_dirty_nobuffers(page);
7357 }
7358
7359 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7360 {
7361         struct btrfs_root *root = BTRFS_I(inode)->root;
7362
7363         if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7364                 return -EROFS;
7365         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7366                 return -EACCES;
7367         return generic_permission(inode, mask, flags, btrfs_check_acl);
7368 }
7369
7370 static const struct inode_operations btrfs_dir_inode_operations = {
7371         .getattr        = btrfs_getattr,
7372         .lookup         = btrfs_lookup,
7373         .create         = btrfs_create,
7374         .unlink         = btrfs_unlink,
7375         .link           = btrfs_link,
7376         .mkdir          = btrfs_mkdir,
7377         .rmdir          = btrfs_rmdir,
7378         .rename         = btrfs_rename,
7379         .symlink        = btrfs_symlink,
7380         .setattr        = btrfs_setattr,
7381         .mknod          = btrfs_mknod,
7382         .setxattr       = btrfs_setxattr,
7383         .getxattr       = btrfs_getxattr,
7384         .listxattr      = btrfs_listxattr,
7385         .removexattr    = btrfs_removexattr,
7386         .permission     = btrfs_permission,
7387 };
7388 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7389         .lookup         = btrfs_lookup,
7390         .permission     = btrfs_permission,
7391 };
7392
7393 static const struct file_operations btrfs_dir_file_operations = {
7394         .llseek         = generic_file_llseek,
7395         .read           = generic_read_dir,
7396         .readdir        = btrfs_real_readdir,
7397         .unlocked_ioctl = btrfs_ioctl,
7398 #ifdef CONFIG_COMPAT
7399         .compat_ioctl   = btrfs_ioctl,
7400 #endif
7401         .release        = btrfs_release_file,
7402         .fsync          = btrfs_sync_file,
7403 };
7404
7405 static struct extent_io_ops btrfs_extent_io_ops = {
7406         .fill_delalloc = run_delalloc_range,
7407         .submit_bio_hook = btrfs_submit_bio_hook,
7408         .merge_bio_hook = btrfs_merge_bio_hook,
7409         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7410         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7411         .writepage_start_hook = btrfs_writepage_start_hook,
7412         .readpage_io_failed_hook = btrfs_io_failed_hook,
7413         .set_bit_hook = btrfs_set_bit_hook,
7414         .clear_bit_hook = btrfs_clear_bit_hook,
7415         .merge_extent_hook = btrfs_merge_extent_hook,
7416         .split_extent_hook = btrfs_split_extent_hook,
7417 };
7418
7419 /*
7420  * btrfs doesn't support the bmap operation because swapfiles
7421  * use bmap to make a mapping of extents in the file.  They assume
7422  * these extents won't change over the life of the file and they
7423  * use the bmap result to do IO directly to the drive.
7424  *
7425  * the btrfs bmap call would return logical addresses that aren't
7426  * suitable for IO and they also will change frequently as COW
7427  * operations happen.  So, swapfile + btrfs == corruption.
7428  *
7429  * For now we're avoiding this by dropping bmap.
7430  */
7431 static const struct address_space_operations btrfs_aops = {
7432         .readpage       = btrfs_readpage,
7433         .writepage      = btrfs_writepage,
7434         .writepages     = btrfs_writepages,
7435         .readpages      = btrfs_readpages,
7436         .sync_page      = block_sync_page,
7437         .direct_IO      = btrfs_direct_IO,
7438         .invalidatepage = btrfs_invalidatepage,
7439         .releasepage    = btrfs_releasepage,
7440         .set_page_dirty = btrfs_set_page_dirty,
7441         .error_remove_page = generic_error_remove_page,
7442 };
7443
7444 static const struct address_space_operations btrfs_symlink_aops = {
7445         .readpage       = btrfs_readpage,
7446         .writepage      = btrfs_writepage,
7447         .invalidatepage = btrfs_invalidatepage,
7448         .releasepage    = btrfs_releasepage,
7449 };
7450
7451 static const struct inode_operations btrfs_file_inode_operations = {
7452         .getattr        = btrfs_getattr,
7453         .setattr        = btrfs_setattr,
7454         .setxattr       = btrfs_setxattr,
7455         .getxattr       = btrfs_getxattr,
7456         .listxattr      = btrfs_listxattr,
7457         .removexattr    = btrfs_removexattr,
7458         .permission     = btrfs_permission,
7459         .fiemap         = btrfs_fiemap,
7460 };
7461 static const struct inode_operations btrfs_special_inode_operations = {
7462         .getattr        = btrfs_getattr,
7463         .setattr        = btrfs_setattr,
7464         .permission     = btrfs_permission,
7465         .setxattr       = btrfs_setxattr,
7466         .getxattr       = btrfs_getxattr,
7467         .listxattr      = btrfs_listxattr,
7468         .removexattr    = btrfs_removexattr,
7469 };
7470 static const struct inode_operations btrfs_symlink_inode_operations = {
7471         .readlink       = generic_readlink,
7472         .follow_link    = page_follow_link_light,
7473         .put_link       = page_put_link,
7474         .getattr        = btrfs_getattr,
7475         .permission     = btrfs_permission,
7476         .setxattr       = btrfs_setxattr,
7477         .getxattr       = btrfs_getxattr,
7478         .listxattr      = btrfs_listxattr,
7479         .removexattr    = btrfs_removexattr,
7480 };
7481
7482 const struct dentry_operations btrfs_dentry_operations = {
7483         .d_delete       = btrfs_dentry_delete,
7484 };