Btrfs: make sure to record the transid in new inodes
[pandora-kernel.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include "compat.h"
42 #include "ctree.h"
43 #include "disk-io.h"
44 #include "transaction.h"
45 #include "btrfs_inode.h"
46 #include "ioctl.h"
47 #include "print-tree.h"
48 #include "volumes.h"
49 #include "ordered-data.h"
50 #include "xattr.h"
51 #include "tree-log.h"
52 #include "compression.h"
53 #include "locking.h"
54 #include "free-space-cache.h"
55 #include "inode-map.h"
56
57 struct btrfs_iget_args {
58         u64 ino;
59         struct btrfs_root *root;
60 };
61
62 static const struct inode_operations btrfs_dir_inode_operations;
63 static const struct inode_operations btrfs_symlink_inode_operations;
64 static const struct inode_operations btrfs_dir_ro_inode_operations;
65 static const struct inode_operations btrfs_special_inode_operations;
66 static const struct inode_operations btrfs_file_inode_operations;
67 static const struct address_space_operations btrfs_aops;
68 static const struct address_space_operations btrfs_symlink_aops;
69 static const struct file_operations btrfs_dir_file_operations;
70 static struct extent_io_ops btrfs_extent_io_ops;
71
72 static struct kmem_cache *btrfs_inode_cachep;
73 struct kmem_cache *btrfs_trans_handle_cachep;
74 struct kmem_cache *btrfs_transaction_cachep;
75 struct kmem_cache *btrfs_path_cachep;
76 struct kmem_cache *btrfs_free_space_cachep;
77
78 #define S_SHIFT 12
79 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
80         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
81         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
82         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
83         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
84         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
85         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
86         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
87 };
88
89 static int btrfs_setsize(struct inode *inode, loff_t newsize);
90 static int btrfs_truncate(struct inode *inode);
91 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
92 static noinline int cow_file_range(struct inode *inode,
93                                    struct page *locked_page,
94                                    u64 start, u64 end, int *page_started,
95                                    unsigned long *nr_written, int unlock);
96
97 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
98                                      struct inode *inode,  struct inode *dir,
99                                      const struct qstr *qstr)
100 {
101         int err;
102
103         err = btrfs_init_acl(trans, inode, dir);
104         if (!err)
105                 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
106         return err;
107 }
108
109 /*
110  * this does all the hard work for inserting an inline extent into
111  * the btree.  The caller should have done a btrfs_drop_extents so that
112  * no overlapping inline items exist in the btree
113  */
114 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
115                                 struct btrfs_root *root, struct inode *inode,
116                                 u64 start, size_t size, size_t compressed_size,
117                                 int compress_type,
118                                 struct page **compressed_pages)
119 {
120         struct btrfs_key key;
121         struct btrfs_path *path;
122         struct extent_buffer *leaf;
123         struct page *page = NULL;
124         char *kaddr;
125         unsigned long ptr;
126         struct btrfs_file_extent_item *ei;
127         int err = 0;
128         int ret;
129         size_t cur_size = size;
130         size_t datasize;
131         unsigned long offset;
132
133         if (compressed_size && compressed_pages)
134                 cur_size = compressed_size;
135
136         path = btrfs_alloc_path();
137         if (!path)
138                 return -ENOMEM;
139
140         path->leave_spinning = 1;
141
142         key.objectid = btrfs_ino(inode);
143         key.offset = start;
144         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
145         datasize = btrfs_file_extent_calc_inline_size(cur_size);
146
147         inode_add_bytes(inode, size);
148         ret = btrfs_insert_empty_item(trans, root, path, &key,
149                                       datasize);
150         BUG_ON(ret);
151         if (ret) {
152                 err = ret;
153                 goto fail;
154         }
155         leaf = path->nodes[0];
156         ei = btrfs_item_ptr(leaf, path->slots[0],
157                             struct btrfs_file_extent_item);
158         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
159         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
160         btrfs_set_file_extent_encryption(leaf, ei, 0);
161         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
162         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
163         ptr = btrfs_file_extent_inline_start(ei);
164
165         if (compress_type != BTRFS_COMPRESS_NONE) {
166                 struct page *cpage;
167                 int i = 0;
168                 while (compressed_size > 0) {
169                         cpage = compressed_pages[i];
170                         cur_size = min_t(unsigned long, compressed_size,
171                                        PAGE_CACHE_SIZE);
172
173                         kaddr = kmap_atomic(cpage, KM_USER0);
174                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
175                         kunmap_atomic(kaddr, KM_USER0);
176
177                         i++;
178                         ptr += cur_size;
179                         compressed_size -= cur_size;
180                 }
181                 btrfs_set_file_extent_compression(leaf, ei,
182                                                   compress_type);
183         } else {
184                 page = find_get_page(inode->i_mapping,
185                                      start >> PAGE_CACHE_SHIFT);
186                 btrfs_set_file_extent_compression(leaf, ei, 0);
187                 kaddr = kmap_atomic(page, KM_USER0);
188                 offset = start & (PAGE_CACHE_SIZE - 1);
189                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
190                 kunmap_atomic(kaddr, KM_USER0);
191                 page_cache_release(page);
192         }
193         btrfs_mark_buffer_dirty(leaf);
194         btrfs_free_path(path);
195
196         /*
197          * we're an inline extent, so nobody can
198          * extend the file past i_size without locking
199          * a page we already have locked.
200          *
201          * We must do any isize and inode updates
202          * before we unlock the pages.  Otherwise we
203          * could end up racing with unlink.
204          */
205         BTRFS_I(inode)->disk_i_size = inode->i_size;
206         btrfs_update_inode(trans, root, inode);
207
208         return 0;
209 fail:
210         btrfs_free_path(path);
211         return err;
212 }
213
214
215 /*
216  * conditionally insert an inline extent into the file.  This
217  * does the checks required to make sure the data is small enough
218  * to fit as an inline extent.
219  */
220 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
221                                  struct btrfs_root *root,
222                                  struct inode *inode, u64 start, u64 end,
223                                  size_t compressed_size, int compress_type,
224                                  struct page **compressed_pages)
225 {
226         u64 isize = i_size_read(inode);
227         u64 actual_end = min(end + 1, isize);
228         u64 inline_len = actual_end - start;
229         u64 aligned_end = (end + root->sectorsize - 1) &
230                         ~((u64)root->sectorsize - 1);
231         u64 hint_byte;
232         u64 data_len = inline_len;
233         int ret;
234
235         if (compressed_size)
236                 data_len = compressed_size;
237
238         if (start > 0 ||
239             actual_end >= PAGE_CACHE_SIZE ||
240             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241             (!compressed_size &&
242             (actual_end & (root->sectorsize - 1)) == 0) ||
243             end + 1 < isize ||
244             data_len > root->fs_info->max_inline) {
245                 return 1;
246         }
247
248         ret = btrfs_drop_extents(trans, inode, start, aligned_end,
249                                  &hint_byte, 1);
250         BUG_ON(ret);
251
252         if (isize > actual_end)
253                 inline_len = min_t(u64, isize, actual_end);
254         ret = insert_inline_extent(trans, root, inode, start,
255                                    inline_len, compressed_size,
256                                    compress_type, compressed_pages);
257         BUG_ON(ret);
258         btrfs_delalloc_release_metadata(inode, end + 1 - start);
259         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
260         return 0;
261 }
262
263 struct async_extent {
264         u64 start;
265         u64 ram_size;
266         u64 compressed_size;
267         struct page **pages;
268         unsigned long nr_pages;
269         int compress_type;
270         struct list_head list;
271 };
272
273 struct async_cow {
274         struct inode *inode;
275         struct btrfs_root *root;
276         struct page *locked_page;
277         u64 start;
278         u64 end;
279         struct list_head extents;
280         struct btrfs_work work;
281 };
282
283 static noinline int add_async_extent(struct async_cow *cow,
284                                      u64 start, u64 ram_size,
285                                      u64 compressed_size,
286                                      struct page **pages,
287                                      unsigned long nr_pages,
288                                      int compress_type)
289 {
290         struct async_extent *async_extent;
291
292         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
293         BUG_ON(!async_extent);
294         async_extent->start = start;
295         async_extent->ram_size = ram_size;
296         async_extent->compressed_size = compressed_size;
297         async_extent->pages = pages;
298         async_extent->nr_pages = nr_pages;
299         async_extent->compress_type = compress_type;
300         list_add_tail(&async_extent->list, &cow->extents);
301         return 0;
302 }
303
304 /*
305  * we create compressed extents in two phases.  The first
306  * phase compresses a range of pages that have already been
307  * locked (both pages and state bits are locked).
308  *
309  * This is done inside an ordered work queue, and the compression
310  * is spread across many cpus.  The actual IO submission is step
311  * two, and the ordered work queue takes care of making sure that
312  * happens in the same order things were put onto the queue by
313  * writepages and friends.
314  *
315  * If this code finds it can't get good compression, it puts an
316  * entry onto the work queue to write the uncompressed bytes.  This
317  * makes sure that both compressed inodes and uncompressed inodes
318  * are written in the same order that pdflush sent them down.
319  */
320 static noinline int compress_file_range(struct inode *inode,
321                                         struct page *locked_page,
322                                         u64 start, u64 end,
323                                         struct async_cow *async_cow,
324                                         int *num_added)
325 {
326         struct btrfs_root *root = BTRFS_I(inode)->root;
327         struct btrfs_trans_handle *trans;
328         u64 num_bytes;
329         u64 blocksize = root->sectorsize;
330         u64 actual_end;
331         u64 isize = i_size_read(inode);
332         int ret = 0;
333         struct page **pages = NULL;
334         unsigned long nr_pages;
335         unsigned long nr_pages_ret = 0;
336         unsigned long total_compressed = 0;
337         unsigned long total_in = 0;
338         unsigned long max_compressed = 128 * 1024;
339         unsigned long max_uncompressed = 128 * 1024;
340         int i;
341         int will_compress;
342         int compress_type = root->fs_info->compress_type;
343
344         /* if this is a small write inside eof, kick off a defragbot */
345         if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
346                 btrfs_add_inode_defrag(NULL, inode);
347
348         actual_end = min_t(u64, isize, end + 1);
349 again:
350         will_compress = 0;
351         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
352         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
353
354         /*
355          * we don't want to send crud past the end of i_size through
356          * compression, that's just a waste of CPU time.  So, if the
357          * end of the file is before the start of our current
358          * requested range of bytes, we bail out to the uncompressed
359          * cleanup code that can deal with all of this.
360          *
361          * It isn't really the fastest way to fix things, but this is a
362          * very uncommon corner.
363          */
364         if (actual_end <= start)
365                 goto cleanup_and_bail_uncompressed;
366
367         total_compressed = actual_end - start;
368
369         /* we want to make sure that amount of ram required to uncompress
370          * an extent is reasonable, so we limit the total size in ram
371          * of a compressed extent to 128k.  This is a crucial number
372          * because it also controls how easily we can spread reads across
373          * cpus for decompression.
374          *
375          * We also want to make sure the amount of IO required to do
376          * a random read is reasonably small, so we limit the size of
377          * a compressed extent to 128k.
378          */
379         total_compressed = min(total_compressed, max_uncompressed);
380         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
381         num_bytes = max(blocksize,  num_bytes);
382         total_in = 0;
383         ret = 0;
384
385         /*
386          * we do compression for mount -o compress and when the
387          * inode has not been flagged as nocompress.  This flag can
388          * change at any time if we discover bad compression ratios.
389          */
390         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
391             (btrfs_test_opt(root, COMPRESS) ||
392              (BTRFS_I(inode)->force_compress) ||
393              (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
394                 WARN_ON(pages);
395                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
396                 BUG_ON(!pages);
397
398                 if (BTRFS_I(inode)->force_compress)
399                         compress_type = BTRFS_I(inode)->force_compress;
400
401                 ret = btrfs_compress_pages(compress_type,
402                                            inode->i_mapping, start,
403                                            total_compressed, pages,
404                                            nr_pages, &nr_pages_ret,
405                                            &total_in,
406                                            &total_compressed,
407                                            max_compressed);
408
409                 if (!ret) {
410                         unsigned long offset = total_compressed &
411                                 (PAGE_CACHE_SIZE - 1);
412                         struct page *page = pages[nr_pages_ret - 1];
413                         char *kaddr;
414
415                         /* zero the tail end of the last page, we might be
416                          * sending it down to disk
417                          */
418                         if (offset) {
419                                 kaddr = kmap_atomic(page, KM_USER0);
420                                 memset(kaddr + offset, 0,
421                                        PAGE_CACHE_SIZE - offset);
422                                 kunmap_atomic(kaddr, KM_USER0);
423                         }
424                         will_compress = 1;
425                 }
426         }
427         if (start == 0) {
428                 trans = btrfs_join_transaction(root);
429                 BUG_ON(IS_ERR(trans));
430                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
431
432                 /* lets try to make an inline extent */
433                 if (ret || total_in < (actual_end - start)) {
434                         /* we didn't compress the entire range, try
435                          * to make an uncompressed inline extent.
436                          */
437                         ret = cow_file_range_inline(trans, root, inode,
438                                                     start, end, 0, 0, NULL);
439                 } else {
440                         /* try making a compressed inline extent */
441                         ret = cow_file_range_inline(trans, root, inode,
442                                                     start, end,
443                                                     total_compressed,
444                                                     compress_type, pages);
445                 }
446                 if (ret == 0) {
447                         /*
448                          * inline extent creation worked, we don't need
449                          * to create any more async work items.  Unlock
450                          * and free up our temp pages.
451                          */
452                         extent_clear_unlock_delalloc(inode,
453                              &BTRFS_I(inode)->io_tree,
454                              start, end, NULL,
455                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
456                              EXTENT_CLEAR_DELALLOC |
457                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
458
459                         btrfs_end_transaction(trans, root);
460                         goto free_pages_out;
461                 }
462                 btrfs_end_transaction(trans, root);
463         }
464
465         if (will_compress) {
466                 /*
467                  * we aren't doing an inline extent round the compressed size
468                  * up to a block size boundary so the allocator does sane
469                  * things
470                  */
471                 total_compressed = (total_compressed + blocksize - 1) &
472                         ~(blocksize - 1);
473
474                 /*
475                  * one last check to make sure the compression is really a
476                  * win, compare the page count read with the blocks on disk
477                  */
478                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
479                         ~(PAGE_CACHE_SIZE - 1);
480                 if (total_compressed >= total_in) {
481                         will_compress = 0;
482                 } else {
483                         num_bytes = total_in;
484                 }
485         }
486         if (!will_compress && pages) {
487                 /*
488                  * the compression code ran but failed to make things smaller,
489                  * free any pages it allocated and our page pointer array
490                  */
491                 for (i = 0; i < nr_pages_ret; i++) {
492                         WARN_ON(pages[i]->mapping);
493                         page_cache_release(pages[i]);
494                 }
495                 kfree(pages);
496                 pages = NULL;
497                 total_compressed = 0;
498                 nr_pages_ret = 0;
499
500                 /* flag the file so we don't compress in the future */
501                 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
502                     !(BTRFS_I(inode)->force_compress)) {
503                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
504                 }
505         }
506         if (will_compress) {
507                 *num_added += 1;
508
509                 /* the async work queues will take care of doing actual
510                  * allocation on disk for these compressed pages,
511                  * and will submit them to the elevator.
512                  */
513                 add_async_extent(async_cow, start, num_bytes,
514                                  total_compressed, pages, nr_pages_ret,
515                                  compress_type);
516
517                 if (start + num_bytes < end) {
518                         start += num_bytes;
519                         pages = NULL;
520                         cond_resched();
521                         goto again;
522                 }
523         } else {
524 cleanup_and_bail_uncompressed:
525                 /*
526                  * No compression, but we still need to write the pages in
527                  * the file we've been given so far.  redirty the locked
528                  * page if it corresponds to our extent and set things up
529                  * for the async work queue to run cow_file_range to do
530                  * the normal delalloc dance
531                  */
532                 if (page_offset(locked_page) >= start &&
533                     page_offset(locked_page) <= end) {
534                         __set_page_dirty_nobuffers(locked_page);
535                         /* unlocked later on in the async handlers */
536                 }
537                 add_async_extent(async_cow, start, end - start + 1,
538                                  0, NULL, 0, BTRFS_COMPRESS_NONE);
539                 *num_added += 1;
540         }
541
542 out:
543         return 0;
544
545 free_pages_out:
546         for (i = 0; i < nr_pages_ret; i++) {
547                 WARN_ON(pages[i]->mapping);
548                 page_cache_release(pages[i]);
549         }
550         kfree(pages);
551
552         goto out;
553 }
554
555 /*
556  * phase two of compressed writeback.  This is the ordered portion
557  * of the code, which only gets called in the order the work was
558  * queued.  We walk all the async extents created by compress_file_range
559  * and send them down to the disk.
560  */
561 static noinline int submit_compressed_extents(struct inode *inode,
562                                               struct async_cow *async_cow)
563 {
564         struct async_extent *async_extent;
565         u64 alloc_hint = 0;
566         struct btrfs_trans_handle *trans;
567         struct btrfs_key ins;
568         struct extent_map *em;
569         struct btrfs_root *root = BTRFS_I(inode)->root;
570         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
571         struct extent_io_tree *io_tree;
572         int ret = 0;
573
574         if (list_empty(&async_cow->extents))
575                 return 0;
576
577
578         while (!list_empty(&async_cow->extents)) {
579                 async_extent = list_entry(async_cow->extents.next,
580                                           struct async_extent, list);
581                 list_del(&async_extent->list);
582
583                 io_tree = &BTRFS_I(inode)->io_tree;
584
585 retry:
586                 /* did the compression code fall back to uncompressed IO? */
587                 if (!async_extent->pages) {
588                         int page_started = 0;
589                         unsigned long nr_written = 0;
590
591                         lock_extent(io_tree, async_extent->start,
592                                          async_extent->start +
593                                          async_extent->ram_size - 1, GFP_NOFS);
594
595                         /* allocate blocks */
596                         ret = cow_file_range(inode, async_cow->locked_page,
597                                              async_extent->start,
598                                              async_extent->start +
599                                              async_extent->ram_size - 1,
600                                              &page_started, &nr_written, 0);
601
602                         /*
603                          * if page_started, cow_file_range inserted an
604                          * inline extent and took care of all the unlocking
605                          * and IO for us.  Otherwise, we need to submit
606                          * all those pages down to the drive.
607                          */
608                         if (!page_started && !ret)
609                                 extent_write_locked_range(io_tree,
610                                                   inode, async_extent->start,
611                                                   async_extent->start +
612                                                   async_extent->ram_size - 1,
613                                                   btrfs_get_extent,
614                                                   WB_SYNC_ALL);
615                         kfree(async_extent);
616                         cond_resched();
617                         continue;
618                 }
619
620                 lock_extent(io_tree, async_extent->start,
621                             async_extent->start + async_extent->ram_size - 1,
622                             GFP_NOFS);
623
624                 trans = btrfs_join_transaction(root);
625                 BUG_ON(IS_ERR(trans));
626                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
627                 ret = btrfs_reserve_extent(trans, root,
628                                            async_extent->compressed_size,
629                                            async_extent->compressed_size,
630                                            0, alloc_hint,
631                                            (u64)-1, &ins, 1);
632                 btrfs_end_transaction(trans, root);
633
634                 if (ret) {
635                         int i;
636                         for (i = 0; i < async_extent->nr_pages; i++) {
637                                 WARN_ON(async_extent->pages[i]->mapping);
638                                 page_cache_release(async_extent->pages[i]);
639                         }
640                         kfree(async_extent->pages);
641                         async_extent->nr_pages = 0;
642                         async_extent->pages = NULL;
643                         unlock_extent(io_tree, async_extent->start,
644                                       async_extent->start +
645                                       async_extent->ram_size - 1, GFP_NOFS);
646                         goto retry;
647                 }
648
649                 /*
650                  * here we're doing allocation and writeback of the
651                  * compressed pages
652                  */
653                 btrfs_drop_extent_cache(inode, async_extent->start,
654                                         async_extent->start +
655                                         async_extent->ram_size - 1, 0);
656
657                 em = alloc_extent_map();
658                 BUG_ON(!em);
659                 em->start = async_extent->start;
660                 em->len = async_extent->ram_size;
661                 em->orig_start = em->start;
662
663                 em->block_start = ins.objectid;
664                 em->block_len = ins.offset;
665                 em->bdev = root->fs_info->fs_devices->latest_bdev;
666                 em->compress_type = async_extent->compress_type;
667                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
668                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
669
670                 while (1) {
671                         write_lock(&em_tree->lock);
672                         ret = add_extent_mapping(em_tree, em);
673                         write_unlock(&em_tree->lock);
674                         if (ret != -EEXIST) {
675                                 free_extent_map(em);
676                                 break;
677                         }
678                         btrfs_drop_extent_cache(inode, async_extent->start,
679                                                 async_extent->start +
680                                                 async_extent->ram_size - 1, 0);
681                 }
682
683                 ret = btrfs_add_ordered_extent_compress(inode,
684                                                 async_extent->start,
685                                                 ins.objectid,
686                                                 async_extent->ram_size,
687                                                 ins.offset,
688                                                 BTRFS_ORDERED_COMPRESSED,
689                                                 async_extent->compress_type);
690                 BUG_ON(ret);
691
692                 /*
693                  * clear dirty, set writeback and unlock the pages.
694                  */
695                 extent_clear_unlock_delalloc(inode,
696                                 &BTRFS_I(inode)->io_tree,
697                                 async_extent->start,
698                                 async_extent->start +
699                                 async_extent->ram_size - 1,
700                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
701                                 EXTENT_CLEAR_UNLOCK |
702                                 EXTENT_CLEAR_DELALLOC |
703                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
704
705                 ret = btrfs_submit_compressed_write(inode,
706                                     async_extent->start,
707                                     async_extent->ram_size,
708                                     ins.objectid,
709                                     ins.offset, async_extent->pages,
710                                     async_extent->nr_pages);
711
712                 BUG_ON(ret);
713                 alloc_hint = ins.objectid + ins.offset;
714                 kfree(async_extent);
715                 cond_resched();
716         }
717
718         return 0;
719 }
720
721 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
722                                       u64 num_bytes)
723 {
724         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
725         struct extent_map *em;
726         u64 alloc_hint = 0;
727
728         read_lock(&em_tree->lock);
729         em = search_extent_mapping(em_tree, start, num_bytes);
730         if (em) {
731                 /*
732                  * if block start isn't an actual block number then find the
733                  * first block in this inode and use that as a hint.  If that
734                  * block is also bogus then just don't worry about it.
735                  */
736                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
737                         free_extent_map(em);
738                         em = search_extent_mapping(em_tree, 0, 0);
739                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
740                                 alloc_hint = em->block_start;
741                         if (em)
742                                 free_extent_map(em);
743                 } else {
744                         alloc_hint = em->block_start;
745                         free_extent_map(em);
746                 }
747         }
748         read_unlock(&em_tree->lock);
749
750         return alloc_hint;
751 }
752
753 static inline bool is_free_space_inode(struct btrfs_root *root,
754                                        struct inode *inode)
755 {
756         if (root == root->fs_info->tree_root ||
757             BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID)
758                 return true;
759         return false;
760 }
761
762 /*
763  * when extent_io.c finds a delayed allocation range in the file,
764  * the call backs end up in this code.  The basic idea is to
765  * allocate extents on disk for the range, and create ordered data structs
766  * in ram to track those extents.
767  *
768  * locked_page is the page that writepage had locked already.  We use
769  * it to make sure we don't do extra locks or unlocks.
770  *
771  * *page_started is set to one if we unlock locked_page and do everything
772  * required to start IO on it.  It may be clean and already done with
773  * IO when we return.
774  */
775 static noinline int cow_file_range(struct inode *inode,
776                                    struct page *locked_page,
777                                    u64 start, u64 end, int *page_started,
778                                    unsigned long *nr_written,
779                                    int unlock)
780 {
781         struct btrfs_root *root = BTRFS_I(inode)->root;
782         struct btrfs_trans_handle *trans;
783         u64 alloc_hint = 0;
784         u64 num_bytes;
785         unsigned long ram_size;
786         u64 disk_num_bytes;
787         u64 cur_alloc_size;
788         u64 blocksize = root->sectorsize;
789         struct btrfs_key ins;
790         struct extent_map *em;
791         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
792         int ret = 0;
793
794         BUG_ON(is_free_space_inode(root, inode));
795         trans = btrfs_join_transaction(root);
796         BUG_ON(IS_ERR(trans));
797         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
798
799         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
800         num_bytes = max(blocksize,  num_bytes);
801         disk_num_bytes = num_bytes;
802         ret = 0;
803
804         /* if this is a small write inside eof, kick off defrag */
805         if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
806                 btrfs_add_inode_defrag(trans, inode);
807
808         if (start == 0) {
809                 /* lets try to make an inline extent */
810                 ret = cow_file_range_inline(trans, root, inode,
811                                             start, end, 0, 0, NULL);
812                 if (ret == 0) {
813                         extent_clear_unlock_delalloc(inode,
814                                      &BTRFS_I(inode)->io_tree,
815                                      start, end, NULL,
816                                      EXTENT_CLEAR_UNLOCK_PAGE |
817                                      EXTENT_CLEAR_UNLOCK |
818                                      EXTENT_CLEAR_DELALLOC |
819                                      EXTENT_CLEAR_DIRTY |
820                                      EXTENT_SET_WRITEBACK |
821                                      EXTENT_END_WRITEBACK);
822
823                         *nr_written = *nr_written +
824                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
825                         *page_started = 1;
826                         ret = 0;
827                         goto out;
828                 }
829         }
830
831         BUG_ON(disk_num_bytes >
832                btrfs_super_total_bytes(&root->fs_info->super_copy));
833
834         alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
835         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
836
837         while (disk_num_bytes > 0) {
838                 unsigned long op;
839
840                 cur_alloc_size = disk_num_bytes;
841                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
842                                            root->sectorsize, 0, alloc_hint,
843                                            (u64)-1, &ins, 1);
844                 BUG_ON(ret);
845
846                 em = alloc_extent_map();
847                 BUG_ON(!em);
848                 em->start = start;
849                 em->orig_start = em->start;
850                 ram_size = ins.offset;
851                 em->len = ins.offset;
852
853                 em->block_start = ins.objectid;
854                 em->block_len = ins.offset;
855                 em->bdev = root->fs_info->fs_devices->latest_bdev;
856                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
857
858                 while (1) {
859                         write_lock(&em_tree->lock);
860                         ret = add_extent_mapping(em_tree, em);
861                         write_unlock(&em_tree->lock);
862                         if (ret != -EEXIST) {
863                                 free_extent_map(em);
864                                 break;
865                         }
866                         btrfs_drop_extent_cache(inode, start,
867                                                 start + ram_size - 1, 0);
868                 }
869
870                 cur_alloc_size = ins.offset;
871                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
872                                                ram_size, cur_alloc_size, 0);
873                 BUG_ON(ret);
874
875                 if (root->root_key.objectid ==
876                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
877                         ret = btrfs_reloc_clone_csums(inode, start,
878                                                       cur_alloc_size);
879                         BUG_ON(ret);
880                 }
881
882                 if (disk_num_bytes < cur_alloc_size)
883                         break;
884
885                 /* we're not doing compressed IO, don't unlock the first
886                  * page (which the caller expects to stay locked), don't
887                  * clear any dirty bits and don't set any writeback bits
888                  *
889                  * Do set the Private2 bit so we know this page was properly
890                  * setup for writepage
891                  */
892                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
893                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
894                         EXTENT_SET_PRIVATE2;
895
896                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
897                                              start, start + ram_size - 1,
898                                              locked_page, op);
899                 disk_num_bytes -= cur_alloc_size;
900                 num_bytes -= cur_alloc_size;
901                 alloc_hint = ins.objectid + ins.offset;
902                 start += cur_alloc_size;
903         }
904 out:
905         ret = 0;
906         btrfs_end_transaction(trans, root);
907
908         return ret;
909 }
910
911 /*
912  * work queue call back to started compression on a file and pages
913  */
914 static noinline void async_cow_start(struct btrfs_work *work)
915 {
916         struct async_cow *async_cow;
917         int num_added = 0;
918         async_cow = container_of(work, struct async_cow, work);
919
920         compress_file_range(async_cow->inode, async_cow->locked_page,
921                             async_cow->start, async_cow->end, async_cow,
922                             &num_added);
923         if (num_added == 0)
924                 async_cow->inode = NULL;
925 }
926
927 /*
928  * work queue call back to submit previously compressed pages
929  */
930 static noinline void async_cow_submit(struct btrfs_work *work)
931 {
932         struct async_cow *async_cow;
933         struct btrfs_root *root;
934         unsigned long nr_pages;
935
936         async_cow = container_of(work, struct async_cow, work);
937
938         root = async_cow->root;
939         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
940                 PAGE_CACHE_SHIFT;
941
942         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
943
944         if (atomic_read(&root->fs_info->async_delalloc_pages) <
945             5 * 1042 * 1024 &&
946             waitqueue_active(&root->fs_info->async_submit_wait))
947                 wake_up(&root->fs_info->async_submit_wait);
948
949         if (async_cow->inode)
950                 submit_compressed_extents(async_cow->inode, async_cow);
951 }
952
953 static noinline void async_cow_free(struct btrfs_work *work)
954 {
955         struct async_cow *async_cow;
956         async_cow = container_of(work, struct async_cow, work);
957         kfree(async_cow);
958 }
959
960 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
961                                 u64 start, u64 end, int *page_started,
962                                 unsigned long *nr_written)
963 {
964         struct async_cow *async_cow;
965         struct btrfs_root *root = BTRFS_I(inode)->root;
966         unsigned long nr_pages;
967         u64 cur_end;
968         int limit = 10 * 1024 * 1042;
969
970         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
971                          1, 0, NULL, GFP_NOFS);
972         while (start < end) {
973                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
974                 BUG_ON(!async_cow);
975                 async_cow->inode = inode;
976                 async_cow->root = root;
977                 async_cow->locked_page = locked_page;
978                 async_cow->start = start;
979
980                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
981                         cur_end = end;
982                 else
983                         cur_end = min(end, start + 512 * 1024 - 1);
984
985                 async_cow->end = cur_end;
986                 INIT_LIST_HEAD(&async_cow->extents);
987
988                 async_cow->work.func = async_cow_start;
989                 async_cow->work.ordered_func = async_cow_submit;
990                 async_cow->work.ordered_free = async_cow_free;
991                 async_cow->work.flags = 0;
992
993                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
994                         PAGE_CACHE_SHIFT;
995                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
996
997                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
998                                    &async_cow->work);
999
1000                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1001                         wait_event(root->fs_info->async_submit_wait,
1002                            (atomic_read(&root->fs_info->async_delalloc_pages) <
1003                             limit));
1004                 }
1005
1006                 while (atomic_read(&root->fs_info->async_submit_draining) &&
1007                       atomic_read(&root->fs_info->async_delalloc_pages)) {
1008                         wait_event(root->fs_info->async_submit_wait,
1009                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
1010                            0));
1011                 }
1012
1013                 *nr_written += nr_pages;
1014                 start = cur_end + 1;
1015         }
1016         *page_started = 1;
1017         return 0;
1018 }
1019
1020 static noinline int csum_exist_in_range(struct btrfs_root *root,
1021                                         u64 bytenr, u64 num_bytes)
1022 {
1023         int ret;
1024         struct btrfs_ordered_sum *sums;
1025         LIST_HEAD(list);
1026
1027         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1028                                        bytenr + num_bytes - 1, &list, 0);
1029         if (ret == 0 && list_empty(&list))
1030                 return 0;
1031
1032         while (!list_empty(&list)) {
1033                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1034                 list_del(&sums->list);
1035                 kfree(sums);
1036         }
1037         return 1;
1038 }
1039
1040 /*
1041  * when nowcow writeback call back.  This checks for snapshots or COW copies
1042  * of the extents that exist in the file, and COWs the file as required.
1043  *
1044  * If no cow copies or snapshots exist, we write directly to the existing
1045  * blocks on disk
1046  */
1047 static noinline int run_delalloc_nocow(struct inode *inode,
1048                                        struct page *locked_page,
1049                               u64 start, u64 end, int *page_started, int force,
1050                               unsigned long *nr_written)
1051 {
1052         struct btrfs_root *root = BTRFS_I(inode)->root;
1053         struct btrfs_trans_handle *trans;
1054         struct extent_buffer *leaf;
1055         struct btrfs_path *path;
1056         struct btrfs_file_extent_item *fi;
1057         struct btrfs_key found_key;
1058         u64 cow_start;
1059         u64 cur_offset;
1060         u64 extent_end;
1061         u64 extent_offset;
1062         u64 disk_bytenr;
1063         u64 num_bytes;
1064         int extent_type;
1065         int ret;
1066         int type;
1067         int nocow;
1068         int check_prev = 1;
1069         bool nolock;
1070         u64 ino = btrfs_ino(inode);
1071
1072         path = btrfs_alloc_path();
1073         BUG_ON(!path);
1074
1075         nolock = is_free_space_inode(root, inode);
1076
1077         if (nolock)
1078                 trans = btrfs_join_transaction_nolock(root);
1079         else
1080                 trans = btrfs_join_transaction(root);
1081
1082         BUG_ON(IS_ERR(trans));
1083         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1084
1085         cow_start = (u64)-1;
1086         cur_offset = start;
1087         while (1) {
1088                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1089                                                cur_offset, 0);
1090                 BUG_ON(ret < 0);
1091                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1092                         leaf = path->nodes[0];
1093                         btrfs_item_key_to_cpu(leaf, &found_key,
1094                                               path->slots[0] - 1);
1095                         if (found_key.objectid == ino &&
1096                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1097                                 path->slots[0]--;
1098                 }
1099                 check_prev = 0;
1100 next_slot:
1101                 leaf = path->nodes[0];
1102                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1103                         ret = btrfs_next_leaf(root, path);
1104                         if (ret < 0)
1105                                 BUG_ON(1);
1106                         if (ret > 0)
1107                                 break;
1108                         leaf = path->nodes[0];
1109                 }
1110
1111                 nocow = 0;
1112                 disk_bytenr = 0;
1113                 num_bytes = 0;
1114                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1115
1116                 if (found_key.objectid > ino ||
1117                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1118                     found_key.offset > end)
1119                         break;
1120
1121                 if (found_key.offset > cur_offset) {
1122                         extent_end = found_key.offset;
1123                         extent_type = 0;
1124                         goto out_check;
1125                 }
1126
1127                 fi = btrfs_item_ptr(leaf, path->slots[0],
1128                                     struct btrfs_file_extent_item);
1129                 extent_type = btrfs_file_extent_type(leaf, fi);
1130
1131                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1132                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1133                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1134                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1135                         extent_end = found_key.offset +
1136                                 btrfs_file_extent_num_bytes(leaf, fi);
1137                         if (extent_end <= start) {
1138                                 path->slots[0]++;
1139                                 goto next_slot;
1140                         }
1141                         if (disk_bytenr == 0)
1142                                 goto out_check;
1143                         if (btrfs_file_extent_compression(leaf, fi) ||
1144                             btrfs_file_extent_encryption(leaf, fi) ||
1145                             btrfs_file_extent_other_encoding(leaf, fi))
1146                                 goto out_check;
1147                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1148                                 goto out_check;
1149                         if (btrfs_extent_readonly(root, disk_bytenr))
1150                                 goto out_check;
1151                         if (btrfs_cross_ref_exist(trans, root, ino,
1152                                                   found_key.offset -
1153                                                   extent_offset, disk_bytenr))
1154                                 goto out_check;
1155                         disk_bytenr += extent_offset;
1156                         disk_bytenr += cur_offset - found_key.offset;
1157                         num_bytes = min(end + 1, extent_end) - cur_offset;
1158                         /*
1159                          * force cow if csum exists in the range.
1160                          * this ensure that csum for a given extent are
1161                          * either valid or do not exist.
1162                          */
1163                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1164                                 goto out_check;
1165                         nocow = 1;
1166                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1167                         extent_end = found_key.offset +
1168                                 btrfs_file_extent_inline_len(leaf, fi);
1169                         extent_end = ALIGN(extent_end, root->sectorsize);
1170                 } else {
1171                         BUG_ON(1);
1172                 }
1173 out_check:
1174                 if (extent_end <= start) {
1175                         path->slots[0]++;
1176                         goto next_slot;
1177                 }
1178                 if (!nocow) {
1179                         if (cow_start == (u64)-1)
1180                                 cow_start = cur_offset;
1181                         cur_offset = extent_end;
1182                         if (cur_offset > end)
1183                                 break;
1184                         path->slots[0]++;
1185                         goto next_slot;
1186                 }
1187
1188                 btrfs_release_path(path);
1189                 if (cow_start != (u64)-1) {
1190                         ret = cow_file_range(inode, locked_page, cow_start,
1191                                         found_key.offset - 1, page_started,
1192                                         nr_written, 1);
1193                         BUG_ON(ret);
1194                         cow_start = (u64)-1;
1195                 }
1196
1197                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1198                         struct extent_map *em;
1199                         struct extent_map_tree *em_tree;
1200                         em_tree = &BTRFS_I(inode)->extent_tree;
1201                         em = alloc_extent_map();
1202                         BUG_ON(!em);
1203                         em->start = cur_offset;
1204                         em->orig_start = em->start;
1205                         em->len = num_bytes;
1206                         em->block_len = num_bytes;
1207                         em->block_start = disk_bytenr;
1208                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1209                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1210                         while (1) {
1211                                 write_lock(&em_tree->lock);
1212                                 ret = add_extent_mapping(em_tree, em);
1213                                 write_unlock(&em_tree->lock);
1214                                 if (ret != -EEXIST) {
1215                                         free_extent_map(em);
1216                                         break;
1217                                 }
1218                                 btrfs_drop_extent_cache(inode, em->start,
1219                                                 em->start + em->len - 1, 0);
1220                         }
1221                         type = BTRFS_ORDERED_PREALLOC;
1222                 } else {
1223                         type = BTRFS_ORDERED_NOCOW;
1224                 }
1225
1226                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1227                                                num_bytes, num_bytes, type);
1228                 BUG_ON(ret);
1229
1230                 if (root->root_key.objectid ==
1231                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1232                         ret = btrfs_reloc_clone_csums(inode, cur_offset,
1233                                                       num_bytes);
1234                         BUG_ON(ret);
1235                 }
1236
1237                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1238                                 cur_offset, cur_offset + num_bytes - 1,
1239                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1240                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1241                                 EXTENT_SET_PRIVATE2);
1242                 cur_offset = extent_end;
1243                 if (cur_offset > end)
1244                         break;
1245         }
1246         btrfs_release_path(path);
1247
1248         if (cur_offset <= end && cow_start == (u64)-1)
1249                 cow_start = cur_offset;
1250         if (cow_start != (u64)-1) {
1251                 ret = cow_file_range(inode, locked_page, cow_start, end,
1252                                      page_started, nr_written, 1);
1253                 BUG_ON(ret);
1254         }
1255
1256         if (nolock) {
1257                 ret = btrfs_end_transaction_nolock(trans, root);
1258                 BUG_ON(ret);
1259         } else {
1260                 ret = btrfs_end_transaction(trans, root);
1261                 BUG_ON(ret);
1262         }
1263         btrfs_free_path(path);
1264         return 0;
1265 }
1266
1267 /*
1268  * extent_io.c call back to do delayed allocation processing
1269  */
1270 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1271                               u64 start, u64 end, int *page_started,
1272                               unsigned long *nr_written)
1273 {
1274         int ret;
1275         struct btrfs_root *root = BTRFS_I(inode)->root;
1276
1277         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1278                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1279                                          page_started, 1, nr_written);
1280         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1281                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1282                                          page_started, 0, nr_written);
1283         else if (!btrfs_test_opt(root, COMPRESS) &&
1284                  !(BTRFS_I(inode)->force_compress) &&
1285                  !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1286                 ret = cow_file_range(inode, locked_page, start, end,
1287                                       page_started, nr_written, 1);
1288         else
1289                 ret = cow_file_range_async(inode, locked_page, start, end,
1290                                            page_started, nr_written);
1291         return ret;
1292 }
1293
1294 static int btrfs_split_extent_hook(struct inode *inode,
1295                                    struct extent_state *orig, u64 split)
1296 {
1297         /* not delalloc, ignore it */
1298         if (!(orig->state & EXTENT_DELALLOC))
1299                 return 0;
1300
1301         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1302         return 0;
1303 }
1304
1305 /*
1306  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1307  * extents so we can keep track of new extents that are just merged onto old
1308  * extents, such as when we are doing sequential writes, so we can properly
1309  * account for the metadata space we'll need.
1310  */
1311 static int btrfs_merge_extent_hook(struct inode *inode,
1312                                    struct extent_state *new,
1313                                    struct extent_state *other)
1314 {
1315         /* not delalloc, ignore it */
1316         if (!(other->state & EXTENT_DELALLOC))
1317                 return 0;
1318
1319         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1320         return 0;
1321 }
1322
1323 /*
1324  * extent_io.c set_bit_hook, used to track delayed allocation
1325  * bytes in this file, and to maintain the list of inodes that
1326  * have pending delalloc work to be done.
1327  */
1328 static int btrfs_set_bit_hook(struct inode *inode,
1329                               struct extent_state *state, int *bits)
1330 {
1331
1332         /*
1333          * set_bit and clear bit hooks normally require _irqsave/restore
1334          * but in this case, we are only testing for the DELALLOC
1335          * bit, which is only set or cleared with irqs on
1336          */
1337         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1338                 struct btrfs_root *root = BTRFS_I(inode)->root;
1339                 u64 len = state->end + 1 - state->start;
1340                 bool do_list = !is_free_space_inode(root, inode);
1341
1342                 if (*bits & EXTENT_FIRST_DELALLOC)
1343                         *bits &= ~EXTENT_FIRST_DELALLOC;
1344                 else
1345                         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1346
1347                 spin_lock(&root->fs_info->delalloc_lock);
1348                 BTRFS_I(inode)->delalloc_bytes += len;
1349                 root->fs_info->delalloc_bytes += len;
1350                 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1351                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1352                                       &root->fs_info->delalloc_inodes);
1353                 }
1354                 spin_unlock(&root->fs_info->delalloc_lock);
1355         }
1356         return 0;
1357 }
1358
1359 /*
1360  * extent_io.c clear_bit_hook, see set_bit_hook for why
1361  */
1362 static int btrfs_clear_bit_hook(struct inode *inode,
1363                                 struct extent_state *state, int *bits)
1364 {
1365         /*
1366          * set_bit and clear bit hooks normally require _irqsave/restore
1367          * but in this case, we are only testing for the DELALLOC
1368          * bit, which is only set or cleared with irqs on
1369          */
1370         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1371                 struct btrfs_root *root = BTRFS_I(inode)->root;
1372                 u64 len = state->end + 1 - state->start;
1373                 bool do_list = !is_free_space_inode(root, inode);
1374
1375                 if (*bits & EXTENT_FIRST_DELALLOC)
1376                         *bits &= ~EXTENT_FIRST_DELALLOC;
1377                 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1378                         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1379
1380                 if (*bits & EXTENT_DO_ACCOUNTING)
1381                         btrfs_delalloc_release_metadata(inode, len);
1382
1383                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1384                     && do_list)
1385                         btrfs_free_reserved_data_space(inode, len);
1386
1387                 spin_lock(&root->fs_info->delalloc_lock);
1388                 root->fs_info->delalloc_bytes -= len;
1389                 BTRFS_I(inode)->delalloc_bytes -= len;
1390
1391                 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1392                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1393                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1394                 }
1395                 spin_unlock(&root->fs_info->delalloc_lock);
1396         }
1397         return 0;
1398 }
1399
1400 /*
1401  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1402  * we don't create bios that span stripes or chunks
1403  */
1404 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1405                          size_t size, struct bio *bio,
1406                          unsigned long bio_flags)
1407 {
1408         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1409         struct btrfs_mapping_tree *map_tree;
1410         u64 logical = (u64)bio->bi_sector << 9;
1411         u64 length = 0;
1412         u64 map_length;
1413         int ret;
1414
1415         if (bio_flags & EXTENT_BIO_COMPRESSED)
1416                 return 0;
1417
1418         length = bio->bi_size;
1419         map_tree = &root->fs_info->mapping_tree;
1420         map_length = length;
1421         ret = btrfs_map_block(map_tree, READ, logical,
1422                               &map_length, NULL, 0);
1423
1424         if (map_length < length + size)
1425                 return 1;
1426         return ret;
1427 }
1428
1429 /*
1430  * in order to insert checksums into the metadata in large chunks,
1431  * we wait until bio submission time.   All the pages in the bio are
1432  * checksummed and sums are attached onto the ordered extent record.
1433  *
1434  * At IO completion time the cums attached on the ordered extent record
1435  * are inserted into the btree
1436  */
1437 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1438                                     struct bio *bio, int mirror_num,
1439                                     unsigned long bio_flags,
1440                                     u64 bio_offset)
1441 {
1442         struct btrfs_root *root = BTRFS_I(inode)->root;
1443         int ret = 0;
1444
1445         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1446         BUG_ON(ret);
1447         return 0;
1448 }
1449
1450 /*
1451  * in order to insert checksums into the metadata in large chunks,
1452  * we wait until bio submission time.   All the pages in the bio are
1453  * checksummed and sums are attached onto the ordered extent record.
1454  *
1455  * At IO completion time the cums attached on the ordered extent record
1456  * are inserted into the btree
1457  */
1458 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1459                           int mirror_num, unsigned long bio_flags,
1460                           u64 bio_offset)
1461 {
1462         struct btrfs_root *root = BTRFS_I(inode)->root;
1463         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1464 }
1465
1466 /*
1467  * extent_io.c submission hook. This does the right thing for csum calculation
1468  * on write, or reading the csums from the tree before a read
1469  */
1470 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1471                           int mirror_num, unsigned long bio_flags,
1472                           u64 bio_offset)
1473 {
1474         struct btrfs_root *root = BTRFS_I(inode)->root;
1475         int ret = 0;
1476         int skip_sum;
1477
1478         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1479
1480         if (is_free_space_inode(root, inode))
1481                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1482         else
1483                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1484         BUG_ON(ret);
1485
1486         if (!(rw & REQ_WRITE)) {
1487                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1488                         return btrfs_submit_compressed_read(inode, bio,
1489                                                     mirror_num, bio_flags);
1490                 } else if (!skip_sum) {
1491                         ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1492                         if (ret)
1493                                 return ret;
1494                 }
1495                 goto mapit;
1496         } else if (!skip_sum) {
1497                 /* csum items have already been cloned */
1498                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1499                         goto mapit;
1500                 /* we're doing a write, do the async checksumming */
1501                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1502                                    inode, rw, bio, mirror_num,
1503                                    bio_flags, bio_offset,
1504                                    __btrfs_submit_bio_start,
1505                                    __btrfs_submit_bio_done);
1506         }
1507
1508 mapit:
1509         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1510 }
1511
1512 /*
1513  * given a list of ordered sums record them in the inode.  This happens
1514  * at IO completion time based on sums calculated at bio submission time.
1515  */
1516 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1517                              struct inode *inode, u64 file_offset,
1518                              struct list_head *list)
1519 {
1520         struct btrfs_ordered_sum *sum;
1521
1522         list_for_each_entry(sum, list, list) {
1523                 btrfs_csum_file_blocks(trans,
1524                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1525         }
1526         return 0;
1527 }
1528
1529 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1530                               struct extent_state **cached_state)
1531 {
1532         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1533                 WARN_ON(1);
1534         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1535                                    cached_state, GFP_NOFS);
1536 }
1537
1538 /* see btrfs_writepage_start_hook for details on why this is required */
1539 struct btrfs_writepage_fixup {
1540         struct page *page;
1541         struct btrfs_work work;
1542 };
1543
1544 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1545 {
1546         struct btrfs_writepage_fixup *fixup;
1547         struct btrfs_ordered_extent *ordered;
1548         struct extent_state *cached_state = NULL;
1549         struct page *page;
1550         struct inode *inode;
1551         u64 page_start;
1552         u64 page_end;
1553
1554         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1555         page = fixup->page;
1556 again:
1557         lock_page(page);
1558         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1559                 ClearPageChecked(page);
1560                 goto out_page;
1561         }
1562
1563         inode = page->mapping->host;
1564         page_start = page_offset(page);
1565         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1566
1567         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1568                          &cached_state, GFP_NOFS);
1569
1570         /* already ordered? We're done */
1571         if (PagePrivate2(page))
1572                 goto out;
1573
1574         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1575         if (ordered) {
1576                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1577                                      page_end, &cached_state, GFP_NOFS);
1578                 unlock_page(page);
1579                 btrfs_start_ordered_extent(inode, ordered, 1);
1580                 goto again;
1581         }
1582
1583         BUG();
1584         btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1585         ClearPageChecked(page);
1586 out:
1587         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1588                              &cached_state, GFP_NOFS);
1589 out_page:
1590         unlock_page(page);
1591         page_cache_release(page);
1592         kfree(fixup);
1593 }
1594
1595 /*
1596  * There are a few paths in the higher layers of the kernel that directly
1597  * set the page dirty bit without asking the filesystem if it is a
1598  * good idea.  This causes problems because we want to make sure COW
1599  * properly happens and the data=ordered rules are followed.
1600  *
1601  * In our case any range that doesn't have the ORDERED bit set
1602  * hasn't been properly setup for IO.  We kick off an async process
1603  * to fix it up.  The async helper will wait for ordered extents, set
1604  * the delalloc bit and make it safe to write the page.
1605  */
1606 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1607 {
1608         struct inode *inode = page->mapping->host;
1609         struct btrfs_writepage_fixup *fixup;
1610         struct btrfs_root *root = BTRFS_I(inode)->root;
1611
1612         /* this page is properly in the ordered list */
1613         if (TestClearPagePrivate2(page))
1614                 return 0;
1615
1616         if (PageChecked(page))
1617                 return -EAGAIN;
1618
1619         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1620         if (!fixup)
1621                 return -EAGAIN;
1622
1623         SetPageChecked(page);
1624         page_cache_get(page);
1625         fixup->work.func = btrfs_writepage_fixup_worker;
1626         fixup->page = page;
1627         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1628         return -EAGAIN;
1629 }
1630
1631 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1632                                        struct inode *inode, u64 file_pos,
1633                                        u64 disk_bytenr, u64 disk_num_bytes,
1634                                        u64 num_bytes, u64 ram_bytes,
1635                                        u8 compression, u8 encryption,
1636                                        u16 other_encoding, int extent_type)
1637 {
1638         struct btrfs_root *root = BTRFS_I(inode)->root;
1639         struct btrfs_file_extent_item *fi;
1640         struct btrfs_path *path;
1641         struct extent_buffer *leaf;
1642         struct btrfs_key ins;
1643         u64 hint;
1644         int ret;
1645
1646         path = btrfs_alloc_path();
1647         BUG_ON(!path);
1648
1649         path->leave_spinning = 1;
1650
1651         /*
1652          * we may be replacing one extent in the tree with another.
1653          * The new extent is pinned in the extent map, and we don't want
1654          * to drop it from the cache until it is completely in the btree.
1655          *
1656          * So, tell btrfs_drop_extents to leave this extent in the cache.
1657          * the caller is expected to unpin it and allow it to be merged
1658          * with the others.
1659          */
1660         ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1661                                  &hint, 0);
1662         BUG_ON(ret);
1663
1664         ins.objectid = btrfs_ino(inode);
1665         ins.offset = file_pos;
1666         ins.type = BTRFS_EXTENT_DATA_KEY;
1667         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1668         BUG_ON(ret);
1669         leaf = path->nodes[0];
1670         fi = btrfs_item_ptr(leaf, path->slots[0],
1671                             struct btrfs_file_extent_item);
1672         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1673         btrfs_set_file_extent_type(leaf, fi, extent_type);
1674         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1675         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1676         btrfs_set_file_extent_offset(leaf, fi, 0);
1677         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1678         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1679         btrfs_set_file_extent_compression(leaf, fi, compression);
1680         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1681         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1682
1683         btrfs_unlock_up_safe(path, 1);
1684         btrfs_set_lock_blocking(leaf);
1685
1686         btrfs_mark_buffer_dirty(leaf);
1687
1688         inode_add_bytes(inode, num_bytes);
1689
1690         ins.objectid = disk_bytenr;
1691         ins.offset = disk_num_bytes;
1692         ins.type = BTRFS_EXTENT_ITEM_KEY;
1693         ret = btrfs_alloc_reserved_file_extent(trans, root,
1694                                         root->root_key.objectid,
1695                                         btrfs_ino(inode), file_pos, &ins);
1696         BUG_ON(ret);
1697         btrfs_free_path(path);
1698
1699         return 0;
1700 }
1701
1702 /*
1703  * helper function for btrfs_finish_ordered_io, this
1704  * just reads in some of the csum leaves to prime them into ram
1705  * before we start the transaction.  It limits the amount of btree
1706  * reads required while inside the transaction.
1707  */
1708 /* as ordered data IO finishes, this gets called so we can finish
1709  * an ordered extent if the range of bytes in the file it covers are
1710  * fully written.
1711  */
1712 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1713 {
1714         struct btrfs_root *root = BTRFS_I(inode)->root;
1715         struct btrfs_trans_handle *trans = NULL;
1716         struct btrfs_ordered_extent *ordered_extent = NULL;
1717         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1718         struct extent_state *cached_state = NULL;
1719         int compress_type = 0;
1720         int ret;
1721         bool nolock;
1722
1723         ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1724                                              end - start + 1);
1725         if (!ret)
1726                 return 0;
1727         BUG_ON(!ordered_extent);
1728
1729         nolock = is_free_space_inode(root, inode);
1730
1731         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1732                 BUG_ON(!list_empty(&ordered_extent->list));
1733                 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1734                 if (!ret) {
1735                         if (nolock)
1736                                 trans = btrfs_join_transaction_nolock(root);
1737                         else
1738                                 trans = btrfs_join_transaction(root);
1739                         BUG_ON(IS_ERR(trans));
1740                         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1741                         ret = btrfs_update_inode(trans, root, inode);
1742                         BUG_ON(ret);
1743                 }
1744                 goto out;
1745         }
1746
1747         lock_extent_bits(io_tree, ordered_extent->file_offset,
1748                          ordered_extent->file_offset + ordered_extent->len - 1,
1749                          0, &cached_state, GFP_NOFS);
1750
1751         if (nolock)
1752                 trans = btrfs_join_transaction_nolock(root);
1753         else
1754                 trans = btrfs_join_transaction(root);
1755         BUG_ON(IS_ERR(trans));
1756         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1757
1758         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1759                 compress_type = ordered_extent->compress_type;
1760         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1761                 BUG_ON(compress_type);
1762                 ret = btrfs_mark_extent_written(trans, inode,
1763                                                 ordered_extent->file_offset,
1764                                                 ordered_extent->file_offset +
1765                                                 ordered_extent->len);
1766                 BUG_ON(ret);
1767         } else {
1768                 BUG_ON(root == root->fs_info->tree_root);
1769                 ret = insert_reserved_file_extent(trans, inode,
1770                                                 ordered_extent->file_offset,
1771                                                 ordered_extent->start,
1772                                                 ordered_extent->disk_len,
1773                                                 ordered_extent->len,
1774                                                 ordered_extent->len,
1775                                                 compress_type, 0, 0,
1776                                                 BTRFS_FILE_EXTENT_REG);
1777                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1778                                    ordered_extent->file_offset,
1779                                    ordered_extent->len);
1780                 BUG_ON(ret);
1781         }
1782         unlock_extent_cached(io_tree, ordered_extent->file_offset,
1783                              ordered_extent->file_offset +
1784                              ordered_extent->len - 1, &cached_state, GFP_NOFS);
1785
1786         add_pending_csums(trans, inode, ordered_extent->file_offset,
1787                           &ordered_extent->list);
1788
1789         ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1790         if (!ret) {
1791                 ret = btrfs_update_inode(trans, root, inode);
1792                 BUG_ON(ret);
1793         }
1794         ret = 0;
1795 out:
1796         if (nolock) {
1797                 if (trans)
1798                         btrfs_end_transaction_nolock(trans, root);
1799         } else {
1800                 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1801                 if (trans)
1802                         btrfs_end_transaction(trans, root);
1803         }
1804
1805         /* once for us */
1806         btrfs_put_ordered_extent(ordered_extent);
1807         /* once for the tree */
1808         btrfs_put_ordered_extent(ordered_extent);
1809
1810         return 0;
1811 }
1812
1813 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1814                                 struct extent_state *state, int uptodate)
1815 {
1816         trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1817
1818         ClearPagePrivate2(page);
1819         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1820 }
1821
1822 /*
1823  * When IO fails, either with EIO or csum verification fails, we
1824  * try other mirrors that might have a good copy of the data.  This
1825  * io_failure_record is used to record state as we go through all the
1826  * mirrors.  If another mirror has good data, the page is set up to date
1827  * and things continue.  If a good mirror can't be found, the original
1828  * bio end_io callback is called to indicate things have failed.
1829  */
1830 struct io_failure_record {
1831         struct page *page;
1832         u64 start;
1833         u64 len;
1834         u64 logical;
1835         unsigned long bio_flags;
1836         int last_mirror;
1837 };
1838
1839 static int btrfs_io_failed_hook(struct bio *failed_bio,
1840                          struct page *page, u64 start, u64 end,
1841                          struct extent_state *state)
1842 {
1843         struct io_failure_record *failrec = NULL;
1844         u64 private;
1845         struct extent_map *em;
1846         struct inode *inode = page->mapping->host;
1847         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1848         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1849         struct bio *bio;
1850         int num_copies;
1851         int ret;
1852         int rw;
1853         u64 logical;
1854
1855         ret = get_state_private(failure_tree, start, &private);
1856         if (ret) {
1857                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1858                 if (!failrec)
1859                         return -ENOMEM;
1860                 failrec->start = start;
1861                 failrec->len = end - start + 1;
1862                 failrec->last_mirror = 0;
1863                 failrec->bio_flags = 0;
1864
1865                 read_lock(&em_tree->lock);
1866                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1867                 if (em->start > start || em->start + em->len < start) {
1868                         free_extent_map(em);
1869                         em = NULL;
1870                 }
1871                 read_unlock(&em_tree->lock);
1872
1873                 if (IS_ERR_OR_NULL(em)) {
1874                         kfree(failrec);
1875                         return -EIO;
1876                 }
1877                 logical = start - em->start;
1878                 logical = em->block_start + logical;
1879                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1880                         logical = em->block_start;
1881                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1882                         extent_set_compress_type(&failrec->bio_flags,
1883                                                  em->compress_type);
1884                 }
1885                 failrec->logical = logical;
1886                 free_extent_map(em);
1887                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1888                                 EXTENT_DIRTY, GFP_NOFS);
1889                 set_state_private(failure_tree, start,
1890                                  (u64)(unsigned long)failrec);
1891         } else {
1892                 failrec = (struct io_failure_record *)(unsigned long)private;
1893         }
1894         num_copies = btrfs_num_copies(
1895                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1896                               failrec->logical, failrec->len);
1897         failrec->last_mirror++;
1898         if (!state) {
1899                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1900                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1901                                                     failrec->start,
1902                                                     EXTENT_LOCKED);
1903                 if (state && state->start != failrec->start)
1904                         state = NULL;
1905                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1906         }
1907         if (!state || failrec->last_mirror > num_copies) {
1908                 set_state_private(failure_tree, failrec->start, 0);
1909                 clear_extent_bits(failure_tree, failrec->start,
1910                                   failrec->start + failrec->len - 1,
1911                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1912                 kfree(failrec);
1913                 return -EIO;
1914         }
1915         bio = bio_alloc(GFP_NOFS, 1);
1916         bio->bi_private = state;
1917         bio->bi_end_io = failed_bio->bi_end_io;
1918         bio->bi_sector = failrec->logical >> 9;
1919         bio->bi_bdev = failed_bio->bi_bdev;
1920         bio->bi_size = 0;
1921
1922         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1923         if (failed_bio->bi_rw & REQ_WRITE)
1924                 rw = WRITE;
1925         else
1926                 rw = READ;
1927
1928         ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1929                                                       failrec->last_mirror,
1930                                                       failrec->bio_flags, 0);
1931         return ret;
1932 }
1933
1934 /*
1935  * each time an IO finishes, we do a fast check in the IO failure tree
1936  * to see if we need to process or clean up an io_failure_record
1937  */
1938 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1939 {
1940         u64 private;
1941         u64 private_failure;
1942         struct io_failure_record *failure;
1943         int ret;
1944
1945         private = 0;
1946         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1947                              (u64)-1, 1, EXTENT_DIRTY, 0)) {
1948                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1949                                         start, &private_failure);
1950                 if (ret == 0) {
1951                         failure = (struct io_failure_record *)(unsigned long)
1952                                    private_failure;
1953                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1954                                           failure->start, 0);
1955                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1956                                           failure->start,
1957                                           failure->start + failure->len - 1,
1958                                           EXTENT_DIRTY | EXTENT_LOCKED,
1959                                           GFP_NOFS);
1960                         kfree(failure);
1961                 }
1962         }
1963         return 0;
1964 }
1965
1966 /*
1967  * when reads are done, we need to check csums to verify the data is correct
1968  * if there's a match, we allow the bio to finish.  If not, we go through
1969  * the io_failure_record routines to find good copies
1970  */
1971 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1972                                struct extent_state *state)
1973 {
1974         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1975         struct inode *inode = page->mapping->host;
1976         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1977         char *kaddr;
1978         u64 private = ~(u32)0;
1979         int ret;
1980         struct btrfs_root *root = BTRFS_I(inode)->root;
1981         u32 csum = ~(u32)0;
1982
1983         if (PageChecked(page)) {
1984                 ClearPageChecked(page);
1985                 goto good;
1986         }
1987
1988         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1989                 goto good;
1990
1991         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1992             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1993                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1994                                   GFP_NOFS);
1995                 return 0;
1996         }
1997
1998         if (state && state->start == start) {
1999                 private = state->private;
2000                 ret = 0;
2001         } else {
2002                 ret = get_state_private(io_tree, start, &private);
2003         }
2004         kaddr = kmap_atomic(page, KM_USER0);
2005         if (ret)
2006                 goto zeroit;
2007
2008         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
2009         btrfs_csum_final(csum, (char *)&csum);
2010         if (csum != private)
2011                 goto zeroit;
2012
2013         kunmap_atomic(kaddr, KM_USER0);
2014 good:
2015         /* if the io failure tree for this inode is non-empty,
2016          * check to see if we've recovered from a failed IO
2017          */
2018         btrfs_clean_io_failures(inode, start);
2019         return 0;
2020
2021 zeroit:
2022         printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
2023                        "private %llu\n",
2024                        (unsigned long long)btrfs_ino(page->mapping->host),
2025                        (unsigned long long)start, csum,
2026                        (unsigned long long)private);
2027         memset(kaddr + offset, 1, end - start + 1);
2028         flush_dcache_page(page);
2029         kunmap_atomic(kaddr, KM_USER0);
2030         if (private == 0)
2031                 return 0;
2032         return -EIO;
2033 }
2034
2035 struct delayed_iput {
2036         struct list_head list;
2037         struct inode *inode;
2038 };
2039
2040 void btrfs_add_delayed_iput(struct inode *inode)
2041 {
2042         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2043         struct delayed_iput *delayed;
2044
2045         if (atomic_add_unless(&inode->i_count, -1, 1))
2046                 return;
2047
2048         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2049         delayed->inode = inode;
2050
2051         spin_lock(&fs_info->delayed_iput_lock);
2052         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2053         spin_unlock(&fs_info->delayed_iput_lock);
2054 }
2055
2056 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2057 {
2058         LIST_HEAD(list);
2059         struct btrfs_fs_info *fs_info = root->fs_info;
2060         struct delayed_iput *delayed;
2061         int empty;
2062
2063         spin_lock(&fs_info->delayed_iput_lock);
2064         empty = list_empty(&fs_info->delayed_iputs);
2065         spin_unlock(&fs_info->delayed_iput_lock);
2066         if (empty)
2067                 return;
2068
2069         down_read(&root->fs_info->cleanup_work_sem);
2070         spin_lock(&fs_info->delayed_iput_lock);
2071         list_splice_init(&fs_info->delayed_iputs, &list);
2072         spin_unlock(&fs_info->delayed_iput_lock);
2073
2074         while (!list_empty(&list)) {
2075                 delayed = list_entry(list.next, struct delayed_iput, list);
2076                 list_del(&delayed->list);
2077                 iput(delayed->inode);
2078                 kfree(delayed);
2079         }
2080         up_read(&root->fs_info->cleanup_work_sem);
2081 }
2082
2083 /*
2084  * calculate extra metadata reservation when snapshotting a subvolume
2085  * contains orphan files.
2086  */
2087 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2088                                 struct btrfs_pending_snapshot *pending,
2089                                 u64 *bytes_to_reserve)
2090 {
2091         struct btrfs_root *root;
2092         struct btrfs_block_rsv *block_rsv;
2093         u64 num_bytes;
2094         int index;
2095
2096         root = pending->root;
2097         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2098                 return;
2099
2100         block_rsv = root->orphan_block_rsv;
2101
2102         /* orphan block reservation for the snapshot */
2103         num_bytes = block_rsv->size;
2104
2105         /*
2106          * after the snapshot is created, COWing tree blocks may use more
2107          * space than it frees. So we should make sure there is enough
2108          * reserved space.
2109          */
2110         index = trans->transid & 0x1;
2111         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2112                 num_bytes += block_rsv->size -
2113                              (block_rsv->reserved + block_rsv->freed[index]);
2114         }
2115
2116         *bytes_to_reserve += num_bytes;
2117 }
2118
2119 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2120                                 struct btrfs_pending_snapshot *pending)
2121 {
2122         struct btrfs_root *root = pending->root;
2123         struct btrfs_root *snap = pending->snap;
2124         struct btrfs_block_rsv *block_rsv;
2125         u64 num_bytes;
2126         int index;
2127         int ret;
2128
2129         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2130                 return;
2131
2132         /* refill source subvolume's orphan block reservation */
2133         block_rsv = root->orphan_block_rsv;
2134         index = trans->transid & 0x1;
2135         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2136                 num_bytes = block_rsv->size -
2137                             (block_rsv->reserved + block_rsv->freed[index]);
2138                 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2139                                               root->orphan_block_rsv,
2140                                               num_bytes);
2141                 BUG_ON(ret);
2142         }
2143
2144         /* setup orphan block reservation for the snapshot */
2145         block_rsv = btrfs_alloc_block_rsv(snap);
2146         BUG_ON(!block_rsv);
2147
2148         btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2149         snap->orphan_block_rsv = block_rsv;
2150
2151         num_bytes = root->orphan_block_rsv->size;
2152         ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2153                                       block_rsv, num_bytes);
2154         BUG_ON(ret);
2155
2156 #if 0
2157         /* insert orphan item for the snapshot */
2158         WARN_ON(!root->orphan_item_inserted);
2159         ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2160                                        snap->root_key.objectid);
2161         BUG_ON(ret);
2162         snap->orphan_item_inserted = 1;
2163 #endif
2164 }
2165
2166 enum btrfs_orphan_cleanup_state {
2167         ORPHAN_CLEANUP_STARTED  = 1,
2168         ORPHAN_CLEANUP_DONE     = 2,
2169 };
2170
2171 /*
2172  * This is called in transaction commmit time. If there are no orphan
2173  * files in the subvolume, it removes orphan item and frees block_rsv
2174  * structure.
2175  */
2176 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2177                               struct btrfs_root *root)
2178 {
2179         int ret;
2180
2181         if (!list_empty(&root->orphan_list) ||
2182             root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2183                 return;
2184
2185         if (root->orphan_item_inserted &&
2186             btrfs_root_refs(&root->root_item) > 0) {
2187                 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2188                                             root->root_key.objectid);
2189                 BUG_ON(ret);
2190                 root->orphan_item_inserted = 0;
2191         }
2192
2193         if (root->orphan_block_rsv) {
2194                 WARN_ON(root->orphan_block_rsv->size > 0);
2195                 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2196                 root->orphan_block_rsv = NULL;
2197         }
2198 }
2199
2200 /*
2201  * This creates an orphan entry for the given inode in case something goes
2202  * wrong in the middle of an unlink/truncate.
2203  *
2204  * NOTE: caller of this function should reserve 5 units of metadata for
2205  *       this function.
2206  */
2207 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2208 {
2209         struct btrfs_root *root = BTRFS_I(inode)->root;
2210         struct btrfs_block_rsv *block_rsv = NULL;
2211         int reserve = 0;
2212         int insert = 0;
2213         int ret;
2214
2215         if (!root->orphan_block_rsv) {
2216                 block_rsv = btrfs_alloc_block_rsv(root);
2217                 BUG_ON(!block_rsv);
2218         }
2219
2220         spin_lock(&root->orphan_lock);
2221         if (!root->orphan_block_rsv) {
2222                 root->orphan_block_rsv = block_rsv;
2223         } else if (block_rsv) {
2224                 btrfs_free_block_rsv(root, block_rsv);
2225                 block_rsv = NULL;
2226         }
2227
2228         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2229                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2230 #if 0
2231                 /*
2232                  * For proper ENOSPC handling, we should do orphan
2233                  * cleanup when mounting. But this introduces backward
2234                  * compatibility issue.
2235                  */
2236                 if (!xchg(&root->orphan_item_inserted, 1))
2237                         insert = 2;
2238                 else
2239                         insert = 1;
2240 #endif
2241                 insert = 1;
2242         }
2243
2244         if (!BTRFS_I(inode)->orphan_meta_reserved) {
2245                 BTRFS_I(inode)->orphan_meta_reserved = 1;
2246                 reserve = 1;
2247         }
2248         spin_unlock(&root->orphan_lock);
2249
2250         if (block_rsv)
2251                 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2252
2253         /* grab metadata reservation from transaction handle */
2254         if (reserve) {
2255                 ret = btrfs_orphan_reserve_metadata(trans, inode);
2256                 BUG_ON(ret);
2257         }
2258
2259         /* insert an orphan item to track this unlinked/truncated file */
2260         if (insert >= 1) {
2261                 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2262                 BUG_ON(ret);
2263         }
2264
2265         /* insert an orphan item to track subvolume contains orphan files */
2266         if (insert >= 2) {
2267                 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2268                                                root->root_key.objectid);
2269                 BUG_ON(ret);
2270         }
2271         return 0;
2272 }
2273
2274 /*
2275  * We have done the truncate/delete so we can go ahead and remove the orphan
2276  * item for this particular inode.
2277  */
2278 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2279 {
2280         struct btrfs_root *root = BTRFS_I(inode)->root;
2281         int delete_item = 0;
2282         int release_rsv = 0;
2283         int ret = 0;
2284
2285         spin_lock(&root->orphan_lock);
2286         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2287                 list_del_init(&BTRFS_I(inode)->i_orphan);
2288                 delete_item = 1;
2289         }
2290
2291         if (BTRFS_I(inode)->orphan_meta_reserved) {
2292                 BTRFS_I(inode)->orphan_meta_reserved = 0;
2293                 release_rsv = 1;
2294         }
2295         spin_unlock(&root->orphan_lock);
2296
2297         if (trans && delete_item) {
2298                 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2299                 BUG_ON(ret);
2300         }
2301
2302         if (release_rsv)
2303                 btrfs_orphan_release_metadata(inode);
2304
2305         return 0;
2306 }
2307
2308 /*
2309  * this cleans up any orphans that may be left on the list from the last use
2310  * of this root.
2311  */
2312 int btrfs_orphan_cleanup(struct btrfs_root *root)
2313 {
2314         struct btrfs_path *path;
2315         struct extent_buffer *leaf;
2316         struct btrfs_key key, found_key;
2317         struct btrfs_trans_handle *trans;
2318         struct inode *inode;
2319         int ret = 0, nr_unlink = 0, nr_truncate = 0;
2320
2321         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2322                 return 0;
2323
2324         path = btrfs_alloc_path();
2325         if (!path) {
2326                 ret = -ENOMEM;
2327                 goto out;
2328         }
2329         path->reada = -1;
2330
2331         key.objectid = BTRFS_ORPHAN_OBJECTID;
2332         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2333         key.offset = (u64)-1;
2334
2335         while (1) {
2336                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2337                 if (ret < 0)
2338                         goto out;
2339
2340                 /*
2341                  * if ret == 0 means we found what we were searching for, which
2342                  * is weird, but possible, so only screw with path if we didn't
2343                  * find the key and see if we have stuff that matches
2344                  */
2345                 if (ret > 0) {
2346                         ret = 0;
2347                         if (path->slots[0] == 0)
2348                                 break;
2349                         path->slots[0]--;
2350                 }
2351
2352                 /* pull out the item */
2353                 leaf = path->nodes[0];
2354                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2355
2356                 /* make sure the item matches what we want */
2357                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2358                         break;
2359                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2360                         break;
2361
2362                 /* release the path since we're done with it */
2363                 btrfs_release_path(path);
2364
2365                 /*
2366                  * this is where we are basically btrfs_lookup, without the
2367                  * crossing root thing.  we store the inode number in the
2368                  * offset of the orphan item.
2369                  */
2370                 found_key.objectid = found_key.offset;
2371                 found_key.type = BTRFS_INODE_ITEM_KEY;
2372                 found_key.offset = 0;
2373                 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2374                 if (IS_ERR(inode)) {
2375                         ret = PTR_ERR(inode);
2376                         goto out;
2377                 }
2378
2379                 /*
2380                  * add this inode to the orphan list so btrfs_orphan_del does
2381                  * the proper thing when we hit it
2382                  */
2383                 spin_lock(&root->orphan_lock);
2384                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2385                 spin_unlock(&root->orphan_lock);
2386
2387                 /*
2388                  * if this is a bad inode, means we actually succeeded in
2389                  * removing the inode, but not the orphan record, which means
2390                  * we need to manually delete the orphan since iput will just
2391                  * do a destroy_inode
2392                  */
2393                 if (is_bad_inode(inode)) {
2394                         trans = btrfs_start_transaction(root, 0);
2395                         if (IS_ERR(trans)) {
2396                                 ret = PTR_ERR(trans);
2397                                 goto out;
2398                         }
2399                         btrfs_orphan_del(trans, inode);
2400                         btrfs_end_transaction(trans, root);
2401                         iput(inode);
2402                         continue;
2403                 }
2404
2405                 /* if we have links, this was a truncate, lets do that */
2406                 if (inode->i_nlink) {
2407                         if (!S_ISREG(inode->i_mode)) {
2408                                 WARN_ON(1);
2409                                 iput(inode);
2410                                 continue;
2411                         }
2412                         nr_truncate++;
2413                         ret = btrfs_truncate(inode);
2414                 } else {
2415                         nr_unlink++;
2416                 }
2417
2418                 /* this will do delete_inode and everything for us */
2419                 iput(inode);
2420                 if (ret)
2421                         goto out;
2422         }
2423         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2424
2425         if (root->orphan_block_rsv)
2426                 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2427                                         (u64)-1);
2428
2429         if (root->orphan_block_rsv || root->orphan_item_inserted) {
2430                 trans = btrfs_join_transaction(root);
2431                 if (!IS_ERR(trans))
2432                         btrfs_end_transaction(trans, root);
2433         }
2434
2435         if (nr_unlink)
2436                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2437         if (nr_truncate)
2438                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2439
2440 out:
2441         if (ret)
2442                 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2443         btrfs_free_path(path);
2444         return ret;
2445 }
2446
2447 /*
2448  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2449  * don't find any xattrs, we know there can't be any acls.
2450  *
2451  * slot is the slot the inode is in, objectid is the objectid of the inode
2452  */
2453 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2454                                           int slot, u64 objectid)
2455 {
2456         u32 nritems = btrfs_header_nritems(leaf);
2457         struct btrfs_key found_key;
2458         int scanned = 0;
2459
2460         slot++;
2461         while (slot < nritems) {
2462                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2463
2464                 /* we found a different objectid, there must not be acls */
2465                 if (found_key.objectid != objectid)
2466                         return 0;
2467
2468                 /* we found an xattr, assume we've got an acl */
2469                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2470                         return 1;
2471
2472                 /*
2473                  * we found a key greater than an xattr key, there can't
2474                  * be any acls later on
2475                  */
2476                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2477                         return 0;
2478
2479                 slot++;
2480                 scanned++;
2481
2482                 /*
2483                  * it goes inode, inode backrefs, xattrs, extents,
2484                  * so if there are a ton of hard links to an inode there can
2485                  * be a lot of backrefs.  Don't waste time searching too hard,
2486                  * this is just an optimization
2487                  */
2488                 if (scanned >= 8)
2489                         break;
2490         }
2491         /* we hit the end of the leaf before we found an xattr or
2492          * something larger than an xattr.  We have to assume the inode
2493          * has acls
2494          */
2495         return 1;
2496 }
2497
2498 /*
2499  * read an inode from the btree into the in-memory inode
2500  */
2501 static void btrfs_read_locked_inode(struct inode *inode)
2502 {
2503         struct btrfs_path *path;
2504         struct extent_buffer *leaf;
2505         struct btrfs_inode_item *inode_item;
2506         struct btrfs_timespec *tspec;
2507         struct btrfs_root *root = BTRFS_I(inode)->root;
2508         struct btrfs_key location;
2509         int maybe_acls;
2510         u32 rdev;
2511         int ret;
2512
2513         path = btrfs_alloc_path();
2514         BUG_ON(!path);
2515         path->leave_spinning = 1;
2516         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2517
2518         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2519         if (ret)
2520                 goto make_bad;
2521
2522         leaf = path->nodes[0];
2523         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2524                                     struct btrfs_inode_item);
2525         if (!leaf->map_token)
2526                 map_private_extent_buffer(leaf, (unsigned long)inode_item,
2527                                           sizeof(struct btrfs_inode_item),
2528                                           &leaf->map_token, &leaf->kaddr,
2529                                           &leaf->map_start, &leaf->map_len,
2530                                           KM_USER1);
2531
2532         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2533         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2534         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2535         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2536         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2537
2538         tspec = btrfs_inode_atime(inode_item);
2539         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2540         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2541
2542         tspec = btrfs_inode_mtime(inode_item);
2543         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2544         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2545
2546         tspec = btrfs_inode_ctime(inode_item);
2547         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2548         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2549
2550         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2551         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2552         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2553         inode->i_generation = BTRFS_I(inode)->generation;
2554         inode->i_rdev = 0;
2555         rdev = btrfs_inode_rdev(leaf, inode_item);
2556
2557         BTRFS_I(inode)->index_cnt = (u64)-1;
2558         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2559
2560         /*
2561          * try to precache a NULL acl entry for files that don't have
2562          * any xattrs or acls
2563          */
2564         maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2565                                            btrfs_ino(inode));
2566         if (!maybe_acls)
2567                 cache_no_acl(inode);
2568
2569         if (leaf->map_token) {
2570                 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
2571                 leaf->map_token = NULL;
2572         }
2573
2574         btrfs_free_path(path);
2575         inode_item = NULL;
2576
2577         switch (inode->i_mode & S_IFMT) {
2578         case S_IFREG:
2579                 inode->i_mapping->a_ops = &btrfs_aops;
2580                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2581                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2582                 inode->i_fop = &btrfs_file_operations;
2583                 inode->i_op = &btrfs_file_inode_operations;
2584                 break;
2585         case S_IFDIR:
2586                 inode->i_fop = &btrfs_dir_file_operations;
2587                 if (root == root->fs_info->tree_root)
2588                         inode->i_op = &btrfs_dir_ro_inode_operations;
2589                 else
2590                         inode->i_op = &btrfs_dir_inode_operations;
2591                 break;
2592         case S_IFLNK:
2593                 inode->i_op = &btrfs_symlink_inode_operations;
2594                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2595                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2596                 break;
2597         default:
2598                 inode->i_op = &btrfs_special_inode_operations;
2599                 init_special_inode(inode, inode->i_mode, rdev);
2600                 break;
2601         }
2602
2603         btrfs_update_iflags(inode);
2604         return;
2605
2606 make_bad:
2607         btrfs_free_path(path);
2608         make_bad_inode(inode);
2609 }
2610
2611 /*
2612  * given a leaf and an inode, copy the inode fields into the leaf
2613  */
2614 static void fill_inode_item(struct btrfs_trans_handle *trans,
2615                             struct extent_buffer *leaf,
2616                             struct btrfs_inode_item *item,
2617                             struct inode *inode)
2618 {
2619         if (!leaf->map_token)
2620                 map_private_extent_buffer(leaf, (unsigned long)item,
2621                                           sizeof(struct btrfs_inode_item),
2622                                           &leaf->map_token, &leaf->kaddr,
2623                                           &leaf->map_start, &leaf->map_len,
2624                                           KM_USER1);
2625
2626         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2627         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2628         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2629         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2630         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2631
2632         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2633                                inode->i_atime.tv_sec);
2634         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2635                                 inode->i_atime.tv_nsec);
2636
2637         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2638                                inode->i_mtime.tv_sec);
2639         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2640                                 inode->i_mtime.tv_nsec);
2641
2642         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2643                                inode->i_ctime.tv_sec);
2644         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2645                                 inode->i_ctime.tv_nsec);
2646
2647         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2648         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2649         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2650         btrfs_set_inode_transid(leaf, item, trans->transid);
2651         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2652         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2653         btrfs_set_inode_block_group(leaf, item, 0);
2654
2655         if (leaf->map_token) {
2656                 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
2657                 leaf->map_token = NULL;
2658         }
2659 }
2660
2661 /*
2662  * copy everything in the in-memory inode into the btree.
2663  */
2664 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2665                                 struct btrfs_root *root, struct inode *inode)
2666 {
2667         struct btrfs_inode_item *inode_item;
2668         struct btrfs_path *path;
2669         struct extent_buffer *leaf;
2670         int ret;
2671
2672         /*
2673          * If root is tree root, it means this inode is used to
2674          * store free space information. And these inodes are updated
2675          * when committing the transaction, so they needn't delaye to
2676          * be updated, or deadlock will occured.
2677          */
2678         if (!is_free_space_inode(root, inode)) {
2679                 ret = btrfs_delayed_update_inode(trans, root, inode);
2680                 if (!ret)
2681                         btrfs_set_inode_last_trans(trans, inode);
2682                 return ret;
2683         }
2684
2685         path = btrfs_alloc_path();
2686         if (!path)
2687                 return -ENOMEM;
2688
2689         path->leave_spinning = 1;
2690         ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2691                                  1);
2692         if (ret) {
2693                 if (ret > 0)
2694                         ret = -ENOENT;
2695                 goto failed;
2696         }
2697
2698         btrfs_unlock_up_safe(path, 1);
2699         leaf = path->nodes[0];
2700         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2701                                     struct btrfs_inode_item);
2702
2703         fill_inode_item(trans, leaf, inode_item, inode);
2704         btrfs_mark_buffer_dirty(leaf);
2705         btrfs_set_inode_last_trans(trans, inode);
2706         ret = 0;
2707 failed:
2708         btrfs_free_path(path);
2709         return ret;
2710 }
2711
2712 /*
2713  * unlink helper that gets used here in inode.c and in the tree logging
2714  * recovery code.  It remove a link in a directory with a given name, and
2715  * also drops the back refs in the inode to the directory
2716  */
2717 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2718                                 struct btrfs_root *root,
2719                                 struct inode *dir, struct inode *inode,
2720                                 const char *name, int name_len)
2721 {
2722         struct btrfs_path *path;
2723         int ret = 0;
2724         struct extent_buffer *leaf;
2725         struct btrfs_dir_item *di;
2726         struct btrfs_key key;
2727         u64 index;
2728         u64 ino = btrfs_ino(inode);
2729         u64 dir_ino = btrfs_ino(dir);
2730
2731         path = btrfs_alloc_path();
2732         if (!path) {
2733                 ret = -ENOMEM;
2734                 goto out;
2735         }
2736
2737         path->leave_spinning = 1;
2738         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2739                                     name, name_len, -1);
2740         if (IS_ERR(di)) {
2741                 ret = PTR_ERR(di);
2742                 goto err;
2743         }
2744         if (!di) {
2745                 ret = -ENOENT;
2746                 goto err;
2747         }
2748         leaf = path->nodes[0];
2749         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2750         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2751         if (ret)
2752                 goto err;
2753         btrfs_release_path(path);
2754
2755         ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2756                                   dir_ino, &index);
2757         if (ret) {
2758                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2759                        "inode %llu parent %llu\n", name_len, name,
2760                        (unsigned long long)ino, (unsigned long long)dir_ino);
2761                 goto err;
2762         }
2763
2764         ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2765         if (ret)
2766                 goto err;
2767
2768         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2769                                          inode, dir_ino);
2770         BUG_ON(ret != 0 && ret != -ENOENT);
2771
2772         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2773                                            dir, index);
2774         if (ret == -ENOENT)
2775                 ret = 0;
2776 err:
2777         btrfs_free_path(path);
2778         if (ret)
2779                 goto out;
2780
2781         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2782         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2783         btrfs_update_inode(trans, root, dir);
2784 out:
2785         return ret;
2786 }
2787
2788 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2789                        struct btrfs_root *root,
2790                        struct inode *dir, struct inode *inode,
2791                        const char *name, int name_len)
2792 {
2793         int ret;
2794         ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2795         if (!ret) {
2796                 btrfs_drop_nlink(inode);
2797                 ret = btrfs_update_inode(trans, root, inode);
2798         }
2799         return ret;
2800 }
2801                 
2802
2803 /* helper to check if there is any shared block in the path */
2804 static int check_path_shared(struct btrfs_root *root,
2805                              struct btrfs_path *path)
2806 {
2807         struct extent_buffer *eb;
2808         int level;
2809         u64 refs = 1;
2810
2811         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2812                 int ret;
2813
2814                 if (!path->nodes[level])
2815                         break;
2816                 eb = path->nodes[level];
2817                 if (!btrfs_block_can_be_shared(root, eb))
2818                         continue;
2819                 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2820                                                &refs, NULL);
2821                 if (refs > 1)
2822                         return 1;
2823         }
2824         return 0;
2825 }
2826
2827 /*
2828  * helper to start transaction for unlink and rmdir.
2829  *
2830  * unlink and rmdir are special in btrfs, they do not always free space.
2831  * so in enospc case, we should make sure they will free space before
2832  * allowing them to use the global metadata reservation.
2833  */
2834 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2835                                                        struct dentry *dentry)
2836 {
2837         struct btrfs_trans_handle *trans;
2838         struct btrfs_root *root = BTRFS_I(dir)->root;
2839         struct btrfs_path *path;
2840         struct btrfs_inode_ref *ref;
2841         struct btrfs_dir_item *di;
2842         struct inode *inode = dentry->d_inode;
2843         u64 index;
2844         int check_link = 1;
2845         int err = -ENOSPC;
2846         int ret;
2847         u64 ino = btrfs_ino(inode);
2848         u64 dir_ino = btrfs_ino(dir);
2849
2850         trans = btrfs_start_transaction(root, 10);
2851         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2852                 return trans;
2853
2854         if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2855                 return ERR_PTR(-ENOSPC);
2856
2857         /* check if there is someone else holds reference */
2858         if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2859                 return ERR_PTR(-ENOSPC);
2860
2861         if (atomic_read(&inode->i_count) > 2)
2862                 return ERR_PTR(-ENOSPC);
2863
2864         if (xchg(&root->fs_info->enospc_unlink, 1))
2865                 return ERR_PTR(-ENOSPC);
2866
2867         path = btrfs_alloc_path();
2868         if (!path) {
2869                 root->fs_info->enospc_unlink = 0;
2870                 return ERR_PTR(-ENOMEM);
2871         }
2872
2873         trans = btrfs_start_transaction(root, 0);
2874         if (IS_ERR(trans)) {
2875                 btrfs_free_path(path);
2876                 root->fs_info->enospc_unlink = 0;
2877                 return trans;
2878         }
2879
2880         path->skip_locking = 1;
2881         path->search_commit_root = 1;
2882
2883         ret = btrfs_lookup_inode(trans, root, path,
2884                                 &BTRFS_I(dir)->location, 0);
2885         if (ret < 0) {
2886                 err = ret;
2887                 goto out;
2888         }
2889         if (ret == 0) {
2890                 if (check_path_shared(root, path))
2891                         goto out;
2892         } else {
2893                 check_link = 0;
2894         }
2895         btrfs_release_path(path);
2896
2897         ret = btrfs_lookup_inode(trans, root, path,
2898                                 &BTRFS_I(inode)->location, 0);
2899         if (ret < 0) {
2900                 err = ret;
2901                 goto out;
2902         }
2903         if (ret == 0) {
2904                 if (check_path_shared(root, path))
2905                         goto out;
2906         } else {
2907                 check_link = 0;
2908         }
2909         btrfs_release_path(path);
2910
2911         if (ret == 0 && S_ISREG(inode->i_mode)) {
2912                 ret = btrfs_lookup_file_extent(trans, root, path,
2913                                                ino, (u64)-1, 0);
2914                 if (ret < 0) {
2915                         err = ret;
2916                         goto out;
2917                 }
2918                 BUG_ON(ret == 0);
2919                 if (check_path_shared(root, path))
2920                         goto out;
2921                 btrfs_release_path(path);
2922         }
2923
2924         if (!check_link) {
2925                 err = 0;
2926                 goto out;
2927         }
2928
2929         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2930                                 dentry->d_name.name, dentry->d_name.len, 0);
2931         if (IS_ERR(di)) {
2932                 err = PTR_ERR(di);
2933                 goto out;
2934         }
2935         if (di) {
2936                 if (check_path_shared(root, path))
2937                         goto out;
2938         } else {
2939                 err = 0;
2940                 goto out;
2941         }
2942         btrfs_release_path(path);
2943
2944         ref = btrfs_lookup_inode_ref(trans, root, path,
2945                                 dentry->d_name.name, dentry->d_name.len,
2946                                 ino, dir_ino, 0);
2947         if (IS_ERR(ref)) {
2948                 err = PTR_ERR(ref);
2949                 goto out;
2950         }
2951         BUG_ON(!ref);
2952         if (check_path_shared(root, path))
2953                 goto out;
2954         index = btrfs_inode_ref_index(path->nodes[0], ref);
2955         btrfs_release_path(path);
2956
2957         /*
2958          * This is a commit root search, if we can lookup inode item and other
2959          * relative items in the commit root, it means the transaction of
2960          * dir/file creation has been committed, and the dir index item that we
2961          * delay to insert has also been inserted into the commit root. So
2962          * we needn't worry about the delayed insertion of the dir index item
2963          * here.
2964          */
2965         di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
2966                                 dentry->d_name.name, dentry->d_name.len, 0);
2967         if (IS_ERR(di)) {
2968                 err = PTR_ERR(di);
2969                 goto out;
2970         }
2971         BUG_ON(ret == -ENOENT);
2972         if (check_path_shared(root, path))
2973                 goto out;
2974
2975         err = 0;
2976 out:
2977         btrfs_free_path(path);
2978         if (err) {
2979                 btrfs_end_transaction(trans, root);
2980                 root->fs_info->enospc_unlink = 0;
2981                 return ERR_PTR(err);
2982         }
2983
2984         trans->block_rsv = &root->fs_info->global_block_rsv;
2985         return trans;
2986 }
2987
2988 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2989                                struct btrfs_root *root)
2990 {
2991         if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2992                 BUG_ON(!root->fs_info->enospc_unlink);
2993                 root->fs_info->enospc_unlink = 0;
2994         }
2995         btrfs_end_transaction_throttle(trans, root);
2996 }
2997
2998 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2999 {
3000         struct btrfs_root *root = BTRFS_I(dir)->root;
3001         struct btrfs_trans_handle *trans;
3002         struct inode *inode = dentry->d_inode;
3003         int ret;
3004         unsigned long nr = 0;
3005
3006         trans = __unlink_start_trans(dir, dentry);
3007         if (IS_ERR(trans))
3008                 return PTR_ERR(trans);
3009
3010         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3011
3012         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3013                                  dentry->d_name.name, dentry->d_name.len);
3014         BUG_ON(ret);
3015
3016         if (inode->i_nlink == 0) {
3017                 ret = btrfs_orphan_add(trans, inode);
3018                 BUG_ON(ret);
3019         }
3020
3021         nr = trans->blocks_used;
3022         __unlink_end_trans(trans, root);
3023         btrfs_btree_balance_dirty(root, nr);
3024         return ret;
3025 }
3026
3027 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3028                         struct btrfs_root *root,
3029                         struct inode *dir, u64 objectid,
3030                         const char *name, int name_len)
3031 {
3032         struct btrfs_path *path;
3033         struct extent_buffer *leaf;
3034         struct btrfs_dir_item *di;
3035         struct btrfs_key key;
3036         u64 index;
3037         int ret;
3038         u64 dir_ino = btrfs_ino(dir);
3039
3040         path = btrfs_alloc_path();
3041         if (!path)
3042                 return -ENOMEM;
3043
3044         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3045                                    name, name_len, -1);
3046         BUG_ON(IS_ERR_OR_NULL(di));
3047
3048         leaf = path->nodes[0];
3049         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3050         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3051         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3052         BUG_ON(ret);
3053         btrfs_release_path(path);
3054
3055         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3056                                  objectid, root->root_key.objectid,
3057                                  dir_ino, &index, name, name_len);
3058         if (ret < 0) {
3059                 BUG_ON(ret != -ENOENT);
3060                 di = btrfs_search_dir_index_item(root, path, dir_ino,
3061                                                  name, name_len);
3062                 BUG_ON(IS_ERR_OR_NULL(di));
3063
3064                 leaf = path->nodes[0];
3065                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3066                 btrfs_release_path(path);
3067                 index = key.offset;
3068         }
3069         btrfs_release_path(path);
3070
3071         ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3072         BUG_ON(ret);
3073
3074         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3075         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3076         ret = btrfs_update_inode(trans, root, dir);
3077         BUG_ON(ret);
3078
3079         btrfs_free_path(path);
3080         return 0;
3081 }
3082
3083 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3084 {
3085         struct inode *inode = dentry->d_inode;
3086         int err = 0;
3087         struct btrfs_root *root = BTRFS_I(dir)->root;
3088         struct btrfs_trans_handle *trans;
3089         unsigned long nr = 0;
3090
3091         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3092             btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3093                 return -ENOTEMPTY;
3094
3095         trans = __unlink_start_trans(dir, dentry);
3096         if (IS_ERR(trans))
3097                 return PTR_ERR(trans);
3098
3099         if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3100                 err = btrfs_unlink_subvol(trans, root, dir,
3101                                           BTRFS_I(inode)->location.objectid,
3102                                           dentry->d_name.name,
3103                                           dentry->d_name.len);
3104                 goto out;
3105         }
3106
3107         err = btrfs_orphan_add(trans, inode);
3108         if (err)
3109                 goto out;
3110
3111         /* now the directory is empty */
3112         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3113                                  dentry->d_name.name, dentry->d_name.len);
3114         if (!err)
3115                 btrfs_i_size_write(inode, 0);
3116 out:
3117         nr = trans->blocks_used;
3118         __unlink_end_trans(trans, root);
3119         btrfs_btree_balance_dirty(root, nr);
3120
3121         return err;
3122 }
3123
3124 /*
3125  * this can truncate away extent items, csum items and directory items.
3126  * It starts at a high offset and removes keys until it can't find
3127  * any higher than new_size
3128  *
3129  * csum items that cross the new i_size are truncated to the new size
3130  * as well.
3131  *
3132  * min_type is the minimum key type to truncate down to.  If set to 0, this
3133  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3134  */
3135 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3136                                struct btrfs_root *root,
3137                                struct inode *inode,
3138                                u64 new_size, u32 min_type)
3139 {
3140         struct btrfs_path *path;
3141         struct extent_buffer *leaf;
3142         struct btrfs_file_extent_item *fi;
3143         struct btrfs_key key;
3144         struct btrfs_key found_key;
3145         u64 extent_start = 0;
3146         u64 extent_num_bytes = 0;
3147         u64 extent_offset = 0;
3148         u64 item_end = 0;
3149         u64 mask = root->sectorsize - 1;
3150         u32 found_type = (u8)-1;
3151         int found_extent;
3152         int del_item;
3153         int pending_del_nr = 0;
3154         int pending_del_slot = 0;
3155         int extent_type = -1;
3156         int encoding;
3157         int ret;
3158         int err = 0;
3159         u64 ino = btrfs_ino(inode);
3160
3161         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3162
3163         if (root->ref_cows || root == root->fs_info->tree_root)
3164                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3165
3166         /*
3167          * This function is also used to drop the items in the log tree before
3168          * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3169          * it is used to drop the loged items. So we shouldn't kill the delayed
3170          * items.
3171          */
3172         if (min_type == 0 && root == BTRFS_I(inode)->root)
3173                 btrfs_kill_delayed_inode_items(inode);
3174
3175         path = btrfs_alloc_path();
3176         BUG_ON(!path);
3177         path->reada = -1;
3178
3179         key.objectid = ino;
3180         key.offset = (u64)-1;
3181         key.type = (u8)-1;
3182
3183 search_again:
3184         path->leave_spinning = 1;
3185         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3186         if (ret < 0) {
3187                 err = ret;
3188                 goto out;
3189         }
3190
3191         if (ret > 0) {
3192                 /* there are no items in the tree for us to truncate, we're
3193                  * done
3194                  */
3195                 if (path->slots[0] == 0)
3196                         goto out;
3197                 path->slots[0]--;
3198         }
3199
3200         while (1) {
3201                 fi = NULL;
3202                 leaf = path->nodes[0];
3203                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3204                 found_type = btrfs_key_type(&found_key);
3205                 encoding = 0;
3206
3207                 if (found_key.objectid != ino)
3208                         break;
3209
3210                 if (found_type < min_type)
3211                         break;
3212
3213                 item_end = found_key.offset;
3214                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3215                         fi = btrfs_item_ptr(leaf, path->slots[0],
3216                                             struct btrfs_file_extent_item);
3217                         extent_type = btrfs_file_extent_type(leaf, fi);
3218                         encoding = btrfs_file_extent_compression(leaf, fi);
3219                         encoding |= btrfs_file_extent_encryption(leaf, fi);
3220                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3221
3222                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3223                                 item_end +=
3224                                     btrfs_file_extent_num_bytes(leaf, fi);
3225                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3226                                 item_end += btrfs_file_extent_inline_len(leaf,
3227                                                                          fi);
3228                         }
3229                         item_end--;
3230                 }
3231                 if (found_type > min_type) {
3232                         del_item = 1;
3233                 } else {
3234                         if (item_end < new_size)
3235                                 break;
3236                         if (found_key.offset >= new_size)
3237                                 del_item = 1;
3238                         else
3239                                 del_item = 0;
3240                 }
3241                 found_extent = 0;
3242                 /* FIXME, shrink the extent if the ref count is only 1 */
3243                 if (found_type != BTRFS_EXTENT_DATA_KEY)
3244                         goto delete;
3245
3246                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3247                         u64 num_dec;
3248                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3249                         if (!del_item && !encoding) {
3250                                 u64 orig_num_bytes =
3251                                         btrfs_file_extent_num_bytes(leaf, fi);
3252                                 extent_num_bytes = new_size -
3253                                         found_key.offset + root->sectorsize - 1;
3254                                 extent_num_bytes = extent_num_bytes &
3255                                         ~((u64)root->sectorsize - 1);
3256                                 btrfs_set_file_extent_num_bytes(leaf, fi,
3257                                                          extent_num_bytes);
3258                                 num_dec = (orig_num_bytes -
3259                                            extent_num_bytes);
3260                                 if (root->ref_cows && extent_start != 0)
3261                                         inode_sub_bytes(inode, num_dec);
3262                                 btrfs_mark_buffer_dirty(leaf);
3263                         } else {
3264                                 extent_num_bytes =
3265                                         btrfs_file_extent_disk_num_bytes(leaf,
3266                                                                          fi);
3267                                 extent_offset = found_key.offset -
3268                                         btrfs_file_extent_offset(leaf, fi);
3269
3270                                 /* FIXME blocksize != 4096 */
3271                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3272                                 if (extent_start != 0) {
3273                                         found_extent = 1;
3274                                         if (root->ref_cows)
3275                                                 inode_sub_bytes(inode, num_dec);
3276                                 }
3277                         }
3278                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3279                         /*
3280                          * we can't truncate inline items that have had
3281                          * special encodings
3282                          */
3283                         if (!del_item &&
3284                             btrfs_file_extent_compression(leaf, fi) == 0 &&
3285                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
3286                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3287                                 u32 size = new_size - found_key.offset;
3288
3289                                 if (root->ref_cows) {
3290                                         inode_sub_bytes(inode, item_end + 1 -
3291                                                         new_size);
3292                                 }
3293                                 size =
3294                                     btrfs_file_extent_calc_inline_size(size);
3295                                 ret = btrfs_truncate_item(trans, root, path,
3296                                                           size, 1);
3297                         } else if (root->ref_cows) {
3298                                 inode_sub_bytes(inode, item_end + 1 -
3299                                                 found_key.offset);
3300                         }
3301                 }
3302 delete:
3303                 if (del_item) {
3304                         if (!pending_del_nr) {
3305                                 /* no pending yet, add ourselves */
3306                                 pending_del_slot = path->slots[0];
3307                                 pending_del_nr = 1;
3308                         } else if (pending_del_nr &&
3309                                    path->slots[0] + 1 == pending_del_slot) {
3310                                 /* hop on the pending chunk */
3311                                 pending_del_nr++;
3312                                 pending_del_slot = path->slots[0];
3313                         } else {
3314                                 BUG();
3315                         }
3316                 } else {
3317                         break;
3318                 }
3319                 if (found_extent && (root->ref_cows ||
3320                                      root == root->fs_info->tree_root)) {
3321                         btrfs_set_path_blocking(path);
3322                         ret = btrfs_free_extent(trans, root, extent_start,
3323                                                 extent_num_bytes, 0,
3324                                                 btrfs_header_owner(leaf),
3325                                                 ino, extent_offset);
3326                         BUG_ON(ret);
3327                 }
3328
3329                 if (found_type == BTRFS_INODE_ITEM_KEY)
3330                         break;
3331
3332                 if (path->slots[0] == 0 ||
3333                     path->slots[0] != pending_del_slot) {
3334                         if (root->ref_cows &&
3335                             BTRFS_I(inode)->location.objectid !=
3336                                                 BTRFS_FREE_INO_OBJECTID) {
3337                                 err = -EAGAIN;
3338                                 goto out;
3339                         }
3340                         if (pending_del_nr) {
3341                                 ret = btrfs_del_items(trans, root, path,
3342                                                 pending_del_slot,
3343                                                 pending_del_nr);
3344                                 BUG_ON(ret);
3345                                 pending_del_nr = 0;
3346                         }
3347                         btrfs_release_path(path);
3348                         goto search_again;
3349                 } else {
3350                         path->slots[0]--;
3351                 }
3352         }
3353 out:
3354         if (pending_del_nr) {
3355                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3356                                       pending_del_nr);
3357                 BUG_ON(ret);
3358         }
3359         btrfs_free_path(path);
3360         return err;
3361 }
3362
3363 /*
3364  * taken from block_truncate_page, but does cow as it zeros out
3365  * any bytes left in the last page in the file.
3366  */
3367 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3368 {
3369         struct inode *inode = mapping->host;
3370         struct btrfs_root *root = BTRFS_I(inode)->root;
3371         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3372         struct btrfs_ordered_extent *ordered;
3373         struct extent_state *cached_state = NULL;
3374         char *kaddr;
3375         u32 blocksize = root->sectorsize;
3376         pgoff_t index = from >> PAGE_CACHE_SHIFT;
3377         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3378         struct page *page;
3379         int ret = 0;
3380         u64 page_start;
3381         u64 page_end;
3382
3383         if ((offset & (blocksize - 1)) == 0)
3384                 goto out;
3385         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3386         if (ret)
3387                 goto out;
3388
3389         ret = -ENOMEM;
3390 again:
3391         page = grab_cache_page(mapping, index);
3392         if (!page) {
3393                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3394                 goto out;
3395         }
3396
3397         page_start = page_offset(page);
3398         page_end = page_start + PAGE_CACHE_SIZE - 1;
3399
3400         if (!PageUptodate(page)) {
3401                 ret = btrfs_readpage(NULL, page);
3402                 lock_page(page);
3403                 if (page->mapping != mapping) {
3404                         unlock_page(page);
3405                         page_cache_release(page);
3406                         goto again;
3407                 }
3408                 if (!PageUptodate(page)) {
3409                         ret = -EIO;
3410                         goto out_unlock;
3411                 }
3412         }
3413         wait_on_page_writeback(page);
3414
3415         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3416                          GFP_NOFS);
3417         set_page_extent_mapped(page);
3418
3419         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3420         if (ordered) {
3421                 unlock_extent_cached(io_tree, page_start, page_end,
3422                                      &cached_state, GFP_NOFS);
3423                 unlock_page(page);
3424                 page_cache_release(page);
3425                 btrfs_start_ordered_extent(inode, ordered, 1);
3426                 btrfs_put_ordered_extent(ordered);
3427                 goto again;
3428         }
3429
3430         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3431                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3432                           0, 0, &cached_state, GFP_NOFS);
3433
3434         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3435                                         &cached_state);
3436         if (ret) {
3437                 unlock_extent_cached(io_tree, page_start, page_end,
3438                                      &cached_state, GFP_NOFS);
3439                 goto out_unlock;
3440         }
3441
3442         ret = 0;
3443         if (offset != PAGE_CACHE_SIZE) {
3444                 kaddr = kmap(page);
3445                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3446                 flush_dcache_page(page);
3447                 kunmap(page);
3448         }
3449         ClearPageChecked(page);
3450         set_page_dirty(page);
3451         unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3452                              GFP_NOFS);
3453
3454 out_unlock:
3455         if (ret)
3456                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3457         unlock_page(page);
3458         page_cache_release(page);
3459 out:
3460         return ret;
3461 }
3462
3463 /*
3464  * This function puts in dummy file extents for the area we're creating a hole
3465  * for.  So if we are truncating this file to a larger size we need to insert
3466  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3467  * the range between oldsize and size
3468  */
3469 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3470 {
3471         struct btrfs_trans_handle *trans;
3472         struct btrfs_root *root = BTRFS_I(inode)->root;
3473         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3474         struct extent_map *em = NULL;
3475         struct extent_state *cached_state = NULL;
3476         u64 mask = root->sectorsize - 1;
3477         u64 hole_start = (oldsize + mask) & ~mask;
3478         u64 block_end = (size + mask) & ~mask;
3479         u64 last_byte;
3480         u64 cur_offset;
3481         u64 hole_size;
3482         int err = 0;
3483
3484         if (size <= hole_start)
3485                 return 0;
3486
3487         while (1) {
3488                 struct btrfs_ordered_extent *ordered;
3489                 btrfs_wait_ordered_range(inode, hole_start,
3490                                          block_end - hole_start);
3491                 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3492                                  &cached_state, GFP_NOFS);
3493                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3494                 if (!ordered)
3495                         break;
3496                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3497                                      &cached_state, GFP_NOFS);
3498                 btrfs_put_ordered_extent(ordered);
3499         }
3500
3501         cur_offset = hole_start;
3502         while (1) {
3503                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3504                                 block_end - cur_offset, 0);
3505                 BUG_ON(IS_ERR_OR_NULL(em));
3506                 last_byte = min(extent_map_end(em), block_end);
3507                 last_byte = (last_byte + mask) & ~mask;
3508                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3509                         u64 hint_byte = 0;
3510                         hole_size = last_byte - cur_offset;
3511
3512                         trans = btrfs_start_transaction(root, 2);
3513                         if (IS_ERR(trans)) {
3514                                 err = PTR_ERR(trans);
3515                                 break;
3516                         }
3517
3518                         err = btrfs_drop_extents(trans, inode, cur_offset,
3519                                                  cur_offset + hole_size,
3520                                                  &hint_byte, 1);
3521                         if (err)
3522                                 break;
3523
3524                         err = btrfs_insert_file_extent(trans, root,
3525                                         btrfs_ino(inode), cur_offset, 0,
3526                                         0, hole_size, 0, hole_size,
3527                                         0, 0, 0);
3528                         if (err)
3529                                 break;
3530
3531                         btrfs_drop_extent_cache(inode, hole_start,
3532                                         last_byte - 1, 0);
3533
3534                         btrfs_end_transaction(trans, root);
3535                 }
3536                 free_extent_map(em);
3537                 em = NULL;
3538                 cur_offset = last_byte;
3539                 if (cur_offset >= block_end)
3540                         break;
3541         }
3542
3543         free_extent_map(em);
3544         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3545                              GFP_NOFS);
3546         return err;
3547 }
3548
3549 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3550 {
3551         loff_t oldsize = i_size_read(inode);
3552         int ret;
3553
3554         if (newsize == oldsize)
3555                 return 0;
3556
3557         if (newsize > oldsize) {
3558                 i_size_write(inode, newsize);
3559                 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3560                 truncate_pagecache(inode, oldsize, newsize);
3561                 ret = btrfs_cont_expand(inode, oldsize, newsize);
3562                 if (ret) {
3563                         btrfs_setsize(inode, oldsize);
3564                         return ret;
3565                 }
3566
3567                 mark_inode_dirty(inode);
3568         } else {
3569
3570                 /*
3571                  * We're truncating a file that used to have good data down to
3572                  * zero. Make sure it gets into the ordered flush list so that
3573                  * any new writes get down to disk quickly.
3574                  */
3575                 if (newsize == 0)
3576                         BTRFS_I(inode)->ordered_data_close = 1;
3577
3578                 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3579                 truncate_setsize(inode, newsize);
3580                 ret = btrfs_truncate(inode);
3581         }
3582
3583         return ret;
3584 }
3585
3586 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3587 {
3588         struct inode *inode = dentry->d_inode;
3589         struct btrfs_root *root = BTRFS_I(inode)->root;
3590         int err;
3591
3592         if (btrfs_root_readonly(root))
3593                 return -EROFS;
3594
3595         err = inode_change_ok(inode, attr);
3596         if (err)
3597                 return err;
3598
3599         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3600                 err = btrfs_setsize(inode, attr->ia_size);
3601                 if (err)
3602                         return err;
3603         }
3604
3605         if (attr->ia_valid) {
3606                 setattr_copy(inode, attr);
3607                 mark_inode_dirty(inode);
3608
3609                 if (attr->ia_valid & ATTR_MODE)
3610                         err = btrfs_acl_chmod(inode);
3611         }
3612
3613         return err;
3614 }
3615
3616 void btrfs_evict_inode(struct inode *inode)
3617 {
3618         struct btrfs_trans_handle *trans;
3619         struct btrfs_root *root = BTRFS_I(inode)->root;
3620         unsigned long nr;
3621         int ret;
3622
3623         trace_btrfs_inode_evict(inode);
3624
3625         truncate_inode_pages(&inode->i_data, 0);
3626         if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3627                                is_free_space_inode(root, inode)))
3628                 goto no_delete;
3629
3630         if (is_bad_inode(inode)) {
3631                 btrfs_orphan_del(NULL, inode);
3632                 goto no_delete;
3633         }
3634         /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3635         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3636
3637         if (root->fs_info->log_root_recovering) {
3638                 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3639                 goto no_delete;
3640         }
3641
3642         if (inode->i_nlink > 0) {
3643                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3644                 goto no_delete;
3645         }
3646
3647         btrfs_i_size_write(inode, 0);
3648
3649         while (1) {
3650                 trans = btrfs_join_transaction(root);
3651                 BUG_ON(IS_ERR(trans));
3652                 trans->block_rsv = root->orphan_block_rsv;
3653
3654                 ret = btrfs_block_rsv_check(trans, root,
3655                                             root->orphan_block_rsv, 0, 5);
3656                 if (ret) {
3657                         BUG_ON(ret != -EAGAIN);
3658                         ret = btrfs_commit_transaction(trans, root);
3659                         BUG_ON(ret);
3660                         continue;
3661                 }
3662
3663                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3664                 if (ret != -EAGAIN)
3665                         break;
3666
3667                 nr = trans->blocks_used;
3668                 btrfs_end_transaction(trans, root);
3669                 trans = NULL;
3670                 btrfs_btree_balance_dirty(root, nr);
3671
3672         }
3673
3674         if (ret == 0) {
3675                 ret = btrfs_orphan_del(trans, inode);
3676                 BUG_ON(ret);
3677         }
3678
3679         if (!(root == root->fs_info->tree_root ||
3680               root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3681                 btrfs_return_ino(root, btrfs_ino(inode));
3682
3683         nr = trans->blocks_used;
3684         btrfs_end_transaction(trans, root);
3685         btrfs_btree_balance_dirty(root, nr);
3686 no_delete:
3687         end_writeback(inode);
3688         return;
3689 }
3690
3691 /*
3692  * this returns the key found in the dir entry in the location pointer.
3693  * If no dir entries were found, location->objectid is 0.
3694  */
3695 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3696                                struct btrfs_key *location)
3697 {
3698         const char *name = dentry->d_name.name;
3699         int namelen = dentry->d_name.len;
3700         struct btrfs_dir_item *di;
3701         struct btrfs_path *path;
3702         struct btrfs_root *root = BTRFS_I(dir)->root;
3703         int ret = 0;
3704
3705         path = btrfs_alloc_path();
3706         BUG_ON(!path);
3707
3708         di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3709                                     namelen, 0);
3710         if (IS_ERR(di))
3711                 ret = PTR_ERR(di);
3712
3713         if (IS_ERR_OR_NULL(di))
3714                 goto out_err;
3715
3716         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3717 out:
3718         btrfs_free_path(path);
3719         return ret;
3720 out_err:
3721         location->objectid = 0;
3722         goto out;
3723 }
3724
3725 /*
3726  * when we hit a tree root in a directory, the btrfs part of the inode
3727  * needs to be changed to reflect the root directory of the tree root.  This
3728  * is kind of like crossing a mount point.
3729  */
3730 static int fixup_tree_root_location(struct btrfs_root *root,
3731                                     struct inode *dir,
3732                                     struct dentry *dentry,
3733                                     struct btrfs_key *location,
3734                                     struct btrfs_root **sub_root)
3735 {
3736         struct btrfs_path *path;
3737         struct btrfs_root *new_root;
3738         struct btrfs_root_ref *ref;
3739         struct extent_buffer *leaf;
3740         int ret;
3741         int err = 0;
3742
3743         path = btrfs_alloc_path();
3744         if (!path) {
3745                 err = -ENOMEM;
3746                 goto out;
3747         }
3748
3749         err = -ENOENT;
3750         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3751                                   BTRFS_I(dir)->root->root_key.objectid,
3752                                   location->objectid);
3753         if (ret) {
3754                 if (ret < 0)
3755                         err = ret;
3756                 goto out;
3757         }
3758
3759         leaf = path->nodes[0];
3760         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3761         if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3762             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3763                 goto out;
3764
3765         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3766                                    (unsigned long)(ref + 1),
3767                                    dentry->d_name.len);
3768         if (ret)
3769                 goto out;
3770
3771         btrfs_release_path(path);
3772
3773         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3774         if (IS_ERR(new_root)) {
3775                 err = PTR_ERR(new_root);
3776                 goto out;
3777         }
3778
3779         if (btrfs_root_refs(&new_root->root_item) == 0) {
3780                 err = -ENOENT;
3781                 goto out;
3782         }
3783
3784         *sub_root = new_root;
3785         location->objectid = btrfs_root_dirid(&new_root->root_item);
3786         location->type = BTRFS_INODE_ITEM_KEY;
3787         location->offset = 0;
3788         err = 0;
3789 out:
3790         btrfs_free_path(path);
3791         return err;
3792 }
3793
3794 static void inode_tree_add(struct inode *inode)
3795 {
3796         struct btrfs_root *root = BTRFS_I(inode)->root;
3797         struct btrfs_inode *entry;
3798         struct rb_node **p;
3799         struct rb_node *parent;
3800         u64 ino = btrfs_ino(inode);
3801 again:
3802         p = &root->inode_tree.rb_node;
3803         parent = NULL;
3804
3805         if (inode_unhashed(inode))
3806                 return;
3807
3808         spin_lock(&root->inode_lock);
3809         while (*p) {
3810                 parent = *p;
3811                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3812
3813                 if (ino < btrfs_ino(&entry->vfs_inode))
3814                         p = &parent->rb_left;
3815                 else if (ino > btrfs_ino(&entry->vfs_inode))
3816                         p = &parent->rb_right;
3817                 else {
3818                         WARN_ON(!(entry->vfs_inode.i_state &
3819                                   (I_WILL_FREE | I_FREEING)));
3820                         rb_erase(parent, &root->inode_tree);
3821                         RB_CLEAR_NODE(parent);
3822                         spin_unlock(&root->inode_lock);
3823                         goto again;
3824                 }
3825         }
3826         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3827         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3828         spin_unlock(&root->inode_lock);
3829 }
3830
3831 static void inode_tree_del(struct inode *inode)
3832 {
3833         struct btrfs_root *root = BTRFS_I(inode)->root;
3834         int empty = 0;
3835
3836         spin_lock(&root->inode_lock);
3837         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3838                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3839                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3840                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3841         }
3842         spin_unlock(&root->inode_lock);
3843
3844         /*
3845          * Free space cache has inodes in the tree root, but the tree root has a
3846          * root_refs of 0, so this could end up dropping the tree root as a
3847          * snapshot, so we need the extra !root->fs_info->tree_root check to
3848          * make sure we don't drop it.
3849          */
3850         if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3851             root != root->fs_info->tree_root) {
3852                 synchronize_srcu(&root->fs_info->subvol_srcu);
3853                 spin_lock(&root->inode_lock);
3854                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3855                 spin_unlock(&root->inode_lock);
3856                 if (empty)
3857                         btrfs_add_dead_root(root);
3858         }
3859 }
3860
3861 int btrfs_invalidate_inodes(struct btrfs_root *root)
3862 {
3863         struct rb_node *node;
3864         struct rb_node *prev;
3865         struct btrfs_inode *entry;
3866         struct inode *inode;
3867         u64 objectid = 0;
3868
3869         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3870
3871         spin_lock(&root->inode_lock);
3872 again:
3873         node = root->inode_tree.rb_node;
3874         prev = NULL;
3875         while (node) {
3876                 prev = node;
3877                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3878
3879                 if (objectid < btrfs_ino(&entry->vfs_inode))
3880                         node = node->rb_left;
3881                 else if (objectid > btrfs_ino(&entry->vfs_inode))
3882                         node = node->rb_right;
3883                 else
3884                         break;
3885         }
3886         if (!node) {
3887                 while (prev) {
3888                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
3889                         if (objectid <= btrfs_ino(&entry->vfs_inode)) {
3890                                 node = prev;
3891                                 break;
3892                         }
3893                         prev = rb_next(prev);
3894                 }
3895         }
3896         while (node) {
3897                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3898                 objectid = btrfs_ino(&entry->vfs_inode) + 1;
3899                 inode = igrab(&entry->vfs_inode);
3900                 if (inode) {
3901                         spin_unlock(&root->inode_lock);
3902                         if (atomic_read(&inode->i_count) > 1)
3903                                 d_prune_aliases(inode);
3904                         /*
3905                          * btrfs_drop_inode will have it removed from
3906                          * the inode cache when its usage count
3907                          * hits zero.
3908                          */
3909                         iput(inode);
3910                         cond_resched();
3911                         spin_lock(&root->inode_lock);
3912                         goto again;
3913                 }
3914
3915                 if (cond_resched_lock(&root->inode_lock))
3916                         goto again;
3917
3918                 node = rb_next(node);
3919         }
3920         spin_unlock(&root->inode_lock);
3921         return 0;
3922 }
3923
3924 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3925 {
3926         struct btrfs_iget_args *args = p;
3927         inode->i_ino = args->ino;
3928         BTRFS_I(inode)->root = args->root;
3929         btrfs_set_inode_space_info(args->root, inode);
3930         return 0;
3931 }
3932
3933 static int btrfs_find_actor(struct inode *inode, void *opaque)
3934 {
3935         struct btrfs_iget_args *args = opaque;
3936         return args->ino == btrfs_ino(inode) &&
3937                 args->root == BTRFS_I(inode)->root;
3938 }
3939
3940 static struct inode *btrfs_iget_locked(struct super_block *s,
3941                                        u64 objectid,
3942                                        struct btrfs_root *root)
3943 {
3944         struct inode *inode;
3945         struct btrfs_iget_args args;
3946         args.ino = objectid;
3947         args.root = root;
3948
3949         inode = iget5_locked(s, objectid, btrfs_find_actor,
3950                              btrfs_init_locked_inode,
3951                              (void *)&args);
3952         return inode;
3953 }
3954
3955 /* Get an inode object given its location and corresponding root.
3956  * Returns in *is_new if the inode was read from disk
3957  */
3958 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3959                          struct btrfs_root *root, int *new)
3960 {
3961         struct inode *inode;
3962
3963         inode = btrfs_iget_locked(s, location->objectid, root);
3964         if (!inode)
3965                 return ERR_PTR(-ENOMEM);
3966
3967         if (inode->i_state & I_NEW) {
3968                 BTRFS_I(inode)->root = root;
3969                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3970                 btrfs_read_locked_inode(inode);
3971                 inode_tree_add(inode);
3972                 unlock_new_inode(inode);
3973                 if (new)
3974                         *new = 1;
3975         }
3976
3977         return inode;
3978 }
3979
3980 static struct inode *new_simple_dir(struct super_block *s,
3981                                     struct btrfs_key *key,
3982                                     struct btrfs_root *root)
3983 {
3984         struct inode *inode = new_inode(s);
3985
3986         if (!inode)
3987                 return ERR_PTR(-ENOMEM);
3988
3989         BTRFS_I(inode)->root = root;
3990         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3991         BTRFS_I(inode)->dummy_inode = 1;
3992
3993         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3994         inode->i_op = &simple_dir_inode_operations;
3995         inode->i_fop = &simple_dir_operations;
3996         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3997         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3998
3999         return inode;
4000 }
4001
4002 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4003 {
4004         struct inode *inode;
4005         struct btrfs_root *root = BTRFS_I(dir)->root;
4006         struct btrfs_root *sub_root = root;
4007         struct btrfs_key location;
4008         int index;
4009         int ret;
4010
4011         if (dentry->d_name.len > BTRFS_NAME_LEN)
4012                 return ERR_PTR(-ENAMETOOLONG);
4013
4014         ret = btrfs_inode_by_name(dir, dentry, &location);
4015
4016         if (ret < 0)
4017                 return ERR_PTR(ret);
4018
4019         if (location.objectid == 0)
4020                 return NULL;
4021
4022         if (location.type == BTRFS_INODE_ITEM_KEY) {
4023                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4024                 return inode;
4025         }
4026
4027         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4028
4029         index = srcu_read_lock(&root->fs_info->subvol_srcu);
4030         ret = fixup_tree_root_location(root, dir, dentry,
4031                                        &location, &sub_root);
4032         if (ret < 0) {
4033                 if (ret != -ENOENT)
4034                         inode = ERR_PTR(ret);
4035                 else
4036                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
4037         } else {
4038                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4039         }
4040         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4041
4042         if (!IS_ERR(inode) && root != sub_root) {
4043                 down_read(&root->fs_info->cleanup_work_sem);
4044                 if (!(inode->i_sb->s_flags & MS_RDONLY))
4045                         ret = btrfs_orphan_cleanup(sub_root);
4046                 up_read(&root->fs_info->cleanup_work_sem);
4047                 if (ret)
4048                         inode = ERR_PTR(ret);
4049         }
4050
4051         return inode;
4052 }
4053
4054 static int btrfs_dentry_delete(const struct dentry *dentry)
4055 {
4056         struct btrfs_root *root;
4057
4058         if (!dentry->d_inode && !IS_ROOT(dentry))
4059                 dentry = dentry->d_parent;
4060
4061         if (dentry->d_inode) {
4062                 root = BTRFS_I(dentry->d_inode)->root;
4063                 if (btrfs_root_refs(&root->root_item) == 0)
4064                         return 1;
4065         }
4066         return 0;
4067 }
4068
4069 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4070                                    struct nameidata *nd)
4071 {
4072         struct inode *inode;
4073
4074         inode = btrfs_lookup_dentry(dir, dentry);
4075         if (IS_ERR(inode))
4076                 return ERR_CAST(inode);
4077
4078         return d_splice_alias(inode, dentry);
4079 }
4080
4081 unsigned char btrfs_filetype_table[] = {
4082         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4083 };
4084
4085 static int btrfs_real_readdir(struct file *filp, void *dirent,
4086                               filldir_t filldir)
4087 {
4088         struct inode *inode = filp->f_dentry->d_inode;
4089         struct btrfs_root *root = BTRFS_I(inode)->root;
4090         struct btrfs_item *item;
4091         struct btrfs_dir_item *di;
4092         struct btrfs_key key;
4093         struct btrfs_key found_key;
4094         struct btrfs_path *path;
4095         struct list_head ins_list;
4096         struct list_head del_list;
4097         int ret;
4098         struct extent_buffer *leaf;
4099         int slot;
4100         unsigned char d_type;
4101         int over = 0;
4102         u32 di_cur;
4103         u32 di_total;
4104         u32 di_len;
4105         int key_type = BTRFS_DIR_INDEX_KEY;
4106         char tmp_name[32];
4107         char *name_ptr;
4108         int name_len;
4109         int is_curr = 0;        /* filp->f_pos points to the current index? */
4110
4111         /* FIXME, use a real flag for deciding about the key type */
4112         if (root->fs_info->tree_root == root)
4113                 key_type = BTRFS_DIR_ITEM_KEY;
4114
4115         /* special case for "." */
4116         if (filp->f_pos == 0) {
4117                 over = filldir(dirent, ".", 1, 1, btrfs_ino(inode), DT_DIR);
4118                 if (over)
4119                         return 0;
4120                 filp->f_pos = 1;
4121         }
4122         /* special case for .., just use the back ref */
4123         if (filp->f_pos == 1) {
4124                 u64 pino = parent_ino(filp->f_path.dentry);
4125                 over = filldir(dirent, "..", 2,
4126                                2, pino, DT_DIR);
4127                 if (over)
4128                         return 0;
4129                 filp->f_pos = 2;
4130         }
4131         path = btrfs_alloc_path();
4132         if (!path)
4133                 return -ENOMEM;
4134
4135         path->reada = 1;
4136
4137         if (key_type == BTRFS_DIR_INDEX_KEY) {
4138                 INIT_LIST_HEAD(&ins_list);
4139                 INIT_LIST_HEAD(&del_list);
4140                 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4141         }
4142
4143         btrfs_set_key_type(&key, key_type);
4144         key.offset = filp->f_pos;
4145         key.objectid = btrfs_ino(inode);
4146
4147         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4148         if (ret < 0)
4149                 goto err;
4150
4151         while (1) {
4152                 leaf = path->nodes[0];
4153                 slot = path->slots[0];
4154                 if (slot >= btrfs_header_nritems(leaf)) {
4155                         ret = btrfs_next_leaf(root, path);
4156                         if (ret < 0)
4157                                 goto err;
4158                         else if (ret > 0)
4159                                 break;
4160                         continue;
4161                 }
4162
4163                 item = btrfs_item_nr(leaf, slot);
4164                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4165
4166                 if (found_key.objectid != key.objectid)
4167                         break;
4168                 if (btrfs_key_type(&found_key) != key_type)
4169                         break;
4170                 if (found_key.offset < filp->f_pos)
4171                         goto next;
4172                 if (key_type == BTRFS_DIR_INDEX_KEY &&
4173                     btrfs_should_delete_dir_index(&del_list,
4174                                                   found_key.offset))
4175                         goto next;
4176
4177                 filp->f_pos = found_key.offset;
4178                 is_curr = 1;
4179
4180                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4181                 di_cur = 0;
4182                 di_total = btrfs_item_size(leaf, item);
4183
4184                 while (di_cur < di_total) {
4185                         struct btrfs_key location;
4186
4187                         if (verify_dir_item(root, leaf, di))
4188                                 break;
4189
4190                         name_len = btrfs_dir_name_len(leaf, di);
4191                         if (name_len <= sizeof(tmp_name)) {
4192                                 name_ptr = tmp_name;
4193                         } else {
4194                                 name_ptr = kmalloc(name_len, GFP_NOFS);
4195                                 if (!name_ptr) {
4196                                         ret = -ENOMEM;
4197                                         goto err;
4198                                 }
4199                         }
4200                         read_extent_buffer(leaf, name_ptr,
4201                                            (unsigned long)(di + 1), name_len);
4202
4203                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4204                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
4205
4206                         /* is this a reference to our own snapshot? If so
4207                          * skip it
4208                          */
4209                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
4210                             location.objectid == root->root_key.objectid) {
4211                                 over = 0;
4212                                 goto skip;
4213                         }
4214                         over = filldir(dirent, name_ptr, name_len,
4215                                        found_key.offset, location.objectid,
4216                                        d_type);
4217
4218 skip:
4219                         if (name_ptr != tmp_name)
4220                                 kfree(name_ptr);
4221
4222                         if (over)
4223                                 goto nopos;
4224                         di_len = btrfs_dir_name_len(leaf, di) +
4225                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
4226                         di_cur += di_len;
4227                         di = (struct btrfs_dir_item *)((char *)di + di_len);
4228                 }
4229 next:
4230                 path->slots[0]++;
4231         }
4232
4233         if (key_type == BTRFS_DIR_INDEX_KEY) {
4234                 if (is_curr)
4235                         filp->f_pos++;
4236                 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4237                                                       &ins_list);
4238                 if (ret)
4239                         goto nopos;
4240         }
4241
4242         /* Reached end of directory/root. Bump pos past the last item. */
4243         if (key_type == BTRFS_DIR_INDEX_KEY)
4244                 /*
4245                  * 32-bit glibc will use getdents64, but then strtol -
4246                  * so the last number we can serve is this.
4247                  */
4248                 filp->f_pos = 0x7fffffff;
4249         else
4250                 filp->f_pos++;
4251 nopos:
4252         ret = 0;
4253 err:
4254         if (key_type == BTRFS_DIR_INDEX_KEY)
4255                 btrfs_put_delayed_items(&ins_list, &del_list);
4256         btrfs_free_path(path);
4257         return ret;
4258 }
4259
4260 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4261 {
4262         struct btrfs_root *root = BTRFS_I(inode)->root;
4263         struct btrfs_trans_handle *trans;
4264         int ret = 0;
4265         bool nolock = false;
4266
4267         if (BTRFS_I(inode)->dummy_inode)
4268                 return 0;
4269
4270         if (btrfs_fs_closing(root->fs_info) && is_free_space_inode(root, inode))
4271                 nolock = true;
4272
4273         if (wbc->sync_mode == WB_SYNC_ALL) {
4274                 if (nolock)
4275                         trans = btrfs_join_transaction_nolock(root);
4276                 else
4277                         trans = btrfs_join_transaction(root);
4278                 if (IS_ERR(trans))
4279                         return PTR_ERR(trans);
4280                 if (nolock)
4281                         ret = btrfs_end_transaction_nolock(trans, root);
4282                 else
4283                         ret = btrfs_commit_transaction(trans, root);
4284         }
4285         return ret;
4286 }
4287
4288 /*
4289  * This is somewhat expensive, updating the tree every time the
4290  * inode changes.  But, it is most likely to find the inode in cache.
4291  * FIXME, needs more benchmarking...there are no reasons other than performance
4292  * to keep or drop this code.
4293  */
4294 void btrfs_dirty_inode(struct inode *inode)
4295 {
4296         struct btrfs_root *root = BTRFS_I(inode)->root;
4297         struct btrfs_trans_handle *trans;
4298         int ret;
4299
4300         if (BTRFS_I(inode)->dummy_inode)
4301                 return;
4302
4303         trans = btrfs_join_transaction(root);
4304         BUG_ON(IS_ERR(trans));
4305
4306         ret = btrfs_update_inode(trans, root, inode);
4307         if (ret && ret == -ENOSPC) {
4308                 /* whoops, lets try again with the full transaction */
4309                 btrfs_end_transaction(trans, root);
4310                 trans = btrfs_start_transaction(root, 1);
4311                 if (IS_ERR(trans)) {
4312                         printk_ratelimited(KERN_ERR "btrfs: fail to "
4313                                        "dirty  inode %llu error %ld\n",
4314                                        (unsigned long long)btrfs_ino(inode),
4315                                        PTR_ERR(trans));
4316                         return;
4317                 }
4318
4319                 ret = btrfs_update_inode(trans, root, inode);
4320                 if (ret) {
4321                         printk_ratelimited(KERN_ERR "btrfs: fail to "
4322                                        "dirty  inode %llu error %d\n",
4323                                        (unsigned long long)btrfs_ino(inode),
4324                                        ret);
4325                 }
4326         }
4327         btrfs_end_transaction(trans, root);
4328         if (BTRFS_I(inode)->delayed_node)
4329                 btrfs_balance_delayed_items(root);
4330 }
4331
4332 /*
4333  * find the highest existing sequence number in a directory
4334  * and then set the in-memory index_cnt variable to reflect
4335  * free sequence numbers
4336  */
4337 static int btrfs_set_inode_index_count(struct inode *inode)
4338 {
4339         struct btrfs_root *root = BTRFS_I(inode)->root;
4340         struct btrfs_key key, found_key;
4341         struct btrfs_path *path;
4342         struct extent_buffer *leaf;
4343         int ret;
4344
4345         key.objectid = btrfs_ino(inode);
4346         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4347         key.offset = (u64)-1;
4348
4349         path = btrfs_alloc_path();
4350         if (!path)
4351                 return -ENOMEM;
4352
4353         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4354         if (ret < 0)
4355                 goto out;
4356         /* FIXME: we should be able to handle this */
4357         if (ret == 0)
4358                 goto out;
4359         ret = 0;
4360
4361         /*
4362          * MAGIC NUMBER EXPLANATION:
4363          * since we search a directory based on f_pos we have to start at 2
4364          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4365          * else has to start at 2
4366          */
4367         if (path->slots[0] == 0) {
4368                 BTRFS_I(inode)->index_cnt = 2;
4369                 goto out;
4370         }
4371
4372         path->slots[0]--;
4373
4374         leaf = path->nodes[0];
4375         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4376
4377         if (found_key.objectid != btrfs_ino(inode) ||
4378             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4379                 BTRFS_I(inode)->index_cnt = 2;
4380                 goto out;
4381         }
4382
4383         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4384 out:
4385         btrfs_free_path(path);
4386         return ret;
4387 }
4388
4389 /*
4390  * helper to find a free sequence number in a given directory.  This current
4391  * code is very simple, later versions will do smarter things in the btree
4392  */
4393 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4394 {
4395         int ret = 0;
4396
4397         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4398                 ret = btrfs_inode_delayed_dir_index_count(dir);
4399                 if (ret) {
4400                         ret = btrfs_set_inode_index_count(dir);
4401                         if (ret)
4402                                 return ret;
4403                 }
4404         }
4405
4406         *index = BTRFS_I(dir)->index_cnt;
4407         BTRFS_I(dir)->index_cnt++;
4408
4409         return ret;
4410 }
4411
4412 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4413                                      struct btrfs_root *root,
4414                                      struct inode *dir,
4415                                      const char *name, int name_len,
4416                                      u64 ref_objectid, u64 objectid, int mode,
4417                                      u64 *index)
4418 {
4419         struct inode *inode;
4420         struct btrfs_inode_item *inode_item;
4421         struct btrfs_key *location;
4422         struct btrfs_path *path;
4423         struct btrfs_inode_ref *ref;
4424         struct btrfs_key key[2];
4425         u32 sizes[2];
4426         unsigned long ptr;
4427         int ret;
4428         int owner;
4429
4430         path = btrfs_alloc_path();
4431         BUG_ON(!path);
4432
4433         inode = new_inode(root->fs_info->sb);
4434         if (!inode) {
4435                 btrfs_free_path(path);
4436                 return ERR_PTR(-ENOMEM);
4437         }
4438
4439         /*
4440          * we have to initialize this early, so we can reclaim the inode
4441          * number if we fail afterwards in this function.
4442          */
4443         inode->i_ino = objectid;
4444
4445         if (dir) {
4446                 trace_btrfs_inode_request(dir);
4447
4448                 ret = btrfs_set_inode_index(dir, index);
4449                 if (ret) {
4450                         btrfs_free_path(path);
4451                         iput(inode);
4452                         return ERR_PTR(ret);
4453                 }
4454         }
4455         /*
4456          * index_cnt is ignored for everything but a dir,
4457          * btrfs_get_inode_index_count has an explanation for the magic
4458          * number
4459          */
4460         BTRFS_I(inode)->index_cnt = 2;
4461         BTRFS_I(inode)->root = root;
4462         BTRFS_I(inode)->generation = trans->transid;
4463         inode->i_generation = BTRFS_I(inode)->generation;
4464         btrfs_set_inode_space_info(root, inode);
4465
4466         if (mode & S_IFDIR)
4467                 owner = 0;
4468         else
4469                 owner = 1;
4470
4471         key[0].objectid = objectid;
4472         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4473         key[0].offset = 0;
4474
4475         key[1].objectid = objectid;
4476         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4477         key[1].offset = ref_objectid;
4478
4479         sizes[0] = sizeof(struct btrfs_inode_item);
4480         sizes[1] = name_len + sizeof(*ref);
4481
4482         path->leave_spinning = 1;
4483         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4484         if (ret != 0)
4485                 goto fail;
4486
4487         inode_init_owner(inode, dir, mode);
4488         inode_set_bytes(inode, 0);
4489         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4490         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4491                                   struct btrfs_inode_item);
4492         fill_inode_item(trans, path->nodes[0], inode_item, inode);
4493
4494         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4495                              struct btrfs_inode_ref);
4496         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4497         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4498         ptr = (unsigned long)(ref + 1);
4499         write_extent_buffer(path->nodes[0], name, ptr, name_len);
4500
4501         btrfs_mark_buffer_dirty(path->nodes[0]);
4502         btrfs_free_path(path);
4503
4504         location = &BTRFS_I(inode)->location;
4505         location->objectid = objectid;
4506         location->offset = 0;
4507         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4508
4509         btrfs_inherit_iflags(inode, dir);
4510
4511         if ((mode & S_IFREG)) {
4512                 if (btrfs_test_opt(root, NODATASUM))
4513                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4514                 if (btrfs_test_opt(root, NODATACOW) ||
4515                     (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4516                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4517         }
4518
4519         insert_inode_hash(inode);
4520         inode_tree_add(inode);
4521
4522         trace_btrfs_inode_new(inode);
4523         btrfs_set_inode_last_trans(trans, inode);
4524
4525         return inode;
4526 fail:
4527         if (dir)
4528                 BTRFS_I(dir)->index_cnt--;
4529         btrfs_free_path(path);
4530         iput(inode);
4531         return ERR_PTR(ret);
4532 }
4533
4534 static inline u8 btrfs_inode_type(struct inode *inode)
4535 {
4536         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4537 }
4538
4539 /*
4540  * utility function to add 'inode' into 'parent_inode' with
4541  * a give name and a given sequence number.
4542  * if 'add_backref' is true, also insert a backref from the
4543  * inode to the parent directory.
4544  */
4545 int btrfs_add_link(struct btrfs_trans_handle *trans,
4546                    struct inode *parent_inode, struct inode *inode,
4547                    const char *name, int name_len, int add_backref, u64 index)
4548 {
4549         int ret = 0;
4550         struct btrfs_key key;
4551         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4552         u64 ino = btrfs_ino(inode);
4553         u64 parent_ino = btrfs_ino(parent_inode);
4554
4555         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4556                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4557         } else {
4558                 key.objectid = ino;
4559                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4560                 key.offset = 0;
4561         }
4562
4563         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4564                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4565                                          key.objectid, root->root_key.objectid,
4566                                          parent_ino, index, name, name_len);
4567         } else if (add_backref) {
4568                 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4569                                              parent_ino, index);
4570         }
4571
4572         if (ret == 0) {
4573                 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4574                                             parent_inode, &key,
4575                                             btrfs_inode_type(inode), index);
4576                 BUG_ON(ret);
4577
4578                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4579                                    name_len * 2);
4580                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4581                 ret = btrfs_update_inode(trans, root, parent_inode);
4582         }
4583         return ret;
4584 }
4585
4586 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4587                             struct inode *dir, struct dentry *dentry,
4588                             struct inode *inode, int backref, u64 index)
4589 {
4590         int err = btrfs_add_link(trans, dir, inode,
4591                                  dentry->d_name.name, dentry->d_name.len,
4592                                  backref, index);
4593         if (!err) {
4594                 d_instantiate(dentry, inode);
4595                 return 0;
4596         }
4597         if (err > 0)
4598                 err = -EEXIST;
4599         return err;
4600 }
4601
4602 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4603                         int mode, dev_t rdev)
4604 {
4605         struct btrfs_trans_handle *trans;
4606         struct btrfs_root *root = BTRFS_I(dir)->root;
4607         struct inode *inode = NULL;
4608         int err;
4609         int drop_inode = 0;
4610         u64 objectid;
4611         unsigned long nr = 0;
4612         u64 index = 0;
4613
4614         if (!new_valid_dev(rdev))
4615                 return -EINVAL;
4616
4617         /*
4618          * 2 for inode item and ref
4619          * 2 for dir items
4620          * 1 for xattr if selinux is on
4621          */
4622         trans = btrfs_start_transaction(root, 5);
4623         if (IS_ERR(trans))
4624                 return PTR_ERR(trans);
4625
4626         err = btrfs_find_free_ino(root, &objectid);
4627         if (err)
4628                 goto out_unlock;
4629
4630         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4631                                 dentry->d_name.len, btrfs_ino(dir), objectid,
4632                                 mode, &index);
4633         if (IS_ERR(inode)) {
4634                 err = PTR_ERR(inode);
4635                 goto out_unlock;
4636         }
4637
4638         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4639         if (err) {
4640                 drop_inode = 1;
4641                 goto out_unlock;
4642         }
4643
4644         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4645         if (err)
4646                 drop_inode = 1;
4647         else {
4648                 inode->i_op = &btrfs_special_inode_operations;
4649                 init_special_inode(inode, inode->i_mode, rdev);
4650                 btrfs_update_inode(trans, root, inode);
4651         }
4652 out_unlock:
4653         nr = trans->blocks_used;
4654         btrfs_end_transaction_throttle(trans, root);
4655         btrfs_btree_balance_dirty(root, nr);
4656         if (drop_inode) {
4657                 inode_dec_link_count(inode);
4658                 iput(inode);
4659         }
4660         return err;
4661 }
4662
4663 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4664                         int mode, struct nameidata *nd)
4665 {
4666         struct btrfs_trans_handle *trans;
4667         struct btrfs_root *root = BTRFS_I(dir)->root;
4668         struct inode *inode = NULL;
4669         int drop_inode = 0;
4670         int err;
4671         unsigned long nr = 0;
4672         u64 objectid;
4673         u64 index = 0;
4674
4675         /*
4676          * 2 for inode item and ref
4677          * 2 for dir items
4678          * 1 for xattr if selinux is on
4679          */
4680         trans = btrfs_start_transaction(root, 5);
4681         if (IS_ERR(trans))
4682                 return PTR_ERR(trans);
4683
4684         err = btrfs_find_free_ino(root, &objectid);
4685         if (err)
4686                 goto out_unlock;
4687
4688         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4689                                 dentry->d_name.len, btrfs_ino(dir), objectid,
4690                                 mode, &index);
4691         if (IS_ERR(inode)) {
4692                 err = PTR_ERR(inode);
4693                 goto out_unlock;
4694         }
4695
4696         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4697         if (err) {
4698                 drop_inode = 1;
4699                 goto out_unlock;
4700         }
4701
4702         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4703         if (err)
4704                 drop_inode = 1;
4705         else {
4706                 inode->i_mapping->a_ops = &btrfs_aops;
4707                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4708                 inode->i_fop = &btrfs_file_operations;
4709                 inode->i_op = &btrfs_file_inode_operations;
4710                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4711         }
4712 out_unlock:
4713         nr = trans->blocks_used;
4714         btrfs_end_transaction_throttle(trans, root);
4715         if (drop_inode) {
4716                 inode_dec_link_count(inode);
4717                 iput(inode);
4718         }
4719         btrfs_btree_balance_dirty(root, nr);
4720         return err;
4721 }
4722
4723 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4724                       struct dentry *dentry)
4725 {
4726         struct btrfs_trans_handle *trans;
4727         struct btrfs_root *root = BTRFS_I(dir)->root;
4728         struct inode *inode = old_dentry->d_inode;
4729         u64 index;
4730         unsigned long nr = 0;
4731         int err;
4732         int drop_inode = 0;
4733
4734         /* do not allow sys_link's with other subvols of the same device */
4735         if (root->objectid != BTRFS_I(inode)->root->objectid)
4736                 return -EXDEV;
4737
4738         if (inode->i_nlink == ~0U)
4739                 return -EMLINK;
4740
4741         err = btrfs_set_inode_index(dir, &index);
4742         if (err)
4743                 goto fail;
4744
4745         /*
4746          * 2 items for inode and inode ref
4747          * 2 items for dir items
4748          * 1 item for parent inode
4749          */
4750         trans = btrfs_start_transaction(root, 5);
4751         if (IS_ERR(trans)) {
4752                 err = PTR_ERR(trans);
4753                 goto fail;
4754         }
4755
4756         btrfs_inc_nlink(inode);
4757         inode->i_ctime = CURRENT_TIME;
4758         ihold(inode);
4759
4760         err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4761
4762         if (err) {
4763                 drop_inode = 1;
4764         } else {
4765                 struct dentry *parent = dget_parent(dentry);
4766                 err = btrfs_update_inode(trans, root, inode);
4767                 BUG_ON(err);
4768                 btrfs_log_new_name(trans, inode, NULL, parent);
4769                 dput(parent);
4770         }
4771
4772         nr = trans->blocks_used;
4773         btrfs_end_transaction_throttle(trans, root);
4774 fail:
4775         if (drop_inode) {
4776                 inode_dec_link_count(inode);
4777                 iput(inode);
4778         }
4779         btrfs_btree_balance_dirty(root, nr);
4780         return err;
4781 }
4782
4783 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4784 {
4785         struct inode *inode = NULL;
4786         struct btrfs_trans_handle *trans;
4787         struct btrfs_root *root = BTRFS_I(dir)->root;
4788         int err = 0;
4789         int drop_on_err = 0;
4790         u64 objectid = 0;
4791         u64 index = 0;
4792         unsigned long nr = 1;
4793
4794         /*
4795          * 2 items for inode and ref
4796          * 2 items for dir items
4797          * 1 for xattr if selinux is on
4798          */
4799         trans = btrfs_start_transaction(root, 5);
4800         if (IS_ERR(trans))
4801                 return PTR_ERR(trans);
4802
4803         err = btrfs_find_free_ino(root, &objectid);
4804         if (err)
4805                 goto out_fail;
4806
4807         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4808                                 dentry->d_name.len, btrfs_ino(dir), objectid,
4809                                 S_IFDIR | mode, &index);
4810         if (IS_ERR(inode)) {
4811                 err = PTR_ERR(inode);
4812                 goto out_fail;
4813         }
4814
4815         drop_on_err = 1;
4816
4817         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4818         if (err)
4819                 goto out_fail;
4820
4821         inode->i_op = &btrfs_dir_inode_operations;
4822         inode->i_fop = &btrfs_dir_file_operations;
4823
4824         btrfs_i_size_write(inode, 0);
4825         err = btrfs_update_inode(trans, root, inode);
4826         if (err)
4827                 goto out_fail;
4828
4829         err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4830                              dentry->d_name.len, 0, index);
4831         if (err)
4832                 goto out_fail;
4833
4834         d_instantiate(dentry, inode);
4835         drop_on_err = 0;
4836
4837 out_fail:
4838         nr = trans->blocks_used;
4839         btrfs_end_transaction_throttle(trans, root);
4840         if (drop_on_err)
4841                 iput(inode);
4842         btrfs_btree_balance_dirty(root, nr);
4843         return err;
4844 }
4845
4846 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4847  * and an extent that you want to insert, deal with overlap and insert
4848  * the new extent into the tree.
4849  */
4850 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4851                                 struct extent_map *existing,
4852                                 struct extent_map *em,
4853                                 u64 map_start, u64 map_len)
4854 {
4855         u64 start_diff;
4856
4857         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4858         start_diff = map_start - em->start;
4859         em->start = map_start;
4860         em->len = map_len;
4861         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4862             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4863                 em->block_start += start_diff;
4864                 em->block_len -= start_diff;
4865         }
4866         return add_extent_mapping(em_tree, em);
4867 }
4868
4869 static noinline int uncompress_inline(struct btrfs_path *path,
4870                                       struct inode *inode, struct page *page,
4871                                       size_t pg_offset, u64 extent_offset,
4872                                       struct btrfs_file_extent_item *item)
4873 {
4874         int ret;
4875         struct extent_buffer *leaf = path->nodes[0];
4876         char *tmp;
4877         size_t max_size;
4878         unsigned long inline_size;
4879         unsigned long ptr;
4880         int compress_type;
4881
4882         WARN_ON(pg_offset != 0);
4883         compress_type = btrfs_file_extent_compression(leaf, item);
4884         max_size = btrfs_file_extent_ram_bytes(leaf, item);
4885         inline_size = btrfs_file_extent_inline_item_len(leaf,
4886                                         btrfs_item_nr(leaf, path->slots[0]));
4887         tmp = kmalloc(inline_size, GFP_NOFS);
4888         if (!tmp)
4889                 return -ENOMEM;
4890         ptr = btrfs_file_extent_inline_start(item);
4891
4892         read_extent_buffer(leaf, tmp, ptr, inline_size);
4893
4894         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4895         ret = btrfs_decompress(compress_type, tmp, page,
4896                                extent_offset, inline_size, max_size);
4897         if (ret) {
4898                 char *kaddr = kmap_atomic(page, KM_USER0);
4899                 unsigned long copy_size = min_t(u64,
4900                                   PAGE_CACHE_SIZE - pg_offset,
4901                                   max_size - extent_offset);
4902                 memset(kaddr + pg_offset, 0, copy_size);
4903                 kunmap_atomic(kaddr, KM_USER0);
4904         }
4905         kfree(tmp);
4906         return 0;
4907 }
4908
4909 /*
4910  * a bit scary, this does extent mapping from logical file offset to the disk.
4911  * the ugly parts come from merging extents from the disk with the in-ram
4912  * representation.  This gets more complex because of the data=ordered code,
4913  * where the in-ram extents might be locked pending data=ordered completion.
4914  *
4915  * This also copies inline extents directly into the page.
4916  */
4917
4918 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4919                                     size_t pg_offset, u64 start, u64 len,
4920                                     int create)
4921 {
4922         int ret;
4923         int err = 0;
4924         u64 bytenr;
4925         u64 extent_start = 0;
4926         u64 extent_end = 0;
4927         u64 objectid = btrfs_ino(inode);
4928         u32 found_type;
4929         struct btrfs_path *path = NULL;
4930         struct btrfs_root *root = BTRFS_I(inode)->root;
4931         struct btrfs_file_extent_item *item;
4932         struct extent_buffer *leaf;
4933         struct btrfs_key found_key;
4934         struct extent_map *em = NULL;
4935         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4936         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4937         struct btrfs_trans_handle *trans = NULL;
4938         int compress_type;
4939
4940 again:
4941         read_lock(&em_tree->lock);
4942         em = lookup_extent_mapping(em_tree, start, len);
4943         if (em)
4944                 em->bdev = root->fs_info->fs_devices->latest_bdev;
4945         read_unlock(&em_tree->lock);
4946
4947         if (em) {
4948                 if (em->start > start || em->start + em->len <= start)
4949                         free_extent_map(em);
4950                 else if (em->block_start == EXTENT_MAP_INLINE && page)
4951                         free_extent_map(em);
4952                 else
4953                         goto out;
4954         }
4955         em = alloc_extent_map();
4956         if (!em) {
4957                 err = -ENOMEM;
4958                 goto out;
4959         }
4960         em->bdev = root->fs_info->fs_devices->latest_bdev;
4961         em->start = EXTENT_MAP_HOLE;
4962         em->orig_start = EXTENT_MAP_HOLE;
4963         em->len = (u64)-1;
4964         em->block_len = (u64)-1;
4965
4966         if (!path) {
4967                 path = btrfs_alloc_path();
4968                 if (!path) {
4969                         err = -ENOMEM;
4970                         goto out;
4971                 }
4972                 /*
4973                  * Chances are we'll be called again, so go ahead and do
4974                  * readahead
4975                  */
4976                 path->reada = 1;
4977         }
4978
4979         ret = btrfs_lookup_file_extent(trans, root, path,
4980                                        objectid, start, trans != NULL);
4981         if (ret < 0) {
4982                 err = ret;
4983                 goto out;
4984         }
4985
4986         if (ret != 0) {
4987                 if (path->slots[0] == 0)
4988                         goto not_found;
4989                 path->slots[0]--;
4990         }
4991
4992         leaf = path->nodes[0];
4993         item = btrfs_item_ptr(leaf, path->slots[0],
4994                               struct btrfs_file_extent_item);
4995         /* are we inside the extent that was found? */
4996         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4997         found_type = btrfs_key_type(&found_key);
4998         if (found_key.objectid != objectid ||
4999             found_type != BTRFS_EXTENT_DATA_KEY) {
5000                 goto not_found;
5001         }
5002
5003         found_type = btrfs_file_extent_type(leaf, item);
5004         extent_start = found_key.offset;
5005         compress_type = btrfs_file_extent_compression(leaf, item);
5006         if (found_type == BTRFS_FILE_EXTENT_REG ||
5007             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5008                 extent_end = extent_start +
5009                        btrfs_file_extent_num_bytes(leaf, item);
5010         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5011                 size_t size;
5012                 size = btrfs_file_extent_inline_len(leaf, item);
5013                 extent_end = (extent_start + size + root->sectorsize - 1) &
5014                         ~((u64)root->sectorsize - 1);
5015         }
5016
5017         if (start >= extent_end) {
5018                 path->slots[0]++;
5019                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5020                         ret = btrfs_next_leaf(root, path);
5021                         if (ret < 0) {
5022                                 err = ret;
5023                                 goto out;
5024                         }
5025                         if (ret > 0)
5026                                 goto not_found;
5027                         leaf = path->nodes[0];
5028                 }
5029                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5030                 if (found_key.objectid != objectid ||
5031                     found_key.type != BTRFS_EXTENT_DATA_KEY)
5032                         goto not_found;
5033                 if (start + len <= found_key.offset)
5034                         goto not_found;
5035                 em->start = start;
5036                 em->len = found_key.offset - start;
5037                 goto not_found_em;
5038         }
5039
5040         if (found_type == BTRFS_FILE_EXTENT_REG ||
5041             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5042                 em->start = extent_start;
5043                 em->len = extent_end - extent_start;
5044                 em->orig_start = extent_start -
5045                                  btrfs_file_extent_offset(leaf, item);
5046                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5047                 if (bytenr == 0) {
5048                         em->block_start = EXTENT_MAP_HOLE;
5049                         goto insert;
5050                 }
5051                 if (compress_type != BTRFS_COMPRESS_NONE) {
5052                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5053                         em->compress_type = compress_type;
5054                         em->block_start = bytenr;
5055                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5056                                                                          item);
5057                 } else {
5058                         bytenr += btrfs_file_extent_offset(leaf, item);
5059                         em->block_start = bytenr;
5060                         em->block_len = em->len;
5061                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5062                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5063                 }
5064                 goto insert;
5065         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5066                 unsigned long ptr;
5067                 char *map;
5068                 size_t size;
5069                 size_t extent_offset;
5070                 size_t copy_size;
5071
5072                 em->block_start = EXTENT_MAP_INLINE;
5073                 if (!page || create) {
5074                         em->start = extent_start;
5075                         em->len = extent_end - extent_start;
5076                         goto out;
5077                 }
5078
5079                 size = btrfs_file_extent_inline_len(leaf, item);
5080                 extent_offset = page_offset(page) + pg_offset - extent_start;
5081                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5082                                 size - extent_offset);
5083                 em->start = extent_start + extent_offset;
5084                 em->len = (copy_size + root->sectorsize - 1) &
5085                         ~((u64)root->sectorsize - 1);
5086                 em->orig_start = EXTENT_MAP_INLINE;
5087                 if (compress_type) {
5088                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5089                         em->compress_type = compress_type;
5090                 }
5091                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5092                 if (create == 0 && !PageUptodate(page)) {
5093                         if (btrfs_file_extent_compression(leaf, item) !=
5094                             BTRFS_COMPRESS_NONE) {
5095                                 ret = uncompress_inline(path, inode, page,
5096                                                         pg_offset,
5097                                                         extent_offset, item);
5098                                 BUG_ON(ret);
5099                         } else {
5100                                 map = kmap(page);
5101                                 read_extent_buffer(leaf, map + pg_offset, ptr,
5102                                                    copy_size);
5103                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5104                                         memset(map + pg_offset + copy_size, 0,
5105                                                PAGE_CACHE_SIZE - pg_offset -
5106                                                copy_size);
5107                                 }
5108                                 kunmap(page);
5109                         }
5110                         flush_dcache_page(page);
5111                 } else if (create && PageUptodate(page)) {
5112                         WARN_ON(1);
5113                         if (!trans) {
5114                                 kunmap(page);
5115                                 free_extent_map(em);
5116                                 em = NULL;
5117
5118                                 btrfs_release_path(path);
5119                                 trans = btrfs_join_transaction(root);
5120
5121                                 if (IS_ERR(trans))
5122                                         return ERR_CAST(trans);
5123                                 goto again;
5124                         }
5125                         map = kmap(page);
5126                         write_extent_buffer(leaf, map + pg_offset, ptr,
5127                                             copy_size);
5128                         kunmap(page);
5129                         btrfs_mark_buffer_dirty(leaf);
5130                 }
5131                 set_extent_uptodate(io_tree, em->start,
5132                                     extent_map_end(em) - 1, NULL, GFP_NOFS);
5133                 goto insert;
5134         } else {
5135                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5136                 WARN_ON(1);
5137         }
5138 not_found:
5139         em->start = start;
5140         em->len = len;
5141 not_found_em:
5142         em->block_start = EXTENT_MAP_HOLE;
5143         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5144 insert:
5145         btrfs_release_path(path);
5146         if (em->start > start || extent_map_end(em) <= start) {
5147                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5148                        "[%llu %llu]\n", (unsigned long long)em->start,
5149                        (unsigned long long)em->len,
5150                        (unsigned long long)start,
5151                        (unsigned long long)len);
5152                 err = -EIO;
5153                 goto out;
5154         }
5155
5156         err = 0;
5157         write_lock(&em_tree->lock);
5158         ret = add_extent_mapping(em_tree, em);
5159         /* it is possible that someone inserted the extent into the tree
5160          * while we had the lock dropped.  It is also possible that
5161          * an overlapping map exists in the tree
5162          */
5163         if (ret == -EEXIST) {
5164                 struct extent_map *existing;
5165
5166                 ret = 0;
5167
5168                 existing = lookup_extent_mapping(em_tree, start, len);
5169                 if (existing && (existing->start > start ||
5170                     existing->start + existing->len <= start)) {
5171                         free_extent_map(existing);
5172                         existing = NULL;
5173                 }
5174                 if (!existing) {
5175                         existing = lookup_extent_mapping(em_tree, em->start,
5176                                                          em->len);
5177                         if (existing) {
5178                                 err = merge_extent_mapping(em_tree, existing,
5179                                                            em, start,
5180                                                            root->sectorsize);
5181                                 free_extent_map(existing);
5182                                 if (err) {
5183                                         free_extent_map(em);
5184                                         em = NULL;
5185                                 }
5186                         } else {
5187                                 err = -EIO;
5188                                 free_extent_map(em);
5189                                 em = NULL;
5190                         }
5191                 } else {
5192                         free_extent_map(em);
5193                         em = existing;
5194                         err = 0;
5195                 }
5196         }
5197         write_unlock(&em_tree->lock);
5198 out:
5199
5200         trace_btrfs_get_extent(root, em);
5201
5202         if (path)
5203                 btrfs_free_path(path);
5204         if (trans) {
5205                 ret = btrfs_end_transaction(trans, root);
5206                 if (!err)
5207                         err = ret;
5208         }
5209         if (err) {
5210                 free_extent_map(em);
5211                 return ERR_PTR(err);
5212         }
5213         return em;
5214 }
5215
5216 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5217                                            size_t pg_offset, u64 start, u64 len,
5218                                            int create)
5219 {
5220         struct extent_map *em;
5221         struct extent_map *hole_em = NULL;
5222         u64 range_start = start;
5223         u64 end;
5224         u64 found;
5225         u64 found_end;
5226         int err = 0;
5227
5228         em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5229         if (IS_ERR(em))
5230                 return em;
5231         if (em) {
5232                 /*
5233                  * if our em maps to a hole, there might
5234                  * actually be delalloc bytes behind it
5235                  */
5236                 if (em->block_start != EXTENT_MAP_HOLE)
5237                         return em;
5238                 else
5239                         hole_em = em;
5240         }
5241
5242         /* check to see if we've wrapped (len == -1 or similar) */
5243         end = start + len;
5244         if (end < start)
5245                 end = (u64)-1;
5246         else
5247                 end -= 1;
5248
5249         em = NULL;
5250
5251         /* ok, we didn't find anything, lets look for delalloc */
5252         found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5253                                  end, len, EXTENT_DELALLOC, 1);
5254         found_end = range_start + found;
5255         if (found_end < range_start)
5256                 found_end = (u64)-1;
5257
5258         /*
5259          * we didn't find anything useful, return
5260          * the original results from get_extent()
5261          */
5262         if (range_start > end || found_end <= start) {
5263                 em = hole_em;
5264                 hole_em = NULL;
5265                 goto out;
5266         }
5267
5268         /* adjust the range_start to make sure it doesn't
5269          * go backwards from the start they passed in
5270          */
5271         range_start = max(start,range_start);
5272         found = found_end - range_start;
5273
5274         if (found > 0) {
5275                 u64 hole_start = start;
5276                 u64 hole_len = len;
5277
5278                 em = alloc_extent_map();
5279                 if (!em) {
5280                         err = -ENOMEM;
5281                         goto out;
5282                 }
5283                 /*
5284                  * when btrfs_get_extent can't find anything it
5285                  * returns one huge hole
5286                  *
5287                  * make sure what it found really fits our range, and
5288                  * adjust to make sure it is based on the start from
5289                  * the caller
5290                  */
5291                 if (hole_em) {
5292                         u64 calc_end = extent_map_end(hole_em);
5293
5294                         if (calc_end <= start || (hole_em->start > end)) {
5295                                 free_extent_map(hole_em);
5296                                 hole_em = NULL;
5297                         } else {
5298                                 hole_start = max(hole_em->start, start);
5299                                 hole_len = calc_end - hole_start;
5300                         }
5301                 }
5302                 em->bdev = NULL;
5303                 if (hole_em && range_start > hole_start) {
5304                         /* our hole starts before our delalloc, so we
5305                          * have to return just the parts of the hole
5306                          * that go until  the delalloc starts
5307                          */
5308                         em->len = min(hole_len,
5309                                       range_start - hole_start);
5310                         em->start = hole_start;
5311                         em->orig_start = hole_start;
5312                         /*
5313                          * don't adjust block start at all,
5314                          * it is fixed at EXTENT_MAP_HOLE
5315                          */
5316                         em->block_start = hole_em->block_start;
5317                         em->block_len = hole_len;
5318                 } else {
5319                         em->start = range_start;
5320                         em->len = found;
5321                         em->orig_start = range_start;
5322                         em->block_start = EXTENT_MAP_DELALLOC;
5323                         em->block_len = found;
5324                 }
5325         } else if (hole_em) {
5326                 return hole_em;
5327         }
5328 out:
5329
5330         free_extent_map(hole_em);
5331         if (err) {
5332                 free_extent_map(em);
5333                 return ERR_PTR(err);
5334         }
5335         return em;
5336 }
5337
5338 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5339                                                   struct extent_map *em,
5340                                                   u64 start, u64 len)
5341 {
5342         struct btrfs_root *root = BTRFS_I(inode)->root;
5343         struct btrfs_trans_handle *trans;
5344         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5345         struct btrfs_key ins;
5346         u64 alloc_hint;
5347         int ret;
5348         bool insert = false;
5349
5350         /*
5351          * Ok if the extent map we looked up is a hole and is for the exact
5352          * range we want, there is no reason to allocate a new one, however if
5353          * it is not right then we need to free this one and drop the cache for
5354          * our range.
5355          */
5356         if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5357             em->len != len) {
5358                 free_extent_map(em);
5359                 em = NULL;
5360                 insert = true;
5361                 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5362         }
5363
5364         trans = btrfs_join_transaction(root);
5365         if (IS_ERR(trans))
5366                 return ERR_CAST(trans);
5367
5368         if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5369                 btrfs_add_inode_defrag(trans, inode);
5370
5371         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5372
5373         alloc_hint = get_extent_allocation_hint(inode, start, len);
5374         ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5375                                    alloc_hint, (u64)-1, &ins, 1);
5376         if (ret) {
5377                 em = ERR_PTR(ret);
5378                 goto out;
5379         }
5380
5381         if (!em) {
5382                 em = alloc_extent_map();
5383                 if (!em) {
5384                         em = ERR_PTR(-ENOMEM);
5385                         goto out;
5386                 }
5387         }
5388
5389         em->start = start;
5390         em->orig_start = em->start;
5391         em->len = ins.offset;
5392
5393         em->block_start = ins.objectid;
5394         em->block_len = ins.offset;
5395         em->bdev = root->fs_info->fs_devices->latest_bdev;
5396
5397         /*
5398          * We need to do this because if we're using the original em we searched
5399          * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5400          */
5401         em->flags = 0;
5402         set_bit(EXTENT_FLAG_PINNED, &em->flags);
5403
5404         while (insert) {
5405                 write_lock(&em_tree->lock);
5406                 ret = add_extent_mapping(em_tree, em);
5407                 write_unlock(&em_tree->lock);
5408                 if (ret != -EEXIST)
5409                         break;
5410                 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5411         }
5412
5413         ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5414                                            ins.offset, ins.offset, 0);
5415         if (ret) {
5416                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5417                 em = ERR_PTR(ret);
5418         }
5419 out:
5420         btrfs_end_transaction(trans, root);
5421         return em;
5422 }
5423
5424 /*
5425  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5426  * block must be cow'd
5427  */
5428 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5429                                       struct inode *inode, u64 offset, u64 len)
5430 {
5431         struct btrfs_path *path;
5432         int ret;
5433         struct extent_buffer *leaf;
5434         struct btrfs_root *root = BTRFS_I(inode)->root;
5435         struct btrfs_file_extent_item *fi;
5436         struct btrfs_key key;
5437         u64 disk_bytenr;
5438         u64 backref_offset;
5439         u64 extent_end;
5440         u64 num_bytes;
5441         int slot;
5442         int found_type;
5443
5444         path = btrfs_alloc_path();
5445         if (!path)
5446                 return -ENOMEM;
5447
5448         ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5449                                        offset, 0);
5450         if (ret < 0)
5451                 goto out;
5452
5453         slot = path->slots[0];
5454         if (ret == 1) {
5455                 if (slot == 0) {
5456                         /* can't find the item, must cow */
5457                         ret = 0;
5458                         goto out;
5459                 }
5460                 slot--;
5461         }
5462         ret = 0;
5463         leaf = path->nodes[0];
5464         btrfs_item_key_to_cpu(leaf, &key, slot);
5465         if (key.objectid != btrfs_ino(inode) ||
5466             key.type != BTRFS_EXTENT_DATA_KEY) {
5467                 /* not our file or wrong item type, must cow */
5468                 goto out;
5469         }
5470
5471         if (key.offset > offset) {
5472                 /* Wrong offset, must cow */
5473                 goto out;
5474         }
5475
5476         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5477         found_type = btrfs_file_extent_type(leaf, fi);
5478         if (found_type != BTRFS_FILE_EXTENT_REG &&
5479             found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5480                 /* not a regular extent, must cow */
5481                 goto out;
5482         }
5483         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5484         backref_offset = btrfs_file_extent_offset(leaf, fi);
5485
5486         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5487         if (extent_end < offset + len) {
5488                 /* extent doesn't include our full range, must cow */
5489                 goto out;
5490         }
5491
5492         if (btrfs_extent_readonly(root, disk_bytenr))
5493                 goto out;
5494
5495         /*
5496          * look for other files referencing this extent, if we
5497          * find any we must cow
5498          */
5499         if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5500                                   key.offset - backref_offset, disk_bytenr))
5501                 goto out;
5502
5503         /*
5504          * adjust disk_bytenr and num_bytes to cover just the bytes
5505          * in this extent we are about to write.  If there
5506          * are any csums in that range we have to cow in order
5507          * to keep the csums correct
5508          */
5509         disk_bytenr += backref_offset;
5510         disk_bytenr += offset - key.offset;
5511         num_bytes = min(offset + len, extent_end) - offset;
5512         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5513                                 goto out;
5514         /*
5515          * all of the above have passed, it is safe to overwrite this extent
5516          * without cow
5517          */
5518         ret = 1;
5519 out:
5520         btrfs_free_path(path);
5521         return ret;
5522 }
5523
5524 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5525                                    struct buffer_head *bh_result, int create)
5526 {
5527         struct extent_map *em;
5528         struct btrfs_root *root = BTRFS_I(inode)->root;
5529         u64 start = iblock << inode->i_blkbits;
5530         u64 len = bh_result->b_size;
5531         struct btrfs_trans_handle *trans;
5532
5533         em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5534         if (IS_ERR(em))
5535                 return PTR_ERR(em);
5536
5537         /*
5538          * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5539          * io.  INLINE is special, and we could probably kludge it in here, but
5540          * it's still buffered so for safety lets just fall back to the generic
5541          * buffered path.
5542          *
5543          * For COMPRESSED we _have_ to read the entire extent in so we can
5544          * decompress it, so there will be buffering required no matter what we
5545          * do, so go ahead and fallback to buffered.
5546          *
5547          * We return -ENOTBLK because thats what makes DIO go ahead and go back
5548          * to buffered IO.  Don't blame me, this is the price we pay for using
5549          * the generic code.
5550          */
5551         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5552             em->block_start == EXTENT_MAP_INLINE) {
5553                 free_extent_map(em);
5554                 return -ENOTBLK;
5555         }
5556
5557         /* Just a good old fashioned hole, return */
5558         if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5559                         test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5560                 free_extent_map(em);
5561                 /* DIO will do one hole at a time, so just unlock a sector */
5562                 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5563                               start + root->sectorsize - 1, GFP_NOFS);
5564                 return 0;
5565         }
5566
5567         /*
5568          * We don't allocate a new extent in the following cases
5569          *
5570          * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5571          * existing extent.
5572          * 2) The extent is marked as PREALLOC.  We're good to go here and can
5573          * just use the extent.
5574          *
5575          */
5576         if (!create) {
5577                 len = em->len - (start - em->start);
5578                 goto map;
5579         }
5580
5581         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5582             ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5583              em->block_start != EXTENT_MAP_HOLE)) {
5584                 int type;
5585                 int ret;
5586                 u64 block_start;
5587
5588                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5589                         type = BTRFS_ORDERED_PREALLOC;
5590                 else
5591                         type = BTRFS_ORDERED_NOCOW;
5592                 len = min(len, em->len - (start - em->start));
5593                 block_start = em->block_start + (start - em->start);
5594
5595                 /*
5596                  * we're not going to log anything, but we do need
5597                  * to make sure the current transaction stays open
5598                  * while we look for nocow cross refs
5599                  */
5600                 trans = btrfs_join_transaction(root);
5601                 if (IS_ERR(trans))
5602                         goto must_cow;
5603
5604                 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5605                         ret = btrfs_add_ordered_extent_dio(inode, start,
5606                                            block_start, len, len, type);
5607                         btrfs_end_transaction(trans, root);
5608                         if (ret) {
5609                                 free_extent_map(em);
5610                                 return ret;
5611                         }
5612                         goto unlock;
5613                 }
5614                 btrfs_end_transaction(trans, root);
5615         }
5616 must_cow:
5617         /*
5618          * this will cow the extent, reset the len in case we changed
5619          * it above
5620          */
5621         len = bh_result->b_size;
5622         em = btrfs_new_extent_direct(inode, em, start, len);
5623         if (IS_ERR(em))
5624                 return PTR_ERR(em);
5625         len = min(len, em->len - (start - em->start));
5626 unlock:
5627         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5628                           EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5629                           0, NULL, GFP_NOFS);
5630 map:
5631         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5632                 inode->i_blkbits;
5633         bh_result->b_size = len;
5634         bh_result->b_bdev = em->bdev;
5635         set_buffer_mapped(bh_result);
5636         if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5637                 set_buffer_new(bh_result);
5638
5639         free_extent_map(em);
5640
5641         return 0;
5642 }
5643
5644 struct btrfs_dio_private {
5645         struct inode *inode;
5646         u64 logical_offset;
5647         u64 disk_bytenr;
5648         u64 bytes;
5649         u32 *csums;
5650         void *private;
5651
5652         /* number of bios pending for this dio */
5653         atomic_t pending_bios;
5654
5655         /* IO errors */
5656         int errors;
5657
5658         struct bio *orig_bio;
5659 };
5660
5661 static void btrfs_endio_direct_read(struct bio *bio, int err)
5662 {
5663         struct btrfs_dio_private *dip = bio->bi_private;
5664         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5665         struct bio_vec *bvec = bio->bi_io_vec;
5666         struct inode *inode = dip->inode;
5667         struct btrfs_root *root = BTRFS_I(inode)->root;
5668         u64 start;
5669         u32 *private = dip->csums;
5670
5671         start = dip->logical_offset;
5672         do {
5673                 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5674                         struct page *page = bvec->bv_page;
5675                         char *kaddr;
5676                         u32 csum = ~(u32)0;
5677                         unsigned long flags;
5678
5679                         local_irq_save(flags);
5680                         kaddr = kmap_atomic(page, KM_IRQ0);
5681                         csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5682                                                csum, bvec->bv_len);
5683                         btrfs_csum_final(csum, (char *)&csum);
5684                         kunmap_atomic(kaddr, KM_IRQ0);
5685                         local_irq_restore(flags);
5686
5687                         flush_dcache_page(bvec->bv_page);
5688                         if (csum != *private) {
5689                                 printk(KERN_ERR "btrfs csum failed ino %llu off"
5690                                       " %llu csum %u private %u\n",
5691                                       (unsigned long long)btrfs_ino(inode),
5692                                       (unsigned long long)start,
5693                                       csum, *private);
5694                                 err = -EIO;
5695                         }
5696                 }
5697
5698                 start += bvec->bv_len;
5699                 private++;
5700                 bvec++;
5701         } while (bvec <= bvec_end);
5702
5703         unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5704                       dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5705         bio->bi_private = dip->private;
5706
5707         kfree(dip->csums);
5708         kfree(dip);
5709
5710         /* If we had a csum failure make sure to clear the uptodate flag */
5711         if (err)
5712                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5713         dio_end_io(bio, err);
5714 }
5715
5716 static void btrfs_endio_direct_write(struct bio *bio, int err)
5717 {
5718         struct btrfs_dio_private *dip = bio->bi_private;
5719         struct inode *inode = dip->inode;
5720         struct btrfs_root *root = BTRFS_I(inode)->root;
5721         struct btrfs_trans_handle *trans;
5722         struct btrfs_ordered_extent *ordered = NULL;
5723         struct extent_state *cached_state = NULL;
5724         u64 ordered_offset = dip->logical_offset;
5725         u64 ordered_bytes = dip->bytes;
5726         int ret;
5727
5728         if (err)
5729                 goto out_done;
5730 again:
5731         ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5732                                                    &ordered_offset,
5733                                                    ordered_bytes);
5734         if (!ret)
5735                 goto out_test;
5736
5737         BUG_ON(!ordered);
5738
5739         trans = btrfs_join_transaction(root);
5740         if (IS_ERR(trans)) {
5741                 err = -ENOMEM;
5742                 goto out;
5743         }
5744         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5745
5746         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5747                 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5748                 if (!ret)
5749                         ret = btrfs_update_inode(trans, root, inode);
5750                 err = ret;
5751                 goto out;
5752         }
5753
5754         lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5755                          ordered->file_offset + ordered->len - 1, 0,
5756                          &cached_state, GFP_NOFS);
5757
5758         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5759                 ret = btrfs_mark_extent_written(trans, inode,
5760                                                 ordered->file_offset,
5761                                                 ordered->file_offset +
5762                                                 ordered->len);
5763                 if (ret) {
5764                         err = ret;
5765                         goto out_unlock;
5766                 }
5767         } else {
5768                 ret = insert_reserved_file_extent(trans, inode,
5769                                                   ordered->file_offset,
5770                                                   ordered->start,
5771                                                   ordered->disk_len,
5772                                                   ordered->len,
5773                                                   ordered->len,
5774                                                   0, 0, 0,
5775                                                   BTRFS_FILE_EXTENT_REG);
5776                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5777                                    ordered->file_offset, ordered->len);
5778                 if (ret) {
5779                         err = ret;
5780                         WARN_ON(1);
5781                         goto out_unlock;
5782                 }
5783         }
5784
5785         add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5786         ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5787         if (!ret)
5788                 btrfs_update_inode(trans, root, inode);
5789         ret = 0;
5790 out_unlock:
5791         unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5792                              ordered->file_offset + ordered->len - 1,
5793                              &cached_state, GFP_NOFS);
5794 out:
5795         btrfs_delalloc_release_metadata(inode, ordered->len);
5796         btrfs_end_transaction(trans, root);
5797         ordered_offset = ordered->file_offset + ordered->len;
5798         btrfs_put_ordered_extent(ordered);
5799         btrfs_put_ordered_extent(ordered);
5800
5801 out_test:
5802         /*
5803          * our bio might span multiple ordered extents.  If we haven't
5804          * completed the accounting for the whole dio, go back and try again
5805          */
5806         if (ordered_offset < dip->logical_offset + dip->bytes) {
5807                 ordered_bytes = dip->logical_offset + dip->bytes -
5808                         ordered_offset;
5809                 goto again;
5810         }
5811 out_done:
5812         bio->bi_private = dip->private;
5813
5814         kfree(dip->csums);
5815         kfree(dip);
5816
5817         /* If we had an error make sure to clear the uptodate flag */
5818         if (err)
5819                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5820         dio_end_io(bio, err);
5821 }
5822
5823 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5824                                     struct bio *bio, int mirror_num,
5825                                     unsigned long bio_flags, u64 offset)
5826 {
5827         int ret;
5828         struct btrfs_root *root = BTRFS_I(inode)->root;
5829         ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5830         BUG_ON(ret);
5831         return 0;
5832 }
5833
5834 static void btrfs_end_dio_bio(struct bio *bio, int err)
5835 {
5836         struct btrfs_dio_private *dip = bio->bi_private;
5837
5838         if (err) {
5839                 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
5840                       "sector %#Lx len %u err no %d\n",
5841                       (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
5842                       (unsigned long long)bio->bi_sector, bio->bi_size, err);
5843                 dip->errors = 1;
5844
5845                 /*
5846                  * before atomic variable goto zero, we must make sure
5847                  * dip->errors is perceived to be set.
5848                  */
5849                 smp_mb__before_atomic_dec();
5850         }
5851
5852         /* if there are more bios still pending for this dio, just exit */
5853         if (!atomic_dec_and_test(&dip->pending_bios))
5854                 goto out;
5855
5856         if (dip->errors)
5857                 bio_io_error(dip->orig_bio);
5858         else {
5859                 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5860                 bio_endio(dip->orig_bio, 0);
5861         }
5862 out:
5863         bio_put(bio);
5864 }
5865
5866 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5867                                        u64 first_sector, gfp_t gfp_flags)
5868 {
5869         int nr_vecs = bio_get_nr_vecs(bdev);
5870         return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5871 }
5872
5873 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5874                                          int rw, u64 file_offset, int skip_sum,
5875                                          u32 *csums, int async_submit)
5876 {
5877         int write = rw & REQ_WRITE;
5878         struct btrfs_root *root = BTRFS_I(inode)->root;
5879         int ret;
5880
5881         bio_get(bio);
5882         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5883         if (ret)
5884                 goto err;
5885
5886         if (skip_sum)
5887                 goto map;
5888
5889         if (write && async_submit) {
5890                 ret = btrfs_wq_submit_bio(root->fs_info,
5891                                    inode, rw, bio, 0, 0,
5892                                    file_offset,
5893                                    __btrfs_submit_bio_start_direct_io,
5894                                    __btrfs_submit_bio_done);
5895                 goto err;
5896         } else if (write) {
5897                 /*
5898                  * If we aren't doing async submit, calculate the csum of the
5899                  * bio now.
5900                  */
5901                 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
5902                 if (ret)
5903                         goto err;
5904         } else if (!skip_sum) {
5905                 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
5906                                           file_offset, csums);
5907                 if (ret)
5908                         goto err;
5909         }
5910
5911 map:
5912         ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
5913 err:
5914         bio_put(bio);
5915         return ret;
5916 }
5917
5918 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5919                                     int skip_sum)
5920 {
5921         struct inode *inode = dip->inode;
5922         struct btrfs_root *root = BTRFS_I(inode)->root;
5923         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5924         struct bio *bio;
5925         struct bio *orig_bio = dip->orig_bio;
5926         struct bio_vec *bvec = orig_bio->bi_io_vec;
5927         u64 start_sector = orig_bio->bi_sector;
5928         u64 file_offset = dip->logical_offset;
5929         u64 submit_len = 0;
5930         u64 map_length;
5931         int nr_pages = 0;
5932         u32 *csums = dip->csums;
5933         int ret = 0;
5934         int async_submit = 0;
5935         int write = rw & REQ_WRITE;
5936
5937         map_length = orig_bio->bi_size;
5938         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5939                               &map_length, NULL, 0);
5940         if (ret) {
5941                 bio_put(orig_bio);
5942                 return -EIO;
5943         }
5944
5945         if (map_length >= orig_bio->bi_size) {
5946                 bio = orig_bio;
5947                 goto submit;
5948         }
5949
5950         async_submit = 1;
5951         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5952         if (!bio)
5953                 return -ENOMEM;
5954         bio->bi_private = dip;
5955         bio->bi_end_io = btrfs_end_dio_bio;
5956         atomic_inc(&dip->pending_bios);
5957
5958         while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5959                 if (unlikely(map_length < submit_len + bvec->bv_len ||
5960                     bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5961                                  bvec->bv_offset) < bvec->bv_len)) {
5962                         /*
5963                          * inc the count before we submit the bio so
5964                          * we know the end IO handler won't happen before
5965                          * we inc the count. Otherwise, the dip might get freed
5966                          * before we're done setting it up
5967                          */
5968                         atomic_inc(&dip->pending_bios);
5969                         ret = __btrfs_submit_dio_bio(bio, inode, rw,
5970                                                      file_offset, skip_sum,
5971                                                      csums, async_submit);
5972                         if (ret) {
5973                                 bio_put(bio);
5974                                 atomic_dec(&dip->pending_bios);
5975                                 goto out_err;
5976                         }
5977
5978                         /* Write's use the ordered csums */
5979                         if (!write && !skip_sum)
5980                                 csums = csums + nr_pages;
5981                         start_sector += submit_len >> 9;
5982                         file_offset += submit_len;
5983
5984                         submit_len = 0;
5985                         nr_pages = 0;
5986
5987                         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5988                                                   start_sector, GFP_NOFS);
5989                         if (!bio)
5990                                 goto out_err;
5991                         bio->bi_private = dip;
5992                         bio->bi_end_io = btrfs_end_dio_bio;
5993
5994                         map_length = orig_bio->bi_size;
5995                         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5996                                               &map_length, NULL, 0);
5997                         if (ret) {
5998                                 bio_put(bio);
5999                                 goto out_err;
6000                         }
6001                 } else {
6002                         submit_len += bvec->bv_len;
6003                         nr_pages ++;
6004                         bvec++;
6005                 }
6006         }
6007
6008 submit:
6009         ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6010                                      csums, async_submit);
6011         if (!ret)
6012                 return 0;
6013
6014         bio_put(bio);
6015 out_err:
6016         dip->errors = 1;
6017         /*
6018          * before atomic variable goto zero, we must
6019          * make sure dip->errors is perceived to be set.
6020          */
6021         smp_mb__before_atomic_dec();
6022         if (atomic_dec_and_test(&dip->pending_bios))
6023                 bio_io_error(dip->orig_bio);
6024
6025         /* bio_end_io() will handle error, so we needn't return it */
6026         return 0;
6027 }
6028
6029 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6030                                 loff_t file_offset)
6031 {
6032         struct btrfs_root *root = BTRFS_I(inode)->root;
6033         struct btrfs_dio_private *dip;
6034         struct bio_vec *bvec = bio->bi_io_vec;
6035         int skip_sum;
6036         int write = rw & REQ_WRITE;
6037         int ret = 0;
6038
6039         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6040
6041         dip = kmalloc(sizeof(*dip), GFP_NOFS);
6042         if (!dip) {
6043                 ret = -ENOMEM;
6044                 goto free_ordered;
6045         }
6046         dip->csums = NULL;
6047
6048         /* Write's use the ordered csum stuff, so we don't need dip->csums */
6049         if (!write && !skip_sum) {
6050                 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6051                 if (!dip->csums) {
6052                         kfree(dip);
6053                         ret = -ENOMEM;
6054                         goto free_ordered;
6055                 }
6056         }
6057
6058         dip->private = bio->bi_private;
6059         dip->inode = inode;
6060         dip->logical_offset = file_offset;
6061
6062         dip->bytes = 0;
6063         do {
6064                 dip->bytes += bvec->bv_len;
6065                 bvec++;
6066         } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6067
6068         dip->disk_bytenr = (u64)bio->bi_sector << 9;
6069         bio->bi_private = dip;
6070         dip->errors = 0;
6071         dip->orig_bio = bio;
6072         atomic_set(&dip->pending_bios, 0);
6073
6074         if (write)
6075                 bio->bi_end_io = btrfs_endio_direct_write;
6076         else
6077                 bio->bi_end_io = btrfs_endio_direct_read;
6078
6079         ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6080         if (!ret)
6081                 return;
6082 free_ordered:
6083         /*
6084          * If this is a write, we need to clean up the reserved space and kill
6085          * the ordered extent.
6086          */
6087         if (write) {
6088                 struct btrfs_ordered_extent *ordered;
6089                 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6090                 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6091                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6092                         btrfs_free_reserved_extent(root, ordered->start,
6093                                                    ordered->disk_len);
6094                 btrfs_put_ordered_extent(ordered);
6095                 btrfs_put_ordered_extent(ordered);
6096         }
6097         bio_endio(bio, ret);
6098 }
6099
6100 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6101                         const struct iovec *iov, loff_t offset,
6102                         unsigned long nr_segs)
6103 {
6104         int seg;
6105         int i;
6106         size_t size;
6107         unsigned long addr;
6108         unsigned blocksize_mask = root->sectorsize - 1;
6109         ssize_t retval = -EINVAL;
6110         loff_t end = offset;
6111
6112         if (offset & blocksize_mask)
6113                 goto out;
6114
6115         /* Check the memory alignment.  Blocks cannot straddle pages */
6116         for (seg = 0; seg < nr_segs; seg++) {
6117                 addr = (unsigned long)iov[seg].iov_base;
6118                 size = iov[seg].iov_len;
6119                 end += size;
6120                 if ((addr & blocksize_mask) || (size & blocksize_mask))
6121                         goto out;
6122
6123                 /* If this is a write we don't need to check anymore */
6124                 if (rw & WRITE)
6125                         continue;
6126
6127                 /*
6128                  * Check to make sure we don't have duplicate iov_base's in this
6129                  * iovec, if so return EINVAL, otherwise we'll get csum errors
6130                  * when reading back.
6131                  */
6132                 for (i = seg + 1; i < nr_segs; i++) {
6133                         if (iov[seg].iov_base == iov[i].iov_base)
6134                                 goto out;
6135                 }
6136         }
6137         retval = 0;
6138 out:
6139         return retval;
6140 }
6141 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6142                         const struct iovec *iov, loff_t offset,
6143                         unsigned long nr_segs)
6144 {
6145         struct file *file = iocb->ki_filp;
6146         struct inode *inode = file->f_mapping->host;
6147         struct btrfs_ordered_extent *ordered;
6148         struct extent_state *cached_state = NULL;
6149         u64 lockstart, lockend;
6150         ssize_t ret;
6151         int writing = rw & WRITE;
6152         int write_bits = 0;
6153         size_t count = iov_length(iov, nr_segs);
6154
6155         if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6156                             offset, nr_segs)) {
6157                 return 0;
6158         }
6159
6160         lockstart = offset;
6161         lockend = offset + count - 1;
6162
6163         if (writing) {
6164                 ret = btrfs_delalloc_reserve_space(inode, count);
6165                 if (ret)
6166                         goto out;
6167         }
6168
6169         while (1) {
6170                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6171                                  0, &cached_state, GFP_NOFS);
6172                 /*
6173                  * We're concerned with the entire range that we're going to be
6174                  * doing DIO to, so we need to make sure theres no ordered
6175                  * extents in this range.
6176                  */
6177                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6178                                                      lockend - lockstart + 1);
6179                 if (!ordered)
6180                         break;
6181                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6182                                      &cached_state, GFP_NOFS);
6183                 btrfs_start_ordered_extent(inode, ordered, 1);
6184                 btrfs_put_ordered_extent(ordered);
6185                 cond_resched();
6186         }
6187
6188         /*
6189          * we don't use btrfs_set_extent_delalloc because we don't want
6190          * the dirty or uptodate bits
6191          */
6192         if (writing) {
6193                 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6194                 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6195                                      EXTENT_DELALLOC, 0, NULL, &cached_state,
6196                                      GFP_NOFS);
6197                 if (ret) {
6198                         clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6199                                          lockend, EXTENT_LOCKED | write_bits,
6200                                          1, 0, &cached_state, GFP_NOFS);
6201                         goto out;
6202                 }
6203         }
6204
6205         free_extent_state(cached_state);
6206         cached_state = NULL;
6207
6208         ret = __blockdev_direct_IO(rw, iocb, inode,
6209                    BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6210                    iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6211                    btrfs_submit_direct, 0);
6212
6213         if (ret < 0 && ret != -EIOCBQUEUED) {
6214                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6215                               offset + iov_length(iov, nr_segs) - 1,
6216                               EXTENT_LOCKED | write_bits, 1, 0,
6217                               &cached_state, GFP_NOFS);
6218         } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6219                 /*
6220                  * We're falling back to buffered, unlock the section we didn't
6221                  * do IO on.
6222                  */
6223                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6224                               offset + iov_length(iov, nr_segs) - 1,
6225                               EXTENT_LOCKED | write_bits, 1, 0,
6226                               &cached_state, GFP_NOFS);
6227         }
6228 out:
6229         free_extent_state(cached_state);
6230         return ret;
6231 }
6232
6233 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6234                 __u64 start, __u64 len)
6235 {
6236         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6237 }
6238
6239 int btrfs_readpage(struct file *file, struct page *page)
6240 {
6241         struct extent_io_tree *tree;
6242         tree = &BTRFS_I(page->mapping->host)->io_tree;
6243         return extent_read_full_page(tree, page, btrfs_get_extent);
6244 }
6245
6246 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6247 {
6248         struct extent_io_tree *tree;
6249
6250
6251         if (current->flags & PF_MEMALLOC) {
6252                 redirty_page_for_writepage(wbc, page);
6253                 unlock_page(page);
6254                 return 0;
6255         }
6256         tree = &BTRFS_I(page->mapping->host)->io_tree;
6257         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6258 }
6259
6260 int btrfs_writepages(struct address_space *mapping,
6261                      struct writeback_control *wbc)
6262 {
6263         struct extent_io_tree *tree;
6264
6265         tree = &BTRFS_I(mapping->host)->io_tree;
6266         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6267 }
6268
6269 static int
6270 btrfs_readpages(struct file *file, struct address_space *mapping,
6271                 struct list_head *pages, unsigned nr_pages)
6272 {
6273         struct extent_io_tree *tree;
6274         tree = &BTRFS_I(mapping->host)->io_tree;
6275         return extent_readpages(tree, mapping, pages, nr_pages,
6276                                 btrfs_get_extent);
6277 }
6278 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6279 {
6280         struct extent_io_tree *tree;
6281         struct extent_map_tree *map;
6282         int ret;
6283
6284         tree = &BTRFS_I(page->mapping->host)->io_tree;
6285         map = &BTRFS_I(page->mapping->host)->extent_tree;
6286         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6287         if (ret == 1) {
6288                 ClearPagePrivate(page);
6289                 set_page_private(page, 0);
6290                 page_cache_release(page);
6291         }
6292         return ret;
6293 }
6294
6295 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6296 {
6297         if (PageWriteback(page) || PageDirty(page))
6298                 return 0;
6299         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6300 }
6301
6302 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6303 {
6304         struct extent_io_tree *tree;
6305         struct btrfs_ordered_extent *ordered;
6306         struct extent_state *cached_state = NULL;
6307         u64 page_start = page_offset(page);
6308         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6309
6310
6311         /*
6312          * we have the page locked, so new writeback can't start,
6313          * and the dirty bit won't be cleared while we are here.
6314          *
6315          * Wait for IO on this page so that we can safely clear
6316          * the PagePrivate2 bit and do ordered accounting
6317          */
6318         wait_on_page_writeback(page);
6319
6320         tree = &BTRFS_I(page->mapping->host)->io_tree;
6321         if (offset) {
6322                 btrfs_releasepage(page, GFP_NOFS);
6323                 return;
6324         }
6325         lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6326                          GFP_NOFS);
6327         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6328                                            page_offset(page));
6329         if (ordered) {
6330                 /*
6331                  * IO on this page will never be started, so we need
6332                  * to account for any ordered extents now
6333                  */
6334                 clear_extent_bit(tree, page_start, page_end,
6335                                  EXTENT_DIRTY | EXTENT_DELALLOC |
6336                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6337                                  &cached_state, GFP_NOFS);
6338                 /*
6339                  * whoever cleared the private bit is responsible
6340                  * for the finish_ordered_io
6341                  */
6342                 if (TestClearPagePrivate2(page)) {
6343                         btrfs_finish_ordered_io(page->mapping->host,
6344                                                 page_start, page_end);
6345                 }
6346                 btrfs_put_ordered_extent(ordered);
6347                 cached_state = NULL;
6348                 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6349                                  GFP_NOFS);
6350         }
6351         clear_extent_bit(tree, page_start, page_end,
6352                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6353                  EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6354         __btrfs_releasepage(page, GFP_NOFS);
6355
6356         ClearPageChecked(page);
6357         if (PagePrivate(page)) {
6358                 ClearPagePrivate(page);
6359                 set_page_private(page, 0);
6360                 page_cache_release(page);
6361         }
6362 }
6363
6364 /*
6365  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6366  * called from a page fault handler when a page is first dirtied. Hence we must
6367  * be careful to check for EOF conditions here. We set the page up correctly
6368  * for a written page which means we get ENOSPC checking when writing into
6369  * holes and correct delalloc and unwritten extent mapping on filesystems that
6370  * support these features.
6371  *
6372  * We are not allowed to take the i_mutex here so we have to play games to
6373  * protect against truncate races as the page could now be beyond EOF.  Because
6374  * vmtruncate() writes the inode size before removing pages, once we have the
6375  * page lock we can determine safely if the page is beyond EOF. If it is not
6376  * beyond EOF, then the page is guaranteed safe against truncation until we
6377  * unlock the page.
6378  */
6379 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6380 {
6381         struct page *page = vmf->page;
6382         struct inode *inode = fdentry(vma->vm_file)->d_inode;
6383         struct btrfs_root *root = BTRFS_I(inode)->root;
6384         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6385         struct btrfs_ordered_extent *ordered;
6386         struct extent_state *cached_state = NULL;
6387         char *kaddr;
6388         unsigned long zero_start;
6389         loff_t size;
6390         int ret;
6391         u64 page_start;
6392         u64 page_end;
6393
6394         ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6395         if (ret) {
6396                 if (ret == -ENOMEM)
6397                         ret = VM_FAULT_OOM;
6398                 else /* -ENOSPC, -EIO, etc */
6399                         ret = VM_FAULT_SIGBUS;
6400                 goto out;
6401         }
6402
6403         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6404 again:
6405         lock_page(page);
6406         size = i_size_read(inode);
6407         page_start = page_offset(page);
6408         page_end = page_start + PAGE_CACHE_SIZE - 1;
6409
6410         if ((page->mapping != inode->i_mapping) ||
6411             (page_start >= size)) {
6412                 /* page got truncated out from underneath us */
6413                 goto out_unlock;
6414         }
6415         wait_on_page_writeback(page);
6416
6417         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6418                          GFP_NOFS);
6419         set_page_extent_mapped(page);
6420
6421         /*
6422          * we can't set the delalloc bits if there are pending ordered
6423          * extents.  Drop our locks and wait for them to finish
6424          */
6425         ordered = btrfs_lookup_ordered_extent(inode, page_start);
6426         if (ordered) {
6427                 unlock_extent_cached(io_tree, page_start, page_end,
6428                                      &cached_state, GFP_NOFS);
6429                 unlock_page(page);
6430                 btrfs_start_ordered_extent(inode, ordered, 1);
6431                 btrfs_put_ordered_extent(ordered);
6432                 goto again;
6433         }
6434
6435         /*
6436          * XXX - page_mkwrite gets called every time the page is dirtied, even
6437          * if it was already dirty, so for space accounting reasons we need to
6438          * clear any delalloc bits for the range we are fixing to save.  There
6439          * is probably a better way to do this, but for now keep consistent with
6440          * prepare_pages in the normal write path.
6441          */
6442         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6443                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6444                           0, 0, &cached_state, GFP_NOFS);
6445
6446         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6447                                         &cached_state);
6448         if (ret) {
6449                 unlock_extent_cached(io_tree, page_start, page_end,
6450                                      &cached_state, GFP_NOFS);
6451                 ret = VM_FAULT_SIGBUS;
6452                 goto out_unlock;
6453         }
6454         ret = 0;
6455
6456         /* page is wholly or partially inside EOF */
6457         if (page_start + PAGE_CACHE_SIZE > size)
6458                 zero_start = size & ~PAGE_CACHE_MASK;
6459         else
6460                 zero_start = PAGE_CACHE_SIZE;
6461
6462         if (zero_start != PAGE_CACHE_SIZE) {
6463                 kaddr = kmap(page);
6464                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6465                 flush_dcache_page(page);
6466                 kunmap(page);
6467         }
6468         ClearPageChecked(page);
6469         set_page_dirty(page);
6470         SetPageUptodate(page);
6471
6472         BTRFS_I(inode)->last_trans = root->fs_info->generation;
6473         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6474
6475         unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6476
6477 out_unlock:
6478         if (!ret)
6479                 return VM_FAULT_LOCKED;
6480         unlock_page(page);
6481         btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6482 out:
6483         return ret;
6484 }
6485
6486 static int btrfs_truncate(struct inode *inode)
6487 {
6488         struct btrfs_root *root = BTRFS_I(inode)->root;
6489         struct btrfs_block_rsv *rsv;
6490         int ret;
6491         int err = 0;
6492         struct btrfs_trans_handle *trans;
6493         unsigned long nr;
6494         u64 mask = root->sectorsize - 1;
6495
6496         ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6497         if (ret)
6498                 return ret;
6499
6500         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6501         btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6502
6503         /*
6504          * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
6505          * 3 things going on here
6506          *
6507          * 1) We need to reserve space for our orphan item and the space to
6508          * delete our orphan item.  Lord knows we don't want to have a dangling
6509          * orphan item because we didn't reserve space to remove it.
6510          *
6511          * 2) We need to reserve space to update our inode.
6512          *
6513          * 3) We need to have something to cache all the space that is going to
6514          * be free'd up by the truncate operation, but also have some slack
6515          * space reserved in case it uses space during the truncate (thank you
6516          * very much snapshotting).
6517          *
6518          * And we need these to all be seperate.  The fact is we can use alot of
6519          * space doing the truncate, and we have no earthly idea how much space
6520          * we will use, so we need the truncate reservation to be seperate so it
6521          * doesn't end up using space reserved for updating the inode or
6522          * removing the orphan item.  We also need to be able to stop the
6523          * transaction and start a new one, which means we need to be able to
6524          * update the inode several times, and we have no idea of knowing how
6525          * many times that will be, so we can't just reserve 1 item for the
6526          * entirety of the opration, so that has to be done seperately as well.
6527          * Then there is the orphan item, which does indeed need to be held on
6528          * to for the whole operation, and we need nobody to touch this reserved
6529          * space except the orphan code.
6530          *
6531          * So that leaves us with
6532          *
6533          * 1) root->orphan_block_rsv - for the orphan deletion.
6534          * 2) rsv - for the truncate reservation, which we will steal from the
6535          * transaction reservation.
6536          * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6537          * updating the inode.
6538          */
6539         rsv = btrfs_alloc_block_rsv(root);
6540         if (!rsv)
6541                 return -ENOMEM;
6542         btrfs_add_durable_block_rsv(root->fs_info, rsv);
6543
6544         trans = btrfs_start_transaction(root, 4);
6545         if (IS_ERR(trans)) {
6546                 err = PTR_ERR(trans);
6547                 goto out;
6548         }
6549
6550         /*
6551          * Reserve space for the truncate process.  Truncate should be adding
6552          * space, but if there are snapshots it may end up using space.
6553          */
6554         ret = btrfs_truncate_reserve_metadata(trans, root, rsv);
6555         BUG_ON(ret);
6556
6557         ret = btrfs_orphan_add(trans, inode);
6558         if (ret) {
6559                 btrfs_end_transaction(trans, root);
6560                 goto out;
6561         }
6562
6563         nr = trans->blocks_used;
6564         btrfs_end_transaction(trans, root);
6565         btrfs_btree_balance_dirty(root, nr);
6566
6567         /*
6568          * Ok so we've already migrated our bytes over for the truncate, so here
6569          * just reserve the one slot we need for updating the inode.
6570          */
6571         trans = btrfs_start_transaction(root, 1);
6572         if (IS_ERR(trans)) {
6573                 err = PTR_ERR(trans);
6574                 goto out;
6575         }
6576         trans->block_rsv = rsv;
6577
6578         /*
6579          * setattr is responsible for setting the ordered_data_close flag,
6580          * but that is only tested during the last file release.  That
6581          * could happen well after the next commit, leaving a great big
6582          * window where new writes may get lost if someone chooses to write
6583          * to this file after truncating to zero
6584          *
6585          * The inode doesn't have any dirty data here, and so if we commit
6586          * this is a noop.  If someone immediately starts writing to the inode
6587          * it is very likely we'll catch some of their writes in this
6588          * transaction, and the commit will find this file on the ordered
6589          * data list with good things to send down.
6590          *
6591          * This is a best effort solution, there is still a window where
6592          * using truncate to replace the contents of the file will
6593          * end up with a zero length file after a crash.
6594          */
6595         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6596                 btrfs_add_ordered_operation(trans, root, inode);
6597
6598         while (1) {
6599                 if (!trans) {
6600                         trans = btrfs_start_transaction(root, 3);
6601                         if (IS_ERR(trans)) {
6602                                 err = PTR_ERR(trans);
6603                                 goto out;
6604                         }
6605
6606                         ret = btrfs_truncate_reserve_metadata(trans, root,
6607                                                               rsv);
6608                         BUG_ON(ret);
6609
6610                         trans->block_rsv = rsv;
6611                 }
6612
6613                 ret = btrfs_truncate_inode_items(trans, root, inode,
6614                                                  inode->i_size,
6615                                                  BTRFS_EXTENT_DATA_KEY);
6616                 if (ret != -EAGAIN) {
6617                         err = ret;
6618                         break;
6619                 }
6620
6621                 trans->block_rsv = &root->fs_info->trans_block_rsv;
6622                 ret = btrfs_update_inode(trans, root, inode);
6623                 if (ret) {
6624                         err = ret;
6625                         break;
6626                 }
6627
6628                 nr = trans->blocks_used;
6629                 btrfs_end_transaction(trans, root);
6630                 trans = NULL;
6631                 btrfs_btree_balance_dirty(root, nr);
6632         }
6633
6634         if (ret == 0 && inode->i_nlink > 0) {
6635                 trans->block_rsv = root->orphan_block_rsv;
6636                 ret = btrfs_orphan_del(trans, inode);
6637                 if (ret)
6638                         err = ret;
6639         } else if (ret && inode->i_nlink > 0) {
6640                 /*
6641                  * Failed to do the truncate, remove us from the in memory
6642                  * orphan list.
6643                  */
6644                 ret = btrfs_orphan_del(NULL, inode);
6645         }
6646
6647         trans->block_rsv = &root->fs_info->trans_block_rsv;
6648         ret = btrfs_update_inode(trans, root, inode);
6649         if (ret && !err)
6650                 err = ret;
6651
6652         nr = trans->blocks_used;
6653         ret = btrfs_end_transaction_throttle(trans, root);
6654         btrfs_btree_balance_dirty(root, nr);
6655
6656 out:
6657         btrfs_free_block_rsv(root, rsv);
6658
6659         if (ret && !err)
6660                 err = ret;
6661
6662         return err;
6663 }
6664
6665 /*
6666  * create a new subvolume directory/inode (helper for the ioctl).
6667  */
6668 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6669                              struct btrfs_root *new_root, u64 new_dirid)
6670 {
6671         struct inode *inode;
6672         int err;
6673         u64 index = 0;
6674
6675         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6676                                 new_dirid, S_IFDIR | 0700, &index);
6677         if (IS_ERR(inode))
6678                 return PTR_ERR(inode);
6679         inode->i_op = &btrfs_dir_inode_operations;
6680         inode->i_fop = &btrfs_dir_file_operations;
6681
6682         inode->i_nlink = 1;
6683         btrfs_i_size_write(inode, 0);
6684
6685         err = btrfs_update_inode(trans, new_root, inode);
6686         BUG_ON(err);
6687
6688         iput(inode);
6689         return 0;
6690 }
6691
6692 /* helper function for file defrag and space balancing.  This
6693  * forces readahead on a given range of bytes in an inode
6694  */
6695 unsigned long btrfs_force_ra(struct address_space *mapping,
6696                               struct file_ra_state *ra, struct file *file,
6697                               pgoff_t offset, pgoff_t last_index)
6698 {
6699         pgoff_t req_size = last_index - offset + 1;
6700
6701         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6702         return offset + req_size;
6703 }
6704
6705 struct inode *btrfs_alloc_inode(struct super_block *sb)
6706 {
6707         struct btrfs_inode *ei;
6708         struct inode *inode;
6709
6710         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6711         if (!ei)
6712                 return NULL;
6713
6714         ei->root = NULL;
6715         ei->space_info = NULL;
6716         ei->generation = 0;
6717         ei->sequence = 0;
6718         ei->last_trans = 0;
6719         ei->last_sub_trans = 0;
6720         ei->logged_trans = 0;
6721         ei->delalloc_bytes = 0;
6722         ei->reserved_bytes = 0;
6723         ei->disk_i_size = 0;
6724         ei->flags = 0;
6725         ei->index_cnt = (u64)-1;
6726         ei->last_unlink_trans = 0;
6727
6728         atomic_set(&ei->outstanding_extents, 0);
6729         atomic_set(&ei->reserved_extents, 0);
6730
6731         ei->ordered_data_close = 0;
6732         ei->orphan_meta_reserved = 0;
6733         ei->dummy_inode = 0;
6734         ei->in_defrag = 0;
6735         ei->force_compress = BTRFS_COMPRESS_NONE;
6736
6737         ei->delayed_node = NULL;
6738
6739         inode = &ei->vfs_inode;
6740         extent_map_tree_init(&ei->extent_tree);
6741         extent_io_tree_init(&ei->io_tree, &inode->i_data);
6742         extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
6743         mutex_init(&ei->log_mutex);
6744         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6745         INIT_LIST_HEAD(&ei->i_orphan);
6746         INIT_LIST_HEAD(&ei->delalloc_inodes);
6747         INIT_LIST_HEAD(&ei->ordered_operations);
6748         RB_CLEAR_NODE(&ei->rb_node);
6749
6750         return inode;
6751 }
6752
6753 static void btrfs_i_callback(struct rcu_head *head)
6754 {
6755         struct inode *inode = container_of(head, struct inode, i_rcu);
6756         INIT_LIST_HEAD(&inode->i_dentry);
6757         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6758 }
6759
6760 void btrfs_destroy_inode(struct inode *inode)
6761 {
6762         struct btrfs_ordered_extent *ordered;
6763         struct btrfs_root *root = BTRFS_I(inode)->root;
6764
6765         WARN_ON(!list_empty(&inode->i_dentry));
6766         WARN_ON(inode->i_data.nrpages);
6767         WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6768         WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
6769
6770         /*
6771          * This can happen where we create an inode, but somebody else also
6772          * created the same inode and we need to destroy the one we already
6773          * created.
6774          */
6775         if (!root)
6776                 goto free;
6777
6778         /*
6779          * Make sure we're properly removed from the ordered operation
6780          * lists.
6781          */
6782         smp_mb();
6783         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6784                 spin_lock(&root->fs_info->ordered_extent_lock);
6785                 list_del_init(&BTRFS_I(inode)->ordered_operations);
6786                 spin_unlock(&root->fs_info->ordered_extent_lock);
6787         }
6788
6789         spin_lock(&root->orphan_lock);
6790         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6791                 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6792                        (unsigned long long)btrfs_ino(inode));
6793                 list_del_init(&BTRFS_I(inode)->i_orphan);
6794         }
6795         spin_unlock(&root->orphan_lock);
6796
6797         while (1) {
6798                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6799                 if (!ordered)
6800                         break;
6801                 else {
6802                         printk(KERN_ERR "btrfs found ordered "
6803                                "extent %llu %llu on inode cleanup\n",
6804                                (unsigned long long)ordered->file_offset,
6805                                (unsigned long long)ordered->len);
6806                         btrfs_remove_ordered_extent(inode, ordered);
6807                         btrfs_put_ordered_extent(ordered);
6808                         btrfs_put_ordered_extent(ordered);
6809                 }
6810         }
6811         inode_tree_del(inode);
6812         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6813 free:
6814         btrfs_remove_delayed_node(inode);
6815         call_rcu(&inode->i_rcu, btrfs_i_callback);
6816 }
6817
6818 int btrfs_drop_inode(struct inode *inode)
6819 {
6820         struct btrfs_root *root = BTRFS_I(inode)->root;
6821
6822         if (btrfs_root_refs(&root->root_item) == 0 &&
6823             !is_free_space_inode(root, inode))
6824                 return 1;
6825         else
6826                 return generic_drop_inode(inode);
6827 }
6828
6829 static void init_once(void *foo)
6830 {
6831         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6832
6833         inode_init_once(&ei->vfs_inode);
6834 }
6835
6836 void btrfs_destroy_cachep(void)
6837 {
6838         if (btrfs_inode_cachep)
6839                 kmem_cache_destroy(btrfs_inode_cachep);
6840         if (btrfs_trans_handle_cachep)
6841                 kmem_cache_destroy(btrfs_trans_handle_cachep);
6842         if (btrfs_transaction_cachep)
6843                 kmem_cache_destroy(btrfs_transaction_cachep);
6844         if (btrfs_path_cachep)
6845                 kmem_cache_destroy(btrfs_path_cachep);
6846         if (btrfs_free_space_cachep)
6847                 kmem_cache_destroy(btrfs_free_space_cachep);
6848 }
6849
6850 int btrfs_init_cachep(void)
6851 {
6852         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6853                         sizeof(struct btrfs_inode), 0,
6854                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6855         if (!btrfs_inode_cachep)
6856                 goto fail;
6857
6858         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6859                         sizeof(struct btrfs_trans_handle), 0,
6860                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6861         if (!btrfs_trans_handle_cachep)
6862                 goto fail;
6863
6864         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6865                         sizeof(struct btrfs_transaction), 0,
6866                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6867         if (!btrfs_transaction_cachep)
6868                 goto fail;
6869
6870         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6871                         sizeof(struct btrfs_path), 0,
6872                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6873         if (!btrfs_path_cachep)
6874                 goto fail;
6875
6876         btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6877                         sizeof(struct btrfs_free_space), 0,
6878                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6879         if (!btrfs_free_space_cachep)
6880                 goto fail;
6881
6882         return 0;
6883 fail:
6884         btrfs_destroy_cachep();
6885         return -ENOMEM;
6886 }
6887
6888 static int btrfs_getattr(struct vfsmount *mnt,
6889                          struct dentry *dentry, struct kstat *stat)
6890 {
6891         struct inode *inode = dentry->d_inode;
6892         generic_fillattr(inode, stat);
6893         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6894         stat->blksize = PAGE_CACHE_SIZE;
6895         stat->blocks = (inode_get_bytes(inode) +
6896                         BTRFS_I(inode)->delalloc_bytes) >> 9;
6897         return 0;
6898 }
6899
6900 /*
6901  * If a file is moved, it will inherit the cow and compression flags of the new
6902  * directory.
6903  */
6904 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6905 {
6906         struct btrfs_inode *b_dir = BTRFS_I(dir);
6907         struct btrfs_inode *b_inode = BTRFS_I(inode);
6908
6909         if (b_dir->flags & BTRFS_INODE_NODATACOW)
6910                 b_inode->flags |= BTRFS_INODE_NODATACOW;
6911         else
6912                 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6913
6914         if (b_dir->flags & BTRFS_INODE_COMPRESS)
6915                 b_inode->flags |= BTRFS_INODE_COMPRESS;
6916         else
6917                 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6918 }
6919
6920 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6921                            struct inode *new_dir, struct dentry *new_dentry)
6922 {
6923         struct btrfs_trans_handle *trans;
6924         struct btrfs_root *root = BTRFS_I(old_dir)->root;
6925         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6926         struct inode *new_inode = new_dentry->d_inode;
6927         struct inode *old_inode = old_dentry->d_inode;
6928         struct timespec ctime = CURRENT_TIME;
6929         u64 index = 0;
6930         u64 root_objectid;
6931         int ret;
6932         u64 old_ino = btrfs_ino(old_inode);
6933
6934         if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6935                 return -EPERM;
6936
6937         /* we only allow rename subvolume link between subvolumes */
6938         if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6939                 return -EXDEV;
6940
6941         if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6942             (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
6943                 return -ENOTEMPTY;
6944
6945         if (S_ISDIR(old_inode->i_mode) && new_inode &&
6946             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6947                 return -ENOTEMPTY;
6948         /*
6949          * we're using rename to replace one file with another.
6950          * and the replacement file is large.  Start IO on it now so
6951          * we don't add too much work to the end of the transaction
6952          */
6953         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6954             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6955                 filemap_flush(old_inode->i_mapping);
6956
6957         /* close the racy window with snapshot create/destroy ioctl */
6958         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
6959                 down_read(&root->fs_info->subvol_sem);
6960         /*
6961          * We want to reserve the absolute worst case amount of items.  So if
6962          * both inodes are subvols and we need to unlink them then that would
6963          * require 4 item modifications, but if they are both normal inodes it
6964          * would require 5 item modifications, so we'll assume their normal
6965          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6966          * should cover the worst case number of items we'll modify.
6967          */
6968         trans = btrfs_start_transaction(root, 20);
6969         if (IS_ERR(trans)) {
6970                 ret = PTR_ERR(trans);
6971                 goto out_notrans;
6972         }
6973
6974         if (dest != root)
6975                 btrfs_record_root_in_trans(trans, dest);
6976
6977         ret = btrfs_set_inode_index(new_dir, &index);
6978         if (ret)
6979                 goto out_fail;
6980
6981         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6982                 /* force full log commit if subvolume involved. */
6983                 root->fs_info->last_trans_log_full_commit = trans->transid;
6984         } else {
6985                 ret = btrfs_insert_inode_ref(trans, dest,
6986                                              new_dentry->d_name.name,
6987                                              new_dentry->d_name.len,
6988                                              old_ino,
6989                                              btrfs_ino(new_dir), index);
6990                 if (ret)
6991                         goto out_fail;
6992                 /*
6993                  * this is an ugly little race, but the rename is required
6994                  * to make sure that if we crash, the inode is either at the
6995                  * old name or the new one.  pinning the log transaction lets
6996                  * us make sure we don't allow a log commit to come in after
6997                  * we unlink the name but before we add the new name back in.
6998                  */
6999                 btrfs_pin_log_trans(root);
7000         }
7001         /*
7002          * make sure the inode gets flushed if it is replacing
7003          * something.
7004          */
7005         if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
7006                 btrfs_add_ordered_operation(trans, root, old_inode);
7007
7008         old_dir->i_ctime = old_dir->i_mtime = ctime;
7009         new_dir->i_ctime = new_dir->i_mtime = ctime;
7010         old_inode->i_ctime = ctime;
7011
7012         if (old_dentry->d_parent != new_dentry->d_parent)
7013                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7014
7015         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7016                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7017                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7018                                         old_dentry->d_name.name,
7019                                         old_dentry->d_name.len);
7020         } else {
7021                 ret = __btrfs_unlink_inode(trans, root, old_dir,
7022                                         old_dentry->d_inode,
7023                                         old_dentry->d_name.name,
7024                                         old_dentry->d_name.len);
7025                 if (!ret)
7026                         ret = btrfs_update_inode(trans, root, old_inode);
7027         }
7028         BUG_ON(ret);
7029
7030         if (new_inode) {
7031                 new_inode->i_ctime = CURRENT_TIME;
7032                 if (unlikely(btrfs_ino(new_inode) ==
7033                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7034                         root_objectid = BTRFS_I(new_inode)->location.objectid;
7035                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
7036                                                 root_objectid,
7037                                                 new_dentry->d_name.name,
7038                                                 new_dentry->d_name.len);
7039                         BUG_ON(new_inode->i_nlink == 0);
7040                 } else {
7041                         ret = btrfs_unlink_inode(trans, dest, new_dir,
7042                                                  new_dentry->d_inode,
7043                                                  new_dentry->d_name.name,
7044                                                  new_dentry->d_name.len);
7045                 }
7046                 BUG_ON(ret);
7047                 if (new_inode->i_nlink == 0) {
7048                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7049                         BUG_ON(ret);
7050                 }
7051         }
7052
7053         fixup_inode_flags(new_dir, old_inode);
7054
7055         ret = btrfs_add_link(trans, new_dir, old_inode,
7056                              new_dentry->d_name.name,
7057                              new_dentry->d_name.len, 0, index);
7058         BUG_ON(ret);
7059
7060         if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
7061                 struct dentry *parent = dget_parent(new_dentry);
7062                 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7063                 dput(parent);
7064                 btrfs_end_log_trans(root);
7065         }
7066 out_fail:
7067         btrfs_end_transaction_throttle(trans, root);
7068 out_notrans:
7069         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7070                 up_read(&root->fs_info->subvol_sem);
7071
7072         return ret;
7073 }
7074
7075 /*
7076  * some fairly slow code that needs optimization. This walks the list
7077  * of all the inodes with pending delalloc and forces them to disk.
7078  */
7079 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7080 {
7081         struct list_head *head = &root->fs_info->delalloc_inodes;
7082         struct btrfs_inode *binode;
7083         struct inode *inode;
7084
7085         if (root->fs_info->sb->s_flags & MS_RDONLY)
7086                 return -EROFS;
7087
7088         spin_lock(&root->fs_info->delalloc_lock);
7089         while (!list_empty(head)) {
7090                 binode = list_entry(head->next, struct btrfs_inode,
7091                                     delalloc_inodes);
7092                 inode = igrab(&binode->vfs_inode);
7093                 if (!inode)
7094                         list_del_init(&binode->delalloc_inodes);
7095                 spin_unlock(&root->fs_info->delalloc_lock);
7096                 if (inode) {
7097                         filemap_flush(inode->i_mapping);
7098                         if (delay_iput)
7099                                 btrfs_add_delayed_iput(inode);
7100                         else
7101                                 iput(inode);
7102                 }
7103                 cond_resched();
7104                 spin_lock(&root->fs_info->delalloc_lock);
7105         }
7106         spin_unlock(&root->fs_info->delalloc_lock);
7107
7108         /* the filemap_flush will queue IO into the worker threads, but
7109          * we have to make sure the IO is actually started and that
7110          * ordered extents get created before we return
7111          */
7112         atomic_inc(&root->fs_info->async_submit_draining);
7113         while (atomic_read(&root->fs_info->nr_async_submits) ||
7114               atomic_read(&root->fs_info->async_delalloc_pages)) {
7115                 wait_event(root->fs_info->async_submit_wait,
7116                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7117                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7118         }
7119         atomic_dec(&root->fs_info->async_submit_draining);
7120         return 0;
7121 }
7122
7123 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7124                          const char *symname)
7125 {
7126         struct btrfs_trans_handle *trans;
7127         struct btrfs_root *root = BTRFS_I(dir)->root;
7128         struct btrfs_path *path;
7129         struct btrfs_key key;
7130         struct inode *inode = NULL;
7131         int err;
7132         int drop_inode = 0;
7133         u64 objectid;
7134         u64 index = 0 ;
7135         int name_len;
7136         int datasize;
7137         unsigned long ptr;
7138         struct btrfs_file_extent_item *ei;
7139         struct extent_buffer *leaf;
7140         unsigned long nr = 0;
7141
7142         name_len = strlen(symname) + 1;
7143         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7144                 return -ENAMETOOLONG;
7145
7146         /*
7147          * 2 items for inode item and ref
7148          * 2 items for dir items
7149          * 1 item for xattr if selinux is on
7150          */
7151         trans = btrfs_start_transaction(root, 5);
7152         if (IS_ERR(trans))
7153                 return PTR_ERR(trans);
7154
7155         err = btrfs_find_free_ino(root, &objectid);
7156         if (err)
7157                 goto out_unlock;
7158
7159         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7160                                 dentry->d_name.len, btrfs_ino(dir), objectid,
7161                                 S_IFLNK|S_IRWXUGO, &index);
7162         if (IS_ERR(inode)) {
7163                 err = PTR_ERR(inode);
7164                 goto out_unlock;
7165         }
7166
7167         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7168         if (err) {
7169                 drop_inode = 1;
7170                 goto out_unlock;
7171         }
7172
7173         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7174         if (err)
7175                 drop_inode = 1;
7176         else {
7177                 inode->i_mapping->a_ops = &btrfs_aops;
7178                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7179                 inode->i_fop = &btrfs_file_operations;
7180                 inode->i_op = &btrfs_file_inode_operations;
7181                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7182         }
7183         if (drop_inode)
7184                 goto out_unlock;
7185
7186         path = btrfs_alloc_path();
7187         BUG_ON(!path);
7188         key.objectid = btrfs_ino(inode);
7189         key.offset = 0;
7190         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7191         datasize = btrfs_file_extent_calc_inline_size(name_len);
7192         err = btrfs_insert_empty_item(trans, root, path, &key,
7193                                       datasize);
7194         if (err) {
7195                 drop_inode = 1;
7196                 btrfs_free_path(path);
7197                 goto out_unlock;
7198         }
7199         leaf = path->nodes[0];
7200         ei = btrfs_item_ptr(leaf, path->slots[0],
7201                             struct btrfs_file_extent_item);
7202         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7203         btrfs_set_file_extent_type(leaf, ei,
7204                                    BTRFS_FILE_EXTENT_INLINE);
7205         btrfs_set_file_extent_encryption(leaf, ei, 0);
7206         btrfs_set_file_extent_compression(leaf, ei, 0);
7207         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7208         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7209
7210         ptr = btrfs_file_extent_inline_start(ei);
7211         write_extent_buffer(leaf, symname, ptr, name_len);
7212         btrfs_mark_buffer_dirty(leaf);
7213         btrfs_free_path(path);
7214
7215         inode->i_op = &btrfs_symlink_inode_operations;
7216         inode->i_mapping->a_ops = &btrfs_symlink_aops;
7217         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7218         inode_set_bytes(inode, name_len);
7219         btrfs_i_size_write(inode, name_len - 1);
7220         err = btrfs_update_inode(trans, root, inode);
7221         if (err)
7222                 drop_inode = 1;
7223
7224 out_unlock:
7225         nr = trans->blocks_used;
7226         btrfs_end_transaction_throttle(trans, root);
7227         if (drop_inode) {
7228                 inode_dec_link_count(inode);
7229                 iput(inode);
7230         }
7231         btrfs_btree_balance_dirty(root, nr);
7232         return err;
7233 }
7234
7235 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7236                                        u64 start, u64 num_bytes, u64 min_size,
7237                                        loff_t actual_len, u64 *alloc_hint,
7238                                        struct btrfs_trans_handle *trans)
7239 {
7240         struct btrfs_root *root = BTRFS_I(inode)->root;
7241         struct btrfs_key ins;
7242         u64 cur_offset = start;
7243         u64 i_size;
7244         int ret = 0;
7245         bool own_trans = true;
7246
7247         if (trans)
7248                 own_trans = false;
7249         while (num_bytes > 0) {
7250                 if (own_trans) {
7251                         trans = btrfs_start_transaction(root, 3);
7252                         if (IS_ERR(trans)) {
7253                                 ret = PTR_ERR(trans);
7254                                 break;
7255                         }
7256                 }
7257
7258                 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7259                                            0, *alloc_hint, (u64)-1, &ins, 1);
7260                 if (ret) {
7261                         if (own_trans)
7262                                 btrfs_end_transaction(trans, root);
7263                         break;
7264                 }
7265
7266                 ret = insert_reserved_file_extent(trans, inode,
7267                                                   cur_offset, ins.objectid,
7268                                                   ins.offset, ins.offset,
7269                                                   ins.offset, 0, 0, 0,
7270                                                   BTRFS_FILE_EXTENT_PREALLOC);
7271                 BUG_ON(ret);
7272                 btrfs_drop_extent_cache(inode, cur_offset,
7273                                         cur_offset + ins.offset -1, 0);
7274
7275                 num_bytes -= ins.offset;
7276                 cur_offset += ins.offset;
7277                 *alloc_hint = ins.objectid + ins.offset;
7278
7279                 inode->i_ctime = CURRENT_TIME;
7280                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7281                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7282                     (actual_len > inode->i_size) &&
7283                     (cur_offset > inode->i_size)) {
7284                         if (cur_offset > actual_len)
7285                                 i_size = actual_len;
7286                         else
7287                                 i_size = cur_offset;
7288                         i_size_write(inode, i_size);
7289                         btrfs_ordered_update_i_size(inode, i_size, NULL);
7290                 }
7291
7292                 ret = btrfs_update_inode(trans, root, inode);
7293                 BUG_ON(ret);
7294
7295                 if (own_trans)
7296                         btrfs_end_transaction(trans, root);
7297         }
7298         return ret;
7299 }
7300
7301 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7302                               u64 start, u64 num_bytes, u64 min_size,
7303                               loff_t actual_len, u64 *alloc_hint)
7304 {
7305         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7306                                            min_size, actual_len, alloc_hint,
7307                                            NULL);
7308 }
7309
7310 int btrfs_prealloc_file_range_trans(struct inode *inode,
7311                                     struct btrfs_trans_handle *trans, int mode,
7312                                     u64 start, u64 num_bytes, u64 min_size,
7313                                     loff_t actual_len, u64 *alloc_hint)
7314 {
7315         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7316                                            min_size, actual_len, alloc_hint, trans);
7317 }
7318
7319 static int btrfs_set_page_dirty(struct page *page)
7320 {
7321         return __set_page_dirty_nobuffers(page);
7322 }
7323
7324 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7325 {
7326         struct btrfs_root *root = BTRFS_I(inode)->root;
7327
7328         if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7329                 return -EROFS;
7330         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7331                 return -EACCES;
7332         return generic_permission(inode, mask, flags, btrfs_check_acl);
7333 }
7334
7335 static const struct inode_operations btrfs_dir_inode_operations = {
7336         .getattr        = btrfs_getattr,
7337         .lookup         = btrfs_lookup,
7338         .create         = btrfs_create,
7339         .unlink         = btrfs_unlink,
7340         .link           = btrfs_link,
7341         .mkdir          = btrfs_mkdir,
7342         .rmdir          = btrfs_rmdir,
7343         .rename         = btrfs_rename,
7344         .symlink        = btrfs_symlink,
7345         .setattr        = btrfs_setattr,
7346         .mknod          = btrfs_mknod,
7347         .setxattr       = btrfs_setxattr,
7348         .getxattr       = btrfs_getxattr,
7349         .listxattr      = btrfs_listxattr,
7350         .removexattr    = btrfs_removexattr,
7351         .permission     = btrfs_permission,
7352 };
7353 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7354         .lookup         = btrfs_lookup,
7355         .permission     = btrfs_permission,
7356 };
7357
7358 static const struct file_operations btrfs_dir_file_operations = {
7359         .llseek         = generic_file_llseek,
7360         .read           = generic_read_dir,
7361         .readdir        = btrfs_real_readdir,
7362         .unlocked_ioctl = btrfs_ioctl,
7363 #ifdef CONFIG_COMPAT
7364         .compat_ioctl   = btrfs_ioctl,
7365 #endif
7366         .release        = btrfs_release_file,
7367         .fsync          = btrfs_sync_file,
7368 };
7369
7370 static struct extent_io_ops btrfs_extent_io_ops = {
7371         .fill_delalloc = run_delalloc_range,
7372         .submit_bio_hook = btrfs_submit_bio_hook,
7373         .merge_bio_hook = btrfs_merge_bio_hook,
7374         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7375         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7376         .writepage_start_hook = btrfs_writepage_start_hook,
7377         .readpage_io_failed_hook = btrfs_io_failed_hook,
7378         .set_bit_hook = btrfs_set_bit_hook,
7379         .clear_bit_hook = btrfs_clear_bit_hook,
7380         .merge_extent_hook = btrfs_merge_extent_hook,
7381         .split_extent_hook = btrfs_split_extent_hook,
7382 };
7383
7384 /*
7385  * btrfs doesn't support the bmap operation because swapfiles
7386  * use bmap to make a mapping of extents in the file.  They assume
7387  * these extents won't change over the life of the file and they
7388  * use the bmap result to do IO directly to the drive.
7389  *
7390  * the btrfs bmap call would return logical addresses that aren't
7391  * suitable for IO and they also will change frequently as COW
7392  * operations happen.  So, swapfile + btrfs == corruption.
7393  *
7394  * For now we're avoiding this by dropping bmap.
7395  */
7396 static const struct address_space_operations btrfs_aops = {
7397         .readpage       = btrfs_readpage,
7398         .writepage      = btrfs_writepage,
7399         .writepages     = btrfs_writepages,
7400         .readpages      = btrfs_readpages,
7401         .direct_IO      = btrfs_direct_IO,
7402         .invalidatepage = btrfs_invalidatepage,
7403         .releasepage    = btrfs_releasepage,
7404         .set_page_dirty = btrfs_set_page_dirty,
7405         .error_remove_page = generic_error_remove_page,
7406 };
7407
7408 static const struct address_space_operations btrfs_symlink_aops = {
7409         .readpage       = btrfs_readpage,
7410         .writepage      = btrfs_writepage,
7411         .invalidatepage = btrfs_invalidatepage,
7412         .releasepage    = btrfs_releasepage,
7413 };
7414
7415 static const struct inode_operations btrfs_file_inode_operations = {
7416         .getattr        = btrfs_getattr,
7417         .setattr        = btrfs_setattr,
7418         .setxattr       = btrfs_setxattr,
7419         .getxattr       = btrfs_getxattr,
7420         .listxattr      = btrfs_listxattr,
7421         .removexattr    = btrfs_removexattr,
7422         .permission     = btrfs_permission,
7423         .fiemap         = btrfs_fiemap,
7424 };
7425 static const struct inode_operations btrfs_special_inode_operations = {
7426         .getattr        = btrfs_getattr,
7427         .setattr        = btrfs_setattr,
7428         .permission     = btrfs_permission,
7429         .setxattr       = btrfs_setxattr,
7430         .getxattr       = btrfs_getxattr,
7431         .listxattr      = btrfs_listxattr,
7432         .removexattr    = btrfs_removexattr,
7433 };
7434 static const struct inode_operations btrfs_symlink_inode_operations = {
7435         .readlink       = generic_readlink,
7436         .follow_link    = page_follow_link_light,
7437         .put_link       = page_put_link,
7438         .getattr        = btrfs_getattr,
7439         .permission     = btrfs_permission,
7440         .setxattr       = btrfs_setxattr,
7441         .getxattr       = btrfs_getxattr,
7442         .listxattr      = btrfs_listxattr,
7443         .removexattr    = btrfs_removexattr,
7444 };
7445
7446 const struct dentry_operations btrfs_dentry_operations = {
7447         .d_delete       = btrfs_dentry_delete,
7448 };