Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs...
[pandora-kernel.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53 #include "free-space-cache.h"
54
55 struct btrfs_iget_args {
56         u64 ino;
57         struct btrfs_root *root;
58 };
59
60 static const struct inode_operations btrfs_dir_inode_operations;
61 static const struct inode_operations btrfs_symlink_inode_operations;
62 static const struct inode_operations btrfs_dir_ro_inode_operations;
63 static const struct inode_operations btrfs_special_inode_operations;
64 static const struct inode_operations btrfs_file_inode_operations;
65 static const struct address_space_operations btrfs_aops;
66 static const struct address_space_operations btrfs_symlink_aops;
67 static const struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
69
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74 struct kmem_cache *btrfs_free_space_cachep;
75
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
79         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
80         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
81         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
82         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
83         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
84         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
85 };
86
87 static int btrfs_setsize(struct inode *inode, loff_t newsize);
88 static int btrfs_truncate(struct inode *inode);
89 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
90 static noinline int cow_file_range(struct inode *inode,
91                                    struct page *locked_page,
92                                    u64 start, u64 end, int *page_started,
93                                    unsigned long *nr_written, int unlock);
94
95 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
96                                      struct inode *inode,  struct inode *dir,
97                                      const struct qstr *qstr)
98 {
99         int err;
100
101         err = btrfs_init_acl(trans, inode, dir);
102         if (!err)
103                 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
104         return err;
105 }
106
107 /*
108  * this does all the hard work for inserting an inline extent into
109  * the btree.  The caller should have done a btrfs_drop_extents so that
110  * no overlapping inline items exist in the btree
111  */
112 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
113                                 struct btrfs_root *root, struct inode *inode,
114                                 u64 start, size_t size, size_t compressed_size,
115                                 int compress_type,
116                                 struct page **compressed_pages)
117 {
118         struct btrfs_key key;
119         struct btrfs_path *path;
120         struct extent_buffer *leaf;
121         struct page *page = NULL;
122         char *kaddr;
123         unsigned long ptr;
124         struct btrfs_file_extent_item *ei;
125         int err = 0;
126         int ret;
127         size_t cur_size = size;
128         size_t datasize;
129         unsigned long offset;
130
131         if (compressed_size && compressed_pages)
132                 cur_size = compressed_size;
133
134         path = btrfs_alloc_path();
135         if (!path)
136                 return -ENOMEM;
137
138         path->leave_spinning = 1;
139         btrfs_set_trans_block_group(trans, inode);
140
141         key.objectid = inode->i_ino;
142         key.offset = start;
143         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
144         datasize = btrfs_file_extent_calc_inline_size(cur_size);
145
146         inode_add_bytes(inode, size);
147         ret = btrfs_insert_empty_item(trans, root, path, &key,
148                                       datasize);
149         BUG_ON(ret);
150         if (ret) {
151                 err = ret;
152                 goto fail;
153         }
154         leaf = path->nodes[0];
155         ei = btrfs_item_ptr(leaf, path->slots[0],
156                             struct btrfs_file_extent_item);
157         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
158         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
159         btrfs_set_file_extent_encryption(leaf, ei, 0);
160         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
161         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
162         ptr = btrfs_file_extent_inline_start(ei);
163
164         if (compress_type != BTRFS_COMPRESS_NONE) {
165                 struct page *cpage;
166                 int i = 0;
167                 while (compressed_size > 0) {
168                         cpage = compressed_pages[i];
169                         cur_size = min_t(unsigned long, compressed_size,
170                                        PAGE_CACHE_SIZE);
171
172                         kaddr = kmap_atomic(cpage, KM_USER0);
173                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
174                         kunmap_atomic(kaddr, KM_USER0);
175
176                         i++;
177                         ptr += cur_size;
178                         compressed_size -= cur_size;
179                 }
180                 btrfs_set_file_extent_compression(leaf, ei,
181                                                   compress_type);
182         } else {
183                 page = find_get_page(inode->i_mapping,
184                                      start >> PAGE_CACHE_SHIFT);
185                 btrfs_set_file_extent_compression(leaf, ei, 0);
186                 kaddr = kmap_atomic(page, KM_USER0);
187                 offset = start & (PAGE_CACHE_SIZE - 1);
188                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
189                 kunmap_atomic(kaddr, KM_USER0);
190                 page_cache_release(page);
191         }
192         btrfs_mark_buffer_dirty(leaf);
193         btrfs_free_path(path);
194
195         /*
196          * we're an inline extent, so nobody can
197          * extend the file past i_size without locking
198          * a page we already have locked.
199          *
200          * We must do any isize and inode updates
201          * before we unlock the pages.  Otherwise we
202          * could end up racing with unlink.
203          */
204         BTRFS_I(inode)->disk_i_size = inode->i_size;
205         btrfs_update_inode(trans, root, inode);
206
207         return 0;
208 fail:
209         btrfs_free_path(path);
210         return err;
211 }
212
213
214 /*
215  * conditionally insert an inline extent into the file.  This
216  * does the checks required to make sure the data is small enough
217  * to fit as an inline extent.
218  */
219 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
220                                  struct btrfs_root *root,
221                                  struct inode *inode, u64 start, u64 end,
222                                  size_t compressed_size, int compress_type,
223                                  struct page **compressed_pages)
224 {
225         u64 isize = i_size_read(inode);
226         u64 actual_end = min(end + 1, isize);
227         u64 inline_len = actual_end - start;
228         u64 aligned_end = (end + root->sectorsize - 1) &
229                         ~((u64)root->sectorsize - 1);
230         u64 hint_byte;
231         u64 data_len = inline_len;
232         int ret;
233
234         if (compressed_size)
235                 data_len = compressed_size;
236
237         if (start > 0 ||
238             actual_end >= PAGE_CACHE_SIZE ||
239             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
240             (!compressed_size &&
241             (actual_end & (root->sectorsize - 1)) == 0) ||
242             end + 1 < isize ||
243             data_len > root->fs_info->max_inline) {
244                 return 1;
245         }
246
247         ret = btrfs_drop_extents(trans, inode, start, aligned_end,
248                                  &hint_byte, 1);
249         BUG_ON(ret);
250
251         if (isize > actual_end)
252                 inline_len = min_t(u64, isize, actual_end);
253         ret = insert_inline_extent(trans, root, inode, start,
254                                    inline_len, compressed_size,
255                                    compress_type, compressed_pages);
256         BUG_ON(ret);
257         btrfs_delalloc_release_metadata(inode, end + 1 - start);
258         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
259         return 0;
260 }
261
262 struct async_extent {
263         u64 start;
264         u64 ram_size;
265         u64 compressed_size;
266         struct page **pages;
267         unsigned long nr_pages;
268         int compress_type;
269         struct list_head list;
270 };
271
272 struct async_cow {
273         struct inode *inode;
274         struct btrfs_root *root;
275         struct page *locked_page;
276         u64 start;
277         u64 end;
278         struct list_head extents;
279         struct btrfs_work work;
280 };
281
282 static noinline int add_async_extent(struct async_cow *cow,
283                                      u64 start, u64 ram_size,
284                                      u64 compressed_size,
285                                      struct page **pages,
286                                      unsigned long nr_pages,
287                                      int compress_type)
288 {
289         struct async_extent *async_extent;
290
291         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
292         BUG_ON(!async_extent);
293         async_extent->start = start;
294         async_extent->ram_size = ram_size;
295         async_extent->compressed_size = compressed_size;
296         async_extent->pages = pages;
297         async_extent->nr_pages = nr_pages;
298         async_extent->compress_type = compress_type;
299         list_add_tail(&async_extent->list, &cow->extents);
300         return 0;
301 }
302
303 /*
304  * we create compressed extents in two phases.  The first
305  * phase compresses a range of pages that have already been
306  * locked (both pages and state bits are locked).
307  *
308  * This is done inside an ordered work queue, and the compression
309  * is spread across many cpus.  The actual IO submission is step
310  * two, and the ordered work queue takes care of making sure that
311  * happens in the same order things were put onto the queue by
312  * writepages and friends.
313  *
314  * If this code finds it can't get good compression, it puts an
315  * entry onto the work queue to write the uncompressed bytes.  This
316  * makes sure that both compressed inodes and uncompressed inodes
317  * are written in the same order that pdflush sent them down.
318  */
319 static noinline int compress_file_range(struct inode *inode,
320                                         struct page *locked_page,
321                                         u64 start, u64 end,
322                                         struct async_cow *async_cow,
323                                         int *num_added)
324 {
325         struct btrfs_root *root = BTRFS_I(inode)->root;
326         struct btrfs_trans_handle *trans;
327         u64 num_bytes;
328         u64 blocksize = root->sectorsize;
329         u64 actual_end;
330         u64 isize = i_size_read(inode);
331         int ret = 0;
332         struct page **pages = NULL;
333         unsigned long nr_pages;
334         unsigned long nr_pages_ret = 0;
335         unsigned long total_compressed = 0;
336         unsigned long total_in = 0;
337         unsigned long max_compressed = 128 * 1024;
338         unsigned long max_uncompressed = 128 * 1024;
339         int i;
340         int will_compress;
341         int compress_type = root->fs_info->compress_type;
342
343         actual_end = min_t(u64, isize, end + 1);
344 again:
345         will_compress = 0;
346         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
347         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
348
349         /*
350          * we don't want to send crud past the end of i_size through
351          * compression, that's just a waste of CPU time.  So, if the
352          * end of the file is before the start of our current
353          * requested range of bytes, we bail out to the uncompressed
354          * cleanup code that can deal with all of this.
355          *
356          * It isn't really the fastest way to fix things, but this is a
357          * very uncommon corner.
358          */
359         if (actual_end <= start)
360                 goto cleanup_and_bail_uncompressed;
361
362         total_compressed = actual_end - start;
363
364         /* we want to make sure that amount of ram required to uncompress
365          * an extent is reasonable, so we limit the total size in ram
366          * of a compressed extent to 128k.  This is a crucial number
367          * because it also controls how easily we can spread reads across
368          * cpus for decompression.
369          *
370          * We also want to make sure the amount of IO required to do
371          * a random read is reasonably small, so we limit the size of
372          * a compressed extent to 128k.
373          */
374         total_compressed = min(total_compressed, max_uncompressed);
375         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
376         num_bytes = max(blocksize,  num_bytes);
377         total_in = 0;
378         ret = 0;
379
380         /*
381          * we do compression for mount -o compress and when the
382          * inode has not been flagged as nocompress.  This flag can
383          * change at any time if we discover bad compression ratios.
384          */
385         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
386             (btrfs_test_opt(root, COMPRESS) ||
387              (BTRFS_I(inode)->force_compress) ||
388              (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
389                 WARN_ON(pages);
390                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
391                 BUG_ON(!pages);
392
393                 if (BTRFS_I(inode)->force_compress)
394                         compress_type = BTRFS_I(inode)->force_compress;
395
396                 ret = btrfs_compress_pages(compress_type,
397                                            inode->i_mapping, start,
398                                            total_compressed, pages,
399                                            nr_pages, &nr_pages_ret,
400                                            &total_in,
401                                            &total_compressed,
402                                            max_compressed);
403
404                 if (!ret) {
405                         unsigned long offset = total_compressed &
406                                 (PAGE_CACHE_SIZE - 1);
407                         struct page *page = pages[nr_pages_ret - 1];
408                         char *kaddr;
409
410                         /* zero the tail end of the last page, we might be
411                          * sending it down to disk
412                          */
413                         if (offset) {
414                                 kaddr = kmap_atomic(page, KM_USER0);
415                                 memset(kaddr + offset, 0,
416                                        PAGE_CACHE_SIZE - offset);
417                                 kunmap_atomic(kaddr, KM_USER0);
418                         }
419                         will_compress = 1;
420                 }
421         }
422         if (start == 0) {
423                 trans = btrfs_join_transaction(root, 1);
424                 BUG_ON(IS_ERR(trans));
425                 btrfs_set_trans_block_group(trans, inode);
426                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
427
428                 /* lets try to make an inline extent */
429                 if (ret || total_in < (actual_end - start)) {
430                         /* we didn't compress the entire range, try
431                          * to make an uncompressed inline extent.
432                          */
433                         ret = cow_file_range_inline(trans, root, inode,
434                                                     start, end, 0, 0, NULL);
435                 } else {
436                         /* try making a compressed inline extent */
437                         ret = cow_file_range_inline(trans, root, inode,
438                                                     start, end,
439                                                     total_compressed,
440                                                     compress_type, pages);
441                 }
442                 if (ret == 0) {
443                         /*
444                          * inline extent creation worked, we don't need
445                          * to create any more async work items.  Unlock
446                          * and free up our temp pages.
447                          */
448                         extent_clear_unlock_delalloc(inode,
449                              &BTRFS_I(inode)->io_tree,
450                              start, end, NULL,
451                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
452                              EXTENT_CLEAR_DELALLOC |
453                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
454
455                         btrfs_end_transaction(trans, root);
456                         goto free_pages_out;
457                 }
458                 btrfs_end_transaction(trans, root);
459         }
460
461         if (will_compress) {
462                 /*
463                  * we aren't doing an inline extent round the compressed size
464                  * up to a block size boundary so the allocator does sane
465                  * things
466                  */
467                 total_compressed = (total_compressed + blocksize - 1) &
468                         ~(blocksize - 1);
469
470                 /*
471                  * one last check to make sure the compression is really a
472                  * win, compare the page count read with the blocks on disk
473                  */
474                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
475                         ~(PAGE_CACHE_SIZE - 1);
476                 if (total_compressed >= total_in) {
477                         will_compress = 0;
478                 } else {
479                         num_bytes = total_in;
480                 }
481         }
482         if (!will_compress && pages) {
483                 /*
484                  * the compression code ran but failed to make things smaller,
485                  * free any pages it allocated and our page pointer array
486                  */
487                 for (i = 0; i < nr_pages_ret; i++) {
488                         WARN_ON(pages[i]->mapping);
489                         page_cache_release(pages[i]);
490                 }
491                 kfree(pages);
492                 pages = NULL;
493                 total_compressed = 0;
494                 nr_pages_ret = 0;
495
496                 /* flag the file so we don't compress in the future */
497                 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
498                     !(BTRFS_I(inode)->force_compress)) {
499                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
500                 }
501         }
502         if (will_compress) {
503                 *num_added += 1;
504
505                 /* the async work queues will take care of doing actual
506                  * allocation on disk for these compressed pages,
507                  * and will submit them to the elevator.
508                  */
509                 add_async_extent(async_cow, start, num_bytes,
510                                  total_compressed, pages, nr_pages_ret,
511                                  compress_type);
512
513                 if (start + num_bytes < end) {
514                         start += num_bytes;
515                         pages = NULL;
516                         cond_resched();
517                         goto again;
518                 }
519         } else {
520 cleanup_and_bail_uncompressed:
521                 /*
522                  * No compression, but we still need to write the pages in
523                  * the file we've been given so far.  redirty the locked
524                  * page if it corresponds to our extent and set things up
525                  * for the async work queue to run cow_file_range to do
526                  * the normal delalloc dance
527                  */
528                 if (page_offset(locked_page) >= start &&
529                     page_offset(locked_page) <= end) {
530                         __set_page_dirty_nobuffers(locked_page);
531                         /* unlocked later on in the async handlers */
532                 }
533                 add_async_extent(async_cow, start, end - start + 1,
534                                  0, NULL, 0, BTRFS_COMPRESS_NONE);
535                 *num_added += 1;
536         }
537
538 out:
539         return 0;
540
541 free_pages_out:
542         for (i = 0; i < nr_pages_ret; i++) {
543                 WARN_ON(pages[i]->mapping);
544                 page_cache_release(pages[i]);
545         }
546         kfree(pages);
547
548         goto out;
549 }
550
551 /*
552  * phase two of compressed writeback.  This is the ordered portion
553  * of the code, which only gets called in the order the work was
554  * queued.  We walk all the async extents created by compress_file_range
555  * and send them down to the disk.
556  */
557 static noinline int submit_compressed_extents(struct inode *inode,
558                                               struct async_cow *async_cow)
559 {
560         struct async_extent *async_extent;
561         u64 alloc_hint = 0;
562         struct btrfs_trans_handle *trans;
563         struct btrfs_key ins;
564         struct extent_map *em;
565         struct btrfs_root *root = BTRFS_I(inode)->root;
566         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
567         struct extent_io_tree *io_tree;
568         int ret = 0;
569
570         if (list_empty(&async_cow->extents))
571                 return 0;
572
573
574         while (!list_empty(&async_cow->extents)) {
575                 async_extent = list_entry(async_cow->extents.next,
576                                           struct async_extent, list);
577                 list_del(&async_extent->list);
578
579                 io_tree = &BTRFS_I(inode)->io_tree;
580
581 retry:
582                 /* did the compression code fall back to uncompressed IO? */
583                 if (!async_extent->pages) {
584                         int page_started = 0;
585                         unsigned long nr_written = 0;
586
587                         lock_extent(io_tree, async_extent->start,
588                                          async_extent->start +
589                                          async_extent->ram_size - 1, GFP_NOFS);
590
591                         /* allocate blocks */
592                         ret = cow_file_range(inode, async_cow->locked_page,
593                                              async_extent->start,
594                                              async_extent->start +
595                                              async_extent->ram_size - 1,
596                                              &page_started, &nr_written, 0);
597
598                         /*
599                          * if page_started, cow_file_range inserted an
600                          * inline extent and took care of all the unlocking
601                          * and IO for us.  Otherwise, we need to submit
602                          * all those pages down to the drive.
603                          */
604                         if (!page_started && !ret)
605                                 extent_write_locked_range(io_tree,
606                                                   inode, async_extent->start,
607                                                   async_extent->start +
608                                                   async_extent->ram_size - 1,
609                                                   btrfs_get_extent,
610                                                   WB_SYNC_ALL);
611                         kfree(async_extent);
612                         cond_resched();
613                         continue;
614                 }
615
616                 lock_extent(io_tree, async_extent->start,
617                             async_extent->start + async_extent->ram_size - 1,
618                             GFP_NOFS);
619
620                 trans = btrfs_join_transaction(root, 1);
621                 BUG_ON(IS_ERR(trans));
622                 ret = btrfs_reserve_extent(trans, root,
623                                            async_extent->compressed_size,
624                                            async_extent->compressed_size,
625                                            0, alloc_hint,
626                                            (u64)-1, &ins, 1);
627                 btrfs_end_transaction(trans, root);
628
629                 if (ret) {
630                         int i;
631                         for (i = 0; i < async_extent->nr_pages; i++) {
632                                 WARN_ON(async_extent->pages[i]->mapping);
633                                 page_cache_release(async_extent->pages[i]);
634                         }
635                         kfree(async_extent->pages);
636                         async_extent->nr_pages = 0;
637                         async_extent->pages = NULL;
638                         unlock_extent(io_tree, async_extent->start,
639                                       async_extent->start +
640                                       async_extent->ram_size - 1, GFP_NOFS);
641                         goto retry;
642                 }
643
644                 /*
645                  * here we're doing allocation and writeback of the
646                  * compressed pages
647                  */
648                 btrfs_drop_extent_cache(inode, async_extent->start,
649                                         async_extent->start +
650                                         async_extent->ram_size - 1, 0);
651
652                 em = alloc_extent_map(GFP_NOFS);
653                 BUG_ON(!em);
654                 em->start = async_extent->start;
655                 em->len = async_extent->ram_size;
656                 em->orig_start = em->start;
657
658                 em->block_start = ins.objectid;
659                 em->block_len = ins.offset;
660                 em->bdev = root->fs_info->fs_devices->latest_bdev;
661                 em->compress_type = async_extent->compress_type;
662                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
663                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
664
665                 while (1) {
666                         write_lock(&em_tree->lock);
667                         ret = add_extent_mapping(em_tree, em);
668                         write_unlock(&em_tree->lock);
669                         if (ret != -EEXIST) {
670                                 free_extent_map(em);
671                                 break;
672                         }
673                         btrfs_drop_extent_cache(inode, async_extent->start,
674                                                 async_extent->start +
675                                                 async_extent->ram_size - 1, 0);
676                 }
677
678                 ret = btrfs_add_ordered_extent_compress(inode,
679                                                 async_extent->start,
680                                                 ins.objectid,
681                                                 async_extent->ram_size,
682                                                 ins.offset,
683                                                 BTRFS_ORDERED_COMPRESSED,
684                                                 async_extent->compress_type);
685                 BUG_ON(ret);
686
687                 /*
688                  * clear dirty, set writeback and unlock the pages.
689                  */
690                 extent_clear_unlock_delalloc(inode,
691                                 &BTRFS_I(inode)->io_tree,
692                                 async_extent->start,
693                                 async_extent->start +
694                                 async_extent->ram_size - 1,
695                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
696                                 EXTENT_CLEAR_UNLOCK |
697                                 EXTENT_CLEAR_DELALLOC |
698                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
699
700                 ret = btrfs_submit_compressed_write(inode,
701                                     async_extent->start,
702                                     async_extent->ram_size,
703                                     ins.objectid,
704                                     ins.offset, async_extent->pages,
705                                     async_extent->nr_pages);
706
707                 BUG_ON(ret);
708                 alloc_hint = ins.objectid + ins.offset;
709                 kfree(async_extent);
710                 cond_resched();
711         }
712
713         return 0;
714 }
715
716 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
717                                       u64 num_bytes)
718 {
719         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
720         struct extent_map *em;
721         u64 alloc_hint = 0;
722
723         read_lock(&em_tree->lock);
724         em = search_extent_mapping(em_tree, start, num_bytes);
725         if (em) {
726                 /*
727                  * if block start isn't an actual block number then find the
728                  * first block in this inode and use that as a hint.  If that
729                  * block is also bogus then just don't worry about it.
730                  */
731                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
732                         free_extent_map(em);
733                         em = search_extent_mapping(em_tree, 0, 0);
734                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
735                                 alloc_hint = em->block_start;
736                         if (em)
737                                 free_extent_map(em);
738                 } else {
739                         alloc_hint = em->block_start;
740                         free_extent_map(em);
741                 }
742         }
743         read_unlock(&em_tree->lock);
744
745         return alloc_hint;
746 }
747
748 /*
749  * when extent_io.c finds a delayed allocation range in the file,
750  * the call backs end up in this code.  The basic idea is to
751  * allocate extents on disk for the range, and create ordered data structs
752  * in ram to track those extents.
753  *
754  * locked_page is the page that writepage had locked already.  We use
755  * it to make sure we don't do extra locks or unlocks.
756  *
757  * *page_started is set to one if we unlock locked_page and do everything
758  * required to start IO on it.  It may be clean and already done with
759  * IO when we return.
760  */
761 static noinline int cow_file_range(struct inode *inode,
762                                    struct page *locked_page,
763                                    u64 start, u64 end, int *page_started,
764                                    unsigned long *nr_written,
765                                    int unlock)
766 {
767         struct btrfs_root *root = BTRFS_I(inode)->root;
768         struct btrfs_trans_handle *trans;
769         u64 alloc_hint = 0;
770         u64 num_bytes;
771         unsigned long ram_size;
772         u64 disk_num_bytes;
773         u64 cur_alloc_size;
774         u64 blocksize = root->sectorsize;
775         struct btrfs_key ins;
776         struct extent_map *em;
777         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
778         int ret = 0;
779
780         BUG_ON(root == root->fs_info->tree_root);
781         trans = btrfs_join_transaction(root, 1);
782         BUG_ON(IS_ERR(trans));
783         btrfs_set_trans_block_group(trans, inode);
784         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
785
786         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
787         num_bytes = max(blocksize,  num_bytes);
788         disk_num_bytes = num_bytes;
789         ret = 0;
790
791         if (start == 0) {
792                 /* lets try to make an inline extent */
793                 ret = cow_file_range_inline(trans, root, inode,
794                                             start, end, 0, 0, NULL);
795                 if (ret == 0) {
796                         extent_clear_unlock_delalloc(inode,
797                                      &BTRFS_I(inode)->io_tree,
798                                      start, end, NULL,
799                                      EXTENT_CLEAR_UNLOCK_PAGE |
800                                      EXTENT_CLEAR_UNLOCK |
801                                      EXTENT_CLEAR_DELALLOC |
802                                      EXTENT_CLEAR_DIRTY |
803                                      EXTENT_SET_WRITEBACK |
804                                      EXTENT_END_WRITEBACK);
805
806                         *nr_written = *nr_written +
807                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
808                         *page_started = 1;
809                         ret = 0;
810                         goto out;
811                 }
812         }
813
814         BUG_ON(disk_num_bytes >
815                btrfs_super_total_bytes(&root->fs_info->super_copy));
816
817         alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
818         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
819
820         while (disk_num_bytes > 0) {
821                 unsigned long op;
822
823                 cur_alloc_size = disk_num_bytes;
824                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
825                                            root->sectorsize, 0, alloc_hint,
826                                            (u64)-1, &ins, 1);
827                 BUG_ON(ret);
828
829                 em = alloc_extent_map(GFP_NOFS);
830                 BUG_ON(!em);
831                 em->start = start;
832                 em->orig_start = em->start;
833                 ram_size = ins.offset;
834                 em->len = ins.offset;
835
836                 em->block_start = ins.objectid;
837                 em->block_len = ins.offset;
838                 em->bdev = root->fs_info->fs_devices->latest_bdev;
839                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
840
841                 while (1) {
842                         write_lock(&em_tree->lock);
843                         ret = add_extent_mapping(em_tree, em);
844                         write_unlock(&em_tree->lock);
845                         if (ret != -EEXIST) {
846                                 free_extent_map(em);
847                                 break;
848                         }
849                         btrfs_drop_extent_cache(inode, start,
850                                                 start + ram_size - 1, 0);
851                 }
852
853                 cur_alloc_size = ins.offset;
854                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
855                                                ram_size, cur_alloc_size, 0);
856                 BUG_ON(ret);
857
858                 if (root->root_key.objectid ==
859                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
860                         ret = btrfs_reloc_clone_csums(inode, start,
861                                                       cur_alloc_size);
862                         BUG_ON(ret);
863                 }
864
865                 if (disk_num_bytes < cur_alloc_size)
866                         break;
867
868                 /* we're not doing compressed IO, don't unlock the first
869                  * page (which the caller expects to stay locked), don't
870                  * clear any dirty bits and don't set any writeback bits
871                  *
872                  * Do set the Private2 bit so we know this page was properly
873                  * setup for writepage
874                  */
875                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
876                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
877                         EXTENT_SET_PRIVATE2;
878
879                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
880                                              start, start + ram_size - 1,
881                                              locked_page, op);
882                 disk_num_bytes -= cur_alloc_size;
883                 num_bytes -= cur_alloc_size;
884                 alloc_hint = ins.objectid + ins.offset;
885                 start += cur_alloc_size;
886         }
887 out:
888         ret = 0;
889         btrfs_end_transaction(trans, root);
890
891         return ret;
892 }
893
894 /*
895  * work queue call back to started compression on a file and pages
896  */
897 static noinline void async_cow_start(struct btrfs_work *work)
898 {
899         struct async_cow *async_cow;
900         int num_added = 0;
901         async_cow = container_of(work, struct async_cow, work);
902
903         compress_file_range(async_cow->inode, async_cow->locked_page,
904                             async_cow->start, async_cow->end, async_cow,
905                             &num_added);
906         if (num_added == 0)
907                 async_cow->inode = NULL;
908 }
909
910 /*
911  * work queue call back to submit previously compressed pages
912  */
913 static noinline void async_cow_submit(struct btrfs_work *work)
914 {
915         struct async_cow *async_cow;
916         struct btrfs_root *root;
917         unsigned long nr_pages;
918
919         async_cow = container_of(work, struct async_cow, work);
920
921         root = async_cow->root;
922         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
923                 PAGE_CACHE_SHIFT;
924
925         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
926
927         if (atomic_read(&root->fs_info->async_delalloc_pages) <
928             5 * 1042 * 1024 &&
929             waitqueue_active(&root->fs_info->async_submit_wait))
930                 wake_up(&root->fs_info->async_submit_wait);
931
932         if (async_cow->inode)
933                 submit_compressed_extents(async_cow->inode, async_cow);
934 }
935
936 static noinline void async_cow_free(struct btrfs_work *work)
937 {
938         struct async_cow *async_cow;
939         async_cow = container_of(work, struct async_cow, work);
940         kfree(async_cow);
941 }
942
943 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
944                                 u64 start, u64 end, int *page_started,
945                                 unsigned long *nr_written)
946 {
947         struct async_cow *async_cow;
948         struct btrfs_root *root = BTRFS_I(inode)->root;
949         unsigned long nr_pages;
950         u64 cur_end;
951         int limit = 10 * 1024 * 1042;
952
953         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
954                          1, 0, NULL, GFP_NOFS);
955         while (start < end) {
956                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
957                 async_cow->inode = inode;
958                 async_cow->root = root;
959                 async_cow->locked_page = locked_page;
960                 async_cow->start = start;
961
962                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
963                         cur_end = end;
964                 else
965                         cur_end = min(end, start + 512 * 1024 - 1);
966
967                 async_cow->end = cur_end;
968                 INIT_LIST_HEAD(&async_cow->extents);
969
970                 async_cow->work.func = async_cow_start;
971                 async_cow->work.ordered_func = async_cow_submit;
972                 async_cow->work.ordered_free = async_cow_free;
973                 async_cow->work.flags = 0;
974
975                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
976                         PAGE_CACHE_SHIFT;
977                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
978
979                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
980                                    &async_cow->work);
981
982                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
983                         wait_event(root->fs_info->async_submit_wait,
984                            (atomic_read(&root->fs_info->async_delalloc_pages) <
985                             limit));
986                 }
987
988                 while (atomic_read(&root->fs_info->async_submit_draining) &&
989                       atomic_read(&root->fs_info->async_delalloc_pages)) {
990                         wait_event(root->fs_info->async_submit_wait,
991                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
992                            0));
993                 }
994
995                 *nr_written += nr_pages;
996                 start = cur_end + 1;
997         }
998         *page_started = 1;
999         return 0;
1000 }
1001
1002 static noinline int csum_exist_in_range(struct btrfs_root *root,
1003                                         u64 bytenr, u64 num_bytes)
1004 {
1005         int ret;
1006         struct btrfs_ordered_sum *sums;
1007         LIST_HEAD(list);
1008
1009         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1010                                        bytenr + num_bytes - 1, &list);
1011         if (ret == 0 && list_empty(&list))
1012                 return 0;
1013
1014         while (!list_empty(&list)) {
1015                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1016                 list_del(&sums->list);
1017                 kfree(sums);
1018         }
1019         return 1;
1020 }
1021
1022 /*
1023  * when nowcow writeback call back.  This checks for snapshots or COW copies
1024  * of the extents that exist in the file, and COWs the file as required.
1025  *
1026  * If no cow copies or snapshots exist, we write directly to the existing
1027  * blocks on disk
1028  */
1029 static noinline int run_delalloc_nocow(struct inode *inode,
1030                                        struct page *locked_page,
1031                               u64 start, u64 end, int *page_started, int force,
1032                               unsigned long *nr_written)
1033 {
1034         struct btrfs_root *root = BTRFS_I(inode)->root;
1035         struct btrfs_trans_handle *trans;
1036         struct extent_buffer *leaf;
1037         struct btrfs_path *path;
1038         struct btrfs_file_extent_item *fi;
1039         struct btrfs_key found_key;
1040         u64 cow_start;
1041         u64 cur_offset;
1042         u64 extent_end;
1043         u64 extent_offset;
1044         u64 disk_bytenr;
1045         u64 num_bytes;
1046         int extent_type;
1047         int ret;
1048         int type;
1049         int nocow;
1050         int check_prev = 1;
1051         bool nolock = false;
1052
1053         path = btrfs_alloc_path();
1054         BUG_ON(!path);
1055         if (root == root->fs_info->tree_root) {
1056                 nolock = true;
1057                 trans = btrfs_join_transaction_nolock(root, 1);
1058         } else {
1059                 trans = btrfs_join_transaction(root, 1);
1060         }
1061         BUG_ON(IS_ERR(trans));
1062
1063         cow_start = (u64)-1;
1064         cur_offset = start;
1065         while (1) {
1066                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1067                                                cur_offset, 0);
1068                 BUG_ON(ret < 0);
1069                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1070                         leaf = path->nodes[0];
1071                         btrfs_item_key_to_cpu(leaf, &found_key,
1072                                               path->slots[0] - 1);
1073                         if (found_key.objectid == inode->i_ino &&
1074                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1075                                 path->slots[0]--;
1076                 }
1077                 check_prev = 0;
1078 next_slot:
1079                 leaf = path->nodes[0];
1080                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1081                         ret = btrfs_next_leaf(root, path);
1082                         if (ret < 0)
1083                                 BUG_ON(1);
1084                         if (ret > 0)
1085                                 break;
1086                         leaf = path->nodes[0];
1087                 }
1088
1089                 nocow = 0;
1090                 disk_bytenr = 0;
1091                 num_bytes = 0;
1092                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1093
1094                 if (found_key.objectid > inode->i_ino ||
1095                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1096                     found_key.offset > end)
1097                         break;
1098
1099                 if (found_key.offset > cur_offset) {
1100                         extent_end = found_key.offset;
1101                         extent_type = 0;
1102                         goto out_check;
1103                 }
1104
1105                 fi = btrfs_item_ptr(leaf, path->slots[0],
1106                                     struct btrfs_file_extent_item);
1107                 extent_type = btrfs_file_extent_type(leaf, fi);
1108
1109                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1110                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1111                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1112                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1113                         extent_end = found_key.offset +
1114                                 btrfs_file_extent_num_bytes(leaf, fi);
1115                         if (extent_end <= start) {
1116                                 path->slots[0]++;
1117                                 goto next_slot;
1118                         }
1119                         if (disk_bytenr == 0)
1120                                 goto out_check;
1121                         if (btrfs_file_extent_compression(leaf, fi) ||
1122                             btrfs_file_extent_encryption(leaf, fi) ||
1123                             btrfs_file_extent_other_encoding(leaf, fi))
1124                                 goto out_check;
1125                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1126                                 goto out_check;
1127                         if (btrfs_extent_readonly(root, disk_bytenr))
1128                                 goto out_check;
1129                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1130                                                   found_key.offset -
1131                                                   extent_offset, disk_bytenr))
1132                                 goto out_check;
1133                         disk_bytenr += extent_offset;
1134                         disk_bytenr += cur_offset - found_key.offset;
1135                         num_bytes = min(end + 1, extent_end) - cur_offset;
1136                         /*
1137                          * force cow if csum exists in the range.
1138                          * this ensure that csum for a given extent are
1139                          * either valid or do not exist.
1140                          */
1141                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1142                                 goto out_check;
1143                         nocow = 1;
1144                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1145                         extent_end = found_key.offset +
1146                                 btrfs_file_extent_inline_len(leaf, fi);
1147                         extent_end = ALIGN(extent_end, root->sectorsize);
1148                 } else {
1149                         BUG_ON(1);
1150                 }
1151 out_check:
1152                 if (extent_end <= start) {
1153                         path->slots[0]++;
1154                         goto next_slot;
1155                 }
1156                 if (!nocow) {
1157                         if (cow_start == (u64)-1)
1158                                 cow_start = cur_offset;
1159                         cur_offset = extent_end;
1160                         if (cur_offset > end)
1161                                 break;
1162                         path->slots[0]++;
1163                         goto next_slot;
1164                 }
1165
1166                 btrfs_release_path(root, path);
1167                 if (cow_start != (u64)-1) {
1168                         ret = cow_file_range(inode, locked_page, cow_start,
1169                                         found_key.offset - 1, page_started,
1170                                         nr_written, 1);
1171                         BUG_ON(ret);
1172                         cow_start = (u64)-1;
1173                 }
1174
1175                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1176                         struct extent_map *em;
1177                         struct extent_map_tree *em_tree;
1178                         em_tree = &BTRFS_I(inode)->extent_tree;
1179                         em = alloc_extent_map(GFP_NOFS);
1180                         BUG_ON(!em);
1181                         em->start = cur_offset;
1182                         em->orig_start = em->start;
1183                         em->len = num_bytes;
1184                         em->block_len = num_bytes;
1185                         em->block_start = disk_bytenr;
1186                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1187                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1188                         while (1) {
1189                                 write_lock(&em_tree->lock);
1190                                 ret = add_extent_mapping(em_tree, em);
1191                                 write_unlock(&em_tree->lock);
1192                                 if (ret != -EEXIST) {
1193                                         free_extent_map(em);
1194                                         break;
1195                                 }
1196                                 btrfs_drop_extent_cache(inode, em->start,
1197                                                 em->start + em->len - 1, 0);
1198                         }
1199                         type = BTRFS_ORDERED_PREALLOC;
1200                 } else {
1201                         type = BTRFS_ORDERED_NOCOW;
1202                 }
1203
1204                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1205                                                num_bytes, num_bytes, type);
1206                 BUG_ON(ret);
1207
1208                 if (root->root_key.objectid ==
1209                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1210                         ret = btrfs_reloc_clone_csums(inode, cur_offset,
1211                                                       num_bytes);
1212                         BUG_ON(ret);
1213                 }
1214
1215                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1216                                 cur_offset, cur_offset + num_bytes - 1,
1217                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1218                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1219                                 EXTENT_SET_PRIVATE2);
1220                 cur_offset = extent_end;
1221                 if (cur_offset > end)
1222                         break;
1223         }
1224         btrfs_release_path(root, path);
1225
1226         if (cur_offset <= end && cow_start == (u64)-1)
1227                 cow_start = cur_offset;
1228         if (cow_start != (u64)-1) {
1229                 ret = cow_file_range(inode, locked_page, cow_start, end,
1230                                      page_started, nr_written, 1);
1231                 BUG_ON(ret);
1232         }
1233
1234         if (nolock) {
1235                 ret = btrfs_end_transaction_nolock(trans, root);
1236                 BUG_ON(ret);
1237         } else {
1238                 ret = btrfs_end_transaction(trans, root);
1239                 BUG_ON(ret);
1240         }
1241         btrfs_free_path(path);
1242         return 0;
1243 }
1244
1245 /*
1246  * extent_io.c call back to do delayed allocation processing
1247  */
1248 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1249                               u64 start, u64 end, int *page_started,
1250                               unsigned long *nr_written)
1251 {
1252         int ret;
1253         struct btrfs_root *root = BTRFS_I(inode)->root;
1254
1255         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1256                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1257                                          page_started, 1, nr_written);
1258         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1259                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1260                                          page_started, 0, nr_written);
1261         else if (!btrfs_test_opt(root, COMPRESS) &&
1262                  !(BTRFS_I(inode)->force_compress) &&
1263                  !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1264                 ret = cow_file_range(inode, locked_page, start, end,
1265                                       page_started, nr_written, 1);
1266         else
1267                 ret = cow_file_range_async(inode, locked_page, start, end,
1268                                            page_started, nr_written);
1269         return ret;
1270 }
1271
1272 static int btrfs_split_extent_hook(struct inode *inode,
1273                                    struct extent_state *orig, u64 split)
1274 {
1275         /* not delalloc, ignore it */
1276         if (!(orig->state & EXTENT_DELALLOC))
1277                 return 0;
1278
1279         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1280         return 0;
1281 }
1282
1283 /*
1284  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1285  * extents so we can keep track of new extents that are just merged onto old
1286  * extents, such as when we are doing sequential writes, so we can properly
1287  * account for the metadata space we'll need.
1288  */
1289 static int btrfs_merge_extent_hook(struct inode *inode,
1290                                    struct extent_state *new,
1291                                    struct extent_state *other)
1292 {
1293         /* not delalloc, ignore it */
1294         if (!(other->state & EXTENT_DELALLOC))
1295                 return 0;
1296
1297         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1298         return 0;
1299 }
1300
1301 /*
1302  * extent_io.c set_bit_hook, used to track delayed allocation
1303  * bytes in this file, and to maintain the list of inodes that
1304  * have pending delalloc work to be done.
1305  */
1306 static int btrfs_set_bit_hook(struct inode *inode,
1307                               struct extent_state *state, int *bits)
1308 {
1309
1310         /*
1311          * set_bit and clear bit hooks normally require _irqsave/restore
1312          * but in this case, we are only testeing for the DELALLOC
1313          * bit, which is only set or cleared with irqs on
1314          */
1315         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1316                 struct btrfs_root *root = BTRFS_I(inode)->root;
1317                 u64 len = state->end + 1 - state->start;
1318                 int do_list = (root->root_key.objectid !=
1319                                BTRFS_ROOT_TREE_OBJECTID);
1320
1321                 if (*bits & EXTENT_FIRST_DELALLOC)
1322                         *bits &= ~EXTENT_FIRST_DELALLOC;
1323                 else
1324                         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1325
1326                 spin_lock(&root->fs_info->delalloc_lock);
1327                 BTRFS_I(inode)->delalloc_bytes += len;
1328                 root->fs_info->delalloc_bytes += len;
1329                 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1330                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1331                                       &root->fs_info->delalloc_inodes);
1332                 }
1333                 spin_unlock(&root->fs_info->delalloc_lock);
1334         }
1335         return 0;
1336 }
1337
1338 /*
1339  * extent_io.c clear_bit_hook, see set_bit_hook for why
1340  */
1341 static int btrfs_clear_bit_hook(struct inode *inode,
1342                                 struct extent_state *state, int *bits)
1343 {
1344         /*
1345          * set_bit and clear bit hooks normally require _irqsave/restore
1346          * but in this case, we are only testeing for the DELALLOC
1347          * bit, which is only set or cleared with irqs on
1348          */
1349         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1350                 struct btrfs_root *root = BTRFS_I(inode)->root;
1351                 u64 len = state->end + 1 - state->start;
1352                 int do_list = (root->root_key.objectid !=
1353                                BTRFS_ROOT_TREE_OBJECTID);
1354
1355                 if (*bits & EXTENT_FIRST_DELALLOC)
1356                         *bits &= ~EXTENT_FIRST_DELALLOC;
1357                 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1358                         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1359
1360                 if (*bits & EXTENT_DO_ACCOUNTING)
1361                         btrfs_delalloc_release_metadata(inode, len);
1362
1363                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1364                     && do_list)
1365                         btrfs_free_reserved_data_space(inode, len);
1366
1367                 spin_lock(&root->fs_info->delalloc_lock);
1368                 root->fs_info->delalloc_bytes -= len;
1369                 BTRFS_I(inode)->delalloc_bytes -= len;
1370
1371                 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1372                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1373                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1374                 }
1375                 spin_unlock(&root->fs_info->delalloc_lock);
1376         }
1377         return 0;
1378 }
1379
1380 /*
1381  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1382  * we don't create bios that span stripes or chunks
1383  */
1384 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1385                          size_t size, struct bio *bio,
1386                          unsigned long bio_flags)
1387 {
1388         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1389         struct btrfs_mapping_tree *map_tree;
1390         u64 logical = (u64)bio->bi_sector << 9;
1391         u64 length = 0;
1392         u64 map_length;
1393         int ret;
1394
1395         if (bio_flags & EXTENT_BIO_COMPRESSED)
1396                 return 0;
1397
1398         length = bio->bi_size;
1399         map_tree = &root->fs_info->mapping_tree;
1400         map_length = length;
1401         ret = btrfs_map_block(map_tree, READ, logical,
1402                               &map_length, NULL, 0);
1403
1404         if (map_length < length + size)
1405                 return 1;
1406         return ret;
1407 }
1408
1409 /*
1410  * in order to insert checksums into the metadata in large chunks,
1411  * we wait until bio submission time.   All the pages in the bio are
1412  * checksummed and sums are attached onto the ordered extent record.
1413  *
1414  * At IO completion time the cums attached on the ordered extent record
1415  * are inserted into the btree
1416  */
1417 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1418                                     struct bio *bio, int mirror_num,
1419                                     unsigned long bio_flags,
1420                                     u64 bio_offset)
1421 {
1422         struct btrfs_root *root = BTRFS_I(inode)->root;
1423         int ret = 0;
1424
1425         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1426         BUG_ON(ret);
1427         return 0;
1428 }
1429
1430 /*
1431  * in order to insert checksums into the metadata in large chunks,
1432  * we wait until bio submission time.   All the pages in the bio are
1433  * checksummed and sums are attached onto the ordered extent record.
1434  *
1435  * At IO completion time the cums attached on the ordered extent record
1436  * are inserted into the btree
1437  */
1438 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1439                           int mirror_num, unsigned long bio_flags,
1440                           u64 bio_offset)
1441 {
1442         struct btrfs_root *root = BTRFS_I(inode)->root;
1443         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1444 }
1445
1446 /*
1447  * extent_io.c submission hook. This does the right thing for csum calculation
1448  * on write, or reading the csums from the tree before a read
1449  */
1450 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1451                           int mirror_num, unsigned long bio_flags,
1452                           u64 bio_offset)
1453 {
1454         struct btrfs_root *root = BTRFS_I(inode)->root;
1455         int ret = 0;
1456         int skip_sum;
1457
1458         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1459
1460         if (root == root->fs_info->tree_root)
1461                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1462         else
1463                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1464         BUG_ON(ret);
1465
1466         if (!(rw & REQ_WRITE)) {
1467                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1468                         return btrfs_submit_compressed_read(inode, bio,
1469                                                     mirror_num, bio_flags);
1470                 } else if (!skip_sum) {
1471                         ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1472                         if (ret)
1473                                 return ret;
1474                 }
1475                 goto mapit;
1476         } else if (!skip_sum) {
1477                 /* csum items have already been cloned */
1478                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1479                         goto mapit;
1480                 /* we're doing a write, do the async checksumming */
1481                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1482                                    inode, rw, bio, mirror_num,
1483                                    bio_flags, bio_offset,
1484                                    __btrfs_submit_bio_start,
1485                                    __btrfs_submit_bio_done);
1486         }
1487
1488 mapit:
1489         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1490 }
1491
1492 /*
1493  * given a list of ordered sums record them in the inode.  This happens
1494  * at IO completion time based on sums calculated at bio submission time.
1495  */
1496 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1497                              struct inode *inode, u64 file_offset,
1498                              struct list_head *list)
1499 {
1500         struct btrfs_ordered_sum *sum;
1501
1502         btrfs_set_trans_block_group(trans, inode);
1503
1504         list_for_each_entry(sum, list, list) {
1505                 btrfs_csum_file_blocks(trans,
1506                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1507         }
1508         return 0;
1509 }
1510
1511 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1512                               struct extent_state **cached_state)
1513 {
1514         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1515                 WARN_ON(1);
1516         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1517                                    cached_state, GFP_NOFS);
1518 }
1519
1520 /* see btrfs_writepage_start_hook for details on why this is required */
1521 struct btrfs_writepage_fixup {
1522         struct page *page;
1523         struct btrfs_work work;
1524 };
1525
1526 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1527 {
1528         struct btrfs_writepage_fixup *fixup;
1529         struct btrfs_ordered_extent *ordered;
1530         struct extent_state *cached_state = NULL;
1531         struct page *page;
1532         struct inode *inode;
1533         u64 page_start;
1534         u64 page_end;
1535
1536         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1537         page = fixup->page;
1538 again:
1539         lock_page(page);
1540         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1541                 ClearPageChecked(page);
1542                 goto out_page;
1543         }
1544
1545         inode = page->mapping->host;
1546         page_start = page_offset(page);
1547         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1548
1549         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1550                          &cached_state, GFP_NOFS);
1551
1552         /* already ordered? We're done */
1553         if (PagePrivate2(page))
1554                 goto out;
1555
1556         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1557         if (ordered) {
1558                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1559                                      page_end, &cached_state, GFP_NOFS);
1560                 unlock_page(page);
1561                 btrfs_start_ordered_extent(inode, ordered, 1);
1562                 goto again;
1563         }
1564
1565         BUG();
1566         btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1567         ClearPageChecked(page);
1568 out:
1569         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1570                              &cached_state, GFP_NOFS);
1571 out_page:
1572         unlock_page(page);
1573         page_cache_release(page);
1574         kfree(fixup);
1575 }
1576
1577 /*
1578  * There are a few paths in the higher layers of the kernel that directly
1579  * set the page dirty bit without asking the filesystem if it is a
1580  * good idea.  This causes problems because we want to make sure COW
1581  * properly happens and the data=ordered rules are followed.
1582  *
1583  * In our case any range that doesn't have the ORDERED bit set
1584  * hasn't been properly setup for IO.  We kick off an async process
1585  * to fix it up.  The async helper will wait for ordered extents, set
1586  * the delalloc bit and make it safe to write the page.
1587  */
1588 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1589 {
1590         struct inode *inode = page->mapping->host;
1591         struct btrfs_writepage_fixup *fixup;
1592         struct btrfs_root *root = BTRFS_I(inode)->root;
1593
1594         /* this page is properly in the ordered list */
1595         if (TestClearPagePrivate2(page))
1596                 return 0;
1597
1598         if (PageChecked(page))
1599                 return -EAGAIN;
1600
1601         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1602         if (!fixup)
1603                 return -EAGAIN;
1604
1605         SetPageChecked(page);
1606         page_cache_get(page);
1607         fixup->work.func = btrfs_writepage_fixup_worker;
1608         fixup->page = page;
1609         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1610         return -EAGAIN;
1611 }
1612
1613 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1614                                        struct inode *inode, u64 file_pos,
1615                                        u64 disk_bytenr, u64 disk_num_bytes,
1616                                        u64 num_bytes, u64 ram_bytes,
1617                                        u8 compression, u8 encryption,
1618                                        u16 other_encoding, int extent_type)
1619 {
1620         struct btrfs_root *root = BTRFS_I(inode)->root;
1621         struct btrfs_file_extent_item *fi;
1622         struct btrfs_path *path;
1623         struct extent_buffer *leaf;
1624         struct btrfs_key ins;
1625         u64 hint;
1626         int ret;
1627
1628         path = btrfs_alloc_path();
1629         BUG_ON(!path);
1630
1631         path->leave_spinning = 1;
1632
1633         /*
1634          * we may be replacing one extent in the tree with another.
1635          * The new extent is pinned in the extent map, and we don't want
1636          * to drop it from the cache until it is completely in the btree.
1637          *
1638          * So, tell btrfs_drop_extents to leave this extent in the cache.
1639          * the caller is expected to unpin it and allow it to be merged
1640          * with the others.
1641          */
1642         ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1643                                  &hint, 0);
1644         BUG_ON(ret);
1645
1646         ins.objectid = inode->i_ino;
1647         ins.offset = file_pos;
1648         ins.type = BTRFS_EXTENT_DATA_KEY;
1649         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1650         BUG_ON(ret);
1651         leaf = path->nodes[0];
1652         fi = btrfs_item_ptr(leaf, path->slots[0],
1653                             struct btrfs_file_extent_item);
1654         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1655         btrfs_set_file_extent_type(leaf, fi, extent_type);
1656         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1657         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1658         btrfs_set_file_extent_offset(leaf, fi, 0);
1659         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1660         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1661         btrfs_set_file_extent_compression(leaf, fi, compression);
1662         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1663         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1664
1665         btrfs_unlock_up_safe(path, 1);
1666         btrfs_set_lock_blocking(leaf);
1667
1668         btrfs_mark_buffer_dirty(leaf);
1669
1670         inode_add_bytes(inode, num_bytes);
1671
1672         ins.objectid = disk_bytenr;
1673         ins.offset = disk_num_bytes;
1674         ins.type = BTRFS_EXTENT_ITEM_KEY;
1675         ret = btrfs_alloc_reserved_file_extent(trans, root,
1676                                         root->root_key.objectid,
1677                                         inode->i_ino, file_pos, &ins);
1678         BUG_ON(ret);
1679         btrfs_free_path(path);
1680
1681         return 0;
1682 }
1683
1684 /*
1685  * helper function for btrfs_finish_ordered_io, this
1686  * just reads in some of the csum leaves to prime them into ram
1687  * before we start the transaction.  It limits the amount of btree
1688  * reads required while inside the transaction.
1689  */
1690 /* as ordered data IO finishes, this gets called so we can finish
1691  * an ordered extent if the range of bytes in the file it covers are
1692  * fully written.
1693  */
1694 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1695 {
1696         struct btrfs_root *root = BTRFS_I(inode)->root;
1697         struct btrfs_trans_handle *trans = NULL;
1698         struct btrfs_ordered_extent *ordered_extent = NULL;
1699         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1700         struct extent_state *cached_state = NULL;
1701         int compress_type = 0;
1702         int ret;
1703         bool nolock = false;
1704
1705         ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1706                                              end - start + 1);
1707         if (!ret)
1708                 return 0;
1709         BUG_ON(!ordered_extent);
1710
1711         nolock = (root == root->fs_info->tree_root);
1712
1713         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1714                 BUG_ON(!list_empty(&ordered_extent->list));
1715                 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1716                 if (!ret) {
1717                         if (nolock)
1718                                 trans = btrfs_join_transaction_nolock(root, 1);
1719                         else
1720                                 trans = btrfs_join_transaction(root, 1);
1721                         BUG_ON(IS_ERR(trans));
1722                         btrfs_set_trans_block_group(trans, inode);
1723                         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1724                         ret = btrfs_update_inode(trans, root, inode);
1725                         BUG_ON(ret);
1726                 }
1727                 goto out;
1728         }
1729
1730         lock_extent_bits(io_tree, ordered_extent->file_offset,
1731                          ordered_extent->file_offset + ordered_extent->len - 1,
1732                          0, &cached_state, GFP_NOFS);
1733
1734         if (nolock)
1735                 trans = btrfs_join_transaction_nolock(root, 1);
1736         else
1737                 trans = btrfs_join_transaction(root, 1);
1738         BUG_ON(IS_ERR(trans));
1739         btrfs_set_trans_block_group(trans, inode);
1740         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1741
1742         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1743                 compress_type = ordered_extent->compress_type;
1744         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1745                 BUG_ON(compress_type);
1746                 ret = btrfs_mark_extent_written(trans, inode,
1747                                                 ordered_extent->file_offset,
1748                                                 ordered_extent->file_offset +
1749                                                 ordered_extent->len);
1750                 BUG_ON(ret);
1751         } else {
1752                 BUG_ON(root == root->fs_info->tree_root);
1753                 ret = insert_reserved_file_extent(trans, inode,
1754                                                 ordered_extent->file_offset,
1755                                                 ordered_extent->start,
1756                                                 ordered_extent->disk_len,
1757                                                 ordered_extent->len,
1758                                                 ordered_extent->len,
1759                                                 compress_type, 0, 0,
1760                                                 BTRFS_FILE_EXTENT_REG);
1761                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1762                                    ordered_extent->file_offset,
1763                                    ordered_extent->len);
1764                 BUG_ON(ret);
1765         }
1766         unlock_extent_cached(io_tree, ordered_extent->file_offset,
1767                              ordered_extent->file_offset +
1768                              ordered_extent->len - 1, &cached_state, GFP_NOFS);
1769
1770         add_pending_csums(trans, inode, ordered_extent->file_offset,
1771                           &ordered_extent->list);
1772
1773         btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1774         ret = btrfs_update_inode(trans, root, inode);
1775         BUG_ON(ret);
1776 out:
1777         if (nolock) {
1778                 if (trans)
1779                         btrfs_end_transaction_nolock(trans, root);
1780         } else {
1781                 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1782                 if (trans)
1783                         btrfs_end_transaction(trans, root);
1784         }
1785
1786         /* once for us */
1787         btrfs_put_ordered_extent(ordered_extent);
1788         /* once for the tree */
1789         btrfs_put_ordered_extent(ordered_extent);
1790
1791         return 0;
1792 }
1793
1794 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1795                                 struct extent_state *state, int uptodate)
1796 {
1797         trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1798
1799         ClearPagePrivate2(page);
1800         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1801 }
1802
1803 /*
1804  * When IO fails, either with EIO or csum verification fails, we
1805  * try other mirrors that might have a good copy of the data.  This
1806  * io_failure_record is used to record state as we go through all the
1807  * mirrors.  If another mirror has good data, the page is set up to date
1808  * and things continue.  If a good mirror can't be found, the original
1809  * bio end_io callback is called to indicate things have failed.
1810  */
1811 struct io_failure_record {
1812         struct page *page;
1813         u64 start;
1814         u64 len;
1815         u64 logical;
1816         unsigned long bio_flags;
1817         int last_mirror;
1818 };
1819
1820 static int btrfs_io_failed_hook(struct bio *failed_bio,
1821                          struct page *page, u64 start, u64 end,
1822                          struct extent_state *state)
1823 {
1824         struct io_failure_record *failrec = NULL;
1825         u64 private;
1826         struct extent_map *em;
1827         struct inode *inode = page->mapping->host;
1828         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1829         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1830         struct bio *bio;
1831         int num_copies;
1832         int ret;
1833         int rw;
1834         u64 logical;
1835
1836         ret = get_state_private(failure_tree, start, &private);
1837         if (ret) {
1838                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1839                 if (!failrec)
1840                         return -ENOMEM;
1841                 failrec->start = start;
1842                 failrec->len = end - start + 1;
1843                 failrec->last_mirror = 0;
1844                 failrec->bio_flags = 0;
1845
1846                 read_lock(&em_tree->lock);
1847                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1848                 if (em->start > start || em->start + em->len < start) {
1849                         free_extent_map(em);
1850                         em = NULL;
1851                 }
1852                 read_unlock(&em_tree->lock);
1853
1854                 if (!em || IS_ERR(em)) {
1855                         kfree(failrec);
1856                         return -EIO;
1857                 }
1858                 logical = start - em->start;
1859                 logical = em->block_start + logical;
1860                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1861                         logical = em->block_start;
1862                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1863                         extent_set_compress_type(&failrec->bio_flags,
1864                                                  em->compress_type);
1865                 }
1866                 failrec->logical = logical;
1867                 free_extent_map(em);
1868                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1869                                 EXTENT_DIRTY, GFP_NOFS);
1870                 set_state_private(failure_tree, start,
1871                                  (u64)(unsigned long)failrec);
1872         } else {
1873                 failrec = (struct io_failure_record *)(unsigned long)private;
1874         }
1875         num_copies = btrfs_num_copies(
1876                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1877                               failrec->logical, failrec->len);
1878         failrec->last_mirror++;
1879         if (!state) {
1880                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1881                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1882                                                     failrec->start,
1883                                                     EXTENT_LOCKED);
1884                 if (state && state->start != failrec->start)
1885                         state = NULL;
1886                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1887         }
1888         if (!state || failrec->last_mirror > num_copies) {
1889                 set_state_private(failure_tree, failrec->start, 0);
1890                 clear_extent_bits(failure_tree, failrec->start,
1891                                   failrec->start + failrec->len - 1,
1892                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1893                 kfree(failrec);
1894                 return -EIO;
1895         }
1896         bio = bio_alloc(GFP_NOFS, 1);
1897         bio->bi_private = state;
1898         bio->bi_end_io = failed_bio->bi_end_io;
1899         bio->bi_sector = failrec->logical >> 9;
1900         bio->bi_bdev = failed_bio->bi_bdev;
1901         bio->bi_size = 0;
1902
1903         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1904         if (failed_bio->bi_rw & REQ_WRITE)
1905                 rw = WRITE;
1906         else
1907                 rw = READ;
1908
1909         ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1910                                                       failrec->last_mirror,
1911                                                       failrec->bio_flags, 0);
1912         return ret;
1913 }
1914
1915 /*
1916  * each time an IO finishes, we do a fast check in the IO failure tree
1917  * to see if we need to process or clean up an io_failure_record
1918  */
1919 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1920 {
1921         u64 private;
1922         u64 private_failure;
1923         struct io_failure_record *failure;
1924         int ret;
1925
1926         private = 0;
1927         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1928                              (u64)-1, 1, EXTENT_DIRTY, 0)) {
1929                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1930                                         start, &private_failure);
1931                 if (ret == 0) {
1932                         failure = (struct io_failure_record *)(unsigned long)
1933                                    private_failure;
1934                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1935                                           failure->start, 0);
1936                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1937                                           failure->start,
1938                                           failure->start + failure->len - 1,
1939                                           EXTENT_DIRTY | EXTENT_LOCKED,
1940                                           GFP_NOFS);
1941                         kfree(failure);
1942                 }
1943         }
1944         return 0;
1945 }
1946
1947 /*
1948  * when reads are done, we need to check csums to verify the data is correct
1949  * if there's a match, we allow the bio to finish.  If not, we go through
1950  * the io_failure_record routines to find good copies
1951  */
1952 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1953                                struct extent_state *state)
1954 {
1955         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1956         struct inode *inode = page->mapping->host;
1957         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1958         char *kaddr;
1959         u64 private = ~(u32)0;
1960         int ret;
1961         struct btrfs_root *root = BTRFS_I(inode)->root;
1962         u32 csum = ~(u32)0;
1963
1964         if (PageChecked(page)) {
1965                 ClearPageChecked(page);
1966                 goto good;
1967         }
1968
1969         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1970                 return 0;
1971
1972         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1973             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1974                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1975                                   GFP_NOFS);
1976                 return 0;
1977         }
1978
1979         if (state && state->start == start) {
1980                 private = state->private;
1981                 ret = 0;
1982         } else {
1983                 ret = get_state_private(io_tree, start, &private);
1984         }
1985         kaddr = kmap_atomic(page, KM_USER0);
1986         if (ret)
1987                 goto zeroit;
1988
1989         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1990         btrfs_csum_final(csum, (char *)&csum);
1991         if (csum != private)
1992                 goto zeroit;
1993
1994         kunmap_atomic(kaddr, KM_USER0);
1995 good:
1996         /* if the io failure tree for this inode is non-empty,
1997          * check to see if we've recovered from a failed IO
1998          */
1999         btrfs_clean_io_failures(inode, start);
2000         return 0;
2001
2002 zeroit:
2003         if (printk_ratelimit()) {
2004                 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
2005                        "private %llu\n", page->mapping->host->i_ino,
2006                        (unsigned long long)start, csum,
2007                        (unsigned long long)private);
2008         }
2009         memset(kaddr + offset, 1, end - start + 1);
2010         flush_dcache_page(page);
2011         kunmap_atomic(kaddr, KM_USER0);
2012         if (private == 0)
2013                 return 0;
2014         return -EIO;
2015 }
2016
2017 struct delayed_iput {
2018         struct list_head list;
2019         struct inode *inode;
2020 };
2021
2022 void btrfs_add_delayed_iput(struct inode *inode)
2023 {
2024         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2025         struct delayed_iput *delayed;
2026
2027         if (atomic_add_unless(&inode->i_count, -1, 1))
2028                 return;
2029
2030         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2031         delayed->inode = inode;
2032
2033         spin_lock(&fs_info->delayed_iput_lock);
2034         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2035         spin_unlock(&fs_info->delayed_iput_lock);
2036 }
2037
2038 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2039 {
2040         LIST_HEAD(list);
2041         struct btrfs_fs_info *fs_info = root->fs_info;
2042         struct delayed_iput *delayed;
2043         int empty;
2044
2045         spin_lock(&fs_info->delayed_iput_lock);
2046         empty = list_empty(&fs_info->delayed_iputs);
2047         spin_unlock(&fs_info->delayed_iput_lock);
2048         if (empty)
2049                 return;
2050
2051         down_read(&root->fs_info->cleanup_work_sem);
2052         spin_lock(&fs_info->delayed_iput_lock);
2053         list_splice_init(&fs_info->delayed_iputs, &list);
2054         spin_unlock(&fs_info->delayed_iput_lock);
2055
2056         while (!list_empty(&list)) {
2057                 delayed = list_entry(list.next, struct delayed_iput, list);
2058                 list_del(&delayed->list);
2059                 iput(delayed->inode);
2060                 kfree(delayed);
2061         }
2062         up_read(&root->fs_info->cleanup_work_sem);
2063 }
2064
2065 /*
2066  * calculate extra metadata reservation when snapshotting a subvolume
2067  * contains orphan files.
2068  */
2069 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2070                                 struct btrfs_pending_snapshot *pending,
2071                                 u64 *bytes_to_reserve)
2072 {
2073         struct btrfs_root *root;
2074         struct btrfs_block_rsv *block_rsv;
2075         u64 num_bytes;
2076         int index;
2077
2078         root = pending->root;
2079         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2080                 return;
2081
2082         block_rsv = root->orphan_block_rsv;
2083
2084         /* orphan block reservation for the snapshot */
2085         num_bytes = block_rsv->size;
2086
2087         /*
2088          * after the snapshot is created, COWing tree blocks may use more
2089          * space than it frees. So we should make sure there is enough
2090          * reserved space.
2091          */
2092         index = trans->transid & 0x1;
2093         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2094                 num_bytes += block_rsv->size -
2095                              (block_rsv->reserved + block_rsv->freed[index]);
2096         }
2097
2098         *bytes_to_reserve += num_bytes;
2099 }
2100
2101 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2102                                 struct btrfs_pending_snapshot *pending)
2103 {
2104         struct btrfs_root *root = pending->root;
2105         struct btrfs_root *snap = pending->snap;
2106         struct btrfs_block_rsv *block_rsv;
2107         u64 num_bytes;
2108         int index;
2109         int ret;
2110
2111         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2112                 return;
2113
2114         /* refill source subvolume's orphan block reservation */
2115         block_rsv = root->orphan_block_rsv;
2116         index = trans->transid & 0x1;
2117         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2118                 num_bytes = block_rsv->size -
2119                             (block_rsv->reserved + block_rsv->freed[index]);
2120                 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2121                                               root->orphan_block_rsv,
2122                                               num_bytes);
2123                 BUG_ON(ret);
2124         }
2125
2126         /* setup orphan block reservation for the snapshot */
2127         block_rsv = btrfs_alloc_block_rsv(snap);
2128         BUG_ON(!block_rsv);
2129
2130         btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2131         snap->orphan_block_rsv = block_rsv;
2132
2133         num_bytes = root->orphan_block_rsv->size;
2134         ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2135                                       block_rsv, num_bytes);
2136         BUG_ON(ret);
2137
2138 #if 0
2139         /* insert orphan item for the snapshot */
2140         WARN_ON(!root->orphan_item_inserted);
2141         ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2142                                        snap->root_key.objectid);
2143         BUG_ON(ret);
2144         snap->orphan_item_inserted = 1;
2145 #endif
2146 }
2147
2148 enum btrfs_orphan_cleanup_state {
2149         ORPHAN_CLEANUP_STARTED  = 1,
2150         ORPHAN_CLEANUP_DONE     = 2,
2151 };
2152
2153 /*
2154  * This is called in transaction commmit time. If there are no orphan
2155  * files in the subvolume, it removes orphan item and frees block_rsv
2156  * structure.
2157  */
2158 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2159                               struct btrfs_root *root)
2160 {
2161         int ret;
2162
2163         if (!list_empty(&root->orphan_list) ||
2164             root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2165                 return;
2166
2167         if (root->orphan_item_inserted &&
2168             btrfs_root_refs(&root->root_item) > 0) {
2169                 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2170                                             root->root_key.objectid);
2171                 BUG_ON(ret);
2172                 root->orphan_item_inserted = 0;
2173         }
2174
2175         if (root->orphan_block_rsv) {
2176                 WARN_ON(root->orphan_block_rsv->size > 0);
2177                 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2178                 root->orphan_block_rsv = NULL;
2179         }
2180 }
2181
2182 /*
2183  * This creates an orphan entry for the given inode in case something goes
2184  * wrong in the middle of an unlink/truncate.
2185  *
2186  * NOTE: caller of this function should reserve 5 units of metadata for
2187  *       this function.
2188  */
2189 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2190 {
2191         struct btrfs_root *root = BTRFS_I(inode)->root;
2192         struct btrfs_block_rsv *block_rsv = NULL;
2193         int reserve = 0;
2194         int insert = 0;
2195         int ret;
2196
2197         if (!root->orphan_block_rsv) {
2198                 block_rsv = btrfs_alloc_block_rsv(root);
2199                 BUG_ON(!block_rsv);
2200         }
2201
2202         spin_lock(&root->orphan_lock);
2203         if (!root->orphan_block_rsv) {
2204                 root->orphan_block_rsv = block_rsv;
2205         } else if (block_rsv) {
2206                 btrfs_free_block_rsv(root, block_rsv);
2207                 block_rsv = NULL;
2208         }
2209
2210         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2211                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2212 #if 0
2213                 /*
2214                  * For proper ENOSPC handling, we should do orphan
2215                  * cleanup when mounting. But this introduces backward
2216                  * compatibility issue.
2217                  */
2218                 if (!xchg(&root->orphan_item_inserted, 1))
2219                         insert = 2;
2220                 else
2221                         insert = 1;
2222 #endif
2223                 insert = 1;
2224         }
2225
2226         if (!BTRFS_I(inode)->orphan_meta_reserved) {
2227                 BTRFS_I(inode)->orphan_meta_reserved = 1;
2228                 reserve = 1;
2229         }
2230         spin_unlock(&root->orphan_lock);
2231
2232         if (block_rsv)
2233                 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2234
2235         /* grab metadata reservation from transaction handle */
2236         if (reserve) {
2237                 ret = btrfs_orphan_reserve_metadata(trans, inode);
2238                 BUG_ON(ret);
2239         }
2240
2241         /* insert an orphan item to track this unlinked/truncated file */
2242         if (insert >= 1) {
2243                 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2244                 BUG_ON(ret);
2245         }
2246
2247         /* insert an orphan item to track subvolume contains orphan files */
2248         if (insert >= 2) {
2249                 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2250                                                root->root_key.objectid);
2251                 BUG_ON(ret);
2252         }
2253         return 0;
2254 }
2255
2256 /*
2257  * We have done the truncate/delete so we can go ahead and remove the orphan
2258  * item for this particular inode.
2259  */
2260 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2261 {
2262         struct btrfs_root *root = BTRFS_I(inode)->root;
2263         int delete_item = 0;
2264         int release_rsv = 0;
2265         int ret = 0;
2266
2267         spin_lock(&root->orphan_lock);
2268         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2269                 list_del_init(&BTRFS_I(inode)->i_orphan);
2270                 delete_item = 1;
2271         }
2272
2273         if (BTRFS_I(inode)->orphan_meta_reserved) {
2274                 BTRFS_I(inode)->orphan_meta_reserved = 0;
2275                 release_rsv = 1;
2276         }
2277         spin_unlock(&root->orphan_lock);
2278
2279         if (trans && delete_item) {
2280                 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2281                 BUG_ON(ret);
2282         }
2283
2284         if (release_rsv)
2285                 btrfs_orphan_release_metadata(inode);
2286
2287         return 0;
2288 }
2289
2290 /*
2291  * this cleans up any orphans that may be left on the list from the last use
2292  * of this root.
2293  */
2294 int btrfs_orphan_cleanup(struct btrfs_root *root)
2295 {
2296         struct btrfs_path *path;
2297         struct extent_buffer *leaf;
2298         struct btrfs_key key, found_key;
2299         struct btrfs_trans_handle *trans;
2300         struct inode *inode;
2301         int ret = 0, nr_unlink = 0, nr_truncate = 0;
2302
2303         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2304                 return 0;
2305
2306         path = btrfs_alloc_path();
2307         if (!path) {
2308                 ret = -ENOMEM;
2309                 goto out;
2310         }
2311         path->reada = -1;
2312
2313         key.objectid = BTRFS_ORPHAN_OBJECTID;
2314         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2315         key.offset = (u64)-1;
2316
2317         while (1) {
2318                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2319                 if (ret < 0)
2320                         goto out;
2321
2322                 /*
2323                  * if ret == 0 means we found what we were searching for, which
2324                  * is weird, but possible, so only screw with path if we didnt
2325                  * find the key and see if we have stuff that matches
2326                  */
2327                 if (ret > 0) {
2328                         ret = 0;
2329                         if (path->slots[0] == 0)
2330                                 break;
2331                         path->slots[0]--;
2332                 }
2333
2334                 /* pull out the item */
2335                 leaf = path->nodes[0];
2336                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2337
2338                 /* make sure the item matches what we want */
2339                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2340                         break;
2341                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2342                         break;
2343
2344                 /* release the path since we're done with it */
2345                 btrfs_release_path(root, path);
2346
2347                 /*
2348                  * this is where we are basically btrfs_lookup, without the
2349                  * crossing root thing.  we store the inode number in the
2350                  * offset of the orphan item.
2351                  */
2352                 found_key.objectid = found_key.offset;
2353                 found_key.type = BTRFS_INODE_ITEM_KEY;
2354                 found_key.offset = 0;
2355                 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2356                 if (IS_ERR(inode)) {
2357                         ret = PTR_ERR(inode);
2358                         goto out;
2359                 }
2360
2361                 /*
2362                  * add this inode to the orphan list so btrfs_orphan_del does
2363                  * the proper thing when we hit it
2364                  */
2365                 spin_lock(&root->orphan_lock);
2366                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2367                 spin_unlock(&root->orphan_lock);
2368
2369                 /*
2370                  * if this is a bad inode, means we actually succeeded in
2371                  * removing the inode, but not the orphan record, which means
2372                  * we need to manually delete the orphan since iput will just
2373                  * do a destroy_inode
2374                  */
2375                 if (is_bad_inode(inode)) {
2376                         trans = btrfs_start_transaction(root, 0);
2377                         if (IS_ERR(trans)) {
2378                                 ret = PTR_ERR(trans);
2379                                 goto out;
2380                         }
2381                         btrfs_orphan_del(trans, inode);
2382                         btrfs_end_transaction(trans, root);
2383                         iput(inode);
2384                         continue;
2385                 }
2386
2387                 /* if we have links, this was a truncate, lets do that */
2388                 if (inode->i_nlink) {
2389                         if (!S_ISREG(inode->i_mode)) {
2390                                 WARN_ON(1);
2391                                 iput(inode);
2392                                 continue;
2393                         }
2394                         nr_truncate++;
2395                         ret = btrfs_truncate(inode);
2396                 } else {
2397                         nr_unlink++;
2398                 }
2399
2400                 /* this will do delete_inode and everything for us */
2401                 iput(inode);
2402                 if (ret)
2403                         goto out;
2404         }
2405         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2406
2407         if (root->orphan_block_rsv)
2408                 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2409                                         (u64)-1);
2410
2411         if (root->orphan_block_rsv || root->orphan_item_inserted) {
2412                 trans = btrfs_join_transaction(root, 1);
2413                 if (!IS_ERR(trans))
2414                         btrfs_end_transaction(trans, root);
2415         }
2416
2417         if (nr_unlink)
2418                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2419         if (nr_truncate)
2420                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2421
2422 out:
2423         if (ret)
2424                 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2425         btrfs_free_path(path);
2426         return ret;
2427 }
2428
2429 /*
2430  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2431  * don't find any xattrs, we know there can't be any acls.
2432  *
2433  * slot is the slot the inode is in, objectid is the objectid of the inode
2434  */
2435 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2436                                           int slot, u64 objectid)
2437 {
2438         u32 nritems = btrfs_header_nritems(leaf);
2439         struct btrfs_key found_key;
2440         int scanned = 0;
2441
2442         slot++;
2443         while (slot < nritems) {
2444                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2445
2446                 /* we found a different objectid, there must not be acls */
2447                 if (found_key.objectid != objectid)
2448                         return 0;
2449
2450                 /* we found an xattr, assume we've got an acl */
2451                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2452                         return 1;
2453
2454                 /*
2455                  * we found a key greater than an xattr key, there can't
2456                  * be any acls later on
2457                  */
2458                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2459                         return 0;
2460
2461                 slot++;
2462                 scanned++;
2463
2464                 /*
2465                  * it goes inode, inode backrefs, xattrs, extents,
2466                  * so if there are a ton of hard links to an inode there can
2467                  * be a lot of backrefs.  Don't waste time searching too hard,
2468                  * this is just an optimization
2469                  */
2470                 if (scanned >= 8)
2471                         break;
2472         }
2473         /* we hit the end of the leaf before we found an xattr or
2474          * something larger than an xattr.  We have to assume the inode
2475          * has acls
2476          */
2477         return 1;
2478 }
2479
2480 /*
2481  * read an inode from the btree into the in-memory inode
2482  */
2483 static void btrfs_read_locked_inode(struct inode *inode)
2484 {
2485         struct btrfs_path *path;
2486         struct extent_buffer *leaf;
2487         struct btrfs_inode_item *inode_item;
2488         struct btrfs_timespec *tspec;
2489         struct btrfs_root *root = BTRFS_I(inode)->root;
2490         struct btrfs_key location;
2491         int maybe_acls;
2492         u64 alloc_group_block;
2493         u32 rdev;
2494         int ret;
2495
2496         path = btrfs_alloc_path();
2497         BUG_ON(!path);
2498         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2499
2500         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2501         if (ret)
2502                 goto make_bad;
2503
2504         leaf = path->nodes[0];
2505         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2506                                     struct btrfs_inode_item);
2507
2508         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2509         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2510         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2511         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2512         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2513
2514         tspec = btrfs_inode_atime(inode_item);
2515         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2516         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2517
2518         tspec = btrfs_inode_mtime(inode_item);
2519         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2520         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2521
2522         tspec = btrfs_inode_ctime(inode_item);
2523         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2524         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2525
2526         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2527         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2528         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2529         inode->i_generation = BTRFS_I(inode)->generation;
2530         inode->i_rdev = 0;
2531         rdev = btrfs_inode_rdev(leaf, inode_item);
2532
2533         BTRFS_I(inode)->index_cnt = (u64)-1;
2534         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2535
2536         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2537
2538         /*
2539          * try to precache a NULL acl entry for files that don't have
2540          * any xattrs or acls
2541          */
2542         maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2543         if (!maybe_acls)
2544                 cache_no_acl(inode);
2545
2546         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2547                                                 alloc_group_block, 0);
2548         btrfs_free_path(path);
2549         inode_item = NULL;
2550
2551         switch (inode->i_mode & S_IFMT) {
2552         case S_IFREG:
2553                 inode->i_mapping->a_ops = &btrfs_aops;
2554                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2555                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2556                 inode->i_fop = &btrfs_file_operations;
2557                 inode->i_op = &btrfs_file_inode_operations;
2558                 break;
2559         case S_IFDIR:
2560                 inode->i_fop = &btrfs_dir_file_operations;
2561                 if (root == root->fs_info->tree_root)
2562                         inode->i_op = &btrfs_dir_ro_inode_operations;
2563                 else
2564                         inode->i_op = &btrfs_dir_inode_operations;
2565                 break;
2566         case S_IFLNK:
2567                 inode->i_op = &btrfs_symlink_inode_operations;
2568                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2569                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2570                 break;
2571         default:
2572                 inode->i_op = &btrfs_special_inode_operations;
2573                 init_special_inode(inode, inode->i_mode, rdev);
2574                 break;
2575         }
2576
2577         btrfs_update_iflags(inode);
2578         return;
2579
2580 make_bad:
2581         btrfs_free_path(path);
2582         make_bad_inode(inode);
2583 }
2584
2585 /*
2586  * given a leaf and an inode, copy the inode fields into the leaf
2587  */
2588 static void fill_inode_item(struct btrfs_trans_handle *trans,
2589                             struct extent_buffer *leaf,
2590                             struct btrfs_inode_item *item,
2591                             struct inode *inode)
2592 {
2593         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2594         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2595         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2596         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2597         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2598
2599         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2600                                inode->i_atime.tv_sec);
2601         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2602                                 inode->i_atime.tv_nsec);
2603
2604         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2605                                inode->i_mtime.tv_sec);
2606         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2607                                 inode->i_mtime.tv_nsec);
2608
2609         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2610                                inode->i_ctime.tv_sec);
2611         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2612                                 inode->i_ctime.tv_nsec);
2613
2614         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2615         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2616         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2617         btrfs_set_inode_transid(leaf, item, trans->transid);
2618         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2619         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2620         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2621 }
2622
2623 /*
2624  * copy everything in the in-memory inode into the btree.
2625  */
2626 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2627                                 struct btrfs_root *root, struct inode *inode)
2628 {
2629         struct btrfs_inode_item *inode_item;
2630         struct btrfs_path *path;
2631         struct extent_buffer *leaf;
2632         int ret;
2633
2634         path = btrfs_alloc_path();
2635         BUG_ON(!path);
2636         path->leave_spinning = 1;
2637         ret = btrfs_lookup_inode(trans, root, path,
2638                                  &BTRFS_I(inode)->location, 1);
2639         if (ret) {
2640                 if (ret > 0)
2641                         ret = -ENOENT;
2642                 goto failed;
2643         }
2644
2645         btrfs_unlock_up_safe(path, 1);
2646         leaf = path->nodes[0];
2647         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2648                                   struct btrfs_inode_item);
2649
2650         fill_inode_item(trans, leaf, inode_item, inode);
2651         btrfs_mark_buffer_dirty(leaf);
2652         btrfs_set_inode_last_trans(trans, inode);
2653         ret = 0;
2654 failed:
2655         btrfs_free_path(path);
2656         return ret;
2657 }
2658
2659
2660 /*
2661  * unlink helper that gets used here in inode.c and in the tree logging
2662  * recovery code.  It remove a link in a directory with a given name, and
2663  * also drops the back refs in the inode to the directory
2664  */
2665 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2666                                 struct btrfs_root *root,
2667                                 struct inode *dir, struct inode *inode,
2668                                 const char *name, int name_len)
2669 {
2670         struct btrfs_path *path;
2671         int ret = 0;
2672         struct extent_buffer *leaf;
2673         struct btrfs_dir_item *di;
2674         struct btrfs_key key;
2675         u64 index;
2676
2677         path = btrfs_alloc_path();
2678         if (!path) {
2679                 ret = -ENOMEM;
2680                 goto out;
2681         }
2682
2683         path->leave_spinning = 1;
2684         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2685                                     name, name_len, -1);
2686         if (IS_ERR(di)) {
2687                 ret = PTR_ERR(di);
2688                 goto err;
2689         }
2690         if (!di) {
2691                 ret = -ENOENT;
2692                 goto err;
2693         }
2694         leaf = path->nodes[0];
2695         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2696         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2697         if (ret)
2698                 goto err;
2699         btrfs_release_path(root, path);
2700
2701         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2702                                   inode->i_ino,
2703                                   dir->i_ino, &index);
2704         if (ret) {
2705                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2706                        "inode %lu parent %lu\n", name_len, name,
2707                        inode->i_ino, dir->i_ino);
2708                 goto err;
2709         }
2710
2711         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2712                                          index, name, name_len, -1);
2713         if (IS_ERR(di)) {
2714                 ret = PTR_ERR(di);
2715                 goto err;
2716         }
2717         if (!di) {
2718                 ret = -ENOENT;
2719                 goto err;
2720         }
2721         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2722         btrfs_release_path(root, path);
2723
2724         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2725                                          inode, dir->i_ino);
2726         BUG_ON(ret != 0 && ret != -ENOENT);
2727
2728         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2729                                            dir, index);
2730         if (ret == -ENOENT)
2731                 ret = 0;
2732 err:
2733         btrfs_free_path(path);
2734         if (ret)
2735                 goto out;
2736
2737         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2738         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2739         btrfs_update_inode(trans, root, dir);
2740 out:
2741         return ret;
2742 }
2743
2744 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2745                        struct btrfs_root *root,
2746                        struct inode *dir, struct inode *inode,
2747                        const char *name, int name_len)
2748 {
2749         int ret;
2750         ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2751         if (!ret) {
2752                 btrfs_drop_nlink(inode);
2753                 ret = btrfs_update_inode(trans, root, inode);
2754         }
2755         return ret;
2756 }
2757                 
2758
2759 /* helper to check if there is any shared block in the path */
2760 static int check_path_shared(struct btrfs_root *root,
2761                              struct btrfs_path *path)
2762 {
2763         struct extent_buffer *eb;
2764         int level;
2765         u64 refs = 1;
2766
2767         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2768                 int ret;
2769
2770                 if (!path->nodes[level])
2771                         break;
2772                 eb = path->nodes[level];
2773                 if (!btrfs_block_can_be_shared(root, eb))
2774                         continue;
2775                 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2776                                                &refs, NULL);
2777                 if (refs > 1)
2778                         return 1;
2779         }
2780         return 0;
2781 }
2782
2783 /*
2784  * helper to start transaction for unlink and rmdir.
2785  *
2786  * unlink and rmdir are special in btrfs, they do not always free space.
2787  * so in enospc case, we should make sure they will free space before
2788  * allowing them to use the global metadata reservation.
2789  */
2790 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2791                                                        struct dentry *dentry)
2792 {
2793         struct btrfs_trans_handle *trans;
2794         struct btrfs_root *root = BTRFS_I(dir)->root;
2795         struct btrfs_path *path;
2796         struct btrfs_inode_ref *ref;
2797         struct btrfs_dir_item *di;
2798         struct inode *inode = dentry->d_inode;
2799         u64 index;
2800         int check_link = 1;
2801         int err = -ENOSPC;
2802         int ret;
2803
2804         trans = btrfs_start_transaction(root, 10);
2805         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2806                 return trans;
2807
2808         if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2809                 return ERR_PTR(-ENOSPC);
2810
2811         /* check if there is someone else holds reference */
2812         if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2813                 return ERR_PTR(-ENOSPC);
2814
2815         if (atomic_read(&inode->i_count) > 2)
2816                 return ERR_PTR(-ENOSPC);
2817
2818         if (xchg(&root->fs_info->enospc_unlink, 1))
2819                 return ERR_PTR(-ENOSPC);
2820
2821         path = btrfs_alloc_path();
2822         if (!path) {
2823                 root->fs_info->enospc_unlink = 0;
2824                 return ERR_PTR(-ENOMEM);
2825         }
2826
2827         trans = btrfs_start_transaction(root, 0);
2828         if (IS_ERR(trans)) {
2829                 btrfs_free_path(path);
2830                 root->fs_info->enospc_unlink = 0;
2831                 return trans;
2832         }
2833
2834         path->skip_locking = 1;
2835         path->search_commit_root = 1;
2836
2837         ret = btrfs_lookup_inode(trans, root, path,
2838                                 &BTRFS_I(dir)->location, 0);
2839         if (ret < 0) {
2840                 err = ret;
2841                 goto out;
2842         }
2843         if (ret == 0) {
2844                 if (check_path_shared(root, path))
2845                         goto out;
2846         } else {
2847                 check_link = 0;
2848         }
2849         btrfs_release_path(root, path);
2850
2851         ret = btrfs_lookup_inode(trans, root, path,
2852                                 &BTRFS_I(inode)->location, 0);
2853         if (ret < 0) {
2854                 err = ret;
2855                 goto out;
2856         }
2857         if (ret == 0) {
2858                 if (check_path_shared(root, path))
2859                         goto out;
2860         } else {
2861                 check_link = 0;
2862         }
2863         btrfs_release_path(root, path);
2864
2865         if (ret == 0 && S_ISREG(inode->i_mode)) {
2866                 ret = btrfs_lookup_file_extent(trans, root, path,
2867                                                inode->i_ino, (u64)-1, 0);
2868                 if (ret < 0) {
2869                         err = ret;
2870                         goto out;
2871                 }
2872                 BUG_ON(ret == 0);
2873                 if (check_path_shared(root, path))
2874                         goto out;
2875                 btrfs_release_path(root, path);
2876         }
2877
2878         if (!check_link) {
2879                 err = 0;
2880                 goto out;
2881         }
2882
2883         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2884                                 dentry->d_name.name, dentry->d_name.len, 0);
2885         if (IS_ERR(di)) {
2886                 err = PTR_ERR(di);
2887                 goto out;
2888         }
2889         if (di) {
2890                 if (check_path_shared(root, path))
2891                         goto out;
2892         } else {
2893                 err = 0;
2894                 goto out;
2895         }
2896         btrfs_release_path(root, path);
2897
2898         ref = btrfs_lookup_inode_ref(trans, root, path,
2899                                 dentry->d_name.name, dentry->d_name.len,
2900                                 inode->i_ino, dir->i_ino, 0);
2901         if (IS_ERR(ref)) {
2902                 err = PTR_ERR(ref);
2903                 goto out;
2904         }
2905         BUG_ON(!ref);
2906         if (check_path_shared(root, path))
2907                 goto out;
2908         index = btrfs_inode_ref_index(path->nodes[0], ref);
2909         btrfs_release_path(root, path);
2910
2911         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2912                                 dentry->d_name.name, dentry->d_name.len, 0);
2913         if (IS_ERR(di)) {
2914                 err = PTR_ERR(di);
2915                 goto out;
2916         }
2917         BUG_ON(ret == -ENOENT);
2918         if (check_path_shared(root, path))
2919                 goto out;
2920
2921         err = 0;
2922 out:
2923         btrfs_free_path(path);
2924         if (err) {
2925                 btrfs_end_transaction(trans, root);
2926                 root->fs_info->enospc_unlink = 0;
2927                 return ERR_PTR(err);
2928         }
2929
2930         trans->block_rsv = &root->fs_info->global_block_rsv;
2931         return trans;
2932 }
2933
2934 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2935                                struct btrfs_root *root)
2936 {
2937         if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2938                 BUG_ON(!root->fs_info->enospc_unlink);
2939                 root->fs_info->enospc_unlink = 0;
2940         }
2941         btrfs_end_transaction_throttle(trans, root);
2942 }
2943
2944 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2945 {
2946         struct btrfs_root *root = BTRFS_I(dir)->root;
2947         struct btrfs_trans_handle *trans;
2948         struct inode *inode = dentry->d_inode;
2949         int ret;
2950         unsigned long nr = 0;
2951
2952         trans = __unlink_start_trans(dir, dentry);
2953         if (IS_ERR(trans))
2954                 return PTR_ERR(trans);
2955
2956         btrfs_set_trans_block_group(trans, dir);
2957
2958         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2959
2960         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2961                                  dentry->d_name.name, dentry->d_name.len);
2962         BUG_ON(ret);
2963
2964         if (inode->i_nlink == 0) {
2965                 ret = btrfs_orphan_add(trans, inode);
2966                 BUG_ON(ret);
2967         }
2968
2969         nr = trans->blocks_used;
2970         __unlink_end_trans(trans, root);
2971         btrfs_btree_balance_dirty(root, nr);
2972         return ret;
2973 }
2974
2975 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2976                         struct btrfs_root *root,
2977                         struct inode *dir, u64 objectid,
2978                         const char *name, int name_len)
2979 {
2980         struct btrfs_path *path;
2981         struct extent_buffer *leaf;
2982         struct btrfs_dir_item *di;
2983         struct btrfs_key key;
2984         u64 index;
2985         int ret;
2986
2987         path = btrfs_alloc_path();
2988         if (!path)
2989                 return -ENOMEM;
2990
2991         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2992                                    name, name_len, -1);
2993         BUG_ON(!di || IS_ERR(di));
2994
2995         leaf = path->nodes[0];
2996         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2997         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2998         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2999         BUG_ON(ret);
3000         btrfs_release_path(root, path);
3001
3002         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3003                                  objectid, root->root_key.objectid,
3004                                  dir->i_ino, &index, name, name_len);
3005         if (ret < 0) {
3006                 BUG_ON(ret != -ENOENT);
3007                 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
3008                                                  name, name_len);
3009                 BUG_ON(!di || IS_ERR(di));
3010
3011                 leaf = path->nodes[0];
3012                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3013                 btrfs_release_path(root, path);
3014                 index = key.offset;
3015         }
3016
3017         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
3018                                          index, name, name_len, -1);
3019         BUG_ON(!di || IS_ERR(di));
3020
3021         leaf = path->nodes[0];
3022         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3023         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3024         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3025         BUG_ON(ret);
3026         btrfs_release_path(root, path);
3027
3028         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3029         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3030         ret = btrfs_update_inode(trans, root, dir);
3031         BUG_ON(ret);
3032
3033         btrfs_free_path(path);
3034         return 0;
3035 }
3036
3037 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3038 {
3039         struct inode *inode = dentry->d_inode;
3040         int err = 0;
3041         struct btrfs_root *root = BTRFS_I(dir)->root;
3042         struct btrfs_trans_handle *trans;
3043         unsigned long nr = 0;
3044
3045         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3046             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
3047                 return -ENOTEMPTY;
3048
3049         trans = __unlink_start_trans(dir, dentry);
3050         if (IS_ERR(trans))
3051                 return PTR_ERR(trans);
3052
3053         btrfs_set_trans_block_group(trans, dir);
3054
3055         if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3056                 err = btrfs_unlink_subvol(trans, root, dir,
3057                                           BTRFS_I(inode)->location.objectid,
3058                                           dentry->d_name.name,
3059                                           dentry->d_name.len);
3060                 goto out;
3061         }
3062
3063         err = btrfs_orphan_add(trans, inode);
3064         if (err)
3065                 goto out;
3066
3067         /* now the directory is empty */
3068         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3069                                  dentry->d_name.name, dentry->d_name.len);
3070         if (!err)
3071                 btrfs_i_size_write(inode, 0);
3072 out:
3073         nr = trans->blocks_used;
3074         __unlink_end_trans(trans, root);
3075         btrfs_btree_balance_dirty(root, nr);
3076
3077         return err;
3078 }
3079
3080 #if 0
3081 /*
3082  * when truncating bytes in a file, it is possible to avoid reading
3083  * the leaves that contain only checksum items.  This can be the
3084  * majority of the IO required to delete a large file, but it must
3085  * be done carefully.
3086  *
3087  * The keys in the level just above the leaves are checked to make sure
3088  * the lowest key in a given leaf is a csum key, and starts at an offset
3089  * after the new  size.
3090  *
3091  * Then the key for the next leaf is checked to make sure it also has
3092  * a checksum item for the same file.  If it does, we know our target leaf
3093  * contains only checksum items, and it can be safely freed without reading
3094  * it.
3095  *
3096  * This is just an optimization targeted at large files.  It may do
3097  * nothing.  It will return 0 unless things went badly.
3098  */
3099 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3100                                      struct btrfs_root *root,
3101                                      struct btrfs_path *path,
3102                                      struct inode *inode, u64 new_size)
3103 {
3104         struct btrfs_key key;
3105         int ret;
3106         int nritems;
3107         struct btrfs_key found_key;
3108         struct btrfs_key other_key;
3109         struct btrfs_leaf_ref *ref;
3110         u64 leaf_gen;
3111         u64 leaf_start;
3112
3113         path->lowest_level = 1;
3114         key.objectid = inode->i_ino;
3115         key.type = BTRFS_CSUM_ITEM_KEY;
3116         key.offset = new_size;
3117 again:
3118         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3119         if (ret < 0)
3120                 goto out;
3121
3122         if (path->nodes[1] == NULL) {
3123                 ret = 0;
3124                 goto out;
3125         }
3126         ret = 0;
3127         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3128         nritems = btrfs_header_nritems(path->nodes[1]);
3129
3130         if (!nritems)
3131                 goto out;
3132
3133         if (path->slots[1] >= nritems)
3134                 goto next_node;
3135
3136         /* did we find a key greater than anything we want to delete? */
3137         if (found_key.objectid > inode->i_ino ||
3138            (found_key.objectid == inode->i_ino && found_key.type > key.type))
3139                 goto out;
3140
3141         /* we check the next key in the node to make sure the leave contains
3142          * only checksum items.  This comparison doesn't work if our
3143          * leaf is the last one in the node
3144          */
3145         if (path->slots[1] + 1 >= nritems) {
3146 next_node:
3147                 /* search forward from the last key in the node, this
3148                  * will bring us into the next node in the tree
3149                  */
3150                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3151
3152                 /* unlikely, but we inc below, so check to be safe */
3153                 if (found_key.offset == (u64)-1)
3154                         goto out;
3155
3156                 /* search_forward needs a path with locks held, do the
3157                  * search again for the original key.  It is possible
3158                  * this will race with a balance and return a path that
3159                  * we could modify, but this drop is just an optimization
3160                  * and is allowed to miss some leaves.
3161                  */
3162                 btrfs_release_path(root, path);
3163                 found_key.offset++;
3164
3165                 /* setup a max key for search_forward */
3166                 other_key.offset = (u64)-1;
3167                 other_key.type = key.type;
3168                 other_key.objectid = key.objectid;
3169
3170                 path->keep_locks = 1;
3171                 ret = btrfs_search_forward(root, &found_key, &other_key,
3172                                            path, 0, 0);
3173                 path->keep_locks = 0;
3174                 if (ret || found_key.objectid != key.objectid ||
3175                     found_key.type != key.type) {
3176                         ret = 0;
3177                         goto out;
3178                 }
3179
3180                 key.offset = found_key.offset;
3181                 btrfs_release_path(root, path);
3182                 cond_resched();
3183                 goto again;
3184         }
3185
3186         /* we know there's one more slot after us in the tree,
3187          * read that key so we can verify it is also a checksum item
3188          */
3189         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3190
3191         if (found_key.objectid < inode->i_ino)
3192                 goto next_key;
3193
3194         if (found_key.type != key.type || found_key.offset < new_size)
3195                 goto next_key;
3196
3197         /*
3198          * if the key for the next leaf isn't a csum key from this objectid,
3199          * we can't be sure there aren't good items inside this leaf.
3200          * Bail out
3201          */
3202         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3203                 goto out;
3204
3205         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3206         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3207         /*
3208          * it is safe to delete this leaf, it contains only
3209          * csum items from this inode at an offset >= new_size
3210          */
3211         ret = btrfs_del_leaf(trans, root, path, leaf_start);
3212         BUG_ON(ret);
3213
3214         if (root->ref_cows && leaf_gen < trans->transid) {
3215                 ref = btrfs_alloc_leaf_ref(root, 0);
3216                 if (ref) {
3217                         ref->root_gen = root->root_key.offset;
3218                         ref->bytenr = leaf_start;
3219                         ref->owner = 0;
3220                         ref->generation = leaf_gen;
3221                         ref->nritems = 0;
3222
3223                         btrfs_sort_leaf_ref(ref);
3224
3225                         ret = btrfs_add_leaf_ref(root, ref, 0);
3226                         WARN_ON(ret);
3227                         btrfs_free_leaf_ref(root, ref);
3228                 } else {
3229                         WARN_ON(1);
3230                 }
3231         }
3232 next_key:
3233         btrfs_release_path(root, path);
3234
3235         if (other_key.objectid == inode->i_ino &&
3236             other_key.type == key.type && other_key.offset > key.offset) {
3237                 key.offset = other_key.offset;
3238                 cond_resched();
3239                 goto again;
3240         }
3241         ret = 0;
3242 out:
3243         /* fixup any changes we've made to the path */
3244         path->lowest_level = 0;
3245         path->keep_locks = 0;
3246         btrfs_release_path(root, path);
3247         return ret;
3248 }
3249
3250 #endif
3251
3252 /*
3253  * this can truncate away extent items, csum items and directory items.
3254  * It starts at a high offset and removes keys until it can't find
3255  * any higher than new_size
3256  *
3257  * csum items that cross the new i_size are truncated to the new size
3258  * as well.
3259  *
3260  * min_type is the minimum key type to truncate down to.  If set to 0, this
3261  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3262  */
3263 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3264                                struct btrfs_root *root,
3265                                struct inode *inode,
3266                                u64 new_size, u32 min_type)
3267 {
3268         struct btrfs_path *path;
3269         struct extent_buffer *leaf;
3270         struct btrfs_file_extent_item *fi;
3271         struct btrfs_key key;
3272         struct btrfs_key found_key;
3273         u64 extent_start = 0;
3274         u64 extent_num_bytes = 0;
3275         u64 extent_offset = 0;
3276         u64 item_end = 0;
3277         u64 mask = root->sectorsize - 1;
3278         u32 found_type = (u8)-1;
3279         int found_extent;
3280         int del_item;
3281         int pending_del_nr = 0;
3282         int pending_del_slot = 0;
3283         int extent_type = -1;
3284         int encoding;
3285         int ret;
3286         int err = 0;
3287
3288         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3289
3290         if (root->ref_cows || root == root->fs_info->tree_root)
3291                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3292
3293         path = btrfs_alloc_path();
3294         BUG_ON(!path);
3295         path->reada = -1;
3296
3297         key.objectid = inode->i_ino;
3298         key.offset = (u64)-1;
3299         key.type = (u8)-1;
3300
3301 search_again:
3302         path->leave_spinning = 1;
3303         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3304         if (ret < 0) {
3305                 err = ret;
3306                 goto out;
3307         }
3308
3309         if (ret > 0) {
3310                 /* there are no items in the tree for us to truncate, we're
3311                  * done
3312                  */
3313                 if (path->slots[0] == 0)
3314                         goto out;
3315                 path->slots[0]--;
3316         }
3317
3318         while (1) {
3319                 fi = NULL;
3320                 leaf = path->nodes[0];
3321                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3322                 found_type = btrfs_key_type(&found_key);
3323                 encoding = 0;
3324
3325                 if (found_key.objectid != inode->i_ino)
3326                         break;
3327
3328                 if (found_type < min_type)
3329                         break;
3330
3331                 item_end = found_key.offset;
3332                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3333                         fi = btrfs_item_ptr(leaf, path->slots[0],
3334                                             struct btrfs_file_extent_item);
3335                         extent_type = btrfs_file_extent_type(leaf, fi);
3336                         encoding = btrfs_file_extent_compression(leaf, fi);
3337                         encoding |= btrfs_file_extent_encryption(leaf, fi);
3338                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3339
3340                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3341                                 item_end +=
3342                                     btrfs_file_extent_num_bytes(leaf, fi);
3343                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3344                                 item_end += btrfs_file_extent_inline_len(leaf,
3345                                                                          fi);
3346                         }
3347                         item_end--;
3348                 }
3349                 if (found_type > min_type) {
3350                         del_item = 1;
3351                 } else {
3352                         if (item_end < new_size)
3353                                 break;
3354                         if (found_key.offset >= new_size)
3355                                 del_item = 1;
3356                         else
3357                                 del_item = 0;
3358                 }
3359                 found_extent = 0;
3360                 /* FIXME, shrink the extent if the ref count is only 1 */
3361                 if (found_type != BTRFS_EXTENT_DATA_KEY)
3362                         goto delete;
3363
3364                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3365                         u64 num_dec;
3366                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3367                         if (!del_item && !encoding) {
3368                                 u64 orig_num_bytes =
3369                                         btrfs_file_extent_num_bytes(leaf, fi);
3370                                 extent_num_bytes = new_size -
3371                                         found_key.offset + root->sectorsize - 1;
3372                                 extent_num_bytes = extent_num_bytes &
3373                                         ~((u64)root->sectorsize - 1);
3374                                 btrfs_set_file_extent_num_bytes(leaf, fi,
3375                                                          extent_num_bytes);
3376                                 num_dec = (orig_num_bytes -
3377                                            extent_num_bytes);
3378                                 if (root->ref_cows && extent_start != 0)
3379                                         inode_sub_bytes(inode, num_dec);
3380                                 btrfs_mark_buffer_dirty(leaf);
3381                         } else {
3382                                 extent_num_bytes =
3383                                         btrfs_file_extent_disk_num_bytes(leaf,
3384                                                                          fi);
3385                                 extent_offset = found_key.offset -
3386                                         btrfs_file_extent_offset(leaf, fi);
3387
3388                                 /* FIXME blocksize != 4096 */
3389                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3390                                 if (extent_start != 0) {
3391                                         found_extent = 1;
3392                                         if (root->ref_cows)
3393                                                 inode_sub_bytes(inode, num_dec);
3394                                 }
3395                         }
3396                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3397                         /*
3398                          * we can't truncate inline items that have had
3399                          * special encodings
3400                          */
3401                         if (!del_item &&
3402                             btrfs_file_extent_compression(leaf, fi) == 0 &&
3403                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
3404                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3405                                 u32 size = new_size - found_key.offset;
3406
3407                                 if (root->ref_cows) {
3408                                         inode_sub_bytes(inode, item_end + 1 -
3409                                                         new_size);
3410                                 }
3411                                 size =
3412                                     btrfs_file_extent_calc_inline_size(size);
3413                                 ret = btrfs_truncate_item(trans, root, path,
3414                                                           size, 1);
3415                                 BUG_ON(ret);
3416                         } else if (root->ref_cows) {
3417                                 inode_sub_bytes(inode, item_end + 1 -
3418                                                 found_key.offset);
3419                         }
3420                 }
3421 delete:
3422                 if (del_item) {
3423                         if (!pending_del_nr) {
3424                                 /* no pending yet, add ourselves */
3425                                 pending_del_slot = path->slots[0];
3426                                 pending_del_nr = 1;
3427                         } else if (pending_del_nr &&
3428                                    path->slots[0] + 1 == pending_del_slot) {
3429                                 /* hop on the pending chunk */
3430                                 pending_del_nr++;
3431                                 pending_del_slot = path->slots[0];
3432                         } else {
3433                                 BUG();
3434                         }
3435                 } else {
3436                         break;
3437                 }
3438                 if (found_extent && (root->ref_cows ||
3439                                      root == root->fs_info->tree_root)) {
3440                         btrfs_set_path_blocking(path);
3441                         ret = btrfs_free_extent(trans, root, extent_start,
3442                                                 extent_num_bytes, 0,
3443                                                 btrfs_header_owner(leaf),
3444                                                 inode->i_ino, extent_offset);
3445                         BUG_ON(ret);
3446                 }
3447
3448                 if (found_type == BTRFS_INODE_ITEM_KEY)
3449                         break;
3450
3451                 if (path->slots[0] == 0 ||
3452                     path->slots[0] != pending_del_slot) {
3453                         if (root->ref_cows) {
3454                                 err = -EAGAIN;
3455                                 goto out;
3456                         }
3457                         if (pending_del_nr) {
3458                                 ret = btrfs_del_items(trans, root, path,
3459                                                 pending_del_slot,
3460                                                 pending_del_nr);
3461                                 BUG_ON(ret);
3462                                 pending_del_nr = 0;
3463                         }
3464                         btrfs_release_path(root, path);
3465                         goto search_again;
3466                 } else {
3467                         path->slots[0]--;
3468                 }
3469         }
3470 out:
3471         if (pending_del_nr) {
3472                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3473                                       pending_del_nr);
3474                 BUG_ON(ret);
3475         }
3476         btrfs_free_path(path);
3477         return err;
3478 }
3479
3480 /*
3481  * taken from block_truncate_page, but does cow as it zeros out
3482  * any bytes left in the last page in the file.
3483  */
3484 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3485 {
3486         struct inode *inode = mapping->host;
3487         struct btrfs_root *root = BTRFS_I(inode)->root;
3488         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3489         struct btrfs_ordered_extent *ordered;
3490         struct extent_state *cached_state = NULL;
3491         char *kaddr;
3492         u32 blocksize = root->sectorsize;
3493         pgoff_t index = from >> PAGE_CACHE_SHIFT;
3494         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3495         struct page *page;
3496         int ret = 0;
3497         u64 page_start;
3498         u64 page_end;
3499
3500         if ((offset & (blocksize - 1)) == 0)
3501                 goto out;
3502         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3503         if (ret)
3504                 goto out;
3505
3506         ret = -ENOMEM;
3507 again:
3508         page = grab_cache_page(mapping, index);
3509         if (!page) {
3510                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3511                 goto out;
3512         }
3513
3514         page_start = page_offset(page);
3515         page_end = page_start + PAGE_CACHE_SIZE - 1;
3516
3517         if (!PageUptodate(page)) {
3518                 ret = btrfs_readpage(NULL, page);
3519                 lock_page(page);
3520                 if (page->mapping != mapping) {
3521                         unlock_page(page);
3522                         page_cache_release(page);
3523                         goto again;
3524                 }
3525                 if (!PageUptodate(page)) {
3526                         ret = -EIO;
3527                         goto out_unlock;
3528                 }
3529         }
3530         wait_on_page_writeback(page);
3531
3532         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3533                          GFP_NOFS);
3534         set_page_extent_mapped(page);
3535
3536         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3537         if (ordered) {
3538                 unlock_extent_cached(io_tree, page_start, page_end,
3539                                      &cached_state, GFP_NOFS);
3540                 unlock_page(page);
3541                 page_cache_release(page);
3542                 btrfs_start_ordered_extent(inode, ordered, 1);
3543                 btrfs_put_ordered_extent(ordered);
3544                 goto again;
3545         }
3546
3547         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3548                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3549                           0, 0, &cached_state, GFP_NOFS);
3550
3551         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3552                                         &cached_state);
3553         if (ret) {
3554                 unlock_extent_cached(io_tree, page_start, page_end,
3555                                      &cached_state, GFP_NOFS);
3556                 goto out_unlock;
3557         }
3558
3559         ret = 0;
3560         if (offset != PAGE_CACHE_SIZE) {
3561                 kaddr = kmap(page);
3562                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3563                 flush_dcache_page(page);
3564                 kunmap(page);
3565         }
3566         ClearPageChecked(page);
3567         set_page_dirty(page);
3568         unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3569                              GFP_NOFS);
3570
3571 out_unlock:
3572         if (ret)
3573                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3574         unlock_page(page);
3575         page_cache_release(page);
3576 out:
3577         return ret;
3578 }
3579
3580 /*
3581  * This function puts in dummy file extents for the area we're creating a hole
3582  * for.  So if we are truncating this file to a larger size we need to insert
3583  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3584  * the range between oldsize and size
3585  */
3586 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3587 {
3588         struct btrfs_trans_handle *trans;
3589         struct btrfs_root *root = BTRFS_I(inode)->root;
3590         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3591         struct extent_map *em = NULL;
3592         struct extent_state *cached_state = NULL;
3593         u64 mask = root->sectorsize - 1;
3594         u64 hole_start = (oldsize + mask) & ~mask;
3595         u64 block_end = (size + mask) & ~mask;
3596         u64 last_byte;
3597         u64 cur_offset;
3598         u64 hole_size;
3599         int err = 0;
3600
3601         if (size <= hole_start)
3602                 return 0;
3603
3604         while (1) {
3605                 struct btrfs_ordered_extent *ordered;
3606                 btrfs_wait_ordered_range(inode, hole_start,
3607                                          block_end - hole_start);
3608                 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3609                                  &cached_state, GFP_NOFS);
3610                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3611                 if (!ordered)
3612                         break;
3613                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3614                                      &cached_state, GFP_NOFS);
3615                 btrfs_put_ordered_extent(ordered);
3616         }
3617
3618         cur_offset = hole_start;
3619         while (1) {
3620                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3621                                 block_end - cur_offset, 0);
3622                 BUG_ON(IS_ERR(em) || !em);
3623                 last_byte = min(extent_map_end(em), block_end);
3624                 last_byte = (last_byte + mask) & ~mask;
3625                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3626                         u64 hint_byte = 0;
3627                         hole_size = last_byte - cur_offset;
3628
3629                         trans = btrfs_start_transaction(root, 2);
3630                         if (IS_ERR(trans)) {
3631                                 err = PTR_ERR(trans);
3632                                 break;
3633                         }
3634                         btrfs_set_trans_block_group(trans, inode);
3635
3636                         err = btrfs_drop_extents(trans, inode, cur_offset,
3637                                                  cur_offset + hole_size,
3638                                                  &hint_byte, 1);
3639                         if (err)
3640                                 break;
3641
3642                         err = btrfs_insert_file_extent(trans, root,
3643                                         inode->i_ino, cur_offset, 0,
3644                                         0, hole_size, 0, hole_size,
3645                                         0, 0, 0);
3646                         if (err)
3647                                 break;
3648
3649                         btrfs_drop_extent_cache(inode, hole_start,
3650                                         last_byte - 1, 0);
3651
3652                         btrfs_end_transaction(trans, root);
3653                 }
3654                 free_extent_map(em);
3655                 em = NULL;
3656                 cur_offset = last_byte;
3657                 if (cur_offset >= block_end)
3658                         break;
3659         }
3660
3661         free_extent_map(em);
3662         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3663                              GFP_NOFS);
3664         return err;
3665 }
3666
3667 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3668 {
3669         loff_t oldsize = i_size_read(inode);
3670         int ret;
3671
3672         if (newsize == oldsize)
3673                 return 0;
3674
3675         if (newsize > oldsize) {
3676                 i_size_write(inode, newsize);
3677                 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3678                 truncate_pagecache(inode, oldsize, newsize);
3679                 ret = btrfs_cont_expand(inode, oldsize, newsize);
3680                 if (ret) {
3681                         btrfs_setsize(inode, oldsize);
3682                         return ret;
3683                 }
3684
3685                 mark_inode_dirty(inode);
3686         } else {
3687
3688                 /*
3689                  * We're truncating a file that used to have good data down to
3690                  * zero. Make sure it gets into the ordered flush list so that
3691                  * any new writes get down to disk quickly.
3692                  */
3693                 if (newsize == 0)
3694                         BTRFS_I(inode)->ordered_data_close = 1;
3695
3696                 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3697                 truncate_setsize(inode, newsize);
3698                 ret = btrfs_truncate(inode);
3699         }
3700
3701         return ret;
3702 }
3703
3704 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3705 {
3706         struct inode *inode = dentry->d_inode;
3707         struct btrfs_root *root = BTRFS_I(inode)->root;
3708         int err;
3709
3710         if (btrfs_root_readonly(root))
3711                 return -EROFS;
3712
3713         err = inode_change_ok(inode, attr);
3714         if (err)
3715                 return err;
3716
3717         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3718                 err = btrfs_setsize(inode, attr->ia_size);
3719                 if (err)
3720                         return err;
3721         }
3722
3723         if (attr->ia_valid) {
3724                 setattr_copy(inode, attr);
3725                 mark_inode_dirty(inode);
3726
3727                 if (attr->ia_valid & ATTR_MODE)
3728                         err = btrfs_acl_chmod(inode);
3729         }
3730
3731         return err;
3732 }
3733
3734 void btrfs_evict_inode(struct inode *inode)
3735 {
3736         struct btrfs_trans_handle *trans;
3737         struct btrfs_root *root = BTRFS_I(inode)->root;
3738         unsigned long nr;
3739         int ret;
3740
3741         trace_btrfs_inode_evict(inode);
3742
3743         truncate_inode_pages(&inode->i_data, 0);
3744         if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3745                                root == root->fs_info->tree_root))
3746                 goto no_delete;
3747
3748         if (is_bad_inode(inode)) {
3749                 btrfs_orphan_del(NULL, inode);
3750                 goto no_delete;
3751         }
3752         /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3753         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3754
3755         if (root->fs_info->log_root_recovering) {
3756                 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3757                 goto no_delete;
3758         }
3759
3760         if (inode->i_nlink > 0) {
3761                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3762                 goto no_delete;
3763         }
3764
3765         btrfs_i_size_write(inode, 0);
3766
3767         while (1) {
3768                 trans = btrfs_start_transaction(root, 0);
3769                 BUG_ON(IS_ERR(trans));
3770                 btrfs_set_trans_block_group(trans, inode);
3771                 trans->block_rsv = root->orphan_block_rsv;
3772
3773                 ret = btrfs_block_rsv_check(trans, root,
3774                                             root->orphan_block_rsv, 0, 5);
3775                 if (ret) {
3776                         BUG_ON(ret != -EAGAIN);
3777                         ret = btrfs_commit_transaction(trans, root);
3778                         BUG_ON(ret);
3779                         continue;
3780                 }
3781
3782                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3783                 if (ret != -EAGAIN)
3784                         break;
3785
3786                 nr = trans->blocks_used;
3787                 btrfs_end_transaction(trans, root);
3788                 trans = NULL;
3789                 btrfs_btree_balance_dirty(root, nr);
3790
3791         }
3792
3793         if (ret == 0) {
3794                 ret = btrfs_orphan_del(trans, inode);
3795                 BUG_ON(ret);
3796         }
3797
3798         nr = trans->blocks_used;
3799         btrfs_end_transaction(trans, root);
3800         btrfs_btree_balance_dirty(root, nr);
3801 no_delete:
3802         end_writeback(inode);
3803         return;
3804 }
3805
3806 /*
3807  * this returns the key found in the dir entry in the location pointer.
3808  * If no dir entries were found, location->objectid is 0.
3809  */
3810 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3811                                struct btrfs_key *location)
3812 {
3813         const char *name = dentry->d_name.name;
3814         int namelen = dentry->d_name.len;
3815         struct btrfs_dir_item *di;
3816         struct btrfs_path *path;
3817         struct btrfs_root *root = BTRFS_I(dir)->root;
3818         int ret = 0;
3819
3820         path = btrfs_alloc_path();
3821         BUG_ON(!path);
3822
3823         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3824                                     namelen, 0);
3825         if (IS_ERR(di))
3826                 ret = PTR_ERR(di);
3827
3828         if (!di || IS_ERR(di))
3829                 goto out_err;
3830
3831         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3832 out:
3833         btrfs_free_path(path);
3834         return ret;
3835 out_err:
3836         location->objectid = 0;
3837         goto out;
3838 }
3839
3840 /*
3841  * when we hit a tree root in a directory, the btrfs part of the inode
3842  * needs to be changed to reflect the root directory of the tree root.  This
3843  * is kind of like crossing a mount point.
3844  */
3845 static int fixup_tree_root_location(struct btrfs_root *root,
3846                                     struct inode *dir,
3847                                     struct dentry *dentry,
3848                                     struct btrfs_key *location,
3849                                     struct btrfs_root **sub_root)
3850 {
3851         struct btrfs_path *path;
3852         struct btrfs_root *new_root;
3853         struct btrfs_root_ref *ref;
3854         struct extent_buffer *leaf;
3855         int ret;
3856         int err = 0;
3857
3858         path = btrfs_alloc_path();
3859         if (!path) {
3860                 err = -ENOMEM;
3861                 goto out;
3862         }
3863
3864         err = -ENOENT;
3865         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3866                                   BTRFS_I(dir)->root->root_key.objectid,
3867                                   location->objectid);
3868         if (ret) {
3869                 if (ret < 0)
3870                         err = ret;
3871                 goto out;
3872         }
3873
3874         leaf = path->nodes[0];
3875         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3876         if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3877             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3878                 goto out;
3879
3880         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3881                                    (unsigned long)(ref + 1),
3882                                    dentry->d_name.len);
3883         if (ret)
3884                 goto out;
3885
3886         btrfs_release_path(root->fs_info->tree_root, path);
3887
3888         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3889         if (IS_ERR(new_root)) {
3890                 err = PTR_ERR(new_root);
3891                 goto out;
3892         }
3893
3894         if (btrfs_root_refs(&new_root->root_item) == 0) {
3895                 err = -ENOENT;
3896                 goto out;
3897         }
3898
3899         *sub_root = new_root;
3900         location->objectid = btrfs_root_dirid(&new_root->root_item);
3901         location->type = BTRFS_INODE_ITEM_KEY;
3902         location->offset = 0;
3903         err = 0;
3904 out:
3905         btrfs_free_path(path);
3906         return err;
3907 }
3908
3909 static void inode_tree_add(struct inode *inode)
3910 {
3911         struct btrfs_root *root = BTRFS_I(inode)->root;
3912         struct btrfs_inode *entry;
3913         struct rb_node **p;
3914         struct rb_node *parent;
3915 again:
3916         p = &root->inode_tree.rb_node;
3917         parent = NULL;
3918
3919         if (inode_unhashed(inode))
3920                 return;
3921
3922         spin_lock(&root->inode_lock);
3923         while (*p) {
3924                 parent = *p;
3925                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3926
3927                 if (inode->i_ino < entry->vfs_inode.i_ino)
3928                         p = &parent->rb_left;
3929                 else if (inode->i_ino > entry->vfs_inode.i_ino)
3930                         p = &parent->rb_right;
3931                 else {
3932                         WARN_ON(!(entry->vfs_inode.i_state &
3933                                   (I_WILL_FREE | I_FREEING)));
3934                         rb_erase(parent, &root->inode_tree);
3935                         RB_CLEAR_NODE(parent);
3936                         spin_unlock(&root->inode_lock);
3937                         goto again;
3938                 }
3939         }
3940         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3941         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3942         spin_unlock(&root->inode_lock);
3943 }
3944
3945 static void inode_tree_del(struct inode *inode)
3946 {
3947         struct btrfs_root *root = BTRFS_I(inode)->root;
3948         int empty = 0;
3949
3950         spin_lock(&root->inode_lock);
3951         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3952                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3953                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3954                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3955         }
3956         spin_unlock(&root->inode_lock);
3957
3958         /*
3959          * Free space cache has inodes in the tree root, but the tree root has a
3960          * root_refs of 0, so this could end up dropping the tree root as a
3961          * snapshot, so we need the extra !root->fs_info->tree_root check to
3962          * make sure we don't drop it.
3963          */
3964         if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3965             root != root->fs_info->tree_root) {
3966                 synchronize_srcu(&root->fs_info->subvol_srcu);
3967                 spin_lock(&root->inode_lock);
3968                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3969                 spin_unlock(&root->inode_lock);
3970                 if (empty)
3971                         btrfs_add_dead_root(root);
3972         }
3973 }
3974
3975 int btrfs_invalidate_inodes(struct btrfs_root *root)
3976 {
3977         struct rb_node *node;
3978         struct rb_node *prev;
3979         struct btrfs_inode *entry;
3980         struct inode *inode;
3981         u64 objectid = 0;
3982
3983         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3984
3985         spin_lock(&root->inode_lock);
3986 again:
3987         node = root->inode_tree.rb_node;
3988         prev = NULL;
3989         while (node) {
3990                 prev = node;
3991                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3992
3993                 if (objectid < entry->vfs_inode.i_ino)
3994                         node = node->rb_left;
3995                 else if (objectid > entry->vfs_inode.i_ino)
3996                         node = node->rb_right;
3997                 else
3998                         break;
3999         }
4000         if (!node) {
4001                 while (prev) {
4002                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
4003                         if (objectid <= entry->vfs_inode.i_ino) {
4004                                 node = prev;
4005                                 break;
4006                         }
4007                         prev = rb_next(prev);
4008                 }
4009         }
4010         while (node) {
4011                 entry = rb_entry(node, struct btrfs_inode, rb_node);
4012                 objectid = entry->vfs_inode.i_ino + 1;
4013                 inode = igrab(&entry->vfs_inode);
4014                 if (inode) {
4015                         spin_unlock(&root->inode_lock);
4016                         if (atomic_read(&inode->i_count) > 1)
4017                                 d_prune_aliases(inode);
4018                         /*
4019                          * btrfs_drop_inode will have it removed from
4020                          * the inode cache when its usage count
4021                          * hits zero.
4022                          */
4023                         iput(inode);
4024                         cond_resched();
4025                         spin_lock(&root->inode_lock);
4026                         goto again;
4027                 }
4028
4029                 if (cond_resched_lock(&root->inode_lock))
4030                         goto again;
4031
4032                 node = rb_next(node);
4033         }
4034         spin_unlock(&root->inode_lock);
4035         return 0;
4036 }
4037
4038 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4039 {
4040         struct btrfs_iget_args *args = p;
4041         inode->i_ino = args->ino;
4042         BTRFS_I(inode)->root = args->root;
4043         btrfs_set_inode_space_info(args->root, inode);
4044         return 0;
4045 }
4046
4047 static int btrfs_find_actor(struct inode *inode, void *opaque)
4048 {
4049         struct btrfs_iget_args *args = opaque;
4050         return args->ino == inode->i_ino &&
4051                 args->root == BTRFS_I(inode)->root;
4052 }
4053
4054 static struct inode *btrfs_iget_locked(struct super_block *s,
4055                                        u64 objectid,
4056                                        struct btrfs_root *root)
4057 {
4058         struct inode *inode;
4059         struct btrfs_iget_args args;
4060         args.ino = objectid;
4061         args.root = root;
4062
4063         inode = iget5_locked(s, objectid, btrfs_find_actor,
4064                              btrfs_init_locked_inode,
4065                              (void *)&args);
4066         return inode;
4067 }
4068
4069 /* Get an inode object given its location and corresponding root.
4070  * Returns in *is_new if the inode was read from disk
4071  */
4072 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4073                          struct btrfs_root *root, int *new)
4074 {
4075         struct inode *inode;
4076
4077         inode = btrfs_iget_locked(s, location->objectid, root);
4078         if (!inode)
4079                 return ERR_PTR(-ENOMEM);
4080
4081         if (inode->i_state & I_NEW) {
4082                 BTRFS_I(inode)->root = root;
4083                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4084                 btrfs_read_locked_inode(inode);
4085                 inode_tree_add(inode);
4086                 unlock_new_inode(inode);
4087                 if (new)
4088                         *new = 1;
4089         }
4090
4091         return inode;
4092 }
4093
4094 static struct inode *new_simple_dir(struct super_block *s,
4095                                     struct btrfs_key *key,
4096                                     struct btrfs_root *root)
4097 {
4098         struct inode *inode = new_inode(s);
4099
4100         if (!inode)
4101                 return ERR_PTR(-ENOMEM);
4102
4103         BTRFS_I(inode)->root = root;
4104         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4105         BTRFS_I(inode)->dummy_inode = 1;
4106
4107         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4108         inode->i_op = &simple_dir_inode_operations;
4109         inode->i_fop = &simple_dir_operations;
4110         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4111         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4112
4113         return inode;
4114 }
4115
4116 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4117 {
4118         struct inode *inode;
4119         struct btrfs_root *root = BTRFS_I(dir)->root;
4120         struct btrfs_root *sub_root = root;
4121         struct btrfs_key location;
4122         int index;
4123         int ret;
4124
4125         if (dentry->d_name.len > BTRFS_NAME_LEN)
4126                 return ERR_PTR(-ENAMETOOLONG);
4127
4128         ret = btrfs_inode_by_name(dir, dentry, &location);
4129
4130         if (ret < 0)
4131                 return ERR_PTR(ret);
4132
4133         if (location.objectid == 0)
4134                 return NULL;
4135
4136         if (location.type == BTRFS_INODE_ITEM_KEY) {
4137                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4138                 return inode;
4139         }
4140
4141         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4142
4143         index = srcu_read_lock(&root->fs_info->subvol_srcu);
4144         ret = fixup_tree_root_location(root, dir, dentry,
4145                                        &location, &sub_root);
4146         if (ret < 0) {
4147                 if (ret != -ENOENT)
4148                         inode = ERR_PTR(ret);
4149                 else
4150                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
4151         } else {
4152                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4153         }
4154         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4155
4156         if (!IS_ERR(inode) && root != sub_root) {
4157                 down_read(&root->fs_info->cleanup_work_sem);
4158                 if (!(inode->i_sb->s_flags & MS_RDONLY))
4159                         ret = btrfs_orphan_cleanup(sub_root);
4160                 up_read(&root->fs_info->cleanup_work_sem);
4161                 if (ret)
4162                         inode = ERR_PTR(ret);
4163         }
4164
4165         return inode;
4166 }
4167
4168 static int btrfs_dentry_delete(const struct dentry *dentry)
4169 {
4170         struct btrfs_root *root;
4171
4172         if (!dentry->d_inode && !IS_ROOT(dentry))
4173                 dentry = dentry->d_parent;
4174
4175         if (dentry->d_inode) {
4176                 root = BTRFS_I(dentry->d_inode)->root;
4177                 if (btrfs_root_refs(&root->root_item) == 0)
4178                         return 1;
4179         }
4180         return 0;
4181 }
4182
4183 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4184                                    struct nameidata *nd)
4185 {
4186         struct inode *inode;
4187
4188         inode = btrfs_lookup_dentry(dir, dentry);
4189         if (IS_ERR(inode))
4190                 return ERR_CAST(inode);
4191
4192         return d_splice_alias(inode, dentry);
4193 }
4194
4195 static unsigned char btrfs_filetype_table[] = {
4196         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4197 };
4198
4199 static int btrfs_real_readdir(struct file *filp, void *dirent,
4200                               filldir_t filldir)
4201 {
4202         struct inode *inode = filp->f_dentry->d_inode;
4203         struct btrfs_root *root = BTRFS_I(inode)->root;
4204         struct btrfs_item *item;
4205         struct btrfs_dir_item *di;
4206         struct btrfs_key key;
4207         struct btrfs_key found_key;
4208         struct btrfs_path *path;
4209         int ret;
4210         u32 nritems;
4211         struct extent_buffer *leaf;
4212         int slot;
4213         int advance;
4214         unsigned char d_type;
4215         int over = 0;
4216         u32 di_cur;
4217         u32 di_total;
4218         u32 di_len;
4219         int key_type = BTRFS_DIR_INDEX_KEY;
4220         char tmp_name[32];
4221         char *name_ptr;
4222         int name_len;
4223
4224         /* FIXME, use a real flag for deciding about the key type */
4225         if (root->fs_info->tree_root == root)
4226                 key_type = BTRFS_DIR_ITEM_KEY;
4227
4228         /* special case for "." */
4229         if (filp->f_pos == 0) {
4230                 over = filldir(dirent, ".", 1,
4231                                1, inode->i_ino,
4232                                DT_DIR);
4233                 if (over)
4234                         return 0;
4235                 filp->f_pos = 1;
4236         }
4237         /* special case for .., just use the back ref */
4238         if (filp->f_pos == 1) {
4239                 u64 pino = parent_ino(filp->f_path.dentry);
4240                 over = filldir(dirent, "..", 2,
4241                                2, pino, DT_DIR);
4242                 if (over)
4243                         return 0;
4244                 filp->f_pos = 2;
4245         }
4246         path = btrfs_alloc_path();
4247         path->reada = 2;
4248
4249         btrfs_set_key_type(&key, key_type);
4250         key.offset = filp->f_pos;
4251         key.objectid = inode->i_ino;
4252
4253         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4254         if (ret < 0)
4255                 goto err;
4256         advance = 0;
4257
4258         while (1) {
4259                 leaf = path->nodes[0];
4260                 nritems = btrfs_header_nritems(leaf);
4261                 slot = path->slots[0];
4262                 if (advance || slot >= nritems) {
4263                         if (slot >= nritems - 1) {
4264                                 ret = btrfs_next_leaf(root, path);
4265                                 if (ret)
4266                                         break;
4267                                 leaf = path->nodes[0];
4268                                 nritems = btrfs_header_nritems(leaf);
4269                                 slot = path->slots[0];
4270                         } else {
4271                                 slot++;
4272                                 path->slots[0]++;
4273                         }
4274                 }
4275
4276                 advance = 1;
4277                 item = btrfs_item_nr(leaf, slot);
4278                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4279
4280                 if (found_key.objectid != key.objectid)
4281                         break;
4282                 if (btrfs_key_type(&found_key) != key_type)
4283                         break;
4284                 if (found_key.offset < filp->f_pos)
4285                         continue;
4286
4287                 filp->f_pos = found_key.offset;
4288
4289                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4290                 di_cur = 0;
4291                 di_total = btrfs_item_size(leaf, item);
4292
4293                 while (di_cur < di_total) {
4294                         struct btrfs_key location;
4295
4296                         if (verify_dir_item(root, leaf, di))
4297                                 break;
4298
4299                         name_len = btrfs_dir_name_len(leaf, di);
4300                         if (name_len <= sizeof(tmp_name)) {
4301                                 name_ptr = tmp_name;
4302                         } else {
4303                                 name_ptr = kmalloc(name_len, GFP_NOFS);
4304                                 if (!name_ptr) {
4305                                         ret = -ENOMEM;
4306                                         goto err;
4307                                 }
4308                         }
4309                         read_extent_buffer(leaf, name_ptr,
4310                                            (unsigned long)(di + 1), name_len);
4311
4312                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4313                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
4314
4315                         /* is this a reference to our own snapshot? If so
4316                          * skip it
4317                          */
4318                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
4319                             location.objectid == root->root_key.objectid) {
4320                                 over = 0;
4321                                 goto skip;
4322                         }
4323                         over = filldir(dirent, name_ptr, name_len,
4324                                        found_key.offset, location.objectid,
4325                                        d_type);
4326
4327 skip:
4328                         if (name_ptr != tmp_name)
4329                                 kfree(name_ptr);
4330
4331                         if (over)
4332                                 goto nopos;
4333                         di_len = btrfs_dir_name_len(leaf, di) +
4334                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
4335                         di_cur += di_len;
4336                         di = (struct btrfs_dir_item *)((char *)di + di_len);
4337                 }
4338         }
4339
4340         /* Reached end of directory/root. Bump pos past the last item. */
4341         if (key_type == BTRFS_DIR_INDEX_KEY)
4342                 /*
4343                  * 32-bit glibc will use getdents64, but then strtol -
4344                  * so the last number we can serve is this.
4345                  */
4346                 filp->f_pos = 0x7fffffff;
4347         else
4348                 filp->f_pos++;
4349 nopos:
4350         ret = 0;
4351 err:
4352         btrfs_free_path(path);
4353         return ret;
4354 }
4355
4356 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4357 {
4358         struct btrfs_root *root = BTRFS_I(inode)->root;
4359         struct btrfs_trans_handle *trans;
4360         int ret = 0;
4361         bool nolock = false;
4362
4363         if (BTRFS_I(inode)->dummy_inode)
4364                 return 0;
4365
4366         smp_mb();
4367         nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4368
4369         if (wbc->sync_mode == WB_SYNC_ALL) {
4370                 if (nolock)
4371                         trans = btrfs_join_transaction_nolock(root, 1);
4372                 else
4373                         trans = btrfs_join_transaction(root, 1);
4374                 if (IS_ERR(trans))
4375                         return PTR_ERR(trans);
4376                 btrfs_set_trans_block_group(trans, inode);
4377                 if (nolock)
4378                         ret = btrfs_end_transaction_nolock(trans, root);
4379                 else
4380                         ret = btrfs_commit_transaction(trans, root);
4381         }
4382         return ret;
4383 }
4384
4385 /*
4386  * This is somewhat expensive, updating the tree every time the
4387  * inode changes.  But, it is most likely to find the inode in cache.
4388  * FIXME, needs more benchmarking...there are no reasons other than performance
4389  * to keep or drop this code.
4390  */
4391 void btrfs_dirty_inode(struct inode *inode)
4392 {
4393         struct btrfs_root *root = BTRFS_I(inode)->root;
4394         struct btrfs_trans_handle *trans;
4395         int ret;
4396
4397         if (BTRFS_I(inode)->dummy_inode)
4398                 return;
4399
4400         trans = btrfs_join_transaction(root, 1);
4401         BUG_ON(IS_ERR(trans));
4402         btrfs_set_trans_block_group(trans, inode);
4403
4404         ret = btrfs_update_inode(trans, root, inode);
4405         if (ret && ret == -ENOSPC) {
4406                 /* whoops, lets try again with the full transaction */
4407                 btrfs_end_transaction(trans, root);
4408                 trans = btrfs_start_transaction(root, 1);
4409                 if (IS_ERR(trans)) {
4410                         if (printk_ratelimit()) {
4411                                 printk(KERN_ERR "btrfs: fail to "
4412                                        "dirty  inode %lu error %ld\n",
4413                                        inode->i_ino, PTR_ERR(trans));
4414                         }
4415                         return;
4416                 }
4417                 btrfs_set_trans_block_group(trans, inode);
4418
4419                 ret = btrfs_update_inode(trans, root, inode);
4420                 if (ret) {
4421                         if (printk_ratelimit()) {
4422                                 printk(KERN_ERR "btrfs: fail to "
4423                                        "dirty  inode %lu error %d\n",
4424                                        inode->i_ino, ret);
4425                         }
4426                 }
4427         }
4428         btrfs_end_transaction(trans, root);
4429 }
4430
4431 /*
4432  * find the highest existing sequence number in a directory
4433  * and then set the in-memory index_cnt variable to reflect
4434  * free sequence numbers
4435  */
4436 static int btrfs_set_inode_index_count(struct inode *inode)
4437 {
4438         struct btrfs_root *root = BTRFS_I(inode)->root;
4439         struct btrfs_key key, found_key;
4440         struct btrfs_path *path;
4441         struct extent_buffer *leaf;
4442         int ret;
4443
4444         key.objectid = inode->i_ino;
4445         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4446         key.offset = (u64)-1;
4447
4448         path = btrfs_alloc_path();
4449         if (!path)
4450                 return -ENOMEM;
4451
4452         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4453         if (ret < 0)
4454                 goto out;
4455         /* FIXME: we should be able to handle this */
4456         if (ret == 0)
4457                 goto out;
4458         ret = 0;
4459
4460         /*
4461          * MAGIC NUMBER EXPLANATION:
4462          * since we search a directory based on f_pos we have to start at 2
4463          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4464          * else has to start at 2
4465          */
4466         if (path->slots[0] == 0) {
4467                 BTRFS_I(inode)->index_cnt = 2;
4468                 goto out;
4469         }
4470
4471         path->slots[0]--;
4472
4473         leaf = path->nodes[0];
4474         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4475
4476         if (found_key.objectid != inode->i_ino ||
4477             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4478                 BTRFS_I(inode)->index_cnt = 2;
4479                 goto out;
4480         }
4481
4482         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4483 out:
4484         btrfs_free_path(path);
4485         return ret;
4486 }
4487
4488 /*
4489  * helper to find a free sequence number in a given directory.  This current
4490  * code is very simple, later versions will do smarter things in the btree
4491  */
4492 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4493 {
4494         int ret = 0;
4495
4496         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4497                 ret = btrfs_set_inode_index_count(dir);
4498                 if (ret)
4499                         return ret;
4500         }
4501
4502         *index = BTRFS_I(dir)->index_cnt;
4503         BTRFS_I(dir)->index_cnt++;
4504
4505         return ret;
4506 }
4507
4508 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4509                                      struct btrfs_root *root,
4510                                      struct inode *dir,
4511                                      const char *name, int name_len,
4512                                      u64 ref_objectid, u64 objectid,
4513                                      u64 alloc_hint, int mode, u64 *index)
4514 {
4515         struct inode *inode;
4516         struct btrfs_inode_item *inode_item;
4517         struct btrfs_key *location;
4518         struct btrfs_path *path;
4519         struct btrfs_inode_ref *ref;
4520         struct btrfs_key key[2];
4521         u32 sizes[2];
4522         unsigned long ptr;
4523         int ret;
4524         int owner;
4525
4526         path = btrfs_alloc_path();
4527         BUG_ON(!path);
4528
4529         inode = new_inode(root->fs_info->sb);
4530         if (!inode)
4531                 return ERR_PTR(-ENOMEM);
4532
4533         if (dir) {
4534                 trace_btrfs_inode_request(dir);
4535
4536                 ret = btrfs_set_inode_index(dir, index);
4537                 if (ret) {
4538                         iput(inode);
4539                         return ERR_PTR(ret);
4540                 }
4541         }
4542         /*
4543          * index_cnt is ignored for everything but a dir,
4544          * btrfs_get_inode_index_count has an explanation for the magic
4545          * number
4546          */
4547         BTRFS_I(inode)->index_cnt = 2;
4548         BTRFS_I(inode)->root = root;
4549         BTRFS_I(inode)->generation = trans->transid;
4550         inode->i_generation = BTRFS_I(inode)->generation;
4551         btrfs_set_inode_space_info(root, inode);
4552
4553         if (mode & S_IFDIR)
4554                 owner = 0;
4555         else
4556                 owner = 1;
4557         BTRFS_I(inode)->block_group =
4558                         btrfs_find_block_group(root, 0, alloc_hint, owner);
4559
4560         key[0].objectid = objectid;
4561         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4562         key[0].offset = 0;
4563
4564         key[1].objectid = objectid;
4565         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4566         key[1].offset = ref_objectid;
4567
4568         sizes[0] = sizeof(struct btrfs_inode_item);
4569         sizes[1] = name_len + sizeof(*ref);
4570
4571         path->leave_spinning = 1;
4572         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4573         if (ret != 0)
4574                 goto fail;
4575
4576         inode_init_owner(inode, dir, mode);
4577         inode->i_ino = objectid;
4578         inode_set_bytes(inode, 0);
4579         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4580         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4581                                   struct btrfs_inode_item);
4582         fill_inode_item(trans, path->nodes[0], inode_item, inode);
4583
4584         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4585                              struct btrfs_inode_ref);
4586         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4587         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4588         ptr = (unsigned long)(ref + 1);
4589         write_extent_buffer(path->nodes[0], name, ptr, name_len);
4590
4591         btrfs_mark_buffer_dirty(path->nodes[0]);
4592         btrfs_free_path(path);
4593
4594         location = &BTRFS_I(inode)->location;
4595         location->objectid = objectid;
4596         location->offset = 0;
4597         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4598
4599         btrfs_inherit_iflags(inode, dir);
4600
4601         if ((mode & S_IFREG)) {
4602                 if (btrfs_test_opt(root, NODATASUM))
4603                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4604                 if (btrfs_test_opt(root, NODATACOW) ||
4605                     (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4606                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4607         }
4608
4609         insert_inode_hash(inode);
4610         inode_tree_add(inode);
4611
4612         trace_btrfs_inode_new(inode);
4613
4614         return inode;
4615 fail:
4616         if (dir)
4617                 BTRFS_I(dir)->index_cnt--;
4618         btrfs_free_path(path);
4619         iput(inode);
4620         return ERR_PTR(ret);
4621 }
4622
4623 static inline u8 btrfs_inode_type(struct inode *inode)
4624 {
4625         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4626 }
4627
4628 /*
4629  * utility function to add 'inode' into 'parent_inode' with
4630  * a give name and a given sequence number.
4631  * if 'add_backref' is true, also insert a backref from the
4632  * inode to the parent directory.
4633  */
4634 int btrfs_add_link(struct btrfs_trans_handle *trans,
4635                    struct inode *parent_inode, struct inode *inode,
4636                    const char *name, int name_len, int add_backref, u64 index)
4637 {
4638         int ret = 0;
4639         struct btrfs_key key;
4640         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4641
4642         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4643                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4644         } else {
4645                 key.objectid = inode->i_ino;
4646                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4647                 key.offset = 0;
4648         }
4649
4650         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4651                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4652                                          key.objectid, root->root_key.objectid,
4653                                          parent_inode->i_ino,
4654                                          index, name, name_len);
4655         } else if (add_backref) {
4656                 ret = btrfs_insert_inode_ref(trans, root,
4657                                              name, name_len, inode->i_ino,
4658                                              parent_inode->i_ino, index);
4659         }
4660
4661         if (ret == 0) {
4662                 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4663                                             parent_inode->i_ino, &key,
4664                                             btrfs_inode_type(inode), index);
4665                 BUG_ON(ret);
4666
4667                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4668                                    name_len * 2);
4669                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4670                 ret = btrfs_update_inode(trans, root, parent_inode);
4671         }
4672         return ret;
4673 }
4674
4675 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4676                             struct inode *dir, struct dentry *dentry,
4677                             struct inode *inode, int backref, u64 index)
4678 {
4679         int err = btrfs_add_link(trans, dir, inode,
4680                                  dentry->d_name.name, dentry->d_name.len,
4681                                  backref, index);
4682         if (!err) {
4683                 d_instantiate(dentry, inode);
4684                 return 0;
4685         }
4686         if (err > 0)
4687                 err = -EEXIST;
4688         return err;
4689 }
4690
4691 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4692                         int mode, dev_t rdev)
4693 {
4694         struct btrfs_trans_handle *trans;
4695         struct btrfs_root *root = BTRFS_I(dir)->root;
4696         struct inode *inode = NULL;
4697         int err;
4698         int drop_inode = 0;
4699         u64 objectid;
4700         unsigned long nr = 0;
4701         u64 index = 0;
4702
4703         if (!new_valid_dev(rdev))
4704                 return -EINVAL;
4705
4706         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4707         if (err)
4708                 return err;
4709
4710         /*
4711          * 2 for inode item and ref
4712          * 2 for dir items
4713          * 1 for xattr if selinux is on
4714          */
4715         trans = btrfs_start_transaction(root, 5);
4716         if (IS_ERR(trans))
4717                 return PTR_ERR(trans);
4718
4719         btrfs_set_trans_block_group(trans, dir);
4720
4721         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4722                                 dentry->d_name.len, dir->i_ino, objectid,
4723                                 BTRFS_I(dir)->block_group, mode, &index);
4724         err = PTR_ERR(inode);
4725         if (IS_ERR(inode))
4726                 goto out_unlock;
4727
4728         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4729         if (err) {
4730                 drop_inode = 1;
4731                 goto out_unlock;
4732         }
4733
4734         btrfs_set_trans_block_group(trans, inode);
4735         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4736         if (err)
4737                 drop_inode = 1;
4738         else {
4739                 inode->i_op = &btrfs_special_inode_operations;
4740                 init_special_inode(inode, inode->i_mode, rdev);
4741                 btrfs_update_inode(trans, root, inode);
4742         }
4743         btrfs_update_inode_block_group(trans, inode);
4744         btrfs_update_inode_block_group(trans, dir);
4745 out_unlock:
4746         nr = trans->blocks_used;
4747         btrfs_end_transaction_throttle(trans, root);
4748         btrfs_btree_balance_dirty(root, nr);
4749         if (drop_inode) {
4750                 inode_dec_link_count(inode);
4751                 iput(inode);
4752         }
4753         return err;
4754 }
4755
4756 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4757                         int mode, struct nameidata *nd)
4758 {
4759         struct btrfs_trans_handle *trans;
4760         struct btrfs_root *root = BTRFS_I(dir)->root;
4761         struct inode *inode = NULL;
4762         int drop_inode = 0;
4763         int err;
4764         unsigned long nr = 0;
4765         u64 objectid;
4766         u64 index = 0;
4767
4768         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4769         if (err)
4770                 return err;
4771         /*
4772          * 2 for inode item and ref
4773          * 2 for dir items
4774          * 1 for xattr if selinux is on
4775          */
4776         trans = btrfs_start_transaction(root, 5);
4777         if (IS_ERR(trans))
4778                 return PTR_ERR(trans);
4779
4780         btrfs_set_trans_block_group(trans, dir);
4781
4782         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4783                                 dentry->d_name.len, dir->i_ino, objectid,
4784                                 BTRFS_I(dir)->block_group, mode, &index);
4785         err = PTR_ERR(inode);
4786         if (IS_ERR(inode))
4787                 goto out_unlock;
4788
4789         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4790         if (err) {
4791                 drop_inode = 1;
4792                 goto out_unlock;
4793         }
4794
4795         btrfs_set_trans_block_group(trans, inode);
4796         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4797         if (err)
4798                 drop_inode = 1;
4799         else {
4800                 inode->i_mapping->a_ops = &btrfs_aops;
4801                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4802                 inode->i_fop = &btrfs_file_operations;
4803                 inode->i_op = &btrfs_file_inode_operations;
4804                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4805         }
4806         btrfs_update_inode_block_group(trans, inode);
4807         btrfs_update_inode_block_group(trans, dir);
4808 out_unlock:
4809         nr = trans->blocks_used;
4810         btrfs_end_transaction_throttle(trans, root);
4811         if (drop_inode) {
4812                 inode_dec_link_count(inode);
4813                 iput(inode);
4814         }
4815         btrfs_btree_balance_dirty(root, nr);
4816         return err;
4817 }
4818
4819 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4820                       struct dentry *dentry)
4821 {
4822         struct btrfs_trans_handle *trans;
4823         struct btrfs_root *root = BTRFS_I(dir)->root;
4824         struct inode *inode = old_dentry->d_inode;
4825         u64 index;
4826         unsigned long nr = 0;
4827         int err;
4828         int drop_inode = 0;
4829
4830         /* do not allow sys_link's with other subvols of the same device */
4831         if (root->objectid != BTRFS_I(inode)->root->objectid)
4832                 return -EXDEV;
4833
4834         if (inode->i_nlink == ~0U)
4835                 return -EMLINK;
4836
4837         btrfs_inc_nlink(inode);
4838         inode->i_ctime = CURRENT_TIME;
4839
4840         err = btrfs_set_inode_index(dir, &index);
4841         if (err)
4842                 goto fail;
4843
4844         /*
4845          * 2 items for inode and inode ref
4846          * 2 items for dir items
4847          * 1 item for parent inode
4848          */
4849         trans = btrfs_start_transaction(root, 5);
4850         if (IS_ERR(trans)) {
4851                 err = PTR_ERR(trans);
4852                 goto fail;
4853         }
4854
4855         btrfs_set_trans_block_group(trans, dir);
4856         ihold(inode);
4857
4858         err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4859
4860         if (err) {
4861                 drop_inode = 1;
4862         } else {
4863                 struct dentry *parent = dget_parent(dentry);
4864                 btrfs_update_inode_block_group(trans, dir);
4865                 err = btrfs_update_inode(trans, root, inode);
4866                 BUG_ON(err);
4867                 btrfs_log_new_name(trans, inode, NULL, parent);
4868                 dput(parent);
4869         }
4870
4871         nr = trans->blocks_used;
4872         btrfs_end_transaction_throttle(trans, root);
4873 fail:
4874         if (drop_inode) {
4875                 inode_dec_link_count(inode);
4876                 iput(inode);
4877         }
4878         btrfs_btree_balance_dirty(root, nr);
4879         return err;
4880 }
4881
4882 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4883 {
4884         struct inode *inode = NULL;
4885         struct btrfs_trans_handle *trans;
4886         struct btrfs_root *root = BTRFS_I(dir)->root;
4887         int err = 0;
4888         int drop_on_err = 0;
4889         u64 objectid = 0;
4890         u64 index = 0;
4891         unsigned long nr = 1;
4892
4893         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4894         if (err)
4895                 return err;
4896
4897         /*
4898          * 2 items for inode and ref
4899          * 2 items for dir items
4900          * 1 for xattr if selinux is on
4901          */
4902         trans = btrfs_start_transaction(root, 5);
4903         if (IS_ERR(trans))
4904                 return PTR_ERR(trans);
4905         btrfs_set_trans_block_group(trans, dir);
4906
4907         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4908                                 dentry->d_name.len, dir->i_ino, objectid,
4909                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4910                                 &index);
4911         if (IS_ERR(inode)) {
4912                 err = PTR_ERR(inode);
4913                 goto out_fail;
4914         }
4915
4916         drop_on_err = 1;
4917
4918         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4919         if (err)
4920                 goto out_fail;
4921
4922         inode->i_op = &btrfs_dir_inode_operations;
4923         inode->i_fop = &btrfs_dir_file_operations;
4924         btrfs_set_trans_block_group(trans, inode);
4925
4926         btrfs_i_size_write(inode, 0);
4927         err = btrfs_update_inode(trans, root, inode);
4928         if (err)
4929                 goto out_fail;
4930
4931         err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4932                              dentry->d_name.len, 0, index);
4933         if (err)
4934                 goto out_fail;
4935
4936         d_instantiate(dentry, inode);
4937         drop_on_err = 0;
4938         btrfs_update_inode_block_group(trans, inode);
4939         btrfs_update_inode_block_group(trans, dir);
4940
4941 out_fail:
4942         nr = trans->blocks_used;
4943         btrfs_end_transaction_throttle(trans, root);
4944         if (drop_on_err)
4945                 iput(inode);
4946         btrfs_btree_balance_dirty(root, nr);
4947         return err;
4948 }
4949
4950 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4951  * and an extent that you want to insert, deal with overlap and insert
4952  * the new extent into the tree.
4953  */
4954 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4955                                 struct extent_map *existing,
4956                                 struct extent_map *em,
4957                                 u64 map_start, u64 map_len)
4958 {
4959         u64 start_diff;
4960
4961         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4962         start_diff = map_start - em->start;
4963         em->start = map_start;
4964         em->len = map_len;
4965         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4966             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4967                 em->block_start += start_diff;
4968                 em->block_len -= start_diff;
4969         }
4970         return add_extent_mapping(em_tree, em);
4971 }
4972
4973 static noinline int uncompress_inline(struct btrfs_path *path,
4974                                       struct inode *inode, struct page *page,
4975                                       size_t pg_offset, u64 extent_offset,
4976                                       struct btrfs_file_extent_item *item)
4977 {
4978         int ret;
4979         struct extent_buffer *leaf = path->nodes[0];
4980         char *tmp;
4981         size_t max_size;
4982         unsigned long inline_size;
4983         unsigned long ptr;
4984         int compress_type;
4985
4986         WARN_ON(pg_offset != 0);
4987         compress_type = btrfs_file_extent_compression(leaf, item);
4988         max_size = btrfs_file_extent_ram_bytes(leaf, item);
4989         inline_size = btrfs_file_extent_inline_item_len(leaf,
4990                                         btrfs_item_nr(leaf, path->slots[0]));
4991         tmp = kmalloc(inline_size, GFP_NOFS);
4992         ptr = btrfs_file_extent_inline_start(item);
4993
4994         read_extent_buffer(leaf, tmp, ptr, inline_size);
4995
4996         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4997         ret = btrfs_decompress(compress_type, tmp, page,
4998                                extent_offset, inline_size, max_size);
4999         if (ret) {
5000                 char *kaddr = kmap_atomic(page, KM_USER0);
5001                 unsigned long copy_size = min_t(u64,
5002                                   PAGE_CACHE_SIZE - pg_offset,
5003                                   max_size - extent_offset);
5004                 memset(kaddr + pg_offset, 0, copy_size);
5005                 kunmap_atomic(kaddr, KM_USER0);
5006         }
5007         kfree(tmp);
5008         return 0;
5009 }
5010
5011 /*
5012  * a bit scary, this does extent mapping from logical file offset to the disk.
5013  * the ugly parts come from merging extents from the disk with the in-ram
5014  * representation.  This gets more complex because of the data=ordered code,
5015  * where the in-ram extents might be locked pending data=ordered completion.
5016  *
5017  * This also copies inline extents directly into the page.
5018  */
5019
5020 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5021                                     size_t pg_offset, u64 start, u64 len,
5022                                     int create)
5023 {
5024         int ret;
5025         int err = 0;
5026         u64 bytenr;
5027         u64 extent_start = 0;
5028         u64 extent_end = 0;
5029         u64 objectid = inode->i_ino;
5030         u32 found_type;
5031         struct btrfs_path *path = NULL;
5032         struct btrfs_root *root = BTRFS_I(inode)->root;
5033         struct btrfs_file_extent_item *item;
5034         struct extent_buffer *leaf;
5035         struct btrfs_key found_key;
5036         struct extent_map *em = NULL;
5037         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5038         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5039         struct btrfs_trans_handle *trans = NULL;
5040         int compress_type;
5041
5042 again:
5043         read_lock(&em_tree->lock);
5044         em = lookup_extent_mapping(em_tree, start, len);
5045         if (em)
5046                 em->bdev = root->fs_info->fs_devices->latest_bdev;
5047         read_unlock(&em_tree->lock);
5048
5049         if (em) {
5050                 if (em->start > start || em->start + em->len <= start)
5051                         free_extent_map(em);
5052                 else if (em->block_start == EXTENT_MAP_INLINE && page)
5053                         free_extent_map(em);
5054                 else
5055                         goto out;
5056         }
5057         em = alloc_extent_map(GFP_NOFS);
5058         if (!em) {
5059                 err = -ENOMEM;
5060                 goto out;
5061         }
5062         em->bdev = root->fs_info->fs_devices->latest_bdev;
5063         em->start = EXTENT_MAP_HOLE;
5064         em->orig_start = EXTENT_MAP_HOLE;
5065         em->len = (u64)-1;
5066         em->block_len = (u64)-1;
5067
5068         if (!path) {
5069                 path = btrfs_alloc_path();
5070                 BUG_ON(!path);
5071         }
5072
5073         ret = btrfs_lookup_file_extent(trans, root, path,
5074                                        objectid, start, trans != NULL);
5075         if (ret < 0) {
5076                 err = ret;
5077                 goto out;
5078         }
5079
5080         if (ret != 0) {
5081                 if (path->slots[0] == 0)
5082                         goto not_found;
5083                 path->slots[0]--;
5084         }
5085
5086         leaf = path->nodes[0];
5087         item = btrfs_item_ptr(leaf, path->slots[0],
5088                               struct btrfs_file_extent_item);
5089         /* are we inside the extent that was found? */
5090         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5091         found_type = btrfs_key_type(&found_key);
5092         if (found_key.objectid != objectid ||
5093             found_type != BTRFS_EXTENT_DATA_KEY) {
5094                 goto not_found;
5095         }
5096
5097         found_type = btrfs_file_extent_type(leaf, item);
5098         extent_start = found_key.offset;
5099         compress_type = btrfs_file_extent_compression(leaf, item);
5100         if (found_type == BTRFS_FILE_EXTENT_REG ||
5101             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5102                 extent_end = extent_start +
5103                        btrfs_file_extent_num_bytes(leaf, item);
5104         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5105                 size_t size;
5106                 size = btrfs_file_extent_inline_len(leaf, item);
5107                 extent_end = (extent_start + size + root->sectorsize - 1) &
5108                         ~((u64)root->sectorsize - 1);
5109         }
5110
5111         if (start >= extent_end) {
5112                 path->slots[0]++;
5113                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5114                         ret = btrfs_next_leaf(root, path);
5115                         if (ret < 0) {
5116                                 err = ret;
5117                                 goto out;
5118                         }
5119                         if (ret > 0)
5120                                 goto not_found;
5121                         leaf = path->nodes[0];
5122                 }
5123                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5124                 if (found_key.objectid != objectid ||
5125                     found_key.type != BTRFS_EXTENT_DATA_KEY)
5126                         goto not_found;
5127                 if (start + len <= found_key.offset)
5128                         goto not_found;
5129                 em->start = start;
5130                 em->len = found_key.offset - start;
5131                 goto not_found_em;
5132         }
5133
5134         if (found_type == BTRFS_FILE_EXTENT_REG ||
5135             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5136                 em->start = extent_start;
5137                 em->len = extent_end - extent_start;
5138                 em->orig_start = extent_start -
5139                                  btrfs_file_extent_offset(leaf, item);
5140                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5141                 if (bytenr == 0) {
5142                         em->block_start = EXTENT_MAP_HOLE;
5143                         goto insert;
5144                 }
5145                 if (compress_type != BTRFS_COMPRESS_NONE) {
5146                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5147                         em->compress_type = compress_type;
5148                         em->block_start = bytenr;
5149                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5150                                                                          item);
5151                 } else {
5152                         bytenr += btrfs_file_extent_offset(leaf, item);
5153                         em->block_start = bytenr;
5154                         em->block_len = em->len;
5155                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5156                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5157                 }
5158                 goto insert;
5159         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5160                 unsigned long ptr;
5161                 char *map;
5162                 size_t size;
5163                 size_t extent_offset;
5164                 size_t copy_size;
5165
5166                 em->block_start = EXTENT_MAP_INLINE;
5167                 if (!page || create) {
5168                         em->start = extent_start;
5169                         em->len = extent_end - extent_start;
5170                         goto out;
5171                 }
5172
5173                 size = btrfs_file_extent_inline_len(leaf, item);
5174                 extent_offset = page_offset(page) + pg_offset - extent_start;
5175                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5176                                 size - extent_offset);
5177                 em->start = extent_start + extent_offset;
5178                 em->len = (copy_size + root->sectorsize - 1) &
5179                         ~((u64)root->sectorsize - 1);
5180                 em->orig_start = EXTENT_MAP_INLINE;
5181                 if (compress_type) {
5182                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5183                         em->compress_type = compress_type;
5184                 }
5185                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5186                 if (create == 0 && !PageUptodate(page)) {
5187                         if (btrfs_file_extent_compression(leaf, item) !=
5188                             BTRFS_COMPRESS_NONE) {
5189                                 ret = uncompress_inline(path, inode, page,
5190                                                         pg_offset,
5191                                                         extent_offset, item);
5192                                 BUG_ON(ret);
5193                         } else {
5194                                 map = kmap(page);
5195                                 read_extent_buffer(leaf, map + pg_offset, ptr,
5196                                                    copy_size);
5197                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5198                                         memset(map + pg_offset + copy_size, 0,
5199                                                PAGE_CACHE_SIZE - pg_offset -
5200                                                copy_size);
5201                                 }
5202                                 kunmap(page);
5203                         }
5204                         flush_dcache_page(page);
5205                 } else if (create && PageUptodate(page)) {
5206                         WARN_ON(1);
5207                         if (!trans) {
5208                                 kunmap(page);
5209                                 free_extent_map(em);
5210                                 em = NULL;
5211                                 btrfs_release_path(root, path);
5212                                 trans = btrfs_join_transaction(root, 1);
5213                                 if (IS_ERR(trans))
5214                                         return ERR_CAST(trans);
5215                                 goto again;
5216                         }
5217                         map = kmap(page);
5218                         write_extent_buffer(leaf, map + pg_offset, ptr,
5219                                             copy_size);
5220                         kunmap(page);
5221                         btrfs_mark_buffer_dirty(leaf);
5222                 }
5223                 set_extent_uptodate(io_tree, em->start,
5224                                     extent_map_end(em) - 1, GFP_NOFS);
5225                 goto insert;
5226         } else {
5227                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5228                 WARN_ON(1);
5229         }
5230 not_found:
5231         em->start = start;
5232         em->len = len;
5233 not_found_em:
5234         em->block_start = EXTENT_MAP_HOLE;
5235         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5236 insert:
5237         btrfs_release_path(root, path);
5238         if (em->start > start || extent_map_end(em) <= start) {
5239                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5240                        "[%llu %llu]\n", (unsigned long long)em->start,
5241                        (unsigned long long)em->len,
5242                        (unsigned long long)start,
5243                        (unsigned long long)len);
5244                 err = -EIO;
5245                 goto out;
5246         }
5247
5248         err = 0;
5249         write_lock(&em_tree->lock);
5250         ret = add_extent_mapping(em_tree, em);
5251         /* it is possible that someone inserted the extent into the tree
5252          * while we had the lock dropped.  It is also possible that
5253          * an overlapping map exists in the tree
5254          */
5255         if (ret == -EEXIST) {
5256                 struct extent_map *existing;
5257
5258                 ret = 0;
5259
5260                 existing = lookup_extent_mapping(em_tree, start, len);
5261                 if (existing && (existing->start > start ||
5262                     existing->start + existing->len <= start)) {
5263                         free_extent_map(existing);
5264                         existing = NULL;
5265                 }
5266                 if (!existing) {
5267                         existing = lookup_extent_mapping(em_tree, em->start,
5268                                                          em->len);
5269                         if (existing) {
5270                                 err = merge_extent_mapping(em_tree, existing,
5271                                                            em, start,
5272                                                            root->sectorsize);
5273                                 free_extent_map(existing);
5274                                 if (err) {
5275                                         free_extent_map(em);
5276                                         em = NULL;
5277                                 }
5278                         } else {
5279                                 err = -EIO;
5280                                 free_extent_map(em);
5281                                 em = NULL;
5282                         }
5283                 } else {
5284                         free_extent_map(em);
5285                         em = existing;
5286                         err = 0;
5287                 }
5288         }
5289         write_unlock(&em_tree->lock);
5290 out:
5291
5292         trace_btrfs_get_extent(root, em);
5293
5294         if (path)
5295                 btrfs_free_path(path);
5296         if (trans) {
5297                 ret = btrfs_end_transaction(trans, root);
5298                 if (!err)
5299                         err = ret;
5300         }
5301         if (err) {
5302                 free_extent_map(em);
5303                 return ERR_PTR(err);
5304         }
5305         return em;
5306 }
5307
5308 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5309                                            size_t pg_offset, u64 start, u64 len,
5310                                            int create)
5311 {
5312         struct extent_map *em;
5313         struct extent_map *hole_em = NULL;
5314         u64 range_start = start;
5315         u64 end;
5316         u64 found;
5317         u64 found_end;
5318         int err = 0;
5319
5320         em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5321         if (IS_ERR(em))
5322                 return em;
5323         if (em) {
5324                 /*
5325                  * if our em maps to a hole, there might
5326                  * actually be delalloc bytes behind it
5327                  */
5328                 if (em->block_start != EXTENT_MAP_HOLE)
5329                         return em;
5330                 else
5331                         hole_em = em;
5332         }
5333
5334         /* check to see if we've wrapped (len == -1 or similar) */
5335         end = start + len;
5336         if (end < start)
5337                 end = (u64)-1;
5338         else
5339                 end -= 1;
5340
5341         em = NULL;
5342
5343         /* ok, we didn't find anything, lets look for delalloc */
5344         found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5345                                  end, len, EXTENT_DELALLOC, 1);
5346         found_end = range_start + found;
5347         if (found_end < range_start)
5348                 found_end = (u64)-1;
5349
5350         /*
5351          * we didn't find anything useful, return
5352          * the original results from get_extent()
5353          */
5354         if (range_start > end || found_end <= start) {
5355                 em = hole_em;
5356                 hole_em = NULL;
5357                 goto out;
5358         }
5359
5360         /* adjust the range_start to make sure it doesn't
5361          * go backwards from the start they passed in
5362          */
5363         range_start = max(start,range_start);
5364         found = found_end - range_start;
5365
5366         if (found > 0) {
5367                 u64 hole_start = start;
5368                 u64 hole_len = len;
5369
5370                 em = alloc_extent_map(GFP_NOFS);
5371                 if (!em) {
5372                         err = -ENOMEM;
5373                         goto out;
5374                 }
5375                 /*
5376                  * when btrfs_get_extent can't find anything it
5377                  * returns one huge hole
5378                  *
5379                  * make sure what it found really fits our range, and
5380                  * adjust to make sure it is based on the start from
5381                  * the caller
5382                  */
5383                 if (hole_em) {
5384                         u64 calc_end = extent_map_end(hole_em);
5385
5386                         if (calc_end <= start || (hole_em->start > end)) {
5387                                 free_extent_map(hole_em);
5388                                 hole_em = NULL;
5389                         } else {
5390                                 hole_start = max(hole_em->start, start);
5391                                 hole_len = calc_end - hole_start;
5392                         }
5393                 }
5394                 em->bdev = NULL;
5395                 if (hole_em && range_start > hole_start) {
5396                         /* our hole starts before our delalloc, so we
5397                          * have to return just the parts of the hole
5398                          * that go until  the delalloc starts
5399                          */
5400                         em->len = min(hole_len,
5401                                       range_start - hole_start);
5402                         em->start = hole_start;
5403                         em->orig_start = hole_start;
5404                         /*
5405                          * don't adjust block start at all,
5406                          * it is fixed at EXTENT_MAP_HOLE
5407                          */
5408                         em->block_start = hole_em->block_start;
5409                         em->block_len = hole_len;
5410                 } else {
5411                         em->start = range_start;
5412                         em->len = found;
5413                         em->orig_start = range_start;
5414                         em->block_start = EXTENT_MAP_DELALLOC;
5415                         em->block_len = found;
5416                 }
5417         } else if (hole_em) {
5418                 return hole_em;
5419         }
5420 out:
5421
5422         free_extent_map(hole_em);
5423         if (err) {
5424                 free_extent_map(em);
5425                 return ERR_PTR(err);
5426         }
5427         return em;
5428 }
5429
5430 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5431                                                   u64 start, u64 len)
5432 {
5433         struct btrfs_root *root = BTRFS_I(inode)->root;
5434         struct btrfs_trans_handle *trans;
5435         struct extent_map *em;
5436         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5437         struct btrfs_key ins;
5438         u64 alloc_hint;
5439         int ret;
5440
5441         btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5442
5443         trans = btrfs_join_transaction(root, 0);
5444         if (IS_ERR(trans))
5445                 return ERR_CAST(trans);
5446
5447         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5448
5449         alloc_hint = get_extent_allocation_hint(inode, start, len);
5450         ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5451                                    alloc_hint, (u64)-1, &ins, 1);
5452         if (ret) {
5453                 em = ERR_PTR(ret);
5454                 goto out;
5455         }
5456
5457         em = alloc_extent_map(GFP_NOFS);
5458         if (!em) {
5459                 em = ERR_PTR(-ENOMEM);
5460                 goto out;
5461         }
5462
5463         em->start = start;
5464         em->orig_start = em->start;
5465         em->len = ins.offset;
5466
5467         em->block_start = ins.objectid;
5468         em->block_len = ins.offset;
5469         em->bdev = root->fs_info->fs_devices->latest_bdev;
5470         set_bit(EXTENT_FLAG_PINNED, &em->flags);
5471
5472         while (1) {
5473                 write_lock(&em_tree->lock);
5474                 ret = add_extent_mapping(em_tree, em);
5475                 write_unlock(&em_tree->lock);
5476                 if (ret != -EEXIST)
5477                         break;
5478                 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5479         }
5480
5481         ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5482                                            ins.offset, ins.offset, 0);
5483         if (ret) {
5484                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5485                 em = ERR_PTR(ret);
5486         }
5487 out:
5488         btrfs_end_transaction(trans, root);
5489         return em;
5490 }
5491
5492 /*
5493  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5494  * block must be cow'd
5495  */
5496 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5497                                       struct inode *inode, u64 offset, u64 len)
5498 {
5499         struct btrfs_path *path;
5500         int ret;
5501         struct extent_buffer *leaf;
5502         struct btrfs_root *root = BTRFS_I(inode)->root;
5503         struct btrfs_file_extent_item *fi;
5504         struct btrfs_key key;
5505         u64 disk_bytenr;
5506         u64 backref_offset;
5507         u64 extent_end;
5508         u64 num_bytes;
5509         int slot;
5510         int found_type;
5511
5512         path = btrfs_alloc_path();
5513         if (!path)
5514                 return -ENOMEM;
5515
5516         ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5517                                        offset, 0);
5518         if (ret < 0)
5519                 goto out;
5520
5521         slot = path->slots[0];
5522         if (ret == 1) {
5523                 if (slot == 0) {
5524                         /* can't find the item, must cow */
5525                         ret = 0;
5526                         goto out;
5527                 }
5528                 slot--;
5529         }
5530         ret = 0;
5531         leaf = path->nodes[0];
5532         btrfs_item_key_to_cpu(leaf, &key, slot);
5533         if (key.objectid != inode->i_ino ||
5534             key.type != BTRFS_EXTENT_DATA_KEY) {
5535                 /* not our file or wrong item type, must cow */
5536                 goto out;
5537         }
5538
5539         if (key.offset > offset) {
5540                 /* Wrong offset, must cow */
5541                 goto out;
5542         }
5543
5544         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5545         found_type = btrfs_file_extent_type(leaf, fi);
5546         if (found_type != BTRFS_FILE_EXTENT_REG &&
5547             found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5548                 /* not a regular extent, must cow */
5549                 goto out;
5550         }
5551         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5552         backref_offset = btrfs_file_extent_offset(leaf, fi);
5553
5554         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5555         if (extent_end < offset + len) {
5556                 /* extent doesn't include our full range, must cow */
5557                 goto out;
5558         }
5559
5560         if (btrfs_extent_readonly(root, disk_bytenr))
5561                 goto out;
5562
5563         /*
5564          * look for other files referencing this extent, if we
5565          * find any we must cow
5566          */
5567         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5568                                   key.offset - backref_offset, disk_bytenr))
5569                 goto out;
5570
5571         /*
5572          * adjust disk_bytenr and num_bytes to cover just the bytes
5573          * in this extent we are about to write.  If there
5574          * are any csums in that range we have to cow in order
5575          * to keep the csums correct
5576          */
5577         disk_bytenr += backref_offset;
5578         disk_bytenr += offset - key.offset;
5579         num_bytes = min(offset + len, extent_end) - offset;
5580         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5581                                 goto out;
5582         /*
5583          * all of the above have passed, it is safe to overwrite this extent
5584          * without cow
5585          */
5586         ret = 1;
5587 out:
5588         btrfs_free_path(path);
5589         return ret;
5590 }
5591
5592 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5593                                    struct buffer_head *bh_result, int create)
5594 {
5595         struct extent_map *em;
5596         struct btrfs_root *root = BTRFS_I(inode)->root;
5597         u64 start = iblock << inode->i_blkbits;
5598         u64 len = bh_result->b_size;
5599         struct btrfs_trans_handle *trans;
5600
5601         em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5602         if (IS_ERR(em))
5603                 return PTR_ERR(em);
5604
5605         /*
5606          * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5607          * io.  INLINE is special, and we could probably kludge it in here, but
5608          * it's still buffered so for safety lets just fall back to the generic
5609          * buffered path.
5610          *
5611          * For COMPRESSED we _have_ to read the entire extent in so we can
5612          * decompress it, so there will be buffering required no matter what we
5613          * do, so go ahead and fallback to buffered.
5614          *
5615          * We return -ENOTBLK because thats what makes DIO go ahead and go back
5616          * to buffered IO.  Don't blame me, this is the price we pay for using
5617          * the generic code.
5618          */
5619         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5620             em->block_start == EXTENT_MAP_INLINE) {
5621                 free_extent_map(em);
5622                 return -ENOTBLK;
5623         }
5624
5625         /* Just a good old fashioned hole, return */
5626         if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5627                         test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5628                 free_extent_map(em);
5629                 /* DIO will do one hole at a time, so just unlock a sector */
5630                 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5631                               start + root->sectorsize - 1, GFP_NOFS);
5632                 return 0;
5633         }
5634
5635         /*
5636          * We don't allocate a new extent in the following cases
5637          *
5638          * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5639          * existing extent.
5640          * 2) The extent is marked as PREALLOC.  We're good to go here and can
5641          * just use the extent.
5642          *
5643          */
5644         if (!create) {
5645                 len = em->len - (start - em->start);
5646                 goto map;
5647         }
5648
5649         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5650             ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5651              em->block_start != EXTENT_MAP_HOLE)) {
5652                 int type;
5653                 int ret;
5654                 u64 block_start;
5655
5656                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5657                         type = BTRFS_ORDERED_PREALLOC;
5658                 else
5659                         type = BTRFS_ORDERED_NOCOW;
5660                 len = min(len, em->len - (start - em->start));
5661                 block_start = em->block_start + (start - em->start);
5662
5663                 /*
5664                  * we're not going to log anything, but we do need
5665                  * to make sure the current transaction stays open
5666                  * while we look for nocow cross refs
5667                  */
5668                 trans = btrfs_join_transaction(root, 0);
5669                 if (IS_ERR(trans))
5670                         goto must_cow;
5671
5672                 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5673                         ret = btrfs_add_ordered_extent_dio(inode, start,
5674                                            block_start, len, len, type);
5675                         btrfs_end_transaction(trans, root);
5676                         if (ret) {
5677                                 free_extent_map(em);
5678                                 return ret;
5679                         }
5680                         goto unlock;
5681                 }
5682                 btrfs_end_transaction(trans, root);
5683         }
5684 must_cow:
5685         /*
5686          * this will cow the extent, reset the len in case we changed
5687          * it above
5688          */
5689         len = bh_result->b_size;
5690         free_extent_map(em);
5691         em = btrfs_new_extent_direct(inode, start, len);
5692         if (IS_ERR(em))
5693                 return PTR_ERR(em);
5694         len = min(len, em->len - (start - em->start));
5695 unlock:
5696         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5697                           EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5698                           0, NULL, GFP_NOFS);
5699 map:
5700         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5701                 inode->i_blkbits;
5702         bh_result->b_size = len;
5703         bh_result->b_bdev = em->bdev;
5704         set_buffer_mapped(bh_result);
5705         if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5706                 set_buffer_new(bh_result);
5707
5708         free_extent_map(em);
5709
5710         return 0;
5711 }
5712
5713 struct btrfs_dio_private {
5714         struct inode *inode;
5715         u64 logical_offset;
5716         u64 disk_bytenr;
5717         u64 bytes;
5718         u32 *csums;
5719         void *private;
5720
5721         /* number of bios pending for this dio */
5722         atomic_t pending_bios;
5723
5724         /* IO errors */
5725         int errors;
5726
5727         struct bio *orig_bio;
5728 };
5729
5730 static void btrfs_endio_direct_read(struct bio *bio, int err)
5731 {
5732         struct btrfs_dio_private *dip = bio->bi_private;
5733         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5734         struct bio_vec *bvec = bio->bi_io_vec;
5735         struct inode *inode = dip->inode;
5736         struct btrfs_root *root = BTRFS_I(inode)->root;
5737         u64 start;
5738         u32 *private = dip->csums;
5739
5740         start = dip->logical_offset;
5741         do {
5742                 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5743                         struct page *page = bvec->bv_page;
5744                         char *kaddr;
5745                         u32 csum = ~(u32)0;
5746                         unsigned long flags;
5747
5748                         local_irq_save(flags);
5749                         kaddr = kmap_atomic(page, KM_IRQ0);
5750                         csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5751                                                csum, bvec->bv_len);
5752                         btrfs_csum_final(csum, (char *)&csum);
5753                         kunmap_atomic(kaddr, KM_IRQ0);
5754                         local_irq_restore(flags);
5755
5756                         flush_dcache_page(bvec->bv_page);
5757                         if (csum != *private) {
5758                                 printk(KERN_ERR "btrfs csum failed ino %lu off"
5759                                       " %llu csum %u private %u\n",
5760                                       inode->i_ino, (unsigned long long)start,
5761                                       csum, *private);
5762                                 err = -EIO;
5763                         }
5764                 }
5765
5766                 start += bvec->bv_len;
5767                 private++;
5768                 bvec++;
5769         } while (bvec <= bvec_end);
5770
5771         unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5772                       dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5773         bio->bi_private = dip->private;
5774
5775         kfree(dip->csums);
5776         kfree(dip);
5777
5778         /* If we had a csum failure make sure to clear the uptodate flag */
5779         if (err)
5780                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5781         dio_end_io(bio, err);
5782 }
5783
5784 static void btrfs_endio_direct_write(struct bio *bio, int err)
5785 {
5786         struct btrfs_dio_private *dip = bio->bi_private;
5787         struct inode *inode = dip->inode;
5788         struct btrfs_root *root = BTRFS_I(inode)->root;
5789         struct btrfs_trans_handle *trans;
5790         struct btrfs_ordered_extent *ordered = NULL;
5791         struct extent_state *cached_state = NULL;
5792         u64 ordered_offset = dip->logical_offset;
5793         u64 ordered_bytes = dip->bytes;
5794         int ret;
5795
5796         if (err)
5797                 goto out_done;
5798 again:
5799         ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5800                                                    &ordered_offset,
5801                                                    ordered_bytes);
5802         if (!ret)
5803                 goto out_test;
5804
5805         BUG_ON(!ordered);
5806
5807         trans = btrfs_join_transaction(root, 1);
5808         if (IS_ERR(trans)) {
5809                 err = -ENOMEM;
5810                 goto out;
5811         }
5812         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5813
5814         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5815                 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5816                 if (!ret)
5817                         ret = btrfs_update_inode(trans, root, inode);
5818                 err = ret;
5819                 goto out;
5820         }
5821
5822         lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5823                          ordered->file_offset + ordered->len - 1, 0,
5824                          &cached_state, GFP_NOFS);
5825
5826         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5827                 ret = btrfs_mark_extent_written(trans, inode,
5828                                                 ordered->file_offset,
5829                                                 ordered->file_offset +
5830                                                 ordered->len);
5831                 if (ret) {
5832                         err = ret;
5833                         goto out_unlock;
5834                 }
5835         } else {
5836                 ret = insert_reserved_file_extent(trans, inode,
5837                                                   ordered->file_offset,
5838                                                   ordered->start,
5839                                                   ordered->disk_len,
5840                                                   ordered->len,
5841                                                   ordered->len,
5842                                                   0, 0, 0,
5843                                                   BTRFS_FILE_EXTENT_REG);
5844                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5845                                    ordered->file_offset, ordered->len);
5846                 if (ret) {
5847                         err = ret;
5848                         WARN_ON(1);
5849                         goto out_unlock;
5850                 }
5851         }
5852
5853         add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5854         btrfs_ordered_update_i_size(inode, 0, ordered);
5855         btrfs_update_inode(trans, root, inode);
5856 out_unlock:
5857         unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5858                              ordered->file_offset + ordered->len - 1,
5859                              &cached_state, GFP_NOFS);
5860 out:
5861         btrfs_delalloc_release_metadata(inode, ordered->len);
5862         btrfs_end_transaction(trans, root);
5863         ordered_offset = ordered->file_offset + ordered->len;
5864         btrfs_put_ordered_extent(ordered);
5865         btrfs_put_ordered_extent(ordered);
5866
5867 out_test:
5868         /*
5869          * our bio might span multiple ordered extents.  If we haven't
5870          * completed the accounting for the whole dio, go back and try again
5871          */
5872         if (ordered_offset < dip->logical_offset + dip->bytes) {
5873                 ordered_bytes = dip->logical_offset + dip->bytes -
5874                         ordered_offset;
5875                 goto again;
5876         }
5877 out_done:
5878         bio->bi_private = dip->private;
5879
5880         kfree(dip->csums);
5881         kfree(dip);
5882
5883         /* If we had an error make sure to clear the uptodate flag */
5884         if (err)
5885                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5886         dio_end_io(bio, err);
5887 }
5888
5889 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5890                                     struct bio *bio, int mirror_num,
5891                                     unsigned long bio_flags, u64 offset)
5892 {
5893         int ret;
5894         struct btrfs_root *root = BTRFS_I(inode)->root;
5895         ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5896         BUG_ON(ret);
5897         return 0;
5898 }
5899
5900 static void btrfs_end_dio_bio(struct bio *bio, int err)
5901 {
5902         struct btrfs_dio_private *dip = bio->bi_private;
5903
5904         if (err) {
5905                 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
5906                       "sector %#Lx len %u err no %d\n",
5907                       dip->inode->i_ino, bio->bi_rw,
5908                       (unsigned long long)bio->bi_sector, bio->bi_size, err);
5909                 dip->errors = 1;
5910
5911                 /*
5912                  * before atomic variable goto zero, we must make sure
5913                  * dip->errors is perceived to be set.
5914                  */
5915                 smp_mb__before_atomic_dec();
5916         }
5917
5918         /* if there are more bios still pending for this dio, just exit */
5919         if (!atomic_dec_and_test(&dip->pending_bios))
5920                 goto out;
5921
5922         if (dip->errors)
5923                 bio_io_error(dip->orig_bio);
5924         else {
5925                 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5926                 bio_endio(dip->orig_bio, 0);
5927         }
5928 out:
5929         bio_put(bio);
5930 }
5931
5932 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5933                                        u64 first_sector, gfp_t gfp_flags)
5934 {
5935         int nr_vecs = bio_get_nr_vecs(bdev);
5936         return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5937 }
5938
5939 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5940                                          int rw, u64 file_offset, int skip_sum,
5941                                          u32 *csums)
5942 {
5943         int write = rw & REQ_WRITE;
5944         struct btrfs_root *root = BTRFS_I(inode)->root;
5945         int ret;
5946
5947         bio_get(bio);
5948         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5949         if (ret)
5950                 goto err;
5951
5952         if (write && !skip_sum) {
5953                 ret = btrfs_wq_submit_bio(root->fs_info,
5954                                    inode, rw, bio, 0, 0,
5955                                    file_offset,
5956                                    __btrfs_submit_bio_start_direct_io,
5957                                    __btrfs_submit_bio_done);
5958                 goto err;
5959         } else if (!skip_sum) {
5960                 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
5961                                           file_offset, csums);
5962                 if (ret)
5963                         goto err;
5964         }
5965
5966         ret = btrfs_map_bio(root, rw, bio, 0, 1);
5967 err:
5968         bio_put(bio);
5969         return ret;
5970 }
5971
5972 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5973                                     int skip_sum)
5974 {
5975         struct inode *inode = dip->inode;
5976         struct btrfs_root *root = BTRFS_I(inode)->root;
5977         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5978         struct bio *bio;
5979         struct bio *orig_bio = dip->orig_bio;
5980         struct bio_vec *bvec = orig_bio->bi_io_vec;
5981         u64 start_sector = orig_bio->bi_sector;
5982         u64 file_offset = dip->logical_offset;
5983         u64 submit_len = 0;
5984         u64 map_length;
5985         int nr_pages = 0;
5986         u32 *csums = dip->csums;
5987         int ret = 0;
5988         int write = rw & REQ_WRITE;
5989
5990         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5991         if (!bio)
5992                 return -ENOMEM;
5993         bio->bi_private = dip;
5994         bio->bi_end_io = btrfs_end_dio_bio;
5995         atomic_inc(&dip->pending_bios);
5996
5997         map_length = orig_bio->bi_size;
5998         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5999                               &map_length, NULL, 0);
6000         if (ret) {
6001                 bio_put(bio);
6002                 return -EIO;
6003         }
6004
6005         while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6006                 if (unlikely(map_length < submit_len + bvec->bv_len ||
6007                     bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6008                                  bvec->bv_offset) < bvec->bv_len)) {
6009                         /*
6010                          * inc the count before we submit the bio so
6011                          * we know the end IO handler won't happen before
6012                          * we inc the count. Otherwise, the dip might get freed
6013                          * before we're done setting it up
6014                          */
6015                         atomic_inc(&dip->pending_bios);
6016                         ret = __btrfs_submit_dio_bio(bio, inode, rw,
6017                                                      file_offset, skip_sum,
6018                                                      csums);
6019                         if (ret) {
6020                                 bio_put(bio);
6021                                 atomic_dec(&dip->pending_bios);
6022                                 goto out_err;
6023                         }
6024
6025                         /* Write's use the ordered csums */
6026                         if (!write && !skip_sum)
6027                                 csums = csums + nr_pages;
6028                         start_sector += submit_len >> 9;
6029                         file_offset += submit_len;
6030
6031                         submit_len = 0;
6032                         nr_pages = 0;
6033
6034                         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6035                                                   start_sector, GFP_NOFS);
6036                         if (!bio)
6037                                 goto out_err;
6038                         bio->bi_private = dip;
6039                         bio->bi_end_io = btrfs_end_dio_bio;
6040
6041                         map_length = orig_bio->bi_size;
6042                         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6043                                               &map_length, NULL, 0);
6044                         if (ret) {
6045                                 bio_put(bio);
6046                                 goto out_err;
6047                         }
6048                 } else {
6049                         submit_len += bvec->bv_len;
6050                         nr_pages ++;
6051                         bvec++;
6052                 }
6053         }
6054
6055         ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6056                                      csums);
6057         if (!ret)
6058                 return 0;
6059
6060         bio_put(bio);
6061 out_err:
6062         dip->errors = 1;
6063         /*
6064          * before atomic variable goto zero, we must
6065          * make sure dip->errors is perceived to be set.
6066          */
6067         smp_mb__before_atomic_dec();
6068         if (atomic_dec_and_test(&dip->pending_bios))
6069                 bio_io_error(dip->orig_bio);
6070
6071         /* bio_end_io() will handle error, so we needn't return it */
6072         return 0;
6073 }
6074
6075 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6076                                 loff_t file_offset)
6077 {
6078         struct btrfs_root *root = BTRFS_I(inode)->root;
6079         struct btrfs_dio_private *dip;
6080         struct bio_vec *bvec = bio->bi_io_vec;
6081         int skip_sum;
6082         int write = rw & REQ_WRITE;
6083         int ret = 0;
6084
6085         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6086
6087         dip = kmalloc(sizeof(*dip), GFP_NOFS);
6088         if (!dip) {
6089                 ret = -ENOMEM;
6090                 goto free_ordered;
6091         }
6092         dip->csums = NULL;
6093
6094         /* Write's use the ordered csum stuff, so we don't need dip->csums */
6095         if (!write && !skip_sum) {
6096                 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6097                 if (!dip->csums) {
6098                         kfree(dip);
6099                         ret = -ENOMEM;
6100                         goto free_ordered;
6101                 }
6102         }
6103
6104         dip->private = bio->bi_private;
6105         dip->inode = inode;
6106         dip->logical_offset = file_offset;
6107
6108         dip->bytes = 0;
6109         do {
6110                 dip->bytes += bvec->bv_len;
6111                 bvec++;
6112         } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6113
6114         dip->disk_bytenr = (u64)bio->bi_sector << 9;
6115         bio->bi_private = dip;
6116         dip->errors = 0;
6117         dip->orig_bio = bio;
6118         atomic_set(&dip->pending_bios, 0);
6119
6120         if (write)
6121                 bio->bi_end_io = btrfs_endio_direct_write;
6122         else
6123                 bio->bi_end_io = btrfs_endio_direct_read;
6124
6125         ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6126         if (!ret)
6127                 return;
6128 free_ordered:
6129         /*
6130          * If this is a write, we need to clean up the reserved space and kill
6131          * the ordered extent.
6132          */
6133         if (write) {
6134                 struct btrfs_ordered_extent *ordered;
6135                 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6136                 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6137                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6138                         btrfs_free_reserved_extent(root, ordered->start,
6139                                                    ordered->disk_len);
6140                 btrfs_put_ordered_extent(ordered);
6141                 btrfs_put_ordered_extent(ordered);
6142         }
6143         bio_endio(bio, ret);
6144 }
6145
6146 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6147                         const struct iovec *iov, loff_t offset,
6148                         unsigned long nr_segs)
6149 {
6150         int seg;
6151         size_t size;
6152         unsigned long addr;
6153         unsigned blocksize_mask = root->sectorsize - 1;
6154         ssize_t retval = -EINVAL;
6155         loff_t end = offset;
6156
6157         if (offset & blocksize_mask)
6158                 goto out;
6159
6160         /* Check the memory alignment.  Blocks cannot straddle pages */
6161         for (seg = 0; seg < nr_segs; seg++) {
6162                 addr = (unsigned long)iov[seg].iov_base;
6163                 size = iov[seg].iov_len;
6164                 end += size;
6165                 if ((addr & blocksize_mask) || (size & blocksize_mask)) 
6166                         goto out;
6167         }
6168         retval = 0;
6169 out:
6170         return retval;
6171 }
6172 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6173                         const struct iovec *iov, loff_t offset,
6174                         unsigned long nr_segs)
6175 {
6176         struct file *file = iocb->ki_filp;
6177         struct inode *inode = file->f_mapping->host;
6178         struct btrfs_ordered_extent *ordered;
6179         struct extent_state *cached_state = NULL;
6180         u64 lockstart, lockend;
6181         ssize_t ret;
6182         int writing = rw & WRITE;
6183         int write_bits = 0;
6184         size_t count = iov_length(iov, nr_segs);
6185
6186         if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6187                             offset, nr_segs)) {
6188                 return 0;
6189         }
6190
6191         lockstart = offset;
6192         lockend = offset + count - 1;
6193
6194         if (writing) {
6195                 ret = btrfs_delalloc_reserve_space(inode, count);
6196                 if (ret)
6197                         goto out;
6198         }
6199
6200         while (1) {
6201                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6202                                  0, &cached_state, GFP_NOFS);
6203                 /*
6204                  * We're concerned with the entire range that we're going to be
6205                  * doing DIO to, so we need to make sure theres no ordered
6206                  * extents in this range.
6207                  */
6208                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6209                                                      lockend - lockstart + 1);
6210                 if (!ordered)
6211                         break;
6212                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6213                                      &cached_state, GFP_NOFS);
6214                 btrfs_start_ordered_extent(inode, ordered, 1);
6215                 btrfs_put_ordered_extent(ordered);
6216                 cond_resched();
6217         }
6218
6219         /*
6220          * we don't use btrfs_set_extent_delalloc because we don't want
6221          * the dirty or uptodate bits
6222          */
6223         if (writing) {
6224                 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6225                 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6226                                      EXTENT_DELALLOC, 0, NULL, &cached_state,
6227                                      GFP_NOFS);
6228                 if (ret) {
6229                         clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6230                                          lockend, EXTENT_LOCKED | write_bits,
6231                                          1, 0, &cached_state, GFP_NOFS);
6232                         goto out;
6233                 }
6234         }
6235
6236         free_extent_state(cached_state);
6237         cached_state = NULL;
6238
6239         ret = __blockdev_direct_IO(rw, iocb, inode,
6240                    BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6241                    iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6242                    btrfs_submit_direct, 0);
6243
6244         if (ret < 0 && ret != -EIOCBQUEUED) {
6245                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6246                               offset + iov_length(iov, nr_segs) - 1,
6247                               EXTENT_LOCKED | write_bits, 1, 0,
6248                               &cached_state, GFP_NOFS);
6249         } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6250                 /*
6251                  * We're falling back to buffered, unlock the section we didn't
6252                  * do IO on.
6253                  */
6254                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6255                               offset + iov_length(iov, nr_segs) - 1,
6256                               EXTENT_LOCKED | write_bits, 1, 0,
6257                               &cached_state, GFP_NOFS);
6258         }
6259 out:
6260         free_extent_state(cached_state);
6261         return ret;
6262 }
6263
6264 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6265                 __u64 start, __u64 len)
6266 {
6267         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6268 }
6269
6270 int btrfs_readpage(struct file *file, struct page *page)
6271 {
6272         struct extent_io_tree *tree;
6273         tree = &BTRFS_I(page->mapping->host)->io_tree;
6274         return extent_read_full_page(tree, page, btrfs_get_extent);
6275 }
6276
6277 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6278 {
6279         struct extent_io_tree *tree;
6280
6281
6282         if (current->flags & PF_MEMALLOC) {
6283                 redirty_page_for_writepage(wbc, page);
6284                 unlock_page(page);
6285                 return 0;
6286         }
6287         tree = &BTRFS_I(page->mapping->host)->io_tree;
6288         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6289 }
6290
6291 int btrfs_writepages(struct address_space *mapping,
6292                      struct writeback_control *wbc)
6293 {
6294         struct extent_io_tree *tree;
6295
6296         tree = &BTRFS_I(mapping->host)->io_tree;
6297         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6298 }
6299
6300 static int
6301 btrfs_readpages(struct file *file, struct address_space *mapping,
6302                 struct list_head *pages, unsigned nr_pages)
6303 {
6304         struct extent_io_tree *tree;
6305         tree = &BTRFS_I(mapping->host)->io_tree;
6306         return extent_readpages(tree, mapping, pages, nr_pages,
6307                                 btrfs_get_extent);
6308 }
6309 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6310 {
6311         struct extent_io_tree *tree;
6312         struct extent_map_tree *map;
6313         int ret;
6314
6315         tree = &BTRFS_I(page->mapping->host)->io_tree;
6316         map = &BTRFS_I(page->mapping->host)->extent_tree;
6317         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6318         if (ret == 1) {
6319                 ClearPagePrivate(page);
6320                 set_page_private(page, 0);
6321                 page_cache_release(page);
6322         }
6323         return ret;
6324 }
6325
6326 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6327 {
6328         if (PageWriteback(page) || PageDirty(page))
6329                 return 0;
6330         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6331 }
6332
6333 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6334 {
6335         struct extent_io_tree *tree;
6336         struct btrfs_ordered_extent *ordered;
6337         struct extent_state *cached_state = NULL;
6338         u64 page_start = page_offset(page);
6339         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6340
6341
6342         /*
6343          * we have the page locked, so new writeback can't start,
6344          * and the dirty bit won't be cleared while we are here.
6345          *
6346          * Wait for IO on this page so that we can safely clear
6347          * the PagePrivate2 bit and do ordered accounting
6348          */
6349         wait_on_page_writeback(page);
6350
6351         tree = &BTRFS_I(page->mapping->host)->io_tree;
6352         if (offset) {
6353                 btrfs_releasepage(page, GFP_NOFS);
6354                 return;
6355         }
6356         lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6357                          GFP_NOFS);
6358         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6359                                            page_offset(page));
6360         if (ordered) {
6361                 /*
6362                  * IO on this page will never be started, so we need
6363                  * to account for any ordered extents now
6364                  */
6365                 clear_extent_bit(tree, page_start, page_end,
6366                                  EXTENT_DIRTY | EXTENT_DELALLOC |
6367                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6368                                  &cached_state, GFP_NOFS);
6369                 /*
6370                  * whoever cleared the private bit is responsible
6371                  * for the finish_ordered_io
6372                  */
6373                 if (TestClearPagePrivate2(page)) {
6374                         btrfs_finish_ordered_io(page->mapping->host,
6375                                                 page_start, page_end);
6376                 }
6377                 btrfs_put_ordered_extent(ordered);
6378                 cached_state = NULL;
6379                 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6380                                  GFP_NOFS);
6381         }
6382         clear_extent_bit(tree, page_start, page_end,
6383                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6384                  EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6385         __btrfs_releasepage(page, GFP_NOFS);
6386
6387         ClearPageChecked(page);
6388         if (PagePrivate(page)) {
6389                 ClearPagePrivate(page);
6390                 set_page_private(page, 0);
6391                 page_cache_release(page);
6392         }
6393 }
6394
6395 /*
6396  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6397  * called from a page fault handler when a page is first dirtied. Hence we must
6398  * be careful to check for EOF conditions here. We set the page up correctly
6399  * for a written page which means we get ENOSPC checking when writing into
6400  * holes and correct delalloc and unwritten extent mapping on filesystems that
6401  * support these features.
6402  *
6403  * We are not allowed to take the i_mutex here so we have to play games to
6404  * protect against truncate races as the page could now be beyond EOF.  Because
6405  * vmtruncate() writes the inode size before removing pages, once we have the
6406  * page lock we can determine safely if the page is beyond EOF. If it is not
6407  * beyond EOF, then the page is guaranteed safe against truncation until we
6408  * unlock the page.
6409  */
6410 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6411 {
6412         struct page *page = vmf->page;
6413         struct inode *inode = fdentry(vma->vm_file)->d_inode;
6414         struct btrfs_root *root = BTRFS_I(inode)->root;
6415         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6416         struct btrfs_ordered_extent *ordered;
6417         struct extent_state *cached_state = NULL;
6418         char *kaddr;
6419         unsigned long zero_start;
6420         loff_t size;
6421         int ret;
6422         u64 page_start;
6423         u64 page_end;
6424
6425         ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6426         if (ret) {
6427                 if (ret == -ENOMEM)
6428                         ret = VM_FAULT_OOM;
6429                 else /* -ENOSPC, -EIO, etc */
6430                         ret = VM_FAULT_SIGBUS;
6431                 goto out;
6432         }
6433
6434         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6435 again:
6436         lock_page(page);
6437         size = i_size_read(inode);
6438         page_start = page_offset(page);
6439         page_end = page_start + PAGE_CACHE_SIZE - 1;
6440
6441         if ((page->mapping != inode->i_mapping) ||
6442             (page_start >= size)) {
6443                 /* page got truncated out from underneath us */
6444                 goto out_unlock;
6445         }
6446         wait_on_page_writeback(page);
6447
6448         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6449                          GFP_NOFS);
6450         set_page_extent_mapped(page);
6451
6452         /*
6453          * we can't set the delalloc bits if there are pending ordered
6454          * extents.  Drop our locks and wait for them to finish
6455          */
6456         ordered = btrfs_lookup_ordered_extent(inode, page_start);
6457         if (ordered) {
6458                 unlock_extent_cached(io_tree, page_start, page_end,
6459                                      &cached_state, GFP_NOFS);
6460                 unlock_page(page);
6461                 btrfs_start_ordered_extent(inode, ordered, 1);
6462                 btrfs_put_ordered_extent(ordered);
6463                 goto again;
6464         }
6465
6466         /*
6467          * XXX - page_mkwrite gets called every time the page is dirtied, even
6468          * if it was already dirty, so for space accounting reasons we need to
6469          * clear any delalloc bits for the range we are fixing to save.  There
6470          * is probably a better way to do this, but for now keep consistent with
6471          * prepare_pages in the normal write path.
6472          */
6473         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6474                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6475                           0, 0, &cached_state, GFP_NOFS);
6476
6477         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6478                                         &cached_state);
6479         if (ret) {
6480                 unlock_extent_cached(io_tree, page_start, page_end,
6481                                      &cached_state, GFP_NOFS);
6482                 ret = VM_FAULT_SIGBUS;
6483                 goto out_unlock;
6484         }
6485         ret = 0;
6486
6487         /* page is wholly or partially inside EOF */
6488         if (page_start + PAGE_CACHE_SIZE > size)
6489                 zero_start = size & ~PAGE_CACHE_MASK;
6490         else
6491                 zero_start = PAGE_CACHE_SIZE;
6492
6493         if (zero_start != PAGE_CACHE_SIZE) {
6494                 kaddr = kmap(page);
6495                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6496                 flush_dcache_page(page);
6497                 kunmap(page);
6498         }
6499         ClearPageChecked(page);
6500         set_page_dirty(page);
6501         SetPageUptodate(page);
6502
6503         BTRFS_I(inode)->last_trans = root->fs_info->generation;
6504         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6505
6506         unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6507
6508 out_unlock:
6509         if (!ret)
6510                 return VM_FAULT_LOCKED;
6511         unlock_page(page);
6512         btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6513 out:
6514         return ret;
6515 }
6516
6517 static int btrfs_truncate(struct inode *inode)
6518 {
6519         struct btrfs_root *root = BTRFS_I(inode)->root;
6520         int ret;
6521         int err = 0;
6522         struct btrfs_trans_handle *trans;
6523         unsigned long nr;
6524         u64 mask = root->sectorsize - 1;
6525
6526         ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6527         if (ret)
6528                 return ret;
6529
6530         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6531         btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6532
6533         trans = btrfs_start_transaction(root, 5);
6534         if (IS_ERR(trans))
6535                 return PTR_ERR(trans);
6536
6537         btrfs_set_trans_block_group(trans, inode);
6538
6539         ret = btrfs_orphan_add(trans, inode);
6540         if (ret) {
6541                 btrfs_end_transaction(trans, root);
6542                 return ret;
6543         }
6544
6545         nr = trans->blocks_used;
6546         btrfs_end_transaction(trans, root);
6547         btrfs_btree_balance_dirty(root, nr);
6548
6549         /* Now start a transaction for the truncate */
6550         trans = btrfs_start_transaction(root, 0);
6551         if (IS_ERR(trans))
6552                 return PTR_ERR(trans);
6553         btrfs_set_trans_block_group(trans, inode);
6554         trans->block_rsv = root->orphan_block_rsv;
6555
6556         /*
6557          * setattr is responsible for setting the ordered_data_close flag,
6558          * but that is only tested during the last file release.  That
6559          * could happen well after the next commit, leaving a great big
6560          * window where new writes may get lost if someone chooses to write
6561          * to this file after truncating to zero
6562          *
6563          * The inode doesn't have any dirty data here, and so if we commit
6564          * this is a noop.  If someone immediately starts writing to the inode
6565          * it is very likely we'll catch some of their writes in this
6566          * transaction, and the commit will find this file on the ordered
6567          * data list with good things to send down.
6568          *
6569          * This is a best effort solution, there is still a window where
6570          * using truncate to replace the contents of the file will
6571          * end up with a zero length file after a crash.
6572          */
6573         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6574                 btrfs_add_ordered_operation(trans, root, inode);
6575
6576         while (1) {
6577                 if (!trans) {
6578                         trans = btrfs_start_transaction(root, 0);
6579                         if (IS_ERR(trans))
6580                                 return PTR_ERR(trans);
6581                         btrfs_set_trans_block_group(trans, inode);
6582                         trans->block_rsv = root->orphan_block_rsv;
6583                 }
6584
6585                 ret = btrfs_block_rsv_check(trans, root,
6586                                             root->orphan_block_rsv, 0, 5);
6587                 if (ret == -EAGAIN) {
6588                         ret = btrfs_commit_transaction(trans, root);
6589                         if (ret)
6590                                 return ret;
6591                         trans = NULL;
6592                         continue;
6593                 } else if (ret) {
6594                         err = ret;
6595                         break;
6596                 }
6597
6598                 ret = btrfs_truncate_inode_items(trans, root, inode,
6599                                                  inode->i_size,
6600                                                  BTRFS_EXTENT_DATA_KEY);
6601                 if (ret != -EAGAIN) {
6602                         err = ret;
6603                         break;
6604                 }
6605
6606                 ret = btrfs_update_inode(trans, root, inode);
6607                 if (ret) {
6608                         err = ret;
6609                         break;
6610                 }
6611
6612                 nr = trans->blocks_used;
6613                 btrfs_end_transaction(trans, root);
6614                 trans = NULL;
6615                 btrfs_btree_balance_dirty(root, nr);
6616         }
6617
6618         if (ret == 0 && inode->i_nlink > 0) {
6619                 ret = btrfs_orphan_del(trans, inode);
6620                 if (ret)
6621                         err = ret;
6622         } else if (ret && inode->i_nlink > 0) {
6623                 /*
6624                  * Failed to do the truncate, remove us from the in memory
6625                  * orphan list.
6626                  */
6627                 ret = btrfs_orphan_del(NULL, inode);
6628         }
6629
6630         ret = btrfs_update_inode(trans, root, inode);
6631         if (ret && !err)
6632                 err = ret;
6633
6634         nr = trans->blocks_used;
6635         ret = btrfs_end_transaction_throttle(trans, root);
6636         if (ret && !err)
6637                 err = ret;
6638         btrfs_btree_balance_dirty(root, nr);
6639
6640         return err;
6641 }
6642
6643 /*
6644  * create a new subvolume directory/inode (helper for the ioctl).
6645  */
6646 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6647                              struct btrfs_root *new_root,
6648                              u64 new_dirid, u64 alloc_hint)
6649 {
6650         struct inode *inode;
6651         int err;
6652         u64 index = 0;
6653
6654         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6655                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6656         if (IS_ERR(inode))
6657                 return PTR_ERR(inode);
6658         inode->i_op = &btrfs_dir_inode_operations;
6659         inode->i_fop = &btrfs_dir_file_operations;
6660
6661         inode->i_nlink = 1;
6662         btrfs_i_size_write(inode, 0);
6663
6664         err = btrfs_update_inode(trans, new_root, inode);
6665         BUG_ON(err);
6666
6667         iput(inode);
6668         return 0;
6669 }
6670
6671 /* helper function for file defrag and space balancing.  This
6672  * forces readahead on a given range of bytes in an inode
6673  */
6674 unsigned long btrfs_force_ra(struct address_space *mapping,
6675                               struct file_ra_state *ra, struct file *file,
6676                               pgoff_t offset, pgoff_t last_index)
6677 {
6678         pgoff_t req_size = last_index - offset + 1;
6679
6680         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6681         return offset + req_size;
6682 }
6683
6684 struct inode *btrfs_alloc_inode(struct super_block *sb)
6685 {
6686         struct btrfs_inode *ei;
6687         struct inode *inode;
6688
6689         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6690         if (!ei)
6691                 return NULL;
6692
6693         ei->root = NULL;
6694         ei->space_info = NULL;
6695         ei->generation = 0;
6696         ei->sequence = 0;
6697         ei->last_trans = 0;
6698         ei->last_sub_trans = 0;
6699         ei->logged_trans = 0;
6700         ei->delalloc_bytes = 0;
6701         ei->reserved_bytes = 0;
6702         ei->disk_i_size = 0;
6703         ei->flags = 0;
6704         ei->index_cnt = (u64)-1;
6705         ei->last_unlink_trans = 0;
6706
6707         atomic_set(&ei->outstanding_extents, 0);
6708         atomic_set(&ei->reserved_extents, 0);
6709
6710         ei->ordered_data_close = 0;
6711         ei->orphan_meta_reserved = 0;
6712         ei->dummy_inode = 0;
6713         ei->force_compress = BTRFS_COMPRESS_NONE;
6714
6715         inode = &ei->vfs_inode;
6716         extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6717         extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6718         extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6719         mutex_init(&ei->log_mutex);
6720         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6721         INIT_LIST_HEAD(&ei->i_orphan);
6722         INIT_LIST_HEAD(&ei->delalloc_inodes);
6723         INIT_LIST_HEAD(&ei->ordered_operations);
6724         RB_CLEAR_NODE(&ei->rb_node);
6725
6726         return inode;
6727 }
6728
6729 static void btrfs_i_callback(struct rcu_head *head)
6730 {
6731         struct inode *inode = container_of(head, struct inode, i_rcu);
6732         INIT_LIST_HEAD(&inode->i_dentry);
6733         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6734 }
6735
6736 void btrfs_destroy_inode(struct inode *inode)
6737 {
6738         struct btrfs_ordered_extent *ordered;
6739         struct btrfs_root *root = BTRFS_I(inode)->root;
6740
6741         WARN_ON(!list_empty(&inode->i_dentry));
6742         WARN_ON(inode->i_data.nrpages);
6743         WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6744         WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
6745
6746         /*
6747          * This can happen where we create an inode, but somebody else also
6748          * created the same inode and we need to destroy the one we already
6749          * created.
6750          */
6751         if (!root)
6752                 goto free;
6753
6754         /*
6755          * Make sure we're properly removed from the ordered operation
6756          * lists.
6757          */
6758         smp_mb();
6759         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6760                 spin_lock(&root->fs_info->ordered_extent_lock);
6761                 list_del_init(&BTRFS_I(inode)->ordered_operations);
6762                 spin_unlock(&root->fs_info->ordered_extent_lock);
6763         }
6764
6765         if (root == root->fs_info->tree_root) {
6766                 struct btrfs_block_group_cache *block_group;
6767
6768                 block_group = btrfs_lookup_block_group(root->fs_info,
6769                                                 BTRFS_I(inode)->block_group);
6770                 if (block_group && block_group->inode == inode) {
6771                         spin_lock(&block_group->lock);
6772                         block_group->inode = NULL;
6773                         spin_unlock(&block_group->lock);
6774                         btrfs_put_block_group(block_group);
6775                 } else if (block_group) {
6776                         btrfs_put_block_group(block_group);
6777                 }
6778         }
6779
6780         spin_lock(&root->orphan_lock);
6781         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6782                 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6783                        inode->i_ino);
6784                 list_del_init(&BTRFS_I(inode)->i_orphan);
6785         }
6786         spin_unlock(&root->orphan_lock);
6787
6788         while (1) {
6789                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6790                 if (!ordered)
6791                         break;
6792                 else {
6793                         printk(KERN_ERR "btrfs found ordered "
6794                                "extent %llu %llu on inode cleanup\n",
6795                                (unsigned long long)ordered->file_offset,
6796                                (unsigned long long)ordered->len);
6797                         btrfs_remove_ordered_extent(inode, ordered);
6798                         btrfs_put_ordered_extent(ordered);
6799                         btrfs_put_ordered_extent(ordered);
6800                 }
6801         }
6802         inode_tree_del(inode);
6803         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6804 free:
6805         call_rcu(&inode->i_rcu, btrfs_i_callback);
6806 }
6807
6808 int btrfs_drop_inode(struct inode *inode)
6809 {
6810         struct btrfs_root *root = BTRFS_I(inode)->root;
6811
6812         if (btrfs_root_refs(&root->root_item) == 0 &&
6813             root != root->fs_info->tree_root)
6814                 return 1;
6815         else
6816                 return generic_drop_inode(inode);
6817 }
6818
6819 static void init_once(void *foo)
6820 {
6821         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6822
6823         inode_init_once(&ei->vfs_inode);
6824 }
6825
6826 void btrfs_destroy_cachep(void)
6827 {
6828         if (btrfs_inode_cachep)
6829                 kmem_cache_destroy(btrfs_inode_cachep);
6830         if (btrfs_trans_handle_cachep)
6831                 kmem_cache_destroy(btrfs_trans_handle_cachep);
6832         if (btrfs_transaction_cachep)
6833                 kmem_cache_destroy(btrfs_transaction_cachep);
6834         if (btrfs_path_cachep)
6835                 kmem_cache_destroy(btrfs_path_cachep);
6836         if (btrfs_free_space_cachep)
6837                 kmem_cache_destroy(btrfs_free_space_cachep);
6838 }
6839
6840 int btrfs_init_cachep(void)
6841 {
6842         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6843                         sizeof(struct btrfs_inode), 0,
6844                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6845         if (!btrfs_inode_cachep)
6846                 goto fail;
6847
6848         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6849                         sizeof(struct btrfs_trans_handle), 0,
6850                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6851         if (!btrfs_trans_handle_cachep)
6852                 goto fail;
6853
6854         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6855                         sizeof(struct btrfs_transaction), 0,
6856                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6857         if (!btrfs_transaction_cachep)
6858                 goto fail;
6859
6860         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6861                         sizeof(struct btrfs_path), 0,
6862                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6863         if (!btrfs_path_cachep)
6864                 goto fail;
6865
6866         btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6867                         sizeof(struct btrfs_free_space), 0,
6868                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6869         if (!btrfs_free_space_cachep)
6870                 goto fail;
6871
6872         return 0;
6873 fail:
6874         btrfs_destroy_cachep();
6875         return -ENOMEM;
6876 }
6877
6878 static int btrfs_getattr(struct vfsmount *mnt,
6879                          struct dentry *dentry, struct kstat *stat)
6880 {
6881         struct inode *inode = dentry->d_inode;
6882         generic_fillattr(inode, stat);
6883         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6884         stat->blksize = PAGE_CACHE_SIZE;
6885         stat->blocks = (inode_get_bytes(inode) +
6886                         BTRFS_I(inode)->delalloc_bytes) >> 9;
6887         return 0;
6888 }
6889
6890 /*
6891  * If a file is moved, it will inherit the cow and compression flags of the new
6892  * directory.
6893  */
6894 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6895 {
6896         struct btrfs_inode *b_dir = BTRFS_I(dir);
6897         struct btrfs_inode *b_inode = BTRFS_I(inode);
6898
6899         if (b_dir->flags & BTRFS_INODE_NODATACOW)
6900                 b_inode->flags |= BTRFS_INODE_NODATACOW;
6901         else
6902                 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6903
6904         if (b_dir->flags & BTRFS_INODE_COMPRESS)
6905                 b_inode->flags |= BTRFS_INODE_COMPRESS;
6906         else
6907                 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6908 }
6909
6910 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6911                            struct inode *new_dir, struct dentry *new_dentry)
6912 {
6913         struct btrfs_trans_handle *trans;
6914         struct btrfs_root *root = BTRFS_I(old_dir)->root;
6915         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6916         struct inode *new_inode = new_dentry->d_inode;
6917         struct inode *old_inode = old_dentry->d_inode;
6918         struct timespec ctime = CURRENT_TIME;
6919         u64 index = 0;
6920         u64 root_objectid;
6921         int ret;
6922
6923         if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6924                 return -EPERM;
6925
6926         /* we only allow rename subvolume link between subvolumes */
6927         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6928                 return -EXDEV;
6929
6930         if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6931             (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6932                 return -ENOTEMPTY;
6933
6934         if (S_ISDIR(old_inode->i_mode) && new_inode &&
6935             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6936                 return -ENOTEMPTY;
6937         /*
6938          * we're using rename to replace one file with another.
6939          * and the replacement file is large.  Start IO on it now so
6940          * we don't add too much work to the end of the transaction
6941          */
6942         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6943             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6944                 filemap_flush(old_inode->i_mapping);
6945
6946         /* close the racy window with snapshot create/destroy ioctl */
6947         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6948                 down_read(&root->fs_info->subvol_sem);
6949         /*
6950          * We want to reserve the absolute worst case amount of items.  So if
6951          * both inodes are subvols and we need to unlink them then that would
6952          * require 4 item modifications, but if they are both normal inodes it
6953          * would require 5 item modifications, so we'll assume their normal
6954          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6955          * should cover the worst case number of items we'll modify.
6956          */
6957         trans = btrfs_start_transaction(root, 20);
6958         if (IS_ERR(trans)) {
6959                 ret = PTR_ERR(trans);
6960                 goto out_notrans;
6961         }
6962
6963         btrfs_set_trans_block_group(trans, new_dir);
6964
6965         if (dest != root)
6966                 btrfs_record_root_in_trans(trans, dest);
6967
6968         ret = btrfs_set_inode_index(new_dir, &index);
6969         if (ret)
6970                 goto out_fail;
6971
6972         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6973                 /* force full log commit if subvolume involved. */
6974                 root->fs_info->last_trans_log_full_commit = trans->transid;
6975         } else {
6976                 ret = btrfs_insert_inode_ref(trans, dest,
6977                                              new_dentry->d_name.name,
6978                                              new_dentry->d_name.len,
6979                                              old_inode->i_ino,
6980                                              new_dir->i_ino, index);
6981                 if (ret)
6982                         goto out_fail;
6983                 /*
6984                  * this is an ugly little race, but the rename is required
6985                  * to make sure that if we crash, the inode is either at the
6986                  * old name or the new one.  pinning the log transaction lets
6987                  * us make sure we don't allow a log commit to come in after
6988                  * we unlink the name but before we add the new name back in.
6989                  */
6990                 btrfs_pin_log_trans(root);
6991         }
6992         /*
6993          * make sure the inode gets flushed if it is replacing
6994          * something.
6995          */
6996         if (new_inode && new_inode->i_size &&
6997             old_inode && S_ISREG(old_inode->i_mode)) {
6998                 btrfs_add_ordered_operation(trans, root, old_inode);
6999         }
7000
7001         old_dir->i_ctime = old_dir->i_mtime = ctime;
7002         new_dir->i_ctime = new_dir->i_mtime = ctime;
7003         old_inode->i_ctime = ctime;
7004
7005         if (old_dentry->d_parent != new_dentry->d_parent)
7006                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7007
7008         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7009                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7010                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7011                                         old_dentry->d_name.name,
7012                                         old_dentry->d_name.len);
7013         } else {
7014                 ret = __btrfs_unlink_inode(trans, root, old_dir,
7015                                         old_dentry->d_inode,
7016                                         old_dentry->d_name.name,
7017                                         old_dentry->d_name.len);
7018                 if (!ret)
7019                         ret = btrfs_update_inode(trans, root, old_inode);
7020         }
7021         BUG_ON(ret);
7022
7023         if (new_inode) {
7024                 new_inode->i_ctime = CURRENT_TIME;
7025                 if (unlikely(new_inode->i_ino ==
7026                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7027                         root_objectid = BTRFS_I(new_inode)->location.objectid;
7028                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
7029                                                 root_objectid,
7030                                                 new_dentry->d_name.name,
7031                                                 new_dentry->d_name.len);
7032                         BUG_ON(new_inode->i_nlink == 0);
7033                 } else {
7034                         ret = btrfs_unlink_inode(trans, dest, new_dir,
7035                                                  new_dentry->d_inode,
7036                                                  new_dentry->d_name.name,
7037                                                  new_dentry->d_name.len);
7038                 }
7039                 BUG_ON(ret);
7040                 if (new_inode->i_nlink == 0) {
7041                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7042                         BUG_ON(ret);
7043                 }
7044         }
7045
7046         fixup_inode_flags(new_dir, old_inode);
7047
7048         ret = btrfs_add_link(trans, new_dir, old_inode,
7049                              new_dentry->d_name.name,
7050                              new_dentry->d_name.len, 0, index);
7051         BUG_ON(ret);
7052
7053         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
7054                 struct dentry *parent = dget_parent(new_dentry);
7055                 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7056                 dput(parent);
7057                 btrfs_end_log_trans(root);
7058         }
7059 out_fail:
7060         btrfs_end_transaction_throttle(trans, root);
7061 out_notrans:
7062         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
7063                 up_read(&root->fs_info->subvol_sem);
7064
7065         return ret;
7066 }
7067
7068 /*
7069  * some fairly slow code that needs optimization. This walks the list
7070  * of all the inodes with pending delalloc and forces them to disk.
7071  */
7072 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7073 {
7074         struct list_head *head = &root->fs_info->delalloc_inodes;
7075         struct btrfs_inode *binode;
7076         struct inode *inode;
7077
7078         if (root->fs_info->sb->s_flags & MS_RDONLY)
7079                 return -EROFS;
7080
7081         spin_lock(&root->fs_info->delalloc_lock);
7082         while (!list_empty(head)) {
7083                 binode = list_entry(head->next, struct btrfs_inode,
7084                                     delalloc_inodes);
7085                 inode = igrab(&binode->vfs_inode);
7086                 if (!inode)
7087                         list_del_init(&binode->delalloc_inodes);
7088                 spin_unlock(&root->fs_info->delalloc_lock);
7089                 if (inode) {
7090                         filemap_flush(inode->i_mapping);
7091                         if (delay_iput)
7092                                 btrfs_add_delayed_iput(inode);
7093                         else
7094                                 iput(inode);
7095                 }
7096                 cond_resched();
7097                 spin_lock(&root->fs_info->delalloc_lock);
7098         }
7099         spin_unlock(&root->fs_info->delalloc_lock);
7100
7101         /* the filemap_flush will queue IO into the worker threads, but
7102          * we have to make sure the IO is actually started and that
7103          * ordered extents get created before we return
7104          */
7105         atomic_inc(&root->fs_info->async_submit_draining);
7106         while (atomic_read(&root->fs_info->nr_async_submits) ||
7107               atomic_read(&root->fs_info->async_delalloc_pages)) {
7108                 wait_event(root->fs_info->async_submit_wait,
7109                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7110                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7111         }
7112         atomic_dec(&root->fs_info->async_submit_draining);
7113         return 0;
7114 }
7115
7116 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7117                                    int sync)
7118 {
7119         struct btrfs_inode *binode;
7120         struct inode *inode = NULL;
7121
7122         spin_lock(&root->fs_info->delalloc_lock);
7123         while (!list_empty(&root->fs_info->delalloc_inodes)) {
7124                 binode = list_entry(root->fs_info->delalloc_inodes.next,
7125                                     struct btrfs_inode, delalloc_inodes);
7126                 inode = igrab(&binode->vfs_inode);
7127                 if (inode) {
7128                         list_move_tail(&binode->delalloc_inodes,
7129                                        &root->fs_info->delalloc_inodes);
7130                         break;
7131                 }
7132
7133                 list_del_init(&binode->delalloc_inodes);
7134                 cond_resched_lock(&root->fs_info->delalloc_lock);
7135         }
7136         spin_unlock(&root->fs_info->delalloc_lock);
7137
7138         if (inode) {
7139                 if (sync) {
7140                         filemap_write_and_wait(inode->i_mapping);
7141                         /*
7142                          * We have to do this because compression doesn't
7143                          * actually set PG_writeback until it submits the pages
7144                          * for IO, which happens in an async thread, so we could
7145                          * race and not actually wait for any writeback pages
7146                          * because they've not been submitted yet.  Technically
7147                          * this could still be the case for the ordered stuff
7148                          * since the async thread may not have started to do its
7149                          * work yet.  If this becomes the case then we need to
7150                          * figure out a way to make sure that in writepage we
7151                          * wait for any async pages to be submitted before
7152                          * returning so that fdatawait does what its supposed to
7153                          * do.
7154                          */
7155                         btrfs_wait_ordered_range(inode, 0, (u64)-1);
7156                 } else {
7157                         filemap_flush(inode->i_mapping);
7158                 }
7159                 if (delay_iput)
7160                         btrfs_add_delayed_iput(inode);
7161                 else
7162                         iput(inode);
7163                 return 1;
7164         }
7165         return 0;
7166 }
7167
7168 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7169                          const char *symname)
7170 {
7171         struct btrfs_trans_handle *trans;
7172         struct btrfs_root *root = BTRFS_I(dir)->root;
7173         struct btrfs_path *path;
7174         struct btrfs_key key;
7175         struct inode *inode = NULL;
7176         int err;
7177         int drop_inode = 0;
7178         u64 objectid;
7179         u64 index = 0 ;
7180         int name_len;
7181         int datasize;
7182         unsigned long ptr;
7183         struct btrfs_file_extent_item *ei;
7184         struct extent_buffer *leaf;
7185         unsigned long nr = 0;
7186
7187         name_len = strlen(symname) + 1;
7188         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7189                 return -ENAMETOOLONG;
7190
7191         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
7192         if (err)
7193                 return err;
7194         /*
7195          * 2 items for inode item and ref
7196          * 2 items for dir items
7197          * 1 item for xattr if selinux is on
7198          */
7199         trans = btrfs_start_transaction(root, 5);
7200         if (IS_ERR(trans))
7201                 return PTR_ERR(trans);
7202
7203         btrfs_set_trans_block_group(trans, dir);
7204
7205         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7206                                 dentry->d_name.len, dir->i_ino, objectid,
7207                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7208                                 &index);
7209         err = PTR_ERR(inode);
7210         if (IS_ERR(inode))
7211                 goto out_unlock;
7212
7213         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7214         if (err) {
7215                 drop_inode = 1;
7216                 goto out_unlock;
7217         }
7218
7219         btrfs_set_trans_block_group(trans, inode);
7220         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7221         if (err)
7222                 drop_inode = 1;
7223         else {
7224                 inode->i_mapping->a_ops = &btrfs_aops;
7225                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7226                 inode->i_fop = &btrfs_file_operations;
7227                 inode->i_op = &btrfs_file_inode_operations;
7228                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7229         }
7230         btrfs_update_inode_block_group(trans, inode);
7231         btrfs_update_inode_block_group(trans, dir);
7232         if (drop_inode)
7233                 goto out_unlock;
7234
7235         path = btrfs_alloc_path();
7236         BUG_ON(!path);
7237         key.objectid = inode->i_ino;
7238         key.offset = 0;
7239         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7240         datasize = btrfs_file_extent_calc_inline_size(name_len);
7241         err = btrfs_insert_empty_item(trans, root, path, &key,
7242                                       datasize);
7243         if (err) {
7244                 drop_inode = 1;
7245                 goto out_unlock;
7246         }
7247         leaf = path->nodes[0];
7248         ei = btrfs_item_ptr(leaf, path->slots[0],
7249                             struct btrfs_file_extent_item);
7250         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7251         btrfs_set_file_extent_type(leaf, ei,
7252                                    BTRFS_FILE_EXTENT_INLINE);
7253         btrfs_set_file_extent_encryption(leaf, ei, 0);
7254         btrfs_set_file_extent_compression(leaf, ei, 0);
7255         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7256         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7257
7258         ptr = btrfs_file_extent_inline_start(ei);
7259         write_extent_buffer(leaf, symname, ptr, name_len);
7260         btrfs_mark_buffer_dirty(leaf);
7261         btrfs_free_path(path);
7262
7263         inode->i_op = &btrfs_symlink_inode_operations;
7264         inode->i_mapping->a_ops = &btrfs_symlink_aops;
7265         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7266         inode_set_bytes(inode, name_len);
7267         btrfs_i_size_write(inode, name_len - 1);
7268         err = btrfs_update_inode(trans, root, inode);
7269         if (err)
7270                 drop_inode = 1;
7271
7272 out_unlock:
7273         nr = trans->blocks_used;
7274         btrfs_end_transaction_throttle(trans, root);
7275         if (drop_inode) {
7276                 inode_dec_link_count(inode);
7277                 iput(inode);
7278         }
7279         btrfs_btree_balance_dirty(root, nr);
7280         return err;
7281 }
7282
7283 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7284                                        u64 start, u64 num_bytes, u64 min_size,
7285                                        loff_t actual_len, u64 *alloc_hint,
7286                                        struct btrfs_trans_handle *trans)
7287 {
7288         struct btrfs_root *root = BTRFS_I(inode)->root;
7289         struct btrfs_key ins;
7290         u64 cur_offset = start;
7291         u64 i_size;
7292         int ret = 0;
7293         bool own_trans = true;
7294
7295         if (trans)
7296                 own_trans = false;
7297         while (num_bytes > 0) {
7298                 if (own_trans) {
7299                         trans = btrfs_start_transaction(root, 3);
7300                         if (IS_ERR(trans)) {
7301                                 ret = PTR_ERR(trans);
7302                                 break;
7303                         }
7304                 }
7305
7306                 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7307                                            0, *alloc_hint, (u64)-1, &ins, 1);
7308                 if (ret) {
7309                         if (own_trans)
7310                                 btrfs_end_transaction(trans, root);
7311                         break;
7312                 }
7313
7314                 ret = insert_reserved_file_extent(trans, inode,
7315                                                   cur_offset, ins.objectid,
7316                                                   ins.offset, ins.offset,
7317                                                   ins.offset, 0, 0, 0,
7318                                                   BTRFS_FILE_EXTENT_PREALLOC);
7319                 BUG_ON(ret);
7320                 btrfs_drop_extent_cache(inode, cur_offset,
7321                                         cur_offset + ins.offset -1, 0);
7322
7323                 num_bytes -= ins.offset;
7324                 cur_offset += ins.offset;
7325                 *alloc_hint = ins.objectid + ins.offset;
7326
7327                 inode->i_ctime = CURRENT_TIME;
7328                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7329                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7330                     (actual_len > inode->i_size) &&
7331                     (cur_offset > inode->i_size)) {
7332                         if (cur_offset > actual_len)
7333                                 i_size = actual_len;
7334                         else
7335                                 i_size = cur_offset;
7336                         i_size_write(inode, i_size);
7337                         btrfs_ordered_update_i_size(inode, i_size, NULL);
7338                 }
7339
7340                 ret = btrfs_update_inode(trans, root, inode);
7341                 BUG_ON(ret);
7342
7343                 if (own_trans)
7344                         btrfs_end_transaction(trans, root);
7345         }
7346         return ret;
7347 }
7348
7349 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7350                               u64 start, u64 num_bytes, u64 min_size,
7351                               loff_t actual_len, u64 *alloc_hint)
7352 {
7353         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7354                                            min_size, actual_len, alloc_hint,
7355                                            NULL);
7356 }
7357
7358 int btrfs_prealloc_file_range_trans(struct inode *inode,
7359                                     struct btrfs_trans_handle *trans, int mode,
7360                                     u64 start, u64 num_bytes, u64 min_size,
7361                                     loff_t actual_len, u64 *alloc_hint)
7362 {
7363         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7364                                            min_size, actual_len, alloc_hint, trans);
7365 }
7366
7367 static int btrfs_set_page_dirty(struct page *page)
7368 {
7369         return __set_page_dirty_nobuffers(page);
7370 }
7371
7372 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7373 {
7374         struct btrfs_root *root = BTRFS_I(inode)->root;
7375
7376         if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7377                 return -EROFS;
7378         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7379                 return -EACCES;
7380         return generic_permission(inode, mask, flags, btrfs_check_acl);
7381 }
7382
7383 static const struct inode_operations btrfs_dir_inode_operations = {
7384         .getattr        = btrfs_getattr,
7385         .lookup         = btrfs_lookup,
7386         .create         = btrfs_create,
7387         .unlink         = btrfs_unlink,
7388         .link           = btrfs_link,
7389         .mkdir          = btrfs_mkdir,
7390         .rmdir          = btrfs_rmdir,
7391         .rename         = btrfs_rename,
7392         .symlink        = btrfs_symlink,
7393         .setattr        = btrfs_setattr,
7394         .mknod          = btrfs_mknod,
7395         .setxattr       = btrfs_setxattr,
7396         .getxattr       = btrfs_getxattr,
7397         .listxattr      = btrfs_listxattr,
7398         .removexattr    = btrfs_removexattr,
7399         .permission     = btrfs_permission,
7400 };
7401 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7402         .lookup         = btrfs_lookup,
7403         .permission     = btrfs_permission,
7404 };
7405
7406 static const struct file_operations btrfs_dir_file_operations = {
7407         .llseek         = generic_file_llseek,
7408         .read           = generic_read_dir,
7409         .readdir        = btrfs_real_readdir,
7410         .unlocked_ioctl = btrfs_ioctl,
7411 #ifdef CONFIG_COMPAT
7412         .compat_ioctl   = btrfs_ioctl,
7413 #endif
7414         .release        = btrfs_release_file,
7415         .fsync          = btrfs_sync_file,
7416 };
7417
7418 static struct extent_io_ops btrfs_extent_io_ops = {
7419         .fill_delalloc = run_delalloc_range,
7420         .submit_bio_hook = btrfs_submit_bio_hook,
7421         .merge_bio_hook = btrfs_merge_bio_hook,
7422         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7423         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7424         .writepage_start_hook = btrfs_writepage_start_hook,
7425         .readpage_io_failed_hook = btrfs_io_failed_hook,
7426         .set_bit_hook = btrfs_set_bit_hook,
7427         .clear_bit_hook = btrfs_clear_bit_hook,
7428         .merge_extent_hook = btrfs_merge_extent_hook,
7429         .split_extent_hook = btrfs_split_extent_hook,
7430 };
7431
7432 /*
7433  * btrfs doesn't support the bmap operation because swapfiles
7434  * use bmap to make a mapping of extents in the file.  They assume
7435  * these extents won't change over the life of the file and they
7436  * use the bmap result to do IO directly to the drive.
7437  *
7438  * the btrfs bmap call would return logical addresses that aren't
7439  * suitable for IO and they also will change frequently as COW
7440  * operations happen.  So, swapfile + btrfs == corruption.
7441  *
7442  * For now we're avoiding this by dropping bmap.
7443  */
7444 static const struct address_space_operations btrfs_aops = {
7445         .readpage       = btrfs_readpage,
7446         .writepage      = btrfs_writepage,
7447         .writepages     = btrfs_writepages,
7448         .readpages      = btrfs_readpages,
7449         .direct_IO      = btrfs_direct_IO,
7450         .invalidatepage = btrfs_invalidatepage,
7451         .releasepage    = btrfs_releasepage,
7452         .set_page_dirty = btrfs_set_page_dirty,
7453         .error_remove_page = generic_error_remove_page,
7454 };
7455
7456 static const struct address_space_operations btrfs_symlink_aops = {
7457         .readpage       = btrfs_readpage,
7458         .writepage      = btrfs_writepage,
7459         .invalidatepage = btrfs_invalidatepage,
7460         .releasepage    = btrfs_releasepage,
7461 };
7462
7463 static const struct inode_operations btrfs_file_inode_operations = {
7464         .getattr        = btrfs_getattr,
7465         .setattr        = btrfs_setattr,
7466         .setxattr       = btrfs_setxattr,
7467         .getxattr       = btrfs_getxattr,
7468         .listxattr      = btrfs_listxattr,
7469         .removexattr    = btrfs_removexattr,
7470         .permission     = btrfs_permission,
7471         .fiemap         = btrfs_fiemap,
7472 };
7473 static const struct inode_operations btrfs_special_inode_operations = {
7474         .getattr        = btrfs_getattr,
7475         .setattr        = btrfs_setattr,
7476         .permission     = btrfs_permission,
7477         .setxattr       = btrfs_setxattr,
7478         .getxattr       = btrfs_getxattr,
7479         .listxattr      = btrfs_listxattr,
7480         .removexattr    = btrfs_removexattr,
7481 };
7482 static const struct inode_operations btrfs_symlink_inode_operations = {
7483         .readlink       = generic_readlink,
7484         .follow_link    = page_follow_link_light,
7485         .put_link       = page_put_link,
7486         .getattr        = btrfs_getattr,
7487         .permission     = btrfs_permission,
7488         .setxattr       = btrfs_setxattr,
7489         .getxattr       = btrfs_getxattr,
7490         .listxattr      = btrfs_listxattr,
7491         .removexattr    = btrfs_removexattr,
7492 };
7493
7494 const struct dentry_operations btrfs_dentry_operations = {
7495         .d_delete       = btrfs_dentry_delete,
7496 };