btrfs: don't mess with i_nlink of unlocked inode in rename()
[pandora-kernel.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53 #include "free-space-cache.h"
54
55 struct btrfs_iget_args {
56         u64 ino;
57         struct btrfs_root *root;
58 };
59
60 static const struct inode_operations btrfs_dir_inode_operations;
61 static const struct inode_operations btrfs_symlink_inode_operations;
62 static const struct inode_operations btrfs_dir_ro_inode_operations;
63 static const struct inode_operations btrfs_special_inode_operations;
64 static const struct inode_operations btrfs_file_inode_operations;
65 static const struct address_space_operations btrfs_aops;
66 static const struct address_space_operations btrfs_symlink_aops;
67 static const struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
69
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74 struct kmem_cache *btrfs_free_space_cachep;
75
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
79         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
80         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
81         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
82         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
83         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
84         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
85 };
86
87 static int btrfs_setsize(struct inode *inode, loff_t newsize);
88 static int btrfs_truncate(struct inode *inode);
89 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
90 static noinline int cow_file_range(struct inode *inode,
91                                    struct page *locked_page,
92                                    u64 start, u64 end, int *page_started,
93                                    unsigned long *nr_written, int unlock);
94
95 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
96                                      struct inode *inode,  struct inode *dir)
97 {
98         int err;
99
100         err = btrfs_init_acl(trans, inode, dir);
101         if (!err)
102                 err = btrfs_xattr_security_init(trans, inode, dir);
103         return err;
104 }
105
106 /*
107  * this does all the hard work for inserting an inline extent into
108  * the btree.  The caller should have done a btrfs_drop_extents so that
109  * no overlapping inline items exist in the btree
110  */
111 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
112                                 struct btrfs_root *root, struct inode *inode,
113                                 u64 start, size_t size, size_t compressed_size,
114                                 struct page **compressed_pages)
115 {
116         struct btrfs_key key;
117         struct btrfs_path *path;
118         struct extent_buffer *leaf;
119         struct page *page = NULL;
120         char *kaddr;
121         unsigned long ptr;
122         struct btrfs_file_extent_item *ei;
123         int err = 0;
124         int ret;
125         size_t cur_size = size;
126         size_t datasize;
127         unsigned long offset;
128         int compress_type = BTRFS_COMPRESS_NONE;
129
130         if (compressed_size && compressed_pages) {
131                 compress_type = root->fs_info->compress_type;
132                 cur_size = compressed_size;
133         }
134
135         path = btrfs_alloc_path();
136         if (!path)
137                 return -ENOMEM;
138
139         path->leave_spinning = 1;
140         btrfs_set_trans_block_group(trans, inode);
141
142         key.objectid = inode->i_ino;
143         key.offset = start;
144         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
145         datasize = btrfs_file_extent_calc_inline_size(cur_size);
146
147         inode_add_bytes(inode, size);
148         ret = btrfs_insert_empty_item(trans, root, path, &key,
149                                       datasize);
150         BUG_ON(ret);
151         if (ret) {
152                 err = ret;
153                 goto fail;
154         }
155         leaf = path->nodes[0];
156         ei = btrfs_item_ptr(leaf, path->slots[0],
157                             struct btrfs_file_extent_item);
158         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
159         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
160         btrfs_set_file_extent_encryption(leaf, ei, 0);
161         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
162         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
163         ptr = btrfs_file_extent_inline_start(ei);
164
165         if (compress_type != BTRFS_COMPRESS_NONE) {
166                 struct page *cpage;
167                 int i = 0;
168                 while (compressed_size > 0) {
169                         cpage = compressed_pages[i];
170                         cur_size = min_t(unsigned long, compressed_size,
171                                        PAGE_CACHE_SIZE);
172
173                         kaddr = kmap_atomic(cpage, KM_USER0);
174                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
175                         kunmap_atomic(kaddr, KM_USER0);
176
177                         i++;
178                         ptr += cur_size;
179                         compressed_size -= cur_size;
180                 }
181                 btrfs_set_file_extent_compression(leaf, ei,
182                                                   compress_type);
183         } else {
184                 page = find_get_page(inode->i_mapping,
185                                      start >> PAGE_CACHE_SHIFT);
186                 btrfs_set_file_extent_compression(leaf, ei, 0);
187                 kaddr = kmap_atomic(page, KM_USER0);
188                 offset = start & (PAGE_CACHE_SIZE - 1);
189                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
190                 kunmap_atomic(kaddr, KM_USER0);
191                 page_cache_release(page);
192         }
193         btrfs_mark_buffer_dirty(leaf);
194         btrfs_free_path(path);
195
196         /*
197          * we're an inline extent, so nobody can
198          * extend the file past i_size without locking
199          * a page we already have locked.
200          *
201          * We must do any isize and inode updates
202          * before we unlock the pages.  Otherwise we
203          * could end up racing with unlink.
204          */
205         BTRFS_I(inode)->disk_i_size = inode->i_size;
206         btrfs_update_inode(trans, root, inode);
207
208         return 0;
209 fail:
210         btrfs_free_path(path);
211         return err;
212 }
213
214
215 /*
216  * conditionally insert an inline extent into the file.  This
217  * does the checks required to make sure the data is small enough
218  * to fit as an inline extent.
219  */
220 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
221                                  struct btrfs_root *root,
222                                  struct inode *inode, u64 start, u64 end,
223                                  size_t compressed_size,
224                                  struct page **compressed_pages)
225 {
226         u64 isize = i_size_read(inode);
227         u64 actual_end = min(end + 1, isize);
228         u64 inline_len = actual_end - start;
229         u64 aligned_end = (end + root->sectorsize - 1) &
230                         ~((u64)root->sectorsize - 1);
231         u64 hint_byte;
232         u64 data_len = inline_len;
233         int ret;
234
235         if (compressed_size)
236                 data_len = compressed_size;
237
238         if (start > 0 ||
239             actual_end >= PAGE_CACHE_SIZE ||
240             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241             (!compressed_size &&
242             (actual_end & (root->sectorsize - 1)) == 0) ||
243             end + 1 < isize ||
244             data_len > root->fs_info->max_inline) {
245                 return 1;
246         }
247
248         ret = btrfs_drop_extents(trans, inode, start, aligned_end,
249                                  &hint_byte, 1);
250         BUG_ON(ret);
251
252         if (isize > actual_end)
253                 inline_len = min_t(u64, isize, actual_end);
254         ret = insert_inline_extent(trans, root, inode, start,
255                                    inline_len, compressed_size,
256                                    compressed_pages);
257         BUG_ON(ret);
258         btrfs_delalloc_release_metadata(inode, end + 1 - start);
259         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
260         return 0;
261 }
262
263 struct async_extent {
264         u64 start;
265         u64 ram_size;
266         u64 compressed_size;
267         struct page **pages;
268         unsigned long nr_pages;
269         int compress_type;
270         struct list_head list;
271 };
272
273 struct async_cow {
274         struct inode *inode;
275         struct btrfs_root *root;
276         struct page *locked_page;
277         u64 start;
278         u64 end;
279         struct list_head extents;
280         struct btrfs_work work;
281 };
282
283 static noinline int add_async_extent(struct async_cow *cow,
284                                      u64 start, u64 ram_size,
285                                      u64 compressed_size,
286                                      struct page **pages,
287                                      unsigned long nr_pages,
288                                      int compress_type)
289 {
290         struct async_extent *async_extent;
291
292         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
293         BUG_ON(!async_extent);
294         async_extent->start = start;
295         async_extent->ram_size = ram_size;
296         async_extent->compressed_size = compressed_size;
297         async_extent->pages = pages;
298         async_extent->nr_pages = nr_pages;
299         async_extent->compress_type = compress_type;
300         list_add_tail(&async_extent->list, &cow->extents);
301         return 0;
302 }
303
304 /*
305  * we create compressed extents in two phases.  The first
306  * phase compresses a range of pages that have already been
307  * locked (both pages and state bits are locked).
308  *
309  * This is done inside an ordered work queue, and the compression
310  * is spread across many cpus.  The actual IO submission is step
311  * two, and the ordered work queue takes care of making sure that
312  * happens in the same order things were put onto the queue by
313  * writepages and friends.
314  *
315  * If this code finds it can't get good compression, it puts an
316  * entry onto the work queue to write the uncompressed bytes.  This
317  * makes sure that both compressed inodes and uncompressed inodes
318  * are written in the same order that pdflush sent them down.
319  */
320 static noinline int compress_file_range(struct inode *inode,
321                                         struct page *locked_page,
322                                         u64 start, u64 end,
323                                         struct async_cow *async_cow,
324                                         int *num_added)
325 {
326         struct btrfs_root *root = BTRFS_I(inode)->root;
327         struct btrfs_trans_handle *trans;
328         u64 num_bytes;
329         u64 blocksize = root->sectorsize;
330         u64 actual_end;
331         u64 isize = i_size_read(inode);
332         int ret = 0;
333         struct page **pages = NULL;
334         unsigned long nr_pages;
335         unsigned long nr_pages_ret = 0;
336         unsigned long total_compressed = 0;
337         unsigned long total_in = 0;
338         unsigned long max_compressed = 128 * 1024;
339         unsigned long max_uncompressed = 128 * 1024;
340         int i;
341         int will_compress;
342         int compress_type = root->fs_info->compress_type;
343
344         actual_end = min_t(u64, isize, end + 1);
345 again:
346         will_compress = 0;
347         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
348         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
349
350         /*
351          * we don't want to send crud past the end of i_size through
352          * compression, that's just a waste of CPU time.  So, if the
353          * end of the file is before the start of our current
354          * requested range of bytes, we bail out to the uncompressed
355          * cleanup code that can deal with all of this.
356          *
357          * It isn't really the fastest way to fix things, but this is a
358          * very uncommon corner.
359          */
360         if (actual_end <= start)
361                 goto cleanup_and_bail_uncompressed;
362
363         total_compressed = actual_end - start;
364
365         /* we want to make sure that amount of ram required to uncompress
366          * an extent is reasonable, so we limit the total size in ram
367          * of a compressed extent to 128k.  This is a crucial number
368          * because it also controls how easily we can spread reads across
369          * cpus for decompression.
370          *
371          * We also want to make sure the amount of IO required to do
372          * a random read is reasonably small, so we limit the size of
373          * a compressed extent to 128k.
374          */
375         total_compressed = min(total_compressed, max_uncompressed);
376         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
377         num_bytes = max(blocksize,  num_bytes);
378         total_in = 0;
379         ret = 0;
380
381         /*
382          * we do compression for mount -o compress and when the
383          * inode has not been flagged as nocompress.  This flag can
384          * change at any time if we discover bad compression ratios.
385          */
386         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
387             (btrfs_test_opt(root, COMPRESS) ||
388              (BTRFS_I(inode)->force_compress) ||
389              (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
390                 WARN_ON(pages);
391                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
392                 BUG_ON(!pages);
393
394                 if (BTRFS_I(inode)->force_compress)
395                         compress_type = BTRFS_I(inode)->force_compress;
396
397                 ret = btrfs_compress_pages(compress_type,
398                                            inode->i_mapping, start,
399                                            total_compressed, pages,
400                                            nr_pages, &nr_pages_ret,
401                                            &total_in,
402                                            &total_compressed,
403                                            max_compressed);
404
405                 if (!ret) {
406                         unsigned long offset = total_compressed &
407                                 (PAGE_CACHE_SIZE - 1);
408                         struct page *page = pages[nr_pages_ret - 1];
409                         char *kaddr;
410
411                         /* zero the tail end of the last page, we might be
412                          * sending it down to disk
413                          */
414                         if (offset) {
415                                 kaddr = kmap_atomic(page, KM_USER0);
416                                 memset(kaddr + offset, 0,
417                                        PAGE_CACHE_SIZE - offset);
418                                 kunmap_atomic(kaddr, KM_USER0);
419                         }
420                         will_compress = 1;
421                 }
422         }
423         if (start == 0) {
424                 trans = btrfs_join_transaction(root, 1);
425                 BUG_ON(IS_ERR(trans));
426                 btrfs_set_trans_block_group(trans, inode);
427                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
428
429                 /* lets try to make an inline extent */
430                 if (ret || total_in < (actual_end - start)) {
431                         /* we didn't compress the entire range, try
432                          * to make an uncompressed inline extent.
433                          */
434                         ret = cow_file_range_inline(trans, root, inode,
435                                                     start, end, 0, NULL);
436                 } else {
437                         /* try making a compressed inline extent */
438                         ret = cow_file_range_inline(trans, root, inode,
439                                                     start, end,
440                                                     total_compressed, pages);
441                 }
442                 if (ret == 0) {
443                         /*
444                          * inline extent creation worked, we don't need
445                          * to create any more async work items.  Unlock
446                          * and free up our temp pages.
447                          */
448                         extent_clear_unlock_delalloc(inode,
449                              &BTRFS_I(inode)->io_tree,
450                              start, end, NULL,
451                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
452                              EXTENT_CLEAR_DELALLOC |
453                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
454
455                         btrfs_end_transaction(trans, root);
456                         goto free_pages_out;
457                 }
458                 btrfs_end_transaction(trans, root);
459         }
460
461         if (will_compress) {
462                 /*
463                  * we aren't doing an inline extent round the compressed size
464                  * up to a block size boundary so the allocator does sane
465                  * things
466                  */
467                 total_compressed = (total_compressed + blocksize - 1) &
468                         ~(blocksize - 1);
469
470                 /*
471                  * one last check to make sure the compression is really a
472                  * win, compare the page count read with the blocks on disk
473                  */
474                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
475                         ~(PAGE_CACHE_SIZE - 1);
476                 if (total_compressed >= total_in) {
477                         will_compress = 0;
478                 } else {
479                         num_bytes = total_in;
480                 }
481         }
482         if (!will_compress && pages) {
483                 /*
484                  * the compression code ran but failed to make things smaller,
485                  * free any pages it allocated and our page pointer array
486                  */
487                 for (i = 0; i < nr_pages_ret; i++) {
488                         WARN_ON(pages[i]->mapping);
489                         page_cache_release(pages[i]);
490                 }
491                 kfree(pages);
492                 pages = NULL;
493                 total_compressed = 0;
494                 nr_pages_ret = 0;
495
496                 /* flag the file so we don't compress in the future */
497                 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
498                     !(BTRFS_I(inode)->force_compress)) {
499                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
500                 }
501         }
502         if (will_compress) {
503                 *num_added += 1;
504
505                 /* the async work queues will take care of doing actual
506                  * allocation on disk for these compressed pages,
507                  * and will submit them to the elevator.
508                  */
509                 add_async_extent(async_cow, start, num_bytes,
510                                  total_compressed, pages, nr_pages_ret,
511                                  compress_type);
512
513                 if (start + num_bytes < end) {
514                         start += num_bytes;
515                         pages = NULL;
516                         cond_resched();
517                         goto again;
518                 }
519         } else {
520 cleanup_and_bail_uncompressed:
521                 /*
522                  * No compression, but we still need to write the pages in
523                  * the file we've been given so far.  redirty the locked
524                  * page if it corresponds to our extent and set things up
525                  * for the async work queue to run cow_file_range to do
526                  * the normal delalloc dance
527                  */
528                 if (page_offset(locked_page) >= start &&
529                     page_offset(locked_page) <= end) {
530                         __set_page_dirty_nobuffers(locked_page);
531                         /* unlocked later on in the async handlers */
532                 }
533                 add_async_extent(async_cow, start, end - start + 1,
534                                  0, NULL, 0, BTRFS_COMPRESS_NONE);
535                 *num_added += 1;
536         }
537
538 out:
539         return 0;
540
541 free_pages_out:
542         for (i = 0; i < nr_pages_ret; i++) {
543                 WARN_ON(pages[i]->mapping);
544                 page_cache_release(pages[i]);
545         }
546         kfree(pages);
547
548         goto out;
549 }
550
551 /*
552  * phase two of compressed writeback.  This is the ordered portion
553  * of the code, which only gets called in the order the work was
554  * queued.  We walk all the async extents created by compress_file_range
555  * and send them down to the disk.
556  */
557 static noinline int submit_compressed_extents(struct inode *inode,
558                                               struct async_cow *async_cow)
559 {
560         struct async_extent *async_extent;
561         u64 alloc_hint = 0;
562         struct btrfs_trans_handle *trans;
563         struct btrfs_key ins;
564         struct extent_map *em;
565         struct btrfs_root *root = BTRFS_I(inode)->root;
566         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
567         struct extent_io_tree *io_tree;
568         int ret = 0;
569
570         if (list_empty(&async_cow->extents))
571                 return 0;
572
573
574         while (!list_empty(&async_cow->extents)) {
575                 async_extent = list_entry(async_cow->extents.next,
576                                           struct async_extent, list);
577                 list_del(&async_extent->list);
578
579                 io_tree = &BTRFS_I(inode)->io_tree;
580
581 retry:
582                 /* did the compression code fall back to uncompressed IO? */
583                 if (!async_extent->pages) {
584                         int page_started = 0;
585                         unsigned long nr_written = 0;
586
587                         lock_extent(io_tree, async_extent->start,
588                                          async_extent->start +
589                                          async_extent->ram_size - 1, GFP_NOFS);
590
591                         /* allocate blocks */
592                         ret = cow_file_range(inode, async_cow->locked_page,
593                                              async_extent->start,
594                                              async_extent->start +
595                                              async_extent->ram_size - 1,
596                                              &page_started, &nr_written, 0);
597
598                         /*
599                          * if page_started, cow_file_range inserted an
600                          * inline extent and took care of all the unlocking
601                          * and IO for us.  Otherwise, we need to submit
602                          * all those pages down to the drive.
603                          */
604                         if (!page_started && !ret)
605                                 extent_write_locked_range(io_tree,
606                                                   inode, async_extent->start,
607                                                   async_extent->start +
608                                                   async_extent->ram_size - 1,
609                                                   btrfs_get_extent,
610                                                   WB_SYNC_ALL);
611                         kfree(async_extent);
612                         cond_resched();
613                         continue;
614                 }
615
616                 lock_extent(io_tree, async_extent->start,
617                             async_extent->start + async_extent->ram_size - 1,
618                             GFP_NOFS);
619
620                 trans = btrfs_join_transaction(root, 1);
621                 BUG_ON(IS_ERR(trans));
622                 ret = btrfs_reserve_extent(trans, root,
623                                            async_extent->compressed_size,
624                                            async_extent->compressed_size,
625                                            0, alloc_hint,
626                                            (u64)-1, &ins, 1);
627                 btrfs_end_transaction(trans, root);
628
629                 if (ret) {
630                         int i;
631                         for (i = 0; i < async_extent->nr_pages; i++) {
632                                 WARN_ON(async_extent->pages[i]->mapping);
633                                 page_cache_release(async_extent->pages[i]);
634                         }
635                         kfree(async_extent->pages);
636                         async_extent->nr_pages = 0;
637                         async_extent->pages = NULL;
638                         unlock_extent(io_tree, async_extent->start,
639                                       async_extent->start +
640                                       async_extent->ram_size - 1, GFP_NOFS);
641                         goto retry;
642                 }
643
644                 /*
645                  * here we're doing allocation and writeback of the
646                  * compressed pages
647                  */
648                 btrfs_drop_extent_cache(inode, async_extent->start,
649                                         async_extent->start +
650                                         async_extent->ram_size - 1, 0);
651
652                 em = alloc_extent_map(GFP_NOFS);
653                 BUG_ON(!em);
654                 em->start = async_extent->start;
655                 em->len = async_extent->ram_size;
656                 em->orig_start = em->start;
657
658                 em->block_start = ins.objectid;
659                 em->block_len = ins.offset;
660                 em->bdev = root->fs_info->fs_devices->latest_bdev;
661                 em->compress_type = async_extent->compress_type;
662                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
663                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
664
665                 while (1) {
666                         write_lock(&em_tree->lock);
667                         ret = add_extent_mapping(em_tree, em);
668                         write_unlock(&em_tree->lock);
669                         if (ret != -EEXIST) {
670                                 free_extent_map(em);
671                                 break;
672                         }
673                         btrfs_drop_extent_cache(inode, async_extent->start,
674                                                 async_extent->start +
675                                                 async_extent->ram_size - 1, 0);
676                 }
677
678                 ret = btrfs_add_ordered_extent_compress(inode,
679                                                 async_extent->start,
680                                                 ins.objectid,
681                                                 async_extent->ram_size,
682                                                 ins.offset,
683                                                 BTRFS_ORDERED_COMPRESSED,
684                                                 async_extent->compress_type);
685                 BUG_ON(ret);
686
687                 /*
688                  * clear dirty, set writeback and unlock the pages.
689                  */
690                 extent_clear_unlock_delalloc(inode,
691                                 &BTRFS_I(inode)->io_tree,
692                                 async_extent->start,
693                                 async_extent->start +
694                                 async_extent->ram_size - 1,
695                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
696                                 EXTENT_CLEAR_UNLOCK |
697                                 EXTENT_CLEAR_DELALLOC |
698                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
699
700                 ret = btrfs_submit_compressed_write(inode,
701                                     async_extent->start,
702                                     async_extent->ram_size,
703                                     ins.objectid,
704                                     ins.offset, async_extent->pages,
705                                     async_extent->nr_pages);
706
707                 BUG_ON(ret);
708                 alloc_hint = ins.objectid + ins.offset;
709                 kfree(async_extent);
710                 cond_resched();
711         }
712
713         return 0;
714 }
715
716 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
717                                       u64 num_bytes)
718 {
719         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
720         struct extent_map *em;
721         u64 alloc_hint = 0;
722
723         read_lock(&em_tree->lock);
724         em = search_extent_mapping(em_tree, start, num_bytes);
725         if (em) {
726                 /*
727                  * if block start isn't an actual block number then find the
728                  * first block in this inode and use that as a hint.  If that
729                  * block is also bogus then just don't worry about it.
730                  */
731                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
732                         free_extent_map(em);
733                         em = search_extent_mapping(em_tree, 0, 0);
734                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
735                                 alloc_hint = em->block_start;
736                         if (em)
737                                 free_extent_map(em);
738                 } else {
739                         alloc_hint = em->block_start;
740                         free_extent_map(em);
741                 }
742         }
743         read_unlock(&em_tree->lock);
744
745         return alloc_hint;
746 }
747
748 /*
749  * when extent_io.c finds a delayed allocation range in the file,
750  * the call backs end up in this code.  The basic idea is to
751  * allocate extents on disk for the range, and create ordered data structs
752  * in ram to track those extents.
753  *
754  * locked_page is the page that writepage had locked already.  We use
755  * it to make sure we don't do extra locks or unlocks.
756  *
757  * *page_started is set to one if we unlock locked_page and do everything
758  * required to start IO on it.  It may be clean and already done with
759  * IO when we return.
760  */
761 static noinline int cow_file_range(struct inode *inode,
762                                    struct page *locked_page,
763                                    u64 start, u64 end, int *page_started,
764                                    unsigned long *nr_written,
765                                    int unlock)
766 {
767         struct btrfs_root *root = BTRFS_I(inode)->root;
768         struct btrfs_trans_handle *trans;
769         u64 alloc_hint = 0;
770         u64 num_bytes;
771         unsigned long ram_size;
772         u64 disk_num_bytes;
773         u64 cur_alloc_size;
774         u64 blocksize = root->sectorsize;
775         struct btrfs_key ins;
776         struct extent_map *em;
777         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
778         int ret = 0;
779
780         BUG_ON(root == root->fs_info->tree_root);
781         trans = btrfs_join_transaction(root, 1);
782         BUG_ON(IS_ERR(trans));
783         btrfs_set_trans_block_group(trans, inode);
784         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
785
786         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
787         num_bytes = max(blocksize,  num_bytes);
788         disk_num_bytes = num_bytes;
789         ret = 0;
790
791         if (start == 0) {
792                 /* lets try to make an inline extent */
793                 ret = cow_file_range_inline(trans, root, inode,
794                                             start, end, 0, NULL);
795                 if (ret == 0) {
796                         extent_clear_unlock_delalloc(inode,
797                                      &BTRFS_I(inode)->io_tree,
798                                      start, end, NULL,
799                                      EXTENT_CLEAR_UNLOCK_PAGE |
800                                      EXTENT_CLEAR_UNLOCK |
801                                      EXTENT_CLEAR_DELALLOC |
802                                      EXTENT_CLEAR_DIRTY |
803                                      EXTENT_SET_WRITEBACK |
804                                      EXTENT_END_WRITEBACK);
805
806                         *nr_written = *nr_written +
807                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
808                         *page_started = 1;
809                         ret = 0;
810                         goto out;
811                 }
812         }
813
814         BUG_ON(disk_num_bytes >
815                btrfs_super_total_bytes(&root->fs_info->super_copy));
816
817         alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
818         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
819
820         while (disk_num_bytes > 0) {
821                 unsigned long op;
822
823                 cur_alloc_size = disk_num_bytes;
824                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
825                                            root->sectorsize, 0, alloc_hint,
826                                            (u64)-1, &ins, 1);
827                 BUG_ON(ret);
828
829                 em = alloc_extent_map(GFP_NOFS);
830                 BUG_ON(!em);
831                 em->start = start;
832                 em->orig_start = em->start;
833                 ram_size = ins.offset;
834                 em->len = ins.offset;
835
836                 em->block_start = ins.objectid;
837                 em->block_len = ins.offset;
838                 em->bdev = root->fs_info->fs_devices->latest_bdev;
839                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
840
841                 while (1) {
842                         write_lock(&em_tree->lock);
843                         ret = add_extent_mapping(em_tree, em);
844                         write_unlock(&em_tree->lock);
845                         if (ret != -EEXIST) {
846                                 free_extent_map(em);
847                                 break;
848                         }
849                         btrfs_drop_extent_cache(inode, start,
850                                                 start + ram_size - 1, 0);
851                 }
852
853                 cur_alloc_size = ins.offset;
854                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
855                                                ram_size, cur_alloc_size, 0);
856                 BUG_ON(ret);
857
858                 if (root->root_key.objectid ==
859                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
860                         ret = btrfs_reloc_clone_csums(inode, start,
861                                                       cur_alloc_size);
862                         BUG_ON(ret);
863                 }
864
865                 if (disk_num_bytes < cur_alloc_size)
866                         break;
867
868                 /* we're not doing compressed IO, don't unlock the first
869                  * page (which the caller expects to stay locked), don't
870                  * clear any dirty bits and don't set any writeback bits
871                  *
872                  * Do set the Private2 bit so we know this page was properly
873                  * setup for writepage
874                  */
875                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
876                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
877                         EXTENT_SET_PRIVATE2;
878
879                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
880                                              start, start + ram_size - 1,
881                                              locked_page, op);
882                 disk_num_bytes -= cur_alloc_size;
883                 num_bytes -= cur_alloc_size;
884                 alloc_hint = ins.objectid + ins.offset;
885                 start += cur_alloc_size;
886         }
887 out:
888         ret = 0;
889         btrfs_end_transaction(trans, root);
890
891         return ret;
892 }
893
894 /*
895  * work queue call back to started compression on a file and pages
896  */
897 static noinline void async_cow_start(struct btrfs_work *work)
898 {
899         struct async_cow *async_cow;
900         int num_added = 0;
901         async_cow = container_of(work, struct async_cow, work);
902
903         compress_file_range(async_cow->inode, async_cow->locked_page,
904                             async_cow->start, async_cow->end, async_cow,
905                             &num_added);
906         if (num_added == 0)
907                 async_cow->inode = NULL;
908 }
909
910 /*
911  * work queue call back to submit previously compressed pages
912  */
913 static noinline void async_cow_submit(struct btrfs_work *work)
914 {
915         struct async_cow *async_cow;
916         struct btrfs_root *root;
917         unsigned long nr_pages;
918
919         async_cow = container_of(work, struct async_cow, work);
920
921         root = async_cow->root;
922         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
923                 PAGE_CACHE_SHIFT;
924
925         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
926
927         if (atomic_read(&root->fs_info->async_delalloc_pages) <
928             5 * 1042 * 1024 &&
929             waitqueue_active(&root->fs_info->async_submit_wait))
930                 wake_up(&root->fs_info->async_submit_wait);
931
932         if (async_cow->inode)
933                 submit_compressed_extents(async_cow->inode, async_cow);
934 }
935
936 static noinline void async_cow_free(struct btrfs_work *work)
937 {
938         struct async_cow *async_cow;
939         async_cow = container_of(work, struct async_cow, work);
940         kfree(async_cow);
941 }
942
943 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
944                                 u64 start, u64 end, int *page_started,
945                                 unsigned long *nr_written)
946 {
947         struct async_cow *async_cow;
948         struct btrfs_root *root = BTRFS_I(inode)->root;
949         unsigned long nr_pages;
950         u64 cur_end;
951         int limit = 10 * 1024 * 1042;
952
953         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
954                          1, 0, NULL, GFP_NOFS);
955         while (start < end) {
956                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
957                 async_cow->inode = inode;
958                 async_cow->root = root;
959                 async_cow->locked_page = locked_page;
960                 async_cow->start = start;
961
962                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
963                         cur_end = end;
964                 else
965                         cur_end = min(end, start + 512 * 1024 - 1);
966
967                 async_cow->end = cur_end;
968                 INIT_LIST_HEAD(&async_cow->extents);
969
970                 async_cow->work.func = async_cow_start;
971                 async_cow->work.ordered_func = async_cow_submit;
972                 async_cow->work.ordered_free = async_cow_free;
973                 async_cow->work.flags = 0;
974
975                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
976                         PAGE_CACHE_SHIFT;
977                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
978
979                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
980                                    &async_cow->work);
981
982                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
983                         wait_event(root->fs_info->async_submit_wait,
984                            (atomic_read(&root->fs_info->async_delalloc_pages) <
985                             limit));
986                 }
987
988                 while (atomic_read(&root->fs_info->async_submit_draining) &&
989                       atomic_read(&root->fs_info->async_delalloc_pages)) {
990                         wait_event(root->fs_info->async_submit_wait,
991                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
992                            0));
993                 }
994
995                 *nr_written += nr_pages;
996                 start = cur_end + 1;
997         }
998         *page_started = 1;
999         return 0;
1000 }
1001
1002 static noinline int csum_exist_in_range(struct btrfs_root *root,
1003                                         u64 bytenr, u64 num_bytes)
1004 {
1005         int ret;
1006         struct btrfs_ordered_sum *sums;
1007         LIST_HEAD(list);
1008
1009         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1010                                        bytenr + num_bytes - 1, &list);
1011         if (ret == 0 && list_empty(&list))
1012                 return 0;
1013
1014         while (!list_empty(&list)) {
1015                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1016                 list_del(&sums->list);
1017                 kfree(sums);
1018         }
1019         return 1;
1020 }
1021
1022 /*
1023  * when nowcow writeback call back.  This checks for snapshots or COW copies
1024  * of the extents that exist in the file, and COWs the file as required.
1025  *
1026  * If no cow copies or snapshots exist, we write directly to the existing
1027  * blocks on disk
1028  */
1029 static noinline int run_delalloc_nocow(struct inode *inode,
1030                                        struct page *locked_page,
1031                               u64 start, u64 end, int *page_started, int force,
1032                               unsigned long *nr_written)
1033 {
1034         struct btrfs_root *root = BTRFS_I(inode)->root;
1035         struct btrfs_trans_handle *trans;
1036         struct extent_buffer *leaf;
1037         struct btrfs_path *path;
1038         struct btrfs_file_extent_item *fi;
1039         struct btrfs_key found_key;
1040         u64 cow_start;
1041         u64 cur_offset;
1042         u64 extent_end;
1043         u64 extent_offset;
1044         u64 disk_bytenr;
1045         u64 num_bytes;
1046         int extent_type;
1047         int ret;
1048         int type;
1049         int nocow;
1050         int check_prev = 1;
1051         bool nolock = false;
1052
1053         path = btrfs_alloc_path();
1054         BUG_ON(!path);
1055         if (root == root->fs_info->tree_root) {
1056                 nolock = true;
1057                 trans = btrfs_join_transaction_nolock(root, 1);
1058         } else {
1059                 trans = btrfs_join_transaction(root, 1);
1060         }
1061         BUG_ON(IS_ERR(trans));
1062
1063         cow_start = (u64)-1;
1064         cur_offset = start;
1065         while (1) {
1066                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1067                                                cur_offset, 0);
1068                 BUG_ON(ret < 0);
1069                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1070                         leaf = path->nodes[0];
1071                         btrfs_item_key_to_cpu(leaf, &found_key,
1072                                               path->slots[0] - 1);
1073                         if (found_key.objectid == inode->i_ino &&
1074                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1075                                 path->slots[0]--;
1076                 }
1077                 check_prev = 0;
1078 next_slot:
1079                 leaf = path->nodes[0];
1080                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1081                         ret = btrfs_next_leaf(root, path);
1082                         if (ret < 0)
1083                                 BUG_ON(1);
1084                         if (ret > 0)
1085                                 break;
1086                         leaf = path->nodes[0];
1087                 }
1088
1089                 nocow = 0;
1090                 disk_bytenr = 0;
1091                 num_bytes = 0;
1092                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1093
1094                 if (found_key.objectid > inode->i_ino ||
1095                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1096                     found_key.offset > end)
1097                         break;
1098
1099                 if (found_key.offset > cur_offset) {
1100                         extent_end = found_key.offset;
1101                         extent_type = 0;
1102                         goto out_check;
1103                 }
1104
1105                 fi = btrfs_item_ptr(leaf, path->slots[0],
1106                                     struct btrfs_file_extent_item);
1107                 extent_type = btrfs_file_extent_type(leaf, fi);
1108
1109                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1110                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1111                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1112                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1113                         extent_end = found_key.offset +
1114                                 btrfs_file_extent_num_bytes(leaf, fi);
1115                         if (extent_end <= start) {
1116                                 path->slots[0]++;
1117                                 goto next_slot;
1118                         }
1119                         if (disk_bytenr == 0)
1120                                 goto out_check;
1121                         if (btrfs_file_extent_compression(leaf, fi) ||
1122                             btrfs_file_extent_encryption(leaf, fi) ||
1123                             btrfs_file_extent_other_encoding(leaf, fi))
1124                                 goto out_check;
1125                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1126                                 goto out_check;
1127                         if (btrfs_extent_readonly(root, disk_bytenr))
1128                                 goto out_check;
1129                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1130                                                   found_key.offset -
1131                                                   extent_offset, disk_bytenr))
1132                                 goto out_check;
1133                         disk_bytenr += extent_offset;
1134                         disk_bytenr += cur_offset - found_key.offset;
1135                         num_bytes = min(end + 1, extent_end) - cur_offset;
1136                         /*
1137                          * force cow if csum exists in the range.
1138                          * this ensure that csum for a given extent are
1139                          * either valid or do not exist.
1140                          */
1141                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1142                                 goto out_check;
1143                         nocow = 1;
1144                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1145                         extent_end = found_key.offset +
1146                                 btrfs_file_extent_inline_len(leaf, fi);
1147                         extent_end = ALIGN(extent_end, root->sectorsize);
1148                 } else {
1149                         BUG_ON(1);
1150                 }
1151 out_check:
1152                 if (extent_end <= start) {
1153                         path->slots[0]++;
1154                         goto next_slot;
1155                 }
1156                 if (!nocow) {
1157                         if (cow_start == (u64)-1)
1158                                 cow_start = cur_offset;
1159                         cur_offset = extent_end;
1160                         if (cur_offset > end)
1161                                 break;
1162                         path->slots[0]++;
1163                         goto next_slot;
1164                 }
1165
1166                 btrfs_release_path(root, path);
1167                 if (cow_start != (u64)-1) {
1168                         ret = cow_file_range(inode, locked_page, cow_start,
1169                                         found_key.offset - 1, page_started,
1170                                         nr_written, 1);
1171                         BUG_ON(ret);
1172                         cow_start = (u64)-1;
1173                 }
1174
1175                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1176                         struct extent_map *em;
1177                         struct extent_map_tree *em_tree;
1178                         em_tree = &BTRFS_I(inode)->extent_tree;
1179                         em = alloc_extent_map(GFP_NOFS);
1180                         BUG_ON(!em);
1181                         em->start = cur_offset;
1182                         em->orig_start = em->start;
1183                         em->len = num_bytes;
1184                         em->block_len = num_bytes;
1185                         em->block_start = disk_bytenr;
1186                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1187                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1188                         while (1) {
1189                                 write_lock(&em_tree->lock);
1190                                 ret = add_extent_mapping(em_tree, em);
1191                                 write_unlock(&em_tree->lock);
1192                                 if (ret != -EEXIST) {
1193                                         free_extent_map(em);
1194                                         break;
1195                                 }
1196                                 btrfs_drop_extent_cache(inode, em->start,
1197                                                 em->start + em->len - 1, 0);
1198                         }
1199                         type = BTRFS_ORDERED_PREALLOC;
1200                 } else {
1201                         type = BTRFS_ORDERED_NOCOW;
1202                 }
1203
1204                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1205                                                num_bytes, num_bytes, type);
1206                 BUG_ON(ret);
1207
1208                 if (root->root_key.objectid ==
1209                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1210                         ret = btrfs_reloc_clone_csums(inode, cur_offset,
1211                                                       num_bytes);
1212                         BUG_ON(ret);
1213                 }
1214
1215                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1216                                 cur_offset, cur_offset + num_bytes - 1,
1217                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1218                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1219                                 EXTENT_SET_PRIVATE2);
1220                 cur_offset = extent_end;
1221                 if (cur_offset > end)
1222                         break;
1223         }
1224         btrfs_release_path(root, path);
1225
1226         if (cur_offset <= end && cow_start == (u64)-1)
1227                 cow_start = cur_offset;
1228         if (cow_start != (u64)-1) {
1229                 ret = cow_file_range(inode, locked_page, cow_start, end,
1230                                      page_started, nr_written, 1);
1231                 BUG_ON(ret);
1232         }
1233
1234         if (nolock) {
1235                 ret = btrfs_end_transaction_nolock(trans, root);
1236                 BUG_ON(ret);
1237         } else {
1238                 ret = btrfs_end_transaction(trans, root);
1239                 BUG_ON(ret);
1240         }
1241         btrfs_free_path(path);
1242         return 0;
1243 }
1244
1245 /*
1246  * extent_io.c call back to do delayed allocation processing
1247  */
1248 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1249                               u64 start, u64 end, int *page_started,
1250                               unsigned long *nr_written)
1251 {
1252         int ret;
1253         struct btrfs_root *root = BTRFS_I(inode)->root;
1254
1255         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1256                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1257                                          page_started, 1, nr_written);
1258         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1259                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1260                                          page_started, 0, nr_written);
1261         else if (!btrfs_test_opt(root, COMPRESS) &&
1262                  !(BTRFS_I(inode)->force_compress) &&
1263                  !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1264                 ret = cow_file_range(inode, locked_page, start, end,
1265                                       page_started, nr_written, 1);
1266         else
1267                 ret = cow_file_range_async(inode, locked_page, start, end,
1268                                            page_started, nr_written);
1269         return ret;
1270 }
1271
1272 static int btrfs_split_extent_hook(struct inode *inode,
1273                                    struct extent_state *orig, u64 split)
1274 {
1275         /* not delalloc, ignore it */
1276         if (!(orig->state & EXTENT_DELALLOC))
1277                 return 0;
1278
1279         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1280         return 0;
1281 }
1282
1283 /*
1284  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1285  * extents so we can keep track of new extents that are just merged onto old
1286  * extents, such as when we are doing sequential writes, so we can properly
1287  * account for the metadata space we'll need.
1288  */
1289 static int btrfs_merge_extent_hook(struct inode *inode,
1290                                    struct extent_state *new,
1291                                    struct extent_state *other)
1292 {
1293         /* not delalloc, ignore it */
1294         if (!(other->state & EXTENT_DELALLOC))
1295                 return 0;
1296
1297         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1298         return 0;
1299 }
1300
1301 /*
1302  * extent_io.c set_bit_hook, used to track delayed allocation
1303  * bytes in this file, and to maintain the list of inodes that
1304  * have pending delalloc work to be done.
1305  */
1306 static int btrfs_set_bit_hook(struct inode *inode,
1307                               struct extent_state *state, int *bits)
1308 {
1309
1310         /*
1311          * set_bit and clear bit hooks normally require _irqsave/restore
1312          * but in this case, we are only testeing for the DELALLOC
1313          * bit, which is only set or cleared with irqs on
1314          */
1315         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1316                 struct btrfs_root *root = BTRFS_I(inode)->root;
1317                 u64 len = state->end + 1 - state->start;
1318                 int do_list = (root->root_key.objectid !=
1319                                BTRFS_ROOT_TREE_OBJECTID);
1320
1321                 if (*bits & EXTENT_FIRST_DELALLOC)
1322                         *bits &= ~EXTENT_FIRST_DELALLOC;
1323                 else
1324                         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1325
1326                 spin_lock(&root->fs_info->delalloc_lock);
1327                 BTRFS_I(inode)->delalloc_bytes += len;
1328                 root->fs_info->delalloc_bytes += len;
1329                 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1330                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1331                                       &root->fs_info->delalloc_inodes);
1332                 }
1333                 spin_unlock(&root->fs_info->delalloc_lock);
1334         }
1335         return 0;
1336 }
1337
1338 /*
1339  * extent_io.c clear_bit_hook, see set_bit_hook for why
1340  */
1341 static int btrfs_clear_bit_hook(struct inode *inode,
1342                                 struct extent_state *state, int *bits)
1343 {
1344         /*
1345          * set_bit and clear bit hooks normally require _irqsave/restore
1346          * but in this case, we are only testeing for the DELALLOC
1347          * bit, which is only set or cleared with irqs on
1348          */
1349         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1350                 struct btrfs_root *root = BTRFS_I(inode)->root;
1351                 u64 len = state->end + 1 - state->start;
1352                 int do_list = (root->root_key.objectid !=
1353                                BTRFS_ROOT_TREE_OBJECTID);
1354
1355                 if (*bits & EXTENT_FIRST_DELALLOC)
1356                         *bits &= ~EXTENT_FIRST_DELALLOC;
1357                 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1358                         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1359
1360                 if (*bits & EXTENT_DO_ACCOUNTING)
1361                         btrfs_delalloc_release_metadata(inode, len);
1362
1363                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1364                     && do_list)
1365                         btrfs_free_reserved_data_space(inode, len);
1366
1367                 spin_lock(&root->fs_info->delalloc_lock);
1368                 root->fs_info->delalloc_bytes -= len;
1369                 BTRFS_I(inode)->delalloc_bytes -= len;
1370
1371                 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1372                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1373                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1374                 }
1375                 spin_unlock(&root->fs_info->delalloc_lock);
1376         }
1377         return 0;
1378 }
1379
1380 /*
1381  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1382  * we don't create bios that span stripes or chunks
1383  */
1384 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1385                          size_t size, struct bio *bio,
1386                          unsigned long bio_flags)
1387 {
1388         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1389         struct btrfs_mapping_tree *map_tree;
1390         u64 logical = (u64)bio->bi_sector << 9;
1391         u64 length = 0;
1392         u64 map_length;
1393         int ret;
1394
1395         if (bio_flags & EXTENT_BIO_COMPRESSED)
1396                 return 0;
1397
1398         length = bio->bi_size;
1399         map_tree = &root->fs_info->mapping_tree;
1400         map_length = length;
1401         ret = btrfs_map_block(map_tree, READ, logical,
1402                               &map_length, NULL, 0);
1403
1404         if (map_length < length + size)
1405                 return 1;
1406         return ret;
1407 }
1408
1409 /*
1410  * in order to insert checksums into the metadata in large chunks,
1411  * we wait until bio submission time.   All the pages in the bio are
1412  * checksummed and sums are attached onto the ordered extent record.
1413  *
1414  * At IO completion time the cums attached on the ordered extent record
1415  * are inserted into the btree
1416  */
1417 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1418                                     struct bio *bio, int mirror_num,
1419                                     unsigned long bio_flags,
1420                                     u64 bio_offset)
1421 {
1422         struct btrfs_root *root = BTRFS_I(inode)->root;
1423         int ret = 0;
1424
1425         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1426         BUG_ON(ret);
1427         return 0;
1428 }
1429
1430 /*
1431  * in order to insert checksums into the metadata in large chunks,
1432  * we wait until bio submission time.   All the pages in the bio are
1433  * checksummed and sums are attached onto the ordered extent record.
1434  *
1435  * At IO completion time the cums attached on the ordered extent record
1436  * are inserted into the btree
1437  */
1438 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1439                           int mirror_num, unsigned long bio_flags,
1440                           u64 bio_offset)
1441 {
1442         struct btrfs_root *root = BTRFS_I(inode)->root;
1443         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1444 }
1445
1446 /*
1447  * extent_io.c submission hook. This does the right thing for csum calculation
1448  * on write, or reading the csums from the tree before a read
1449  */
1450 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1451                           int mirror_num, unsigned long bio_flags,
1452                           u64 bio_offset)
1453 {
1454         struct btrfs_root *root = BTRFS_I(inode)->root;
1455         int ret = 0;
1456         int skip_sum;
1457
1458         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1459
1460         if (root == root->fs_info->tree_root)
1461                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1462         else
1463                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1464         BUG_ON(ret);
1465
1466         if (!(rw & REQ_WRITE)) {
1467                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1468                         return btrfs_submit_compressed_read(inode, bio,
1469                                                     mirror_num, bio_flags);
1470                 } else if (!skip_sum) {
1471                         ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1472                         if (ret)
1473                                 return ret;
1474                 }
1475                 goto mapit;
1476         } else if (!skip_sum) {
1477                 /* csum items have already been cloned */
1478                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1479                         goto mapit;
1480                 /* we're doing a write, do the async checksumming */
1481                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1482                                    inode, rw, bio, mirror_num,
1483                                    bio_flags, bio_offset,
1484                                    __btrfs_submit_bio_start,
1485                                    __btrfs_submit_bio_done);
1486         }
1487
1488 mapit:
1489         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1490 }
1491
1492 /*
1493  * given a list of ordered sums record them in the inode.  This happens
1494  * at IO completion time based on sums calculated at bio submission time.
1495  */
1496 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1497                              struct inode *inode, u64 file_offset,
1498                              struct list_head *list)
1499 {
1500         struct btrfs_ordered_sum *sum;
1501
1502         btrfs_set_trans_block_group(trans, inode);
1503
1504         list_for_each_entry(sum, list, list) {
1505                 btrfs_csum_file_blocks(trans,
1506                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1507         }
1508         return 0;
1509 }
1510
1511 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1512                               struct extent_state **cached_state)
1513 {
1514         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1515                 WARN_ON(1);
1516         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1517                                    cached_state, GFP_NOFS);
1518 }
1519
1520 /* see btrfs_writepage_start_hook for details on why this is required */
1521 struct btrfs_writepage_fixup {
1522         struct page *page;
1523         struct btrfs_work work;
1524 };
1525
1526 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1527 {
1528         struct btrfs_writepage_fixup *fixup;
1529         struct btrfs_ordered_extent *ordered;
1530         struct extent_state *cached_state = NULL;
1531         struct page *page;
1532         struct inode *inode;
1533         u64 page_start;
1534         u64 page_end;
1535
1536         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1537         page = fixup->page;
1538 again:
1539         lock_page(page);
1540         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1541                 ClearPageChecked(page);
1542                 goto out_page;
1543         }
1544
1545         inode = page->mapping->host;
1546         page_start = page_offset(page);
1547         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1548
1549         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1550                          &cached_state, GFP_NOFS);
1551
1552         /* already ordered? We're done */
1553         if (PagePrivate2(page))
1554                 goto out;
1555
1556         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1557         if (ordered) {
1558                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1559                                      page_end, &cached_state, GFP_NOFS);
1560                 unlock_page(page);
1561                 btrfs_start_ordered_extent(inode, ordered, 1);
1562                 goto again;
1563         }
1564
1565         BUG();
1566         btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1567         ClearPageChecked(page);
1568 out:
1569         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1570                              &cached_state, GFP_NOFS);
1571 out_page:
1572         unlock_page(page);
1573         page_cache_release(page);
1574         kfree(fixup);
1575 }
1576
1577 /*
1578  * There are a few paths in the higher layers of the kernel that directly
1579  * set the page dirty bit without asking the filesystem if it is a
1580  * good idea.  This causes problems because we want to make sure COW
1581  * properly happens and the data=ordered rules are followed.
1582  *
1583  * In our case any range that doesn't have the ORDERED bit set
1584  * hasn't been properly setup for IO.  We kick off an async process
1585  * to fix it up.  The async helper will wait for ordered extents, set
1586  * the delalloc bit and make it safe to write the page.
1587  */
1588 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1589 {
1590         struct inode *inode = page->mapping->host;
1591         struct btrfs_writepage_fixup *fixup;
1592         struct btrfs_root *root = BTRFS_I(inode)->root;
1593
1594         /* this page is properly in the ordered list */
1595         if (TestClearPagePrivate2(page))
1596                 return 0;
1597
1598         if (PageChecked(page))
1599                 return -EAGAIN;
1600
1601         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1602         if (!fixup)
1603                 return -EAGAIN;
1604
1605         SetPageChecked(page);
1606         page_cache_get(page);
1607         fixup->work.func = btrfs_writepage_fixup_worker;
1608         fixup->page = page;
1609         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1610         return -EAGAIN;
1611 }
1612
1613 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1614                                        struct inode *inode, u64 file_pos,
1615                                        u64 disk_bytenr, u64 disk_num_bytes,
1616                                        u64 num_bytes, u64 ram_bytes,
1617                                        u8 compression, u8 encryption,
1618                                        u16 other_encoding, int extent_type)
1619 {
1620         struct btrfs_root *root = BTRFS_I(inode)->root;
1621         struct btrfs_file_extent_item *fi;
1622         struct btrfs_path *path;
1623         struct extent_buffer *leaf;
1624         struct btrfs_key ins;
1625         u64 hint;
1626         int ret;
1627
1628         path = btrfs_alloc_path();
1629         BUG_ON(!path);
1630
1631         path->leave_spinning = 1;
1632
1633         /*
1634          * we may be replacing one extent in the tree with another.
1635          * The new extent is pinned in the extent map, and we don't want
1636          * to drop it from the cache until it is completely in the btree.
1637          *
1638          * So, tell btrfs_drop_extents to leave this extent in the cache.
1639          * the caller is expected to unpin it and allow it to be merged
1640          * with the others.
1641          */
1642         ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1643                                  &hint, 0);
1644         BUG_ON(ret);
1645
1646         ins.objectid = inode->i_ino;
1647         ins.offset = file_pos;
1648         ins.type = BTRFS_EXTENT_DATA_KEY;
1649         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1650         BUG_ON(ret);
1651         leaf = path->nodes[0];
1652         fi = btrfs_item_ptr(leaf, path->slots[0],
1653                             struct btrfs_file_extent_item);
1654         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1655         btrfs_set_file_extent_type(leaf, fi, extent_type);
1656         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1657         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1658         btrfs_set_file_extent_offset(leaf, fi, 0);
1659         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1660         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1661         btrfs_set_file_extent_compression(leaf, fi, compression);
1662         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1663         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1664
1665         btrfs_unlock_up_safe(path, 1);
1666         btrfs_set_lock_blocking(leaf);
1667
1668         btrfs_mark_buffer_dirty(leaf);
1669
1670         inode_add_bytes(inode, num_bytes);
1671
1672         ins.objectid = disk_bytenr;
1673         ins.offset = disk_num_bytes;
1674         ins.type = BTRFS_EXTENT_ITEM_KEY;
1675         ret = btrfs_alloc_reserved_file_extent(trans, root,
1676                                         root->root_key.objectid,
1677                                         inode->i_ino, file_pos, &ins);
1678         BUG_ON(ret);
1679         btrfs_free_path(path);
1680
1681         return 0;
1682 }
1683
1684 /*
1685  * helper function for btrfs_finish_ordered_io, this
1686  * just reads in some of the csum leaves to prime them into ram
1687  * before we start the transaction.  It limits the amount of btree
1688  * reads required while inside the transaction.
1689  */
1690 /* as ordered data IO finishes, this gets called so we can finish
1691  * an ordered extent if the range of bytes in the file it covers are
1692  * fully written.
1693  */
1694 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1695 {
1696         struct btrfs_root *root = BTRFS_I(inode)->root;
1697         struct btrfs_trans_handle *trans = NULL;
1698         struct btrfs_ordered_extent *ordered_extent = NULL;
1699         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1700         struct extent_state *cached_state = NULL;
1701         int compress_type = 0;
1702         int ret;
1703         bool nolock = false;
1704
1705         ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1706                                              end - start + 1);
1707         if (!ret)
1708                 return 0;
1709         BUG_ON(!ordered_extent);
1710
1711         nolock = (root == root->fs_info->tree_root);
1712
1713         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1714                 BUG_ON(!list_empty(&ordered_extent->list));
1715                 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1716                 if (!ret) {
1717                         if (nolock)
1718                                 trans = btrfs_join_transaction_nolock(root, 1);
1719                         else
1720                                 trans = btrfs_join_transaction(root, 1);
1721                         BUG_ON(IS_ERR(trans));
1722                         btrfs_set_trans_block_group(trans, inode);
1723                         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1724                         ret = btrfs_update_inode(trans, root, inode);
1725                         BUG_ON(ret);
1726                 }
1727                 goto out;
1728         }
1729
1730         lock_extent_bits(io_tree, ordered_extent->file_offset,
1731                          ordered_extent->file_offset + ordered_extent->len - 1,
1732                          0, &cached_state, GFP_NOFS);
1733
1734         if (nolock)
1735                 trans = btrfs_join_transaction_nolock(root, 1);
1736         else
1737                 trans = btrfs_join_transaction(root, 1);
1738         BUG_ON(IS_ERR(trans));
1739         btrfs_set_trans_block_group(trans, inode);
1740         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1741
1742         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1743                 compress_type = ordered_extent->compress_type;
1744         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1745                 BUG_ON(compress_type);
1746                 ret = btrfs_mark_extent_written(trans, inode,
1747                                                 ordered_extent->file_offset,
1748                                                 ordered_extent->file_offset +
1749                                                 ordered_extent->len);
1750                 BUG_ON(ret);
1751         } else {
1752                 BUG_ON(root == root->fs_info->tree_root);
1753                 ret = insert_reserved_file_extent(trans, inode,
1754                                                 ordered_extent->file_offset,
1755                                                 ordered_extent->start,
1756                                                 ordered_extent->disk_len,
1757                                                 ordered_extent->len,
1758                                                 ordered_extent->len,
1759                                                 compress_type, 0, 0,
1760                                                 BTRFS_FILE_EXTENT_REG);
1761                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1762                                    ordered_extent->file_offset,
1763                                    ordered_extent->len);
1764                 BUG_ON(ret);
1765         }
1766         unlock_extent_cached(io_tree, ordered_extent->file_offset,
1767                              ordered_extent->file_offset +
1768                              ordered_extent->len - 1, &cached_state, GFP_NOFS);
1769
1770         add_pending_csums(trans, inode, ordered_extent->file_offset,
1771                           &ordered_extent->list);
1772
1773         btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1774         ret = btrfs_update_inode(trans, root, inode);
1775         BUG_ON(ret);
1776 out:
1777         if (nolock) {
1778                 if (trans)
1779                         btrfs_end_transaction_nolock(trans, root);
1780         } else {
1781                 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1782                 if (trans)
1783                         btrfs_end_transaction(trans, root);
1784         }
1785
1786         /* once for us */
1787         btrfs_put_ordered_extent(ordered_extent);
1788         /* once for the tree */
1789         btrfs_put_ordered_extent(ordered_extent);
1790
1791         return 0;
1792 }
1793
1794 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1795                                 struct extent_state *state, int uptodate)
1796 {
1797         trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1798
1799         ClearPagePrivate2(page);
1800         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1801 }
1802
1803 /*
1804  * When IO fails, either with EIO or csum verification fails, we
1805  * try other mirrors that might have a good copy of the data.  This
1806  * io_failure_record is used to record state as we go through all the
1807  * mirrors.  If another mirror has good data, the page is set up to date
1808  * and things continue.  If a good mirror can't be found, the original
1809  * bio end_io callback is called to indicate things have failed.
1810  */
1811 struct io_failure_record {
1812         struct page *page;
1813         u64 start;
1814         u64 len;
1815         u64 logical;
1816         unsigned long bio_flags;
1817         int last_mirror;
1818 };
1819
1820 static int btrfs_io_failed_hook(struct bio *failed_bio,
1821                          struct page *page, u64 start, u64 end,
1822                          struct extent_state *state)
1823 {
1824         struct io_failure_record *failrec = NULL;
1825         u64 private;
1826         struct extent_map *em;
1827         struct inode *inode = page->mapping->host;
1828         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1829         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1830         struct bio *bio;
1831         int num_copies;
1832         int ret;
1833         int rw;
1834         u64 logical;
1835
1836         ret = get_state_private(failure_tree, start, &private);
1837         if (ret) {
1838                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1839                 if (!failrec)
1840                         return -ENOMEM;
1841                 failrec->start = start;
1842                 failrec->len = end - start + 1;
1843                 failrec->last_mirror = 0;
1844                 failrec->bio_flags = 0;
1845
1846                 read_lock(&em_tree->lock);
1847                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1848                 if (em->start > start || em->start + em->len < start) {
1849                         free_extent_map(em);
1850                         em = NULL;
1851                 }
1852                 read_unlock(&em_tree->lock);
1853
1854                 if (!em || IS_ERR(em)) {
1855                         kfree(failrec);
1856                         return -EIO;
1857                 }
1858                 logical = start - em->start;
1859                 logical = em->block_start + logical;
1860                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1861                         logical = em->block_start;
1862                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1863                         extent_set_compress_type(&failrec->bio_flags,
1864                                                  em->compress_type);
1865                 }
1866                 failrec->logical = logical;
1867                 free_extent_map(em);
1868                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1869                                 EXTENT_DIRTY, GFP_NOFS);
1870                 set_state_private(failure_tree, start,
1871                                  (u64)(unsigned long)failrec);
1872         } else {
1873                 failrec = (struct io_failure_record *)(unsigned long)private;
1874         }
1875         num_copies = btrfs_num_copies(
1876                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1877                               failrec->logical, failrec->len);
1878         failrec->last_mirror++;
1879         if (!state) {
1880                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1881                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1882                                                     failrec->start,
1883                                                     EXTENT_LOCKED);
1884                 if (state && state->start != failrec->start)
1885                         state = NULL;
1886                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1887         }
1888         if (!state || failrec->last_mirror > num_copies) {
1889                 set_state_private(failure_tree, failrec->start, 0);
1890                 clear_extent_bits(failure_tree, failrec->start,
1891                                   failrec->start + failrec->len - 1,
1892                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1893                 kfree(failrec);
1894                 return -EIO;
1895         }
1896         bio = bio_alloc(GFP_NOFS, 1);
1897         bio->bi_private = state;
1898         bio->bi_end_io = failed_bio->bi_end_io;
1899         bio->bi_sector = failrec->logical >> 9;
1900         bio->bi_bdev = failed_bio->bi_bdev;
1901         bio->bi_size = 0;
1902
1903         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1904         if (failed_bio->bi_rw & REQ_WRITE)
1905                 rw = WRITE;
1906         else
1907                 rw = READ;
1908
1909         ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1910                                                       failrec->last_mirror,
1911                                                       failrec->bio_flags, 0);
1912         return ret;
1913 }
1914
1915 /*
1916  * each time an IO finishes, we do a fast check in the IO failure tree
1917  * to see if we need to process or clean up an io_failure_record
1918  */
1919 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1920 {
1921         u64 private;
1922         u64 private_failure;
1923         struct io_failure_record *failure;
1924         int ret;
1925
1926         private = 0;
1927         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1928                              (u64)-1, 1, EXTENT_DIRTY, 0)) {
1929                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1930                                         start, &private_failure);
1931                 if (ret == 0) {
1932                         failure = (struct io_failure_record *)(unsigned long)
1933                                    private_failure;
1934                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1935                                           failure->start, 0);
1936                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1937                                           failure->start,
1938                                           failure->start + failure->len - 1,
1939                                           EXTENT_DIRTY | EXTENT_LOCKED,
1940                                           GFP_NOFS);
1941                         kfree(failure);
1942                 }
1943         }
1944         return 0;
1945 }
1946
1947 /*
1948  * when reads are done, we need to check csums to verify the data is correct
1949  * if there's a match, we allow the bio to finish.  If not, we go through
1950  * the io_failure_record routines to find good copies
1951  */
1952 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1953                                struct extent_state *state)
1954 {
1955         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1956         struct inode *inode = page->mapping->host;
1957         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1958         char *kaddr;
1959         u64 private = ~(u32)0;
1960         int ret;
1961         struct btrfs_root *root = BTRFS_I(inode)->root;
1962         u32 csum = ~(u32)0;
1963
1964         if (PageChecked(page)) {
1965                 ClearPageChecked(page);
1966                 goto good;
1967         }
1968
1969         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1970                 return 0;
1971
1972         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1973             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1974                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1975                                   GFP_NOFS);
1976                 return 0;
1977         }
1978
1979         if (state && state->start == start) {
1980                 private = state->private;
1981                 ret = 0;
1982         } else {
1983                 ret = get_state_private(io_tree, start, &private);
1984         }
1985         kaddr = kmap_atomic(page, KM_USER0);
1986         if (ret)
1987                 goto zeroit;
1988
1989         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1990         btrfs_csum_final(csum, (char *)&csum);
1991         if (csum != private)
1992                 goto zeroit;
1993
1994         kunmap_atomic(kaddr, KM_USER0);
1995 good:
1996         /* if the io failure tree for this inode is non-empty,
1997          * check to see if we've recovered from a failed IO
1998          */
1999         btrfs_clean_io_failures(inode, start);
2000         return 0;
2001
2002 zeroit:
2003         if (printk_ratelimit()) {
2004                 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
2005                        "private %llu\n", page->mapping->host->i_ino,
2006                        (unsigned long long)start, csum,
2007                        (unsigned long long)private);
2008         }
2009         memset(kaddr + offset, 1, end - start + 1);
2010         flush_dcache_page(page);
2011         kunmap_atomic(kaddr, KM_USER0);
2012         if (private == 0)
2013                 return 0;
2014         return -EIO;
2015 }
2016
2017 struct delayed_iput {
2018         struct list_head list;
2019         struct inode *inode;
2020 };
2021
2022 void btrfs_add_delayed_iput(struct inode *inode)
2023 {
2024         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2025         struct delayed_iput *delayed;
2026
2027         if (atomic_add_unless(&inode->i_count, -1, 1))
2028                 return;
2029
2030         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2031         delayed->inode = inode;
2032
2033         spin_lock(&fs_info->delayed_iput_lock);
2034         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2035         spin_unlock(&fs_info->delayed_iput_lock);
2036 }
2037
2038 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2039 {
2040         LIST_HEAD(list);
2041         struct btrfs_fs_info *fs_info = root->fs_info;
2042         struct delayed_iput *delayed;
2043         int empty;
2044
2045         spin_lock(&fs_info->delayed_iput_lock);
2046         empty = list_empty(&fs_info->delayed_iputs);
2047         spin_unlock(&fs_info->delayed_iput_lock);
2048         if (empty)
2049                 return;
2050
2051         down_read(&root->fs_info->cleanup_work_sem);
2052         spin_lock(&fs_info->delayed_iput_lock);
2053         list_splice_init(&fs_info->delayed_iputs, &list);
2054         spin_unlock(&fs_info->delayed_iput_lock);
2055
2056         while (!list_empty(&list)) {
2057                 delayed = list_entry(list.next, struct delayed_iput, list);
2058                 list_del(&delayed->list);
2059                 iput(delayed->inode);
2060                 kfree(delayed);
2061         }
2062         up_read(&root->fs_info->cleanup_work_sem);
2063 }
2064
2065 /*
2066  * calculate extra metadata reservation when snapshotting a subvolume
2067  * contains orphan files.
2068  */
2069 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2070                                 struct btrfs_pending_snapshot *pending,
2071                                 u64 *bytes_to_reserve)
2072 {
2073         struct btrfs_root *root;
2074         struct btrfs_block_rsv *block_rsv;
2075         u64 num_bytes;
2076         int index;
2077
2078         root = pending->root;
2079         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2080                 return;
2081
2082         block_rsv = root->orphan_block_rsv;
2083
2084         /* orphan block reservation for the snapshot */
2085         num_bytes = block_rsv->size;
2086
2087         /*
2088          * after the snapshot is created, COWing tree blocks may use more
2089          * space than it frees. So we should make sure there is enough
2090          * reserved space.
2091          */
2092         index = trans->transid & 0x1;
2093         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2094                 num_bytes += block_rsv->size -
2095                              (block_rsv->reserved + block_rsv->freed[index]);
2096         }
2097
2098         *bytes_to_reserve += num_bytes;
2099 }
2100
2101 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2102                                 struct btrfs_pending_snapshot *pending)
2103 {
2104         struct btrfs_root *root = pending->root;
2105         struct btrfs_root *snap = pending->snap;
2106         struct btrfs_block_rsv *block_rsv;
2107         u64 num_bytes;
2108         int index;
2109         int ret;
2110
2111         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2112                 return;
2113
2114         /* refill source subvolume's orphan block reservation */
2115         block_rsv = root->orphan_block_rsv;
2116         index = trans->transid & 0x1;
2117         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2118                 num_bytes = block_rsv->size -
2119                             (block_rsv->reserved + block_rsv->freed[index]);
2120                 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2121                                               root->orphan_block_rsv,
2122                                               num_bytes);
2123                 BUG_ON(ret);
2124         }
2125
2126         /* setup orphan block reservation for the snapshot */
2127         block_rsv = btrfs_alloc_block_rsv(snap);
2128         BUG_ON(!block_rsv);
2129
2130         btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2131         snap->orphan_block_rsv = block_rsv;
2132
2133         num_bytes = root->orphan_block_rsv->size;
2134         ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2135                                       block_rsv, num_bytes);
2136         BUG_ON(ret);
2137
2138 #if 0
2139         /* insert orphan item for the snapshot */
2140         WARN_ON(!root->orphan_item_inserted);
2141         ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2142                                        snap->root_key.objectid);
2143         BUG_ON(ret);
2144         snap->orphan_item_inserted = 1;
2145 #endif
2146 }
2147
2148 enum btrfs_orphan_cleanup_state {
2149         ORPHAN_CLEANUP_STARTED  = 1,
2150         ORPHAN_CLEANUP_DONE     = 2,
2151 };
2152
2153 /*
2154  * This is called in transaction commmit time. If there are no orphan
2155  * files in the subvolume, it removes orphan item and frees block_rsv
2156  * structure.
2157  */
2158 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2159                               struct btrfs_root *root)
2160 {
2161         int ret;
2162
2163         if (!list_empty(&root->orphan_list) ||
2164             root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2165                 return;
2166
2167         if (root->orphan_item_inserted &&
2168             btrfs_root_refs(&root->root_item) > 0) {
2169                 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2170                                             root->root_key.objectid);
2171                 BUG_ON(ret);
2172                 root->orphan_item_inserted = 0;
2173         }
2174
2175         if (root->orphan_block_rsv) {
2176                 WARN_ON(root->orphan_block_rsv->size > 0);
2177                 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2178                 root->orphan_block_rsv = NULL;
2179         }
2180 }
2181
2182 /*
2183  * This creates an orphan entry for the given inode in case something goes
2184  * wrong in the middle of an unlink/truncate.
2185  *
2186  * NOTE: caller of this function should reserve 5 units of metadata for
2187  *       this function.
2188  */
2189 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2190 {
2191         struct btrfs_root *root = BTRFS_I(inode)->root;
2192         struct btrfs_block_rsv *block_rsv = NULL;
2193         int reserve = 0;
2194         int insert = 0;
2195         int ret;
2196
2197         if (!root->orphan_block_rsv) {
2198                 block_rsv = btrfs_alloc_block_rsv(root);
2199                 BUG_ON(!block_rsv);
2200         }
2201
2202         spin_lock(&root->orphan_lock);
2203         if (!root->orphan_block_rsv) {
2204                 root->orphan_block_rsv = block_rsv;
2205         } else if (block_rsv) {
2206                 btrfs_free_block_rsv(root, block_rsv);
2207                 block_rsv = NULL;
2208         }
2209
2210         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2211                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2212 #if 0
2213                 /*
2214                  * For proper ENOSPC handling, we should do orphan
2215                  * cleanup when mounting. But this introduces backward
2216                  * compatibility issue.
2217                  */
2218                 if (!xchg(&root->orphan_item_inserted, 1))
2219                         insert = 2;
2220                 else
2221                         insert = 1;
2222 #endif
2223                 insert = 1;
2224         } else {
2225                 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
2226         }
2227
2228         if (!BTRFS_I(inode)->orphan_meta_reserved) {
2229                 BTRFS_I(inode)->orphan_meta_reserved = 1;
2230                 reserve = 1;
2231         }
2232         spin_unlock(&root->orphan_lock);
2233
2234         if (block_rsv)
2235                 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2236
2237         /* grab metadata reservation from transaction handle */
2238         if (reserve) {
2239                 ret = btrfs_orphan_reserve_metadata(trans, inode);
2240                 BUG_ON(ret);
2241         }
2242
2243         /* insert an orphan item to track this unlinked/truncated file */
2244         if (insert >= 1) {
2245                 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2246                 BUG_ON(ret);
2247         }
2248
2249         /* insert an orphan item to track subvolume contains orphan files */
2250         if (insert >= 2) {
2251                 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2252                                                root->root_key.objectid);
2253                 BUG_ON(ret);
2254         }
2255         return 0;
2256 }
2257
2258 /*
2259  * We have done the truncate/delete so we can go ahead and remove the orphan
2260  * item for this particular inode.
2261  */
2262 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2263 {
2264         struct btrfs_root *root = BTRFS_I(inode)->root;
2265         int delete_item = 0;
2266         int release_rsv = 0;
2267         int ret = 0;
2268
2269         spin_lock(&root->orphan_lock);
2270         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2271                 list_del_init(&BTRFS_I(inode)->i_orphan);
2272                 delete_item = 1;
2273         }
2274
2275         if (BTRFS_I(inode)->orphan_meta_reserved) {
2276                 BTRFS_I(inode)->orphan_meta_reserved = 0;
2277                 release_rsv = 1;
2278         }
2279         spin_unlock(&root->orphan_lock);
2280
2281         if (trans && delete_item) {
2282                 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2283                 BUG_ON(ret);
2284         }
2285
2286         if (release_rsv)
2287                 btrfs_orphan_release_metadata(inode);
2288
2289         return 0;
2290 }
2291
2292 /*
2293  * this cleans up any orphans that may be left on the list from the last use
2294  * of this root.
2295  */
2296 int btrfs_orphan_cleanup(struct btrfs_root *root)
2297 {
2298         struct btrfs_path *path;
2299         struct extent_buffer *leaf;
2300         struct btrfs_key key, found_key;
2301         struct btrfs_trans_handle *trans;
2302         struct inode *inode;
2303         int ret = 0, nr_unlink = 0, nr_truncate = 0;
2304
2305         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2306                 return 0;
2307
2308         path = btrfs_alloc_path();
2309         if (!path) {
2310                 ret = -ENOMEM;
2311                 goto out;
2312         }
2313         path->reada = -1;
2314
2315         key.objectid = BTRFS_ORPHAN_OBJECTID;
2316         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2317         key.offset = (u64)-1;
2318
2319         while (1) {
2320                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2321                 if (ret < 0)
2322                         goto out;
2323
2324                 /*
2325                  * if ret == 0 means we found what we were searching for, which
2326                  * is weird, but possible, so only screw with path if we didnt
2327                  * find the key and see if we have stuff that matches
2328                  */
2329                 if (ret > 0) {
2330                         ret = 0;
2331                         if (path->slots[0] == 0)
2332                                 break;
2333                         path->slots[0]--;
2334                 }
2335
2336                 /* pull out the item */
2337                 leaf = path->nodes[0];
2338                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2339
2340                 /* make sure the item matches what we want */
2341                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2342                         break;
2343                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2344                         break;
2345
2346                 /* release the path since we're done with it */
2347                 btrfs_release_path(root, path);
2348
2349                 /*
2350                  * this is where we are basically btrfs_lookup, without the
2351                  * crossing root thing.  we store the inode number in the
2352                  * offset of the orphan item.
2353                  */
2354                 found_key.objectid = found_key.offset;
2355                 found_key.type = BTRFS_INODE_ITEM_KEY;
2356                 found_key.offset = 0;
2357                 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2358                 if (IS_ERR(inode)) {
2359                         ret = PTR_ERR(inode);
2360                         goto out;
2361                 }
2362
2363                 /*
2364                  * add this inode to the orphan list so btrfs_orphan_del does
2365                  * the proper thing when we hit it
2366                  */
2367                 spin_lock(&root->orphan_lock);
2368                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2369                 spin_unlock(&root->orphan_lock);
2370
2371                 /*
2372                  * if this is a bad inode, means we actually succeeded in
2373                  * removing the inode, but not the orphan record, which means
2374                  * we need to manually delete the orphan since iput will just
2375                  * do a destroy_inode
2376                  */
2377                 if (is_bad_inode(inode)) {
2378                         trans = btrfs_start_transaction(root, 0);
2379                         if (IS_ERR(trans)) {
2380                                 ret = PTR_ERR(trans);
2381                                 goto out;
2382                         }
2383                         btrfs_orphan_del(trans, inode);
2384                         btrfs_end_transaction(trans, root);
2385                         iput(inode);
2386                         continue;
2387                 }
2388
2389                 /* if we have links, this was a truncate, lets do that */
2390                 if (inode->i_nlink) {
2391                         if (!S_ISREG(inode->i_mode)) {
2392                                 WARN_ON(1);
2393                                 iput(inode);
2394                                 continue;
2395                         }
2396                         nr_truncate++;
2397                         ret = btrfs_truncate(inode);
2398                 } else {
2399                         nr_unlink++;
2400                 }
2401
2402                 /* this will do delete_inode and everything for us */
2403                 iput(inode);
2404                 if (ret)
2405                         goto out;
2406         }
2407         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2408
2409         if (root->orphan_block_rsv)
2410                 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2411                                         (u64)-1);
2412
2413         if (root->orphan_block_rsv || root->orphan_item_inserted) {
2414                 trans = btrfs_join_transaction(root, 1);
2415                 if (!IS_ERR(trans))
2416                         btrfs_end_transaction(trans, root);
2417         }
2418
2419         if (nr_unlink)
2420                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2421         if (nr_truncate)
2422                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2423
2424 out:
2425         if (ret)
2426                 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2427         btrfs_free_path(path);
2428         return ret;
2429 }
2430
2431 /*
2432  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2433  * don't find any xattrs, we know there can't be any acls.
2434  *
2435  * slot is the slot the inode is in, objectid is the objectid of the inode
2436  */
2437 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2438                                           int slot, u64 objectid)
2439 {
2440         u32 nritems = btrfs_header_nritems(leaf);
2441         struct btrfs_key found_key;
2442         int scanned = 0;
2443
2444         slot++;
2445         while (slot < nritems) {
2446                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2447
2448                 /* we found a different objectid, there must not be acls */
2449                 if (found_key.objectid != objectid)
2450                         return 0;
2451
2452                 /* we found an xattr, assume we've got an acl */
2453                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2454                         return 1;
2455
2456                 /*
2457                  * we found a key greater than an xattr key, there can't
2458                  * be any acls later on
2459                  */
2460                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2461                         return 0;
2462
2463                 slot++;
2464                 scanned++;
2465
2466                 /*
2467                  * it goes inode, inode backrefs, xattrs, extents,
2468                  * so if there are a ton of hard links to an inode there can
2469                  * be a lot of backrefs.  Don't waste time searching too hard,
2470                  * this is just an optimization
2471                  */
2472                 if (scanned >= 8)
2473                         break;
2474         }
2475         /* we hit the end of the leaf before we found an xattr or
2476          * something larger than an xattr.  We have to assume the inode
2477          * has acls
2478          */
2479         return 1;
2480 }
2481
2482 /*
2483  * read an inode from the btree into the in-memory inode
2484  */
2485 static void btrfs_read_locked_inode(struct inode *inode)
2486 {
2487         struct btrfs_path *path;
2488         struct extent_buffer *leaf;
2489         struct btrfs_inode_item *inode_item;
2490         struct btrfs_timespec *tspec;
2491         struct btrfs_root *root = BTRFS_I(inode)->root;
2492         struct btrfs_key location;
2493         int maybe_acls;
2494         u64 alloc_group_block;
2495         u32 rdev;
2496         int ret;
2497
2498         path = btrfs_alloc_path();
2499         BUG_ON(!path);
2500         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2501
2502         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2503         if (ret)
2504                 goto make_bad;
2505
2506         leaf = path->nodes[0];
2507         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2508                                     struct btrfs_inode_item);
2509
2510         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2511         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2512         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2513         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2514         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2515
2516         tspec = btrfs_inode_atime(inode_item);
2517         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2518         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2519
2520         tspec = btrfs_inode_mtime(inode_item);
2521         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2522         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2523
2524         tspec = btrfs_inode_ctime(inode_item);
2525         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2526         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2527
2528         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2529         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2530         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2531         inode->i_generation = BTRFS_I(inode)->generation;
2532         inode->i_rdev = 0;
2533         rdev = btrfs_inode_rdev(leaf, inode_item);
2534
2535         BTRFS_I(inode)->index_cnt = (u64)-1;
2536         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2537
2538         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2539
2540         /*
2541          * try to precache a NULL acl entry for files that don't have
2542          * any xattrs or acls
2543          */
2544         maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2545         if (!maybe_acls)
2546                 cache_no_acl(inode);
2547
2548         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2549                                                 alloc_group_block, 0);
2550         btrfs_free_path(path);
2551         inode_item = NULL;
2552
2553         switch (inode->i_mode & S_IFMT) {
2554         case S_IFREG:
2555                 inode->i_mapping->a_ops = &btrfs_aops;
2556                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2557                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2558                 inode->i_fop = &btrfs_file_operations;
2559                 inode->i_op = &btrfs_file_inode_operations;
2560                 break;
2561         case S_IFDIR:
2562                 inode->i_fop = &btrfs_dir_file_operations;
2563                 if (root == root->fs_info->tree_root)
2564                         inode->i_op = &btrfs_dir_ro_inode_operations;
2565                 else
2566                         inode->i_op = &btrfs_dir_inode_operations;
2567                 break;
2568         case S_IFLNK:
2569                 inode->i_op = &btrfs_symlink_inode_operations;
2570                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2571                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2572                 break;
2573         default:
2574                 inode->i_op = &btrfs_special_inode_operations;
2575                 init_special_inode(inode, inode->i_mode, rdev);
2576                 break;
2577         }
2578
2579         btrfs_update_iflags(inode);
2580         return;
2581
2582 make_bad:
2583         btrfs_free_path(path);
2584         make_bad_inode(inode);
2585 }
2586
2587 /*
2588  * given a leaf and an inode, copy the inode fields into the leaf
2589  */
2590 static void fill_inode_item(struct btrfs_trans_handle *trans,
2591                             struct extent_buffer *leaf,
2592                             struct btrfs_inode_item *item,
2593                             struct inode *inode)
2594 {
2595         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2596         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2597         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2598         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2599         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2600
2601         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2602                                inode->i_atime.tv_sec);
2603         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2604                                 inode->i_atime.tv_nsec);
2605
2606         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2607                                inode->i_mtime.tv_sec);
2608         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2609                                 inode->i_mtime.tv_nsec);
2610
2611         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2612                                inode->i_ctime.tv_sec);
2613         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2614                                 inode->i_ctime.tv_nsec);
2615
2616         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2617         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2618         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2619         btrfs_set_inode_transid(leaf, item, trans->transid);
2620         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2621         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2622         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2623 }
2624
2625 /*
2626  * copy everything in the in-memory inode into the btree.
2627  */
2628 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2629                                 struct btrfs_root *root, struct inode *inode)
2630 {
2631         struct btrfs_inode_item *inode_item;
2632         struct btrfs_path *path;
2633         struct extent_buffer *leaf;
2634         int ret;
2635
2636         path = btrfs_alloc_path();
2637         BUG_ON(!path);
2638         path->leave_spinning = 1;
2639         ret = btrfs_lookup_inode(trans, root, path,
2640                                  &BTRFS_I(inode)->location, 1);
2641         if (ret) {
2642                 if (ret > 0)
2643                         ret = -ENOENT;
2644                 goto failed;
2645         }
2646
2647         btrfs_unlock_up_safe(path, 1);
2648         leaf = path->nodes[0];
2649         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2650                                   struct btrfs_inode_item);
2651
2652         fill_inode_item(trans, leaf, inode_item, inode);
2653         btrfs_mark_buffer_dirty(leaf);
2654         btrfs_set_inode_last_trans(trans, inode);
2655         ret = 0;
2656 failed:
2657         btrfs_free_path(path);
2658         return ret;
2659 }
2660
2661
2662 /*
2663  * unlink helper that gets used here in inode.c and in the tree logging
2664  * recovery code.  It remove a link in a directory with a given name, and
2665  * also drops the back refs in the inode to the directory
2666  */
2667 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2668                                 struct btrfs_root *root,
2669                                 struct inode *dir, struct inode *inode,
2670                                 const char *name, int name_len)
2671 {
2672         struct btrfs_path *path;
2673         int ret = 0;
2674         struct extent_buffer *leaf;
2675         struct btrfs_dir_item *di;
2676         struct btrfs_key key;
2677         u64 index;
2678
2679         path = btrfs_alloc_path();
2680         if (!path) {
2681                 ret = -ENOMEM;
2682                 goto out;
2683         }
2684
2685         path->leave_spinning = 1;
2686         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2687                                     name, name_len, -1);
2688         if (IS_ERR(di)) {
2689                 ret = PTR_ERR(di);
2690                 goto err;
2691         }
2692         if (!di) {
2693                 ret = -ENOENT;
2694                 goto err;
2695         }
2696         leaf = path->nodes[0];
2697         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2698         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2699         if (ret)
2700                 goto err;
2701         btrfs_release_path(root, path);
2702
2703         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2704                                   inode->i_ino,
2705                                   dir->i_ino, &index);
2706         if (ret) {
2707                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2708                        "inode %lu parent %lu\n", name_len, name,
2709                        inode->i_ino, dir->i_ino);
2710                 goto err;
2711         }
2712
2713         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2714                                          index, name, name_len, -1);
2715         if (IS_ERR(di)) {
2716                 ret = PTR_ERR(di);
2717                 goto err;
2718         }
2719         if (!di) {
2720                 ret = -ENOENT;
2721                 goto err;
2722         }
2723         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2724         btrfs_release_path(root, path);
2725
2726         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2727                                          inode, dir->i_ino);
2728         BUG_ON(ret != 0 && ret != -ENOENT);
2729
2730         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2731                                            dir, index);
2732         if (ret == -ENOENT)
2733                 ret = 0;
2734 err:
2735         btrfs_free_path(path);
2736         if (ret)
2737                 goto out;
2738
2739         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2740         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2741         btrfs_update_inode(trans, root, dir);
2742 out:
2743         return ret;
2744 }
2745
2746 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2747                        struct btrfs_root *root,
2748                        struct inode *dir, struct inode *inode,
2749                        const char *name, int name_len)
2750 {
2751         int ret;
2752         ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2753         if (!ret) {
2754                 btrfs_drop_nlink(inode);
2755                 ret = btrfs_update_inode(trans, root, inode);
2756         }
2757         return ret;
2758 }
2759                 
2760
2761 /* helper to check if there is any shared block in the path */
2762 static int check_path_shared(struct btrfs_root *root,
2763                              struct btrfs_path *path)
2764 {
2765         struct extent_buffer *eb;
2766         int level;
2767         u64 refs = 1;
2768
2769         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2770                 int ret;
2771
2772                 if (!path->nodes[level])
2773                         break;
2774                 eb = path->nodes[level];
2775                 if (!btrfs_block_can_be_shared(root, eb))
2776                         continue;
2777                 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2778                                                &refs, NULL);
2779                 if (refs > 1)
2780                         return 1;
2781         }
2782         return 0;
2783 }
2784
2785 /*
2786  * helper to start transaction for unlink and rmdir.
2787  *
2788  * unlink and rmdir are special in btrfs, they do not always free space.
2789  * so in enospc case, we should make sure they will free space before
2790  * allowing them to use the global metadata reservation.
2791  */
2792 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2793                                                        struct dentry *dentry)
2794 {
2795         struct btrfs_trans_handle *trans;
2796         struct btrfs_root *root = BTRFS_I(dir)->root;
2797         struct btrfs_path *path;
2798         struct btrfs_inode_ref *ref;
2799         struct btrfs_dir_item *di;
2800         struct inode *inode = dentry->d_inode;
2801         u64 index;
2802         int check_link = 1;
2803         int err = -ENOSPC;
2804         int ret;
2805
2806         trans = btrfs_start_transaction(root, 10);
2807         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2808                 return trans;
2809
2810         if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2811                 return ERR_PTR(-ENOSPC);
2812
2813         /* check if there is someone else holds reference */
2814         if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2815                 return ERR_PTR(-ENOSPC);
2816
2817         if (atomic_read(&inode->i_count) > 2)
2818                 return ERR_PTR(-ENOSPC);
2819
2820         if (xchg(&root->fs_info->enospc_unlink, 1))
2821                 return ERR_PTR(-ENOSPC);
2822
2823         path = btrfs_alloc_path();
2824         if (!path) {
2825                 root->fs_info->enospc_unlink = 0;
2826                 return ERR_PTR(-ENOMEM);
2827         }
2828
2829         trans = btrfs_start_transaction(root, 0);
2830         if (IS_ERR(trans)) {
2831                 btrfs_free_path(path);
2832                 root->fs_info->enospc_unlink = 0;
2833                 return trans;
2834         }
2835
2836         path->skip_locking = 1;
2837         path->search_commit_root = 1;
2838
2839         ret = btrfs_lookup_inode(trans, root, path,
2840                                 &BTRFS_I(dir)->location, 0);
2841         if (ret < 0) {
2842                 err = ret;
2843                 goto out;
2844         }
2845         if (ret == 0) {
2846                 if (check_path_shared(root, path))
2847                         goto out;
2848         } else {
2849                 check_link = 0;
2850         }
2851         btrfs_release_path(root, path);
2852
2853         ret = btrfs_lookup_inode(trans, root, path,
2854                                 &BTRFS_I(inode)->location, 0);
2855         if (ret < 0) {
2856                 err = ret;
2857                 goto out;
2858         }
2859         if (ret == 0) {
2860                 if (check_path_shared(root, path))
2861                         goto out;
2862         } else {
2863                 check_link = 0;
2864         }
2865         btrfs_release_path(root, path);
2866
2867         if (ret == 0 && S_ISREG(inode->i_mode)) {
2868                 ret = btrfs_lookup_file_extent(trans, root, path,
2869                                                inode->i_ino, (u64)-1, 0);
2870                 if (ret < 0) {
2871                         err = ret;
2872                         goto out;
2873                 }
2874                 BUG_ON(ret == 0);
2875                 if (check_path_shared(root, path))
2876                         goto out;
2877                 btrfs_release_path(root, path);
2878         }
2879
2880         if (!check_link) {
2881                 err = 0;
2882                 goto out;
2883         }
2884
2885         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2886                                 dentry->d_name.name, dentry->d_name.len, 0);
2887         if (IS_ERR(di)) {
2888                 err = PTR_ERR(di);
2889                 goto out;
2890         }
2891         if (di) {
2892                 if (check_path_shared(root, path))
2893                         goto out;
2894         } else {
2895                 err = 0;
2896                 goto out;
2897         }
2898         btrfs_release_path(root, path);
2899
2900         ref = btrfs_lookup_inode_ref(trans, root, path,
2901                                 dentry->d_name.name, dentry->d_name.len,
2902                                 inode->i_ino, dir->i_ino, 0);
2903         if (IS_ERR(ref)) {
2904                 err = PTR_ERR(ref);
2905                 goto out;
2906         }
2907         BUG_ON(!ref);
2908         if (check_path_shared(root, path))
2909                 goto out;
2910         index = btrfs_inode_ref_index(path->nodes[0], ref);
2911         btrfs_release_path(root, path);
2912
2913         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2914                                 dentry->d_name.name, dentry->d_name.len, 0);
2915         if (IS_ERR(di)) {
2916                 err = PTR_ERR(di);
2917                 goto out;
2918         }
2919         BUG_ON(ret == -ENOENT);
2920         if (check_path_shared(root, path))
2921                 goto out;
2922
2923         err = 0;
2924 out:
2925         btrfs_free_path(path);
2926         if (err) {
2927                 btrfs_end_transaction(trans, root);
2928                 root->fs_info->enospc_unlink = 0;
2929                 return ERR_PTR(err);
2930         }
2931
2932         trans->block_rsv = &root->fs_info->global_block_rsv;
2933         return trans;
2934 }
2935
2936 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2937                                struct btrfs_root *root)
2938 {
2939         if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2940                 BUG_ON(!root->fs_info->enospc_unlink);
2941                 root->fs_info->enospc_unlink = 0;
2942         }
2943         btrfs_end_transaction_throttle(trans, root);
2944 }
2945
2946 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2947 {
2948         struct btrfs_root *root = BTRFS_I(dir)->root;
2949         struct btrfs_trans_handle *trans;
2950         struct inode *inode = dentry->d_inode;
2951         int ret;
2952         unsigned long nr = 0;
2953
2954         trans = __unlink_start_trans(dir, dentry);
2955         if (IS_ERR(trans))
2956                 return PTR_ERR(trans);
2957
2958         btrfs_set_trans_block_group(trans, dir);
2959
2960         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2961
2962         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2963                                  dentry->d_name.name, dentry->d_name.len);
2964         BUG_ON(ret);
2965
2966         if (inode->i_nlink == 0) {
2967                 ret = btrfs_orphan_add(trans, inode);
2968                 BUG_ON(ret);
2969         }
2970
2971         nr = trans->blocks_used;
2972         __unlink_end_trans(trans, root);
2973         btrfs_btree_balance_dirty(root, nr);
2974         return ret;
2975 }
2976
2977 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2978                         struct btrfs_root *root,
2979                         struct inode *dir, u64 objectid,
2980                         const char *name, int name_len)
2981 {
2982         struct btrfs_path *path;
2983         struct extent_buffer *leaf;
2984         struct btrfs_dir_item *di;
2985         struct btrfs_key key;
2986         u64 index;
2987         int ret;
2988
2989         path = btrfs_alloc_path();
2990         if (!path)
2991                 return -ENOMEM;
2992
2993         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2994                                    name, name_len, -1);
2995         BUG_ON(!di || IS_ERR(di));
2996
2997         leaf = path->nodes[0];
2998         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2999         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3000         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3001         BUG_ON(ret);
3002         btrfs_release_path(root, path);
3003
3004         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3005                                  objectid, root->root_key.objectid,
3006                                  dir->i_ino, &index, name, name_len);
3007         if (ret < 0) {
3008                 BUG_ON(ret != -ENOENT);
3009                 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
3010                                                  name, name_len);
3011                 BUG_ON(!di || IS_ERR(di));
3012
3013                 leaf = path->nodes[0];
3014                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3015                 btrfs_release_path(root, path);
3016                 index = key.offset;
3017         }
3018
3019         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
3020                                          index, name, name_len, -1);
3021         BUG_ON(!di || IS_ERR(di));
3022
3023         leaf = path->nodes[0];
3024         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3025         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3026         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3027         BUG_ON(ret);
3028         btrfs_release_path(root, path);
3029
3030         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3031         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3032         ret = btrfs_update_inode(trans, root, dir);
3033         BUG_ON(ret);
3034
3035         btrfs_free_path(path);
3036         return 0;
3037 }
3038
3039 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3040 {
3041         struct inode *inode = dentry->d_inode;
3042         int err = 0;
3043         struct btrfs_root *root = BTRFS_I(dir)->root;
3044         struct btrfs_trans_handle *trans;
3045         unsigned long nr = 0;
3046
3047         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3048             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
3049                 return -ENOTEMPTY;
3050
3051         trans = __unlink_start_trans(dir, dentry);
3052         if (IS_ERR(trans))
3053                 return PTR_ERR(trans);
3054
3055         btrfs_set_trans_block_group(trans, dir);
3056
3057         if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3058                 err = btrfs_unlink_subvol(trans, root, dir,
3059                                           BTRFS_I(inode)->location.objectid,
3060                                           dentry->d_name.name,
3061                                           dentry->d_name.len);
3062                 goto out;
3063         }
3064
3065         err = btrfs_orphan_add(trans, inode);
3066         if (err)
3067                 goto out;
3068
3069         /* now the directory is empty */
3070         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3071                                  dentry->d_name.name, dentry->d_name.len);
3072         if (!err)
3073                 btrfs_i_size_write(inode, 0);
3074 out:
3075         nr = trans->blocks_used;
3076         __unlink_end_trans(trans, root);
3077         btrfs_btree_balance_dirty(root, nr);
3078
3079         return err;
3080 }
3081
3082 #if 0
3083 /*
3084  * when truncating bytes in a file, it is possible to avoid reading
3085  * the leaves that contain only checksum items.  This can be the
3086  * majority of the IO required to delete a large file, but it must
3087  * be done carefully.
3088  *
3089  * The keys in the level just above the leaves are checked to make sure
3090  * the lowest key in a given leaf is a csum key, and starts at an offset
3091  * after the new  size.
3092  *
3093  * Then the key for the next leaf is checked to make sure it also has
3094  * a checksum item for the same file.  If it does, we know our target leaf
3095  * contains only checksum items, and it can be safely freed without reading
3096  * it.
3097  *
3098  * This is just an optimization targeted at large files.  It may do
3099  * nothing.  It will return 0 unless things went badly.
3100  */
3101 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3102                                      struct btrfs_root *root,
3103                                      struct btrfs_path *path,
3104                                      struct inode *inode, u64 new_size)
3105 {
3106         struct btrfs_key key;
3107         int ret;
3108         int nritems;
3109         struct btrfs_key found_key;
3110         struct btrfs_key other_key;
3111         struct btrfs_leaf_ref *ref;
3112         u64 leaf_gen;
3113         u64 leaf_start;
3114
3115         path->lowest_level = 1;
3116         key.objectid = inode->i_ino;
3117         key.type = BTRFS_CSUM_ITEM_KEY;
3118         key.offset = new_size;
3119 again:
3120         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3121         if (ret < 0)
3122                 goto out;
3123
3124         if (path->nodes[1] == NULL) {
3125                 ret = 0;
3126                 goto out;
3127         }
3128         ret = 0;
3129         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3130         nritems = btrfs_header_nritems(path->nodes[1]);
3131
3132         if (!nritems)
3133                 goto out;
3134
3135         if (path->slots[1] >= nritems)
3136                 goto next_node;
3137
3138         /* did we find a key greater than anything we want to delete? */
3139         if (found_key.objectid > inode->i_ino ||
3140            (found_key.objectid == inode->i_ino && found_key.type > key.type))
3141                 goto out;
3142
3143         /* we check the next key in the node to make sure the leave contains
3144          * only checksum items.  This comparison doesn't work if our
3145          * leaf is the last one in the node
3146          */
3147         if (path->slots[1] + 1 >= nritems) {
3148 next_node:
3149                 /* search forward from the last key in the node, this
3150                  * will bring us into the next node in the tree
3151                  */
3152                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3153
3154                 /* unlikely, but we inc below, so check to be safe */
3155                 if (found_key.offset == (u64)-1)
3156                         goto out;
3157
3158                 /* search_forward needs a path with locks held, do the
3159                  * search again for the original key.  It is possible
3160                  * this will race with a balance and return a path that
3161                  * we could modify, but this drop is just an optimization
3162                  * and is allowed to miss some leaves.
3163                  */
3164                 btrfs_release_path(root, path);
3165                 found_key.offset++;
3166
3167                 /* setup a max key for search_forward */
3168                 other_key.offset = (u64)-1;
3169                 other_key.type = key.type;
3170                 other_key.objectid = key.objectid;
3171
3172                 path->keep_locks = 1;
3173                 ret = btrfs_search_forward(root, &found_key, &other_key,
3174                                            path, 0, 0);
3175                 path->keep_locks = 0;
3176                 if (ret || found_key.objectid != key.objectid ||
3177                     found_key.type != key.type) {
3178                         ret = 0;
3179                         goto out;
3180                 }
3181
3182                 key.offset = found_key.offset;
3183                 btrfs_release_path(root, path);
3184                 cond_resched();
3185                 goto again;
3186         }
3187
3188         /* we know there's one more slot after us in the tree,
3189          * read that key so we can verify it is also a checksum item
3190          */
3191         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3192
3193         if (found_key.objectid < inode->i_ino)
3194                 goto next_key;
3195
3196         if (found_key.type != key.type || found_key.offset < new_size)
3197                 goto next_key;
3198
3199         /*
3200          * if the key for the next leaf isn't a csum key from this objectid,
3201          * we can't be sure there aren't good items inside this leaf.
3202          * Bail out
3203          */
3204         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3205                 goto out;
3206
3207         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3208         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3209         /*
3210          * it is safe to delete this leaf, it contains only
3211          * csum items from this inode at an offset >= new_size
3212          */
3213         ret = btrfs_del_leaf(trans, root, path, leaf_start);
3214         BUG_ON(ret);
3215
3216         if (root->ref_cows && leaf_gen < trans->transid) {
3217                 ref = btrfs_alloc_leaf_ref(root, 0);
3218                 if (ref) {
3219                         ref->root_gen = root->root_key.offset;
3220                         ref->bytenr = leaf_start;
3221                         ref->owner = 0;
3222                         ref->generation = leaf_gen;
3223                         ref->nritems = 0;
3224
3225                         btrfs_sort_leaf_ref(ref);
3226
3227                         ret = btrfs_add_leaf_ref(root, ref, 0);
3228                         WARN_ON(ret);
3229                         btrfs_free_leaf_ref(root, ref);
3230                 } else {
3231                         WARN_ON(1);
3232                 }
3233         }
3234 next_key:
3235         btrfs_release_path(root, path);
3236
3237         if (other_key.objectid == inode->i_ino &&
3238             other_key.type == key.type && other_key.offset > key.offset) {
3239                 key.offset = other_key.offset;
3240                 cond_resched();
3241                 goto again;
3242         }
3243         ret = 0;
3244 out:
3245         /* fixup any changes we've made to the path */
3246         path->lowest_level = 0;
3247         path->keep_locks = 0;
3248         btrfs_release_path(root, path);
3249         return ret;
3250 }
3251
3252 #endif
3253
3254 /*
3255  * this can truncate away extent items, csum items and directory items.
3256  * It starts at a high offset and removes keys until it can't find
3257  * any higher than new_size
3258  *
3259  * csum items that cross the new i_size are truncated to the new size
3260  * as well.
3261  *
3262  * min_type is the minimum key type to truncate down to.  If set to 0, this
3263  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3264  */
3265 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3266                                struct btrfs_root *root,
3267                                struct inode *inode,
3268                                u64 new_size, u32 min_type)
3269 {
3270         struct btrfs_path *path;
3271         struct extent_buffer *leaf;
3272         struct btrfs_file_extent_item *fi;
3273         struct btrfs_key key;
3274         struct btrfs_key found_key;
3275         u64 extent_start = 0;
3276         u64 extent_num_bytes = 0;
3277         u64 extent_offset = 0;
3278         u64 item_end = 0;
3279         u64 mask = root->sectorsize - 1;
3280         u32 found_type = (u8)-1;
3281         int found_extent;
3282         int del_item;
3283         int pending_del_nr = 0;
3284         int pending_del_slot = 0;
3285         int extent_type = -1;
3286         int encoding;
3287         int ret;
3288         int err = 0;
3289
3290         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3291
3292         if (root->ref_cows || root == root->fs_info->tree_root)
3293                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3294
3295         path = btrfs_alloc_path();
3296         BUG_ON(!path);
3297         path->reada = -1;
3298
3299         key.objectid = inode->i_ino;
3300         key.offset = (u64)-1;
3301         key.type = (u8)-1;
3302
3303 search_again:
3304         path->leave_spinning = 1;
3305         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3306         if (ret < 0) {
3307                 err = ret;
3308                 goto out;
3309         }
3310
3311         if (ret > 0) {
3312                 /* there are no items in the tree for us to truncate, we're
3313                  * done
3314                  */
3315                 if (path->slots[0] == 0)
3316                         goto out;
3317                 path->slots[0]--;
3318         }
3319
3320         while (1) {
3321                 fi = NULL;
3322                 leaf = path->nodes[0];
3323                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3324                 found_type = btrfs_key_type(&found_key);
3325                 encoding = 0;
3326
3327                 if (found_key.objectid != inode->i_ino)
3328                         break;
3329
3330                 if (found_type < min_type)
3331                         break;
3332
3333                 item_end = found_key.offset;
3334                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3335                         fi = btrfs_item_ptr(leaf, path->slots[0],
3336                                             struct btrfs_file_extent_item);
3337                         extent_type = btrfs_file_extent_type(leaf, fi);
3338                         encoding = btrfs_file_extent_compression(leaf, fi);
3339                         encoding |= btrfs_file_extent_encryption(leaf, fi);
3340                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3341
3342                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3343                                 item_end +=
3344                                     btrfs_file_extent_num_bytes(leaf, fi);
3345                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3346                                 item_end += btrfs_file_extent_inline_len(leaf,
3347                                                                          fi);
3348                         }
3349                         item_end--;
3350                 }
3351                 if (found_type > min_type) {
3352                         del_item = 1;
3353                 } else {
3354                         if (item_end < new_size)
3355                                 break;
3356                         if (found_key.offset >= new_size)
3357                                 del_item = 1;
3358                         else
3359                                 del_item = 0;
3360                 }
3361                 found_extent = 0;
3362                 /* FIXME, shrink the extent if the ref count is only 1 */
3363                 if (found_type != BTRFS_EXTENT_DATA_KEY)
3364                         goto delete;
3365
3366                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3367                         u64 num_dec;
3368                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3369                         if (!del_item && !encoding) {
3370                                 u64 orig_num_bytes =
3371                                         btrfs_file_extent_num_bytes(leaf, fi);
3372                                 extent_num_bytes = new_size -
3373                                         found_key.offset + root->sectorsize - 1;
3374                                 extent_num_bytes = extent_num_bytes &
3375                                         ~((u64)root->sectorsize - 1);
3376                                 btrfs_set_file_extent_num_bytes(leaf, fi,
3377                                                          extent_num_bytes);
3378                                 num_dec = (orig_num_bytes -
3379                                            extent_num_bytes);
3380                                 if (root->ref_cows && extent_start != 0)
3381                                         inode_sub_bytes(inode, num_dec);
3382                                 btrfs_mark_buffer_dirty(leaf);
3383                         } else {
3384                                 extent_num_bytes =
3385                                         btrfs_file_extent_disk_num_bytes(leaf,
3386                                                                          fi);
3387                                 extent_offset = found_key.offset -
3388                                         btrfs_file_extent_offset(leaf, fi);
3389
3390                                 /* FIXME blocksize != 4096 */
3391                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3392                                 if (extent_start != 0) {
3393                                         found_extent = 1;
3394                                         if (root->ref_cows)
3395                                                 inode_sub_bytes(inode, num_dec);
3396                                 }
3397                         }
3398                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3399                         /*
3400                          * we can't truncate inline items that have had
3401                          * special encodings
3402                          */
3403                         if (!del_item &&
3404                             btrfs_file_extent_compression(leaf, fi) == 0 &&
3405                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
3406                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3407                                 u32 size = new_size - found_key.offset;
3408
3409                                 if (root->ref_cows) {
3410                                         inode_sub_bytes(inode, item_end + 1 -
3411                                                         new_size);
3412                                 }
3413                                 size =
3414                                     btrfs_file_extent_calc_inline_size(size);
3415                                 ret = btrfs_truncate_item(trans, root, path,
3416                                                           size, 1);
3417                                 BUG_ON(ret);
3418                         } else if (root->ref_cows) {
3419                                 inode_sub_bytes(inode, item_end + 1 -
3420                                                 found_key.offset);
3421                         }
3422                 }
3423 delete:
3424                 if (del_item) {
3425                         if (!pending_del_nr) {
3426                                 /* no pending yet, add ourselves */
3427                                 pending_del_slot = path->slots[0];
3428                                 pending_del_nr = 1;
3429                         } else if (pending_del_nr &&
3430                                    path->slots[0] + 1 == pending_del_slot) {
3431                                 /* hop on the pending chunk */
3432                                 pending_del_nr++;
3433                                 pending_del_slot = path->slots[0];
3434                         } else {
3435                                 BUG();
3436                         }
3437                 } else {
3438                         break;
3439                 }
3440                 if (found_extent && (root->ref_cows ||
3441                                      root == root->fs_info->tree_root)) {
3442                         btrfs_set_path_blocking(path);
3443                         ret = btrfs_free_extent(trans, root, extent_start,
3444                                                 extent_num_bytes, 0,
3445                                                 btrfs_header_owner(leaf),
3446                                                 inode->i_ino, extent_offset);
3447                         BUG_ON(ret);
3448                 }
3449
3450                 if (found_type == BTRFS_INODE_ITEM_KEY)
3451                         break;
3452
3453                 if (path->slots[0] == 0 ||
3454                     path->slots[0] != pending_del_slot) {
3455                         if (root->ref_cows) {
3456                                 err = -EAGAIN;
3457                                 goto out;
3458                         }
3459                         if (pending_del_nr) {
3460                                 ret = btrfs_del_items(trans, root, path,
3461                                                 pending_del_slot,
3462                                                 pending_del_nr);
3463                                 BUG_ON(ret);
3464                                 pending_del_nr = 0;
3465                         }
3466                         btrfs_release_path(root, path);
3467                         goto search_again;
3468                 } else {
3469                         path->slots[0]--;
3470                 }
3471         }
3472 out:
3473         if (pending_del_nr) {
3474                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3475                                       pending_del_nr);
3476                 BUG_ON(ret);
3477         }
3478         btrfs_free_path(path);
3479         return err;
3480 }
3481
3482 /*
3483  * taken from block_truncate_page, but does cow as it zeros out
3484  * any bytes left in the last page in the file.
3485  */
3486 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3487 {
3488         struct inode *inode = mapping->host;
3489         struct btrfs_root *root = BTRFS_I(inode)->root;
3490         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3491         struct btrfs_ordered_extent *ordered;
3492         struct extent_state *cached_state = NULL;
3493         char *kaddr;
3494         u32 blocksize = root->sectorsize;
3495         pgoff_t index = from >> PAGE_CACHE_SHIFT;
3496         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3497         struct page *page;
3498         int ret = 0;
3499         u64 page_start;
3500         u64 page_end;
3501
3502         if ((offset & (blocksize - 1)) == 0)
3503                 goto out;
3504         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3505         if (ret)
3506                 goto out;
3507
3508         ret = -ENOMEM;
3509 again:
3510         page = grab_cache_page(mapping, index);
3511         if (!page) {
3512                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3513                 goto out;
3514         }
3515
3516         page_start = page_offset(page);
3517         page_end = page_start + PAGE_CACHE_SIZE - 1;
3518
3519         if (!PageUptodate(page)) {
3520                 ret = btrfs_readpage(NULL, page);
3521                 lock_page(page);
3522                 if (page->mapping != mapping) {
3523                         unlock_page(page);
3524                         page_cache_release(page);
3525                         goto again;
3526                 }
3527                 if (!PageUptodate(page)) {
3528                         ret = -EIO;
3529                         goto out_unlock;
3530                 }
3531         }
3532         wait_on_page_writeback(page);
3533
3534         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3535                          GFP_NOFS);
3536         set_page_extent_mapped(page);
3537
3538         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3539         if (ordered) {
3540                 unlock_extent_cached(io_tree, page_start, page_end,
3541                                      &cached_state, GFP_NOFS);
3542                 unlock_page(page);
3543                 page_cache_release(page);
3544                 btrfs_start_ordered_extent(inode, ordered, 1);
3545                 btrfs_put_ordered_extent(ordered);
3546                 goto again;
3547         }
3548
3549         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3550                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3551                           0, 0, &cached_state, GFP_NOFS);
3552
3553         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3554                                         &cached_state);
3555         if (ret) {
3556                 unlock_extent_cached(io_tree, page_start, page_end,
3557                                      &cached_state, GFP_NOFS);
3558                 goto out_unlock;
3559         }
3560
3561         ret = 0;
3562         if (offset != PAGE_CACHE_SIZE) {
3563                 kaddr = kmap(page);
3564                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3565                 flush_dcache_page(page);
3566                 kunmap(page);
3567         }
3568         ClearPageChecked(page);
3569         set_page_dirty(page);
3570         unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3571                              GFP_NOFS);
3572
3573 out_unlock:
3574         if (ret)
3575                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3576         unlock_page(page);
3577         page_cache_release(page);
3578 out:
3579         return ret;
3580 }
3581
3582 /*
3583  * This function puts in dummy file extents for the area we're creating a hole
3584  * for.  So if we are truncating this file to a larger size we need to insert
3585  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3586  * the range between oldsize and size
3587  */
3588 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3589 {
3590         struct btrfs_trans_handle *trans;
3591         struct btrfs_root *root = BTRFS_I(inode)->root;
3592         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3593         struct extent_map *em = NULL;
3594         struct extent_state *cached_state = NULL;
3595         u64 mask = root->sectorsize - 1;
3596         u64 hole_start = (oldsize + mask) & ~mask;
3597         u64 block_end = (size + mask) & ~mask;
3598         u64 last_byte;
3599         u64 cur_offset;
3600         u64 hole_size;
3601         int err = 0;
3602
3603         if (size <= hole_start)
3604                 return 0;
3605
3606         while (1) {
3607                 struct btrfs_ordered_extent *ordered;
3608                 btrfs_wait_ordered_range(inode, hole_start,
3609                                          block_end - hole_start);
3610                 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3611                                  &cached_state, GFP_NOFS);
3612                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3613                 if (!ordered)
3614                         break;
3615                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3616                                      &cached_state, GFP_NOFS);
3617                 btrfs_put_ordered_extent(ordered);
3618         }
3619
3620         cur_offset = hole_start;
3621         while (1) {
3622                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3623                                 block_end - cur_offset, 0);
3624                 BUG_ON(IS_ERR(em) || !em);
3625                 last_byte = min(extent_map_end(em), block_end);
3626                 last_byte = (last_byte + mask) & ~mask;
3627                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3628                         u64 hint_byte = 0;
3629                         hole_size = last_byte - cur_offset;
3630
3631                         trans = btrfs_start_transaction(root, 2);
3632                         if (IS_ERR(trans)) {
3633                                 err = PTR_ERR(trans);
3634                                 break;
3635                         }
3636                         btrfs_set_trans_block_group(trans, inode);
3637
3638                         err = btrfs_drop_extents(trans, inode, cur_offset,
3639                                                  cur_offset + hole_size,
3640                                                  &hint_byte, 1);
3641                         if (err)
3642                                 break;
3643
3644                         err = btrfs_insert_file_extent(trans, root,
3645                                         inode->i_ino, cur_offset, 0,
3646                                         0, hole_size, 0, hole_size,
3647                                         0, 0, 0);
3648                         if (err)
3649                                 break;
3650
3651                         btrfs_drop_extent_cache(inode, hole_start,
3652                                         last_byte - 1, 0);
3653
3654                         btrfs_end_transaction(trans, root);
3655                 }
3656                 free_extent_map(em);
3657                 em = NULL;
3658                 cur_offset = last_byte;
3659                 if (cur_offset >= block_end)
3660                         break;
3661         }
3662
3663         free_extent_map(em);
3664         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3665                              GFP_NOFS);
3666         return err;
3667 }
3668
3669 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3670 {
3671         loff_t oldsize = i_size_read(inode);
3672         int ret;
3673
3674         if (newsize == oldsize)
3675                 return 0;
3676
3677         if (newsize > oldsize) {
3678                 i_size_write(inode, newsize);
3679                 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3680                 truncate_pagecache(inode, oldsize, newsize);
3681                 ret = btrfs_cont_expand(inode, oldsize, newsize);
3682                 if (ret) {
3683                         btrfs_setsize(inode, oldsize);
3684                         return ret;
3685                 }
3686
3687                 mark_inode_dirty(inode);
3688         } else {
3689
3690                 /*
3691                  * We're truncating a file that used to have good data down to
3692                  * zero. Make sure it gets into the ordered flush list so that
3693                  * any new writes get down to disk quickly.
3694                  */
3695                 if (newsize == 0)
3696                         BTRFS_I(inode)->ordered_data_close = 1;
3697
3698                 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3699                 truncate_setsize(inode, newsize);
3700                 ret = btrfs_truncate(inode);
3701         }
3702
3703         return ret;
3704 }
3705
3706 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3707 {
3708         struct inode *inode = dentry->d_inode;
3709         struct btrfs_root *root = BTRFS_I(inode)->root;
3710         int err;
3711
3712         if (btrfs_root_readonly(root))
3713                 return -EROFS;
3714
3715         err = inode_change_ok(inode, attr);
3716         if (err)
3717                 return err;
3718
3719         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3720                 err = btrfs_setsize(inode, attr->ia_size);
3721                 if (err)
3722                         return err;
3723         }
3724
3725         if (attr->ia_valid) {
3726                 setattr_copy(inode, attr);
3727                 mark_inode_dirty(inode);
3728
3729                 if (attr->ia_valid & ATTR_MODE)
3730                         err = btrfs_acl_chmod(inode);
3731         }
3732
3733         return err;
3734 }
3735
3736 void btrfs_evict_inode(struct inode *inode)
3737 {
3738         struct btrfs_trans_handle *trans;
3739         struct btrfs_root *root = BTRFS_I(inode)->root;
3740         unsigned long nr;
3741         int ret;
3742
3743         trace_btrfs_inode_evict(inode);
3744
3745         truncate_inode_pages(&inode->i_data, 0);
3746         if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3747                                root == root->fs_info->tree_root))
3748                 goto no_delete;
3749
3750         if (is_bad_inode(inode)) {
3751                 btrfs_orphan_del(NULL, inode);
3752                 goto no_delete;
3753         }
3754         /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3755         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3756
3757         if (root->fs_info->log_root_recovering) {
3758                 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3759                 goto no_delete;
3760         }
3761
3762         if (inode->i_nlink > 0) {
3763                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3764                 goto no_delete;
3765         }
3766
3767         btrfs_i_size_write(inode, 0);
3768
3769         while (1) {
3770                 trans = btrfs_start_transaction(root, 0);
3771                 BUG_ON(IS_ERR(trans));
3772                 btrfs_set_trans_block_group(trans, inode);
3773                 trans->block_rsv = root->orphan_block_rsv;
3774
3775                 ret = btrfs_block_rsv_check(trans, root,
3776                                             root->orphan_block_rsv, 0, 5);
3777                 if (ret) {
3778                         BUG_ON(ret != -EAGAIN);
3779                         ret = btrfs_commit_transaction(trans, root);
3780                         BUG_ON(ret);
3781                         continue;
3782                 }
3783
3784                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3785                 if (ret != -EAGAIN)
3786                         break;
3787
3788                 nr = trans->blocks_used;
3789                 btrfs_end_transaction(trans, root);
3790                 trans = NULL;
3791                 btrfs_btree_balance_dirty(root, nr);
3792
3793         }
3794
3795         if (ret == 0) {
3796                 ret = btrfs_orphan_del(trans, inode);
3797                 BUG_ON(ret);
3798         }
3799
3800         nr = trans->blocks_used;
3801         btrfs_end_transaction(trans, root);
3802         btrfs_btree_balance_dirty(root, nr);
3803 no_delete:
3804         end_writeback(inode);
3805         return;
3806 }
3807
3808 /*
3809  * this returns the key found in the dir entry in the location pointer.
3810  * If no dir entries were found, location->objectid is 0.
3811  */
3812 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3813                                struct btrfs_key *location)
3814 {
3815         const char *name = dentry->d_name.name;
3816         int namelen = dentry->d_name.len;
3817         struct btrfs_dir_item *di;
3818         struct btrfs_path *path;
3819         struct btrfs_root *root = BTRFS_I(dir)->root;
3820         int ret = 0;
3821
3822         path = btrfs_alloc_path();
3823         BUG_ON(!path);
3824
3825         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3826                                     namelen, 0);
3827         if (IS_ERR(di))
3828                 ret = PTR_ERR(di);
3829
3830         if (!di || IS_ERR(di))
3831                 goto out_err;
3832
3833         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3834 out:
3835         btrfs_free_path(path);
3836         return ret;
3837 out_err:
3838         location->objectid = 0;
3839         goto out;
3840 }
3841
3842 /*
3843  * when we hit a tree root in a directory, the btrfs part of the inode
3844  * needs to be changed to reflect the root directory of the tree root.  This
3845  * is kind of like crossing a mount point.
3846  */
3847 static int fixup_tree_root_location(struct btrfs_root *root,
3848                                     struct inode *dir,
3849                                     struct dentry *dentry,
3850                                     struct btrfs_key *location,
3851                                     struct btrfs_root **sub_root)
3852 {
3853         struct btrfs_path *path;
3854         struct btrfs_root *new_root;
3855         struct btrfs_root_ref *ref;
3856         struct extent_buffer *leaf;
3857         int ret;
3858         int err = 0;
3859
3860         path = btrfs_alloc_path();
3861         if (!path) {
3862                 err = -ENOMEM;
3863                 goto out;
3864         }
3865
3866         err = -ENOENT;
3867         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3868                                   BTRFS_I(dir)->root->root_key.objectid,
3869                                   location->objectid);
3870         if (ret) {
3871                 if (ret < 0)
3872                         err = ret;
3873                 goto out;
3874         }
3875
3876         leaf = path->nodes[0];
3877         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3878         if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3879             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3880                 goto out;
3881
3882         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3883                                    (unsigned long)(ref + 1),
3884                                    dentry->d_name.len);
3885         if (ret)
3886                 goto out;
3887
3888         btrfs_release_path(root->fs_info->tree_root, path);
3889
3890         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3891         if (IS_ERR(new_root)) {
3892                 err = PTR_ERR(new_root);
3893                 goto out;
3894         }
3895
3896         if (btrfs_root_refs(&new_root->root_item) == 0) {
3897                 err = -ENOENT;
3898                 goto out;
3899         }
3900
3901         *sub_root = new_root;
3902         location->objectid = btrfs_root_dirid(&new_root->root_item);
3903         location->type = BTRFS_INODE_ITEM_KEY;
3904         location->offset = 0;
3905         err = 0;
3906 out:
3907         btrfs_free_path(path);
3908         return err;
3909 }
3910
3911 static void inode_tree_add(struct inode *inode)
3912 {
3913         struct btrfs_root *root = BTRFS_I(inode)->root;
3914         struct btrfs_inode *entry;
3915         struct rb_node **p;
3916         struct rb_node *parent;
3917 again:
3918         p = &root->inode_tree.rb_node;
3919         parent = NULL;
3920
3921         if (inode_unhashed(inode))
3922                 return;
3923
3924         spin_lock(&root->inode_lock);
3925         while (*p) {
3926                 parent = *p;
3927                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3928
3929                 if (inode->i_ino < entry->vfs_inode.i_ino)
3930                         p = &parent->rb_left;
3931                 else if (inode->i_ino > entry->vfs_inode.i_ino)
3932                         p = &parent->rb_right;
3933                 else {
3934                         WARN_ON(!(entry->vfs_inode.i_state &
3935                                   (I_WILL_FREE | I_FREEING)));
3936                         rb_erase(parent, &root->inode_tree);
3937                         RB_CLEAR_NODE(parent);
3938                         spin_unlock(&root->inode_lock);
3939                         goto again;
3940                 }
3941         }
3942         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3943         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3944         spin_unlock(&root->inode_lock);
3945 }
3946
3947 static void inode_tree_del(struct inode *inode)
3948 {
3949         struct btrfs_root *root = BTRFS_I(inode)->root;
3950         int empty = 0;
3951
3952         spin_lock(&root->inode_lock);
3953         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3954                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3955                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3956                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3957         }
3958         spin_unlock(&root->inode_lock);
3959
3960         /*
3961          * Free space cache has inodes in the tree root, but the tree root has a
3962          * root_refs of 0, so this could end up dropping the tree root as a
3963          * snapshot, so we need the extra !root->fs_info->tree_root check to
3964          * make sure we don't drop it.
3965          */
3966         if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3967             root != root->fs_info->tree_root) {
3968                 synchronize_srcu(&root->fs_info->subvol_srcu);
3969                 spin_lock(&root->inode_lock);
3970                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3971                 spin_unlock(&root->inode_lock);
3972                 if (empty)
3973                         btrfs_add_dead_root(root);
3974         }
3975 }
3976
3977 int btrfs_invalidate_inodes(struct btrfs_root *root)
3978 {
3979         struct rb_node *node;
3980         struct rb_node *prev;
3981         struct btrfs_inode *entry;
3982         struct inode *inode;
3983         u64 objectid = 0;
3984
3985         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3986
3987         spin_lock(&root->inode_lock);
3988 again:
3989         node = root->inode_tree.rb_node;
3990         prev = NULL;
3991         while (node) {
3992                 prev = node;
3993                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3994
3995                 if (objectid < entry->vfs_inode.i_ino)
3996                         node = node->rb_left;
3997                 else if (objectid > entry->vfs_inode.i_ino)
3998                         node = node->rb_right;
3999                 else
4000                         break;
4001         }
4002         if (!node) {
4003                 while (prev) {
4004                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
4005                         if (objectid <= entry->vfs_inode.i_ino) {
4006                                 node = prev;
4007                                 break;
4008                         }
4009                         prev = rb_next(prev);
4010                 }
4011         }
4012         while (node) {
4013                 entry = rb_entry(node, struct btrfs_inode, rb_node);
4014                 objectid = entry->vfs_inode.i_ino + 1;
4015                 inode = igrab(&entry->vfs_inode);
4016                 if (inode) {
4017                         spin_unlock(&root->inode_lock);
4018                         if (atomic_read(&inode->i_count) > 1)
4019                                 d_prune_aliases(inode);
4020                         /*
4021                          * btrfs_drop_inode will have it removed from
4022                          * the inode cache when its usage count
4023                          * hits zero.
4024                          */
4025                         iput(inode);
4026                         cond_resched();
4027                         spin_lock(&root->inode_lock);
4028                         goto again;
4029                 }
4030
4031                 if (cond_resched_lock(&root->inode_lock))
4032                         goto again;
4033
4034                 node = rb_next(node);
4035         }
4036         spin_unlock(&root->inode_lock);
4037         return 0;
4038 }
4039
4040 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4041 {
4042         struct btrfs_iget_args *args = p;
4043         inode->i_ino = args->ino;
4044         BTRFS_I(inode)->root = args->root;
4045         btrfs_set_inode_space_info(args->root, inode);
4046         return 0;
4047 }
4048
4049 static int btrfs_find_actor(struct inode *inode, void *opaque)
4050 {
4051         struct btrfs_iget_args *args = opaque;
4052         return args->ino == inode->i_ino &&
4053                 args->root == BTRFS_I(inode)->root;
4054 }
4055
4056 static struct inode *btrfs_iget_locked(struct super_block *s,
4057                                        u64 objectid,
4058                                        struct btrfs_root *root)
4059 {
4060         struct inode *inode;
4061         struct btrfs_iget_args args;
4062         args.ino = objectid;
4063         args.root = root;
4064
4065         inode = iget5_locked(s, objectid, btrfs_find_actor,
4066                              btrfs_init_locked_inode,
4067                              (void *)&args);
4068         return inode;
4069 }
4070
4071 /* Get an inode object given its location and corresponding root.
4072  * Returns in *is_new if the inode was read from disk
4073  */
4074 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4075                          struct btrfs_root *root, int *new)
4076 {
4077         struct inode *inode;
4078
4079         inode = btrfs_iget_locked(s, location->objectid, root);
4080         if (!inode)
4081                 return ERR_PTR(-ENOMEM);
4082
4083         if (inode->i_state & I_NEW) {
4084                 BTRFS_I(inode)->root = root;
4085                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4086                 btrfs_read_locked_inode(inode);
4087
4088                 inode_tree_add(inode);
4089                 unlock_new_inode(inode);
4090                 if (new)
4091                         *new = 1;
4092         }
4093
4094         return inode;
4095 }
4096
4097 static struct inode *new_simple_dir(struct super_block *s,
4098                                     struct btrfs_key *key,
4099                                     struct btrfs_root *root)
4100 {
4101         struct inode *inode = new_inode(s);
4102
4103         if (!inode)
4104                 return ERR_PTR(-ENOMEM);
4105
4106         BTRFS_I(inode)->root = root;
4107         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4108         BTRFS_I(inode)->dummy_inode = 1;
4109
4110         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4111         inode->i_op = &simple_dir_inode_operations;
4112         inode->i_fop = &simple_dir_operations;
4113         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4114         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4115
4116         return inode;
4117 }
4118
4119 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4120 {
4121         struct inode *inode;
4122         struct btrfs_root *root = BTRFS_I(dir)->root;
4123         struct btrfs_root *sub_root = root;
4124         struct btrfs_key location;
4125         int index;
4126         int ret;
4127
4128         if (dentry->d_name.len > BTRFS_NAME_LEN)
4129                 return ERR_PTR(-ENAMETOOLONG);
4130
4131         ret = btrfs_inode_by_name(dir, dentry, &location);
4132
4133         if (ret < 0)
4134                 return ERR_PTR(ret);
4135
4136         if (location.objectid == 0)
4137                 return NULL;
4138
4139         if (location.type == BTRFS_INODE_ITEM_KEY) {
4140                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4141                 return inode;
4142         }
4143
4144         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4145
4146         index = srcu_read_lock(&root->fs_info->subvol_srcu);
4147         ret = fixup_tree_root_location(root, dir, dentry,
4148                                        &location, &sub_root);
4149         if (ret < 0) {
4150                 if (ret != -ENOENT)
4151                         inode = ERR_PTR(ret);
4152                 else
4153                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
4154         } else {
4155                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4156         }
4157         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4158
4159         if (!IS_ERR(inode) && root != sub_root) {
4160                 down_read(&root->fs_info->cleanup_work_sem);
4161                 if (!(inode->i_sb->s_flags & MS_RDONLY))
4162                         ret = btrfs_orphan_cleanup(sub_root);
4163                 up_read(&root->fs_info->cleanup_work_sem);
4164                 if (ret)
4165                         inode = ERR_PTR(ret);
4166         }
4167
4168         return inode;
4169 }
4170
4171 static int btrfs_dentry_delete(const struct dentry *dentry)
4172 {
4173         struct btrfs_root *root;
4174
4175         if (!dentry->d_inode && !IS_ROOT(dentry))
4176                 dentry = dentry->d_parent;
4177
4178         if (dentry->d_inode) {
4179                 root = BTRFS_I(dentry->d_inode)->root;
4180                 if (btrfs_root_refs(&root->root_item) == 0)
4181                         return 1;
4182         }
4183         return 0;
4184 }
4185
4186 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4187                                    struct nameidata *nd)
4188 {
4189         struct inode *inode;
4190
4191         inode = btrfs_lookup_dentry(dir, dentry);
4192         if (IS_ERR(inode))
4193                 return ERR_CAST(inode);
4194
4195         return d_splice_alias(inode, dentry);
4196 }
4197
4198 static unsigned char btrfs_filetype_table[] = {
4199         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4200 };
4201
4202 static int btrfs_real_readdir(struct file *filp, void *dirent,
4203                               filldir_t filldir)
4204 {
4205         struct inode *inode = filp->f_dentry->d_inode;
4206         struct btrfs_root *root = BTRFS_I(inode)->root;
4207         struct btrfs_item *item;
4208         struct btrfs_dir_item *di;
4209         struct btrfs_key key;
4210         struct btrfs_key found_key;
4211         struct btrfs_path *path;
4212         int ret;
4213         u32 nritems;
4214         struct extent_buffer *leaf;
4215         int slot;
4216         int advance;
4217         unsigned char d_type;
4218         int over = 0;
4219         u32 di_cur;
4220         u32 di_total;
4221         u32 di_len;
4222         int key_type = BTRFS_DIR_INDEX_KEY;
4223         char tmp_name[32];
4224         char *name_ptr;
4225         int name_len;
4226
4227         /* FIXME, use a real flag for deciding about the key type */
4228         if (root->fs_info->tree_root == root)
4229                 key_type = BTRFS_DIR_ITEM_KEY;
4230
4231         /* special case for "." */
4232         if (filp->f_pos == 0) {
4233                 over = filldir(dirent, ".", 1,
4234                                1, inode->i_ino,
4235                                DT_DIR);
4236                 if (over)
4237                         return 0;
4238                 filp->f_pos = 1;
4239         }
4240         /* special case for .., just use the back ref */
4241         if (filp->f_pos == 1) {
4242                 u64 pino = parent_ino(filp->f_path.dentry);
4243                 over = filldir(dirent, "..", 2,
4244                                2, pino, DT_DIR);
4245                 if (over)
4246                         return 0;
4247                 filp->f_pos = 2;
4248         }
4249         path = btrfs_alloc_path();
4250         path->reada = 2;
4251
4252         btrfs_set_key_type(&key, key_type);
4253         key.offset = filp->f_pos;
4254         key.objectid = inode->i_ino;
4255
4256         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4257         if (ret < 0)
4258                 goto err;
4259         advance = 0;
4260
4261         while (1) {
4262                 leaf = path->nodes[0];
4263                 nritems = btrfs_header_nritems(leaf);
4264                 slot = path->slots[0];
4265                 if (advance || slot >= nritems) {
4266                         if (slot >= nritems - 1) {
4267                                 ret = btrfs_next_leaf(root, path);
4268                                 if (ret)
4269                                         break;
4270                                 leaf = path->nodes[0];
4271                                 nritems = btrfs_header_nritems(leaf);
4272                                 slot = path->slots[0];
4273                         } else {
4274                                 slot++;
4275                                 path->slots[0]++;
4276                         }
4277                 }
4278
4279                 advance = 1;
4280                 item = btrfs_item_nr(leaf, slot);
4281                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4282
4283                 if (found_key.objectid != key.objectid)
4284                         break;
4285                 if (btrfs_key_type(&found_key) != key_type)
4286                         break;
4287                 if (found_key.offset < filp->f_pos)
4288                         continue;
4289
4290                 filp->f_pos = found_key.offset;
4291
4292                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4293                 di_cur = 0;
4294                 di_total = btrfs_item_size(leaf, item);
4295
4296                 while (di_cur < di_total) {
4297                         struct btrfs_key location;
4298
4299                         if (verify_dir_item(root, leaf, di))
4300                                 break;
4301
4302                         name_len = btrfs_dir_name_len(leaf, di);
4303                         if (name_len <= sizeof(tmp_name)) {
4304                                 name_ptr = tmp_name;
4305                         } else {
4306                                 name_ptr = kmalloc(name_len, GFP_NOFS);
4307                                 if (!name_ptr) {
4308                                         ret = -ENOMEM;
4309                                         goto err;
4310                                 }
4311                         }
4312                         read_extent_buffer(leaf, name_ptr,
4313                                            (unsigned long)(di + 1), name_len);
4314
4315                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4316                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
4317
4318                         /* is this a reference to our own snapshot? If so
4319                          * skip it
4320                          */
4321                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
4322                             location.objectid == root->root_key.objectid) {
4323                                 over = 0;
4324                                 goto skip;
4325                         }
4326                         over = filldir(dirent, name_ptr, name_len,
4327                                        found_key.offset, location.objectid,
4328                                        d_type);
4329
4330 skip:
4331                         if (name_ptr != tmp_name)
4332                                 kfree(name_ptr);
4333
4334                         if (over)
4335                                 goto nopos;
4336                         di_len = btrfs_dir_name_len(leaf, di) +
4337                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
4338                         di_cur += di_len;
4339                         di = (struct btrfs_dir_item *)((char *)di + di_len);
4340                 }
4341         }
4342
4343         /* Reached end of directory/root. Bump pos past the last item. */
4344         if (key_type == BTRFS_DIR_INDEX_KEY)
4345                 /*
4346                  * 32-bit glibc will use getdents64, but then strtol -
4347                  * so the last number we can serve is this.
4348                  */
4349                 filp->f_pos = 0x7fffffff;
4350         else
4351                 filp->f_pos++;
4352 nopos:
4353         ret = 0;
4354 err:
4355         btrfs_free_path(path);
4356         return ret;
4357 }
4358
4359 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4360 {
4361         struct btrfs_root *root = BTRFS_I(inode)->root;
4362         struct btrfs_trans_handle *trans;
4363         int ret = 0;
4364         bool nolock = false;
4365
4366         if (BTRFS_I(inode)->dummy_inode)
4367                 return 0;
4368
4369         smp_mb();
4370         nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4371
4372         if (wbc->sync_mode == WB_SYNC_ALL) {
4373                 if (nolock)
4374                         trans = btrfs_join_transaction_nolock(root, 1);
4375                 else
4376                         trans = btrfs_join_transaction(root, 1);
4377                 if (IS_ERR(trans))
4378                         return PTR_ERR(trans);
4379                 btrfs_set_trans_block_group(trans, inode);
4380                 if (nolock)
4381                         ret = btrfs_end_transaction_nolock(trans, root);
4382                 else
4383                         ret = btrfs_commit_transaction(trans, root);
4384         }
4385         return ret;
4386 }
4387
4388 /*
4389  * This is somewhat expensive, updating the tree every time the
4390  * inode changes.  But, it is most likely to find the inode in cache.
4391  * FIXME, needs more benchmarking...there are no reasons other than performance
4392  * to keep or drop this code.
4393  */
4394 void btrfs_dirty_inode(struct inode *inode)
4395 {
4396         struct btrfs_root *root = BTRFS_I(inode)->root;
4397         struct btrfs_trans_handle *trans;
4398         int ret;
4399
4400         if (BTRFS_I(inode)->dummy_inode)
4401                 return;
4402
4403         trans = btrfs_join_transaction(root, 1);
4404         BUG_ON(IS_ERR(trans));
4405         btrfs_set_trans_block_group(trans, inode);
4406
4407         ret = btrfs_update_inode(trans, root, inode);
4408         if (ret && ret == -ENOSPC) {
4409                 /* whoops, lets try again with the full transaction */
4410                 btrfs_end_transaction(trans, root);
4411                 trans = btrfs_start_transaction(root, 1);
4412                 if (IS_ERR(trans)) {
4413                         if (printk_ratelimit()) {
4414                                 printk(KERN_ERR "btrfs: fail to "
4415                                        "dirty  inode %lu error %ld\n",
4416                                        inode->i_ino, PTR_ERR(trans));
4417                         }
4418                         return;
4419                 }
4420                 btrfs_set_trans_block_group(trans, inode);
4421
4422                 ret = btrfs_update_inode(trans, root, inode);
4423                 if (ret) {
4424                         if (printk_ratelimit()) {
4425                                 printk(KERN_ERR "btrfs: fail to "
4426                                        "dirty  inode %lu error %d\n",
4427                                        inode->i_ino, ret);
4428                         }
4429                 }
4430         }
4431         btrfs_end_transaction(trans, root);
4432 }
4433
4434 /*
4435  * find the highest existing sequence number in a directory
4436  * and then set the in-memory index_cnt variable to reflect
4437  * free sequence numbers
4438  */
4439 static int btrfs_set_inode_index_count(struct inode *inode)
4440 {
4441         struct btrfs_root *root = BTRFS_I(inode)->root;
4442         struct btrfs_key key, found_key;
4443         struct btrfs_path *path;
4444         struct extent_buffer *leaf;
4445         int ret;
4446
4447         key.objectid = inode->i_ino;
4448         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4449         key.offset = (u64)-1;
4450
4451         path = btrfs_alloc_path();
4452         if (!path)
4453                 return -ENOMEM;
4454
4455         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4456         if (ret < 0)
4457                 goto out;
4458         /* FIXME: we should be able to handle this */
4459         if (ret == 0)
4460                 goto out;
4461         ret = 0;
4462
4463         /*
4464          * MAGIC NUMBER EXPLANATION:
4465          * since we search a directory based on f_pos we have to start at 2
4466          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4467          * else has to start at 2
4468          */
4469         if (path->slots[0] == 0) {
4470                 BTRFS_I(inode)->index_cnt = 2;
4471                 goto out;
4472         }
4473
4474         path->slots[0]--;
4475
4476         leaf = path->nodes[0];
4477         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4478
4479         if (found_key.objectid != inode->i_ino ||
4480             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4481                 BTRFS_I(inode)->index_cnt = 2;
4482                 goto out;
4483         }
4484
4485         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4486 out:
4487         btrfs_free_path(path);
4488         return ret;
4489 }
4490
4491 /*
4492  * helper to find a free sequence number in a given directory.  This current
4493  * code is very simple, later versions will do smarter things in the btree
4494  */
4495 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4496 {
4497         int ret = 0;
4498
4499         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4500                 ret = btrfs_set_inode_index_count(dir);
4501                 if (ret)
4502                         return ret;
4503         }
4504
4505         *index = BTRFS_I(dir)->index_cnt;
4506         BTRFS_I(dir)->index_cnt++;
4507
4508         return ret;
4509 }
4510
4511 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4512                                      struct btrfs_root *root,
4513                                      struct inode *dir,
4514                                      const char *name, int name_len,
4515                                      u64 ref_objectid, u64 objectid,
4516                                      u64 alloc_hint, int mode, u64 *index)
4517 {
4518         struct inode *inode;
4519         struct btrfs_inode_item *inode_item;
4520         struct btrfs_key *location;
4521         struct btrfs_path *path;
4522         struct btrfs_inode_ref *ref;
4523         struct btrfs_key key[2];
4524         u32 sizes[2];
4525         unsigned long ptr;
4526         int ret;
4527         int owner;
4528
4529         path = btrfs_alloc_path();
4530         BUG_ON(!path);
4531
4532         inode = new_inode(root->fs_info->sb);
4533         if (!inode)
4534                 return ERR_PTR(-ENOMEM);
4535
4536         if (dir) {
4537                 trace_btrfs_inode_request(dir);
4538
4539                 ret = btrfs_set_inode_index(dir, index);
4540                 if (ret) {
4541                         iput(inode);
4542                         return ERR_PTR(ret);
4543                 }
4544         }
4545         /*
4546          * index_cnt is ignored for everything but a dir,
4547          * btrfs_get_inode_index_count has an explanation for the magic
4548          * number
4549          */
4550         BTRFS_I(inode)->index_cnt = 2;
4551         BTRFS_I(inode)->root = root;
4552         BTRFS_I(inode)->generation = trans->transid;
4553         inode->i_generation = BTRFS_I(inode)->generation;
4554         btrfs_set_inode_space_info(root, inode);
4555
4556         if (mode & S_IFDIR)
4557                 owner = 0;
4558         else
4559                 owner = 1;
4560         BTRFS_I(inode)->block_group =
4561                         btrfs_find_block_group(root, 0, alloc_hint, owner);
4562
4563         key[0].objectid = objectid;
4564         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4565         key[0].offset = 0;
4566
4567         key[1].objectid = objectid;
4568         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4569         key[1].offset = ref_objectid;
4570
4571         sizes[0] = sizeof(struct btrfs_inode_item);
4572         sizes[1] = name_len + sizeof(*ref);
4573
4574         path->leave_spinning = 1;
4575         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4576         if (ret != 0)
4577                 goto fail;
4578
4579         inode_init_owner(inode, dir, mode);
4580         inode->i_ino = objectid;
4581         inode_set_bytes(inode, 0);
4582         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4583         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4584                                   struct btrfs_inode_item);
4585         fill_inode_item(trans, path->nodes[0], inode_item, inode);
4586
4587         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4588                              struct btrfs_inode_ref);
4589         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4590         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4591         ptr = (unsigned long)(ref + 1);
4592         write_extent_buffer(path->nodes[0], name, ptr, name_len);
4593
4594         btrfs_mark_buffer_dirty(path->nodes[0]);
4595         btrfs_free_path(path);
4596
4597         location = &BTRFS_I(inode)->location;
4598         location->objectid = objectid;
4599         location->offset = 0;
4600         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4601
4602         btrfs_inherit_iflags(inode, dir);
4603
4604         if ((mode & S_IFREG)) {
4605                 if (btrfs_test_opt(root, NODATASUM))
4606                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4607                 if (btrfs_test_opt(root, NODATACOW) ||
4608                     (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4609                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4610         }
4611
4612         insert_inode_hash(inode);
4613         inode_tree_add(inode);
4614
4615         trace_btrfs_inode_new(inode);
4616
4617         return inode;
4618 fail:
4619         if (dir)
4620                 BTRFS_I(dir)->index_cnt--;
4621         btrfs_free_path(path);
4622         iput(inode);
4623         return ERR_PTR(ret);
4624 }
4625
4626 static inline u8 btrfs_inode_type(struct inode *inode)
4627 {
4628         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4629 }
4630
4631 /*
4632  * utility function to add 'inode' into 'parent_inode' with
4633  * a give name and a given sequence number.
4634  * if 'add_backref' is true, also insert a backref from the
4635  * inode to the parent directory.
4636  */
4637 int btrfs_add_link(struct btrfs_trans_handle *trans,
4638                    struct inode *parent_inode, struct inode *inode,
4639                    const char *name, int name_len, int add_backref, u64 index)
4640 {
4641         int ret = 0;
4642         struct btrfs_key key;
4643         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4644
4645         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4646                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4647         } else {
4648                 key.objectid = inode->i_ino;
4649                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4650                 key.offset = 0;
4651         }
4652
4653         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4654                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4655                                          key.objectid, root->root_key.objectid,
4656                                          parent_inode->i_ino,
4657                                          index, name, name_len);
4658         } else if (add_backref) {
4659                 ret = btrfs_insert_inode_ref(trans, root,
4660                                              name, name_len, inode->i_ino,
4661                                              parent_inode->i_ino, index);
4662         }
4663
4664         if (ret == 0) {
4665                 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4666                                             parent_inode->i_ino, &key,
4667                                             btrfs_inode_type(inode), index);
4668                 BUG_ON(ret);
4669
4670                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4671                                    name_len * 2);
4672                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4673                 ret = btrfs_update_inode(trans, root, parent_inode);
4674         }
4675         return ret;
4676 }
4677
4678 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4679                             struct inode *dir, struct dentry *dentry,
4680                             struct inode *inode, int backref, u64 index)
4681 {
4682         int err = btrfs_add_link(trans, dir, inode,
4683                                  dentry->d_name.name, dentry->d_name.len,
4684                                  backref, index);
4685         if (!err) {
4686                 d_instantiate(dentry, inode);
4687                 return 0;
4688         }
4689         if (err > 0)
4690                 err = -EEXIST;
4691         return err;
4692 }
4693
4694 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4695                         int mode, dev_t rdev)
4696 {
4697         struct btrfs_trans_handle *trans;
4698         struct btrfs_root *root = BTRFS_I(dir)->root;
4699         struct inode *inode = NULL;
4700         int err;
4701         int drop_inode = 0;
4702         u64 objectid;
4703         unsigned long nr = 0;
4704         u64 index = 0;
4705
4706         if (!new_valid_dev(rdev))
4707                 return -EINVAL;
4708
4709         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4710         if (err)
4711                 return err;
4712
4713         /*
4714          * 2 for inode item and ref
4715          * 2 for dir items
4716          * 1 for xattr if selinux is on
4717          */
4718         trans = btrfs_start_transaction(root, 5);
4719         if (IS_ERR(trans))
4720                 return PTR_ERR(trans);
4721
4722         btrfs_set_trans_block_group(trans, dir);
4723
4724         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4725                                 dentry->d_name.len, dir->i_ino, objectid,
4726                                 BTRFS_I(dir)->block_group, mode, &index);
4727         err = PTR_ERR(inode);
4728         if (IS_ERR(inode))
4729                 goto out_unlock;
4730
4731         err = btrfs_init_inode_security(trans, inode, dir);
4732         if (err) {
4733                 drop_inode = 1;
4734                 goto out_unlock;
4735         }
4736
4737         btrfs_set_trans_block_group(trans, inode);
4738         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4739         if (err)
4740                 drop_inode = 1;
4741         else {
4742                 inode->i_op = &btrfs_special_inode_operations;
4743                 init_special_inode(inode, inode->i_mode, rdev);
4744                 btrfs_update_inode(trans, root, inode);
4745         }
4746         btrfs_update_inode_block_group(trans, inode);
4747         btrfs_update_inode_block_group(trans, dir);
4748 out_unlock:
4749         nr = trans->blocks_used;
4750         btrfs_end_transaction_throttle(trans, root);
4751         btrfs_btree_balance_dirty(root, nr);
4752         if (drop_inode) {
4753                 inode_dec_link_count(inode);
4754                 iput(inode);
4755         }
4756         return err;
4757 }
4758
4759 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4760                         int mode, struct nameidata *nd)
4761 {
4762         struct btrfs_trans_handle *trans;
4763         struct btrfs_root *root = BTRFS_I(dir)->root;
4764         struct inode *inode = NULL;
4765         int drop_inode = 0;
4766         int err;
4767         unsigned long nr = 0;
4768         u64 objectid;
4769         u64 index = 0;
4770
4771         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4772         if (err)
4773                 return err;
4774         /*
4775          * 2 for inode item and ref
4776          * 2 for dir items
4777          * 1 for xattr if selinux is on
4778          */
4779         trans = btrfs_start_transaction(root, 5);
4780         if (IS_ERR(trans))
4781                 return PTR_ERR(trans);
4782
4783         btrfs_set_trans_block_group(trans, dir);
4784
4785         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4786                                 dentry->d_name.len, dir->i_ino, objectid,
4787                                 BTRFS_I(dir)->block_group, mode, &index);
4788         err = PTR_ERR(inode);
4789         if (IS_ERR(inode))
4790                 goto out_unlock;
4791
4792         err = btrfs_init_inode_security(trans, inode, dir);
4793         if (err) {
4794                 drop_inode = 1;
4795                 goto out_unlock;
4796         }
4797
4798         btrfs_set_trans_block_group(trans, inode);
4799         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4800         if (err)
4801                 drop_inode = 1;
4802         else {
4803                 inode->i_mapping->a_ops = &btrfs_aops;
4804                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4805                 inode->i_fop = &btrfs_file_operations;
4806                 inode->i_op = &btrfs_file_inode_operations;
4807                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4808         }
4809         btrfs_update_inode_block_group(trans, inode);
4810         btrfs_update_inode_block_group(trans, dir);
4811 out_unlock:
4812         nr = trans->blocks_used;
4813         btrfs_end_transaction_throttle(trans, root);
4814         if (drop_inode) {
4815                 inode_dec_link_count(inode);
4816                 iput(inode);
4817         }
4818         btrfs_btree_balance_dirty(root, nr);
4819         return err;
4820 }
4821
4822 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4823                       struct dentry *dentry)
4824 {
4825         struct btrfs_trans_handle *trans;
4826         struct btrfs_root *root = BTRFS_I(dir)->root;
4827         struct inode *inode = old_dentry->d_inode;
4828         u64 index;
4829         unsigned long nr = 0;
4830         int err;
4831         int drop_inode = 0;
4832
4833         if (inode->i_nlink == 0)
4834                 return -ENOENT;
4835
4836         /* do not allow sys_link's with other subvols of the same device */
4837         if (root->objectid != BTRFS_I(inode)->root->objectid)
4838                 return -EXDEV;
4839
4840         btrfs_inc_nlink(inode);
4841         inode->i_ctime = CURRENT_TIME;
4842
4843         err = btrfs_set_inode_index(dir, &index);
4844         if (err)
4845                 goto fail;
4846
4847         /*
4848          * 2 items for inode and inode ref
4849          * 2 items for dir items
4850          * 1 item for parent inode
4851          */
4852         trans = btrfs_start_transaction(root, 5);
4853         if (IS_ERR(trans)) {
4854                 err = PTR_ERR(trans);
4855                 goto fail;
4856         }
4857
4858         btrfs_set_trans_block_group(trans, dir);
4859         ihold(inode);
4860
4861         err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4862
4863         if (err) {
4864                 drop_inode = 1;
4865         } else {
4866                 struct dentry *parent = dget_parent(dentry);
4867                 btrfs_update_inode_block_group(trans, dir);
4868                 err = btrfs_update_inode(trans, root, inode);
4869                 BUG_ON(err);
4870                 btrfs_log_new_name(trans, inode, NULL, parent);
4871                 dput(parent);
4872         }
4873
4874         nr = trans->blocks_used;
4875         btrfs_end_transaction_throttle(trans, root);
4876 fail:
4877         if (drop_inode) {
4878                 inode_dec_link_count(inode);
4879                 iput(inode);
4880         }
4881         btrfs_btree_balance_dirty(root, nr);
4882         return err;
4883 }
4884
4885 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4886 {
4887         struct inode *inode = NULL;
4888         struct btrfs_trans_handle *trans;
4889         struct btrfs_root *root = BTRFS_I(dir)->root;
4890         int err = 0;
4891         int drop_on_err = 0;
4892         u64 objectid = 0;
4893         u64 index = 0;
4894         unsigned long nr = 1;
4895
4896         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4897         if (err)
4898                 return err;
4899
4900         /*
4901          * 2 items for inode and ref
4902          * 2 items for dir items
4903          * 1 for xattr if selinux is on
4904          */
4905         trans = btrfs_start_transaction(root, 5);
4906         if (IS_ERR(trans))
4907                 return PTR_ERR(trans);
4908         btrfs_set_trans_block_group(trans, dir);
4909
4910         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4911                                 dentry->d_name.len, dir->i_ino, objectid,
4912                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4913                                 &index);
4914         if (IS_ERR(inode)) {
4915                 err = PTR_ERR(inode);
4916                 goto out_fail;
4917         }
4918
4919         drop_on_err = 1;
4920
4921         err = btrfs_init_inode_security(trans, inode, dir);
4922         if (err)
4923                 goto out_fail;
4924
4925         inode->i_op = &btrfs_dir_inode_operations;
4926         inode->i_fop = &btrfs_dir_file_operations;
4927         btrfs_set_trans_block_group(trans, inode);
4928
4929         btrfs_i_size_write(inode, 0);
4930         err = btrfs_update_inode(trans, root, inode);
4931         if (err)
4932                 goto out_fail;
4933
4934         err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4935                              dentry->d_name.len, 0, index);
4936         if (err)
4937                 goto out_fail;
4938
4939         d_instantiate(dentry, inode);
4940         drop_on_err = 0;
4941         btrfs_update_inode_block_group(trans, inode);
4942         btrfs_update_inode_block_group(trans, dir);
4943
4944 out_fail:
4945         nr = trans->blocks_used;
4946         btrfs_end_transaction_throttle(trans, root);
4947         if (drop_on_err)
4948                 iput(inode);
4949         btrfs_btree_balance_dirty(root, nr);
4950         return err;
4951 }
4952
4953 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4954  * and an extent that you want to insert, deal with overlap and insert
4955  * the new extent into the tree.
4956  */
4957 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4958                                 struct extent_map *existing,
4959                                 struct extent_map *em,
4960                                 u64 map_start, u64 map_len)
4961 {
4962         u64 start_diff;
4963
4964         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4965         start_diff = map_start - em->start;
4966         em->start = map_start;
4967         em->len = map_len;
4968         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4969             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4970                 em->block_start += start_diff;
4971                 em->block_len -= start_diff;
4972         }
4973         return add_extent_mapping(em_tree, em);
4974 }
4975
4976 static noinline int uncompress_inline(struct btrfs_path *path,
4977                                       struct inode *inode, struct page *page,
4978                                       size_t pg_offset, u64 extent_offset,
4979                                       struct btrfs_file_extent_item *item)
4980 {
4981         int ret;
4982         struct extent_buffer *leaf = path->nodes[0];
4983         char *tmp;
4984         size_t max_size;
4985         unsigned long inline_size;
4986         unsigned long ptr;
4987         int compress_type;
4988
4989         WARN_ON(pg_offset != 0);
4990         compress_type = btrfs_file_extent_compression(leaf, item);
4991         max_size = btrfs_file_extent_ram_bytes(leaf, item);
4992         inline_size = btrfs_file_extent_inline_item_len(leaf,
4993                                         btrfs_item_nr(leaf, path->slots[0]));
4994         tmp = kmalloc(inline_size, GFP_NOFS);
4995         ptr = btrfs_file_extent_inline_start(item);
4996
4997         read_extent_buffer(leaf, tmp, ptr, inline_size);
4998
4999         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5000         ret = btrfs_decompress(compress_type, tmp, page,
5001                                extent_offset, inline_size, max_size);
5002         if (ret) {
5003                 char *kaddr = kmap_atomic(page, KM_USER0);
5004                 unsigned long copy_size = min_t(u64,
5005                                   PAGE_CACHE_SIZE - pg_offset,
5006                                   max_size - extent_offset);
5007                 memset(kaddr + pg_offset, 0, copy_size);
5008                 kunmap_atomic(kaddr, KM_USER0);
5009         }
5010         kfree(tmp);
5011         return 0;
5012 }
5013
5014 /*
5015  * a bit scary, this does extent mapping from logical file offset to the disk.
5016  * the ugly parts come from merging extents from the disk with the in-ram
5017  * representation.  This gets more complex because of the data=ordered code,
5018  * where the in-ram extents might be locked pending data=ordered completion.
5019  *
5020  * This also copies inline extents directly into the page.
5021  */
5022
5023 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5024                                     size_t pg_offset, u64 start, u64 len,
5025                                     int create)
5026 {
5027         int ret;
5028         int err = 0;
5029         u64 bytenr;
5030         u64 extent_start = 0;
5031         u64 extent_end = 0;
5032         u64 objectid = inode->i_ino;
5033         u32 found_type;
5034         struct btrfs_path *path = NULL;
5035         struct btrfs_root *root = BTRFS_I(inode)->root;
5036         struct btrfs_file_extent_item *item;
5037         struct extent_buffer *leaf;
5038         struct btrfs_key found_key;
5039         struct extent_map *em = NULL;
5040         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5041         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5042         struct btrfs_trans_handle *trans = NULL;
5043         int compress_type;
5044
5045 again:
5046         read_lock(&em_tree->lock);
5047         em = lookup_extent_mapping(em_tree, start, len);
5048         if (em)
5049                 em->bdev = root->fs_info->fs_devices->latest_bdev;
5050         read_unlock(&em_tree->lock);
5051
5052         if (em) {
5053                 if (em->start > start || em->start + em->len <= start)
5054                         free_extent_map(em);
5055                 else if (em->block_start == EXTENT_MAP_INLINE && page)
5056                         free_extent_map(em);
5057                 else
5058                         goto out;
5059         }
5060         em = alloc_extent_map(GFP_NOFS);
5061         if (!em) {
5062                 err = -ENOMEM;
5063                 goto out;
5064         }
5065         em->bdev = root->fs_info->fs_devices->latest_bdev;
5066         em->start = EXTENT_MAP_HOLE;
5067         em->orig_start = EXTENT_MAP_HOLE;
5068         em->len = (u64)-1;
5069         em->block_len = (u64)-1;
5070
5071         if (!path) {
5072                 path = btrfs_alloc_path();
5073                 BUG_ON(!path);
5074         }
5075
5076         ret = btrfs_lookup_file_extent(trans, root, path,
5077                                        objectid, start, trans != NULL);
5078         if (ret < 0) {
5079                 err = ret;
5080                 goto out;
5081         }
5082
5083         if (ret != 0) {
5084                 if (path->slots[0] == 0)
5085                         goto not_found;
5086                 path->slots[0]--;
5087         }
5088
5089         leaf = path->nodes[0];
5090         item = btrfs_item_ptr(leaf, path->slots[0],
5091                               struct btrfs_file_extent_item);
5092         /* are we inside the extent that was found? */
5093         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5094         found_type = btrfs_key_type(&found_key);
5095         if (found_key.objectid != objectid ||
5096             found_type != BTRFS_EXTENT_DATA_KEY) {
5097                 goto not_found;
5098         }
5099
5100         found_type = btrfs_file_extent_type(leaf, item);
5101         extent_start = found_key.offset;
5102         compress_type = btrfs_file_extent_compression(leaf, item);
5103         if (found_type == BTRFS_FILE_EXTENT_REG ||
5104             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5105                 extent_end = extent_start +
5106                        btrfs_file_extent_num_bytes(leaf, item);
5107         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5108                 size_t size;
5109                 size = btrfs_file_extent_inline_len(leaf, item);
5110                 extent_end = (extent_start + size + root->sectorsize - 1) &
5111                         ~((u64)root->sectorsize - 1);
5112         }
5113
5114         if (start >= extent_end) {
5115                 path->slots[0]++;
5116                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5117                         ret = btrfs_next_leaf(root, path);
5118                         if (ret < 0) {
5119                                 err = ret;
5120                                 goto out;
5121                         }
5122                         if (ret > 0)
5123                                 goto not_found;
5124                         leaf = path->nodes[0];
5125                 }
5126                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5127                 if (found_key.objectid != objectid ||
5128                     found_key.type != BTRFS_EXTENT_DATA_KEY)
5129                         goto not_found;
5130                 if (start + len <= found_key.offset)
5131                         goto not_found;
5132                 em->start = start;
5133                 em->len = found_key.offset - start;
5134                 goto not_found_em;
5135         }
5136
5137         if (found_type == BTRFS_FILE_EXTENT_REG ||
5138             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5139                 em->start = extent_start;
5140                 em->len = extent_end - extent_start;
5141                 em->orig_start = extent_start -
5142                                  btrfs_file_extent_offset(leaf, item);
5143                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5144                 if (bytenr == 0) {
5145                         em->block_start = EXTENT_MAP_HOLE;
5146                         goto insert;
5147                 }
5148                 if (compress_type != BTRFS_COMPRESS_NONE) {
5149                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5150                         em->compress_type = compress_type;
5151                         em->block_start = bytenr;
5152                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5153                                                                          item);
5154                 } else {
5155                         bytenr += btrfs_file_extent_offset(leaf, item);
5156                         em->block_start = bytenr;
5157                         em->block_len = em->len;
5158                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5159                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5160                 }
5161                 goto insert;
5162         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5163                 unsigned long ptr;
5164                 char *map;
5165                 size_t size;
5166                 size_t extent_offset;
5167                 size_t copy_size;
5168
5169                 em->block_start = EXTENT_MAP_INLINE;
5170                 if (!page || create) {
5171                         em->start = extent_start;
5172                         em->len = extent_end - extent_start;
5173                         goto out;
5174                 }
5175
5176                 size = btrfs_file_extent_inline_len(leaf, item);
5177                 extent_offset = page_offset(page) + pg_offset - extent_start;
5178                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5179                                 size - extent_offset);
5180                 em->start = extent_start + extent_offset;
5181                 em->len = (copy_size + root->sectorsize - 1) &
5182                         ~((u64)root->sectorsize - 1);
5183                 em->orig_start = EXTENT_MAP_INLINE;
5184                 if (compress_type) {
5185                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5186                         em->compress_type = compress_type;
5187                 }
5188                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5189                 if (create == 0 && !PageUptodate(page)) {
5190                         if (btrfs_file_extent_compression(leaf, item) !=
5191                             BTRFS_COMPRESS_NONE) {
5192                                 ret = uncompress_inline(path, inode, page,
5193                                                         pg_offset,
5194                                                         extent_offset, item);
5195                                 BUG_ON(ret);
5196                         } else {
5197                                 map = kmap(page);
5198                                 read_extent_buffer(leaf, map + pg_offset, ptr,
5199                                                    copy_size);
5200                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5201                                         memset(map + pg_offset + copy_size, 0,
5202                                                PAGE_CACHE_SIZE - pg_offset -
5203                                                copy_size);
5204                                 }
5205                                 kunmap(page);
5206                         }
5207                         flush_dcache_page(page);
5208                 } else if (create && PageUptodate(page)) {
5209                         WARN_ON(1);
5210                         if (!trans) {
5211                                 kunmap(page);
5212                                 free_extent_map(em);
5213                                 em = NULL;
5214                                 btrfs_release_path(root, path);
5215                                 trans = btrfs_join_transaction(root, 1);
5216                                 if (IS_ERR(trans))
5217                                         return ERR_CAST(trans);
5218                                 goto again;
5219                         }
5220                         map = kmap(page);
5221                         write_extent_buffer(leaf, map + pg_offset, ptr,
5222                                             copy_size);
5223                         kunmap(page);
5224                         btrfs_mark_buffer_dirty(leaf);
5225                 }
5226                 set_extent_uptodate(io_tree, em->start,
5227                                     extent_map_end(em) - 1, GFP_NOFS);
5228                 goto insert;
5229         } else {
5230                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5231                 WARN_ON(1);
5232         }
5233 not_found:
5234         em->start = start;
5235         em->len = len;
5236 not_found_em:
5237         em->block_start = EXTENT_MAP_HOLE;
5238         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5239 insert:
5240         btrfs_release_path(root, path);
5241         if (em->start > start || extent_map_end(em) <= start) {
5242                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5243                        "[%llu %llu]\n", (unsigned long long)em->start,
5244                        (unsigned long long)em->len,
5245                        (unsigned long long)start,
5246                        (unsigned long long)len);
5247                 err = -EIO;
5248                 goto out;
5249         }
5250
5251         err = 0;
5252         write_lock(&em_tree->lock);
5253         ret = add_extent_mapping(em_tree, em);
5254         /* it is possible that someone inserted the extent into the tree
5255          * while we had the lock dropped.  It is also possible that
5256          * an overlapping map exists in the tree
5257          */
5258         if (ret == -EEXIST) {
5259                 struct extent_map *existing;
5260
5261                 ret = 0;
5262
5263                 existing = lookup_extent_mapping(em_tree, start, len);
5264                 if (existing && (existing->start > start ||
5265                     existing->start + existing->len <= start)) {
5266                         free_extent_map(existing);
5267                         existing = NULL;
5268                 }
5269                 if (!existing) {
5270                         existing = lookup_extent_mapping(em_tree, em->start,
5271                                                          em->len);
5272                         if (existing) {
5273                                 err = merge_extent_mapping(em_tree, existing,
5274                                                            em, start,
5275                                                            root->sectorsize);
5276                                 free_extent_map(existing);
5277                                 if (err) {
5278                                         free_extent_map(em);
5279                                         em = NULL;
5280                                 }
5281                         } else {
5282                                 err = -EIO;
5283                                 free_extent_map(em);
5284                                 em = NULL;
5285                         }
5286                 } else {
5287                         free_extent_map(em);
5288                         em = existing;
5289                         err = 0;
5290                 }
5291         }
5292         write_unlock(&em_tree->lock);
5293 out:
5294
5295         trace_btrfs_get_extent(root, em);
5296
5297         if (path)
5298                 btrfs_free_path(path);
5299         if (trans) {
5300                 ret = btrfs_end_transaction(trans, root);
5301                 if (!err)
5302                         err = ret;
5303         }
5304         if (err) {
5305                 free_extent_map(em);
5306                 return ERR_PTR(err);
5307         }
5308         return em;
5309 }
5310
5311 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5312                                            size_t pg_offset, u64 start, u64 len,
5313                                            int create)
5314 {
5315         struct extent_map *em;
5316         struct extent_map *hole_em = NULL;
5317         u64 range_start = start;
5318         u64 end;
5319         u64 found;
5320         u64 found_end;
5321         int err = 0;
5322
5323         em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5324         if (IS_ERR(em))
5325                 return em;
5326         if (em) {
5327                 /*
5328                  * if our em maps to a hole, there might
5329                  * actually be delalloc bytes behind it
5330                  */
5331                 if (em->block_start != EXTENT_MAP_HOLE)
5332                         return em;
5333                 else
5334                         hole_em = em;
5335         }
5336
5337         /* check to see if we've wrapped (len == -1 or similar) */
5338         end = start + len;
5339         if (end < start)
5340                 end = (u64)-1;
5341         else
5342                 end -= 1;
5343
5344         em = NULL;
5345
5346         /* ok, we didn't find anything, lets look for delalloc */
5347         found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5348                                  end, len, EXTENT_DELALLOC, 1);
5349         found_end = range_start + found;
5350         if (found_end < range_start)
5351                 found_end = (u64)-1;
5352
5353         /*
5354          * we didn't find anything useful, return
5355          * the original results from get_extent()
5356          */
5357         if (range_start > end || found_end <= start) {
5358                 em = hole_em;
5359                 hole_em = NULL;
5360                 goto out;
5361         }
5362
5363         /* adjust the range_start to make sure it doesn't
5364          * go backwards from the start they passed in
5365          */
5366         range_start = max(start,range_start);
5367         found = found_end - range_start;
5368
5369         if (found > 0) {
5370                 u64 hole_start = start;
5371                 u64 hole_len = len;
5372
5373                 em = alloc_extent_map(GFP_NOFS);
5374                 if (!em) {
5375                         err = -ENOMEM;
5376                         goto out;
5377                 }
5378                 /*
5379                  * when btrfs_get_extent can't find anything it
5380                  * returns one huge hole
5381                  *
5382                  * make sure what it found really fits our range, and
5383                  * adjust to make sure it is based on the start from
5384                  * the caller
5385                  */
5386                 if (hole_em) {
5387                         u64 calc_end = extent_map_end(hole_em);
5388
5389                         if (calc_end <= start || (hole_em->start > end)) {
5390                                 free_extent_map(hole_em);
5391                                 hole_em = NULL;
5392                         } else {
5393                                 hole_start = max(hole_em->start, start);
5394                                 hole_len = calc_end - hole_start;
5395                         }
5396                 }
5397                 em->bdev = NULL;
5398                 if (hole_em && range_start > hole_start) {
5399                         /* our hole starts before our delalloc, so we
5400                          * have to return just the parts of the hole
5401                          * that go until  the delalloc starts
5402                          */
5403                         em->len = min(hole_len,
5404                                       range_start - hole_start);
5405                         em->start = hole_start;
5406                         em->orig_start = hole_start;
5407                         /*
5408                          * don't adjust block start at all,
5409                          * it is fixed at EXTENT_MAP_HOLE
5410                          */
5411                         em->block_start = hole_em->block_start;
5412                         em->block_len = hole_len;
5413                 } else {
5414                         em->start = range_start;
5415                         em->len = found;
5416                         em->orig_start = range_start;
5417                         em->block_start = EXTENT_MAP_DELALLOC;
5418                         em->block_len = found;
5419                 }
5420         } else if (hole_em) {
5421                 return hole_em;
5422         }
5423 out:
5424
5425         free_extent_map(hole_em);
5426         if (err) {
5427                 free_extent_map(em);
5428                 return ERR_PTR(err);
5429         }
5430         return em;
5431 }
5432
5433 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5434                                                   u64 start, u64 len)
5435 {
5436         struct btrfs_root *root = BTRFS_I(inode)->root;
5437         struct btrfs_trans_handle *trans;
5438         struct extent_map *em;
5439         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5440         struct btrfs_key ins;
5441         u64 alloc_hint;
5442         int ret;
5443
5444         btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5445
5446         trans = btrfs_join_transaction(root, 0);
5447         if (IS_ERR(trans))
5448                 return ERR_CAST(trans);
5449
5450         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5451
5452         alloc_hint = get_extent_allocation_hint(inode, start, len);
5453         ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5454                                    alloc_hint, (u64)-1, &ins, 1);
5455         if (ret) {
5456                 em = ERR_PTR(ret);
5457                 goto out;
5458         }
5459
5460         em = alloc_extent_map(GFP_NOFS);
5461         if (!em) {
5462                 em = ERR_PTR(-ENOMEM);
5463                 goto out;
5464         }
5465
5466         em->start = start;
5467         em->orig_start = em->start;
5468         em->len = ins.offset;
5469
5470         em->block_start = ins.objectid;
5471         em->block_len = ins.offset;
5472         em->bdev = root->fs_info->fs_devices->latest_bdev;
5473         set_bit(EXTENT_FLAG_PINNED, &em->flags);
5474
5475         while (1) {
5476                 write_lock(&em_tree->lock);
5477                 ret = add_extent_mapping(em_tree, em);
5478                 write_unlock(&em_tree->lock);
5479                 if (ret != -EEXIST)
5480                         break;
5481                 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5482         }
5483
5484         ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5485                                            ins.offset, ins.offset, 0);
5486         if (ret) {
5487                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5488                 em = ERR_PTR(ret);
5489         }
5490 out:
5491         btrfs_end_transaction(trans, root);
5492         return em;
5493 }
5494
5495 /*
5496  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5497  * block must be cow'd
5498  */
5499 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5500                                       struct inode *inode, u64 offset, u64 len)
5501 {
5502         struct btrfs_path *path;
5503         int ret;
5504         struct extent_buffer *leaf;
5505         struct btrfs_root *root = BTRFS_I(inode)->root;
5506         struct btrfs_file_extent_item *fi;
5507         struct btrfs_key key;
5508         u64 disk_bytenr;
5509         u64 backref_offset;
5510         u64 extent_end;
5511         u64 num_bytes;
5512         int slot;
5513         int found_type;
5514
5515         path = btrfs_alloc_path();
5516         if (!path)
5517                 return -ENOMEM;
5518
5519         ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5520                                        offset, 0);
5521         if (ret < 0)
5522                 goto out;
5523
5524         slot = path->slots[0];
5525         if (ret == 1) {
5526                 if (slot == 0) {
5527                         /* can't find the item, must cow */
5528                         ret = 0;
5529                         goto out;
5530                 }
5531                 slot--;
5532         }
5533         ret = 0;
5534         leaf = path->nodes[0];
5535         btrfs_item_key_to_cpu(leaf, &key, slot);
5536         if (key.objectid != inode->i_ino ||
5537             key.type != BTRFS_EXTENT_DATA_KEY) {
5538                 /* not our file or wrong item type, must cow */
5539                 goto out;
5540         }
5541
5542         if (key.offset > offset) {
5543                 /* Wrong offset, must cow */
5544                 goto out;
5545         }
5546
5547         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5548         found_type = btrfs_file_extent_type(leaf, fi);
5549         if (found_type != BTRFS_FILE_EXTENT_REG &&
5550             found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5551                 /* not a regular extent, must cow */
5552                 goto out;
5553         }
5554         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5555         backref_offset = btrfs_file_extent_offset(leaf, fi);
5556
5557         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5558         if (extent_end < offset + len) {
5559                 /* extent doesn't include our full range, must cow */
5560                 goto out;
5561         }
5562
5563         if (btrfs_extent_readonly(root, disk_bytenr))
5564                 goto out;
5565
5566         /*
5567          * look for other files referencing this extent, if we
5568          * find any we must cow
5569          */
5570         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5571                                   key.offset - backref_offset, disk_bytenr))
5572                 goto out;
5573
5574         /*
5575          * adjust disk_bytenr and num_bytes to cover just the bytes
5576          * in this extent we are about to write.  If there
5577          * are any csums in that range we have to cow in order
5578          * to keep the csums correct
5579          */
5580         disk_bytenr += backref_offset;
5581         disk_bytenr += offset - key.offset;
5582         num_bytes = min(offset + len, extent_end) - offset;
5583         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5584                                 goto out;
5585         /*
5586          * all of the above have passed, it is safe to overwrite this extent
5587          * without cow
5588          */
5589         ret = 1;
5590 out:
5591         btrfs_free_path(path);
5592         return ret;
5593 }
5594
5595 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5596                                    struct buffer_head *bh_result, int create)
5597 {
5598         struct extent_map *em;
5599         struct btrfs_root *root = BTRFS_I(inode)->root;
5600         u64 start = iblock << inode->i_blkbits;
5601         u64 len = bh_result->b_size;
5602         struct btrfs_trans_handle *trans;
5603
5604         em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5605         if (IS_ERR(em))
5606                 return PTR_ERR(em);
5607
5608         /*
5609          * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5610          * io.  INLINE is special, and we could probably kludge it in here, but
5611          * it's still buffered so for safety lets just fall back to the generic
5612          * buffered path.
5613          *
5614          * For COMPRESSED we _have_ to read the entire extent in so we can
5615          * decompress it, so there will be buffering required no matter what we
5616          * do, so go ahead and fallback to buffered.
5617          *
5618          * We return -ENOTBLK because thats what makes DIO go ahead and go back
5619          * to buffered IO.  Don't blame me, this is the price we pay for using
5620          * the generic code.
5621          */
5622         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5623             em->block_start == EXTENT_MAP_INLINE) {
5624                 free_extent_map(em);
5625                 return -ENOTBLK;
5626         }
5627
5628         /* Just a good old fashioned hole, return */
5629         if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5630                         test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5631                 free_extent_map(em);
5632                 /* DIO will do one hole at a time, so just unlock a sector */
5633                 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5634                               start + root->sectorsize - 1, GFP_NOFS);
5635                 return 0;
5636         }
5637
5638         /*
5639          * We don't allocate a new extent in the following cases
5640          *
5641          * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5642          * existing extent.
5643          * 2) The extent is marked as PREALLOC.  We're good to go here and can
5644          * just use the extent.
5645          *
5646          */
5647         if (!create) {
5648                 len = em->len - (start - em->start);
5649                 goto map;
5650         }
5651
5652         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5653             ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5654              em->block_start != EXTENT_MAP_HOLE)) {
5655                 int type;
5656                 int ret;
5657                 u64 block_start;
5658
5659                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5660                         type = BTRFS_ORDERED_PREALLOC;
5661                 else
5662                         type = BTRFS_ORDERED_NOCOW;
5663                 len = min(len, em->len - (start - em->start));
5664                 block_start = em->block_start + (start - em->start);
5665
5666                 /*
5667                  * we're not going to log anything, but we do need
5668                  * to make sure the current transaction stays open
5669                  * while we look for nocow cross refs
5670                  */
5671                 trans = btrfs_join_transaction(root, 0);
5672                 if (IS_ERR(trans))
5673                         goto must_cow;
5674
5675                 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5676                         ret = btrfs_add_ordered_extent_dio(inode, start,
5677                                            block_start, len, len, type);
5678                         btrfs_end_transaction(trans, root);
5679                         if (ret) {
5680                                 free_extent_map(em);
5681                                 return ret;
5682                         }
5683                         goto unlock;
5684                 }
5685                 btrfs_end_transaction(trans, root);
5686         }
5687 must_cow:
5688         /*
5689          * this will cow the extent, reset the len in case we changed
5690          * it above
5691          */
5692         len = bh_result->b_size;
5693         free_extent_map(em);
5694         em = btrfs_new_extent_direct(inode, start, len);
5695         if (IS_ERR(em))
5696                 return PTR_ERR(em);
5697         len = min(len, em->len - (start - em->start));
5698 unlock:
5699         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5700                           EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5701                           0, NULL, GFP_NOFS);
5702 map:
5703         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5704                 inode->i_blkbits;
5705         bh_result->b_size = len;
5706         bh_result->b_bdev = em->bdev;
5707         set_buffer_mapped(bh_result);
5708         if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5709                 set_buffer_new(bh_result);
5710
5711         free_extent_map(em);
5712
5713         return 0;
5714 }
5715
5716 struct btrfs_dio_private {
5717         struct inode *inode;
5718         u64 logical_offset;
5719         u64 disk_bytenr;
5720         u64 bytes;
5721         u32 *csums;
5722         void *private;
5723
5724         /* number of bios pending for this dio */
5725         atomic_t pending_bios;
5726
5727         /* IO errors */
5728         int errors;
5729
5730         struct bio *orig_bio;
5731 };
5732
5733 static void btrfs_endio_direct_read(struct bio *bio, int err)
5734 {
5735         struct btrfs_dio_private *dip = bio->bi_private;
5736         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5737         struct bio_vec *bvec = bio->bi_io_vec;
5738         struct inode *inode = dip->inode;
5739         struct btrfs_root *root = BTRFS_I(inode)->root;
5740         u64 start;
5741         u32 *private = dip->csums;
5742
5743         start = dip->logical_offset;
5744         do {
5745                 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5746                         struct page *page = bvec->bv_page;
5747                         char *kaddr;
5748                         u32 csum = ~(u32)0;
5749                         unsigned long flags;
5750
5751                         local_irq_save(flags);
5752                         kaddr = kmap_atomic(page, KM_IRQ0);
5753                         csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5754                                                csum, bvec->bv_len);
5755                         btrfs_csum_final(csum, (char *)&csum);
5756                         kunmap_atomic(kaddr, KM_IRQ0);
5757                         local_irq_restore(flags);
5758
5759                         flush_dcache_page(bvec->bv_page);
5760                         if (csum != *private) {
5761                                 printk(KERN_ERR "btrfs csum failed ino %lu off"
5762                                       " %llu csum %u private %u\n",
5763                                       inode->i_ino, (unsigned long long)start,
5764                                       csum, *private);
5765                                 err = -EIO;
5766                         }
5767                 }
5768
5769                 start += bvec->bv_len;
5770                 private++;
5771                 bvec++;
5772         } while (bvec <= bvec_end);
5773
5774         unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5775                       dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5776         bio->bi_private = dip->private;
5777
5778         kfree(dip->csums);
5779         kfree(dip);
5780
5781         /* If we had a csum failure make sure to clear the uptodate flag */
5782         if (err)
5783                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5784         dio_end_io(bio, err);
5785 }
5786
5787 static void btrfs_endio_direct_write(struct bio *bio, int err)
5788 {
5789         struct btrfs_dio_private *dip = bio->bi_private;
5790         struct inode *inode = dip->inode;
5791         struct btrfs_root *root = BTRFS_I(inode)->root;
5792         struct btrfs_trans_handle *trans;
5793         struct btrfs_ordered_extent *ordered = NULL;
5794         struct extent_state *cached_state = NULL;
5795         u64 ordered_offset = dip->logical_offset;
5796         u64 ordered_bytes = dip->bytes;
5797         int ret;
5798
5799         if (err)
5800                 goto out_done;
5801 again:
5802         ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5803                                                    &ordered_offset,
5804                                                    ordered_bytes);
5805         if (!ret)
5806                 goto out_test;
5807
5808         BUG_ON(!ordered);
5809
5810         trans = btrfs_join_transaction(root, 1);
5811         if (IS_ERR(trans)) {
5812                 err = -ENOMEM;
5813                 goto out;
5814         }
5815         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5816
5817         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5818                 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5819                 if (!ret)
5820                         ret = btrfs_update_inode(trans, root, inode);
5821                 err = ret;
5822                 goto out;
5823         }
5824
5825         lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5826                          ordered->file_offset + ordered->len - 1, 0,
5827                          &cached_state, GFP_NOFS);
5828
5829         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5830                 ret = btrfs_mark_extent_written(trans, inode,
5831                                                 ordered->file_offset,
5832                                                 ordered->file_offset +
5833                                                 ordered->len);
5834                 if (ret) {
5835                         err = ret;
5836                         goto out_unlock;
5837                 }
5838         } else {
5839                 ret = insert_reserved_file_extent(trans, inode,
5840                                                   ordered->file_offset,
5841                                                   ordered->start,
5842                                                   ordered->disk_len,
5843                                                   ordered->len,
5844                                                   ordered->len,
5845                                                   0, 0, 0,
5846                                                   BTRFS_FILE_EXTENT_REG);
5847                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5848                                    ordered->file_offset, ordered->len);
5849                 if (ret) {
5850                         err = ret;
5851                         WARN_ON(1);
5852                         goto out_unlock;
5853                 }
5854         }
5855
5856         add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5857         btrfs_ordered_update_i_size(inode, 0, ordered);
5858         btrfs_update_inode(trans, root, inode);
5859 out_unlock:
5860         unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5861                              ordered->file_offset + ordered->len - 1,
5862                              &cached_state, GFP_NOFS);
5863 out:
5864         btrfs_delalloc_release_metadata(inode, ordered->len);
5865         btrfs_end_transaction(trans, root);
5866         ordered_offset = ordered->file_offset + ordered->len;
5867         btrfs_put_ordered_extent(ordered);
5868         btrfs_put_ordered_extent(ordered);
5869
5870 out_test:
5871         /*
5872          * our bio might span multiple ordered extents.  If we haven't
5873          * completed the accounting for the whole dio, go back and try again
5874          */
5875         if (ordered_offset < dip->logical_offset + dip->bytes) {
5876                 ordered_bytes = dip->logical_offset + dip->bytes -
5877                         ordered_offset;
5878                 goto again;
5879         }
5880 out_done:
5881         bio->bi_private = dip->private;
5882
5883         kfree(dip->csums);
5884         kfree(dip);
5885
5886         /* If we had an error make sure to clear the uptodate flag */
5887         if (err)
5888                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5889         dio_end_io(bio, err);
5890 }
5891
5892 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5893                                     struct bio *bio, int mirror_num,
5894                                     unsigned long bio_flags, u64 offset)
5895 {
5896         int ret;
5897         struct btrfs_root *root = BTRFS_I(inode)->root;
5898         ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5899         BUG_ON(ret);
5900         return 0;
5901 }
5902
5903 static void btrfs_end_dio_bio(struct bio *bio, int err)
5904 {
5905         struct btrfs_dio_private *dip = bio->bi_private;
5906
5907         if (err) {
5908                 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
5909                       "sector %#Lx len %u err no %d\n",
5910                       dip->inode->i_ino, bio->bi_rw,
5911                       (unsigned long long)bio->bi_sector, bio->bi_size, err);
5912                 dip->errors = 1;
5913
5914                 /*
5915                  * before atomic variable goto zero, we must make sure
5916                  * dip->errors is perceived to be set.
5917                  */
5918                 smp_mb__before_atomic_dec();
5919         }
5920
5921         /* if there are more bios still pending for this dio, just exit */
5922         if (!atomic_dec_and_test(&dip->pending_bios))
5923                 goto out;
5924
5925         if (dip->errors)
5926                 bio_io_error(dip->orig_bio);
5927         else {
5928                 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5929                 bio_endio(dip->orig_bio, 0);
5930         }
5931 out:
5932         bio_put(bio);
5933 }
5934
5935 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5936                                        u64 first_sector, gfp_t gfp_flags)
5937 {
5938         int nr_vecs = bio_get_nr_vecs(bdev);
5939         return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5940 }
5941
5942 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5943                                          int rw, u64 file_offset, int skip_sum,
5944                                          u32 *csums)
5945 {
5946         int write = rw & REQ_WRITE;
5947         struct btrfs_root *root = BTRFS_I(inode)->root;
5948         int ret;
5949
5950         bio_get(bio);
5951         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5952         if (ret)
5953                 goto err;
5954
5955         if (write && !skip_sum) {
5956                 ret = btrfs_wq_submit_bio(root->fs_info,
5957                                    inode, rw, bio, 0, 0,
5958                                    file_offset,
5959                                    __btrfs_submit_bio_start_direct_io,
5960                                    __btrfs_submit_bio_done);
5961                 goto err;
5962         } else if (!skip_sum) {
5963                 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
5964                                           file_offset, csums);
5965                 if (ret)
5966                         goto err;
5967         }
5968
5969         ret = btrfs_map_bio(root, rw, bio, 0, 1);
5970 err:
5971         bio_put(bio);
5972         return ret;
5973 }
5974
5975 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5976                                     int skip_sum)
5977 {
5978         struct inode *inode = dip->inode;
5979         struct btrfs_root *root = BTRFS_I(inode)->root;
5980         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5981         struct bio *bio;
5982         struct bio *orig_bio = dip->orig_bio;
5983         struct bio_vec *bvec = orig_bio->bi_io_vec;
5984         u64 start_sector = orig_bio->bi_sector;
5985         u64 file_offset = dip->logical_offset;
5986         u64 submit_len = 0;
5987         u64 map_length;
5988         int nr_pages = 0;
5989         u32 *csums = dip->csums;
5990         int ret = 0;
5991         int write = rw & REQ_WRITE;
5992
5993         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5994         if (!bio)
5995                 return -ENOMEM;
5996         bio->bi_private = dip;
5997         bio->bi_end_io = btrfs_end_dio_bio;
5998         atomic_inc(&dip->pending_bios);
5999
6000         map_length = orig_bio->bi_size;
6001         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6002                               &map_length, NULL, 0);
6003         if (ret) {
6004                 bio_put(bio);
6005                 return -EIO;
6006         }
6007
6008         while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6009                 if (unlikely(map_length < submit_len + bvec->bv_len ||
6010                     bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6011                                  bvec->bv_offset) < bvec->bv_len)) {
6012                         /*
6013                          * inc the count before we submit the bio so
6014                          * we know the end IO handler won't happen before
6015                          * we inc the count. Otherwise, the dip might get freed
6016                          * before we're done setting it up
6017                          */
6018                         atomic_inc(&dip->pending_bios);
6019                         ret = __btrfs_submit_dio_bio(bio, inode, rw,
6020                                                      file_offset, skip_sum,
6021                                                      csums);
6022                         if (ret) {
6023                                 bio_put(bio);
6024                                 atomic_dec(&dip->pending_bios);
6025                                 goto out_err;
6026                         }
6027
6028                         /* Write's use the ordered csums */
6029                         if (!write && !skip_sum)
6030                                 csums = csums + nr_pages;
6031                         start_sector += submit_len >> 9;
6032                         file_offset += submit_len;
6033
6034                         submit_len = 0;
6035                         nr_pages = 0;
6036
6037                         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6038                                                   start_sector, GFP_NOFS);
6039                         if (!bio)
6040                                 goto out_err;
6041                         bio->bi_private = dip;
6042                         bio->bi_end_io = btrfs_end_dio_bio;
6043
6044                         map_length = orig_bio->bi_size;
6045                         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6046                                               &map_length, NULL, 0);
6047                         if (ret) {
6048                                 bio_put(bio);
6049                                 goto out_err;
6050                         }
6051                 } else {
6052                         submit_len += bvec->bv_len;
6053                         nr_pages ++;
6054                         bvec++;
6055                 }
6056         }
6057
6058         ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6059                                      csums);
6060         if (!ret)
6061                 return 0;
6062
6063         bio_put(bio);
6064 out_err:
6065         dip->errors = 1;
6066         /*
6067          * before atomic variable goto zero, we must
6068          * make sure dip->errors is perceived to be set.
6069          */
6070         smp_mb__before_atomic_dec();
6071         if (atomic_dec_and_test(&dip->pending_bios))
6072                 bio_io_error(dip->orig_bio);
6073
6074         /* bio_end_io() will handle error, so we needn't return it */
6075         return 0;
6076 }
6077
6078 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6079                                 loff_t file_offset)
6080 {
6081         struct btrfs_root *root = BTRFS_I(inode)->root;
6082         struct btrfs_dio_private *dip;
6083         struct bio_vec *bvec = bio->bi_io_vec;
6084         int skip_sum;
6085         int write = rw & REQ_WRITE;
6086         int ret = 0;
6087
6088         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6089
6090         dip = kmalloc(sizeof(*dip), GFP_NOFS);
6091         if (!dip) {
6092                 ret = -ENOMEM;
6093                 goto free_ordered;
6094         }
6095         dip->csums = NULL;
6096
6097         /* Write's use the ordered csum stuff, so we don't need dip->csums */
6098         if (!write && !skip_sum) {
6099                 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6100                 if (!dip->csums) {
6101                         kfree(dip);
6102                         ret = -ENOMEM;
6103                         goto free_ordered;
6104                 }
6105         }
6106
6107         dip->private = bio->bi_private;
6108         dip->inode = inode;
6109         dip->logical_offset = file_offset;
6110
6111         dip->bytes = 0;
6112         do {
6113                 dip->bytes += bvec->bv_len;
6114                 bvec++;
6115         } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6116
6117         dip->disk_bytenr = (u64)bio->bi_sector << 9;
6118         bio->bi_private = dip;
6119         dip->errors = 0;
6120         dip->orig_bio = bio;
6121         atomic_set(&dip->pending_bios, 0);
6122
6123         if (write)
6124                 bio->bi_end_io = btrfs_endio_direct_write;
6125         else
6126                 bio->bi_end_io = btrfs_endio_direct_read;
6127
6128         ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6129         if (!ret)
6130                 return;
6131 free_ordered:
6132         /*
6133          * If this is a write, we need to clean up the reserved space and kill
6134          * the ordered extent.
6135          */
6136         if (write) {
6137                 struct btrfs_ordered_extent *ordered;
6138                 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6139                 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6140                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6141                         btrfs_free_reserved_extent(root, ordered->start,
6142                                                    ordered->disk_len);
6143                 btrfs_put_ordered_extent(ordered);
6144                 btrfs_put_ordered_extent(ordered);
6145         }
6146         bio_endio(bio, ret);
6147 }
6148
6149 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6150                         const struct iovec *iov, loff_t offset,
6151                         unsigned long nr_segs)
6152 {
6153         int seg;
6154         size_t size;
6155         unsigned long addr;
6156         unsigned blocksize_mask = root->sectorsize - 1;
6157         ssize_t retval = -EINVAL;
6158         loff_t end = offset;
6159
6160         if (offset & blocksize_mask)
6161                 goto out;
6162
6163         /* Check the memory alignment.  Blocks cannot straddle pages */
6164         for (seg = 0; seg < nr_segs; seg++) {
6165                 addr = (unsigned long)iov[seg].iov_base;
6166                 size = iov[seg].iov_len;
6167                 end += size;
6168                 if ((addr & blocksize_mask) || (size & blocksize_mask)) 
6169                         goto out;
6170         }
6171         retval = 0;
6172 out:
6173         return retval;
6174 }
6175 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6176                         const struct iovec *iov, loff_t offset,
6177                         unsigned long nr_segs)
6178 {
6179         struct file *file = iocb->ki_filp;
6180         struct inode *inode = file->f_mapping->host;
6181         struct btrfs_ordered_extent *ordered;
6182         struct extent_state *cached_state = NULL;
6183         u64 lockstart, lockend;
6184         ssize_t ret;
6185         int writing = rw & WRITE;
6186         int write_bits = 0;
6187         size_t count = iov_length(iov, nr_segs);
6188
6189         if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6190                             offset, nr_segs)) {
6191                 return 0;
6192         }
6193
6194         lockstart = offset;
6195         lockend = offset + count - 1;
6196
6197         if (writing) {
6198                 ret = btrfs_delalloc_reserve_space(inode, count);
6199                 if (ret)
6200                         goto out;
6201         }
6202
6203         while (1) {
6204                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6205                                  0, &cached_state, GFP_NOFS);
6206                 /*
6207                  * We're concerned with the entire range that we're going to be
6208                  * doing DIO to, so we need to make sure theres no ordered
6209                  * extents in this range.
6210                  */
6211                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6212                                                      lockend - lockstart + 1);
6213                 if (!ordered)
6214                         break;
6215                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6216                                      &cached_state, GFP_NOFS);
6217                 btrfs_start_ordered_extent(inode, ordered, 1);
6218                 btrfs_put_ordered_extent(ordered);
6219                 cond_resched();
6220         }
6221
6222         /*
6223          * we don't use btrfs_set_extent_delalloc because we don't want
6224          * the dirty or uptodate bits
6225          */
6226         if (writing) {
6227                 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6228                 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6229                                      EXTENT_DELALLOC, 0, NULL, &cached_state,
6230                                      GFP_NOFS);
6231                 if (ret) {
6232                         clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6233                                          lockend, EXTENT_LOCKED | write_bits,
6234                                          1, 0, &cached_state, GFP_NOFS);
6235                         goto out;
6236                 }
6237         }
6238
6239         free_extent_state(cached_state);
6240         cached_state = NULL;
6241
6242         ret = __blockdev_direct_IO(rw, iocb, inode,
6243                    BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6244                    iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6245                    btrfs_submit_direct, 0);
6246
6247         if (ret < 0 && ret != -EIOCBQUEUED) {
6248                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6249                               offset + iov_length(iov, nr_segs) - 1,
6250                               EXTENT_LOCKED | write_bits, 1, 0,
6251                               &cached_state, GFP_NOFS);
6252         } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6253                 /*
6254                  * We're falling back to buffered, unlock the section we didn't
6255                  * do IO on.
6256                  */
6257                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6258                               offset + iov_length(iov, nr_segs) - 1,
6259                               EXTENT_LOCKED | write_bits, 1, 0,
6260                               &cached_state, GFP_NOFS);
6261         }
6262 out:
6263         free_extent_state(cached_state);
6264         return ret;
6265 }
6266
6267 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6268                 __u64 start, __u64 len)
6269 {
6270         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6271 }
6272
6273 int btrfs_readpage(struct file *file, struct page *page)
6274 {
6275         struct extent_io_tree *tree;
6276         tree = &BTRFS_I(page->mapping->host)->io_tree;
6277         return extent_read_full_page(tree, page, btrfs_get_extent);
6278 }
6279
6280 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6281 {
6282         struct extent_io_tree *tree;
6283
6284
6285         if (current->flags & PF_MEMALLOC) {
6286                 redirty_page_for_writepage(wbc, page);
6287                 unlock_page(page);
6288                 return 0;
6289         }
6290         tree = &BTRFS_I(page->mapping->host)->io_tree;
6291         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6292 }
6293
6294 int btrfs_writepages(struct address_space *mapping,
6295                      struct writeback_control *wbc)
6296 {
6297         struct extent_io_tree *tree;
6298
6299         tree = &BTRFS_I(mapping->host)->io_tree;
6300         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6301 }
6302
6303 static int
6304 btrfs_readpages(struct file *file, struct address_space *mapping,
6305                 struct list_head *pages, unsigned nr_pages)
6306 {
6307         struct extent_io_tree *tree;
6308         tree = &BTRFS_I(mapping->host)->io_tree;
6309         return extent_readpages(tree, mapping, pages, nr_pages,
6310                                 btrfs_get_extent);
6311 }
6312 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6313 {
6314         struct extent_io_tree *tree;
6315         struct extent_map_tree *map;
6316         int ret;
6317
6318         tree = &BTRFS_I(page->mapping->host)->io_tree;
6319         map = &BTRFS_I(page->mapping->host)->extent_tree;
6320         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6321         if (ret == 1) {
6322                 ClearPagePrivate(page);
6323                 set_page_private(page, 0);
6324                 page_cache_release(page);
6325         }
6326         return ret;
6327 }
6328
6329 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6330 {
6331         if (PageWriteback(page) || PageDirty(page))
6332                 return 0;
6333         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6334 }
6335
6336 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6337 {
6338         struct extent_io_tree *tree;
6339         struct btrfs_ordered_extent *ordered;
6340         struct extent_state *cached_state = NULL;
6341         u64 page_start = page_offset(page);
6342         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6343
6344
6345         /*
6346          * we have the page locked, so new writeback can't start,
6347          * and the dirty bit won't be cleared while we are here.
6348          *
6349          * Wait for IO on this page so that we can safely clear
6350          * the PagePrivate2 bit and do ordered accounting
6351          */
6352         wait_on_page_writeback(page);
6353
6354         tree = &BTRFS_I(page->mapping->host)->io_tree;
6355         if (offset) {
6356                 btrfs_releasepage(page, GFP_NOFS);
6357                 return;
6358         }
6359         lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6360                          GFP_NOFS);
6361         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6362                                            page_offset(page));
6363         if (ordered) {
6364                 /*
6365                  * IO on this page will never be started, so we need
6366                  * to account for any ordered extents now
6367                  */
6368                 clear_extent_bit(tree, page_start, page_end,
6369                                  EXTENT_DIRTY | EXTENT_DELALLOC |
6370                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6371                                  &cached_state, GFP_NOFS);
6372                 /*
6373                  * whoever cleared the private bit is responsible
6374                  * for the finish_ordered_io
6375                  */
6376                 if (TestClearPagePrivate2(page)) {
6377                         btrfs_finish_ordered_io(page->mapping->host,
6378                                                 page_start, page_end);
6379                 }
6380                 btrfs_put_ordered_extent(ordered);
6381                 cached_state = NULL;
6382                 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6383                                  GFP_NOFS);
6384         }
6385         clear_extent_bit(tree, page_start, page_end,
6386                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6387                  EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6388         __btrfs_releasepage(page, GFP_NOFS);
6389
6390         ClearPageChecked(page);
6391         if (PagePrivate(page)) {
6392                 ClearPagePrivate(page);
6393                 set_page_private(page, 0);
6394                 page_cache_release(page);
6395         }
6396 }
6397
6398 /*
6399  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6400  * called from a page fault handler when a page is first dirtied. Hence we must
6401  * be careful to check for EOF conditions here. We set the page up correctly
6402  * for a written page which means we get ENOSPC checking when writing into
6403  * holes and correct delalloc and unwritten extent mapping on filesystems that
6404  * support these features.
6405  *
6406  * We are not allowed to take the i_mutex here so we have to play games to
6407  * protect against truncate races as the page could now be beyond EOF.  Because
6408  * vmtruncate() writes the inode size before removing pages, once we have the
6409  * page lock we can determine safely if the page is beyond EOF. If it is not
6410  * beyond EOF, then the page is guaranteed safe against truncation until we
6411  * unlock the page.
6412  */
6413 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6414 {
6415         struct page *page = vmf->page;
6416         struct inode *inode = fdentry(vma->vm_file)->d_inode;
6417         struct btrfs_root *root = BTRFS_I(inode)->root;
6418         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6419         struct btrfs_ordered_extent *ordered;
6420         struct extent_state *cached_state = NULL;
6421         char *kaddr;
6422         unsigned long zero_start;
6423         loff_t size;
6424         int ret;
6425         u64 page_start;
6426         u64 page_end;
6427
6428         ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6429         if (ret) {
6430                 if (ret == -ENOMEM)
6431                         ret = VM_FAULT_OOM;
6432                 else /* -ENOSPC, -EIO, etc */
6433                         ret = VM_FAULT_SIGBUS;
6434                 goto out;
6435         }
6436
6437         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6438 again:
6439         lock_page(page);
6440         size = i_size_read(inode);
6441         page_start = page_offset(page);
6442         page_end = page_start + PAGE_CACHE_SIZE - 1;
6443
6444         if ((page->mapping != inode->i_mapping) ||
6445             (page_start >= size)) {
6446                 /* page got truncated out from underneath us */
6447                 goto out_unlock;
6448         }
6449         wait_on_page_writeback(page);
6450
6451         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6452                          GFP_NOFS);
6453         set_page_extent_mapped(page);
6454
6455         /*
6456          * we can't set the delalloc bits if there are pending ordered
6457          * extents.  Drop our locks and wait for them to finish
6458          */
6459         ordered = btrfs_lookup_ordered_extent(inode, page_start);
6460         if (ordered) {
6461                 unlock_extent_cached(io_tree, page_start, page_end,
6462                                      &cached_state, GFP_NOFS);
6463                 unlock_page(page);
6464                 btrfs_start_ordered_extent(inode, ordered, 1);
6465                 btrfs_put_ordered_extent(ordered);
6466                 goto again;
6467         }
6468
6469         /*
6470          * XXX - page_mkwrite gets called every time the page is dirtied, even
6471          * if it was already dirty, so for space accounting reasons we need to
6472          * clear any delalloc bits for the range we are fixing to save.  There
6473          * is probably a better way to do this, but for now keep consistent with
6474          * prepare_pages in the normal write path.
6475          */
6476         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6477                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6478                           0, 0, &cached_state, GFP_NOFS);
6479
6480         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6481                                         &cached_state);
6482         if (ret) {
6483                 unlock_extent_cached(io_tree, page_start, page_end,
6484                                      &cached_state, GFP_NOFS);
6485                 ret = VM_FAULT_SIGBUS;
6486                 goto out_unlock;
6487         }
6488         ret = 0;
6489
6490         /* page is wholly or partially inside EOF */
6491         if (page_start + PAGE_CACHE_SIZE > size)
6492                 zero_start = size & ~PAGE_CACHE_MASK;
6493         else
6494                 zero_start = PAGE_CACHE_SIZE;
6495
6496         if (zero_start != PAGE_CACHE_SIZE) {
6497                 kaddr = kmap(page);
6498                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6499                 flush_dcache_page(page);
6500                 kunmap(page);
6501         }
6502         ClearPageChecked(page);
6503         set_page_dirty(page);
6504         SetPageUptodate(page);
6505
6506         BTRFS_I(inode)->last_trans = root->fs_info->generation;
6507         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6508
6509         unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6510
6511 out_unlock:
6512         if (!ret)
6513                 return VM_FAULT_LOCKED;
6514         unlock_page(page);
6515         btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6516 out:
6517         return ret;
6518 }
6519
6520 static int btrfs_truncate(struct inode *inode)
6521 {
6522         struct btrfs_root *root = BTRFS_I(inode)->root;
6523         int ret;
6524         int err = 0;
6525         struct btrfs_trans_handle *trans;
6526         unsigned long nr;
6527         u64 mask = root->sectorsize - 1;
6528
6529         ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6530         if (ret)
6531                 return ret;
6532
6533         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6534         btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6535
6536         trans = btrfs_start_transaction(root, 5);
6537         if (IS_ERR(trans))
6538                 return PTR_ERR(trans);
6539
6540         btrfs_set_trans_block_group(trans, inode);
6541
6542         ret = btrfs_orphan_add(trans, inode);
6543         if (ret) {
6544                 btrfs_end_transaction(trans, root);
6545                 return ret;
6546         }
6547
6548         nr = trans->blocks_used;
6549         btrfs_end_transaction(trans, root);
6550         btrfs_btree_balance_dirty(root, nr);
6551
6552         /* Now start a transaction for the truncate */
6553         trans = btrfs_start_transaction(root, 0);
6554         if (IS_ERR(trans))
6555                 return PTR_ERR(trans);
6556         btrfs_set_trans_block_group(trans, inode);
6557         trans->block_rsv = root->orphan_block_rsv;
6558
6559         /*
6560          * setattr is responsible for setting the ordered_data_close flag,
6561          * but that is only tested during the last file release.  That
6562          * could happen well after the next commit, leaving a great big
6563          * window where new writes may get lost if someone chooses to write
6564          * to this file after truncating to zero
6565          *
6566          * The inode doesn't have any dirty data here, and so if we commit
6567          * this is a noop.  If someone immediately starts writing to the inode
6568          * it is very likely we'll catch some of their writes in this
6569          * transaction, and the commit will find this file on the ordered
6570          * data list with good things to send down.
6571          *
6572          * This is a best effort solution, there is still a window where
6573          * using truncate to replace the contents of the file will
6574          * end up with a zero length file after a crash.
6575          */
6576         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6577                 btrfs_add_ordered_operation(trans, root, inode);
6578
6579         while (1) {
6580                 if (!trans) {
6581                         trans = btrfs_start_transaction(root, 0);
6582                         if (IS_ERR(trans))
6583                                 return PTR_ERR(trans);
6584                         btrfs_set_trans_block_group(trans, inode);
6585                         trans->block_rsv = root->orphan_block_rsv;
6586                 }
6587
6588                 ret = btrfs_block_rsv_check(trans, root,
6589                                             root->orphan_block_rsv, 0, 5);
6590                 if (ret == -EAGAIN) {
6591                         ret = btrfs_commit_transaction(trans, root);
6592                         if (ret)
6593                                 return ret;
6594                         trans = NULL;
6595                         continue;
6596                 } else if (ret) {
6597                         err = ret;
6598                         break;
6599                 }
6600
6601                 ret = btrfs_truncate_inode_items(trans, root, inode,
6602                                                  inode->i_size,
6603                                                  BTRFS_EXTENT_DATA_KEY);
6604                 if (ret != -EAGAIN) {
6605                         err = ret;
6606                         break;
6607                 }
6608
6609                 ret = btrfs_update_inode(trans, root, inode);
6610                 if (ret) {
6611                         err = ret;
6612                         break;
6613                 }
6614
6615                 nr = trans->blocks_used;
6616                 btrfs_end_transaction(trans, root);
6617                 trans = NULL;
6618                 btrfs_btree_balance_dirty(root, nr);
6619         }
6620
6621         if (ret == 0 && inode->i_nlink > 0) {
6622                 ret = btrfs_orphan_del(trans, inode);
6623                 if (ret)
6624                         err = ret;
6625         } else if (ret && inode->i_nlink > 0) {
6626                 /*
6627                  * Failed to do the truncate, remove us from the in memory
6628                  * orphan list.
6629                  */
6630                 ret = btrfs_orphan_del(NULL, inode);
6631         }
6632
6633         ret = btrfs_update_inode(trans, root, inode);
6634         if (ret && !err)
6635                 err = ret;
6636
6637         nr = trans->blocks_used;
6638         ret = btrfs_end_transaction_throttle(trans, root);
6639         if (ret && !err)
6640                 err = ret;
6641         btrfs_btree_balance_dirty(root, nr);
6642
6643         return err;
6644 }
6645
6646 /*
6647  * create a new subvolume directory/inode (helper for the ioctl).
6648  */
6649 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6650                              struct btrfs_root *new_root,
6651                              u64 new_dirid, u64 alloc_hint)
6652 {
6653         struct inode *inode;
6654         int err;
6655         u64 index = 0;
6656
6657         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6658                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6659         if (IS_ERR(inode))
6660                 return PTR_ERR(inode);
6661         inode->i_op = &btrfs_dir_inode_operations;
6662         inode->i_fop = &btrfs_dir_file_operations;
6663
6664         inode->i_nlink = 1;
6665         btrfs_i_size_write(inode, 0);
6666
6667         err = btrfs_update_inode(trans, new_root, inode);
6668         BUG_ON(err);
6669
6670         iput(inode);
6671         return 0;
6672 }
6673
6674 /* helper function for file defrag and space balancing.  This
6675  * forces readahead on a given range of bytes in an inode
6676  */
6677 unsigned long btrfs_force_ra(struct address_space *mapping,
6678                               struct file_ra_state *ra, struct file *file,
6679                               pgoff_t offset, pgoff_t last_index)
6680 {
6681         pgoff_t req_size = last_index - offset + 1;
6682
6683         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6684         return offset + req_size;
6685 }
6686
6687 struct inode *btrfs_alloc_inode(struct super_block *sb)
6688 {
6689         struct btrfs_inode *ei;
6690         struct inode *inode;
6691
6692         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6693         if (!ei)
6694                 return NULL;
6695
6696         ei->root = NULL;
6697         ei->space_info = NULL;
6698         ei->generation = 0;
6699         ei->sequence = 0;
6700         ei->last_trans = 0;
6701         ei->last_sub_trans = 0;
6702         ei->logged_trans = 0;
6703         ei->delalloc_bytes = 0;
6704         ei->reserved_bytes = 0;
6705         ei->disk_i_size = 0;
6706         ei->flags = 0;
6707         ei->index_cnt = (u64)-1;
6708         ei->last_unlink_trans = 0;
6709
6710         atomic_set(&ei->outstanding_extents, 0);
6711         atomic_set(&ei->reserved_extents, 0);
6712
6713         ei->ordered_data_close = 0;
6714         ei->orphan_meta_reserved = 0;
6715         ei->dummy_inode = 0;
6716         ei->force_compress = BTRFS_COMPRESS_NONE;
6717
6718         inode = &ei->vfs_inode;
6719         extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6720         extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6721         extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6722         mutex_init(&ei->log_mutex);
6723         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6724         INIT_LIST_HEAD(&ei->i_orphan);
6725         INIT_LIST_HEAD(&ei->delalloc_inodes);
6726         INIT_LIST_HEAD(&ei->ordered_operations);
6727         RB_CLEAR_NODE(&ei->rb_node);
6728
6729         return inode;
6730 }
6731
6732 static void btrfs_i_callback(struct rcu_head *head)
6733 {
6734         struct inode *inode = container_of(head, struct inode, i_rcu);
6735         INIT_LIST_HEAD(&inode->i_dentry);
6736         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6737 }
6738
6739 void btrfs_destroy_inode(struct inode *inode)
6740 {
6741         struct btrfs_ordered_extent *ordered;
6742         struct btrfs_root *root = BTRFS_I(inode)->root;
6743
6744         WARN_ON(!list_empty(&inode->i_dentry));
6745         WARN_ON(inode->i_data.nrpages);
6746         WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6747         WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
6748
6749         /*
6750          * This can happen where we create an inode, but somebody else also
6751          * created the same inode and we need to destroy the one we already
6752          * created.
6753          */
6754         if (!root)
6755                 goto free;
6756
6757         /*
6758          * Make sure we're properly removed from the ordered operation
6759          * lists.
6760          */
6761         smp_mb();
6762         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6763                 spin_lock(&root->fs_info->ordered_extent_lock);
6764                 list_del_init(&BTRFS_I(inode)->ordered_operations);
6765                 spin_unlock(&root->fs_info->ordered_extent_lock);
6766         }
6767
6768         if (root == root->fs_info->tree_root) {
6769                 struct btrfs_block_group_cache *block_group;
6770
6771                 block_group = btrfs_lookup_block_group(root->fs_info,
6772                                                 BTRFS_I(inode)->block_group);
6773                 if (block_group && block_group->inode == inode) {
6774                         spin_lock(&block_group->lock);
6775                         block_group->inode = NULL;
6776                         spin_unlock(&block_group->lock);
6777                         btrfs_put_block_group(block_group);
6778                 } else if (block_group) {
6779                         btrfs_put_block_group(block_group);
6780                 }
6781         }
6782
6783         spin_lock(&root->orphan_lock);
6784         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6785                 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6786                        inode->i_ino);
6787                 list_del_init(&BTRFS_I(inode)->i_orphan);
6788         }
6789         spin_unlock(&root->orphan_lock);
6790
6791         while (1) {
6792                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6793                 if (!ordered)
6794                         break;
6795                 else {
6796                         printk(KERN_ERR "btrfs found ordered "
6797                                "extent %llu %llu on inode cleanup\n",
6798                                (unsigned long long)ordered->file_offset,
6799                                (unsigned long long)ordered->len);
6800                         btrfs_remove_ordered_extent(inode, ordered);
6801                         btrfs_put_ordered_extent(ordered);
6802                         btrfs_put_ordered_extent(ordered);
6803                 }
6804         }
6805         inode_tree_del(inode);
6806         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6807 free:
6808         call_rcu(&inode->i_rcu, btrfs_i_callback);
6809 }
6810
6811 int btrfs_drop_inode(struct inode *inode)
6812 {
6813         struct btrfs_root *root = BTRFS_I(inode)->root;
6814
6815         if (btrfs_root_refs(&root->root_item) == 0 &&
6816             root != root->fs_info->tree_root)
6817                 return 1;
6818         else
6819                 return generic_drop_inode(inode);
6820 }
6821
6822 static void init_once(void *foo)
6823 {
6824         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6825
6826         inode_init_once(&ei->vfs_inode);
6827 }
6828
6829 void btrfs_destroy_cachep(void)
6830 {
6831         if (btrfs_inode_cachep)
6832                 kmem_cache_destroy(btrfs_inode_cachep);
6833         if (btrfs_trans_handle_cachep)
6834                 kmem_cache_destroy(btrfs_trans_handle_cachep);
6835         if (btrfs_transaction_cachep)
6836                 kmem_cache_destroy(btrfs_transaction_cachep);
6837         if (btrfs_path_cachep)
6838                 kmem_cache_destroy(btrfs_path_cachep);
6839         if (btrfs_free_space_cachep)
6840                 kmem_cache_destroy(btrfs_free_space_cachep);
6841 }
6842
6843 int btrfs_init_cachep(void)
6844 {
6845         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6846                         sizeof(struct btrfs_inode), 0,
6847                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6848         if (!btrfs_inode_cachep)
6849                 goto fail;
6850
6851         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6852                         sizeof(struct btrfs_trans_handle), 0,
6853                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6854         if (!btrfs_trans_handle_cachep)
6855                 goto fail;
6856
6857         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6858                         sizeof(struct btrfs_transaction), 0,
6859                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6860         if (!btrfs_transaction_cachep)
6861                 goto fail;
6862
6863         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6864                         sizeof(struct btrfs_path), 0,
6865                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6866         if (!btrfs_path_cachep)
6867                 goto fail;
6868
6869         btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6870                         sizeof(struct btrfs_free_space), 0,
6871                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6872         if (!btrfs_free_space_cachep)
6873                 goto fail;
6874
6875         return 0;
6876 fail:
6877         btrfs_destroy_cachep();
6878         return -ENOMEM;
6879 }
6880
6881 static int btrfs_getattr(struct vfsmount *mnt,
6882                          struct dentry *dentry, struct kstat *stat)
6883 {
6884         struct inode *inode = dentry->d_inode;
6885         generic_fillattr(inode, stat);
6886         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6887         stat->blksize = PAGE_CACHE_SIZE;
6888         stat->blocks = (inode_get_bytes(inode) +
6889                         BTRFS_I(inode)->delalloc_bytes) >> 9;
6890         return 0;
6891 }
6892
6893 /*
6894  * If a file is moved, it will inherit the cow and compression flags of the new
6895  * directory.
6896  */
6897 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6898 {
6899         struct btrfs_inode *b_dir = BTRFS_I(dir);
6900         struct btrfs_inode *b_inode = BTRFS_I(inode);
6901
6902         if (b_dir->flags & BTRFS_INODE_NODATACOW)
6903                 b_inode->flags |= BTRFS_INODE_NODATACOW;
6904         else
6905                 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6906
6907         if (b_dir->flags & BTRFS_INODE_COMPRESS)
6908                 b_inode->flags |= BTRFS_INODE_COMPRESS;
6909         else
6910                 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6911 }
6912
6913 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6914                            struct inode *new_dir, struct dentry *new_dentry)
6915 {
6916         struct btrfs_trans_handle *trans;
6917         struct btrfs_root *root = BTRFS_I(old_dir)->root;
6918         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6919         struct inode *new_inode = new_dentry->d_inode;
6920         struct inode *old_inode = old_dentry->d_inode;
6921         struct timespec ctime = CURRENT_TIME;
6922         u64 index = 0;
6923         u64 root_objectid;
6924         int ret;
6925
6926         if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6927                 return -EPERM;
6928
6929         /* we only allow rename subvolume link between subvolumes */
6930         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6931                 return -EXDEV;
6932
6933         if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6934             (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6935                 return -ENOTEMPTY;
6936
6937         if (S_ISDIR(old_inode->i_mode) && new_inode &&
6938             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6939                 return -ENOTEMPTY;
6940         /*
6941          * we're using rename to replace one file with another.
6942          * and the replacement file is large.  Start IO on it now so
6943          * we don't add too much work to the end of the transaction
6944          */
6945         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6946             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6947                 filemap_flush(old_inode->i_mapping);
6948
6949         /* close the racy window with snapshot create/destroy ioctl */
6950         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6951                 down_read(&root->fs_info->subvol_sem);
6952         /*
6953          * We want to reserve the absolute worst case amount of items.  So if
6954          * both inodes are subvols and we need to unlink them then that would
6955          * require 4 item modifications, but if they are both normal inodes it
6956          * would require 5 item modifications, so we'll assume their normal
6957          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6958          * should cover the worst case number of items we'll modify.
6959          */
6960         trans = btrfs_start_transaction(root, 20);
6961         if (IS_ERR(trans))
6962                 return PTR_ERR(trans);
6963
6964         btrfs_set_trans_block_group(trans, new_dir);
6965
6966         if (dest != root)
6967                 btrfs_record_root_in_trans(trans, dest);
6968
6969         ret = btrfs_set_inode_index(new_dir, &index);
6970         if (ret)
6971                 goto out_fail;
6972
6973         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6974                 /* force full log commit if subvolume involved. */
6975                 root->fs_info->last_trans_log_full_commit = trans->transid;
6976         } else {
6977                 ret = btrfs_insert_inode_ref(trans, dest,
6978                                              new_dentry->d_name.name,
6979                                              new_dentry->d_name.len,
6980                                              old_inode->i_ino,
6981                                              new_dir->i_ino, index);
6982                 if (ret)
6983                         goto out_fail;
6984                 /*
6985                  * this is an ugly little race, but the rename is required
6986                  * to make sure that if we crash, the inode is either at the
6987                  * old name or the new one.  pinning the log transaction lets
6988                  * us make sure we don't allow a log commit to come in after
6989                  * we unlink the name but before we add the new name back in.
6990                  */
6991                 btrfs_pin_log_trans(root);
6992         }
6993         /*
6994          * make sure the inode gets flushed if it is replacing
6995          * something.
6996          */
6997         if (new_inode && new_inode->i_size &&
6998             old_inode && S_ISREG(old_inode->i_mode)) {
6999                 btrfs_add_ordered_operation(trans, root, old_inode);
7000         }
7001
7002         old_dir->i_ctime = old_dir->i_mtime = ctime;
7003         new_dir->i_ctime = new_dir->i_mtime = ctime;
7004         old_inode->i_ctime = ctime;
7005
7006         if (old_dentry->d_parent != new_dentry->d_parent)
7007                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7008
7009         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7010                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7011                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7012                                         old_dentry->d_name.name,
7013                                         old_dentry->d_name.len);
7014         } else {
7015                 ret = __btrfs_unlink_inode(trans, root, old_dir,
7016                                         old_dentry->d_inode,
7017                                         old_dentry->d_name.name,
7018                                         old_dentry->d_name.len);
7019                 if (!ret)
7020                         ret = btrfs_update_inode(trans, root, old_inode);
7021         }
7022         BUG_ON(ret);
7023
7024         if (new_inode) {
7025                 new_inode->i_ctime = CURRENT_TIME;
7026                 if (unlikely(new_inode->i_ino ==
7027                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7028                         root_objectid = BTRFS_I(new_inode)->location.objectid;
7029                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
7030                                                 root_objectid,
7031                                                 new_dentry->d_name.name,
7032                                                 new_dentry->d_name.len);
7033                         BUG_ON(new_inode->i_nlink == 0);
7034                 } else {
7035                         ret = btrfs_unlink_inode(trans, dest, new_dir,
7036                                                  new_dentry->d_inode,
7037                                                  new_dentry->d_name.name,
7038                                                  new_dentry->d_name.len);
7039                 }
7040                 BUG_ON(ret);
7041                 if (new_inode->i_nlink == 0) {
7042                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7043                         BUG_ON(ret);
7044                 }
7045         }
7046
7047         fixup_inode_flags(new_dir, old_inode);
7048
7049         ret = btrfs_add_link(trans, new_dir, old_inode,
7050                              new_dentry->d_name.name,
7051                              new_dentry->d_name.len, 0, index);
7052         BUG_ON(ret);
7053
7054         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
7055                 struct dentry *parent = dget_parent(new_dentry);
7056                 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7057                 dput(parent);
7058                 btrfs_end_log_trans(root);
7059         }
7060 out_fail:
7061         btrfs_end_transaction_throttle(trans, root);
7062
7063         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
7064                 up_read(&root->fs_info->subvol_sem);
7065
7066         return ret;
7067 }
7068
7069 /*
7070  * some fairly slow code that needs optimization. This walks the list
7071  * of all the inodes with pending delalloc and forces them to disk.
7072  */
7073 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7074 {
7075         struct list_head *head = &root->fs_info->delalloc_inodes;
7076         struct btrfs_inode *binode;
7077         struct inode *inode;
7078
7079         if (root->fs_info->sb->s_flags & MS_RDONLY)
7080                 return -EROFS;
7081
7082         spin_lock(&root->fs_info->delalloc_lock);
7083         while (!list_empty(head)) {
7084                 binode = list_entry(head->next, struct btrfs_inode,
7085                                     delalloc_inodes);
7086                 inode = igrab(&binode->vfs_inode);
7087                 if (!inode)
7088                         list_del_init(&binode->delalloc_inodes);
7089                 spin_unlock(&root->fs_info->delalloc_lock);
7090                 if (inode) {
7091                         filemap_flush(inode->i_mapping);
7092                         if (delay_iput)
7093                                 btrfs_add_delayed_iput(inode);
7094                         else
7095                                 iput(inode);
7096                 }
7097                 cond_resched();
7098                 spin_lock(&root->fs_info->delalloc_lock);
7099         }
7100         spin_unlock(&root->fs_info->delalloc_lock);
7101
7102         /* the filemap_flush will queue IO into the worker threads, but
7103          * we have to make sure the IO is actually started and that
7104          * ordered extents get created before we return
7105          */
7106         atomic_inc(&root->fs_info->async_submit_draining);
7107         while (atomic_read(&root->fs_info->nr_async_submits) ||
7108               atomic_read(&root->fs_info->async_delalloc_pages)) {
7109                 wait_event(root->fs_info->async_submit_wait,
7110                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7111                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7112         }
7113         atomic_dec(&root->fs_info->async_submit_draining);
7114         return 0;
7115 }
7116
7117 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7118                                    int sync)
7119 {
7120         struct btrfs_inode *binode;
7121         struct inode *inode = NULL;
7122
7123         spin_lock(&root->fs_info->delalloc_lock);
7124         while (!list_empty(&root->fs_info->delalloc_inodes)) {
7125                 binode = list_entry(root->fs_info->delalloc_inodes.next,
7126                                     struct btrfs_inode, delalloc_inodes);
7127                 inode = igrab(&binode->vfs_inode);
7128                 if (inode) {
7129                         list_move_tail(&binode->delalloc_inodes,
7130                                        &root->fs_info->delalloc_inodes);
7131                         break;
7132                 }
7133
7134                 list_del_init(&binode->delalloc_inodes);
7135                 cond_resched_lock(&root->fs_info->delalloc_lock);
7136         }
7137         spin_unlock(&root->fs_info->delalloc_lock);
7138
7139         if (inode) {
7140                 if (sync) {
7141                         filemap_write_and_wait(inode->i_mapping);
7142                         /*
7143                          * We have to do this because compression doesn't
7144                          * actually set PG_writeback until it submits the pages
7145                          * for IO, which happens in an async thread, so we could
7146                          * race and not actually wait for any writeback pages
7147                          * because they've not been submitted yet.  Technically
7148                          * this could still be the case for the ordered stuff
7149                          * since the async thread may not have started to do its
7150                          * work yet.  If this becomes the case then we need to
7151                          * figure out a way to make sure that in writepage we
7152                          * wait for any async pages to be submitted before
7153                          * returning so that fdatawait does what its supposed to
7154                          * do.
7155                          */
7156                         btrfs_wait_ordered_range(inode, 0, (u64)-1);
7157                 } else {
7158                         filemap_flush(inode->i_mapping);
7159                 }
7160                 if (delay_iput)
7161                         btrfs_add_delayed_iput(inode);
7162                 else
7163                         iput(inode);
7164                 return 1;
7165         }
7166         return 0;
7167 }
7168
7169 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7170                          const char *symname)
7171 {
7172         struct btrfs_trans_handle *trans;
7173         struct btrfs_root *root = BTRFS_I(dir)->root;
7174         struct btrfs_path *path;
7175         struct btrfs_key key;
7176         struct inode *inode = NULL;
7177         int err;
7178         int drop_inode = 0;
7179         u64 objectid;
7180         u64 index = 0 ;
7181         int name_len;
7182         int datasize;
7183         unsigned long ptr;
7184         struct btrfs_file_extent_item *ei;
7185         struct extent_buffer *leaf;
7186         unsigned long nr = 0;
7187
7188         name_len = strlen(symname) + 1;
7189         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7190                 return -ENAMETOOLONG;
7191
7192         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
7193         if (err)
7194                 return err;
7195         /*
7196          * 2 items for inode item and ref
7197          * 2 items for dir items
7198          * 1 item for xattr if selinux is on
7199          */
7200         trans = btrfs_start_transaction(root, 5);
7201         if (IS_ERR(trans))
7202                 return PTR_ERR(trans);
7203
7204         btrfs_set_trans_block_group(trans, dir);
7205
7206         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7207                                 dentry->d_name.len, dir->i_ino, objectid,
7208                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7209                                 &index);
7210         err = PTR_ERR(inode);
7211         if (IS_ERR(inode))
7212                 goto out_unlock;
7213
7214         err = btrfs_init_inode_security(trans, inode, dir);
7215         if (err) {
7216                 drop_inode = 1;
7217                 goto out_unlock;
7218         }
7219
7220         btrfs_set_trans_block_group(trans, inode);
7221         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7222         if (err)
7223                 drop_inode = 1;
7224         else {
7225                 inode->i_mapping->a_ops = &btrfs_aops;
7226                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7227                 inode->i_fop = &btrfs_file_operations;
7228                 inode->i_op = &btrfs_file_inode_operations;
7229                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7230         }
7231         btrfs_update_inode_block_group(trans, inode);
7232         btrfs_update_inode_block_group(trans, dir);
7233         if (drop_inode)
7234                 goto out_unlock;
7235
7236         path = btrfs_alloc_path();
7237         BUG_ON(!path);
7238         key.objectid = inode->i_ino;
7239         key.offset = 0;
7240         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7241         datasize = btrfs_file_extent_calc_inline_size(name_len);
7242         err = btrfs_insert_empty_item(trans, root, path, &key,
7243                                       datasize);
7244         if (err) {
7245                 drop_inode = 1;
7246                 goto out_unlock;
7247         }
7248         leaf = path->nodes[0];
7249         ei = btrfs_item_ptr(leaf, path->slots[0],
7250                             struct btrfs_file_extent_item);
7251         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7252         btrfs_set_file_extent_type(leaf, ei,
7253                                    BTRFS_FILE_EXTENT_INLINE);
7254         btrfs_set_file_extent_encryption(leaf, ei, 0);
7255         btrfs_set_file_extent_compression(leaf, ei, 0);
7256         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7257         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7258
7259         ptr = btrfs_file_extent_inline_start(ei);
7260         write_extent_buffer(leaf, symname, ptr, name_len);
7261         btrfs_mark_buffer_dirty(leaf);
7262         btrfs_free_path(path);
7263
7264         inode->i_op = &btrfs_symlink_inode_operations;
7265         inode->i_mapping->a_ops = &btrfs_symlink_aops;
7266         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7267         inode_set_bytes(inode, name_len);
7268         btrfs_i_size_write(inode, name_len - 1);
7269         err = btrfs_update_inode(trans, root, inode);
7270         if (err)
7271                 drop_inode = 1;
7272
7273 out_unlock:
7274         nr = trans->blocks_used;
7275         btrfs_end_transaction_throttle(trans, root);
7276         if (drop_inode) {
7277                 inode_dec_link_count(inode);
7278                 iput(inode);
7279         }
7280         btrfs_btree_balance_dirty(root, nr);
7281         return err;
7282 }
7283
7284 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7285                                        u64 start, u64 num_bytes, u64 min_size,
7286                                        loff_t actual_len, u64 *alloc_hint,
7287                                        struct btrfs_trans_handle *trans)
7288 {
7289         struct btrfs_root *root = BTRFS_I(inode)->root;
7290         struct btrfs_key ins;
7291         u64 cur_offset = start;
7292         u64 i_size;
7293         int ret = 0;
7294         bool own_trans = true;
7295
7296         if (trans)
7297                 own_trans = false;
7298         while (num_bytes > 0) {
7299                 if (own_trans) {
7300                         trans = btrfs_start_transaction(root, 3);
7301                         if (IS_ERR(trans)) {
7302                                 ret = PTR_ERR(trans);
7303                                 break;
7304                         }
7305                 }
7306
7307                 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7308                                            0, *alloc_hint, (u64)-1, &ins, 1);
7309                 if (ret) {
7310                         if (own_trans)
7311                                 btrfs_end_transaction(trans, root);
7312                         break;
7313                 }
7314
7315                 ret = insert_reserved_file_extent(trans, inode,
7316                                                   cur_offset, ins.objectid,
7317                                                   ins.offset, ins.offset,
7318                                                   ins.offset, 0, 0, 0,
7319                                                   BTRFS_FILE_EXTENT_PREALLOC);
7320                 BUG_ON(ret);
7321                 btrfs_drop_extent_cache(inode, cur_offset,
7322                                         cur_offset + ins.offset -1, 0);
7323
7324                 num_bytes -= ins.offset;
7325                 cur_offset += ins.offset;
7326                 *alloc_hint = ins.objectid + ins.offset;
7327
7328                 inode->i_ctime = CURRENT_TIME;
7329                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7330                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7331                     (actual_len > inode->i_size) &&
7332                     (cur_offset > inode->i_size)) {
7333                         if (cur_offset > actual_len)
7334                                 i_size = actual_len;
7335                         else
7336                                 i_size = cur_offset;
7337                         i_size_write(inode, i_size);
7338                         btrfs_ordered_update_i_size(inode, i_size, NULL);
7339                 }
7340
7341                 ret = btrfs_update_inode(trans, root, inode);
7342                 BUG_ON(ret);
7343
7344                 if (own_trans)
7345                         btrfs_end_transaction(trans, root);
7346         }
7347         return ret;
7348 }
7349
7350 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7351                               u64 start, u64 num_bytes, u64 min_size,
7352                               loff_t actual_len, u64 *alloc_hint)
7353 {
7354         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7355                                            min_size, actual_len, alloc_hint,
7356                                            NULL);
7357 }
7358
7359 int btrfs_prealloc_file_range_trans(struct inode *inode,
7360                                     struct btrfs_trans_handle *trans, int mode,
7361                                     u64 start, u64 num_bytes, u64 min_size,
7362                                     loff_t actual_len, u64 *alloc_hint)
7363 {
7364         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7365                                            min_size, actual_len, alloc_hint, trans);
7366 }
7367
7368 static int btrfs_set_page_dirty(struct page *page)
7369 {
7370         return __set_page_dirty_nobuffers(page);
7371 }
7372
7373 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7374 {
7375         struct btrfs_root *root = BTRFS_I(inode)->root;
7376
7377         if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7378                 return -EROFS;
7379         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7380                 return -EACCES;
7381         return generic_permission(inode, mask, flags, btrfs_check_acl);
7382 }
7383
7384 static const struct inode_operations btrfs_dir_inode_operations = {
7385         .getattr        = btrfs_getattr,
7386         .lookup         = btrfs_lookup,
7387         .create         = btrfs_create,
7388         .unlink         = btrfs_unlink,
7389         .link           = btrfs_link,
7390         .mkdir          = btrfs_mkdir,
7391         .rmdir          = btrfs_rmdir,
7392         .rename         = btrfs_rename,
7393         .symlink        = btrfs_symlink,
7394         .setattr        = btrfs_setattr,
7395         .mknod          = btrfs_mknod,
7396         .setxattr       = btrfs_setxattr,
7397         .getxattr       = btrfs_getxattr,
7398         .listxattr      = btrfs_listxattr,
7399         .removexattr    = btrfs_removexattr,
7400         .permission     = btrfs_permission,
7401 };
7402 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7403         .lookup         = btrfs_lookup,
7404         .permission     = btrfs_permission,
7405 };
7406
7407 static const struct file_operations btrfs_dir_file_operations = {
7408         .llseek         = generic_file_llseek,
7409         .read           = generic_read_dir,
7410         .readdir        = btrfs_real_readdir,
7411         .unlocked_ioctl = btrfs_ioctl,
7412 #ifdef CONFIG_COMPAT
7413         .compat_ioctl   = btrfs_ioctl,
7414 #endif
7415         .release        = btrfs_release_file,
7416         .fsync          = btrfs_sync_file,
7417 };
7418
7419 static struct extent_io_ops btrfs_extent_io_ops = {
7420         .fill_delalloc = run_delalloc_range,
7421         .submit_bio_hook = btrfs_submit_bio_hook,
7422         .merge_bio_hook = btrfs_merge_bio_hook,
7423         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7424         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7425         .writepage_start_hook = btrfs_writepage_start_hook,
7426         .readpage_io_failed_hook = btrfs_io_failed_hook,
7427         .set_bit_hook = btrfs_set_bit_hook,
7428         .clear_bit_hook = btrfs_clear_bit_hook,
7429         .merge_extent_hook = btrfs_merge_extent_hook,
7430         .split_extent_hook = btrfs_split_extent_hook,
7431 };
7432
7433 /*
7434  * btrfs doesn't support the bmap operation because swapfiles
7435  * use bmap to make a mapping of extents in the file.  They assume
7436  * these extents won't change over the life of the file and they
7437  * use the bmap result to do IO directly to the drive.
7438  *
7439  * the btrfs bmap call would return logical addresses that aren't
7440  * suitable for IO and they also will change frequently as COW
7441  * operations happen.  So, swapfile + btrfs == corruption.
7442  *
7443  * For now we're avoiding this by dropping bmap.
7444  */
7445 static const struct address_space_operations btrfs_aops = {
7446         .readpage       = btrfs_readpage,
7447         .writepage      = btrfs_writepage,
7448         .writepages     = btrfs_writepages,
7449         .readpages      = btrfs_readpages,
7450         .sync_page      = block_sync_page,
7451         .direct_IO      = btrfs_direct_IO,
7452         .invalidatepage = btrfs_invalidatepage,
7453         .releasepage    = btrfs_releasepage,
7454         .set_page_dirty = btrfs_set_page_dirty,
7455         .error_remove_page = generic_error_remove_page,
7456 };
7457
7458 static const struct address_space_operations btrfs_symlink_aops = {
7459         .readpage       = btrfs_readpage,
7460         .writepage      = btrfs_writepage,
7461         .invalidatepage = btrfs_invalidatepage,
7462         .releasepage    = btrfs_releasepage,
7463 };
7464
7465 static const struct inode_operations btrfs_file_inode_operations = {
7466         .getattr        = btrfs_getattr,
7467         .setattr        = btrfs_setattr,
7468         .setxattr       = btrfs_setxattr,
7469         .getxattr       = btrfs_getxattr,
7470         .listxattr      = btrfs_listxattr,
7471         .removexattr    = btrfs_removexattr,
7472         .permission     = btrfs_permission,
7473         .fiemap         = btrfs_fiemap,
7474 };
7475 static const struct inode_operations btrfs_special_inode_operations = {
7476         .getattr        = btrfs_getattr,
7477         .setattr        = btrfs_setattr,
7478         .permission     = btrfs_permission,
7479         .setxattr       = btrfs_setxattr,
7480         .getxattr       = btrfs_getxattr,
7481         .listxattr      = btrfs_listxattr,
7482         .removexattr    = btrfs_removexattr,
7483 };
7484 static const struct inode_operations btrfs_symlink_inode_operations = {
7485         .readlink       = generic_readlink,
7486         .follow_link    = page_follow_link_light,
7487         .put_link       = page_put_link,
7488         .getattr        = btrfs_getattr,
7489         .permission     = btrfs_permission,
7490         .setxattr       = btrfs_setxattr,
7491         .getxattr       = btrfs_getxattr,
7492         .listxattr      = btrfs_listxattr,
7493         .removexattr    = btrfs_removexattr,
7494 };
7495
7496 const struct dentry_operations btrfs_dentry_operations = {
7497         .d_delete       = btrfs_dentry_delete,
7498 };