Merge branch 'stable/drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/xen
[pandora-kernel.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include "compat.h"
42 #include "ctree.h"
43 #include "disk-io.h"
44 #include "transaction.h"
45 #include "btrfs_inode.h"
46 #include "ioctl.h"
47 #include "print-tree.h"
48 #include "volumes.h"
49 #include "ordered-data.h"
50 #include "xattr.h"
51 #include "tree-log.h"
52 #include "compression.h"
53 #include "locking.h"
54 #include "free-space-cache.h"
55 #include "inode-map.h"
56
57 struct btrfs_iget_args {
58         u64 ino;
59         struct btrfs_root *root;
60 };
61
62 static const struct inode_operations btrfs_dir_inode_operations;
63 static const struct inode_operations btrfs_symlink_inode_operations;
64 static const struct inode_operations btrfs_dir_ro_inode_operations;
65 static const struct inode_operations btrfs_special_inode_operations;
66 static const struct inode_operations btrfs_file_inode_operations;
67 static const struct address_space_operations btrfs_aops;
68 static const struct address_space_operations btrfs_symlink_aops;
69 static const struct file_operations btrfs_dir_file_operations;
70 static struct extent_io_ops btrfs_extent_io_ops;
71
72 static struct kmem_cache *btrfs_inode_cachep;
73 struct kmem_cache *btrfs_trans_handle_cachep;
74 struct kmem_cache *btrfs_transaction_cachep;
75 struct kmem_cache *btrfs_path_cachep;
76 struct kmem_cache *btrfs_free_space_cachep;
77
78 #define S_SHIFT 12
79 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
80         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
81         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
82         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
83         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
84         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
85         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
86         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
87 };
88
89 static int btrfs_setsize(struct inode *inode, loff_t newsize);
90 static int btrfs_truncate(struct inode *inode);
91 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
92 static noinline int cow_file_range(struct inode *inode,
93                                    struct page *locked_page,
94                                    u64 start, u64 end, int *page_started,
95                                    unsigned long *nr_written, int unlock);
96
97 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
98                                      struct inode *inode,  struct inode *dir,
99                                      const struct qstr *qstr)
100 {
101         int err;
102
103         err = btrfs_init_acl(trans, inode, dir);
104         if (!err)
105                 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
106         return err;
107 }
108
109 /*
110  * this does all the hard work for inserting an inline extent into
111  * the btree.  The caller should have done a btrfs_drop_extents so that
112  * no overlapping inline items exist in the btree
113  */
114 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
115                                 struct btrfs_root *root, struct inode *inode,
116                                 u64 start, size_t size, size_t compressed_size,
117                                 int compress_type,
118                                 struct page **compressed_pages)
119 {
120         struct btrfs_key key;
121         struct btrfs_path *path;
122         struct extent_buffer *leaf;
123         struct page *page = NULL;
124         char *kaddr;
125         unsigned long ptr;
126         struct btrfs_file_extent_item *ei;
127         int err = 0;
128         int ret;
129         size_t cur_size = size;
130         size_t datasize;
131         unsigned long offset;
132
133         if (compressed_size && compressed_pages)
134                 cur_size = compressed_size;
135
136         path = btrfs_alloc_path();
137         if (!path)
138                 return -ENOMEM;
139
140         path->leave_spinning = 1;
141
142         key.objectid = btrfs_ino(inode);
143         key.offset = start;
144         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
145         datasize = btrfs_file_extent_calc_inline_size(cur_size);
146
147         inode_add_bytes(inode, size);
148         ret = btrfs_insert_empty_item(trans, root, path, &key,
149                                       datasize);
150         BUG_ON(ret);
151         if (ret) {
152                 err = ret;
153                 goto fail;
154         }
155         leaf = path->nodes[0];
156         ei = btrfs_item_ptr(leaf, path->slots[0],
157                             struct btrfs_file_extent_item);
158         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
159         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
160         btrfs_set_file_extent_encryption(leaf, ei, 0);
161         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
162         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
163         ptr = btrfs_file_extent_inline_start(ei);
164
165         if (compress_type != BTRFS_COMPRESS_NONE) {
166                 struct page *cpage;
167                 int i = 0;
168                 while (compressed_size > 0) {
169                         cpage = compressed_pages[i];
170                         cur_size = min_t(unsigned long, compressed_size,
171                                        PAGE_CACHE_SIZE);
172
173                         kaddr = kmap_atomic(cpage, KM_USER0);
174                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
175                         kunmap_atomic(kaddr, KM_USER0);
176
177                         i++;
178                         ptr += cur_size;
179                         compressed_size -= cur_size;
180                 }
181                 btrfs_set_file_extent_compression(leaf, ei,
182                                                   compress_type);
183         } else {
184                 page = find_get_page(inode->i_mapping,
185                                      start >> PAGE_CACHE_SHIFT);
186                 btrfs_set_file_extent_compression(leaf, ei, 0);
187                 kaddr = kmap_atomic(page, KM_USER0);
188                 offset = start & (PAGE_CACHE_SIZE - 1);
189                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
190                 kunmap_atomic(kaddr, KM_USER0);
191                 page_cache_release(page);
192         }
193         btrfs_mark_buffer_dirty(leaf);
194         btrfs_free_path(path);
195
196         /*
197          * we're an inline extent, so nobody can
198          * extend the file past i_size without locking
199          * a page we already have locked.
200          *
201          * We must do any isize and inode updates
202          * before we unlock the pages.  Otherwise we
203          * could end up racing with unlink.
204          */
205         BTRFS_I(inode)->disk_i_size = inode->i_size;
206         btrfs_update_inode(trans, root, inode);
207
208         return 0;
209 fail:
210         btrfs_free_path(path);
211         return err;
212 }
213
214
215 /*
216  * conditionally insert an inline extent into the file.  This
217  * does the checks required to make sure the data is small enough
218  * to fit as an inline extent.
219  */
220 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
221                                  struct btrfs_root *root,
222                                  struct inode *inode, u64 start, u64 end,
223                                  size_t compressed_size, int compress_type,
224                                  struct page **compressed_pages)
225 {
226         u64 isize = i_size_read(inode);
227         u64 actual_end = min(end + 1, isize);
228         u64 inline_len = actual_end - start;
229         u64 aligned_end = (end + root->sectorsize - 1) &
230                         ~((u64)root->sectorsize - 1);
231         u64 hint_byte;
232         u64 data_len = inline_len;
233         int ret;
234
235         if (compressed_size)
236                 data_len = compressed_size;
237
238         if (start > 0 ||
239             actual_end >= PAGE_CACHE_SIZE ||
240             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241             (!compressed_size &&
242             (actual_end & (root->sectorsize - 1)) == 0) ||
243             end + 1 < isize ||
244             data_len > root->fs_info->max_inline) {
245                 return 1;
246         }
247
248         ret = btrfs_drop_extents(trans, inode, start, aligned_end,
249                                  &hint_byte, 1);
250         BUG_ON(ret);
251
252         if (isize > actual_end)
253                 inline_len = min_t(u64, isize, actual_end);
254         ret = insert_inline_extent(trans, root, inode, start,
255                                    inline_len, compressed_size,
256                                    compress_type, compressed_pages);
257         BUG_ON(ret);
258         btrfs_delalloc_release_metadata(inode, end + 1 - start);
259         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
260         return 0;
261 }
262
263 struct async_extent {
264         u64 start;
265         u64 ram_size;
266         u64 compressed_size;
267         struct page **pages;
268         unsigned long nr_pages;
269         int compress_type;
270         struct list_head list;
271 };
272
273 struct async_cow {
274         struct inode *inode;
275         struct btrfs_root *root;
276         struct page *locked_page;
277         u64 start;
278         u64 end;
279         struct list_head extents;
280         struct btrfs_work work;
281 };
282
283 static noinline int add_async_extent(struct async_cow *cow,
284                                      u64 start, u64 ram_size,
285                                      u64 compressed_size,
286                                      struct page **pages,
287                                      unsigned long nr_pages,
288                                      int compress_type)
289 {
290         struct async_extent *async_extent;
291
292         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
293         BUG_ON(!async_extent);
294         async_extent->start = start;
295         async_extent->ram_size = ram_size;
296         async_extent->compressed_size = compressed_size;
297         async_extent->pages = pages;
298         async_extent->nr_pages = nr_pages;
299         async_extent->compress_type = compress_type;
300         list_add_tail(&async_extent->list, &cow->extents);
301         return 0;
302 }
303
304 /*
305  * we create compressed extents in two phases.  The first
306  * phase compresses a range of pages that have already been
307  * locked (both pages and state bits are locked).
308  *
309  * This is done inside an ordered work queue, and the compression
310  * is spread across many cpus.  The actual IO submission is step
311  * two, and the ordered work queue takes care of making sure that
312  * happens in the same order things were put onto the queue by
313  * writepages and friends.
314  *
315  * If this code finds it can't get good compression, it puts an
316  * entry onto the work queue to write the uncompressed bytes.  This
317  * makes sure that both compressed inodes and uncompressed inodes
318  * are written in the same order that pdflush sent them down.
319  */
320 static noinline int compress_file_range(struct inode *inode,
321                                         struct page *locked_page,
322                                         u64 start, u64 end,
323                                         struct async_cow *async_cow,
324                                         int *num_added)
325 {
326         struct btrfs_root *root = BTRFS_I(inode)->root;
327         struct btrfs_trans_handle *trans;
328         u64 num_bytes;
329         u64 blocksize = root->sectorsize;
330         u64 actual_end;
331         u64 isize = i_size_read(inode);
332         int ret = 0;
333         struct page **pages = NULL;
334         unsigned long nr_pages;
335         unsigned long nr_pages_ret = 0;
336         unsigned long total_compressed = 0;
337         unsigned long total_in = 0;
338         unsigned long max_compressed = 128 * 1024;
339         unsigned long max_uncompressed = 128 * 1024;
340         int i;
341         int will_compress;
342         int compress_type = root->fs_info->compress_type;
343
344         /* if this is a small write inside eof, kick off a defragbot */
345         if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
346                 btrfs_add_inode_defrag(NULL, inode);
347
348         actual_end = min_t(u64, isize, end + 1);
349 again:
350         will_compress = 0;
351         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
352         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
353
354         /*
355          * we don't want to send crud past the end of i_size through
356          * compression, that's just a waste of CPU time.  So, if the
357          * end of the file is before the start of our current
358          * requested range of bytes, we bail out to the uncompressed
359          * cleanup code that can deal with all of this.
360          *
361          * It isn't really the fastest way to fix things, but this is a
362          * very uncommon corner.
363          */
364         if (actual_end <= start)
365                 goto cleanup_and_bail_uncompressed;
366
367         total_compressed = actual_end - start;
368
369         /* we want to make sure that amount of ram required to uncompress
370          * an extent is reasonable, so we limit the total size in ram
371          * of a compressed extent to 128k.  This is a crucial number
372          * because it also controls how easily we can spread reads across
373          * cpus for decompression.
374          *
375          * We also want to make sure the amount of IO required to do
376          * a random read is reasonably small, so we limit the size of
377          * a compressed extent to 128k.
378          */
379         total_compressed = min(total_compressed, max_uncompressed);
380         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
381         num_bytes = max(blocksize,  num_bytes);
382         total_in = 0;
383         ret = 0;
384
385         /*
386          * we do compression for mount -o compress and when the
387          * inode has not been flagged as nocompress.  This flag can
388          * change at any time if we discover bad compression ratios.
389          */
390         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
391             (btrfs_test_opt(root, COMPRESS) ||
392              (BTRFS_I(inode)->force_compress) ||
393              (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
394                 WARN_ON(pages);
395                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
396                 BUG_ON(!pages);
397
398                 if (BTRFS_I(inode)->force_compress)
399                         compress_type = BTRFS_I(inode)->force_compress;
400
401                 ret = btrfs_compress_pages(compress_type,
402                                            inode->i_mapping, start,
403                                            total_compressed, pages,
404                                            nr_pages, &nr_pages_ret,
405                                            &total_in,
406                                            &total_compressed,
407                                            max_compressed);
408
409                 if (!ret) {
410                         unsigned long offset = total_compressed &
411                                 (PAGE_CACHE_SIZE - 1);
412                         struct page *page = pages[nr_pages_ret - 1];
413                         char *kaddr;
414
415                         /* zero the tail end of the last page, we might be
416                          * sending it down to disk
417                          */
418                         if (offset) {
419                                 kaddr = kmap_atomic(page, KM_USER0);
420                                 memset(kaddr + offset, 0,
421                                        PAGE_CACHE_SIZE - offset);
422                                 kunmap_atomic(kaddr, KM_USER0);
423                         }
424                         will_compress = 1;
425                 }
426         }
427         if (start == 0) {
428                 trans = btrfs_join_transaction(root);
429                 BUG_ON(IS_ERR(trans));
430                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
431
432                 /* lets try to make an inline extent */
433                 if (ret || total_in < (actual_end - start)) {
434                         /* we didn't compress the entire range, try
435                          * to make an uncompressed inline extent.
436                          */
437                         ret = cow_file_range_inline(trans, root, inode,
438                                                     start, end, 0, 0, NULL);
439                 } else {
440                         /* try making a compressed inline extent */
441                         ret = cow_file_range_inline(trans, root, inode,
442                                                     start, end,
443                                                     total_compressed,
444                                                     compress_type, pages);
445                 }
446                 if (ret == 0) {
447                         /*
448                          * inline extent creation worked, we don't need
449                          * to create any more async work items.  Unlock
450                          * and free up our temp pages.
451                          */
452                         extent_clear_unlock_delalloc(inode,
453                              &BTRFS_I(inode)->io_tree,
454                              start, end, NULL,
455                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
456                              EXTENT_CLEAR_DELALLOC |
457                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
458
459                         btrfs_end_transaction(trans, root);
460                         goto free_pages_out;
461                 }
462                 btrfs_end_transaction(trans, root);
463         }
464
465         if (will_compress) {
466                 /*
467                  * we aren't doing an inline extent round the compressed size
468                  * up to a block size boundary so the allocator does sane
469                  * things
470                  */
471                 total_compressed = (total_compressed + blocksize - 1) &
472                         ~(blocksize - 1);
473
474                 /*
475                  * one last check to make sure the compression is really a
476                  * win, compare the page count read with the blocks on disk
477                  */
478                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
479                         ~(PAGE_CACHE_SIZE - 1);
480                 if (total_compressed >= total_in) {
481                         will_compress = 0;
482                 } else {
483                         num_bytes = total_in;
484                 }
485         }
486         if (!will_compress && pages) {
487                 /*
488                  * the compression code ran but failed to make things smaller,
489                  * free any pages it allocated and our page pointer array
490                  */
491                 for (i = 0; i < nr_pages_ret; i++) {
492                         WARN_ON(pages[i]->mapping);
493                         page_cache_release(pages[i]);
494                 }
495                 kfree(pages);
496                 pages = NULL;
497                 total_compressed = 0;
498                 nr_pages_ret = 0;
499
500                 /* flag the file so we don't compress in the future */
501                 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
502                     !(BTRFS_I(inode)->force_compress)) {
503                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
504                 }
505         }
506         if (will_compress) {
507                 *num_added += 1;
508
509                 /* the async work queues will take care of doing actual
510                  * allocation on disk for these compressed pages,
511                  * and will submit them to the elevator.
512                  */
513                 add_async_extent(async_cow, start, num_bytes,
514                                  total_compressed, pages, nr_pages_ret,
515                                  compress_type);
516
517                 if (start + num_bytes < end) {
518                         start += num_bytes;
519                         pages = NULL;
520                         cond_resched();
521                         goto again;
522                 }
523         } else {
524 cleanup_and_bail_uncompressed:
525                 /*
526                  * No compression, but we still need to write the pages in
527                  * the file we've been given so far.  redirty the locked
528                  * page if it corresponds to our extent and set things up
529                  * for the async work queue to run cow_file_range to do
530                  * the normal delalloc dance
531                  */
532                 if (page_offset(locked_page) >= start &&
533                     page_offset(locked_page) <= end) {
534                         __set_page_dirty_nobuffers(locked_page);
535                         /* unlocked later on in the async handlers */
536                 }
537                 add_async_extent(async_cow, start, end - start + 1,
538                                  0, NULL, 0, BTRFS_COMPRESS_NONE);
539                 *num_added += 1;
540         }
541
542 out:
543         return 0;
544
545 free_pages_out:
546         for (i = 0; i < nr_pages_ret; i++) {
547                 WARN_ON(pages[i]->mapping);
548                 page_cache_release(pages[i]);
549         }
550         kfree(pages);
551
552         goto out;
553 }
554
555 /*
556  * phase two of compressed writeback.  This is the ordered portion
557  * of the code, which only gets called in the order the work was
558  * queued.  We walk all the async extents created by compress_file_range
559  * and send them down to the disk.
560  */
561 static noinline int submit_compressed_extents(struct inode *inode,
562                                               struct async_cow *async_cow)
563 {
564         struct async_extent *async_extent;
565         u64 alloc_hint = 0;
566         struct btrfs_trans_handle *trans;
567         struct btrfs_key ins;
568         struct extent_map *em;
569         struct btrfs_root *root = BTRFS_I(inode)->root;
570         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
571         struct extent_io_tree *io_tree;
572         int ret = 0;
573
574         if (list_empty(&async_cow->extents))
575                 return 0;
576
577
578         while (!list_empty(&async_cow->extents)) {
579                 async_extent = list_entry(async_cow->extents.next,
580                                           struct async_extent, list);
581                 list_del(&async_extent->list);
582
583                 io_tree = &BTRFS_I(inode)->io_tree;
584
585 retry:
586                 /* did the compression code fall back to uncompressed IO? */
587                 if (!async_extent->pages) {
588                         int page_started = 0;
589                         unsigned long nr_written = 0;
590
591                         lock_extent(io_tree, async_extent->start,
592                                          async_extent->start +
593                                          async_extent->ram_size - 1, GFP_NOFS);
594
595                         /* allocate blocks */
596                         ret = cow_file_range(inode, async_cow->locked_page,
597                                              async_extent->start,
598                                              async_extent->start +
599                                              async_extent->ram_size - 1,
600                                              &page_started, &nr_written, 0);
601
602                         /*
603                          * if page_started, cow_file_range inserted an
604                          * inline extent and took care of all the unlocking
605                          * and IO for us.  Otherwise, we need to submit
606                          * all those pages down to the drive.
607                          */
608                         if (!page_started && !ret)
609                                 extent_write_locked_range(io_tree,
610                                                   inode, async_extent->start,
611                                                   async_extent->start +
612                                                   async_extent->ram_size - 1,
613                                                   btrfs_get_extent,
614                                                   WB_SYNC_ALL);
615                         kfree(async_extent);
616                         cond_resched();
617                         continue;
618                 }
619
620                 lock_extent(io_tree, async_extent->start,
621                             async_extent->start + async_extent->ram_size - 1,
622                             GFP_NOFS);
623
624                 trans = btrfs_join_transaction(root);
625                 BUG_ON(IS_ERR(trans));
626                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
627                 ret = btrfs_reserve_extent(trans, root,
628                                            async_extent->compressed_size,
629                                            async_extent->compressed_size,
630                                            0, alloc_hint,
631                                            (u64)-1, &ins, 1);
632                 btrfs_end_transaction(trans, root);
633
634                 if (ret) {
635                         int i;
636                         for (i = 0; i < async_extent->nr_pages; i++) {
637                                 WARN_ON(async_extent->pages[i]->mapping);
638                                 page_cache_release(async_extent->pages[i]);
639                         }
640                         kfree(async_extent->pages);
641                         async_extent->nr_pages = 0;
642                         async_extent->pages = NULL;
643                         unlock_extent(io_tree, async_extent->start,
644                                       async_extent->start +
645                                       async_extent->ram_size - 1, GFP_NOFS);
646                         goto retry;
647                 }
648
649                 /*
650                  * here we're doing allocation and writeback of the
651                  * compressed pages
652                  */
653                 btrfs_drop_extent_cache(inode, async_extent->start,
654                                         async_extent->start +
655                                         async_extent->ram_size - 1, 0);
656
657                 em = alloc_extent_map();
658                 BUG_ON(!em);
659                 em->start = async_extent->start;
660                 em->len = async_extent->ram_size;
661                 em->orig_start = em->start;
662
663                 em->block_start = ins.objectid;
664                 em->block_len = ins.offset;
665                 em->bdev = root->fs_info->fs_devices->latest_bdev;
666                 em->compress_type = async_extent->compress_type;
667                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
668                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
669
670                 while (1) {
671                         write_lock(&em_tree->lock);
672                         ret = add_extent_mapping(em_tree, em);
673                         write_unlock(&em_tree->lock);
674                         if (ret != -EEXIST) {
675                                 free_extent_map(em);
676                                 break;
677                         }
678                         btrfs_drop_extent_cache(inode, async_extent->start,
679                                                 async_extent->start +
680                                                 async_extent->ram_size - 1, 0);
681                 }
682
683                 ret = btrfs_add_ordered_extent_compress(inode,
684                                                 async_extent->start,
685                                                 ins.objectid,
686                                                 async_extent->ram_size,
687                                                 ins.offset,
688                                                 BTRFS_ORDERED_COMPRESSED,
689                                                 async_extent->compress_type);
690                 BUG_ON(ret);
691
692                 /*
693                  * clear dirty, set writeback and unlock the pages.
694                  */
695                 extent_clear_unlock_delalloc(inode,
696                                 &BTRFS_I(inode)->io_tree,
697                                 async_extent->start,
698                                 async_extent->start +
699                                 async_extent->ram_size - 1,
700                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
701                                 EXTENT_CLEAR_UNLOCK |
702                                 EXTENT_CLEAR_DELALLOC |
703                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
704
705                 ret = btrfs_submit_compressed_write(inode,
706                                     async_extent->start,
707                                     async_extent->ram_size,
708                                     ins.objectid,
709                                     ins.offset, async_extent->pages,
710                                     async_extent->nr_pages);
711
712                 BUG_ON(ret);
713                 alloc_hint = ins.objectid + ins.offset;
714                 kfree(async_extent);
715                 cond_resched();
716         }
717
718         return 0;
719 }
720
721 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
722                                       u64 num_bytes)
723 {
724         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
725         struct extent_map *em;
726         u64 alloc_hint = 0;
727
728         read_lock(&em_tree->lock);
729         em = search_extent_mapping(em_tree, start, num_bytes);
730         if (em) {
731                 /*
732                  * if block start isn't an actual block number then find the
733                  * first block in this inode and use that as a hint.  If that
734                  * block is also bogus then just don't worry about it.
735                  */
736                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
737                         free_extent_map(em);
738                         em = search_extent_mapping(em_tree, 0, 0);
739                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
740                                 alloc_hint = em->block_start;
741                         if (em)
742                                 free_extent_map(em);
743                 } else {
744                         alloc_hint = em->block_start;
745                         free_extent_map(em);
746                 }
747         }
748         read_unlock(&em_tree->lock);
749
750         return alloc_hint;
751 }
752
753 static inline bool is_free_space_inode(struct btrfs_root *root,
754                                        struct inode *inode)
755 {
756         if (root == root->fs_info->tree_root ||
757             BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID)
758                 return true;
759         return false;
760 }
761
762 /*
763  * when extent_io.c finds a delayed allocation range in the file,
764  * the call backs end up in this code.  The basic idea is to
765  * allocate extents on disk for the range, and create ordered data structs
766  * in ram to track those extents.
767  *
768  * locked_page is the page that writepage had locked already.  We use
769  * it to make sure we don't do extra locks or unlocks.
770  *
771  * *page_started is set to one if we unlock locked_page and do everything
772  * required to start IO on it.  It may be clean and already done with
773  * IO when we return.
774  */
775 static noinline int cow_file_range(struct inode *inode,
776                                    struct page *locked_page,
777                                    u64 start, u64 end, int *page_started,
778                                    unsigned long *nr_written,
779                                    int unlock)
780 {
781         struct btrfs_root *root = BTRFS_I(inode)->root;
782         struct btrfs_trans_handle *trans;
783         u64 alloc_hint = 0;
784         u64 num_bytes;
785         unsigned long ram_size;
786         u64 disk_num_bytes;
787         u64 cur_alloc_size;
788         u64 blocksize = root->sectorsize;
789         struct btrfs_key ins;
790         struct extent_map *em;
791         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
792         int ret = 0;
793
794         BUG_ON(is_free_space_inode(root, inode));
795         trans = btrfs_join_transaction(root);
796         BUG_ON(IS_ERR(trans));
797         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
798
799         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
800         num_bytes = max(blocksize,  num_bytes);
801         disk_num_bytes = num_bytes;
802         ret = 0;
803
804         /* if this is a small write inside eof, kick off defrag */
805         if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
806                 btrfs_add_inode_defrag(trans, inode);
807
808         if (start == 0) {
809                 /* lets try to make an inline extent */
810                 ret = cow_file_range_inline(trans, root, inode,
811                                             start, end, 0, 0, NULL);
812                 if (ret == 0) {
813                         extent_clear_unlock_delalloc(inode,
814                                      &BTRFS_I(inode)->io_tree,
815                                      start, end, NULL,
816                                      EXTENT_CLEAR_UNLOCK_PAGE |
817                                      EXTENT_CLEAR_UNLOCK |
818                                      EXTENT_CLEAR_DELALLOC |
819                                      EXTENT_CLEAR_DIRTY |
820                                      EXTENT_SET_WRITEBACK |
821                                      EXTENT_END_WRITEBACK);
822
823                         *nr_written = *nr_written +
824                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
825                         *page_started = 1;
826                         ret = 0;
827                         goto out;
828                 }
829         }
830
831         BUG_ON(disk_num_bytes >
832                btrfs_super_total_bytes(&root->fs_info->super_copy));
833
834         alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
835         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
836
837         while (disk_num_bytes > 0) {
838                 unsigned long op;
839
840                 cur_alloc_size = disk_num_bytes;
841                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
842                                            root->sectorsize, 0, alloc_hint,
843                                            (u64)-1, &ins, 1);
844                 BUG_ON(ret);
845
846                 em = alloc_extent_map();
847                 BUG_ON(!em);
848                 em->start = start;
849                 em->orig_start = em->start;
850                 ram_size = ins.offset;
851                 em->len = ins.offset;
852
853                 em->block_start = ins.objectid;
854                 em->block_len = ins.offset;
855                 em->bdev = root->fs_info->fs_devices->latest_bdev;
856                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
857
858                 while (1) {
859                         write_lock(&em_tree->lock);
860                         ret = add_extent_mapping(em_tree, em);
861                         write_unlock(&em_tree->lock);
862                         if (ret != -EEXIST) {
863                                 free_extent_map(em);
864                                 break;
865                         }
866                         btrfs_drop_extent_cache(inode, start,
867                                                 start + ram_size - 1, 0);
868                 }
869
870                 cur_alloc_size = ins.offset;
871                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
872                                                ram_size, cur_alloc_size, 0);
873                 BUG_ON(ret);
874
875                 if (root->root_key.objectid ==
876                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
877                         ret = btrfs_reloc_clone_csums(inode, start,
878                                                       cur_alloc_size);
879                         BUG_ON(ret);
880                 }
881
882                 if (disk_num_bytes < cur_alloc_size)
883                         break;
884
885                 /* we're not doing compressed IO, don't unlock the first
886                  * page (which the caller expects to stay locked), don't
887                  * clear any dirty bits and don't set any writeback bits
888                  *
889                  * Do set the Private2 bit so we know this page was properly
890                  * setup for writepage
891                  */
892                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
893                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
894                         EXTENT_SET_PRIVATE2;
895
896                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
897                                              start, start + ram_size - 1,
898                                              locked_page, op);
899                 disk_num_bytes -= cur_alloc_size;
900                 num_bytes -= cur_alloc_size;
901                 alloc_hint = ins.objectid + ins.offset;
902                 start += cur_alloc_size;
903         }
904 out:
905         ret = 0;
906         btrfs_end_transaction(trans, root);
907
908         return ret;
909 }
910
911 /*
912  * work queue call back to started compression on a file and pages
913  */
914 static noinline void async_cow_start(struct btrfs_work *work)
915 {
916         struct async_cow *async_cow;
917         int num_added = 0;
918         async_cow = container_of(work, struct async_cow, work);
919
920         compress_file_range(async_cow->inode, async_cow->locked_page,
921                             async_cow->start, async_cow->end, async_cow,
922                             &num_added);
923         if (num_added == 0)
924                 async_cow->inode = NULL;
925 }
926
927 /*
928  * work queue call back to submit previously compressed pages
929  */
930 static noinline void async_cow_submit(struct btrfs_work *work)
931 {
932         struct async_cow *async_cow;
933         struct btrfs_root *root;
934         unsigned long nr_pages;
935
936         async_cow = container_of(work, struct async_cow, work);
937
938         root = async_cow->root;
939         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
940                 PAGE_CACHE_SHIFT;
941
942         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
943
944         if (atomic_read(&root->fs_info->async_delalloc_pages) <
945             5 * 1042 * 1024 &&
946             waitqueue_active(&root->fs_info->async_submit_wait))
947                 wake_up(&root->fs_info->async_submit_wait);
948
949         if (async_cow->inode)
950                 submit_compressed_extents(async_cow->inode, async_cow);
951 }
952
953 static noinline void async_cow_free(struct btrfs_work *work)
954 {
955         struct async_cow *async_cow;
956         async_cow = container_of(work, struct async_cow, work);
957         kfree(async_cow);
958 }
959
960 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
961                                 u64 start, u64 end, int *page_started,
962                                 unsigned long *nr_written)
963 {
964         struct async_cow *async_cow;
965         struct btrfs_root *root = BTRFS_I(inode)->root;
966         unsigned long nr_pages;
967         u64 cur_end;
968         int limit = 10 * 1024 * 1042;
969
970         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
971                          1, 0, NULL, GFP_NOFS);
972         while (start < end) {
973                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
974                 BUG_ON(!async_cow);
975                 async_cow->inode = inode;
976                 async_cow->root = root;
977                 async_cow->locked_page = locked_page;
978                 async_cow->start = start;
979
980                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
981                         cur_end = end;
982                 else
983                         cur_end = min(end, start + 512 * 1024 - 1);
984
985                 async_cow->end = cur_end;
986                 INIT_LIST_HEAD(&async_cow->extents);
987
988                 async_cow->work.func = async_cow_start;
989                 async_cow->work.ordered_func = async_cow_submit;
990                 async_cow->work.ordered_free = async_cow_free;
991                 async_cow->work.flags = 0;
992
993                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
994                         PAGE_CACHE_SHIFT;
995                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
996
997                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
998                                    &async_cow->work);
999
1000                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1001                         wait_event(root->fs_info->async_submit_wait,
1002                            (atomic_read(&root->fs_info->async_delalloc_pages) <
1003                             limit));
1004                 }
1005
1006                 while (atomic_read(&root->fs_info->async_submit_draining) &&
1007                       atomic_read(&root->fs_info->async_delalloc_pages)) {
1008                         wait_event(root->fs_info->async_submit_wait,
1009                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
1010                            0));
1011                 }
1012
1013                 *nr_written += nr_pages;
1014                 start = cur_end + 1;
1015         }
1016         *page_started = 1;
1017         return 0;
1018 }
1019
1020 static noinline int csum_exist_in_range(struct btrfs_root *root,
1021                                         u64 bytenr, u64 num_bytes)
1022 {
1023         int ret;
1024         struct btrfs_ordered_sum *sums;
1025         LIST_HEAD(list);
1026
1027         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1028                                        bytenr + num_bytes - 1, &list, 0);
1029         if (ret == 0 && list_empty(&list))
1030                 return 0;
1031
1032         while (!list_empty(&list)) {
1033                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1034                 list_del(&sums->list);
1035                 kfree(sums);
1036         }
1037         return 1;
1038 }
1039
1040 /*
1041  * when nowcow writeback call back.  This checks for snapshots or COW copies
1042  * of the extents that exist in the file, and COWs the file as required.
1043  *
1044  * If no cow copies or snapshots exist, we write directly to the existing
1045  * blocks on disk
1046  */
1047 static noinline int run_delalloc_nocow(struct inode *inode,
1048                                        struct page *locked_page,
1049                               u64 start, u64 end, int *page_started, int force,
1050                               unsigned long *nr_written)
1051 {
1052         struct btrfs_root *root = BTRFS_I(inode)->root;
1053         struct btrfs_trans_handle *trans;
1054         struct extent_buffer *leaf;
1055         struct btrfs_path *path;
1056         struct btrfs_file_extent_item *fi;
1057         struct btrfs_key found_key;
1058         u64 cow_start;
1059         u64 cur_offset;
1060         u64 extent_end;
1061         u64 extent_offset;
1062         u64 disk_bytenr;
1063         u64 num_bytes;
1064         int extent_type;
1065         int ret;
1066         int type;
1067         int nocow;
1068         int check_prev = 1;
1069         bool nolock;
1070         u64 ino = btrfs_ino(inode);
1071
1072         path = btrfs_alloc_path();
1073         BUG_ON(!path);
1074
1075         nolock = is_free_space_inode(root, inode);
1076
1077         if (nolock)
1078                 trans = btrfs_join_transaction_nolock(root);
1079         else
1080                 trans = btrfs_join_transaction(root);
1081
1082         BUG_ON(IS_ERR(trans));
1083         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1084
1085         cow_start = (u64)-1;
1086         cur_offset = start;
1087         while (1) {
1088                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1089                                                cur_offset, 0);
1090                 BUG_ON(ret < 0);
1091                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1092                         leaf = path->nodes[0];
1093                         btrfs_item_key_to_cpu(leaf, &found_key,
1094                                               path->slots[0] - 1);
1095                         if (found_key.objectid == ino &&
1096                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1097                                 path->slots[0]--;
1098                 }
1099                 check_prev = 0;
1100 next_slot:
1101                 leaf = path->nodes[0];
1102                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1103                         ret = btrfs_next_leaf(root, path);
1104                         if (ret < 0)
1105                                 BUG_ON(1);
1106                         if (ret > 0)
1107                                 break;
1108                         leaf = path->nodes[0];
1109                 }
1110
1111                 nocow = 0;
1112                 disk_bytenr = 0;
1113                 num_bytes = 0;
1114                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1115
1116                 if (found_key.objectid > ino ||
1117                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1118                     found_key.offset > end)
1119                         break;
1120
1121                 if (found_key.offset > cur_offset) {
1122                         extent_end = found_key.offset;
1123                         extent_type = 0;
1124                         goto out_check;
1125                 }
1126
1127                 fi = btrfs_item_ptr(leaf, path->slots[0],
1128                                     struct btrfs_file_extent_item);
1129                 extent_type = btrfs_file_extent_type(leaf, fi);
1130
1131                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1132                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1133                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1134                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1135                         extent_end = found_key.offset +
1136                                 btrfs_file_extent_num_bytes(leaf, fi);
1137                         if (extent_end <= start) {
1138                                 path->slots[0]++;
1139                                 goto next_slot;
1140                         }
1141                         if (disk_bytenr == 0)
1142                                 goto out_check;
1143                         if (btrfs_file_extent_compression(leaf, fi) ||
1144                             btrfs_file_extent_encryption(leaf, fi) ||
1145                             btrfs_file_extent_other_encoding(leaf, fi))
1146                                 goto out_check;
1147                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1148                                 goto out_check;
1149                         if (btrfs_extent_readonly(root, disk_bytenr))
1150                                 goto out_check;
1151                         if (btrfs_cross_ref_exist(trans, root, ino,
1152                                                   found_key.offset -
1153                                                   extent_offset, disk_bytenr))
1154                                 goto out_check;
1155                         disk_bytenr += extent_offset;
1156                         disk_bytenr += cur_offset - found_key.offset;
1157                         num_bytes = min(end + 1, extent_end) - cur_offset;
1158                         /*
1159                          * force cow if csum exists in the range.
1160                          * this ensure that csum for a given extent are
1161                          * either valid or do not exist.
1162                          */
1163                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1164                                 goto out_check;
1165                         nocow = 1;
1166                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1167                         extent_end = found_key.offset +
1168                                 btrfs_file_extent_inline_len(leaf, fi);
1169                         extent_end = ALIGN(extent_end, root->sectorsize);
1170                 } else {
1171                         BUG_ON(1);
1172                 }
1173 out_check:
1174                 if (extent_end <= start) {
1175                         path->slots[0]++;
1176                         goto next_slot;
1177                 }
1178                 if (!nocow) {
1179                         if (cow_start == (u64)-1)
1180                                 cow_start = cur_offset;
1181                         cur_offset = extent_end;
1182                         if (cur_offset > end)
1183                                 break;
1184                         path->slots[0]++;
1185                         goto next_slot;
1186                 }
1187
1188                 btrfs_release_path(path);
1189                 if (cow_start != (u64)-1) {
1190                         ret = cow_file_range(inode, locked_page, cow_start,
1191                                         found_key.offset - 1, page_started,
1192                                         nr_written, 1);
1193                         BUG_ON(ret);
1194                         cow_start = (u64)-1;
1195                 }
1196
1197                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1198                         struct extent_map *em;
1199                         struct extent_map_tree *em_tree;
1200                         em_tree = &BTRFS_I(inode)->extent_tree;
1201                         em = alloc_extent_map();
1202                         BUG_ON(!em);
1203                         em->start = cur_offset;
1204                         em->orig_start = em->start;
1205                         em->len = num_bytes;
1206                         em->block_len = num_bytes;
1207                         em->block_start = disk_bytenr;
1208                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1209                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1210                         while (1) {
1211                                 write_lock(&em_tree->lock);
1212                                 ret = add_extent_mapping(em_tree, em);
1213                                 write_unlock(&em_tree->lock);
1214                                 if (ret != -EEXIST) {
1215                                         free_extent_map(em);
1216                                         break;
1217                                 }
1218                                 btrfs_drop_extent_cache(inode, em->start,
1219                                                 em->start + em->len - 1, 0);
1220                         }
1221                         type = BTRFS_ORDERED_PREALLOC;
1222                 } else {
1223                         type = BTRFS_ORDERED_NOCOW;
1224                 }
1225
1226                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1227                                                num_bytes, num_bytes, type);
1228                 BUG_ON(ret);
1229
1230                 if (root->root_key.objectid ==
1231                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1232                         ret = btrfs_reloc_clone_csums(inode, cur_offset,
1233                                                       num_bytes);
1234                         BUG_ON(ret);
1235                 }
1236
1237                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1238                                 cur_offset, cur_offset + num_bytes - 1,
1239                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1240                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1241                                 EXTENT_SET_PRIVATE2);
1242                 cur_offset = extent_end;
1243                 if (cur_offset > end)
1244                         break;
1245         }
1246         btrfs_release_path(path);
1247
1248         if (cur_offset <= end && cow_start == (u64)-1)
1249                 cow_start = cur_offset;
1250         if (cow_start != (u64)-1) {
1251                 ret = cow_file_range(inode, locked_page, cow_start, end,
1252                                      page_started, nr_written, 1);
1253                 BUG_ON(ret);
1254         }
1255
1256         if (nolock) {
1257                 ret = btrfs_end_transaction_nolock(trans, root);
1258                 BUG_ON(ret);
1259         } else {
1260                 ret = btrfs_end_transaction(trans, root);
1261                 BUG_ON(ret);
1262         }
1263         btrfs_free_path(path);
1264         return 0;
1265 }
1266
1267 /*
1268  * extent_io.c call back to do delayed allocation processing
1269  */
1270 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1271                               u64 start, u64 end, int *page_started,
1272                               unsigned long *nr_written)
1273 {
1274         int ret;
1275         struct btrfs_root *root = BTRFS_I(inode)->root;
1276
1277         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1278                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1279                                          page_started, 1, nr_written);
1280         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1281                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1282                                          page_started, 0, nr_written);
1283         else if (!btrfs_test_opt(root, COMPRESS) &&
1284                  !(BTRFS_I(inode)->force_compress) &&
1285                  !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1286                 ret = cow_file_range(inode, locked_page, start, end,
1287                                       page_started, nr_written, 1);
1288         else
1289                 ret = cow_file_range_async(inode, locked_page, start, end,
1290                                            page_started, nr_written);
1291         return ret;
1292 }
1293
1294 static int btrfs_split_extent_hook(struct inode *inode,
1295                                    struct extent_state *orig, u64 split)
1296 {
1297         /* not delalloc, ignore it */
1298         if (!(orig->state & EXTENT_DELALLOC))
1299                 return 0;
1300
1301         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1302         return 0;
1303 }
1304
1305 /*
1306  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1307  * extents so we can keep track of new extents that are just merged onto old
1308  * extents, such as when we are doing sequential writes, so we can properly
1309  * account for the metadata space we'll need.
1310  */
1311 static int btrfs_merge_extent_hook(struct inode *inode,
1312                                    struct extent_state *new,
1313                                    struct extent_state *other)
1314 {
1315         /* not delalloc, ignore it */
1316         if (!(other->state & EXTENT_DELALLOC))
1317                 return 0;
1318
1319         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1320         return 0;
1321 }
1322
1323 /*
1324  * extent_io.c set_bit_hook, used to track delayed allocation
1325  * bytes in this file, and to maintain the list of inodes that
1326  * have pending delalloc work to be done.
1327  */
1328 static int btrfs_set_bit_hook(struct inode *inode,
1329                               struct extent_state *state, int *bits)
1330 {
1331
1332         /*
1333          * set_bit and clear bit hooks normally require _irqsave/restore
1334          * but in this case, we are only testing for the DELALLOC
1335          * bit, which is only set or cleared with irqs on
1336          */
1337         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1338                 struct btrfs_root *root = BTRFS_I(inode)->root;
1339                 u64 len = state->end + 1 - state->start;
1340                 bool do_list = !is_free_space_inode(root, inode);
1341
1342                 if (*bits & EXTENT_FIRST_DELALLOC)
1343                         *bits &= ~EXTENT_FIRST_DELALLOC;
1344                 else
1345                         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1346
1347                 spin_lock(&root->fs_info->delalloc_lock);
1348                 BTRFS_I(inode)->delalloc_bytes += len;
1349                 root->fs_info->delalloc_bytes += len;
1350                 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1351                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1352                                       &root->fs_info->delalloc_inodes);
1353                 }
1354                 spin_unlock(&root->fs_info->delalloc_lock);
1355         }
1356         return 0;
1357 }
1358
1359 /*
1360  * extent_io.c clear_bit_hook, see set_bit_hook for why
1361  */
1362 static int btrfs_clear_bit_hook(struct inode *inode,
1363                                 struct extent_state *state, int *bits)
1364 {
1365         /*
1366          * set_bit and clear bit hooks normally require _irqsave/restore
1367          * but in this case, we are only testing for the DELALLOC
1368          * bit, which is only set or cleared with irqs on
1369          */
1370         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1371                 struct btrfs_root *root = BTRFS_I(inode)->root;
1372                 u64 len = state->end + 1 - state->start;
1373                 bool do_list = !is_free_space_inode(root, inode);
1374
1375                 if (*bits & EXTENT_FIRST_DELALLOC)
1376                         *bits &= ~EXTENT_FIRST_DELALLOC;
1377                 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1378                         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1379
1380                 if (*bits & EXTENT_DO_ACCOUNTING)
1381                         btrfs_delalloc_release_metadata(inode, len);
1382
1383                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1384                     && do_list)
1385                         btrfs_free_reserved_data_space(inode, len);
1386
1387                 spin_lock(&root->fs_info->delalloc_lock);
1388                 root->fs_info->delalloc_bytes -= len;
1389                 BTRFS_I(inode)->delalloc_bytes -= len;
1390
1391                 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1392                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1393                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1394                 }
1395                 spin_unlock(&root->fs_info->delalloc_lock);
1396         }
1397         return 0;
1398 }
1399
1400 /*
1401  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1402  * we don't create bios that span stripes or chunks
1403  */
1404 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1405                          size_t size, struct bio *bio,
1406                          unsigned long bio_flags)
1407 {
1408         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1409         struct btrfs_mapping_tree *map_tree;
1410         u64 logical = (u64)bio->bi_sector << 9;
1411         u64 length = 0;
1412         u64 map_length;
1413         int ret;
1414
1415         if (bio_flags & EXTENT_BIO_COMPRESSED)
1416                 return 0;
1417
1418         length = bio->bi_size;
1419         map_tree = &root->fs_info->mapping_tree;
1420         map_length = length;
1421         ret = btrfs_map_block(map_tree, READ, logical,
1422                               &map_length, NULL, 0);
1423
1424         if (map_length < length + size)
1425                 return 1;
1426         return ret;
1427 }
1428
1429 /*
1430  * in order to insert checksums into the metadata in large chunks,
1431  * we wait until bio submission time.   All the pages in the bio are
1432  * checksummed and sums are attached onto the ordered extent record.
1433  *
1434  * At IO completion time the cums attached on the ordered extent record
1435  * are inserted into the btree
1436  */
1437 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1438                                     struct bio *bio, int mirror_num,
1439                                     unsigned long bio_flags,
1440                                     u64 bio_offset)
1441 {
1442         struct btrfs_root *root = BTRFS_I(inode)->root;
1443         int ret = 0;
1444
1445         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1446         BUG_ON(ret);
1447         return 0;
1448 }
1449
1450 /*
1451  * in order to insert checksums into the metadata in large chunks,
1452  * we wait until bio submission time.   All the pages in the bio are
1453  * checksummed and sums are attached onto the ordered extent record.
1454  *
1455  * At IO completion time the cums attached on the ordered extent record
1456  * are inserted into the btree
1457  */
1458 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1459                           int mirror_num, unsigned long bio_flags,
1460                           u64 bio_offset)
1461 {
1462         struct btrfs_root *root = BTRFS_I(inode)->root;
1463         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1464 }
1465
1466 /*
1467  * extent_io.c submission hook. This does the right thing for csum calculation
1468  * on write, or reading the csums from the tree before a read
1469  */
1470 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1471                           int mirror_num, unsigned long bio_flags,
1472                           u64 bio_offset)
1473 {
1474         struct btrfs_root *root = BTRFS_I(inode)->root;
1475         int ret = 0;
1476         int skip_sum;
1477
1478         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1479
1480         if (is_free_space_inode(root, inode))
1481                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1482         else
1483                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1484         BUG_ON(ret);
1485
1486         if (!(rw & REQ_WRITE)) {
1487                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1488                         return btrfs_submit_compressed_read(inode, bio,
1489                                                     mirror_num, bio_flags);
1490                 } else if (!skip_sum) {
1491                         ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1492                         if (ret)
1493                                 return ret;
1494                 }
1495                 goto mapit;
1496         } else if (!skip_sum) {
1497                 /* csum items have already been cloned */
1498                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1499                         goto mapit;
1500                 /* we're doing a write, do the async checksumming */
1501                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1502                                    inode, rw, bio, mirror_num,
1503                                    bio_flags, bio_offset,
1504                                    __btrfs_submit_bio_start,
1505                                    __btrfs_submit_bio_done);
1506         }
1507
1508 mapit:
1509         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1510 }
1511
1512 /*
1513  * given a list of ordered sums record them in the inode.  This happens
1514  * at IO completion time based on sums calculated at bio submission time.
1515  */
1516 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1517                              struct inode *inode, u64 file_offset,
1518                              struct list_head *list)
1519 {
1520         struct btrfs_ordered_sum *sum;
1521
1522         list_for_each_entry(sum, list, list) {
1523                 btrfs_csum_file_blocks(trans,
1524                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1525         }
1526         return 0;
1527 }
1528
1529 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1530                               struct extent_state **cached_state)
1531 {
1532         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1533                 WARN_ON(1);
1534         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1535                                    cached_state, GFP_NOFS);
1536 }
1537
1538 /* see btrfs_writepage_start_hook for details on why this is required */
1539 struct btrfs_writepage_fixup {
1540         struct page *page;
1541         struct btrfs_work work;
1542 };
1543
1544 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1545 {
1546         struct btrfs_writepage_fixup *fixup;
1547         struct btrfs_ordered_extent *ordered;
1548         struct extent_state *cached_state = NULL;
1549         struct page *page;
1550         struct inode *inode;
1551         u64 page_start;
1552         u64 page_end;
1553
1554         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1555         page = fixup->page;
1556 again:
1557         lock_page(page);
1558         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1559                 ClearPageChecked(page);
1560                 goto out_page;
1561         }
1562
1563         inode = page->mapping->host;
1564         page_start = page_offset(page);
1565         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1566
1567         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1568                          &cached_state, GFP_NOFS);
1569
1570         /* already ordered? We're done */
1571         if (PagePrivate2(page))
1572                 goto out;
1573
1574         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1575         if (ordered) {
1576                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1577                                      page_end, &cached_state, GFP_NOFS);
1578                 unlock_page(page);
1579                 btrfs_start_ordered_extent(inode, ordered, 1);
1580                 goto again;
1581         }
1582
1583         BUG();
1584         btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1585         ClearPageChecked(page);
1586 out:
1587         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1588                              &cached_state, GFP_NOFS);
1589 out_page:
1590         unlock_page(page);
1591         page_cache_release(page);
1592         kfree(fixup);
1593 }
1594
1595 /*
1596  * There are a few paths in the higher layers of the kernel that directly
1597  * set the page dirty bit without asking the filesystem if it is a
1598  * good idea.  This causes problems because we want to make sure COW
1599  * properly happens and the data=ordered rules are followed.
1600  *
1601  * In our case any range that doesn't have the ORDERED bit set
1602  * hasn't been properly setup for IO.  We kick off an async process
1603  * to fix it up.  The async helper will wait for ordered extents, set
1604  * the delalloc bit and make it safe to write the page.
1605  */
1606 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1607 {
1608         struct inode *inode = page->mapping->host;
1609         struct btrfs_writepage_fixup *fixup;
1610         struct btrfs_root *root = BTRFS_I(inode)->root;
1611
1612         /* this page is properly in the ordered list */
1613         if (TestClearPagePrivate2(page))
1614                 return 0;
1615
1616         if (PageChecked(page))
1617                 return -EAGAIN;
1618
1619         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1620         if (!fixup)
1621                 return -EAGAIN;
1622
1623         SetPageChecked(page);
1624         page_cache_get(page);
1625         fixup->work.func = btrfs_writepage_fixup_worker;
1626         fixup->page = page;
1627         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1628         return -EAGAIN;
1629 }
1630
1631 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1632                                        struct inode *inode, u64 file_pos,
1633                                        u64 disk_bytenr, u64 disk_num_bytes,
1634                                        u64 num_bytes, u64 ram_bytes,
1635                                        u8 compression, u8 encryption,
1636                                        u16 other_encoding, int extent_type)
1637 {
1638         struct btrfs_root *root = BTRFS_I(inode)->root;
1639         struct btrfs_file_extent_item *fi;
1640         struct btrfs_path *path;
1641         struct extent_buffer *leaf;
1642         struct btrfs_key ins;
1643         u64 hint;
1644         int ret;
1645
1646         path = btrfs_alloc_path();
1647         BUG_ON(!path);
1648
1649         path->leave_spinning = 1;
1650
1651         /*
1652          * we may be replacing one extent in the tree with another.
1653          * The new extent is pinned in the extent map, and we don't want
1654          * to drop it from the cache until it is completely in the btree.
1655          *
1656          * So, tell btrfs_drop_extents to leave this extent in the cache.
1657          * the caller is expected to unpin it and allow it to be merged
1658          * with the others.
1659          */
1660         ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1661                                  &hint, 0);
1662         BUG_ON(ret);
1663
1664         ins.objectid = btrfs_ino(inode);
1665         ins.offset = file_pos;
1666         ins.type = BTRFS_EXTENT_DATA_KEY;
1667         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1668         BUG_ON(ret);
1669         leaf = path->nodes[0];
1670         fi = btrfs_item_ptr(leaf, path->slots[0],
1671                             struct btrfs_file_extent_item);
1672         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1673         btrfs_set_file_extent_type(leaf, fi, extent_type);
1674         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1675         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1676         btrfs_set_file_extent_offset(leaf, fi, 0);
1677         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1678         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1679         btrfs_set_file_extent_compression(leaf, fi, compression);
1680         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1681         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1682
1683         btrfs_unlock_up_safe(path, 1);
1684         btrfs_set_lock_blocking(leaf);
1685
1686         btrfs_mark_buffer_dirty(leaf);
1687
1688         inode_add_bytes(inode, num_bytes);
1689
1690         ins.objectid = disk_bytenr;
1691         ins.offset = disk_num_bytes;
1692         ins.type = BTRFS_EXTENT_ITEM_KEY;
1693         ret = btrfs_alloc_reserved_file_extent(trans, root,
1694                                         root->root_key.objectid,
1695                                         btrfs_ino(inode), file_pos, &ins);
1696         BUG_ON(ret);
1697         btrfs_free_path(path);
1698
1699         return 0;
1700 }
1701
1702 /*
1703  * helper function for btrfs_finish_ordered_io, this
1704  * just reads in some of the csum leaves to prime them into ram
1705  * before we start the transaction.  It limits the amount of btree
1706  * reads required while inside the transaction.
1707  */
1708 /* as ordered data IO finishes, this gets called so we can finish
1709  * an ordered extent if the range of bytes in the file it covers are
1710  * fully written.
1711  */
1712 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1713 {
1714         struct btrfs_root *root = BTRFS_I(inode)->root;
1715         struct btrfs_trans_handle *trans = NULL;
1716         struct btrfs_ordered_extent *ordered_extent = NULL;
1717         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1718         struct extent_state *cached_state = NULL;
1719         int compress_type = 0;
1720         int ret;
1721         bool nolock;
1722
1723         ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1724                                              end - start + 1);
1725         if (!ret)
1726                 return 0;
1727         BUG_ON(!ordered_extent);
1728
1729         nolock = is_free_space_inode(root, inode);
1730
1731         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1732                 BUG_ON(!list_empty(&ordered_extent->list));
1733                 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1734                 if (!ret) {
1735                         if (nolock)
1736                                 trans = btrfs_join_transaction_nolock(root);
1737                         else
1738                                 trans = btrfs_join_transaction(root);
1739                         BUG_ON(IS_ERR(trans));
1740                         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1741                         ret = btrfs_update_inode(trans, root, inode);
1742                         BUG_ON(ret);
1743                 }
1744                 goto out;
1745         }
1746
1747         lock_extent_bits(io_tree, ordered_extent->file_offset,
1748                          ordered_extent->file_offset + ordered_extent->len - 1,
1749                          0, &cached_state, GFP_NOFS);
1750
1751         if (nolock)
1752                 trans = btrfs_join_transaction_nolock(root);
1753         else
1754                 trans = btrfs_join_transaction(root);
1755         BUG_ON(IS_ERR(trans));
1756         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1757
1758         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1759                 compress_type = ordered_extent->compress_type;
1760         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1761                 BUG_ON(compress_type);
1762                 ret = btrfs_mark_extent_written(trans, inode,
1763                                                 ordered_extent->file_offset,
1764                                                 ordered_extent->file_offset +
1765                                                 ordered_extent->len);
1766                 BUG_ON(ret);
1767         } else {
1768                 BUG_ON(root == root->fs_info->tree_root);
1769                 ret = insert_reserved_file_extent(trans, inode,
1770                                                 ordered_extent->file_offset,
1771                                                 ordered_extent->start,
1772                                                 ordered_extent->disk_len,
1773                                                 ordered_extent->len,
1774                                                 ordered_extent->len,
1775                                                 compress_type, 0, 0,
1776                                                 BTRFS_FILE_EXTENT_REG);
1777                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1778                                    ordered_extent->file_offset,
1779                                    ordered_extent->len);
1780                 BUG_ON(ret);
1781         }
1782         unlock_extent_cached(io_tree, ordered_extent->file_offset,
1783                              ordered_extent->file_offset +
1784                              ordered_extent->len - 1, &cached_state, GFP_NOFS);
1785
1786         add_pending_csums(trans, inode, ordered_extent->file_offset,
1787                           &ordered_extent->list);
1788
1789         ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1790         if (!ret) {
1791                 ret = btrfs_update_inode(trans, root, inode);
1792                 BUG_ON(ret);
1793         }
1794         ret = 0;
1795 out:
1796         if (nolock) {
1797                 if (trans)
1798                         btrfs_end_transaction_nolock(trans, root);
1799         } else {
1800                 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1801                 if (trans)
1802                         btrfs_end_transaction(trans, root);
1803         }
1804
1805         /* once for us */
1806         btrfs_put_ordered_extent(ordered_extent);
1807         /* once for the tree */
1808         btrfs_put_ordered_extent(ordered_extent);
1809
1810         return 0;
1811 }
1812
1813 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1814                                 struct extent_state *state, int uptodate)
1815 {
1816         trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1817
1818         ClearPagePrivate2(page);
1819         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1820 }
1821
1822 /*
1823  * When IO fails, either with EIO or csum verification fails, we
1824  * try other mirrors that might have a good copy of the data.  This
1825  * io_failure_record is used to record state as we go through all the
1826  * mirrors.  If another mirror has good data, the page is set up to date
1827  * and things continue.  If a good mirror can't be found, the original
1828  * bio end_io callback is called to indicate things have failed.
1829  */
1830 struct io_failure_record {
1831         struct page *page;
1832         u64 start;
1833         u64 len;
1834         u64 logical;
1835         unsigned long bio_flags;
1836         int last_mirror;
1837 };
1838
1839 static int btrfs_io_failed_hook(struct bio *failed_bio,
1840                          struct page *page, u64 start, u64 end,
1841                          struct extent_state *state)
1842 {
1843         struct io_failure_record *failrec = NULL;
1844         u64 private;
1845         struct extent_map *em;
1846         struct inode *inode = page->mapping->host;
1847         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1848         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1849         struct bio *bio;
1850         int num_copies;
1851         int ret;
1852         int rw;
1853         u64 logical;
1854
1855         ret = get_state_private(failure_tree, start, &private);
1856         if (ret) {
1857                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1858                 if (!failrec)
1859                         return -ENOMEM;
1860                 failrec->start = start;
1861                 failrec->len = end - start + 1;
1862                 failrec->last_mirror = 0;
1863                 failrec->bio_flags = 0;
1864
1865                 read_lock(&em_tree->lock);
1866                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1867                 if (em->start > start || em->start + em->len < start) {
1868                         free_extent_map(em);
1869                         em = NULL;
1870                 }
1871                 read_unlock(&em_tree->lock);
1872
1873                 if (IS_ERR_OR_NULL(em)) {
1874                         kfree(failrec);
1875                         return -EIO;
1876                 }
1877                 logical = start - em->start;
1878                 logical = em->block_start + logical;
1879                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1880                         logical = em->block_start;
1881                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1882                         extent_set_compress_type(&failrec->bio_flags,
1883                                                  em->compress_type);
1884                 }
1885                 failrec->logical = logical;
1886                 free_extent_map(em);
1887                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1888                                 EXTENT_DIRTY, GFP_NOFS);
1889                 set_state_private(failure_tree, start,
1890                                  (u64)(unsigned long)failrec);
1891         } else {
1892                 failrec = (struct io_failure_record *)(unsigned long)private;
1893         }
1894         num_copies = btrfs_num_copies(
1895                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1896                               failrec->logical, failrec->len);
1897         failrec->last_mirror++;
1898         if (!state) {
1899                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1900                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1901                                                     failrec->start,
1902                                                     EXTENT_LOCKED);
1903                 if (state && state->start != failrec->start)
1904                         state = NULL;
1905                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1906         }
1907         if (!state || failrec->last_mirror > num_copies) {
1908                 set_state_private(failure_tree, failrec->start, 0);
1909                 clear_extent_bits(failure_tree, failrec->start,
1910                                   failrec->start + failrec->len - 1,
1911                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1912                 kfree(failrec);
1913                 return -EIO;
1914         }
1915         bio = bio_alloc(GFP_NOFS, 1);
1916         bio->bi_private = state;
1917         bio->bi_end_io = failed_bio->bi_end_io;
1918         bio->bi_sector = failrec->logical >> 9;
1919         bio->bi_bdev = failed_bio->bi_bdev;
1920         bio->bi_size = 0;
1921
1922         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1923         if (failed_bio->bi_rw & REQ_WRITE)
1924                 rw = WRITE;
1925         else
1926                 rw = READ;
1927
1928         ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1929                                                       failrec->last_mirror,
1930                                                       failrec->bio_flags, 0);
1931         return ret;
1932 }
1933
1934 /*
1935  * each time an IO finishes, we do a fast check in the IO failure tree
1936  * to see if we need to process or clean up an io_failure_record
1937  */
1938 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1939 {
1940         u64 private;
1941         u64 private_failure;
1942         struct io_failure_record *failure;
1943         int ret;
1944
1945         private = 0;
1946         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1947                              (u64)-1, 1, EXTENT_DIRTY, 0)) {
1948                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1949                                         start, &private_failure);
1950                 if (ret == 0) {
1951                         failure = (struct io_failure_record *)(unsigned long)
1952                                    private_failure;
1953                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1954                                           failure->start, 0);
1955                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1956                                           failure->start,
1957                                           failure->start + failure->len - 1,
1958                                           EXTENT_DIRTY | EXTENT_LOCKED,
1959                                           GFP_NOFS);
1960                         kfree(failure);
1961                 }
1962         }
1963         return 0;
1964 }
1965
1966 /*
1967  * when reads are done, we need to check csums to verify the data is correct
1968  * if there's a match, we allow the bio to finish.  If not, we go through
1969  * the io_failure_record routines to find good copies
1970  */
1971 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1972                                struct extent_state *state)
1973 {
1974         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1975         struct inode *inode = page->mapping->host;
1976         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1977         char *kaddr;
1978         u64 private = ~(u32)0;
1979         int ret;
1980         struct btrfs_root *root = BTRFS_I(inode)->root;
1981         u32 csum = ~(u32)0;
1982
1983         if (PageChecked(page)) {
1984                 ClearPageChecked(page);
1985                 goto good;
1986         }
1987
1988         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1989                 goto good;
1990
1991         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1992             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1993                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1994                                   GFP_NOFS);
1995                 return 0;
1996         }
1997
1998         if (state && state->start == start) {
1999                 private = state->private;
2000                 ret = 0;
2001         } else {
2002                 ret = get_state_private(io_tree, start, &private);
2003         }
2004         kaddr = kmap_atomic(page, KM_USER0);
2005         if (ret)
2006                 goto zeroit;
2007
2008         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
2009         btrfs_csum_final(csum, (char *)&csum);
2010         if (csum != private)
2011                 goto zeroit;
2012
2013         kunmap_atomic(kaddr, KM_USER0);
2014 good:
2015         /* if the io failure tree for this inode is non-empty,
2016          * check to see if we've recovered from a failed IO
2017          */
2018         btrfs_clean_io_failures(inode, start);
2019         return 0;
2020
2021 zeroit:
2022         printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
2023                        "private %llu\n",
2024                        (unsigned long long)btrfs_ino(page->mapping->host),
2025                        (unsigned long long)start, csum,
2026                        (unsigned long long)private);
2027         memset(kaddr + offset, 1, end - start + 1);
2028         flush_dcache_page(page);
2029         kunmap_atomic(kaddr, KM_USER0);
2030         if (private == 0)
2031                 return 0;
2032         return -EIO;
2033 }
2034
2035 struct delayed_iput {
2036         struct list_head list;
2037         struct inode *inode;
2038 };
2039
2040 void btrfs_add_delayed_iput(struct inode *inode)
2041 {
2042         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2043         struct delayed_iput *delayed;
2044
2045         if (atomic_add_unless(&inode->i_count, -1, 1))
2046                 return;
2047
2048         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2049         delayed->inode = inode;
2050
2051         spin_lock(&fs_info->delayed_iput_lock);
2052         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2053         spin_unlock(&fs_info->delayed_iput_lock);
2054 }
2055
2056 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2057 {
2058         LIST_HEAD(list);
2059         struct btrfs_fs_info *fs_info = root->fs_info;
2060         struct delayed_iput *delayed;
2061         int empty;
2062
2063         spin_lock(&fs_info->delayed_iput_lock);
2064         empty = list_empty(&fs_info->delayed_iputs);
2065         spin_unlock(&fs_info->delayed_iput_lock);
2066         if (empty)
2067                 return;
2068
2069         down_read(&root->fs_info->cleanup_work_sem);
2070         spin_lock(&fs_info->delayed_iput_lock);
2071         list_splice_init(&fs_info->delayed_iputs, &list);
2072         spin_unlock(&fs_info->delayed_iput_lock);
2073
2074         while (!list_empty(&list)) {
2075                 delayed = list_entry(list.next, struct delayed_iput, list);
2076                 list_del(&delayed->list);
2077                 iput(delayed->inode);
2078                 kfree(delayed);
2079         }
2080         up_read(&root->fs_info->cleanup_work_sem);
2081 }
2082
2083 /*
2084  * calculate extra metadata reservation when snapshotting a subvolume
2085  * contains orphan files.
2086  */
2087 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2088                                 struct btrfs_pending_snapshot *pending,
2089                                 u64 *bytes_to_reserve)
2090 {
2091         struct btrfs_root *root;
2092         struct btrfs_block_rsv *block_rsv;
2093         u64 num_bytes;
2094         int index;
2095
2096         root = pending->root;
2097         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2098                 return;
2099
2100         block_rsv = root->orphan_block_rsv;
2101
2102         /* orphan block reservation for the snapshot */
2103         num_bytes = block_rsv->size;
2104
2105         /*
2106          * after the snapshot is created, COWing tree blocks may use more
2107          * space than it frees. So we should make sure there is enough
2108          * reserved space.
2109          */
2110         index = trans->transid & 0x1;
2111         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2112                 num_bytes += block_rsv->size -
2113                              (block_rsv->reserved + block_rsv->freed[index]);
2114         }
2115
2116         *bytes_to_reserve += num_bytes;
2117 }
2118
2119 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2120                                 struct btrfs_pending_snapshot *pending)
2121 {
2122         struct btrfs_root *root = pending->root;
2123         struct btrfs_root *snap = pending->snap;
2124         struct btrfs_block_rsv *block_rsv;
2125         u64 num_bytes;
2126         int index;
2127         int ret;
2128
2129         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2130                 return;
2131
2132         /* refill source subvolume's orphan block reservation */
2133         block_rsv = root->orphan_block_rsv;
2134         index = trans->transid & 0x1;
2135         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2136                 num_bytes = block_rsv->size -
2137                             (block_rsv->reserved + block_rsv->freed[index]);
2138                 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2139                                               root->orphan_block_rsv,
2140                                               num_bytes);
2141                 BUG_ON(ret);
2142         }
2143
2144         /* setup orphan block reservation for the snapshot */
2145         block_rsv = btrfs_alloc_block_rsv(snap);
2146         BUG_ON(!block_rsv);
2147
2148         btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2149         snap->orphan_block_rsv = block_rsv;
2150
2151         num_bytes = root->orphan_block_rsv->size;
2152         ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2153                                       block_rsv, num_bytes);
2154         BUG_ON(ret);
2155
2156 #if 0
2157         /* insert orphan item for the snapshot */
2158         WARN_ON(!root->orphan_item_inserted);
2159         ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2160                                        snap->root_key.objectid);
2161         BUG_ON(ret);
2162         snap->orphan_item_inserted = 1;
2163 #endif
2164 }
2165
2166 enum btrfs_orphan_cleanup_state {
2167         ORPHAN_CLEANUP_STARTED  = 1,
2168         ORPHAN_CLEANUP_DONE     = 2,
2169 };
2170
2171 /*
2172  * This is called in transaction commmit time. If there are no orphan
2173  * files in the subvolume, it removes orphan item and frees block_rsv
2174  * structure.
2175  */
2176 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2177                               struct btrfs_root *root)
2178 {
2179         int ret;
2180
2181         if (!list_empty(&root->orphan_list) ||
2182             root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2183                 return;
2184
2185         if (root->orphan_item_inserted &&
2186             btrfs_root_refs(&root->root_item) > 0) {
2187                 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2188                                             root->root_key.objectid);
2189                 BUG_ON(ret);
2190                 root->orphan_item_inserted = 0;
2191         }
2192
2193         if (root->orphan_block_rsv) {
2194                 WARN_ON(root->orphan_block_rsv->size > 0);
2195                 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2196                 root->orphan_block_rsv = NULL;
2197         }
2198 }
2199
2200 /*
2201  * This creates an orphan entry for the given inode in case something goes
2202  * wrong in the middle of an unlink/truncate.
2203  *
2204  * NOTE: caller of this function should reserve 5 units of metadata for
2205  *       this function.
2206  */
2207 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2208 {
2209         struct btrfs_root *root = BTRFS_I(inode)->root;
2210         struct btrfs_block_rsv *block_rsv = NULL;
2211         int reserve = 0;
2212         int insert = 0;
2213         int ret;
2214
2215         if (!root->orphan_block_rsv) {
2216                 block_rsv = btrfs_alloc_block_rsv(root);
2217                 BUG_ON(!block_rsv);
2218         }
2219
2220         spin_lock(&root->orphan_lock);
2221         if (!root->orphan_block_rsv) {
2222                 root->orphan_block_rsv = block_rsv;
2223         } else if (block_rsv) {
2224                 btrfs_free_block_rsv(root, block_rsv);
2225                 block_rsv = NULL;
2226         }
2227
2228         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2229                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2230 #if 0
2231                 /*
2232                  * For proper ENOSPC handling, we should do orphan
2233                  * cleanup when mounting. But this introduces backward
2234                  * compatibility issue.
2235                  */
2236                 if (!xchg(&root->orphan_item_inserted, 1))
2237                         insert = 2;
2238                 else
2239                         insert = 1;
2240 #endif
2241                 insert = 1;
2242         }
2243
2244         if (!BTRFS_I(inode)->orphan_meta_reserved) {
2245                 BTRFS_I(inode)->orphan_meta_reserved = 1;
2246                 reserve = 1;
2247         }
2248         spin_unlock(&root->orphan_lock);
2249
2250         if (block_rsv)
2251                 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2252
2253         /* grab metadata reservation from transaction handle */
2254         if (reserve) {
2255                 ret = btrfs_orphan_reserve_metadata(trans, inode);
2256                 BUG_ON(ret);
2257         }
2258
2259         /* insert an orphan item to track this unlinked/truncated file */
2260         if (insert >= 1) {
2261                 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2262                 BUG_ON(ret);
2263         }
2264
2265         /* insert an orphan item to track subvolume contains orphan files */
2266         if (insert >= 2) {
2267                 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2268                                                root->root_key.objectid);
2269                 BUG_ON(ret);
2270         }
2271         return 0;
2272 }
2273
2274 /*
2275  * We have done the truncate/delete so we can go ahead and remove the orphan
2276  * item for this particular inode.
2277  */
2278 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2279 {
2280         struct btrfs_root *root = BTRFS_I(inode)->root;
2281         int delete_item = 0;
2282         int release_rsv = 0;
2283         int ret = 0;
2284
2285         spin_lock(&root->orphan_lock);
2286         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2287                 list_del_init(&BTRFS_I(inode)->i_orphan);
2288                 delete_item = 1;
2289         }
2290
2291         if (BTRFS_I(inode)->orphan_meta_reserved) {
2292                 BTRFS_I(inode)->orphan_meta_reserved = 0;
2293                 release_rsv = 1;
2294         }
2295         spin_unlock(&root->orphan_lock);
2296
2297         if (trans && delete_item) {
2298                 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2299                 BUG_ON(ret);
2300         }
2301
2302         if (release_rsv)
2303                 btrfs_orphan_release_metadata(inode);
2304
2305         return 0;
2306 }
2307
2308 /*
2309  * this cleans up any orphans that may be left on the list from the last use
2310  * of this root.
2311  */
2312 int btrfs_orphan_cleanup(struct btrfs_root *root)
2313 {
2314         struct btrfs_path *path;
2315         struct extent_buffer *leaf;
2316         struct btrfs_key key, found_key;
2317         struct btrfs_trans_handle *trans;
2318         struct inode *inode;
2319         int ret = 0, nr_unlink = 0, nr_truncate = 0;
2320
2321         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2322                 return 0;
2323
2324         path = btrfs_alloc_path();
2325         if (!path) {
2326                 ret = -ENOMEM;
2327                 goto out;
2328         }
2329         path->reada = -1;
2330
2331         key.objectid = BTRFS_ORPHAN_OBJECTID;
2332         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2333         key.offset = (u64)-1;
2334
2335         while (1) {
2336                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2337                 if (ret < 0)
2338                         goto out;
2339
2340                 /*
2341                  * if ret == 0 means we found what we were searching for, which
2342                  * is weird, but possible, so only screw with path if we didn't
2343                  * find the key and see if we have stuff that matches
2344                  */
2345                 if (ret > 0) {
2346                         ret = 0;
2347                         if (path->slots[0] == 0)
2348                                 break;
2349                         path->slots[0]--;
2350                 }
2351
2352                 /* pull out the item */
2353                 leaf = path->nodes[0];
2354                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2355
2356                 /* make sure the item matches what we want */
2357                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2358                         break;
2359                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2360                         break;
2361
2362                 /* release the path since we're done with it */
2363                 btrfs_release_path(path);
2364
2365                 /*
2366                  * this is where we are basically btrfs_lookup, without the
2367                  * crossing root thing.  we store the inode number in the
2368                  * offset of the orphan item.
2369                  */
2370                 found_key.objectid = found_key.offset;
2371                 found_key.type = BTRFS_INODE_ITEM_KEY;
2372                 found_key.offset = 0;
2373                 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2374                 if (IS_ERR(inode)) {
2375                         ret = PTR_ERR(inode);
2376                         goto out;
2377                 }
2378
2379                 /*
2380                  * add this inode to the orphan list so btrfs_orphan_del does
2381                  * the proper thing when we hit it
2382                  */
2383                 spin_lock(&root->orphan_lock);
2384                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2385                 spin_unlock(&root->orphan_lock);
2386
2387                 /*
2388                  * if this is a bad inode, means we actually succeeded in
2389                  * removing the inode, but not the orphan record, which means
2390                  * we need to manually delete the orphan since iput will just
2391                  * do a destroy_inode
2392                  */
2393                 if (is_bad_inode(inode)) {
2394                         trans = btrfs_start_transaction(root, 0);
2395                         if (IS_ERR(trans)) {
2396                                 ret = PTR_ERR(trans);
2397                                 goto out;
2398                         }
2399                         btrfs_orphan_del(trans, inode);
2400                         btrfs_end_transaction(trans, root);
2401                         iput(inode);
2402                         continue;
2403                 }
2404
2405                 /* if we have links, this was a truncate, lets do that */
2406                 if (inode->i_nlink) {
2407                         if (!S_ISREG(inode->i_mode)) {
2408                                 WARN_ON(1);
2409                                 iput(inode);
2410                                 continue;
2411                         }
2412                         nr_truncate++;
2413                         ret = btrfs_truncate(inode);
2414                 } else {
2415                         nr_unlink++;
2416                 }
2417
2418                 /* this will do delete_inode and everything for us */
2419                 iput(inode);
2420                 if (ret)
2421                         goto out;
2422         }
2423         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2424
2425         if (root->orphan_block_rsv)
2426                 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2427                                         (u64)-1);
2428
2429         if (root->orphan_block_rsv || root->orphan_item_inserted) {
2430                 trans = btrfs_join_transaction(root);
2431                 if (!IS_ERR(trans))
2432                         btrfs_end_transaction(trans, root);
2433         }
2434
2435         if (nr_unlink)
2436                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2437         if (nr_truncate)
2438                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2439
2440 out:
2441         if (ret)
2442                 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2443         btrfs_free_path(path);
2444         return ret;
2445 }
2446
2447 /*
2448  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2449  * don't find any xattrs, we know there can't be any acls.
2450  *
2451  * slot is the slot the inode is in, objectid is the objectid of the inode
2452  */
2453 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2454                                           int slot, u64 objectid)
2455 {
2456         u32 nritems = btrfs_header_nritems(leaf);
2457         struct btrfs_key found_key;
2458         int scanned = 0;
2459
2460         slot++;
2461         while (slot < nritems) {
2462                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2463
2464                 /* we found a different objectid, there must not be acls */
2465                 if (found_key.objectid != objectid)
2466                         return 0;
2467
2468                 /* we found an xattr, assume we've got an acl */
2469                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2470                         return 1;
2471
2472                 /*
2473                  * we found a key greater than an xattr key, there can't
2474                  * be any acls later on
2475                  */
2476                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2477                         return 0;
2478
2479                 slot++;
2480                 scanned++;
2481
2482                 /*
2483                  * it goes inode, inode backrefs, xattrs, extents,
2484                  * so if there are a ton of hard links to an inode there can
2485                  * be a lot of backrefs.  Don't waste time searching too hard,
2486                  * this is just an optimization
2487                  */
2488                 if (scanned >= 8)
2489                         break;
2490         }
2491         /* we hit the end of the leaf before we found an xattr or
2492          * something larger than an xattr.  We have to assume the inode
2493          * has acls
2494          */
2495         return 1;
2496 }
2497
2498 /*
2499  * read an inode from the btree into the in-memory inode
2500  */
2501 static void btrfs_read_locked_inode(struct inode *inode)
2502 {
2503         struct btrfs_path *path;
2504         struct extent_buffer *leaf;
2505         struct btrfs_inode_item *inode_item;
2506         struct btrfs_timespec *tspec;
2507         struct btrfs_root *root = BTRFS_I(inode)->root;
2508         struct btrfs_key location;
2509         int maybe_acls;
2510         u32 rdev;
2511         int ret;
2512         bool filled = false;
2513
2514         ret = btrfs_fill_inode(inode, &rdev);
2515         if (!ret)
2516                 filled = true;
2517
2518         path = btrfs_alloc_path();
2519         BUG_ON(!path);
2520         path->leave_spinning = 1;
2521         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2522
2523         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2524         if (ret)
2525                 goto make_bad;
2526
2527         leaf = path->nodes[0];
2528
2529         if (filled)
2530                 goto cache_acl;
2531
2532         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2533                                     struct btrfs_inode_item);
2534         if (!leaf->map_token)
2535                 map_private_extent_buffer(leaf, (unsigned long)inode_item,
2536                                           sizeof(struct btrfs_inode_item),
2537                                           &leaf->map_token, &leaf->kaddr,
2538                                           &leaf->map_start, &leaf->map_len,
2539                                           KM_USER1);
2540
2541         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2542         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2543         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2544         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2545         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2546
2547         tspec = btrfs_inode_atime(inode_item);
2548         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2549         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2550
2551         tspec = btrfs_inode_mtime(inode_item);
2552         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2553         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2554
2555         tspec = btrfs_inode_ctime(inode_item);
2556         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2557         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2558
2559         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2560         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2561         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2562         inode->i_generation = BTRFS_I(inode)->generation;
2563         inode->i_rdev = 0;
2564         rdev = btrfs_inode_rdev(leaf, inode_item);
2565
2566         BTRFS_I(inode)->index_cnt = (u64)-1;
2567         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2568 cache_acl:
2569         /*
2570          * try to precache a NULL acl entry for files that don't have
2571          * any xattrs or acls
2572          */
2573         maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2574                                            btrfs_ino(inode));
2575         if (!maybe_acls)
2576                 cache_no_acl(inode);
2577
2578         if (leaf->map_token) {
2579                 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
2580                 leaf->map_token = NULL;
2581         }
2582
2583         btrfs_free_path(path);
2584
2585         switch (inode->i_mode & S_IFMT) {
2586         case S_IFREG:
2587                 inode->i_mapping->a_ops = &btrfs_aops;
2588                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2589                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2590                 inode->i_fop = &btrfs_file_operations;
2591                 inode->i_op = &btrfs_file_inode_operations;
2592                 break;
2593         case S_IFDIR:
2594                 inode->i_fop = &btrfs_dir_file_operations;
2595                 if (root == root->fs_info->tree_root)
2596                         inode->i_op = &btrfs_dir_ro_inode_operations;
2597                 else
2598                         inode->i_op = &btrfs_dir_inode_operations;
2599                 break;
2600         case S_IFLNK:
2601                 inode->i_op = &btrfs_symlink_inode_operations;
2602                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2603                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2604                 break;
2605         default:
2606                 inode->i_op = &btrfs_special_inode_operations;
2607                 init_special_inode(inode, inode->i_mode, rdev);
2608                 break;
2609         }
2610
2611         btrfs_update_iflags(inode);
2612         return;
2613
2614 make_bad:
2615         btrfs_free_path(path);
2616         make_bad_inode(inode);
2617 }
2618
2619 /*
2620  * given a leaf and an inode, copy the inode fields into the leaf
2621  */
2622 static void fill_inode_item(struct btrfs_trans_handle *trans,
2623                             struct extent_buffer *leaf,
2624                             struct btrfs_inode_item *item,
2625                             struct inode *inode)
2626 {
2627         if (!leaf->map_token)
2628                 map_private_extent_buffer(leaf, (unsigned long)item,
2629                                           sizeof(struct btrfs_inode_item),
2630                                           &leaf->map_token, &leaf->kaddr,
2631                                           &leaf->map_start, &leaf->map_len,
2632                                           KM_USER1);
2633
2634         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2635         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2636         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2637         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2638         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2639
2640         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2641                                inode->i_atime.tv_sec);
2642         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2643                                 inode->i_atime.tv_nsec);
2644
2645         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2646                                inode->i_mtime.tv_sec);
2647         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2648                                 inode->i_mtime.tv_nsec);
2649
2650         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2651                                inode->i_ctime.tv_sec);
2652         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2653                                 inode->i_ctime.tv_nsec);
2654
2655         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2656         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2657         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2658         btrfs_set_inode_transid(leaf, item, trans->transid);
2659         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2660         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2661         btrfs_set_inode_block_group(leaf, item, 0);
2662
2663         if (leaf->map_token) {
2664                 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
2665                 leaf->map_token = NULL;
2666         }
2667 }
2668
2669 /*
2670  * copy everything in the in-memory inode into the btree.
2671  */
2672 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2673                                 struct btrfs_root *root, struct inode *inode)
2674 {
2675         struct btrfs_inode_item *inode_item;
2676         struct btrfs_path *path;
2677         struct extent_buffer *leaf;
2678         int ret;
2679
2680         /*
2681          * If the inode is a free space inode, we can deadlock during commit
2682          * if we put it into the delayed code.
2683          *
2684          * The data relocation inode should also be directly updated
2685          * without delay
2686          */
2687         if (!is_free_space_inode(root, inode)
2688             && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2689                 ret = btrfs_delayed_update_inode(trans, root, inode);
2690                 if (!ret)
2691                         btrfs_set_inode_last_trans(trans, inode);
2692                 return ret;
2693         }
2694
2695         path = btrfs_alloc_path();
2696         if (!path)
2697                 return -ENOMEM;
2698
2699         path->leave_spinning = 1;
2700         ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2701                                  1);
2702         if (ret) {
2703                 if (ret > 0)
2704                         ret = -ENOENT;
2705                 goto failed;
2706         }
2707
2708         btrfs_unlock_up_safe(path, 1);
2709         leaf = path->nodes[0];
2710         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2711                                     struct btrfs_inode_item);
2712
2713         fill_inode_item(trans, leaf, inode_item, inode);
2714         btrfs_mark_buffer_dirty(leaf);
2715         btrfs_set_inode_last_trans(trans, inode);
2716         ret = 0;
2717 failed:
2718         btrfs_free_path(path);
2719         return ret;
2720 }
2721
2722 /*
2723  * unlink helper that gets used here in inode.c and in the tree logging
2724  * recovery code.  It remove a link in a directory with a given name, and
2725  * also drops the back refs in the inode to the directory
2726  */
2727 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2728                                 struct btrfs_root *root,
2729                                 struct inode *dir, struct inode *inode,
2730                                 const char *name, int name_len)
2731 {
2732         struct btrfs_path *path;
2733         int ret = 0;
2734         struct extent_buffer *leaf;
2735         struct btrfs_dir_item *di;
2736         struct btrfs_key key;
2737         u64 index;
2738         u64 ino = btrfs_ino(inode);
2739         u64 dir_ino = btrfs_ino(dir);
2740
2741         path = btrfs_alloc_path();
2742         if (!path) {
2743                 ret = -ENOMEM;
2744                 goto out;
2745         }
2746
2747         path->leave_spinning = 1;
2748         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2749                                     name, name_len, -1);
2750         if (IS_ERR(di)) {
2751                 ret = PTR_ERR(di);
2752                 goto err;
2753         }
2754         if (!di) {
2755                 ret = -ENOENT;
2756                 goto err;
2757         }
2758         leaf = path->nodes[0];
2759         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2760         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2761         if (ret)
2762                 goto err;
2763         btrfs_release_path(path);
2764
2765         ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2766                                   dir_ino, &index);
2767         if (ret) {
2768                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2769                        "inode %llu parent %llu\n", name_len, name,
2770                        (unsigned long long)ino, (unsigned long long)dir_ino);
2771                 goto err;
2772         }
2773
2774         ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2775         if (ret)
2776                 goto err;
2777
2778         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2779                                          inode, dir_ino);
2780         BUG_ON(ret != 0 && ret != -ENOENT);
2781
2782         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2783                                            dir, index);
2784         if (ret == -ENOENT)
2785                 ret = 0;
2786 err:
2787         btrfs_free_path(path);
2788         if (ret)
2789                 goto out;
2790
2791         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2792         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2793         btrfs_update_inode(trans, root, dir);
2794 out:
2795         return ret;
2796 }
2797
2798 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2799                        struct btrfs_root *root,
2800                        struct inode *dir, struct inode *inode,
2801                        const char *name, int name_len)
2802 {
2803         int ret;
2804         ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2805         if (!ret) {
2806                 btrfs_drop_nlink(inode);
2807                 ret = btrfs_update_inode(trans, root, inode);
2808         }
2809         return ret;
2810 }
2811                 
2812
2813 /* helper to check if there is any shared block in the path */
2814 static int check_path_shared(struct btrfs_root *root,
2815                              struct btrfs_path *path)
2816 {
2817         struct extent_buffer *eb;
2818         int level;
2819         u64 refs = 1;
2820
2821         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2822                 int ret;
2823
2824                 if (!path->nodes[level])
2825                         break;
2826                 eb = path->nodes[level];
2827                 if (!btrfs_block_can_be_shared(root, eb))
2828                         continue;
2829                 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2830                                                &refs, NULL);
2831                 if (refs > 1)
2832                         return 1;
2833         }
2834         return 0;
2835 }
2836
2837 /*
2838  * helper to start transaction for unlink and rmdir.
2839  *
2840  * unlink and rmdir are special in btrfs, they do not always free space.
2841  * so in enospc case, we should make sure they will free space before
2842  * allowing them to use the global metadata reservation.
2843  */
2844 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2845                                                        struct dentry *dentry)
2846 {
2847         struct btrfs_trans_handle *trans;
2848         struct btrfs_root *root = BTRFS_I(dir)->root;
2849         struct btrfs_path *path;
2850         struct btrfs_inode_ref *ref;
2851         struct btrfs_dir_item *di;
2852         struct inode *inode = dentry->d_inode;
2853         u64 index;
2854         int check_link = 1;
2855         int err = -ENOSPC;
2856         int ret;
2857         u64 ino = btrfs_ino(inode);
2858         u64 dir_ino = btrfs_ino(dir);
2859
2860         trans = btrfs_start_transaction(root, 10);
2861         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2862                 return trans;
2863
2864         if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2865                 return ERR_PTR(-ENOSPC);
2866
2867         /* check if there is someone else holds reference */
2868         if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2869                 return ERR_PTR(-ENOSPC);
2870
2871         if (atomic_read(&inode->i_count) > 2)
2872                 return ERR_PTR(-ENOSPC);
2873
2874         if (xchg(&root->fs_info->enospc_unlink, 1))
2875                 return ERR_PTR(-ENOSPC);
2876
2877         path = btrfs_alloc_path();
2878         if (!path) {
2879                 root->fs_info->enospc_unlink = 0;
2880                 return ERR_PTR(-ENOMEM);
2881         }
2882
2883         trans = btrfs_start_transaction(root, 0);
2884         if (IS_ERR(trans)) {
2885                 btrfs_free_path(path);
2886                 root->fs_info->enospc_unlink = 0;
2887                 return trans;
2888         }
2889
2890         path->skip_locking = 1;
2891         path->search_commit_root = 1;
2892
2893         ret = btrfs_lookup_inode(trans, root, path,
2894                                 &BTRFS_I(dir)->location, 0);
2895         if (ret < 0) {
2896                 err = ret;
2897                 goto out;
2898         }
2899         if (ret == 0) {
2900                 if (check_path_shared(root, path))
2901                         goto out;
2902         } else {
2903                 check_link = 0;
2904         }
2905         btrfs_release_path(path);
2906
2907         ret = btrfs_lookup_inode(trans, root, path,
2908                                 &BTRFS_I(inode)->location, 0);
2909         if (ret < 0) {
2910                 err = ret;
2911                 goto out;
2912         }
2913         if (ret == 0) {
2914                 if (check_path_shared(root, path))
2915                         goto out;
2916         } else {
2917                 check_link = 0;
2918         }
2919         btrfs_release_path(path);
2920
2921         if (ret == 0 && S_ISREG(inode->i_mode)) {
2922                 ret = btrfs_lookup_file_extent(trans, root, path,
2923                                                ino, (u64)-1, 0);
2924                 if (ret < 0) {
2925                         err = ret;
2926                         goto out;
2927                 }
2928                 BUG_ON(ret == 0);
2929                 if (check_path_shared(root, path))
2930                         goto out;
2931                 btrfs_release_path(path);
2932         }
2933
2934         if (!check_link) {
2935                 err = 0;
2936                 goto out;
2937         }
2938
2939         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2940                                 dentry->d_name.name, dentry->d_name.len, 0);
2941         if (IS_ERR(di)) {
2942                 err = PTR_ERR(di);
2943                 goto out;
2944         }
2945         if (di) {
2946                 if (check_path_shared(root, path))
2947                         goto out;
2948         } else {
2949                 err = 0;
2950                 goto out;
2951         }
2952         btrfs_release_path(path);
2953
2954         ref = btrfs_lookup_inode_ref(trans, root, path,
2955                                 dentry->d_name.name, dentry->d_name.len,
2956                                 ino, dir_ino, 0);
2957         if (IS_ERR(ref)) {
2958                 err = PTR_ERR(ref);
2959                 goto out;
2960         }
2961         BUG_ON(!ref);
2962         if (check_path_shared(root, path))
2963                 goto out;
2964         index = btrfs_inode_ref_index(path->nodes[0], ref);
2965         btrfs_release_path(path);
2966
2967         /*
2968          * This is a commit root search, if we can lookup inode item and other
2969          * relative items in the commit root, it means the transaction of
2970          * dir/file creation has been committed, and the dir index item that we
2971          * delay to insert has also been inserted into the commit root. So
2972          * we needn't worry about the delayed insertion of the dir index item
2973          * here.
2974          */
2975         di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
2976                                 dentry->d_name.name, dentry->d_name.len, 0);
2977         if (IS_ERR(di)) {
2978                 err = PTR_ERR(di);
2979                 goto out;
2980         }
2981         BUG_ON(ret == -ENOENT);
2982         if (check_path_shared(root, path))
2983                 goto out;
2984
2985         err = 0;
2986 out:
2987         btrfs_free_path(path);
2988         if (err) {
2989                 btrfs_end_transaction(trans, root);
2990                 root->fs_info->enospc_unlink = 0;
2991                 return ERR_PTR(err);
2992         }
2993
2994         trans->block_rsv = &root->fs_info->global_block_rsv;
2995         return trans;
2996 }
2997
2998 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2999                                struct btrfs_root *root)
3000 {
3001         if (trans->block_rsv == &root->fs_info->global_block_rsv) {
3002                 BUG_ON(!root->fs_info->enospc_unlink);
3003                 root->fs_info->enospc_unlink = 0;
3004         }
3005         btrfs_end_transaction_throttle(trans, root);
3006 }
3007
3008 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3009 {
3010         struct btrfs_root *root = BTRFS_I(dir)->root;
3011         struct btrfs_trans_handle *trans;
3012         struct inode *inode = dentry->d_inode;
3013         int ret;
3014         unsigned long nr = 0;
3015
3016         trans = __unlink_start_trans(dir, dentry);
3017         if (IS_ERR(trans))
3018                 return PTR_ERR(trans);
3019
3020         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3021
3022         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3023                                  dentry->d_name.name, dentry->d_name.len);
3024         BUG_ON(ret);
3025
3026         if (inode->i_nlink == 0) {
3027                 ret = btrfs_orphan_add(trans, inode);
3028                 BUG_ON(ret);
3029         }
3030
3031         nr = trans->blocks_used;
3032         __unlink_end_trans(trans, root);
3033         btrfs_btree_balance_dirty(root, nr);
3034         return ret;
3035 }
3036
3037 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3038                         struct btrfs_root *root,
3039                         struct inode *dir, u64 objectid,
3040                         const char *name, int name_len)
3041 {
3042         struct btrfs_path *path;
3043         struct extent_buffer *leaf;
3044         struct btrfs_dir_item *di;
3045         struct btrfs_key key;
3046         u64 index;
3047         int ret;
3048         u64 dir_ino = btrfs_ino(dir);
3049
3050         path = btrfs_alloc_path();
3051         if (!path)
3052                 return -ENOMEM;
3053
3054         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3055                                    name, name_len, -1);
3056         BUG_ON(IS_ERR_OR_NULL(di));
3057
3058         leaf = path->nodes[0];
3059         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3060         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3061         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3062         BUG_ON(ret);
3063         btrfs_release_path(path);
3064
3065         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3066                                  objectid, root->root_key.objectid,
3067                                  dir_ino, &index, name, name_len);
3068         if (ret < 0) {
3069                 BUG_ON(ret != -ENOENT);
3070                 di = btrfs_search_dir_index_item(root, path, dir_ino,
3071                                                  name, name_len);
3072                 BUG_ON(IS_ERR_OR_NULL(di));
3073
3074                 leaf = path->nodes[0];
3075                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3076                 btrfs_release_path(path);
3077                 index = key.offset;
3078         }
3079         btrfs_release_path(path);
3080
3081         ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3082         BUG_ON(ret);
3083
3084         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3085         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3086         ret = btrfs_update_inode(trans, root, dir);
3087         BUG_ON(ret);
3088
3089         btrfs_free_path(path);
3090         return 0;
3091 }
3092
3093 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3094 {
3095         struct inode *inode = dentry->d_inode;
3096         int err = 0;
3097         struct btrfs_root *root = BTRFS_I(dir)->root;
3098         struct btrfs_trans_handle *trans;
3099         unsigned long nr = 0;
3100
3101         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3102             btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3103                 return -ENOTEMPTY;
3104
3105         trans = __unlink_start_trans(dir, dentry);
3106         if (IS_ERR(trans))
3107                 return PTR_ERR(trans);
3108
3109         if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3110                 err = btrfs_unlink_subvol(trans, root, dir,
3111                                           BTRFS_I(inode)->location.objectid,
3112                                           dentry->d_name.name,
3113                                           dentry->d_name.len);
3114                 goto out;
3115         }
3116
3117         err = btrfs_orphan_add(trans, inode);
3118         if (err)
3119                 goto out;
3120
3121         /* now the directory is empty */
3122         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3123                                  dentry->d_name.name, dentry->d_name.len);
3124         if (!err)
3125                 btrfs_i_size_write(inode, 0);
3126 out:
3127         nr = trans->blocks_used;
3128         __unlink_end_trans(trans, root);
3129         btrfs_btree_balance_dirty(root, nr);
3130
3131         return err;
3132 }
3133
3134 /*
3135  * this can truncate away extent items, csum items and directory items.
3136  * It starts at a high offset and removes keys until it can't find
3137  * any higher than new_size
3138  *
3139  * csum items that cross the new i_size are truncated to the new size
3140  * as well.
3141  *
3142  * min_type is the minimum key type to truncate down to.  If set to 0, this
3143  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3144  */
3145 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3146                                struct btrfs_root *root,
3147                                struct inode *inode,
3148                                u64 new_size, u32 min_type)
3149 {
3150         struct btrfs_path *path;
3151         struct extent_buffer *leaf;
3152         struct btrfs_file_extent_item *fi;
3153         struct btrfs_key key;
3154         struct btrfs_key found_key;
3155         u64 extent_start = 0;
3156         u64 extent_num_bytes = 0;
3157         u64 extent_offset = 0;
3158         u64 item_end = 0;
3159         u64 mask = root->sectorsize - 1;
3160         u32 found_type = (u8)-1;
3161         int found_extent;
3162         int del_item;
3163         int pending_del_nr = 0;
3164         int pending_del_slot = 0;
3165         int extent_type = -1;
3166         int encoding;
3167         int ret;
3168         int err = 0;
3169         u64 ino = btrfs_ino(inode);
3170
3171         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3172
3173         if (root->ref_cows || root == root->fs_info->tree_root)
3174                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3175
3176         /*
3177          * This function is also used to drop the items in the log tree before
3178          * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3179          * it is used to drop the loged items. So we shouldn't kill the delayed
3180          * items.
3181          */
3182         if (min_type == 0 && root == BTRFS_I(inode)->root)
3183                 btrfs_kill_delayed_inode_items(inode);
3184
3185         path = btrfs_alloc_path();
3186         BUG_ON(!path);
3187         path->reada = -1;
3188
3189         key.objectid = ino;
3190         key.offset = (u64)-1;
3191         key.type = (u8)-1;
3192
3193 search_again:
3194         path->leave_spinning = 1;
3195         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3196         if (ret < 0) {
3197                 err = ret;
3198                 goto out;
3199         }
3200
3201         if (ret > 0) {
3202                 /* there are no items in the tree for us to truncate, we're
3203                  * done
3204                  */
3205                 if (path->slots[0] == 0)
3206                         goto out;
3207                 path->slots[0]--;
3208         }
3209
3210         while (1) {
3211                 fi = NULL;
3212                 leaf = path->nodes[0];
3213                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3214                 found_type = btrfs_key_type(&found_key);
3215                 encoding = 0;
3216
3217                 if (found_key.objectid != ino)
3218                         break;
3219
3220                 if (found_type < min_type)
3221                         break;
3222
3223                 item_end = found_key.offset;
3224                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3225                         fi = btrfs_item_ptr(leaf, path->slots[0],
3226                                             struct btrfs_file_extent_item);
3227                         extent_type = btrfs_file_extent_type(leaf, fi);
3228                         encoding = btrfs_file_extent_compression(leaf, fi);
3229                         encoding |= btrfs_file_extent_encryption(leaf, fi);
3230                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3231
3232                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3233                                 item_end +=
3234                                     btrfs_file_extent_num_bytes(leaf, fi);
3235                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3236                                 item_end += btrfs_file_extent_inline_len(leaf,
3237                                                                          fi);
3238                         }
3239                         item_end--;
3240                 }
3241                 if (found_type > min_type) {
3242                         del_item = 1;
3243                 } else {
3244                         if (item_end < new_size)
3245                                 break;
3246                         if (found_key.offset >= new_size)
3247                                 del_item = 1;
3248                         else
3249                                 del_item = 0;
3250                 }
3251                 found_extent = 0;
3252                 /* FIXME, shrink the extent if the ref count is only 1 */
3253                 if (found_type != BTRFS_EXTENT_DATA_KEY)
3254                         goto delete;
3255
3256                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3257                         u64 num_dec;
3258                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3259                         if (!del_item && !encoding) {
3260                                 u64 orig_num_bytes =
3261                                         btrfs_file_extent_num_bytes(leaf, fi);
3262                                 extent_num_bytes = new_size -
3263                                         found_key.offset + root->sectorsize - 1;
3264                                 extent_num_bytes = extent_num_bytes &
3265                                         ~((u64)root->sectorsize - 1);
3266                                 btrfs_set_file_extent_num_bytes(leaf, fi,
3267                                                          extent_num_bytes);
3268                                 num_dec = (orig_num_bytes -
3269                                            extent_num_bytes);
3270                                 if (root->ref_cows && extent_start != 0)
3271                                         inode_sub_bytes(inode, num_dec);
3272                                 btrfs_mark_buffer_dirty(leaf);
3273                         } else {
3274                                 extent_num_bytes =
3275                                         btrfs_file_extent_disk_num_bytes(leaf,
3276                                                                          fi);
3277                                 extent_offset = found_key.offset -
3278                                         btrfs_file_extent_offset(leaf, fi);
3279
3280                                 /* FIXME blocksize != 4096 */
3281                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3282                                 if (extent_start != 0) {
3283                                         found_extent = 1;
3284                                         if (root->ref_cows)
3285                                                 inode_sub_bytes(inode, num_dec);
3286                                 }
3287                         }
3288                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3289                         /*
3290                          * we can't truncate inline items that have had
3291                          * special encodings
3292                          */
3293                         if (!del_item &&
3294                             btrfs_file_extent_compression(leaf, fi) == 0 &&
3295                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
3296                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3297                                 u32 size = new_size - found_key.offset;
3298
3299                                 if (root->ref_cows) {
3300                                         inode_sub_bytes(inode, item_end + 1 -
3301                                                         new_size);
3302                                 }
3303                                 size =
3304                                     btrfs_file_extent_calc_inline_size(size);
3305                                 ret = btrfs_truncate_item(trans, root, path,
3306                                                           size, 1);
3307                         } else if (root->ref_cows) {
3308                                 inode_sub_bytes(inode, item_end + 1 -
3309                                                 found_key.offset);
3310                         }
3311                 }
3312 delete:
3313                 if (del_item) {
3314                         if (!pending_del_nr) {
3315                                 /* no pending yet, add ourselves */
3316                                 pending_del_slot = path->slots[0];
3317                                 pending_del_nr = 1;
3318                         } else if (pending_del_nr &&
3319                                    path->slots[0] + 1 == pending_del_slot) {
3320                                 /* hop on the pending chunk */
3321                                 pending_del_nr++;
3322                                 pending_del_slot = path->slots[0];
3323                         } else {
3324                                 BUG();
3325                         }
3326                 } else {
3327                         break;
3328                 }
3329                 if (found_extent && (root->ref_cows ||
3330                                      root == root->fs_info->tree_root)) {
3331                         btrfs_set_path_blocking(path);
3332                         ret = btrfs_free_extent(trans, root, extent_start,
3333                                                 extent_num_bytes, 0,
3334                                                 btrfs_header_owner(leaf),
3335                                                 ino, extent_offset);
3336                         BUG_ON(ret);
3337                 }
3338
3339                 if (found_type == BTRFS_INODE_ITEM_KEY)
3340                         break;
3341
3342                 if (path->slots[0] == 0 ||
3343                     path->slots[0] != pending_del_slot) {
3344                         if (root->ref_cows &&
3345                             BTRFS_I(inode)->location.objectid !=
3346                                                 BTRFS_FREE_INO_OBJECTID) {
3347                                 err = -EAGAIN;
3348                                 goto out;
3349                         }
3350                         if (pending_del_nr) {
3351                                 ret = btrfs_del_items(trans, root, path,
3352                                                 pending_del_slot,
3353                                                 pending_del_nr);
3354                                 BUG_ON(ret);
3355                                 pending_del_nr = 0;
3356                         }
3357                         btrfs_release_path(path);
3358                         goto search_again;
3359                 } else {
3360                         path->slots[0]--;
3361                 }
3362         }
3363 out:
3364         if (pending_del_nr) {
3365                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3366                                       pending_del_nr);
3367                 BUG_ON(ret);
3368         }
3369         btrfs_free_path(path);
3370         return err;
3371 }
3372
3373 /*
3374  * taken from block_truncate_page, but does cow as it zeros out
3375  * any bytes left in the last page in the file.
3376  */
3377 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3378 {
3379         struct inode *inode = mapping->host;
3380         struct btrfs_root *root = BTRFS_I(inode)->root;
3381         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3382         struct btrfs_ordered_extent *ordered;
3383         struct extent_state *cached_state = NULL;
3384         char *kaddr;
3385         u32 blocksize = root->sectorsize;
3386         pgoff_t index = from >> PAGE_CACHE_SHIFT;
3387         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3388         struct page *page;
3389         int ret = 0;
3390         u64 page_start;
3391         u64 page_end;
3392
3393         if ((offset & (blocksize - 1)) == 0)
3394                 goto out;
3395         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3396         if (ret)
3397                 goto out;
3398
3399         ret = -ENOMEM;
3400 again:
3401         page = grab_cache_page(mapping, index);
3402         if (!page) {
3403                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3404                 goto out;
3405         }
3406
3407         page_start = page_offset(page);
3408         page_end = page_start + PAGE_CACHE_SIZE - 1;
3409
3410         if (!PageUptodate(page)) {
3411                 ret = btrfs_readpage(NULL, page);
3412                 lock_page(page);
3413                 if (page->mapping != mapping) {
3414                         unlock_page(page);
3415                         page_cache_release(page);
3416                         goto again;
3417                 }
3418                 if (!PageUptodate(page)) {
3419                         ret = -EIO;
3420                         goto out_unlock;
3421                 }
3422         }
3423         wait_on_page_writeback(page);
3424
3425         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3426                          GFP_NOFS);
3427         set_page_extent_mapped(page);
3428
3429         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3430         if (ordered) {
3431                 unlock_extent_cached(io_tree, page_start, page_end,
3432                                      &cached_state, GFP_NOFS);
3433                 unlock_page(page);
3434                 page_cache_release(page);
3435                 btrfs_start_ordered_extent(inode, ordered, 1);
3436                 btrfs_put_ordered_extent(ordered);
3437                 goto again;
3438         }
3439
3440         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3441                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3442                           0, 0, &cached_state, GFP_NOFS);
3443
3444         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3445                                         &cached_state);
3446         if (ret) {
3447                 unlock_extent_cached(io_tree, page_start, page_end,
3448                                      &cached_state, GFP_NOFS);
3449                 goto out_unlock;
3450         }
3451
3452         ret = 0;
3453         if (offset != PAGE_CACHE_SIZE) {
3454                 kaddr = kmap(page);
3455                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3456                 flush_dcache_page(page);
3457                 kunmap(page);
3458         }
3459         ClearPageChecked(page);
3460         set_page_dirty(page);
3461         unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3462                              GFP_NOFS);
3463
3464 out_unlock:
3465         if (ret)
3466                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3467         unlock_page(page);
3468         page_cache_release(page);
3469 out:
3470         return ret;
3471 }
3472
3473 /*
3474  * This function puts in dummy file extents for the area we're creating a hole
3475  * for.  So if we are truncating this file to a larger size we need to insert
3476  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3477  * the range between oldsize and size
3478  */
3479 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3480 {
3481         struct btrfs_trans_handle *trans;
3482         struct btrfs_root *root = BTRFS_I(inode)->root;
3483         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3484         struct extent_map *em = NULL;
3485         struct extent_state *cached_state = NULL;
3486         u64 mask = root->sectorsize - 1;
3487         u64 hole_start = (oldsize + mask) & ~mask;
3488         u64 block_end = (size + mask) & ~mask;
3489         u64 last_byte;
3490         u64 cur_offset;
3491         u64 hole_size;
3492         int err = 0;
3493
3494         if (size <= hole_start)
3495                 return 0;
3496
3497         while (1) {
3498                 struct btrfs_ordered_extent *ordered;
3499                 btrfs_wait_ordered_range(inode, hole_start,
3500                                          block_end - hole_start);
3501                 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3502                                  &cached_state, GFP_NOFS);
3503                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3504                 if (!ordered)
3505                         break;
3506                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3507                                      &cached_state, GFP_NOFS);
3508                 btrfs_put_ordered_extent(ordered);
3509         }
3510
3511         cur_offset = hole_start;
3512         while (1) {
3513                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3514                                 block_end - cur_offset, 0);
3515                 BUG_ON(IS_ERR_OR_NULL(em));
3516                 last_byte = min(extent_map_end(em), block_end);
3517                 last_byte = (last_byte + mask) & ~mask;
3518                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3519                         u64 hint_byte = 0;
3520                         hole_size = last_byte - cur_offset;
3521
3522                         trans = btrfs_start_transaction(root, 2);
3523                         if (IS_ERR(trans)) {
3524                                 err = PTR_ERR(trans);
3525                                 break;
3526                         }
3527
3528                         err = btrfs_drop_extents(trans, inode, cur_offset,
3529                                                  cur_offset + hole_size,
3530                                                  &hint_byte, 1);
3531                         if (err)
3532                                 break;
3533
3534                         err = btrfs_insert_file_extent(trans, root,
3535                                         btrfs_ino(inode), cur_offset, 0,
3536                                         0, hole_size, 0, hole_size,
3537                                         0, 0, 0);
3538                         if (err)
3539                                 break;
3540
3541                         btrfs_drop_extent_cache(inode, hole_start,
3542                                         last_byte - 1, 0);
3543
3544                         btrfs_end_transaction(trans, root);
3545                 }
3546                 free_extent_map(em);
3547                 em = NULL;
3548                 cur_offset = last_byte;
3549                 if (cur_offset >= block_end)
3550                         break;
3551         }
3552
3553         free_extent_map(em);
3554         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3555                              GFP_NOFS);
3556         return err;
3557 }
3558
3559 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3560 {
3561         loff_t oldsize = i_size_read(inode);
3562         int ret;
3563
3564         if (newsize == oldsize)
3565                 return 0;
3566
3567         if (newsize > oldsize) {
3568                 i_size_write(inode, newsize);
3569                 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3570                 truncate_pagecache(inode, oldsize, newsize);
3571                 ret = btrfs_cont_expand(inode, oldsize, newsize);
3572                 if (ret) {
3573                         btrfs_setsize(inode, oldsize);
3574                         return ret;
3575                 }
3576
3577                 mark_inode_dirty(inode);
3578         } else {
3579
3580                 /*
3581                  * We're truncating a file that used to have good data down to
3582                  * zero. Make sure it gets into the ordered flush list so that
3583                  * any new writes get down to disk quickly.
3584                  */
3585                 if (newsize == 0)
3586                         BTRFS_I(inode)->ordered_data_close = 1;
3587
3588                 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3589                 truncate_setsize(inode, newsize);
3590                 ret = btrfs_truncate(inode);
3591         }
3592
3593         return ret;
3594 }
3595
3596 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3597 {
3598         struct inode *inode = dentry->d_inode;
3599         struct btrfs_root *root = BTRFS_I(inode)->root;
3600         int err;
3601
3602         if (btrfs_root_readonly(root))
3603                 return -EROFS;
3604
3605         err = inode_change_ok(inode, attr);
3606         if (err)
3607                 return err;
3608
3609         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3610                 err = btrfs_setsize(inode, attr->ia_size);
3611                 if (err)
3612                         return err;
3613         }
3614
3615         if (attr->ia_valid) {
3616                 setattr_copy(inode, attr);
3617                 mark_inode_dirty(inode);
3618
3619                 if (attr->ia_valid & ATTR_MODE)
3620                         err = btrfs_acl_chmod(inode);
3621         }
3622
3623         return err;
3624 }
3625
3626 void btrfs_evict_inode(struct inode *inode)
3627 {
3628         struct btrfs_trans_handle *trans;
3629         struct btrfs_root *root = BTRFS_I(inode)->root;
3630         unsigned long nr;
3631         int ret;
3632
3633         trace_btrfs_inode_evict(inode);
3634
3635         truncate_inode_pages(&inode->i_data, 0);
3636         if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3637                                is_free_space_inode(root, inode)))
3638                 goto no_delete;
3639
3640         if (is_bad_inode(inode)) {
3641                 btrfs_orphan_del(NULL, inode);
3642                 goto no_delete;
3643         }
3644         /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3645         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3646
3647         if (root->fs_info->log_root_recovering) {
3648                 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3649                 goto no_delete;
3650         }
3651
3652         if (inode->i_nlink > 0) {
3653                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3654                 goto no_delete;
3655         }
3656
3657         btrfs_i_size_write(inode, 0);
3658
3659         while (1) {
3660                 trans = btrfs_join_transaction(root);
3661                 BUG_ON(IS_ERR(trans));
3662                 trans->block_rsv = root->orphan_block_rsv;
3663
3664                 ret = btrfs_block_rsv_check(trans, root,
3665                                             root->orphan_block_rsv, 0, 5);
3666                 if (ret) {
3667                         BUG_ON(ret != -EAGAIN);
3668                         ret = btrfs_commit_transaction(trans, root);
3669                         BUG_ON(ret);
3670                         continue;
3671                 }
3672
3673                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3674                 if (ret != -EAGAIN)
3675                         break;
3676
3677                 nr = trans->blocks_used;
3678                 btrfs_end_transaction(trans, root);
3679                 trans = NULL;
3680                 btrfs_btree_balance_dirty(root, nr);
3681
3682         }
3683
3684         if (ret == 0) {
3685                 ret = btrfs_orphan_del(trans, inode);
3686                 BUG_ON(ret);
3687         }
3688
3689         if (!(root == root->fs_info->tree_root ||
3690               root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3691                 btrfs_return_ino(root, btrfs_ino(inode));
3692
3693         nr = trans->blocks_used;
3694         btrfs_end_transaction(trans, root);
3695         btrfs_btree_balance_dirty(root, nr);
3696 no_delete:
3697         end_writeback(inode);
3698         return;
3699 }
3700
3701 /*
3702  * this returns the key found in the dir entry in the location pointer.
3703  * If no dir entries were found, location->objectid is 0.
3704  */
3705 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3706                                struct btrfs_key *location)
3707 {
3708         const char *name = dentry->d_name.name;
3709         int namelen = dentry->d_name.len;
3710         struct btrfs_dir_item *di;
3711         struct btrfs_path *path;
3712         struct btrfs_root *root = BTRFS_I(dir)->root;
3713         int ret = 0;
3714
3715         path = btrfs_alloc_path();
3716         BUG_ON(!path);
3717
3718         di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3719                                     namelen, 0);
3720         if (IS_ERR(di))
3721                 ret = PTR_ERR(di);
3722
3723         if (IS_ERR_OR_NULL(di))
3724                 goto out_err;
3725
3726         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3727 out:
3728         btrfs_free_path(path);
3729         return ret;
3730 out_err:
3731         location->objectid = 0;
3732         goto out;
3733 }
3734
3735 /*
3736  * when we hit a tree root in a directory, the btrfs part of the inode
3737  * needs to be changed to reflect the root directory of the tree root.  This
3738  * is kind of like crossing a mount point.
3739  */
3740 static int fixup_tree_root_location(struct btrfs_root *root,
3741                                     struct inode *dir,
3742                                     struct dentry *dentry,
3743                                     struct btrfs_key *location,
3744                                     struct btrfs_root **sub_root)
3745 {
3746         struct btrfs_path *path;
3747         struct btrfs_root *new_root;
3748         struct btrfs_root_ref *ref;
3749         struct extent_buffer *leaf;
3750         int ret;
3751         int err = 0;
3752
3753         path = btrfs_alloc_path();
3754         if (!path) {
3755                 err = -ENOMEM;
3756                 goto out;
3757         }
3758
3759         err = -ENOENT;
3760         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3761                                   BTRFS_I(dir)->root->root_key.objectid,
3762                                   location->objectid);
3763         if (ret) {
3764                 if (ret < 0)
3765                         err = ret;
3766                 goto out;
3767         }
3768
3769         leaf = path->nodes[0];
3770         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3771         if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3772             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3773                 goto out;
3774
3775         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3776                                    (unsigned long)(ref + 1),
3777                                    dentry->d_name.len);
3778         if (ret)
3779                 goto out;
3780
3781         btrfs_release_path(path);
3782
3783         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3784         if (IS_ERR(new_root)) {
3785                 err = PTR_ERR(new_root);
3786                 goto out;
3787         }
3788
3789         if (btrfs_root_refs(&new_root->root_item) == 0) {
3790                 err = -ENOENT;
3791                 goto out;
3792         }
3793
3794         *sub_root = new_root;
3795         location->objectid = btrfs_root_dirid(&new_root->root_item);
3796         location->type = BTRFS_INODE_ITEM_KEY;
3797         location->offset = 0;
3798         err = 0;
3799 out:
3800         btrfs_free_path(path);
3801         return err;
3802 }
3803
3804 static void inode_tree_add(struct inode *inode)
3805 {
3806         struct btrfs_root *root = BTRFS_I(inode)->root;
3807         struct btrfs_inode *entry;
3808         struct rb_node **p;
3809         struct rb_node *parent;
3810         u64 ino = btrfs_ino(inode);
3811 again:
3812         p = &root->inode_tree.rb_node;
3813         parent = NULL;
3814
3815         if (inode_unhashed(inode))
3816                 return;
3817
3818         spin_lock(&root->inode_lock);
3819         while (*p) {
3820                 parent = *p;
3821                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3822
3823                 if (ino < btrfs_ino(&entry->vfs_inode))
3824                         p = &parent->rb_left;
3825                 else if (ino > btrfs_ino(&entry->vfs_inode))
3826                         p = &parent->rb_right;
3827                 else {
3828                         WARN_ON(!(entry->vfs_inode.i_state &
3829                                   (I_WILL_FREE | I_FREEING)));
3830                         rb_erase(parent, &root->inode_tree);
3831                         RB_CLEAR_NODE(parent);
3832                         spin_unlock(&root->inode_lock);
3833                         goto again;
3834                 }
3835         }
3836         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3837         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3838         spin_unlock(&root->inode_lock);
3839 }
3840
3841 static void inode_tree_del(struct inode *inode)
3842 {
3843         struct btrfs_root *root = BTRFS_I(inode)->root;
3844         int empty = 0;
3845
3846         spin_lock(&root->inode_lock);
3847         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3848                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3849                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3850                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3851         }
3852         spin_unlock(&root->inode_lock);
3853
3854         /*
3855          * Free space cache has inodes in the tree root, but the tree root has a
3856          * root_refs of 0, so this could end up dropping the tree root as a
3857          * snapshot, so we need the extra !root->fs_info->tree_root check to
3858          * make sure we don't drop it.
3859          */
3860         if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3861             root != root->fs_info->tree_root) {
3862                 synchronize_srcu(&root->fs_info->subvol_srcu);
3863                 spin_lock(&root->inode_lock);
3864                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3865                 spin_unlock(&root->inode_lock);
3866                 if (empty)
3867                         btrfs_add_dead_root(root);
3868         }
3869 }
3870
3871 int btrfs_invalidate_inodes(struct btrfs_root *root)
3872 {
3873         struct rb_node *node;
3874         struct rb_node *prev;
3875         struct btrfs_inode *entry;
3876         struct inode *inode;
3877         u64 objectid = 0;
3878
3879         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3880
3881         spin_lock(&root->inode_lock);
3882 again:
3883         node = root->inode_tree.rb_node;
3884         prev = NULL;
3885         while (node) {
3886                 prev = node;
3887                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3888
3889                 if (objectid < btrfs_ino(&entry->vfs_inode))
3890                         node = node->rb_left;
3891                 else if (objectid > btrfs_ino(&entry->vfs_inode))
3892                         node = node->rb_right;
3893                 else
3894                         break;
3895         }
3896         if (!node) {
3897                 while (prev) {
3898                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
3899                         if (objectid <= btrfs_ino(&entry->vfs_inode)) {
3900                                 node = prev;
3901                                 break;
3902                         }
3903                         prev = rb_next(prev);
3904                 }
3905         }
3906         while (node) {
3907                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3908                 objectid = btrfs_ino(&entry->vfs_inode) + 1;
3909                 inode = igrab(&entry->vfs_inode);
3910                 if (inode) {
3911                         spin_unlock(&root->inode_lock);
3912                         if (atomic_read(&inode->i_count) > 1)
3913                                 d_prune_aliases(inode);
3914                         /*
3915                          * btrfs_drop_inode will have it removed from
3916                          * the inode cache when its usage count
3917                          * hits zero.
3918                          */
3919                         iput(inode);
3920                         cond_resched();
3921                         spin_lock(&root->inode_lock);
3922                         goto again;
3923                 }
3924
3925                 if (cond_resched_lock(&root->inode_lock))
3926                         goto again;
3927
3928                 node = rb_next(node);
3929         }
3930         spin_unlock(&root->inode_lock);
3931         return 0;
3932 }
3933
3934 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3935 {
3936         struct btrfs_iget_args *args = p;
3937         inode->i_ino = args->ino;
3938         BTRFS_I(inode)->root = args->root;
3939         btrfs_set_inode_space_info(args->root, inode);
3940         return 0;
3941 }
3942
3943 static int btrfs_find_actor(struct inode *inode, void *opaque)
3944 {
3945         struct btrfs_iget_args *args = opaque;
3946         return args->ino == btrfs_ino(inode) &&
3947                 args->root == BTRFS_I(inode)->root;
3948 }
3949
3950 static struct inode *btrfs_iget_locked(struct super_block *s,
3951                                        u64 objectid,
3952                                        struct btrfs_root *root)
3953 {
3954         struct inode *inode;
3955         struct btrfs_iget_args args;
3956         args.ino = objectid;
3957         args.root = root;
3958
3959         inode = iget5_locked(s, objectid, btrfs_find_actor,
3960                              btrfs_init_locked_inode,
3961                              (void *)&args);
3962         return inode;
3963 }
3964
3965 /* Get an inode object given its location and corresponding root.
3966  * Returns in *is_new if the inode was read from disk
3967  */
3968 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3969                          struct btrfs_root *root, int *new)
3970 {
3971         struct inode *inode;
3972
3973         inode = btrfs_iget_locked(s, location->objectid, root);
3974         if (!inode)
3975                 return ERR_PTR(-ENOMEM);
3976
3977         if (inode->i_state & I_NEW) {
3978                 BTRFS_I(inode)->root = root;
3979                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3980                 btrfs_read_locked_inode(inode);
3981                 inode_tree_add(inode);
3982                 unlock_new_inode(inode);
3983                 if (new)
3984                         *new = 1;
3985         }
3986
3987         return inode;
3988 }
3989
3990 static struct inode *new_simple_dir(struct super_block *s,
3991                                     struct btrfs_key *key,
3992                                     struct btrfs_root *root)
3993 {
3994         struct inode *inode = new_inode(s);
3995
3996         if (!inode)
3997                 return ERR_PTR(-ENOMEM);
3998
3999         BTRFS_I(inode)->root = root;
4000         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4001         BTRFS_I(inode)->dummy_inode = 1;
4002
4003         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4004         inode->i_op = &simple_dir_inode_operations;
4005         inode->i_fop = &simple_dir_operations;
4006         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4007         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4008
4009         return inode;
4010 }
4011
4012 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4013 {
4014         struct inode *inode;
4015         struct btrfs_root *root = BTRFS_I(dir)->root;
4016         struct btrfs_root *sub_root = root;
4017         struct btrfs_key location;
4018         int index;
4019         int ret;
4020
4021         if (dentry->d_name.len > BTRFS_NAME_LEN)
4022                 return ERR_PTR(-ENAMETOOLONG);
4023
4024         ret = btrfs_inode_by_name(dir, dentry, &location);
4025
4026         if (ret < 0)
4027                 return ERR_PTR(ret);
4028
4029         if (location.objectid == 0)
4030                 return NULL;
4031
4032         if (location.type == BTRFS_INODE_ITEM_KEY) {
4033                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4034                 return inode;
4035         }
4036
4037         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4038
4039         index = srcu_read_lock(&root->fs_info->subvol_srcu);
4040         ret = fixup_tree_root_location(root, dir, dentry,
4041                                        &location, &sub_root);
4042         if (ret < 0) {
4043                 if (ret != -ENOENT)
4044                         inode = ERR_PTR(ret);
4045                 else
4046                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
4047         } else {
4048                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4049         }
4050         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4051
4052         if (!IS_ERR(inode) && root != sub_root) {
4053                 down_read(&root->fs_info->cleanup_work_sem);
4054                 if (!(inode->i_sb->s_flags & MS_RDONLY))
4055                         ret = btrfs_orphan_cleanup(sub_root);
4056                 up_read(&root->fs_info->cleanup_work_sem);
4057                 if (ret)
4058                         inode = ERR_PTR(ret);
4059         }
4060
4061         return inode;
4062 }
4063
4064 static int btrfs_dentry_delete(const struct dentry *dentry)
4065 {
4066         struct btrfs_root *root;
4067
4068         if (!dentry->d_inode && !IS_ROOT(dentry))
4069                 dentry = dentry->d_parent;
4070
4071         if (dentry->d_inode) {
4072                 root = BTRFS_I(dentry->d_inode)->root;
4073                 if (btrfs_root_refs(&root->root_item) == 0)
4074                         return 1;
4075         }
4076         return 0;
4077 }
4078
4079 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4080                                    struct nameidata *nd)
4081 {
4082         struct inode *inode;
4083
4084         inode = btrfs_lookup_dentry(dir, dentry);
4085         if (IS_ERR(inode))
4086                 return ERR_CAST(inode);
4087
4088         return d_splice_alias(inode, dentry);
4089 }
4090
4091 unsigned char btrfs_filetype_table[] = {
4092         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4093 };
4094
4095 static int btrfs_real_readdir(struct file *filp, void *dirent,
4096                               filldir_t filldir)
4097 {
4098         struct inode *inode = filp->f_dentry->d_inode;
4099         struct btrfs_root *root = BTRFS_I(inode)->root;
4100         struct btrfs_item *item;
4101         struct btrfs_dir_item *di;
4102         struct btrfs_key key;
4103         struct btrfs_key found_key;
4104         struct btrfs_path *path;
4105         struct list_head ins_list;
4106         struct list_head del_list;
4107         int ret;
4108         struct extent_buffer *leaf;
4109         int slot;
4110         unsigned char d_type;
4111         int over = 0;
4112         u32 di_cur;
4113         u32 di_total;
4114         u32 di_len;
4115         int key_type = BTRFS_DIR_INDEX_KEY;
4116         char tmp_name[32];
4117         char *name_ptr;
4118         int name_len;
4119         int is_curr = 0;        /* filp->f_pos points to the current index? */
4120
4121         /* FIXME, use a real flag for deciding about the key type */
4122         if (root->fs_info->tree_root == root)
4123                 key_type = BTRFS_DIR_ITEM_KEY;
4124
4125         /* special case for "." */
4126         if (filp->f_pos == 0) {
4127                 over = filldir(dirent, ".", 1, 1, btrfs_ino(inode), DT_DIR);
4128                 if (over)
4129                         return 0;
4130                 filp->f_pos = 1;
4131         }
4132         /* special case for .., just use the back ref */
4133         if (filp->f_pos == 1) {
4134                 u64 pino = parent_ino(filp->f_path.dentry);
4135                 over = filldir(dirent, "..", 2,
4136                                2, pino, DT_DIR);
4137                 if (over)
4138                         return 0;
4139                 filp->f_pos = 2;
4140         }
4141         path = btrfs_alloc_path();
4142         if (!path)
4143                 return -ENOMEM;
4144
4145         path->reada = 1;
4146
4147         if (key_type == BTRFS_DIR_INDEX_KEY) {
4148                 INIT_LIST_HEAD(&ins_list);
4149                 INIT_LIST_HEAD(&del_list);
4150                 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4151         }
4152
4153         btrfs_set_key_type(&key, key_type);
4154         key.offset = filp->f_pos;
4155         key.objectid = btrfs_ino(inode);
4156
4157         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4158         if (ret < 0)
4159                 goto err;
4160
4161         while (1) {
4162                 leaf = path->nodes[0];
4163                 slot = path->slots[0];
4164                 if (slot >= btrfs_header_nritems(leaf)) {
4165                         ret = btrfs_next_leaf(root, path);
4166                         if (ret < 0)
4167                                 goto err;
4168                         else if (ret > 0)
4169                                 break;
4170                         continue;
4171                 }
4172
4173                 item = btrfs_item_nr(leaf, slot);
4174                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4175
4176                 if (found_key.objectid != key.objectid)
4177                         break;
4178                 if (btrfs_key_type(&found_key) != key_type)
4179                         break;
4180                 if (found_key.offset < filp->f_pos)
4181                         goto next;
4182                 if (key_type == BTRFS_DIR_INDEX_KEY &&
4183                     btrfs_should_delete_dir_index(&del_list,
4184                                                   found_key.offset))
4185                         goto next;
4186
4187                 filp->f_pos = found_key.offset;
4188                 is_curr = 1;
4189
4190                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4191                 di_cur = 0;
4192                 di_total = btrfs_item_size(leaf, item);
4193
4194                 while (di_cur < di_total) {
4195                         struct btrfs_key location;
4196
4197                         if (verify_dir_item(root, leaf, di))
4198                                 break;
4199
4200                         name_len = btrfs_dir_name_len(leaf, di);
4201                         if (name_len <= sizeof(tmp_name)) {
4202                                 name_ptr = tmp_name;
4203                         } else {
4204                                 name_ptr = kmalloc(name_len, GFP_NOFS);
4205                                 if (!name_ptr) {
4206                                         ret = -ENOMEM;
4207                                         goto err;
4208                                 }
4209                         }
4210                         read_extent_buffer(leaf, name_ptr,
4211                                            (unsigned long)(di + 1), name_len);
4212
4213                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4214                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
4215
4216                         /* is this a reference to our own snapshot? If so
4217                          * skip it
4218                          */
4219                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
4220                             location.objectid == root->root_key.objectid) {
4221                                 over = 0;
4222                                 goto skip;
4223                         }
4224                         over = filldir(dirent, name_ptr, name_len,
4225                                        found_key.offset, location.objectid,
4226                                        d_type);
4227
4228 skip:
4229                         if (name_ptr != tmp_name)
4230                                 kfree(name_ptr);
4231
4232                         if (over)
4233                                 goto nopos;
4234                         di_len = btrfs_dir_name_len(leaf, di) +
4235                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
4236                         di_cur += di_len;
4237                         di = (struct btrfs_dir_item *)((char *)di + di_len);
4238                 }
4239 next:
4240                 path->slots[0]++;
4241         }
4242
4243         if (key_type == BTRFS_DIR_INDEX_KEY) {
4244                 if (is_curr)
4245                         filp->f_pos++;
4246                 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4247                                                       &ins_list);
4248                 if (ret)
4249                         goto nopos;
4250         }
4251
4252         /* Reached end of directory/root. Bump pos past the last item. */
4253         if (key_type == BTRFS_DIR_INDEX_KEY)
4254                 /*
4255                  * 32-bit glibc will use getdents64, but then strtol -
4256                  * so the last number we can serve is this.
4257                  */
4258                 filp->f_pos = 0x7fffffff;
4259         else
4260                 filp->f_pos++;
4261 nopos:
4262         ret = 0;
4263 err:
4264         if (key_type == BTRFS_DIR_INDEX_KEY)
4265                 btrfs_put_delayed_items(&ins_list, &del_list);
4266         btrfs_free_path(path);
4267         return ret;
4268 }
4269
4270 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4271 {
4272         struct btrfs_root *root = BTRFS_I(inode)->root;
4273         struct btrfs_trans_handle *trans;
4274         int ret = 0;
4275         bool nolock = false;
4276
4277         if (BTRFS_I(inode)->dummy_inode)
4278                 return 0;
4279
4280         if (btrfs_fs_closing(root->fs_info) && is_free_space_inode(root, inode))
4281                 nolock = true;
4282
4283         if (wbc->sync_mode == WB_SYNC_ALL) {
4284                 if (nolock)
4285                         trans = btrfs_join_transaction_nolock(root);
4286                 else
4287                         trans = btrfs_join_transaction(root);
4288                 if (IS_ERR(trans))
4289                         return PTR_ERR(trans);
4290                 if (nolock)
4291                         ret = btrfs_end_transaction_nolock(trans, root);
4292                 else
4293                         ret = btrfs_commit_transaction(trans, root);
4294         }
4295         return ret;
4296 }
4297
4298 /*
4299  * This is somewhat expensive, updating the tree every time the
4300  * inode changes.  But, it is most likely to find the inode in cache.
4301  * FIXME, needs more benchmarking...there are no reasons other than performance
4302  * to keep or drop this code.
4303  */
4304 void btrfs_dirty_inode(struct inode *inode, int flags)
4305 {
4306         struct btrfs_root *root = BTRFS_I(inode)->root;
4307         struct btrfs_trans_handle *trans;
4308         int ret;
4309
4310         if (BTRFS_I(inode)->dummy_inode)
4311                 return;
4312
4313         trans = btrfs_join_transaction(root);
4314         BUG_ON(IS_ERR(trans));
4315
4316         ret = btrfs_update_inode(trans, root, inode);
4317         if (ret && ret == -ENOSPC) {
4318                 /* whoops, lets try again with the full transaction */
4319                 btrfs_end_transaction(trans, root);
4320                 trans = btrfs_start_transaction(root, 1);
4321                 if (IS_ERR(trans)) {
4322                         printk_ratelimited(KERN_ERR "btrfs: fail to "
4323                                        "dirty  inode %llu error %ld\n",
4324                                        (unsigned long long)btrfs_ino(inode),
4325                                        PTR_ERR(trans));
4326                         return;
4327                 }
4328
4329                 ret = btrfs_update_inode(trans, root, inode);
4330                 if (ret) {
4331                         printk_ratelimited(KERN_ERR "btrfs: fail to "
4332                                        "dirty  inode %llu error %d\n",
4333                                        (unsigned long long)btrfs_ino(inode),
4334                                        ret);
4335                 }
4336         }
4337         btrfs_end_transaction(trans, root);
4338         if (BTRFS_I(inode)->delayed_node)
4339                 btrfs_balance_delayed_items(root);
4340 }
4341
4342 /*
4343  * find the highest existing sequence number in a directory
4344  * and then set the in-memory index_cnt variable to reflect
4345  * free sequence numbers
4346  */
4347 static int btrfs_set_inode_index_count(struct inode *inode)
4348 {
4349         struct btrfs_root *root = BTRFS_I(inode)->root;
4350         struct btrfs_key key, found_key;
4351         struct btrfs_path *path;
4352         struct extent_buffer *leaf;
4353         int ret;
4354
4355         key.objectid = btrfs_ino(inode);
4356         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4357         key.offset = (u64)-1;
4358
4359         path = btrfs_alloc_path();
4360         if (!path)
4361                 return -ENOMEM;
4362
4363         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4364         if (ret < 0)
4365                 goto out;
4366         /* FIXME: we should be able to handle this */
4367         if (ret == 0)
4368                 goto out;
4369         ret = 0;
4370
4371         /*
4372          * MAGIC NUMBER EXPLANATION:
4373          * since we search a directory based on f_pos we have to start at 2
4374          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4375          * else has to start at 2
4376          */
4377         if (path->slots[0] == 0) {
4378                 BTRFS_I(inode)->index_cnt = 2;
4379                 goto out;
4380         }
4381
4382         path->slots[0]--;
4383
4384         leaf = path->nodes[0];
4385         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4386
4387         if (found_key.objectid != btrfs_ino(inode) ||
4388             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4389                 BTRFS_I(inode)->index_cnt = 2;
4390                 goto out;
4391         }
4392
4393         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4394 out:
4395         btrfs_free_path(path);
4396         return ret;
4397 }
4398
4399 /*
4400  * helper to find a free sequence number in a given directory.  This current
4401  * code is very simple, later versions will do smarter things in the btree
4402  */
4403 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4404 {
4405         int ret = 0;
4406
4407         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4408                 ret = btrfs_inode_delayed_dir_index_count(dir);
4409                 if (ret) {
4410                         ret = btrfs_set_inode_index_count(dir);
4411                         if (ret)
4412                                 return ret;
4413                 }
4414         }
4415
4416         *index = BTRFS_I(dir)->index_cnt;
4417         BTRFS_I(dir)->index_cnt++;
4418
4419         return ret;
4420 }
4421
4422 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4423                                      struct btrfs_root *root,
4424                                      struct inode *dir,
4425                                      const char *name, int name_len,
4426                                      u64 ref_objectid, u64 objectid, int mode,
4427                                      u64 *index)
4428 {
4429         struct inode *inode;
4430         struct btrfs_inode_item *inode_item;
4431         struct btrfs_key *location;
4432         struct btrfs_path *path;
4433         struct btrfs_inode_ref *ref;
4434         struct btrfs_key key[2];
4435         u32 sizes[2];
4436         unsigned long ptr;
4437         int ret;
4438         int owner;
4439
4440         path = btrfs_alloc_path();
4441         BUG_ON(!path);
4442
4443         inode = new_inode(root->fs_info->sb);
4444         if (!inode) {
4445                 btrfs_free_path(path);
4446                 return ERR_PTR(-ENOMEM);
4447         }
4448
4449         /*
4450          * we have to initialize this early, so we can reclaim the inode
4451          * number if we fail afterwards in this function.
4452          */
4453         inode->i_ino = objectid;
4454
4455         if (dir) {
4456                 trace_btrfs_inode_request(dir);
4457
4458                 ret = btrfs_set_inode_index(dir, index);
4459                 if (ret) {
4460                         btrfs_free_path(path);
4461                         iput(inode);
4462                         return ERR_PTR(ret);
4463                 }
4464         }
4465         /*
4466          * index_cnt is ignored for everything but a dir,
4467          * btrfs_get_inode_index_count has an explanation for the magic
4468          * number
4469          */
4470         BTRFS_I(inode)->index_cnt = 2;
4471         BTRFS_I(inode)->root = root;
4472         BTRFS_I(inode)->generation = trans->transid;
4473         inode->i_generation = BTRFS_I(inode)->generation;
4474         btrfs_set_inode_space_info(root, inode);
4475
4476         if (mode & S_IFDIR)
4477                 owner = 0;
4478         else
4479                 owner = 1;
4480
4481         key[0].objectid = objectid;
4482         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4483         key[0].offset = 0;
4484
4485         key[1].objectid = objectid;
4486         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4487         key[1].offset = ref_objectid;
4488
4489         sizes[0] = sizeof(struct btrfs_inode_item);
4490         sizes[1] = name_len + sizeof(*ref);
4491
4492         path->leave_spinning = 1;
4493         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4494         if (ret != 0)
4495                 goto fail;
4496
4497         inode_init_owner(inode, dir, mode);
4498         inode_set_bytes(inode, 0);
4499         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4500         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4501                                   struct btrfs_inode_item);
4502         fill_inode_item(trans, path->nodes[0], inode_item, inode);
4503
4504         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4505                              struct btrfs_inode_ref);
4506         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4507         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4508         ptr = (unsigned long)(ref + 1);
4509         write_extent_buffer(path->nodes[0], name, ptr, name_len);
4510
4511         btrfs_mark_buffer_dirty(path->nodes[0]);
4512         btrfs_free_path(path);
4513
4514         location = &BTRFS_I(inode)->location;
4515         location->objectid = objectid;
4516         location->offset = 0;
4517         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4518
4519         btrfs_inherit_iflags(inode, dir);
4520
4521         if ((mode & S_IFREG)) {
4522                 if (btrfs_test_opt(root, NODATASUM))
4523                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4524                 if (btrfs_test_opt(root, NODATACOW) ||
4525                     (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4526                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4527         }
4528
4529         insert_inode_hash(inode);
4530         inode_tree_add(inode);
4531
4532         trace_btrfs_inode_new(inode);
4533         btrfs_set_inode_last_trans(trans, inode);
4534
4535         return inode;
4536 fail:
4537         if (dir)
4538                 BTRFS_I(dir)->index_cnt--;
4539         btrfs_free_path(path);
4540         iput(inode);
4541         return ERR_PTR(ret);
4542 }
4543
4544 static inline u8 btrfs_inode_type(struct inode *inode)
4545 {
4546         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4547 }
4548
4549 /*
4550  * utility function to add 'inode' into 'parent_inode' with
4551  * a give name and a given sequence number.
4552  * if 'add_backref' is true, also insert a backref from the
4553  * inode to the parent directory.
4554  */
4555 int btrfs_add_link(struct btrfs_trans_handle *trans,
4556                    struct inode *parent_inode, struct inode *inode,
4557                    const char *name, int name_len, int add_backref, u64 index)
4558 {
4559         int ret = 0;
4560         struct btrfs_key key;
4561         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4562         u64 ino = btrfs_ino(inode);
4563         u64 parent_ino = btrfs_ino(parent_inode);
4564
4565         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4566                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4567         } else {
4568                 key.objectid = ino;
4569                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4570                 key.offset = 0;
4571         }
4572
4573         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4574                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4575                                          key.objectid, root->root_key.objectid,
4576                                          parent_ino, index, name, name_len);
4577         } else if (add_backref) {
4578                 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4579                                              parent_ino, index);
4580         }
4581
4582         if (ret == 0) {
4583                 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4584                                             parent_inode, &key,
4585                                             btrfs_inode_type(inode), index);
4586                 BUG_ON(ret);
4587
4588                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4589                                    name_len * 2);
4590                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4591                 ret = btrfs_update_inode(trans, root, parent_inode);
4592         }
4593         return ret;
4594 }
4595
4596 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4597                             struct inode *dir, struct dentry *dentry,
4598                             struct inode *inode, int backref, u64 index)
4599 {
4600         int err = btrfs_add_link(trans, dir, inode,
4601                                  dentry->d_name.name, dentry->d_name.len,
4602                                  backref, index);
4603         if (!err) {
4604                 d_instantiate(dentry, inode);
4605                 return 0;
4606         }
4607         if (err > 0)
4608                 err = -EEXIST;
4609         return err;
4610 }
4611
4612 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4613                         int mode, dev_t rdev)
4614 {
4615         struct btrfs_trans_handle *trans;
4616         struct btrfs_root *root = BTRFS_I(dir)->root;
4617         struct inode *inode = NULL;
4618         int err;
4619         int drop_inode = 0;
4620         u64 objectid;
4621         unsigned long nr = 0;
4622         u64 index = 0;
4623
4624         if (!new_valid_dev(rdev))
4625                 return -EINVAL;
4626
4627         /*
4628          * 2 for inode item and ref
4629          * 2 for dir items
4630          * 1 for xattr if selinux is on
4631          */
4632         trans = btrfs_start_transaction(root, 5);
4633         if (IS_ERR(trans))
4634                 return PTR_ERR(trans);
4635
4636         err = btrfs_find_free_ino(root, &objectid);
4637         if (err)
4638                 goto out_unlock;
4639
4640         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4641                                 dentry->d_name.len, btrfs_ino(dir), objectid,
4642                                 mode, &index);
4643         if (IS_ERR(inode)) {
4644                 err = PTR_ERR(inode);
4645                 goto out_unlock;
4646         }
4647
4648         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4649         if (err) {
4650                 drop_inode = 1;
4651                 goto out_unlock;
4652         }
4653
4654         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4655         if (err)
4656                 drop_inode = 1;
4657         else {
4658                 inode->i_op = &btrfs_special_inode_operations;
4659                 init_special_inode(inode, inode->i_mode, rdev);
4660                 btrfs_update_inode(trans, root, inode);
4661         }
4662 out_unlock:
4663         nr = trans->blocks_used;
4664         btrfs_end_transaction_throttle(trans, root);
4665         btrfs_btree_balance_dirty(root, nr);
4666         if (drop_inode) {
4667                 inode_dec_link_count(inode);
4668                 iput(inode);
4669         }
4670         return err;
4671 }
4672
4673 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4674                         int mode, struct nameidata *nd)
4675 {
4676         struct btrfs_trans_handle *trans;
4677         struct btrfs_root *root = BTRFS_I(dir)->root;
4678         struct inode *inode = NULL;
4679         int drop_inode = 0;
4680         int err;
4681         unsigned long nr = 0;
4682         u64 objectid;
4683         u64 index = 0;
4684
4685         /*
4686          * 2 for inode item and ref
4687          * 2 for dir items
4688          * 1 for xattr if selinux is on
4689          */
4690         trans = btrfs_start_transaction(root, 5);
4691         if (IS_ERR(trans))
4692                 return PTR_ERR(trans);
4693
4694         err = btrfs_find_free_ino(root, &objectid);
4695         if (err)
4696                 goto out_unlock;
4697
4698         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4699                                 dentry->d_name.len, btrfs_ino(dir), objectid,
4700                                 mode, &index);
4701         if (IS_ERR(inode)) {
4702                 err = PTR_ERR(inode);
4703                 goto out_unlock;
4704         }
4705
4706         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4707         if (err) {
4708                 drop_inode = 1;
4709                 goto out_unlock;
4710         }
4711
4712         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4713         if (err)
4714                 drop_inode = 1;
4715         else {
4716                 inode->i_mapping->a_ops = &btrfs_aops;
4717                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4718                 inode->i_fop = &btrfs_file_operations;
4719                 inode->i_op = &btrfs_file_inode_operations;
4720                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4721         }
4722 out_unlock:
4723         nr = trans->blocks_used;
4724         btrfs_end_transaction_throttle(trans, root);
4725         if (drop_inode) {
4726                 inode_dec_link_count(inode);
4727                 iput(inode);
4728         }
4729         btrfs_btree_balance_dirty(root, nr);
4730         return err;
4731 }
4732
4733 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4734                       struct dentry *dentry)
4735 {
4736         struct btrfs_trans_handle *trans;
4737         struct btrfs_root *root = BTRFS_I(dir)->root;
4738         struct inode *inode = old_dentry->d_inode;
4739         u64 index;
4740         unsigned long nr = 0;
4741         int err;
4742         int drop_inode = 0;
4743
4744         /* do not allow sys_link's with other subvols of the same device */
4745         if (root->objectid != BTRFS_I(inode)->root->objectid)
4746                 return -EXDEV;
4747
4748         if (inode->i_nlink == ~0U)
4749                 return -EMLINK;
4750
4751         err = btrfs_set_inode_index(dir, &index);
4752         if (err)
4753                 goto fail;
4754
4755         /*
4756          * 2 items for inode and inode ref
4757          * 2 items for dir items
4758          * 1 item for parent inode
4759          */
4760         trans = btrfs_start_transaction(root, 5);
4761         if (IS_ERR(trans)) {
4762                 err = PTR_ERR(trans);
4763                 goto fail;
4764         }
4765
4766         btrfs_inc_nlink(inode);
4767         inode->i_ctime = CURRENT_TIME;
4768         ihold(inode);
4769
4770         err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4771
4772         if (err) {
4773                 drop_inode = 1;
4774         } else {
4775                 struct dentry *parent = dget_parent(dentry);
4776                 err = btrfs_update_inode(trans, root, inode);
4777                 BUG_ON(err);
4778                 btrfs_log_new_name(trans, inode, NULL, parent);
4779                 dput(parent);
4780         }
4781
4782         nr = trans->blocks_used;
4783         btrfs_end_transaction_throttle(trans, root);
4784 fail:
4785         if (drop_inode) {
4786                 inode_dec_link_count(inode);
4787                 iput(inode);
4788         }
4789         btrfs_btree_balance_dirty(root, nr);
4790         return err;
4791 }
4792
4793 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4794 {
4795         struct inode *inode = NULL;
4796         struct btrfs_trans_handle *trans;
4797         struct btrfs_root *root = BTRFS_I(dir)->root;
4798         int err = 0;
4799         int drop_on_err = 0;
4800         u64 objectid = 0;
4801         u64 index = 0;
4802         unsigned long nr = 1;
4803
4804         /*
4805          * 2 items for inode and ref
4806          * 2 items for dir items
4807          * 1 for xattr if selinux is on
4808          */
4809         trans = btrfs_start_transaction(root, 5);
4810         if (IS_ERR(trans))
4811                 return PTR_ERR(trans);
4812
4813         err = btrfs_find_free_ino(root, &objectid);
4814         if (err)
4815                 goto out_fail;
4816
4817         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4818                                 dentry->d_name.len, btrfs_ino(dir), objectid,
4819                                 S_IFDIR | mode, &index);
4820         if (IS_ERR(inode)) {
4821                 err = PTR_ERR(inode);
4822                 goto out_fail;
4823         }
4824
4825         drop_on_err = 1;
4826
4827         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4828         if (err)
4829                 goto out_fail;
4830
4831         inode->i_op = &btrfs_dir_inode_operations;
4832         inode->i_fop = &btrfs_dir_file_operations;
4833
4834         btrfs_i_size_write(inode, 0);
4835         err = btrfs_update_inode(trans, root, inode);
4836         if (err)
4837                 goto out_fail;
4838
4839         err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4840                              dentry->d_name.len, 0, index);
4841         if (err)
4842                 goto out_fail;
4843
4844         d_instantiate(dentry, inode);
4845         drop_on_err = 0;
4846
4847 out_fail:
4848         nr = trans->blocks_used;
4849         btrfs_end_transaction_throttle(trans, root);
4850         if (drop_on_err)
4851                 iput(inode);
4852         btrfs_btree_balance_dirty(root, nr);
4853         return err;
4854 }
4855
4856 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4857  * and an extent that you want to insert, deal with overlap and insert
4858  * the new extent into the tree.
4859  */
4860 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4861                                 struct extent_map *existing,
4862                                 struct extent_map *em,
4863                                 u64 map_start, u64 map_len)
4864 {
4865         u64 start_diff;
4866
4867         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4868         start_diff = map_start - em->start;
4869         em->start = map_start;
4870         em->len = map_len;
4871         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4872             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4873                 em->block_start += start_diff;
4874                 em->block_len -= start_diff;
4875         }
4876         return add_extent_mapping(em_tree, em);
4877 }
4878
4879 static noinline int uncompress_inline(struct btrfs_path *path,
4880                                       struct inode *inode, struct page *page,
4881                                       size_t pg_offset, u64 extent_offset,
4882                                       struct btrfs_file_extent_item *item)
4883 {
4884         int ret;
4885         struct extent_buffer *leaf = path->nodes[0];
4886         char *tmp;
4887         size_t max_size;
4888         unsigned long inline_size;
4889         unsigned long ptr;
4890         int compress_type;
4891
4892         WARN_ON(pg_offset != 0);
4893         compress_type = btrfs_file_extent_compression(leaf, item);
4894         max_size = btrfs_file_extent_ram_bytes(leaf, item);
4895         inline_size = btrfs_file_extent_inline_item_len(leaf,
4896                                         btrfs_item_nr(leaf, path->slots[0]));
4897         tmp = kmalloc(inline_size, GFP_NOFS);
4898         if (!tmp)
4899                 return -ENOMEM;
4900         ptr = btrfs_file_extent_inline_start(item);
4901
4902         read_extent_buffer(leaf, tmp, ptr, inline_size);
4903
4904         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4905         ret = btrfs_decompress(compress_type, tmp, page,
4906                                extent_offset, inline_size, max_size);
4907         if (ret) {
4908                 char *kaddr = kmap_atomic(page, KM_USER0);
4909                 unsigned long copy_size = min_t(u64,
4910                                   PAGE_CACHE_SIZE - pg_offset,
4911                                   max_size - extent_offset);
4912                 memset(kaddr + pg_offset, 0, copy_size);
4913                 kunmap_atomic(kaddr, KM_USER0);
4914         }
4915         kfree(tmp);
4916         return 0;
4917 }
4918
4919 /*
4920  * a bit scary, this does extent mapping from logical file offset to the disk.
4921  * the ugly parts come from merging extents from the disk with the in-ram
4922  * representation.  This gets more complex because of the data=ordered code,
4923  * where the in-ram extents might be locked pending data=ordered completion.
4924  *
4925  * This also copies inline extents directly into the page.
4926  */
4927
4928 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4929                                     size_t pg_offset, u64 start, u64 len,
4930                                     int create)
4931 {
4932         int ret;
4933         int err = 0;
4934         u64 bytenr;
4935         u64 extent_start = 0;
4936         u64 extent_end = 0;
4937         u64 objectid = btrfs_ino(inode);
4938         u32 found_type;
4939         struct btrfs_path *path = NULL;
4940         struct btrfs_root *root = BTRFS_I(inode)->root;
4941         struct btrfs_file_extent_item *item;
4942         struct extent_buffer *leaf;
4943         struct btrfs_key found_key;
4944         struct extent_map *em = NULL;
4945         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4946         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4947         struct btrfs_trans_handle *trans = NULL;
4948         int compress_type;
4949
4950 again:
4951         read_lock(&em_tree->lock);
4952         em = lookup_extent_mapping(em_tree, start, len);
4953         if (em)
4954                 em->bdev = root->fs_info->fs_devices->latest_bdev;
4955         read_unlock(&em_tree->lock);
4956
4957         if (em) {
4958                 if (em->start > start || em->start + em->len <= start)
4959                         free_extent_map(em);
4960                 else if (em->block_start == EXTENT_MAP_INLINE && page)
4961                         free_extent_map(em);
4962                 else
4963                         goto out;
4964         }
4965         em = alloc_extent_map();
4966         if (!em) {
4967                 err = -ENOMEM;
4968                 goto out;
4969         }
4970         em->bdev = root->fs_info->fs_devices->latest_bdev;
4971         em->start = EXTENT_MAP_HOLE;
4972         em->orig_start = EXTENT_MAP_HOLE;
4973         em->len = (u64)-1;
4974         em->block_len = (u64)-1;
4975
4976         if (!path) {
4977                 path = btrfs_alloc_path();
4978                 if (!path) {
4979                         err = -ENOMEM;
4980                         goto out;
4981                 }
4982                 /*
4983                  * Chances are we'll be called again, so go ahead and do
4984                  * readahead
4985                  */
4986                 path->reada = 1;
4987         }
4988
4989         ret = btrfs_lookup_file_extent(trans, root, path,
4990                                        objectid, start, trans != NULL);
4991         if (ret < 0) {
4992                 err = ret;
4993                 goto out;
4994         }
4995
4996         if (ret != 0) {
4997                 if (path->slots[0] == 0)
4998                         goto not_found;
4999                 path->slots[0]--;
5000         }
5001
5002         leaf = path->nodes[0];
5003         item = btrfs_item_ptr(leaf, path->slots[0],
5004                               struct btrfs_file_extent_item);
5005         /* are we inside the extent that was found? */
5006         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5007         found_type = btrfs_key_type(&found_key);
5008         if (found_key.objectid != objectid ||
5009             found_type != BTRFS_EXTENT_DATA_KEY) {
5010                 goto not_found;
5011         }
5012
5013         found_type = btrfs_file_extent_type(leaf, item);
5014         extent_start = found_key.offset;
5015         compress_type = btrfs_file_extent_compression(leaf, item);
5016         if (found_type == BTRFS_FILE_EXTENT_REG ||
5017             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5018                 extent_end = extent_start +
5019                        btrfs_file_extent_num_bytes(leaf, item);
5020         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5021                 size_t size;
5022                 size = btrfs_file_extent_inline_len(leaf, item);
5023                 extent_end = (extent_start + size + root->sectorsize - 1) &
5024                         ~((u64)root->sectorsize - 1);
5025         }
5026
5027         if (start >= extent_end) {
5028                 path->slots[0]++;
5029                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5030                         ret = btrfs_next_leaf(root, path);
5031                         if (ret < 0) {
5032                                 err = ret;
5033                                 goto out;
5034                         }
5035                         if (ret > 0)
5036                                 goto not_found;
5037                         leaf = path->nodes[0];
5038                 }
5039                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5040                 if (found_key.objectid != objectid ||
5041                     found_key.type != BTRFS_EXTENT_DATA_KEY)
5042                         goto not_found;
5043                 if (start + len <= found_key.offset)
5044                         goto not_found;
5045                 em->start = start;
5046                 em->len = found_key.offset - start;
5047                 goto not_found_em;
5048         }
5049
5050         if (found_type == BTRFS_FILE_EXTENT_REG ||
5051             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5052                 em->start = extent_start;
5053                 em->len = extent_end - extent_start;
5054                 em->orig_start = extent_start -
5055                                  btrfs_file_extent_offset(leaf, item);
5056                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5057                 if (bytenr == 0) {
5058                         em->block_start = EXTENT_MAP_HOLE;
5059                         goto insert;
5060                 }
5061                 if (compress_type != BTRFS_COMPRESS_NONE) {
5062                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5063                         em->compress_type = compress_type;
5064                         em->block_start = bytenr;
5065                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5066                                                                          item);
5067                 } else {
5068                         bytenr += btrfs_file_extent_offset(leaf, item);
5069                         em->block_start = bytenr;
5070                         em->block_len = em->len;
5071                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5072                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5073                 }
5074                 goto insert;
5075         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5076                 unsigned long ptr;
5077                 char *map;
5078                 size_t size;
5079                 size_t extent_offset;
5080                 size_t copy_size;
5081
5082                 em->block_start = EXTENT_MAP_INLINE;
5083                 if (!page || create) {
5084                         em->start = extent_start;
5085                         em->len = extent_end - extent_start;
5086                         goto out;
5087                 }
5088
5089                 size = btrfs_file_extent_inline_len(leaf, item);
5090                 extent_offset = page_offset(page) + pg_offset - extent_start;
5091                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5092                                 size - extent_offset);
5093                 em->start = extent_start + extent_offset;
5094                 em->len = (copy_size + root->sectorsize - 1) &
5095                         ~((u64)root->sectorsize - 1);
5096                 em->orig_start = EXTENT_MAP_INLINE;
5097                 if (compress_type) {
5098                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5099                         em->compress_type = compress_type;
5100                 }
5101                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5102                 if (create == 0 && !PageUptodate(page)) {
5103                         if (btrfs_file_extent_compression(leaf, item) !=
5104                             BTRFS_COMPRESS_NONE) {
5105                                 ret = uncompress_inline(path, inode, page,
5106                                                         pg_offset,
5107                                                         extent_offset, item);
5108                                 BUG_ON(ret);
5109                         } else {
5110                                 map = kmap(page);
5111                                 read_extent_buffer(leaf, map + pg_offset, ptr,
5112                                                    copy_size);
5113                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5114                                         memset(map + pg_offset + copy_size, 0,
5115                                                PAGE_CACHE_SIZE - pg_offset -
5116                                                copy_size);
5117                                 }
5118                                 kunmap(page);
5119                         }
5120                         flush_dcache_page(page);
5121                 } else if (create && PageUptodate(page)) {
5122                         WARN_ON(1);
5123                         if (!trans) {
5124                                 kunmap(page);
5125                                 free_extent_map(em);
5126                                 em = NULL;
5127
5128                                 btrfs_release_path(path);
5129                                 trans = btrfs_join_transaction(root);
5130
5131                                 if (IS_ERR(trans))
5132                                         return ERR_CAST(trans);
5133                                 goto again;
5134                         }
5135                         map = kmap(page);
5136                         write_extent_buffer(leaf, map + pg_offset, ptr,
5137                                             copy_size);
5138                         kunmap(page);
5139                         btrfs_mark_buffer_dirty(leaf);
5140                 }
5141                 set_extent_uptodate(io_tree, em->start,
5142                                     extent_map_end(em) - 1, NULL, GFP_NOFS);
5143                 goto insert;
5144         } else {
5145                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5146                 WARN_ON(1);
5147         }
5148 not_found:
5149         em->start = start;
5150         em->len = len;
5151 not_found_em:
5152         em->block_start = EXTENT_MAP_HOLE;
5153         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5154 insert:
5155         btrfs_release_path(path);
5156         if (em->start > start || extent_map_end(em) <= start) {
5157                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5158                        "[%llu %llu]\n", (unsigned long long)em->start,
5159                        (unsigned long long)em->len,
5160                        (unsigned long long)start,
5161                        (unsigned long long)len);
5162                 err = -EIO;
5163                 goto out;
5164         }
5165
5166         err = 0;
5167         write_lock(&em_tree->lock);
5168         ret = add_extent_mapping(em_tree, em);
5169         /* it is possible that someone inserted the extent into the tree
5170          * while we had the lock dropped.  It is also possible that
5171          * an overlapping map exists in the tree
5172          */
5173         if (ret == -EEXIST) {
5174                 struct extent_map *existing;
5175
5176                 ret = 0;
5177
5178                 existing = lookup_extent_mapping(em_tree, start, len);
5179                 if (existing && (existing->start > start ||
5180                     existing->start + existing->len <= start)) {
5181                         free_extent_map(existing);
5182                         existing = NULL;
5183                 }
5184                 if (!existing) {
5185                         existing = lookup_extent_mapping(em_tree, em->start,
5186                                                          em->len);
5187                         if (existing) {
5188                                 err = merge_extent_mapping(em_tree, existing,
5189                                                            em, start,
5190                                                            root->sectorsize);
5191                                 free_extent_map(existing);
5192                                 if (err) {
5193                                         free_extent_map(em);
5194                                         em = NULL;
5195                                 }
5196                         } else {
5197                                 err = -EIO;
5198                                 free_extent_map(em);
5199                                 em = NULL;
5200                         }
5201                 } else {
5202                         free_extent_map(em);
5203                         em = existing;
5204                         err = 0;
5205                 }
5206         }
5207         write_unlock(&em_tree->lock);
5208 out:
5209
5210         trace_btrfs_get_extent(root, em);
5211
5212         if (path)
5213                 btrfs_free_path(path);
5214         if (trans) {
5215                 ret = btrfs_end_transaction(trans, root);
5216                 if (!err)
5217                         err = ret;
5218         }
5219         if (err) {
5220                 free_extent_map(em);
5221                 return ERR_PTR(err);
5222         }
5223         return em;
5224 }
5225
5226 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5227                                            size_t pg_offset, u64 start, u64 len,
5228                                            int create)
5229 {
5230         struct extent_map *em;
5231         struct extent_map *hole_em = NULL;
5232         u64 range_start = start;
5233         u64 end;
5234         u64 found;
5235         u64 found_end;
5236         int err = 0;
5237
5238         em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5239         if (IS_ERR(em))
5240                 return em;
5241         if (em) {
5242                 /*
5243                  * if our em maps to a hole, there might
5244                  * actually be delalloc bytes behind it
5245                  */
5246                 if (em->block_start != EXTENT_MAP_HOLE)
5247                         return em;
5248                 else
5249                         hole_em = em;
5250         }
5251
5252         /* check to see if we've wrapped (len == -1 or similar) */
5253         end = start + len;
5254         if (end < start)
5255                 end = (u64)-1;
5256         else
5257                 end -= 1;
5258
5259         em = NULL;
5260
5261         /* ok, we didn't find anything, lets look for delalloc */
5262         found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5263                                  end, len, EXTENT_DELALLOC, 1);
5264         found_end = range_start + found;
5265         if (found_end < range_start)
5266                 found_end = (u64)-1;
5267
5268         /*
5269          * we didn't find anything useful, return
5270          * the original results from get_extent()
5271          */
5272         if (range_start > end || found_end <= start) {
5273                 em = hole_em;
5274                 hole_em = NULL;
5275                 goto out;
5276         }
5277
5278         /* adjust the range_start to make sure it doesn't
5279          * go backwards from the start they passed in
5280          */
5281         range_start = max(start,range_start);
5282         found = found_end - range_start;
5283
5284         if (found > 0) {
5285                 u64 hole_start = start;
5286                 u64 hole_len = len;
5287
5288                 em = alloc_extent_map();
5289                 if (!em) {
5290                         err = -ENOMEM;
5291                         goto out;
5292                 }
5293                 /*
5294                  * when btrfs_get_extent can't find anything it
5295                  * returns one huge hole
5296                  *
5297                  * make sure what it found really fits our range, and
5298                  * adjust to make sure it is based on the start from
5299                  * the caller
5300                  */
5301                 if (hole_em) {
5302                         u64 calc_end = extent_map_end(hole_em);
5303
5304                         if (calc_end <= start || (hole_em->start > end)) {
5305                                 free_extent_map(hole_em);
5306                                 hole_em = NULL;
5307                         } else {
5308                                 hole_start = max(hole_em->start, start);
5309                                 hole_len = calc_end - hole_start;
5310                         }
5311                 }
5312                 em->bdev = NULL;
5313                 if (hole_em && range_start > hole_start) {
5314                         /* our hole starts before our delalloc, so we
5315                          * have to return just the parts of the hole
5316                          * that go until  the delalloc starts
5317                          */
5318                         em->len = min(hole_len,
5319                                       range_start - hole_start);
5320                         em->start = hole_start;
5321                         em->orig_start = hole_start;
5322                         /*
5323                          * don't adjust block start at all,
5324                          * it is fixed at EXTENT_MAP_HOLE
5325                          */
5326                         em->block_start = hole_em->block_start;
5327                         em->block_len = hole_len;
5328                 } else {
5329                         em->start = range_start;
5330                         em->len = found;
5331                         em->orig_start = range_start;
5332                         em->block_start = EXTENT_MAP_DELALLOC;
5333                         em->block_len = found;
5334                 }
5335         } else if (hole_em) {
5336                 return hole_em;
5337         }
5338 out:
5339
5340         free_extent_map(hole_em);
5341         if (err) {
5342                 free_extent_map(em);
5343                 return ERR_PTR(err);
5344         }
5345         return em;
5346 }
5347
5348 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5349                                                   struct extent_map *em,
5350                                                   u64 start, u64 len)
5351 {
5352         struct btrfs_root *root = BTRFS_I(inode)->root;
5353         struct btrfs_trans_handle *trans;
5354         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5355         struct btrfs_key ins;
5356         u64 alloc_hint;
5357         int ret;
5358         bool insert = false;
5359
5360         /*
5361          * Ok if the extent map we looked up is a hole and is for the exact
5362          * range we want, there is no reason to allocate a new one, however if
5363          * it is not right then we need to free this one and drop the cache for
5364          * our range.
5365          */
5366         if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5367             em->len != len) {
5368                 free_extent_map(em);
5369                 em = NULL;
5370                 insert = true;
5371                 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5372         }
5373
5374         trans = btrfs_join_transaction(root);
5375         if (IS_ERR(trans))
5376                 return ERR_CAST(trans);
5377
5378         if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5379                 btrfs_add_inode_defrag(trans, inode);
5380
5381         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5382
5383         alloc_hint = get_extent_allocation_hint(inode, start, len);
5384         ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5385                                    alloc_hint, (u64)-1, &ins, 1);
5386         if (ret) {
5387                 em = ERR_PTR(ret);
5388                 goto out;
5389         }
5390
5391         if (!em) {
5392                 em = alloc_extent_map();
5393                 if (!em) {
5394                         em = ERR_PTR(-ENOMEM);
5395                         goto out;
5396                 }
5397         }
5398
5399         em->start = start;
5400         em->orig_start = em->start;
5401         em->len = ins.offset;
5402
5403         em->block_start = ins.objectid;
5404         em->block_len = ins.offset;
5405         em->bdev = root->fs_info->fs_devices->latest_bdev;
5406
5407         /*
5408          * We need to do this because if we're using the original em we searched
5409          * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5410          */
5411         em->flags = 0;
5412         set_bit(EXTENT_FLAG_PINNED, &em->flags);
5413
5414         while (insert) {
5415                 write_lock(&em_tree->lock);
5416                 ret = add_extent_mapping(em_tree, em);
5417                 write_unlock(&em_tree->lock);
5418                 if (ret != -EEXIST)
5419                         break;
5420                 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5421         }
5422
5423         ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5424                                            ins.offset, ins.offset, 0);
5425         if (ret) {
5426                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5427                 em = ERR_PTR(ret);
5428         }
5429 out:
5430         btrfs_end_transaction(trans, root);
5431         return em;
5432 }
5433
5434 /*
5435  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5436  * block must be cow'd
5437  */
5438 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5439                                       struct inode *inode, u64 offset, u64 len)
5440 {
5441         struct btrfs_path *path;
5442         int ret;
5443         struct extent_buffer *leaf;
5444         struct btrfs_root *root = BTRFS_I(inode)->root;
5445         struct btrfs_file_extent_item *fi;
5446         struct btrfs_key key;
5447         u64 disk_bytenr;
5448         u64 backref_offset;
5449         u64 extent_end;
5450         u64 num_bytes;
5451         int slot;
5452         int found_type;
5453
5454         path = btrfs_alloc_path();
5455         if (!path)
5456                 return -ENOMEM;
5457
5458         ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5459                                        offset, 0);
5460         if (ret < 0)
5461                 goto out;
5462
5463         slot = path->slots[0];
5464         if (ret == 1) {
5465                 if (slot == 0) {
5466                         /* can't find the item, must cow */
5467                         ret = 0;
5468                         goto out;
5469                 }
5470                 slot--;
5471         }
5472         ret = 0;
5473         leaf = path->nodes[0];
5474         btrfs_item_key_to_cpu(leaf, &key, slot);
5475         if (key.objectid != btrfs_ino(inode) ||
5476             key.type != BTRFS_EXTENT_DATA_KEY) {
5477                 /* not our file or wrong item type, must cow */
5478                 goto out;
5479         }
5480
5481         if (key.offset > offset) {
5482                 /* Wrong offset, must cow */
5483                 goto out;
5484         }
5485
5486         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5487         found_type = btrfs_file_extent_type(leaf, fi);
5488         if (found_type != BTRFS_FILE_EXTENT_REG &&
5489             found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5490                 /* not a regular extent, must cow */
5491                 goto out;
5492         }
5493         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5494         backref_offset = btrfs_file_extent_offset(leaf, fi);
5495
5496         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5497         if (extent_end < offset + len) {
5498                 /* extent doesn't include our full range, must cow */
5499                 goto out;
5500         }
5501
5502         if (btrfs_extent_readonly(root, disk_bytenr))
5503                 goto out;
5504
5505         /*
5506          * look for other files referencing this extent, if we
5507          * find any we must cow
5508          */
5509         if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5510                                   key.offset - backref_offset, disk_bytenr))
5511                 goto out;
5512
5513         /*
5514          * adjust disk_bytenr and num_bytes to cover just the bytes
5515          * in this extent we are about to write.  If there
5516          * are any csums in that range we have to cow in order
5517          * to keep the csums correct
5518          */
5519         disk_bytenr += backref_offset;
5520         disk_bytenr += offset - key.offset;
5521         num_bytes = min(offset + len, extent_end) - offset;
5522         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5523                                 goto out;
5524         /*
5525          * all of the above have passed, it is safe to overwrite this extent
5526          * without cow
5527          */
5528         ret = 1;
5529 out:
5530         btrfs_free_path(path);
5531         return ret;
5532 }
5533
5534 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5535                                    struct buffer_head *bh_result, int create)
5536 {
5537         struct extent_map *em;
5538         struct btrfs_root *root = BTRFS_I(inode)->root;
5539         u64 start = iblock << inode->i_blkbits;
5540         u64 len = bh_result->b_size;
5541         struct btrfs_trans_handle *trans;
5542
5543         em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5544         if (IS_ERR(em))
5545                 return PTR_ERR(em);
5546
5547         /*
5548          * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5549          * io.  INLINE is special, and we could probably kludge it in here, but
5550          * it's still buffered so for safety lets just fall back to the generic
5551          * buffered path.
5552          *
5553          * For COMPRESSED we _have_ to read the entire extent in so we can
5554          * decompress it, so there will be buffering required no matter what we
5555          * do, so go ahead and fallback to buffered.
5556          *
5557          * We return -ENOTBLK because thats what makes DIO go ahead and go back
5558          * to buffered IO.  Don't blame me, this is the price we pay for using
5559          * the generic code.
5560          */
5561         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5562             em->block_start == EXTENT_MAP_INLINE) {
5563                 free_extent_map(em);
5564                 return -ENOTBLK;
5565         }
5566
5567         /* Just a good old fashioned hole, return */
5568         if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5569                         test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5570                 free_extent_map(em);
5571                 /* DIO will do one hole at a time, so just unlock a sector */
5572                 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5573                               start + root->sectorsize - 1, GFP_NOFS);
5574                 return 0;
5575         }
5576
5577         /*
5578          * We don't allocate a new extent in the following cases
5579          *
5580          * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5581          * existing extent.
5582          * 2) The extent is marked as PREALLOC.  We're good to go here and can
5583          * just use the extent.
5584          *
5585          */
5586         if (!create) {
5587                 len = em->len - (start - em->start);
5588                 goto map;
5589         }
5590
5591         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5592             ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5593              em->block_start != EXTENT_MAP_HOLE)) {
5594                 int type;
5595                 int ret;
5596                 u64 block_start;
5597
5598                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5599                         type = BTRFS_ORDERED_PREALLOC;
5600                 else
5601                         type = BTRFS_ORDERED_NOCOW;
5602                 len = min(len, em->len - (start - em->start));
5603                 block_start = em->block_start + (start - em->start);
5604
5605                 /*
5606                  * we're not going to log anything, but we do need
5607                  * to make sure the current transaction stays open
5608                  * while we look for nocow cross refs
5609                  */
5610                 trans = btrfs_join_transaction(root);
5611                 if (IS_ERR(trans))
5612                         goto must_cow;
5613
5614                 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5615                         ret = btrfs_add_ordered_extent_dio(inode, start,
5616                                            block_start, len, len, type);
5617                         btrfs_end_transaction(trans, root);
5618                         if (ret) {
5619                                 free_extent_map(em);
5620                                 return ret;
5621                         }
5622                         goto unlock;
5623                 }
5624                 btrfs_end_transaction(trans, root);
5625         }
5626 must_cow:
5627         /*
5628          * this will cow the extent, reset the len in case we changed
5629          * it above
5630          */
5631         len = bh_result->b_size;
5632         em = btrfs_new_extent_direct(inode, em, start, len);
5633         if (IS_ERR(em))
5634                 return PTR_ERR(em);
5635         len = min(len, em->len - (start - em->start));
5636 unlock:
5637         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5638                           EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5639                           0, NULL, GFP_NOFS);
5640 map:
5641         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5642                 inode->i_blkbits;
5643         bh_result->b_size = len;
5644         bh_result->b_bdev = em->bdev;
5645         set_buffer_mapped(bh_result);
5646         if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5647                 set_buffer_new(bh_result);
5648
5649         free_extent_map(em);
5650
5651         return 0;
5652 }
5653
5654 struct btrfs_dio_private {
5655         struct inode *inode;
5656         u64 logical_offset;
5657         u64 disk_bytenr;
5658         u64 bytes;
5659         u32 *csums;
5660         void *private;
5661
5662         /* number of bios pending for this dio */
5663         atomic_t pending_bios;
5664
5665         /* IO errors */
5666         int errors;
5667
5668         struct bio *orig_bio;
5669 };
5670
5671 static void btrfs_endio_direct_read(struct bio *bio, int err)
5672 {
5673         struct btrfs_dio_private *dip = bio->bi_private;
5674         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5675         struct bio_vec *bvec = bio->bi_io_vec;
5676         struct inode *inode = dip->inode;
5677         struct btrfs_root *root = BTRFS_I(inode)->root;
5678         u64 start;
5679         u32 *private = dip->csums;
5680
5681         start = dip->logical_offset;
5682         do {
5683                 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5684                         struct page *page = bvec->bv_page;
5685                         char *kaddr;
5686                         u32 csum = ~(u32)0;
5687                         unsigned long flags;
5688
5689                         local_irq_save(flags);
5690                         kaddr = kmap_atomic(page, KM_IRQ0);
5691                         csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5692                                                csum, bvec->bv_len);
5693                         btrfs_csum_final(csum, (char *)&csum);
5694                         kunmap_atomic(kaddr, KM_IRQ0);
5695                         local_irq_restore(flags);
5696
5697                         flush_dcache_page(bvec->bv_page);
5698                         if (csum != *private) {
5699                                 printk(KERN_ERR "btrfs csum failed ino %llu off"
5700                                       " %llu csum %u private %u\n",
5701                                       (unsigned long long)btrfs_ino(inode),
5702                                       (unsigned long long)start,
5703                                       csum, *private);
5704                                 err = -EIO;
5705                         }
5706                 }
5707
5708                 start += bvec->bv_len;
5709                 private++;
5710                 bvec++;
5711         } while (bvec <= bvec_end);
5712
5713         unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5714                       dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5715         bio->bi_private = dip->private;
5716
5717         kfree(dip->csums);
5718         kfree(dip);
5719
5720         /* If we had a csum failure make sure to clear the uptodate flag */
5721         if (err)
5722                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5723         dio_end_io(bio, err);
5724 }
5725
5726 static void btrfs_endio_direct_write(struct bio *bio, int err)
5727 {
5728         struct btrfs_dio_private *dip = bio->bi_private;
5729         struct inode *inode = dip->inode;
5730         struct btrfs_root *root = BTRFS_I(inode)->root;
5731         struct btrfs_trans_handle *trans;
5732         struct btrfs_ordered_extent *ordered = NULL;
5733         struct extent_state *cached_state = NULL;
5734         u64 ordered_offset = dip->logical_offset;
5735         u64 ordered_bytes = dip->bytes;
5736         int ret;
5737
5738         if (err)
5739                 goto out_done;
5740 again:
5741         ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5742                                                    &ordered_offset,
5743                                                    ordered_bytes);
5744         if (!ret)
5745                 goto out_test;
5746
5747         BUG_ON(!ordered);
5748
5749         trans = btrfs_join_transaction(root);
5750         if (IS_ERR(trans)) {
5751                 err = -ENOMEM;
5752                 goto out;
5753         }
5754         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5755
5756         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5757                 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5758                 if (!ret)
5759                         ret = btrfs_update_inode(trans, root, inode);
5760                 err = ret;
5761                 goto out;
5762         }
5763
5764         lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5765                          ordered->file_offset + ordered->len - 1, 0,
5766                          &cached_state, GFP_NOFS);
5767
5768         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5769                 ret = btrfs_mark_extent_written(trans, inode,
5770                                                 ordered->file_offset,
5771                                                 ordered->file_offset +
5772                                                 ordered->len);
5773                 if (ret) {
5774                         err = ret;
5775                         goto out_unlock;
5776                 }
5777         } else {
5778                 ret = insert_reserved_file_extent(trans, inode,
5779                                                   ordered->file_offset,
5780                                                   ordered->start,
5781                                                   ordered->disk_len,
5782                                                   ordered->len,
5783                                                   ordered->len,
5784                                                   0, 0, 0,
5785                                                   BTRFS_FILE_EXTENT_REG);
5786                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5787                                    ordered->file_offset, ordered->len);
5788                 if (ret) {
5789                         err = ret;
5790                         WARN_ON(1);
5791                         goto out_unlock;
5792                 }
5793         }
5794
5795         add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5796         ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5797         if (!ret)
5798                 btrfs_update_inode(trans, root, inode);
5799         ret = 0;
5800 out_unlock:
5801         unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5802                              ordered->file_offset + ordered->len - 1,
5803                              &cached_state, GFP_NOFS);
5804 out:
5805         btrfs_delalloc_release_metadata(inode, ordered->len);
5806         btrfs_end_transaction(trans, root);
5807         ordered_offset = ordered->file_offset + ordered->len;
5808         btrfs_put_ordered_extent(ordered);
5809         btrfs_put_ordered_extent(ordered);
5810
5811 out_test:
5812         /*
5813          * our bio might span multiple ordered extents.  If we haven't
5814          * completed the accounting for the whole dio, go back and try again
5815          */
5816         if (ordered_offset < dip->logical_offset + dip->bytes) {
5817                 ordered_bytes = dip->logical_offset + dip->bytes -
5818                         ordered_offset;
5819                 goto again;
5820         }
5821 out_done:
5822         bio->bi_private = dip->private;
5823
5824         kfree(dip->csums);
5825         kfree(dip);
5826
5827         /* If we had an error make sure to clear the uptodate flag */
5828         if (err)
5829                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5830         dio_end_io(bio, err);
5831 }
5832
5833 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5834                                     struct bio *bio, int mirror_num,
5835                                     unsigned long bio_flags, u64 offset)
5836 {
5837         int ret;
5838         struct btrfs_root *root = BTRFS_I(inode)->root;
5839         ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5840         BUG_ON(ret);
5841         return 0;
5842 }
5843
5844 static void btrfs_end_dio_bio(struct bio *bio, int err)
5845 {
5846         struct btrfs_dio_private *dip = bio->bi_private;
5847
5848         if (err) {
5849                 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
5850                       "sector %#Lx len %u err no %d\n",
5851                       (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
5852                       (unsigned long long)bio->bi_sector, bio->bi_size, err);
5853                 dip->errors = 1;
5854
5855                 /*
5856                  * before atomic variable goto zero, we must make sure
5857                  * dip->errors is perceived to be set.
5858                  */
5859                 smp_mb__before_atomic_dec();
5860         }
5861
5862         /* if there are more bios still pending for this dio, just exit */
5863         if (!atomic_dec_and_test(&dip->pending_bios))
5864                 goto out;
5865
5866         if (dip->errors)
5867                 bio_io_error(dip->orig_bio);
5868         else {
5869                 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5870                 bio_endio(dip->orig_bio, 0);
5871         }
5872 out:
5873         bio_put(bio);
5874 }
5875
5876 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5877                                        u64 first_sector, gfp_t gfp_flags)
5878 {
5879         int nr_vecs = bio_get_nr_vecs(bdev);
5880         return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5881 }
5882
5883 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5884                                          int rw, u64 file_offset, int skip_sum,
5885                                          u32 *csums, int async_submit)
5886 {
5887         int write = rw & REQ_WRITE;
5888         struct btrfs_root *root = BTRFS_I(inode)->root;
5889         int ret;
5890
5891         bio_get(bio);
5892         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5893         if (ret)
5894                 goto err;
5895
5896         if (skip_sum)
5897                 goto map;
5898
5899         if (write && async_submit) {
5900                 ret = btrfs_wq_submit_bio(root->fs_info,
5901                                    inode, rw, bio, 0, 0,
5902                                    file_offset,
5903                                    __btrfs_submit_bio_start_direct_io,
5904                                    __btrfs_submit_bio_done);
5905                 goto err;
5906         } else if (write) {
5907                 /*
5908                  * If we aren't doing async submit, calculate the csum of the
5909                  * bio now.
5910                  */
5911                 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
5912                 if (ret)
5913                         goto err;
5914         } else if (!skip_sum) {
5915                 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
5916                                           file_offset, csums);
5917                 if (ret)
5918                         goto err;
5919         }
5920
5921 map:
5922         ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
5923 err:
5924         bio_put(bio);
5925         return ret;
5926 }
5927
5928 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5929                                     int skip_sum)
5930 {
5931         struct inode *inode = dip->inode;
5932         struct btrfs_root *root = BTRFS_I(inode)->root;
5933         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5934         struct bio *bio;
5935         struct bio *orig_bio = dip->orig_bio;
5936         struct bio_vec *bvec = orig_bio->bi_io_vec;
5937         u64 start_sector = orig_bio->bi_sector;
5938         u64 file_offset = dip->logical_offset;
5939         u64 submit_len = 0;
5940         u64 map_length;
5941         int nr_pages = 0;
5942         u32 *csums = dip->csums;
5943         int ret = 0;
5944         int async_submit = 0;
5945         int write = rw & REQ_WRITE;
5946
5947         map_length = orig_bio->bi_size;
5948         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5949                               &map_length, NULL, 0);
5950         if (ret) {
5951                 bio_put(orig_bio);
5952                 return -EIO;
5953         }
5954
5955         if (map_length >= orig_bio->bi_size) {
5956                 bio = orig_bio;
5957                 goto submit;
5958         }
5959
5960         async_submit = 1;
5961         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5962         if (!bio)
5963                 return -ENOMEM;
5964         bio->bi_private = dip;
5965         bio->bi_end_io = btrfs_end_dio_bio;
5966         atomic_inc(&dip->pending_bios);
5967
5968         while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5969                 if (unlikely(map_length < submit_len + bvec->bv_len ||
5970                     bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5971                                  bvec->bv_offset) < bvec->bv_len)) {
5972                         /*
5973                          * inc the count before we submit the bio so
5974                          * we know the end IO handler won't happen before
5975                          * we inc the count. Otherwise, the dip might get freed
5976                          * before we're done setting it up
5977                          */
5978                         atomic_inc(&dip->pending_bios);
5979                         ret = __btrfs_submit_dio_bio(bio, inode, rw,
5980                                                      file_offset, skip_sum,
5981                                                      csums, async_submit);
5982                         if (ret) {
5983                                 bio_put(bio);
5984                                 atomic_dec(&dip->pending_bios);
5985                                 goto out_err;
5986                         }
5987
5988                         /* Write's use the ordered csums */
5989                         if (!write && !skip_sum)
5990                                 csums = csums + nr_pages;
5991                         start_sector += submit_len >> 9;
5992                         file_offset += submit_len;
5993
5994                         submit_len = 0;
5995                         nr_pages = 0;
5996
5997                         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5998                                                   start_sector, GFP_NOFS);
5999                         if (!bio)
6000                                 goto out_err;
6001                         bio->bi_private = dip;
6002                         bio->bi_end_io = btrfs_end_dio_bio;
6003
6004                         map_length = orig_bio->bi_size;
6005                         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6006                                               &map_length, NULL, 0);
6007                         if (ret) {
6008                                 bio_put(bio);
6009                                 goto out_err;
6010                         }
6011                 } else {
6012                         submit_len += bvec->bv_len;
6013                         nr_pages ++;
6014                         bvec++;
6015                 }
6016         }
6017
6018 submit:
6019         ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6020                                      csums, async_submit);
6021         if (!ret)
6022                 return 0;
6023
6024         bio_put(bio);
6025 out_err:
6026         dip->errors = 1;
6027         /*
6028          * before atomic variable goto zero, we must
6029          * make sure dip->errors is perceived to be set.
6030          */
6031         smp_mb__before_atomic_dec();
6032         if (atomic_dec_and_test(&dip->pending_bios))
6033                 bio_io_error(dip->orig_bio);
6034
6035         /* bio_end_io() will handle error, so we needn't return it */
6036         return 0;
6037 }
6038
6039 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6040                                 loff_t file_offset)
6041 {
6042         struct btrfs_root *root = BTRFS_I(inode)->root;
6043         struct btrfs_dio_private *dip;
6044         struct bio_vec *bvec = bio->bi_io_vec;
6045         int skip_sum;
6046         int write = rw & REQ_WRITE;
6047         int ret = 0;
6048
6049         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6050
6051         dip = kmalloc(sizeof(*dip), GFP_NOFS);
6052         if (!dip) {
6053                 ret = -ENOMEM;
6054                 goto free_ordered;
6055         }
6056         dip->csums = NULL;
6057
6058         /* Write's use the ordered csum stuff, so we don't need dip->csums */
6059         if (!write && !skip_sum) {
6060                 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6061                 if (!dip->csums) {
6062                         kfree(dip);
6063                         ret = -ENOMEM;
6064                         goto free_ordered;
6065                 }
6066         }
6067
6068         dip->private = bio->bi_private;
6069         dip->inode = inode;
6070         dip->logical_offset = file_offset;
6071
6072         dip->bytes = 0;
6073         do {
6074                 dip->bytes += bvec->bv_len;
6075                 bvec++;
6076         } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6077
6078         dip->disk_bytenr = (u64)bio->bi_sector << 9;
6079         bio->bi_private = dip;
6080         dip->errors = 0;
6081         dip->orig_bio = bio;
6082         atomic_set(&dip->pending_bios, 0);
6083
6084         if (write)
6085                 bio->bi_end_io = btrfs_endio_direct_write;
6086         else
6087                 bio->bi_end_io = btrfs_endio_direct_read;
6088
6089         ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6090         if (!ret)
6091                 return;
6092 free_ordered:
6093         /*
6094          * If this is a write, we need to clean up the reserved space and kill
6095          * the ordered extent.
6096          */
6097         if (write) {
6098                 struct btrfs_ordered_extent *ordered;
6099                 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6100                 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6101                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6102                         btrfs_free_reserved_extent(root, ordered->start,
6103                                                    ordered->disk_len);
6104                 btrfs_put_ordered_extent(ordered);
6105                 btrfs_put_ordered_extent(ordered);
6106         }
6107         bio_endio(bio, ret);
6108 }
6109
6110 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6111                         const struct iovec *iov, loff_t offset,
6112                         unsigned long nr_segs)
6113 {
6114         int seg;
6115         int i;
6116         size_t size;
6117         unsigned long addr;
6118         unsigned blocksize_mask = root->sectorsize - 1;
6119         ssize_t retval = -EINVAL;
6120         loff_t end = offset;
6121
6122         if (offset & blocksize_mask)
6123                 goto out;
6124
6125         /* Check the memory alignment.  Blocks cannot straddle pages */
6126         for (seg = 0; seg < nr_segs; seg++) {
6127                 addr = (unsigned long)iov[seg].iov_base;
6128                 size = iov[seg].iov_len;
6129                 end += size;
6130                 if ((addr & blocksize_mask) || (size & blocksize_mask))
6131                         goto out;
6132
6133                 /* If this is a write we don't need to check anymore */
6134                 if (rw & WRITE)
6135                         continue;
6136
6137                 /*
6138                  * Check to make sure we don't have duplicate iov_base's in this
6139                  * iovec, if so return EINVAL, otherwise we'll get csum errors
6140                  * when reading back.
6141                  */
6142                 for (i = seg + 1; i < nr_segs; i++) {
6143                         if (iov[seg].iov_base == iov[i].iov_base)
6144                                 goto out;
6145                 }
6146         }
6147         retval = 0;
6148 out:
6149         return retval;
6150 }
6151 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6152                         const struct iovec *iov, loff_t offset,
6153                         unsigned long nr_segs)
6154 {
6155         struct file *file = iocb->ki_filp;
6156         struct inode *inode = file->f_mapping->host;
6157         struct btrfs_ordered_extent *ordered;
6158         struct extent_state *cached_state = NULL;
6159         u64 lockstart, lockend;
6160         ssize_t ret;
6161         int writing = rw & WRITE;
6162         int write_bits = 0;
6163         size_t count = iov_length(iov, nr_segs);
6164
6165         if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6166                             offset, nr_segs)) {
6167                 return 0;
6168         }
6169
6170         lockstart = offset;
6171         lockend = offset + count - 1;
6172
6173         if (writing) {
6174                 ret = btrfs_delalloc_reserve_space(inode, count);
6175                 if (ret)
6176                         goto out;
6177         }
6178
6179         while (1) {
6180                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6181                                  0, &cached_state, GFP_NOFS);
6182                 /*
6183                  * We're concerned with the entire range that we're going to be
6184                  * doing DIO to, so we need to make sure theres no ordered
6185                  * extents in this range.
6186                  */
6187                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6188                                                      lockend - lockstart + 1);
6189                 if (!ordered)
6190                         break;
6191                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6192                                      &cached_state, GFP_NOFS);
6193                 btrfs_start_ordered_extent(inode, ordered, 1);
6194                 btrfs_put_ordered_extent(ordered);
6195                 cond_resched();
6196         }
6197
6198         /*
6199          * we don't use btrfs_set_extent_delalloc because we don't want
6200          * the dirty or uptodate bits
6201          */
6202         if (writing) {
6203                 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6204                 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6205                                      EXTENT_DELALLOC, 0, NULL, &cached_state,
6206                                      GFP_NOFS);
6207                 if (ret) {
6208                         clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6209                                          lockend, EXTENT_LOCKED | write_bits,
6210                                          1, 0, &cached_state, GFP_NOFS);
6211                         goto out;
6212                 }
6213         }
6214
6215         free_extent_state(cached_state);
6216         cached_state = NULL;
6217
6218         ret = __blockdev_direct_IO(rw, iocb, inode,
6219                    BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6220                    iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6221                    btrfs_submit_direct, 0);
6222
6223         if (ret < 0 && ret != -EIOCBQUEUED) {
6224                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6225                               offset + iov_length(iov, nr_segs) - 1,
6226                               EXTENT_LOCKED | write_bits, 1, 0,
6227                               &cached_state, GFP_NOFS);
6228         } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6229                 /*
6230                  * We're falling back to buffered, unlock the section we didn't
6231                  * do IO on.
6232                  */
6233                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6234                               offset + iov_length(iov, nr_segs) - 1,
6235                               EXTENT_LOCKED | write_bits, 1, 0,
6236                               &cached_state, GFP_NOFS);
6237         }
6238 out:
6239         free_extent_state(cached_state);
6240         return ret;
6241 }
6242
6243 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6244                 __u64 start, __u64 len)
6245 {
6246         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6247 }
6248
6249 int btrfs_readpage(struct file *file, struct page *page)
6250 {
6251         struct extent_io_tree *tree;
6252         tree = &BTRFS_I(page->mapping->host)->io_tree;
6253         return extent_read_full_page(tree, page, btrfs_get_extent);
6254 }
6255
6256 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6257 {
6258         struct extent_io_tree *tree;
6259
6260
6261         if (current->flags & PF_MEMALLOC) {
6262                 redirty_page_for_writepage(wbc, page);
6263                 unlock_page(page);
6264                 return 0;
6265         }
6266         tree = &BTRFS_I(page->mapping->host)->io_tree;
6267         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6268 }
6269
6270 int btrfs_writepages(struct address_space *mapping,
6271                      struct writeback_control *wbc)
6272 {
6273         struct extent_io_tree *tree;
6274
6275         tree = &BTRFS_I(mapping->host)->io_tree;
6276         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6277 }
6278
6279 static int
6280 btrfs_readpages(struct file *file, struct address_space *mapping,
6281                 struct list_head *pages, unsigned nr_pages)
6282 {
6283         struct extent_io_tree *tree;
6284         tree = &BTRFS_I(mapping->host)->io_tree;
6285         return extent_readpages(tree, mapping, pages, nr_pages,
6286                                 btrfs_get_extent);
6287 }
6288 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6289 {
6290         struct extent_io_tree *tree;
6291         struct extent_map_tree *map;
6292         int ret;
6293
6294         tree = &BTRFS_I(page->mapping->host)->io_tree;
6295         map = &BTRFS_I(page->mapping->host)->extent_tree;
6296         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6297         if (ret == 1) {
6298                 ClearPagePrivate(page);
6299                 set_page_private(page, 0);
6300                 page_cache_release(page);
6301         }
6302         return ret;
6303 }
6304
6305 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6306 {
6307         if (PageWriteback(page) || PageDirty(page))
6308                 return 0;
6309         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6310 }
6311
6312 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6313 {
6314         struct extent_io_tree *tree;
6315         struct btrfs_ordered_extent *ordered;
6316         struct extent_state *cached_state = NULL;
6317         u64 page_start = page_offset(page);
6318         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6319
6320
6321         /*
6322          * we have the page locked, so new writeback can't start,
6323          * and the dirty bit won't be cleared while we are here.
6324          *
6325          * Wait for IO on this page so that we can safely clear
6326          * the PagePrivate2 bit and do ordered accounting
6327          */
6328         wait_on_page_writeback(page);
6329
6330         tree = &BTRFS_I(page->mapping->host)->io_tree;
6331         if (offset) {
6332                 btrfs_releasepage(page, GFP_NOFS);
6333                 return;
6334         }
6335         lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6336                          GFP_NOFS);
6337         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6338                                            page_offset(page));
6339         if (ordered) {
6340                 /*
6341                  * IO on this page will never be started, so we need
6342                  * to account for any ordered extents now
6343                  */
6344                 clear_extent_bit(tree, page_start, page_end,
6345                                  EXTENT_DIRTY | EXTENT_DELALLOC |
6346                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6347                                  &cached_state, GFP_NOFS);
6348                 /*
6349                  * whoever cleared the private bit is responsible
6350                  * for the finish_ordered_io
6351                  */
6352                 if (TestClearPagePrivate2(page)) {
6353                         btrfs_finish_ordered_io(page->mapping->host,
6354                                                 page_start, page_end);
6355                 }
6356                 btrfs_put_ordered_extent(ordered);
6357                 cached_state = NULL;
6358                 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6359                                  GFP_NOFS);
6360         }
6361         clear_extent_bit(tree, page_start, page_end,
6362                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6363                  EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6364         __btrfs_releasepage(page, GFP_NOFS);
6365
6366         ClearPageChecked(page);
6367         if (PagePrivate(page)) {
6368                 ClearPagePrivate(page);
6369                 set_page_private(page, 0);
6370                 page_cache_release(page);
6371         }
6372 }
6373
6374 /*
6375  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6376  * called from a page fault handler when a page is first dirtied. Hence we must
6377  * be careful to check for EOF conditions here. We set the page up correctly
6378  * for a written page which means we get ENOSPC checking when writing into
6379  * holes and correct delalloc and unwritten extent mapping on filesystems that
6380  * support these features.
6381  *
6382  * We are not allowed to take the i_mutex here so we have to play games to
6383  * protect against truncate races as the page could now be beyond EOF.  Because
6384  * vmtruncate() writes the inode size before removing pages, once we have the
6385  * page lock we can determine safely if the page is beyond EOF. If it is not
6386  * beyond EOF, then the page is guaranteed safe against truncation until we
6387  * unlock the page.
6388  */
6389 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6390 {
6391         struct page *page = vmf->page;
6392         struct inode *inode = fdentry(vma->vm_file)->d_inode;
6393         struct btrfs_root *root = BTRFS_I(inode)->root;
6394         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6395         struct btrfs_ordered_extent *ordered;
6396         struct extent_state *cached_state = NULL;
6397         char *kaddr;
6398         unsigned long zero_start;
6399         loff_t size;
6400         int ret;
6401         u64 page_start;
6402         u64 page_end;
6403
6404         ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6405         if (ret) {
6406                 if (ret == -ENOMEM)
6407                         ret = VM_FAULT_OOM;
6408                 else /* -ENOSPC, -EIO, etc */
6409                         ret = VM_FAULT_SIGBUS;
6410                 goto out;
6411         }
6412
6413         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6414 again:
6415         lock_page(page);
6416         size = i_size_read(inode);
6417         page_start = page_offset(page);
6418         page_end = page_start + PAGE_CACHE_SIZE - 1;
6419
6420         if ((page->mapping != inode->i_mapping) ||
6421             (page_start >= size)) {
6422                 /* page got truncated out from underneath us */
6423                 goto out_unlock;
6424         }
6425         wait_on_page_writeback(page);
6426
6427         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6428                          GFP_NOFS);
6429         set_page_extent_mapped(page);
6430
6431         /*
6432          * we can't set the delalloc bits if there are pending ordered
6433          * extents.  Drop our locks and wait for them to finish
6434          */
6435         ordered = btrfs_lookup_ordered_extent(inode, page_start);
6436         if (ordered) {
6437                 unlock_extent_cached(io_tree, page_start, page_end,
6438                                      &cached_state, GFP_NOFS);
6439                 unlock_page(page);
6440                 btrfs_start_ordered_extent(inode, ordered, 1);
6441                 btrfs_put_ordered_extent(ordered);
6442                 goto again;
6443         }
6444
6445         /*
6446          * XXX - page_mkwrite gets called every time the page is dirtied, even
6447          * if it was already dirty, so for space accounting reasons we need to
6448          * clear any delalloc bits for the range we are fixing to save.  There
6449          * is probably a better way to do this, but for now keep consistent with
6450          * prepare_pages in the normal write path.
6451          */
6452         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6453                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6454                           0, 0, &cached_state, GFP_NOFS);
6455
6456         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6457                                         &cached_state);
6458         if (ret) {
6459                 unlock_extent_cached(io_tree, page_start, page_end,
6460                                      &cached_state, GFP_NOFS);
6461                 ret = VM_FAULT_SIGBUS;
6462                 goto out_unlock;
6463         }
6464         ret = 0;
6465
6466         /* page is wholly or partially inside EOF */
6467         if (page_start + PAGE_CACHE_SIZE > size)
6468                 zero_start = size & ~PAGE_CACHE_MASK;
6469         else
6470                 zero_start = PAGE_CACHE_SIZE;
6471
6472         if (zero_start != PAGE_CACHE_SIZE) {
6473                 kaddr = kmap(page);
6474                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6475                 flush_dcache_page(page);
6476                 kunmap(page);
6477         }
6478         ClearPageChecked(page);
6479         set_page_dirty(page);
6480         SetPageUptodate(page);
6481
6482         BTRFS_I(inode)->last_trans = root->fs_info->generation;
6483         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6484
6485         unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6486
6487 out_unlock:
6488         if (!ret)
6489                 return VM_FAULT_LOCKED;
6490         unlock_page(page);
6491         btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6492 out:
6493         return ret;
6494 }
6495
6496 static int btrfs_truncate(struct inode *inode)
6497 {
6498         struct btrfs_root *root = BTRFS_I(inode)->root;
6499         struct btrfs_block_rsv *rsv;
6500         int ret;
6501         int err = 0;
6502         struct btrfs_trans_handle *trans;
6503         unsigned long nr;
6504         u64 mask = root->sectorsize - 1;
6505
6506         ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6507         if (ret)
6508                 return ret;
6509
6510         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6511         btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6512
6513         /*
6514          * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
6515          * 3 things going on here
6516          *
6517          * 1) We need to reserve space for our orphan item and the space to
6518          * delete our orphan item.  Lord knows we don't want to have a dangling
6519          * orphan item because we didn't reserve space to remove it.
6520          *
6521          * 2) We need to reserve space to update our inode.
6522          *
6523          * 3) We need to have something to cache all the space that is going to
6524          * be free'd up by the truncate operation, but also have some slack
6525          * space reserved in case it uses space during the truncate (thank you
6526          * very much snapshotting).
6527          *
6528          * And we need these to all be seperate.  The fact is we can use alot of
6529          * space doing the truncate, and we have no earthly idea how much space
6530          * we will use, so we need the truncate reservation to be seperate so it
6531          * doesn't end up using space reserved for updating the inode or
6532          * removing the orphan item.  We also need to be able to stop the
6533          * transaction and start a new one, which means we need to be able to
6534          * update the inode several times, and we have no idea of knowing how
6535          * many times that will be, so we can't just reserve 1 item for the
6536          * entirety of the opration, so that has to be done seperately as well.
6537          * Then there is the orphan item, which does indeed need to be held on
6538          * to for the whole operation, and we need nobody to touch this reserved
6539          * space except the orphan code.
6540          *
6541          * So that leaves us with
6542          *
6543          * 1) root->orphan_block_rsv - for the orphan deletion.
6544          * 2) rsv - for the truncate reservation, which we will steal from the
6545          * transaction reservation.
6546          * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6547          * updating the inode.
6548          */
6549         rsv = btrfs_alloc_block_rsv(root);
6550         if (!rsv)
6551                 return -ENOMEM;
6552         btrfs_add_durable_block_rsv(root->fs_info, rsv);
6553
6554         trans = btrfs_start_transaction(root, 4);
6555         if (IS_ERR(trans)) {
6556                 err = PTR_ERR(trans);
6557                 goto out;
6558         }
6559
6560         /*
6561          * Reserve space for the truncate process.  Truncate should be adding
6562          * space, but if there are snapshots it may end up using space.
6563          */
6564         ret = btrfs_truncate_reserve_metadata(trans, root, rsv);
6565         BUG_ON(ret);
6566
6567         ret = btrfs_orphan_add(trans, inode);
6568         if (ret) {
6569                 btrfs_end_transaction(trans, root);
6570                 goto out;
6571         }
6572
6573         nr = trans->blocks_used;
6574         btrfs_end_transaction(trans, root);
6575         btrfs_btree_balance_dirty(root, nr);
6576
6577         /*
6578          * Ok so we've already migrated our bytes over for the truncate, so here
6579          * just reserve the one slot we need for updating the inode.
6580          */
6581         trans = btrfs_start_transaction(root, 1);
6582         if (IS_ERR(trans)) {
6583                 err = PTR_ERR(trans);
6584                 goto out;
6585         }
6586         trans->block_rsv = rsv;
6587
6588         /*
6589          * setattr is responsible for setting the ordered_data_close flag,
6590          * but that is only tested during the last file release.  That
6591          * could happen well after the next commit, leaving a great big
6592          * window where new writes may get lost if someone chooses to write
6593          * to this file after truncating to zero
6594          *
6595          * The inode doesn't have any dirty data here, and so if we commit
6596          * this is a noop.  If someone immediately starts writing to the inode
6597          * it is very likely we'll catch some of their writes in this
6598          * transaction, and the commit will find this file on the ordered
6599          * data list with good things to send down.
6600          *
6601          * This is a best effort solution, there is still a window where
6602          * using truncate to replace the contents of the file will
6603          * end up with a zero length file after a crash.
6604          */
6605         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6606                 btrfs_add_ordered_operation(trans, root, inode);
6607
6608         while (1) {
6609                 if (!trans) {
6610                         trans = btrfs_start_transaction(root, 3);
6611                         if (IS_ERR(trans)) {
6612                                 err = PTR_ERR(trans);
6613                                 goto out;
6614                         }
6615
6616                         ret = btrfs_truncate_reserve_metadata(trans, root,
6617                                                               rsv);
6618                         BUG_ON(ret);
6619
6620                         trans->block_rsv = rsv;
6621                 }
6622
6623                 ret = btrfs_truncate_inode_items(trans, root, inode,
6624                                                  inode->i_size,
6625                                                  BTRFS_EXTENT_DATA_KEY);
6626                 if (ret != -EAGAIN) {
6627                         err = ret;
6628                         break;
6629                 }
6630
6631                 trans->block_rsv = &root->fs_info->trans_block_rsv;
6632                 ret = btrfs_update_inode(trans, root, inode);
6633                 if (ret) {
6634                         err = ret;
6635                         break;
6636                 }
6637
6638                 nr = trans->blocks_used;
6639                 btrfs_end_transaction(trans, root);
6640                 trans = NULL;
6641                 btrfs_btree_balance_dirty(root, nr);
6642         }
6643
6644         if (ret == 0 && inode->i_nlink > 0) {
6645                 trans->block_rsv = root->orphan_block_rsv;
6646                 ret = btrfs_orphan_del(trans, inode);
6647                 if (ret)
6648                         err = ret;
6649         } else if (ret && inode->i_nlink > 0) {
6650                 /*
6651                  * Failed to do the truncate, remove us from the in memory
6652                  * orphan list.
6653                  */
6654                 ret = btrfs_orphan_del(NULL, inode);
6655         }
6656
6657         trans->block_rsv = &root->fs_info->trans_block_rsv;
6658         ret = btrfs_update_inode(trans, root, inode);
6659         if (ret && !err)
6660                 err = ret;
6661
6662         nr = trans->blocks_used;
6663         ret = btrfs_end_transaction_throttle(trans, root);
6664         btrfs_btree_balance_dirty(root, nr);
6665
6666 out:
6667         btrfs_free_block_rsv(root, rsv);
6668
6669         if (ret && !err)
6670                 err = ret;
6671
6672         return err;
6673 }
6674
6675 /*
6676  * create a new subvolume directory/inode (helper for the ioctl).
6677  */
6678 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6679                              struct btrfs_root *new_root, u64 new_dirid)
6680 {
6681         struct inode *inode;
6682         int err;
6683         u64 index = 0;
6684
6685         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6686                                 new_dirid, S_IFDIR | 0700, &index);
6687         if (IS_ERR(inode))
6688                 return PTR_ERR(inode);
6689         inode->i_op = &btrfs_dir_inode_operations;
6690         inode->i_fop = &btrfs_dir_file_operations;
6691
6692         inode->i_nlink = 1;
6693         btrfs_i_size_write(inode, 0);
6694
6695         err = btrfs_update_inode(trans, new_root, inode);
6696         BUG_ON(err);
6697
6698         iput(inode);
6699         return 0;
6700 }
6701
6702 /* helper function for file defrag and space balancing.  This
6703  * forces readahead on a given range of bytes in an inode
6704  */
6705 unsigned long btrfs_force_ra(struct address_space *mapping,
6706                               struct file_ra_state *ra, struct file *file,
6707                               pgoff_t offset, pgoff_t last_index)
6708 {
6709         pgoff_t req_size = last_index - offset + 1;
6710
6711         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6712         return offset + req_size;
6713 }
6714
6715 struct inode *btrfs_alloc_inode(struct super_block *sb)
6716 {
6717         struct btrfs_inode *ei;
6718         struct inode *inode;
6719
6720         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6721         if (!ei)
6722                 return NULL;
6723
6724         ei->root = NULL;
6725         ei->space_info = NULL;
6726         ei->generation = 0;
6727         ei->sequence = 0;
6728         ei->last_trans = 0;
6729         ei->last_sub_trans = 0;
6730         ei->logged_trans = 0;
6731         ei->delalloc_bytes = 0;
6732         ei->reserved_bytes = 0;
6733         ei->disk_i_size = 0;
6734         ei->flags = 0;
6735         ei->index_cnt = (u64)-1;
6736         ei->last_unlink_trans = 0;
6737
6738         atomic_set(&ei->outstanding_extents, 0);
6739         atomic_set(&ei->reserved_extents, 0);
6740
6741         ei->ordered_data_close = 0;
6742         ei->orphan_meta_reserved = 0;
6743         ei->dummy_inode = 0;
6744         ei->in_defrag = 0;
6745         ei->force_compress = BTRFS_COMPRESS_NONE;
6746
6747         ei->delayed_node = NULL;
6748
6749         inode = &ei->vfs_inode;
6750         extent_map_tree_init(&ei->extent_tree);
6751         extent_io_tree_init(&ei->io_tree, &inode->i_data);
6752         extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
6753         mutex_init(&ei->log_mutex);
6754         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6755         INIT_LIST_HEAD(&ei->i_orphan);
6756         INIT_LIST_HEAD(&ei->delalloc_inodes);
6757         INIT_LIST_HEAD(&ei->ordered_operations);
6758         RB_CLEAR_NODE(&ei->rb_node);
6759
6760         return inode;
6761 }
6762
6763 static void btrfs_i_callback(struct rcu_head *head)
6764 {
6765         struct inode *inode = container_of(head, struct inode, i_rcu);
6766         INIT_LIST_HEAD(&inode->i_dentry);
6767         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6768 }
6769
6770 void btrfs_destroy_inode(struct inode *inode)
6771 {
6772         struct btrfs_ordered_extent *ordered;
6773         struct btrfs_root *root = BTRFS_I(inode)->root;
6774
6775         WARN_ON(!list_empty(&inode->i_dentry));
6776         WARN_ON(inode->i_data.nrpages);
6777         WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6778         WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
6779
6780         /*
6781          * This can happen where we create an inode, but somebody else also
6782          * created the same inode and we need to destroy the one we already
6783          * created.
6784          */
6785         if (!root)
6786                 goto free;
6787
6788         /*
6789          * Make sure we're properly removed from the ordered operation
6790          * lists.
6791          */
6792         smp_mb();
6793         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6794                 spin_lock(&root->fs_info->ordered_extent_lock);
6795                 list_del_init(&BTRFS_I(inode)->ordered_operations);
6796                 spin_unlock(&root->fs_info->ordered_extent_lock);
6797         }
6798
6799         spin_lock(&root->orphan_lock);
6800         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6801                 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6802                        (unsigned long long)btrfs_ino(inode));
6803                 list_del_init(&BTRFS_I(inode)->i_orphan);
6804         }
6805         spin_unlock(&root->orphan_lock);
6806
6807         while (1) {
6808                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6809                 if (!ordered)
6810                         break;
6811                 else {
6812                         printk(KERN_ERR "btrfs found ordered "
6813                                "extent %llu %llu on inode cleanup\n",
6814                                (unsigned long long)ordered->file_offset,
6815                                (unsigned long long)ordered->len);
6816                         btrfs_remove_ordered_extent(inode, ordered);
6817                         btrfs_put_ordered_extent(ordered);
6818                         btrfs_put_ordered_extent(ordered);
6819                 }
6820         }
6821         inode_tree_del(inode);
6822         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6823 free:
6824         btrfs_remove_delayed_node(inode);
6825         call_rcu(&inode->i_rcu, btrfs_i_callback);
6826 }
6827
6828 int btrfs_drop_inode(struct inode *inode)
6829 {
6830         struct btrfs_root *root = BTRFS_I(inode)->root;
6831
6832         if (btrfs_root_refs(&root->root_item) == 0 &&
6833             !is_free_space_inode(root, inode))
6834                 return 1;
6835         else
6836                 return generic_drop_inode(inode);
6837 }
6838
6839 static void init_once(void *foo)
6840 {
6841         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6842
6843         inode_init_once(&ei->vfs_inode);
6844 }
6845
6846 void btrfs_destroy_cachep(void)
6847 {
6848         if (btrfs_inode_cachep)
6849                 kmem_cache_destroy(btrfs_inode_cachep);
6850         if (btrfs_trans_handle_cachep)
6851                 kmem_cache_destroy(btrfs_trans_handle_cachep);
6852         if (btrfs_transaction_cachep)
6853                 kmem_cache_destroy(btrfs_transaction_cachep);
6854         if (btrfs_path_cachep)
6855                 kmem_cache_destroy(btrfs_path_cachep);
6856         if (btrfs_free_space_cachep)
6857                 kmem_cache_destroy(btrfs_free_space_cachep);
6858 }
6859
6860 int btrfs_init_cachep(void)
6861 {
6862         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6863                         sizeof(struct btrfs_inode), 0,
6864                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6865         if (!btrfs_inode_cachep)
6866                 goto fail;
6867
6868         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6869                         sizeof(struct btrfs_trans_handle), 0,
6870                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6871         if (!btrfs_trans_handle_cachep)
6872                 goto fail;
6873
6874         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6875                         sizeof(struct btrfs_transaction), 0,
6876                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6877         if (!btrfs_transaction_cachep)
6878                 goto fail;
6879
6880         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6881                         sizeof(struct btrfs_path), 0,
6882                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6883         if (!btrfs_path_cachep)
6884                 goto fail;
6885
6886         btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6887                         sizeof(struct btrfs_free_space), 0,
6888                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6889         if (!btrfs_free_space_cachep)
6890                 goto fail;
6891
6892         return 0;
6893 fail:
6894         btrfs_destroy_cachep();
6895         return -ENOMEM;
6896 }
6897
6898 static int btrfs_getattr(struct vfsmount *mnt,
6899                          struct dentry *dentry, struct kstat *stat)
6900 {
6901         struct inode *inode = dentry->d_inode;
6902         generic_fillattr(inode, stat);
6903         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6904         stat->blksize = PAGE_CACHE_SIZE;
6905         stat->blocks = (inode_get_bytes(inode) +
6906                         BTRFS_I(inode)->delalloc_bytes) >> 9;
6907         return 0;
6908 }
6909
6910 /*
6911  * If a file is moved, it will inherit the cow and compression flags of the new
6912  * directory.
6913  */
6914 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6915 {
6916         struct btrfs_inode *b_dir = BTRFS_I(dir);
6917         struct btrfs_inode *b_inode = BTRFS_I(inode);
6918
6919         if (b_dir->flags & BTRFS_INODE_NODATACOW)
6920                 b_inode->flags |= BTRFS_INODE_NODATACOW;
6921         else
6922                 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6923
6924         if (b_dir->flags & BTRFS_INODE_COMPRESS)
6925                 b_inode->flags |= BTRFS_INODE_COMPRESS;
6926         else
6927                 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6928 }
6929
6930 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6931                            struct inode *new_dir, struct dentry *new_dentry)
6932 {
6933         struct btrfs_trans_handle *trans;
6934         struct btrfs_root *root = BTRFS_I(old_dir)->root;
6935         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6936         struct inode *new_inode = new_dentry->d_inode;
6937         struct inode *old_inode = old_dentry->d_inode;
6938         struct timespec ctime = CURRENT_TIME;
6939         u64 index = 0;
6940         u64 root_objectid;
6941         int ret;
6942         u64 old_ino = btrfs_ino(old_inode);
6943
6944         if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6945                 return -EPERM;
6946
6947         /* we only allow rename subvolume link between subvolumes */
6948         if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6949                 return -EXDEV;
6950
6951         if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6952             (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
6953                 return -ENOTEMPTY;
6954
6955         if (S_ISDIR(old_inode->i_mode) && new_inode &&
6956             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6957                 return -ENOTEMPTY;
6958         /*
6959          * we're using rename to replace one file with another.
6960          * and the replacement file is large.  Start IO on it now so
6961          * we don't add too much work to the end of the transaction
6962          */
6963         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6964             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6965                 filemap_flush(old_inode->i_mapping);
6966
6967         /* close the racy window with snapshot create/destroy ioctl */
6968         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
6969                 down_read(&root->fs_info->subvol_sem);
6970         /*
6971          * We want to reserve the absolute worst case amount of items.  So if
6972          * both inodes are subvols and we need to unlink them then that would
6973          * require 4 item modifications, but if they are both normal inodes it
6974          * would require 5 item modifications, so we'll assume their normal
6975          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6976          * should cover the worst case number of items we'll modify.
6977          */
6978         trans = btrfs_start_transaction(root, 20);
6979         if (IS_ERR(trans)) {
6980                 ret = PTR_ERR(trans);
6981                 goto out_notrans;
6982         }
6983
6984         if (dest != root)
6985                 btrfs_record_root_in_trans(trans, dest);
6986
6987         ret = btrfs_set_inode_index(new_dir, &index);
6988         if (ret)
6989                 goto out_fail;
6990
6991         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6992                 /* force full log commit if subvolume involved. */
6993                 root->fs_info->last_trans_log_full_commit = trans->transid;
6994         } else {
6995                 ret = btrfs_insert_inode_ref(trans, dest,
6996                                              new_dentry->d_name.name,
6997                                              new_dentry->d_name.len,
6998                                              old_ino,
6999                                              btrfs_ino(new_dir), index);
7000                 if (ret)
7001                         goto out_fail;
7002                 /*
7003                  * this is an ugly little race, but the rename is required
7004                  * to make sure that if we crash, the inode is either at the
7005                  * old name or the new one.  pinning the log transaction lets
7006                  * us make sure we don't allow a log commit to come in after
7007                  * we unlink the name but before we add the new name back in.
7008                  */
7009                 btrfs_pin_log_trans(root);
7010         }
7011         /*
7012          * make sure the inode gets flushed if it is replacing
7013          * something.
7014          */
7015         if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
7016                 btrfs_add_ordered_operation(trans, root, old_inode);
7017
7018         old_dir->i_ctime = old_dir->i_mtime = ctime;
7019         new_dir->i_ctime = new_dir->i_mtime = ctime;
7020         old_inode->i_ctime = ctime;
7021
7022         if (old_dentry->d_parent != new_dentry->d_parent)
7023                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7024
7025         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7026                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7027                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7028                                         old_dentry->d_name.name,
7029                                         old_dentry->d_name.len);
7030         } else {
7031                 ret = __btrfs_unlink_inode(trans, root, old_dir,
7032                                         old_dentry->d_inode,
7033                                         old_dentry->d_name.name,
7034                                         old_dentry->d_name.len);
7035                 if (!ret)
7036                         ret = btrfs_update_inode(trans, root, old_inode);
7037         }
7038         BUG_ON(ret);
7039
7040         if (new_inode) {
7041                 new_inode->i_ctime = CURRENT_TIME;
7042                 if (unlikely(btrfs_ino(new_inode) ==
7043                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7044                         root_objectid = BTRFS_I(new_inode)->location.objectid;
7045                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
7046                                                 root_objectid,
7047                                                 new_dentry->d_name.name,
7048                                                 new_dentry->d_name.len);
7049                         BUG_ON(new_inode->i_nlink == 0);
7050                 } else {
7051                         ret = btrfs_unlink_inode(trans, dest, new_dir,
7052                                                  new_dentry->d_inode,
7053                                                  new_dentry->d_name.name,
7054                                                  new_dentry->d_name.len);
7055                 }
7056                 BUG_ON(ret);
7057                 if (new_inode->i_nlink == 0) {
7058                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7059                         BUG_ON(ret);
7060                 }
7061         }
7062
7063         fixup_inode_flags(new_dir, old_inode);
7064
7065         ret = btrfs_add_link(trans, new_dir, old_inode,
7066                              new_dentry->d_name.name,
7067                              new_dentry->d_name.len, 0, index);
7068         BUG_ON(ret);
7069
7070         if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
7071                 struct dentry *parent = dget_parent(new_dentry);
7072                 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7073                 dput(parent);
7074                 btrfs_end_log_trans(root);
7075         }
7076 out_fail:
7077         btrfs_end_transaction_throttle(trans, root);
7078 out_notrans:
7079         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7080                 up_read(&root->fs_info->subvol_sem);
7081
7082         return ret;
7083 }
7084
7085 /*
7086  * some fairly slow code that needs optimization. This walks the list
7087  * of all the inodes with pending delalloc and forces them to disk.
7088  */
7089 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7090 {
7091         struct list_head *head = &root->fs_info->delalloc_inodes;
7092         struct btrfs_inode *binode;
7093         struct inode *inode;
7094
7095         if (root->fs_info->sb->s_flags & MS_RDONLY)
7096                 return -EROFS;
7097
7098         spin_lock(&root->fs_info->delalloc_lock);
7099         while (!list_empty(head)) {
7100                 binode = list_entry(head->next, struct btrfs_inode,
7101                                     delalloc_inodes);
7102                 inode = igrab(&binode->vfs_inode);
7103                 if (!inode)
7104                         list_del_init(&binode->delalloc_inodes);
7105                 spin_unlock(&root->fs_info->delalloc_lock);
7106                 if (inode) {
7107                         filemap_flush(inode->i_mapping);
7108                         if (delay_iput)
7109                                 btrfs_add_delayed_iput(inode);
7110                         else
7111                                 iput(inode);
7112                 }
7113                 cond_resched();
7114                 spin_lock(&root->fs_info->delalloc_lock);
7115         }
7116         spin_unlock(&root->fs_info->delalloc_lock);
7117
7118         /* the filemap_flush will queue IO into the worker threads, but
7119          * we have to make sure the IO is actually started and that
7120          * ordered extents get created before we return
7121          */
7122         atomic_inc(&root->fs_info->async_submit_draining);
7123         while (atomic_read(&root->fs_info->nr_async_submits) ||
7124               atomic_read(&root->fs_info->async_delalloc_pages)) {
7125                 wait_event(root->fs_info->async_submit_wait,
7126                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7127                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7128         }
7129         atomic_dec(&root->fs_info->async_submit_draining);
7130         return 0;
7131 }
7132
7133 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7134                          const char *symname)
7135 {
7136         struct btrfs_trans_handle *trans;
7137         struct btrfs_root *root = BTRFS_I(dir)->root;
7138         struct btrfs_path *path;
7139         struct btrfs_key key;
7140         struct inode *inode = NULL;
7141         int err;
7142         int drop_inode = 0;
7143         u64 objectid;
7144         u64 index = 0 ;
7145         int name_len;
7146         int datasize;
7147         unsigned long ptr;
7148         struct btrfs_file_extent_item *ei;
7149         struct extent_buffer *leaf;
7150         unsigned long nr = 0;
7151
7152         name_len = strlen(symname) + 1;
7153         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7154                 return -ENAMETOOLONG;
7155
7156         /*
7157          * 2 items for inode item and ref
7158          * 2 items for dir items
7159          * 1 item for xattr if selinux is on
7160          */
7161         trans = btrfs_start_transaction(root, 5);
7162         if (IS_ERR(trans))
7163                 return PTR_ERR(trans);
7164
7165         err = btrfs_find_free_ino(root, &objectid);
7166         if (err)
7167                 goto out_unlock;
7168
7169         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7170                                 dentry->d_name.len, btrfs_ino(dir), objectid,
7171                                 S_IFLNK|S_IRWXUGO, &index);
7172         if (IS_ERR(inode)) {
7173                 err = PTR_ERR(inode);
7174                 goto out_unlock;
7175         }
7176
7177         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7178         if (err) {
7179                 drop_inode = 1;
7180                 goto out_unlock;
7181         }
7182
7183         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7184         if (err)
7185                 drop_inode = 1;
7186         else {
7187                 inode->i_mapping->a_ops = &btrfs_aops;
7188                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7189                 inode->i_fop = &btrfs_file_operations;
7190                 inode->i_op = &btrfs_file_inode_operations;
7191                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7192         }
7193         if (drop_inode)
7194                 goto out_unlock;
7195
7196         path = btrfs_alloc_path();
7197         BUG_ON(!path);
7198         key.objectid = btrfs_ino(inode);
7199         key.offset = 0;
7200         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7201         datasize = btrfs_file_extent_calc_inline_size(name_len);
7202         err = btrfs_insert_empty_item(trans, root, path, &key,
7203                                       datasize);
7204         if (err) {
7205                 drop_inode = 1;
7206                 btrfs_free_path(path);
7207                 goto out_unlock;
7208         }
7209         leaf = path->nodes[0];
7210         ei = btrfs_item_ptr(leaf, path->slots[0],
7211                             struct btrfs_file_extent_item);
7212         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7213         btrfs_set_file_extent_type(leaf, ei,
7214                                    BTRFS_FILE_EXTENT_INLINE);
7215         btrfs_set_file_extent_encryption(leaf, ei, 0);
7216         btrfs_set_file_extent_compression(leaf, ei, 0);
7217         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7218         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7219
7220         ptr = btrfs_file_extent_inline_start(ei);
7221         write_extent_buffer(leaf, symname, ptr, name_len);
7222         btrfs_mark_buffer_dirty(leaf);
7223         btrfs_free_path(path);
7224
7225         inode->i_op = &btrfs_symlink_inode_operations;
7226         inode->i_mapping->a_ops = &btrfs_symlink_aops;
7227         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7228         inode_set_bytes(inode, name_len);
7229         btrfs_i_size_write(inode, name_len - 1);
7230         err = btrfs_update_inode(trans, root, inode);
7231         if (err)
7232                 drop_inode = 1;
7233
7234 out_unlock:
7235         nr = trans->blocks_used;
7236         btrfs_end_transaction_throttle(trans, root);
7237         if (drop_inode) {
7238                 inode_dec_link_count(inode);
7239                 iput(inode);
7240         }
7241         btrfs_btree_balance_dirty(root, nr);
7242         return err;
7243 }
7244
7245 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7246                                        u64 start, u64 num_bytes, u64 min_size,
7247                                        loff_t actual_len, u64 *alloc_hint,
7248                                        struct btrfs_trans_handle *trans)
7249 {
7250         struct btrfs_root *root = BTRFS_I(inode)->root;
7251         struct btrfs_key ins;
7252         u64 cur_offset = start;
7253         u64 i_size;
7254         int ret = 0;
7255         bool own_trans = true;
7256
7257         if (trans)
7258                 own_trans = false;
7259         while (num_bytes > 0) {
7260                 if (own_trans) {
7261                         trans = btrfs_start_transaction(root, 3);
7262                         if (IS_ERR(trans)) {
7263                                 ret = PTR_ERR(trans);
7264                                 break;
7265                         }
7266                 }
7267
7268                 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7269                                            0, *alloc_hint, (u64)-1, &ins, 1);
7270                 if (ret) {
7271                         if (own_trans)
7272                                 btrfs_end_transaction(trans, root);
7273                         break;
7274                 }
7275
7276                 ret = insert_reserved_file_extent(trans, inode,
7277                                                   cur_offset, ins.objectid,
7278                                                   ins.offset, ins.offset,
7279                                                   ins.offset, 0, 0, 0,
7280                                                   BTRFS_FILE_EXTENT_PREALLOC);
7281                 BUG_ON(ret);
7282                 btrfs_drop_extent_cache(inode, cur_offset,
7283                                         cur_offset + ins.offset -1, 0);
7284
7285                 num_bytes -= ins.offset;
7286                 cur_offset += ins.offset;
7287                 *alloc_hint = ins.objectid + ins.offset;
7288
7289                 inode->i_ctime = CURRENT_TIME;
7290                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7291                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7292                     (actual_len > inode->i_size) &&
7293                     (cur_offset > inode->i_size)) {
7294                         if (cur_offset > actual_len)
7295                                 i_size = actual_len;
7296                         else
7297                                 i_size = cur_offset;
7298                         i_size_write(inode, i_size);
7299                         btrfs_ordered_update_i_size(inode, i_size, NULL);
7300                 }
7301
7302                 ret = btrfs_update_inode(trans, root, inode);
7303                 BUG_ON(ret);
7304
7305                 if (own_trans)
7306                         btrfs_end_transaction(trans, root);
7307         }
7308         return ret;
7309 }
7310
7311 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7312                               u64 start, u64 num_bytes, u64 min_size,
7313                               loff_t actual_len, u64 *alloc_hint)
7314 {
7315         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7316                                            min_size, actual_len, alloc_hint,
7317                                            NULL);
7318 }
7319
7320 int btrfs_prealloc_file_range_trans(struct inode *inode,
7321                                     struct btrfs_trans_handle *trans, int mode,
7322                                     u64 start, u64 num_bytes, u64 min_size,
7323                                     loff_t actual_len, u64 *alloc_hint)
7324 {
7325         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7326                                            min_size, actual_len, alloc_hint, trans);
7327 }
7328
7329 static int btrfs_set_page_dirty(struct page *page)
7330 {
7331         return __set_page_dirty_nobuffers(page);
7332 }
7333
7334 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7335 {
7336         struct btrfs_root *root = BTRFS_I(inode)->root;
7337
7338         if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7339                 return -EROFS;
7340         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7341                 return -EACCES;
7342         return generic_permission(inode, mask, flags, btrfs_check_acl);
7343 }
7344
7345 static const struct inode_operations btrfs_dir_inode_operations = {
7346         .getattr        = btrfs_getattr,
7347         .lookup         = btrfs_lookup,
7348         .create         = btrfs_create,
7349         .unlink         = btrfs_unlink,
7350         .link           = btrfs_link,
7351         .mkdir          = btrfs_mkdir,
7352         .rmdir          = btrfs_rmdir,
7353         .rename         = btrfs_rename,
7354         .symlink        = btrfs_symlink,
7355         .setattr        = btrfs_setattr,
7356         .mknod          = btrfs_mknod,
7357         .setxattr       = btrfs_setxattr,
7358         .getxattr       = btrfs_getxattr,
7359         .listxattr      = btrfs_listxattr,
7360         .removexattr    = btrfs_removexattr,
7361         .permission     = btrfs_permission,
7362 };
7363 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7364         .lookup         = btrfs_lookup,
7365         .permission     = btrfs_permission,
7366 };
7367
7368 static const struct file_operations btrfs_dir_file_operations = {
7369         .llseek         = generic_file_llseek,
7370         .read           = generic_read_dir,
7371         .readdir        = btrfs_real_readdir,
7372         .unlocked_ioctl = btrfs_ioctl,
7373 #ifdef CONFIG_COMPAT
7374         .compat_ioctl   = btrfs_ioctl,
7375 #endif
7376         .release        = btrfs_release_file,
7377         .fsync          = btrfs_sync_file,
7378 };
7379
7380 static struct extent_io_ops btrfs_extent_io_ops = {
7381         .fill_delalloc = run_delalloc_range,
7382         .submit_bio_hook = btrfs_submit_bio_hook,
7383         .merge_bio_hook = btrfs_merge_bio_hook,
7384         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7385         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7386         .writepage_start_hook = btrfs_writepage_start_hook,
7387         .readpage_io_failed_hook = btrfs_io_failed_hook,
7388         .set_bit_hook = btrfs_set_bit_hook,
7389         .clear_bit_hook = btrfs_clear_bit_hook,
7390         .merge_extent_hook = btrfs_merge_extent_hook,
7391         .split_extent_hook = btrfs_split_extent_hook,
7392 };
7393
7394 /*
7395  * btrfs doesn't support the bmap operation because swapfiles
7396  * use bmap to make a mapping of extents in the file.  They assume
7397  * these extents won't change over the life of the file and they
7398  * use the bmap result to do IO directly to the drive.
7399  *
7400  * the btrfs bmap call would return logical addresses that aren't
7401  * suitable for IO and they also will change frequently as COW
7402  * operations happen.  So, swapfile + btrfs == corruption.
7403  *
7404  * For now we're avoiding this by dropping bmap.
7405  */
7406 static const struct address_space_operations btrfs_aops = {
7407         .readpage       = btrfs_readpage,
7408         .writepage      = btrfs_writepage,
7409         .writepages     = btrfs_writepages,
7410         .readpages      = btrfs_readpages,
7411         .direct_IO      = btrfs_direct_IO,
7412         .invalidatepage = btrfs_invalidatepage,
7413         .releasepage    = btrfs_releasepage,
7414         .set_page_dirty = btrfs_set_page_dirty,
7415         .error_remove_page = generic_error_remove_page,
7416 };
7417
7418 static const struct address_space_operations btrfs_symlink_aops = {
7419         .readpage       = btrfs_readpage,
7420         .writepage      = btrfs_writepage,
7421         .invalidatepage = btrfs_invalidatepage,
7422         .releasepage    = btrfs_releasepage,
7423 };
7424
7425 static const struct inode_operations btrfs_file_inode_operations = {
7426         .getattr        = btrfs_getattr,
7427         .setattr        = btrfs_setattr,
7428         .setxattr       = btrfs_setxattr,
7429         .getxattr       = btrfs_getxattr,
7430         .listxattr      = btrfs_listxattr,
7431         .removexattr    = btrfs_removexattr,
7432         .permission     = btrfs_permission,
7433         .fiemap         = btrfs_fiemap,
7434 };
7435 static const struct inode_operations btrfs_special_inode_operations = {
7436         .getattr        = btrfs_getattr,
7437         .setattr        = btrfs_setattr,
7438         .permission     = btrfs_permission,
7439         .setxattr       = btrfs_setxattr,
7440         .getxattr       = btrfs_getxattr,
7441         .listxattr      = btrfs_listxattr,
7442         .removexattr    = btrfs_removexattr,
7443 };
7444 static const struct inode_operations btrfs_symlink_inode_operations = {
7445         .readlink       = generic_readlink,
7446         .follow_link    = page_follow_link_light,
7447         .put_link       = page_put_link,
7448         .getattr        = btrfs_getattr,
7449         .permission     = btrfs_permission,
7450         .setxattr       = btrfs_setxattr,
7451         .getxattr       = btrfs_getxattr,
7452         .listxattr      = btrfs_listxattr,
7453         .removexattr    = btrfs_removexattr,
7454 };
7455
7456 const struct dentry_operations btrfs_dentry_operations = {
7457         .d_delete       = btrfs_dentry_delete,
7458 };