ae762dab37f827695ee42dbdfa047f3a96e73971
[pandora-kernel.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include "compat.h"
42 #include "ctree.h"
43 #include "disk-io.h"
44 #include "transaction.h"
45 #include "btrfs_inode.h"
46 #include "ioctl.h"
47 #include "print-tree.h"
48 #include "volumes.h"
49 #include "ordered-data.h"
50 #include "xattr.h"
51 #include "tree-log.h"
52 #include "compression.h"
53 #include "locking.h"
54 #include "free-space-cache.h"
55 #include "inode-map.h"
56
57 struct btrfs_iget_args {
58         u64 ino;
59         struct btrfs_root *root;
60 };
61
62 static const struct inode_operations btrfs_dir_inode_operations;
63 static const struct inode_operations btrfs_symlink_inode_operations;
64 static const struct inode_operations btrfs_dir_ro_inode_operations;
65 static const struct inode_operations btrfs_special_inode_operations;
66 static const struct inode_operations btrfs_file_inode_operations;
67 static const struct address_space_operations btrfs_aops;
68 static const struct address_space_operations btrfs_symlink_aops;
69 static const struct file_operations btrfs_dir_file_operations;
70 static struct extent_io_ops btrfs_extent_io_ops;
71
72 static struct kmem_cache *btrfs_inode_cachep;
73 struct kmem_cache *btrfs_trans_handle_cachep;
74 struct kmem_cache *btrfs_transaction_cachep;
75 struct kmem_cache *btrfs_path_cachep;
76 struct kmem_cache *btrfs_free_space_cachep;
77
78 #define S_SHIFT 12
79 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
80         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
81         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
82         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
83         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
84         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
85         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
86         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
87 };
88
89 static int btrfs_setsize(struct inode *inode, loff_t newsize);
90 static int btrfs_truncate(struct inode *inode);
91 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
92 static noinline int cow_file_range(struct inode *inode,
93                                    struct page *locked_page,
94                                    u64 start, u64 end, int *page_started,
95                                    unsigned long *nr_written, int unlock);
96
97 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
98                                      struct inode *inode,  struct inode *dir,
99                                      const struct qstr *qstr)
100 {
101         int err;
102
103         err = btrfs_init_acl(trans, inode, dir);
104         if (!err)
105                 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
106         return err;
107 }
108
109 /*
110  * this does all the hard work for inserting an inline extent into
111  * the btree.  The caller should have done a btrfs_drop_extents so that
112  * no overlapping inline items exist in the btree
113  */
114 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
115                                 struct btrfs_root *root, struct inode *inode,
116                                 u64 start, size_t size, size_t compressed_size,
117                                 int compress_type,
118                                 struct page **compressed_pages)
119 {
120         struct btrfs_key key;
121         struct btrfs_path *path;
122         struct extent_buffer *leaf;
123         struct page *page = NULL;
124         char *kaddr;
125         unsigned long ptr;
126         struct btrfs_file_extent_item *ei;
127         int err = 0;
128         int ret;
129         size_t cur_size = size;
130         size_t datasize;
131         unsigned long offset;
132
133         if (compressed_size && compressed_pages)
134                 cur_size = compressed_size;
135
136         path = btrfs_alloc_path();
137         if (!path)
138                 return -ENOMEM;
139
140         path->leave_spinning = 1;
141
142         key.objectid = btrfs_ino(inode);
143         key.offset = start;
144         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
145         datasize = btrfs_file_extent_calc_inline_size(cur_size);
146
147         inode_add_bytes(inode, size);
148         ret = btrfs_insert_empty_item(trans, root, path, &key,
149                                       datasize);
150         BUG_ON(ret);
151         if (ret) {
152                 err = ret;
153                 goto fail;
154         }
155         leaf = path->nodes[0];
156         ei = btrfs_item_ptr(leaf, path->slots[0],
157                             struct btrfs_file_extent_item);
158         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
159         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
160         btrfs_set_file_extent_encryption(leaf, ei, 0);
161         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
162         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
163         ptr = btrfs_file_extent_inline_start(ei);
164
165         if (compress_type != BTRFS_COMPRESS_NONE) {
166                 struct page *cpage;
167                 int i = 0;
168                 while (compressed_size > 0) {
169                         cpage = compressed_pages[i];
170                         cur_size = min_t(unsigned long, compressed_size,
171                                        PAGE_CACHE_SIZE);
172
173                         kaddr = kmap_atomic(cpage, KM_USER0);
174                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
175                         kunmap_atomic(kaddr, KM_USER0);
176
177                         i++;
178                         ptr += cur_size;
179                         compressed_size -= cur_size;
180                 }
181                 btrfs_set_file_extent_compression(leaf, ei,
182                                                   compress_type);
183         } else {
184                 page = find_get_page(inode->i_mapping,
185                                      start >> PAGE_CACHE_SHIFT);
186                 btrfs_set_file_extent_compression(leaf, ei, 0);
187                 kaddr = kmap_atomic(page, KM_USER0);
188                 offset = start & (PAGE_CACHE_SIZE - 1);
189                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
190                 kunmap_atomic(kaddr, KM_USER0);
191                 page_cache_release(page);
192         }
193         btrfs_mark_buffer_dirty(leaf);
194         btrfs_free_path(path);
195
196         /*
197          * we're an inline extent, so nobody can
198          * extend the file past i_size without locking
199          * a page we already have locked.
200          *
201          * We must do any isize and inode updates
202          * before we unlock the pages.  Otherwise we
203          * could end up racing with unlink.
204          */
205         BTRFS_I(inode)->disk_i_size = inode->i_size;
206         btrfs_update_inode(trans, root, inode);
207
208         return 0;
209 fail:
210         btrfs_free_path(path);
211         return err;
212 }
213
214
215 /*
216  * conditionally insert an inline extent into the file.  This
217  * does the checks required to make sure the data is small enough
218  * to fit as an inline extent.
219  */
220 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
221                                  struct btrfs_root *root,
222                                  struct inode *inode, u64 start, u64 end,
223                                  size_t compressed_size, int compress_type,
224                                  struct page **compressed_pages)
225 {
226         u64 isize = i_size_read(inode);
227         u64 actual_end = min(end + 1, isize);
228         u64 inline_len = actual_end - start;
229         u64 aligned_end = (end + root->sectorsize - 1) &
230                         ~((u64)root->sectorsize - 1);
231         u64 hint_byte;
232         u64 data_len = inline_len;
233         int ret;
234
235         if (compressed_size)
236                 data_len = compressed_size;
237
238         if (start > 0 ||
239             actual_end >= PAGE_CACHE_SIZE ||
240             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241             (!compressed_size &&
242             (actual_end & (root->sectorsize - 1)) == 0) ||
243             end + 1 < isize ||
244             data_len > root->fs_info->max_inline) {
245                 return 1;
246         }
247
248         ret = btrfs_drop_extents(trans, inode, start, aligned_end,
249                                  &hint_byte, 1);
250         BUG_ON(ret);
251
252         if (isize > actual_end)
253                 inline_len = min_t(u64, isize, actual_end);
254         ret = insert_inline_extent(trans, root, inode, start,
255                                    inline_len, compressed_size,
256                                    compress_type, compressed_pages);
257         BUG_ON(ret);
258         btrfs_delalloc_release_metadata(inode, end + 1 - start);
259         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
260         return 0;
261 }
262
263 struct async_extent {
264         u64 start;
265         u64 ram_size;
266         u64 compressed_size;
267         struct page **pages;
268         unsigned long nr_pages;
269         int compress_type;
270         struct list_head list;
271 };
272
273 struct async_cow {
274         struct inode *inode;
275         struct btrfs_root *root;
276         struct page *locked_page;
277         u64 start;
278         u64 end;
279         struct list_head extents;
280         struct btrfs_work work;
281 };
282
283 static noinline int add_async_extent(struct async_cow *cow,
284                                      u64 start, u64 ram_size,
285                                      u64 compressed_size,
286                                      struct page **pages,
287                                      unsigned long nr_pages,
288                                      int compress_type)
289 {
290         struct async_extent *async_extent;
291
292         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
293         BUG_ON(!async_extent);
294         async_extent->start = start;
295         async_extent->ram_size = ram_size;
296         async_extent->compressed_size = compressed_size;
297         async_extent->pages = pages;
298         async_extent->nr_pages = nr_pages;
299         async_extent->compress_type = compress_type;
300         list_add_tail(&async_extent->list, &cow->extents);
301         return 0;
302 }
303
304 /*
305  * we create compressed extents in two phases.  The first
306  * phase compresses a range of pages that have already been
307  * locked (both pages and state bits are locked).
308  *
309  * This is done inside an ordered work queue, and the compression
310  * is spread across many cpus.  The actual IO submission is step
311  * two, and the ordered work queue takes care of making sure that
312  * happens in the same order things were put onto the queue by
313  * writepages and friends.
314  *
315  * If this code finds it can't get good compression, it puts an
316  * entry onto the work queue to write the uncompressed bytes.  This
317  * makes sure that both compressed inodes and uncompressed inodes
318  * are written in the same order that pdflush sent them down.
319  */
320 static noinline int compress_file_range(struct inode *inode,
321                                         struct page *locked_page,
322                                         u64 start, u64 end,
323                                         struct async_cow *async_cow,
324                                         int *num_added)
325 {
326         struct btrfs_root *root = BTRFS_I(inode)->root;
327         struct btrfs_trans_handle *trans;
328         u64 num_bytes;
329         u64 blocksize = root->sectorsize;
330         u64 actual_end;
331         u64 isize = i_size_read(inode);
332         int ret = 0;
333         struct page **pages = NULL;
334         unsigned long nr_pages;
335         unsigned long nr_pages_ret = 0;
336         unsigned long total_compressed = 0;
337         unsigned long total_in = 0;
338         unsigned long max_compressed = 128 * 1024;
339         unsigned long max_uncompressed = 128 * 1024;
340         int i;
341         int will_compress;
342         int compress_type = root->fs_info->compress_type;
343
344         /* if this is a small write inside eof, kick off a defragbot */
345         if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
346                 btrfs_add_inode_defrag(NULL, inode);
347
348         actual_end = min_t(u64, isize, end + 1);
349 again:
350         will_compress = 0;
351         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
352         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
353
354         /*
355          * we don't want to send crud past the end of i_size through
356          * compression, that's just a waste of CPU time.  So, if the
357          * end of the file is before the start of our current
358          * requested range of bytes, we bail out to the uncompressed
359          * cleanup code that can deal with all of this.
360          *
361          * It isn't really the fastest way to fix things, but this is a
362          * very uncommon corner.
363          */
364         if (actual_end <= start)
365                 goto cleanup_and_bail_uncompressed;
366
367         total_compressed = actual_end - start;
368
369         /* we want to make sure that amount of ram required to uncompress
370          * an extent is reasonable, so we limit the total size in ram
371          * of a compressed extent to 128k.  This is a crucial number
372          * because it also controls how easily we can spread reads across
373          * cpus for decompression.
374          *
375          * We also want to make sure the amount of IO required to do
376          * a random read is reasonably small, so we limit the size of
377          * a compressed extent to 128k.
378          */
379         total_compressed = min(total_compressed, max_uncompressed);
380         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
381         num_bytes = max(blocksize,  num_bytes);
382         total_in = 0;
383         ret = 0;
384
385         /*
386          * we do compression for mount -o compress and when the
387          * inode has not been flagged as nocompress.  This flag can
388          * change at any time if we discover bad compression ratios.
389          */
390         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
391             (btrfs_test_opt(root, COMPRESS) ||
392              (BTRFS_I(inode)->force_compress) ||
393              (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
394                 WARN_ON(pages);
395                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
396                 BUG_ON(!pages);
397
398                 if (BTRFS_I(inode)->force_compress)
399                         compress_type = BTRFS_I(inode)->force_compress;
400
401                 ret = btrfs_compress_pages(compress_type,
402                                            inode->i_mapping, start,
403                                            total_compressed, pages,
404                                            nr_pages, &nr_pages_ret,
405                                            &total_in,
406                                            &total_compressed,
407                                            max_compressed);
408
409                 if (!ret) {
410                         unsigned long offset = total_compressed &
411                                 (PAGE_CACHE_SIZE - 1);
412                         struct page *page = pages[nr_pages_ret - 1];
413                         char *kaddr;
414
415                         /* zero the tail end of the last page, we might be
416                          * sending it down to disk
417                          */
418                         if (offset) {
419                                 kaddr = kmap_atomic(page, KM_USER0);
420                                 memset(kaddr + offset, 0,
421                                        PAGE_CACHE_SIZE - offset);
422                                 kunmap_atomic(kaddr, KM_USER0);
423                         }
424                         will_compress = 1;
425                 }
426         }
427         if (start == 0) {
428                 trans = btrfs_join_transaction(root);
429                 BUG_ON(IS_ERR(trans));
430                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
431
432                 /* lets try to make an inline extent */
433                 if (ret || total_in < (actual_end - start)) {
434                         /* we didn't compress the entire range, try
435                          * to make an uncompressed inline extent.
436                          */
437                         ret = cow_file_range_inline(trans, root, inode,
438                                                     start, end, 0, 0, NULL);
439                 } else {
440                         /* try making a compressed inline extent */
441                         ret = cow_file_range_inline(trans, root, inode,
442                                                     start, end,
443                                                     total_compressed,
444                                                     compress_type, pages);
445                 }
446                 if (ret == 0) {
447                         /*
448                          * inline extent creation worked, we don't need
449                          * to create any more async work items.  Unlock
450                          * and free up our temp pages.
451                          */
452                         extent_clear_unlock_delalloc(inode,
453                              &BTRFS_I(inode)->io_tree,
454                              start, end, NULL,
455                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
456                              EXTENT_CLEAR_DELALLOC |
457                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
458
459                         btrfs_end_transaction(trans, root);
460                         goto free_pages_out;
461                 }
462                 btrfs_end_transaction(trans, root);
463         }
464
465         if (will_compress) {
466                 /*
467                  * we aren't doing an inline extent round the compressed size
468                  * up to a block size boundary so the allocator does sane
469                  * things
470                  */
471                 total_compressed = (total_compressed + blocksize - 1) &
472                         ~(blocksize - 1);
473
474                 /*
475                  * one last check to make sure the compression is really a
476                  * win, compare the page count read with the blocks on disk
477                  */
478                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
479                         ~(PAGE_CACHE_SIZE - 1);
480                 if (total_compressed >= total_in) {
481                         will_compress = 0;
482                 } else {
483                         num_bytes = total_in;
484                 }
485         }
486         if (!will_compress && pages) {
487                 /*
488                  * the compression code ran but failed to make things smaller,
489                  * free any pages it allocated and our page pointer array
490                  */
491                 for (i = 0; i < nr_pages_ret; i++) {
492                         WARN_ON(pages[i]->mapping);
493                         page_cache_release(pages[i]);
494                 }
495                 kfree(pages);
496                 pages = NULL;
497                 total_compressed = 0;
498                 nr_pages_ret = 0;
499
500                 /* flag the file so we don't compress in the future */
501                 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
502                     !(BTRFS_I(inode)->force_compress)) {
503                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
504                 }
505         }
506         if (will_compress) {
507                 *num_added += 1;
508
509                 /* the async work queues will take care of doing actual
510                  * allocation on disk for these compressed pages,
511                  * and will submit them to the elevator.
512                  */
513                 add_async_extent(async_cow, start, num_bytes,
514                                  total_compressed, pages, nr_pages_ret,
515                                  compress_type);
516
517                 if (start + num_bytes < end) {
518                         start += num_bytes;
519                         pages = NULL;
520                         cond_resched();
521                         goto again;
522                 }
523         } else {
524 cleanup_and_bail_uncompressed:
525                 /*
526                  * No compression, but we still need to write the pages in
527                  * the file we've been given so far.  redirty the locked
528                  * page if it corresponds to our extent and set things up
529                  * for the async work queue to run cow_file_range to do
530                  * the normal delalloc dance
531                  */
532                 if (page_offset(locked_page) >= start &&
533                     page_offset(locked_page) <= end) {
534                         __set_page_dirty_nobuffers(locked_page);
535                         /* unlocked later on in the async handlers */
536                 }
537                 add_async_extent(async_cow, start, end - start + 1,
538                                  0, NULL, 0, BTRFS_COMPRESS_NONE);
539                 *num_added += 1;
540         }
541
542 out:
543         return 0;
544
545 free_pages_out:
546         for (i = 0; i < nr_pages_ret; i++) {
547                 WARN_ON(pages[i]->mapping);
548                 page_cache_release(pages[i]);
549         }
550         kfree(pages);
551
552         goto out;
553 }
554
555 /*
556  * phase two of compressed writeback.  This is the ordered portion
557  * of the code, which only gets called in the order the work was
558  * queued.  We walk all the async extents created by compress_file_range
559  * and send them down to the disk.
560  */
561 static noinline int submit_compressed_extents(struct inode *inode,
562                                               struct async_cow *async_cow)
563 {
564         struct async_extent *async_extent;
565         u64 alloc_hint = 0;
566         struct btrfs_trans_handle *trans;
567         struct btrfs_key ins;
568         struct extent_map *em;
569         struct btrfs_root *root = BTRFS_I(inode)->root;
570         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
571         struct extent_io_tree *io_tree;
572         int ret = 0;
573
574         if (list_empty(&async_cow->extents))
575                 return 0;
576
577
578         while (!list_empty(&async_cow->extents)) {
579                 async_extent = list_entry(async_cow->extents.next,
580                                           struct async_extent, list);
581                 list_del(&async_extent->list);
582
583                 io_tree = &BTRFS_I(inode)->io_tree;
584
585 retry:
586                 /* did the compression code fall back to uncompressed IO? */
587                 if (!async_extent->pages) {
588                         int page_started = 0;
589                         unsigned long nr_written = 0;
590
591                         lock_extent(io_tree, async_extent->start,
592                                          async_extent->start +
593                                          async_extent->ram_size - 1, GFP_NOFS);
594
595                         /* allocate blocks */
596                         ret = cow_file_range(inode, async_cow->locked_page,
597                                              async_extent->start,
598                                              async_extent->start +
599                                              async_extent->ram_size - 1,
600                                              &page_started, &nr_written, 0);
601
602                         /*
603                          * if page_started, cow_file_range inserted an
604                          * inline extent and took care of all the unlocking
605                          * and IO for us.  Otherwise, we need to submit
606                          * all those pages down to the drive.
607                          */
608                         if (!page_started && !ret)
609                                 extent_write_locked_range(io_tree,
610                                                   inode, async_extent->start,
611                                                   async_extent->start +
612                                                   async_extent->ram_size - 1,
613                                                   btrfs_get_extent,
614                                                   WB_SYNC_ALL);
615                         kfree(async_extent);
616                         cond_resched();
617                         continue;
618                 }
619
620                 lock_extent(io_tree, async_extent->start,
621                             async_extent->start + async_extent->ram_size - 1,
622                             GFP_NOFS);
623
624                 trans = btrfs_join_transaction(root);
625                 BUG_ON(IS_ERR(trans));
626                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
627                 ret = btrfs_reserve_extent(trans, root,
628                                            async_extent->compressed_size,
629                                            async_extent->compressed_size,
630                                            0, alloc_hint,
631                                            (u64)-1, &ins, 1);
632                 btrfs_end_transaction(trans, root);
633
634                 if (ret) {
635                         int i;
636                         for (i = 0; i < async_extent->nr_pages; i++) {
637                                 WARN_ON(async_extent->pages[i]->mapping);
638                                 page_cache_release(async_extent->pages[i]);
639                         }
640                         kfree(async_extent->pages);
641                         async_extent->nr_pages = 0;
642                         async_extent->pages = NULL;
643                         unlock_extent(io_tree, async_extent->start,
644                                       async_extent->start +
645                                       async_extent->ram_size - 1, GFP_NOFS);
646                         goto retry;
647                 }
648
649                 /*
650                  * here we're doing allocation and writeback of the
651                  * compressed pages
652                  */
653                 btrfs_drop_extent_cache(inode, async_extent->start,
654                                         async_extent->start +
655                                         async_extent->ram_size - 1, 0);
656
657                 em = alloc_extent_map();
658                 BUG_ON(!em);
659                 em->start = async_extent->start;
660                 em->len = async_extent->ram_size;
661                 em->orig_start = em->start;
662
663                 em->block_start = ins.objectid;
664                 em->block_len = ins.offset;
665                 em->bdev = root->fs_info->fs_devices->latest_bdev;
666                 em->compress_type = async_extent->compress_type;
667                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
668                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
669
670                 while (1) {
671                         write_lock(&em_tree->lock);
672                         ret = add_extent_mapping(em_tree, em);
673                         write_unlock(&em_tree->lock);
674                         if (ret != -EEXIST) {
675                                 free_extent_map(em);
676                                 break;
677                         }
678                         btrfs_drop_extent_cache(inode, async_extent->start,
679                                                 async_extent->start +
680                                                 async_extent->ram_size - 1, 0);
681                 }
682
683                 ret = btrfs_add_ordered_extent_compress(inode,
684                                                 async_extent->start,
685                                                 ins.objectid,
686                                                 async_extent->ram_size,
687                                                 ins.offset,
688                                                 BTRFS_ORDERED_COMPRESSED,
689                                                 async_extent->compress_type);
690                 BUG_ON(ret);
691
692                 /*
693                  * clear dirty, set writeback and unlock the pages.
694                  */
695                 extent_clear_unlock_delalloc(inode,
696                                 &BTRFS_I(inode)->io_tree,
697                                 async_extent->start,
698                                 async_extent->start +
699                                 async_extent->ram_size - 1,
700                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
701                                 EXTENT_CLEAR_UNLOCK |
702                                 EXTENT_CLEAR_DELALLOC |
703                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
704
705                 ret = btrfs_submit_compressed_write(inode,
706                                     async_extent->start,
707                                     async_extent->ram_size,
708                                     ins.objectid,
709                                     ins.offset, async_extent->pages,
710                                     async_extent->nr_pages);
711
712                 BUG_ON(ret);
713                 alloc_hint = ins.objectid + ins.offset;
714                 kfree(async_extent);
715                 cond_resched();
716         }
717
718         return 0;
719 }
720
721 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
722                                       u64 num_bytes)
723 {
724         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
725         struct extent_map *em;
726         u64 alloc_hint = 0;
727
728         read_lock(&em_tree->lock);
729         em = search_extent_mapping(em_tree, start, num_bytes);
730         if (em) {
731                 /*
732                  * if block start isn't an actual block number then find the
733                  * first block in this inode and use that as a hint.  If that
734                  * block is also bogus then just don't worry about it.
735                  */
736                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
737                         free_extent_map(em);
738                         em = search_extent_mapping(em_tree, 0, 0);
739                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
740                                 alloc_hint = em->block_start;
741                         if (em)
742                                 free_extent_map(em);
743                 } else {
744                         alloc_hint = em->block_start;
745                         free_extent_map(em);
746                 }
747         }
748         read_unlock(&em_tree->lock);
749
750         return alloc_hint;
751 }
752
753 /*
754  * when extent_io.c finds a delayed allocation range in the file,
755  * the call backs end up in this code.  The basic idea is to
756  * allocate extents on disk for the range, and create ordered data structs
757  * in ram to track those extents.
758  *
759  * locked_page is the page that writepage had locked already.  We use
760  * it to make sure we don't do extra locks or unlocks.
761  *
762  * *page_started is set to one if we unlock locked_page and do everything
763  * required to start IO on it.  It may be clean and already done with
764  * IO when we return.
765  */
766 static noinline int cow_file_range(struct inode *inode,
767                                    struct page *locked_page,
768                                    u64 start, u64 end, int *page_started,
769                                    unsigned long *nr_written,
770                                    int unlock)
771 {
772         struct btrfs_root *root = BTRFS_I(inode)->root;
773         struct btrfs_trans_handle *trans;
774         u64 alloc_hint = 0;
775         u64 num_bytes;
776         unsigned long ram_size;
777         u64 disk_num_bytes;
778         u64 cur_alloc_size;
779         u64 blocksize = root->sectorsize;
780         struct btrfs_key ins;
781         struct extent_map *em;
782         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
783         int ret = 0;
784
785         BUG_ON(btrfs_is_free_space_inode(root, inode));
786         trans = btrfs_join_transaction(root);
787         BUG_ON(IS_ERR(trans));
788         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
789
790         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
791         num_bytes = max(blocksize,  num_bytes);
792         disk_num_bytes = num_bytes;
793         ret = 0;
794
795         /* if this is a small write inside eof, kick off defrag */
796         if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
797                 btrfs_add_inode_defrag(trans, inode);
798
799         if (start == 0) {
800                 /* lets try to make an inline extent */
801                 ret = cow_file_range_inline(trans, root, inode,
802                                             start, end, 0, 0, NULL);
803                 if (ret == 0) {
804                         extent_clear_unlock_delalloc(inode,
805                                      &BTRFS_I(inode)->io_tree,
806                                      start, end, NULL,
807                                      EXTENT_CLEAR_UNLOCK_PAGE |
808                                      EXTENT_CLEAR_UNLOCK |
809                                      EXTENT_CLEAR_DELALLOC |
810                                      EXTENT_CLEAR_DIRTY |
811                                      EXTENT_SET_WRITEBACK |
812                                      EXTENT_END_WRITEBACK);
813
814                         *nr_written = *nr_written +
815                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
816                         *page_started = 1;
817                         ret = 0;
818                         goto out;
819                 }
820         }
821
822         BUG_ON(disk_num_bytes >
823                btrfs_super_total_bytes(&root->fs_info->super_copy));
824
825         alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
826         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
827
828         while (disk_num_bytes > 0) {
829                 unsigned long op;
830
831                 cur_alloc_size = disk_num_bytes;
832                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
833                                            root->sectorsize, 0, alloc_hint,
834                                            (u64)-1, &ins, 1);
835                 BUG_ON(ret);
836
837                 em = alloc_extent_map();
838                 BUG_ON(!em);
839                 em->start = start;
840                 em->orig_start = em->start;
841                 ram_size = ins.offset;
842                 em->len = ins.offset;
843
844                 em->block_start = ins.objectid;
845                 em->block_len = ins.offset;
846                 em->bdev = root->fs_info->fs_devices->latest_bdev;
847                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
848
849                 while (1) {
850                         write_lock(&em_tree->lock);
851                         ret = add_extent_mapping(em_tree, em);
852                         write_unlock(&em_tree->lock);
853                         if (ret != -EEXIST) {
854                                 free_extent_map(em);
855                                 break;
856                         }
857                         btrfs_drop_extent_cache(inode, start,
858                                                 start + ram_size - 1, 0);
859                 }
860
861                 cur_alloc_size = ins.offset;
862                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
863                                                ram_size, cur_alloc_size, 0);
864                 BUG_ON(ret);
865
866                 if (root->root_key.objectid ==
867                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
868                         ret = btrfs_reloc_clone_csums(inode, start,
869                                                       cur_alloc_size);
870                         BUG_ON(ret);
871                 }
872
873                 if (disk_num_bytes < cur_alloc_size)
874                         break;
875
876                 /* we're not doing compressed IO, don't unlock the first
877                  * page (which the caller expects to stay locked), don't
878                  * clear any dirty bits and don't set any writeback bits
879                  *
880                  * Do set the Private2 bit so we know this page was properly
881                  * setup for writepage
882                  */
883                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
884                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
885                         EXTENT_SET_PRIVATE2;
886
887                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
888                                              start, start + ram_size - 1,
889                                              locked_page, op);
890                 disk_num_bytes -= cur_alloc_size;
891                 num_bytes -= cur_alloc_size;
892                 alloc_hint = ins.objectid + ins.offset;
893                 start += cur_alloc_size;
894         }
895 out:
896         ret = 0;
897         btrfs_end_transaction(trans, root);
898
899         return ret;
900 }
901
902 /*
903  * work queue call back to started compression on a file and pages
904  */
905 static noinline void async_cow_start(struct btrfs_work *work)
906 {
907         struct async_cow *async_cow;
908         int num_added = 0;
909         async_cow = container_of(work, struct async_cow, work);
910
911         compress_file_range(async_cow->inode, async_cow->locked_page,
912                             async_cow->start, async_cow->end, async_cow,
913                             &num_added);
914         if (num_added == 0)
915                 async_cow->inode = NULL;
916 }
917
918 /*
919  * work queue call back to submit previously compressed pages
920  */
921 static noinline void async_cow_submit(struct btrfs_work *work)
922 {
923         struct async_cow *async_cow;
924         struct btrfs_root *root;
925         unsigned long nr_pages;
926
927         async_cow = container_of(work, struct async_cow, work);
928
929         root = async_cow->root;
930         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
931                 PAGE_CACHE_SHIFT;
932
933         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
934
935         if (atomic_read(&root->fs_info->async_delalloc_pages) <
936             5 * 1042 * 1024 &&
937             waitqueue_active(&root->fs_info->async_submit_wait))
938                 wake_up(&root->fs_info->async_submit_wait);
939
940         if (async_cow->inode)
941                 submit_compressed_extents(async_cow->inode, async_cow);
942 }
943
944 static noinline void async_cow_free(struct btrfs_work *work)
945 {
946         struct async_cow *async_cow;
947         async_cow = container_of(work, struct async_cow, work);
948         kfree(async_cow);
949 }
950
951 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
952                                 u64 start, u64 end, int *page_started,
953                                 unsigned long *nr_written)
954 {
955         struct async_cow *async_cow;
956         struct btrfs_root *root = BTRFS_I(inode)->root;
957         unsigned long nr_pages;
958         u64 cur_end;
959         int limit = 10 * 1024 * 1042;
960
961         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
962                          1, 0, NULL, GFP_NOFS);
963         while (start < end) {
964                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
965                 BUG_ON(!async_cow);
966                 async_cow->inode = inode;
967                 async_cow->root = root;
968                 async_cow->locked_page = locked_page;
969                 async_cow->start = start;
970
971                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
972                         cur_end = end;
973                 else
974                         cur_end = min(end, start + 512 * 1024 - 1);
975
976                 async_cow->end = cur_end;
977                 INIT_LIST_HEAD(&async_cow->extents);
978
979                 async_cow->work.func = async_cow_start;
980                 async_cow->work.ordered_func = async_cow_submit;
981                 async_cow->work.ordered_free = async_cow_free;
982                 async_cow->work.flags = 0;
983
984                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
985                         PAGE_CACHE_SHIFT;
986                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
987
988                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
989                                    &async_cow->work);
990
991                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
992                         wait_event(root->fs_info->async_submit_wait,
993                            (atomic_read(&root->fs_info->async_delalloc_pages) <
994                             limit));
995                 }
996
997                 while (atomic_read(&root->fs_info->async_submit_draining) &&
998                       atomic_read(&root->fs_info->async_delalloc_pages)) {
999                         wait_event(root->fs_info->async_submit_wait,
1000                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
1001                            0));
1002                 }
1003
1004                 *nr_written += nr_pages;
1005                 start = cur_end + 1;
1006         }
1007         *page_started = 1;
1008         return 0;
1009 }
1010
1011 static noinline int csum_exist_in_range(struct btrfs_root *root,
1012                                         u64 bytenr, u64 num_bytes)
1013 {
1014         int ret;
1015         struct btrfs_ordered_sum *sums;
1016         LIST_HEAD(list);
1017
1018         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1019                                        bytenr + num_bytes - 1, &list, 0);
1020         if (ret == 0 && list_empty(&list))
1021                 return 0;
1022
1023         while (!list_empty(&list)) {
1024                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1025                 list_del(&sums->list);
1026                 kfree(sums);
1027         }
1028         return 1;
1029 }
1030
1031 /*
1032  * when nowcow writeback call back.  This checks for snapshots or COW copies
1033  * of the extents that exist in the file, and COWs the file as required.
1034  *
1035  * If no cow copies or snapshots exist, we write directly to the existing
1036  * blocks on disk
1037  */
1038 static noinline int run_delalloc_nocow(struct inode *inode,
1039                                        struct page *locked_page,
1040                               u64 start, u64 end, int *page_started, int force,
1041                               unsigned long *nr_written)
1042 {
1043         struct btrfs_root *root = BTRFS_I(inode)->root;
1044         struct btrfs_trans_handle *trans;
1045         struct extent_buffer *leaf;
1046         struct btrfs_path *path;
1047         struct btrfs_file_extent_item *fi;
1048         struct btrfs_key found_key;
1049         u64 cow_start;
1050         u64 cur_offset;
1051         u64 extent_end;
1052         u64 extent_offset;
1053         u64 disk_bytenr;
1054         u64 num_bytes;
1055         int extent_type;
1056         int ret;
1057         int type;
1058         int nocow;
1059         int check_prev = 1;
1060         bool nolock;
1061         u64 ino = btrfs_ino(inode);
1062
1063         path = btrfs_alloc_path();
1064         BUG_ON(!path);
1065
1066         nolock = btrfs_is_free_space_inode(root, inode);
1067
1068         if (nolock)
1069                 trans = btrfs_join_transaction_nolock(root);
1070         else
1071                 trans = btrfs_join_transaction(root);
1072
1073         BUG_ON(IS_ERR(trans));
1074         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1075
1076         cow_start = (u64)-1;
1077         cur_offset = start;
1078         while (1) {
1079                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1080                                                cur_offset, 0);
1081                 BUG_ON(ret < 0);
1082                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1083                         leaf = path->nodes[0];
1084                         btrfs_item_key_to_cpu(leaf, &found_key,
1085                                               path->slots[0] - 1);
1086                         if (found_key.objectid == ino &&
1087                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1088                                 path->slots[0]--;
1089                 }
1090                 check_prev = 0;
1091 next_slot:
1092                 leaf = path->nodes[0];
1093                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1094                         ret = btrfs_next_leaf(root, path);
1095                         if (ret < 0)
1096                                 BUG_ON(1);
1097                         if (ret > 0)
1098                                 break;
1099                         leaf = path->nodes[0];
1100                 }
1101
1102                 nocow = 0;
1103                 disk_bytenr = 0;
1104                 num_bytes = 0;
1105                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1106
1107                 if (found_key.objectid > ino ||
1108                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1109                     found_key.offset > end)
1110                         break;
1111
1112                 if (found_key.offset > cur_offset) {
1113                         extent_end = found_key.offset;
1114                         extent_type = 0;
1115                         goto out_check;
1116                 }
1117
1118                 fi = btrfs_item_ptr(leaf, path->slots[0],
1119                                     struct btrfs_file_extent_item);
1120                 extent_type = btrfs_file_extent_type(leaf, fi);
1121
1122                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1123                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1124                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1125                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1126                         extent_end = found_key.offset +
1127                                 btrfs_file_extent_num_bytes(leaf, fi);
1128                         if (extent_end <= start) {
1129                                 path->slots[0]++;
1130                                 goto next_slot;
1131                         }
1132                         if (disk_bytenr == 0)
1133                                 goto out_check;
1134                         if (btrfs_file_extent_compression(leaf, fi) ||
1135                             btrfs_file_extent_encryption(leaf, fi) ||
1136                             btrfs_file_extent_other_encoding(leaf, fi))
1137                                 goto out_check;
1138                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1139                                 goto out_check;
1140                         if (btrfs_extent_readonly(root, disk_bytenr))
1141                                 goto out_check;
1142                         if (btrfs_cross_ref_exist(trans, root, ino,
1143                                                   found_key.offset -
1144                                                   extent_offset, disk_bytenr))
1145                                 goto out_check;
1146                         disk_bytenr += extent_offset;
1147                         disk_bytenr += cur_offset - found_key.offset;
1148                         num_bytes = min(end + 1, extent_end) - cur_offset;
1149                         /*
1150                          * force cow if csum exists in the range.
1151                          * this ensure that csum for a given extent are
1152                          * either valid or do not exist.
1153                          */
1154                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1155                                 goto out_check;
1156                         nocow = 1;
1157                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1158                         extent_end = found_key.offset +
1159                                 btrfs_file_extent_inline_len(leaf, fi);
1160                         extent_end = ALIGN(extent_end, root->sectorsize);
1161                 } else {
1162                         BUG_ON(1);
1163                 }
1164 out_check:
1165                 if (extent_end <= start) {
1166                         path->slots[0]++;
1167                         goto next_slot;
1168                 }
1169                 if (!nocow) {
1170                         if (cow_start == (u64)-1)
1171                                 cow_start = cur_offset;
1172                         cur_offset = extent_end;
1173                         if (cur_offset > end)
1174                                 break;
1175                         path->slots[0]++;
1176                         goto next_slot;
1177                 }
1178
1179                 btrfs_release_path(path);
1180                 if (cow_start != (u64)-1) {
1181                         ret = cow_file_range(inode, locked_page, cow_start,
1182                                         found_key.offset - 1, page_started,
1183                                         nr_written, 1);
1184                         BUG_ON(ret);
1185                         cow_start = (u64)-1;
1186                 }
1187
1188                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1189                         struct extent_map *em;
1190                         struct extent_map_tree *em_tree;
1191                         em_tree = &BTRFS_I(inode)->extent_tree;
1192                         em = alloc_extent_map();
1193                         BUG_ON(!em);
1194                         em->start = cur_offset;
1195                         em->orig_start = em->start;
1196                         em->len = num_bytes;
1197                         em->block_len = num_bytes;
1198                         em->block_start = disk_bytenr;
1199                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1200                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1201                         while (1) {
1202                                 write_lock(&em_tree->lock);
1203                                 ret = add_extent_mapping(em_tree, em);
1204                                 write_unlock(&em_tree->lock);
1205                                 if (ret != -EEXIST) {
1206                                         free_extent_map(em);
1207                                         break;
1208                                 }
1209                                 btrfs_drop_extent_cache(inode, em->start,
1210                                                 em->start + em->len - 1, 0);
1211                         }
1212                         type = BTRFS_ORDERED_PREALLOC;
1213                 } else {
1214                         type = BTRFS_ORDERED_NOCOW;
1215                 }
1216
1217                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1218                                                num_bytes, num_bytes, type);
1219                 BUG_ON(ret);
1220
1221                 if (root->root_key.objectid ==
1222                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1223                         ret = btrfs_reloc_clone_csums(inode, cur_offset,
1224                                                       num_bytes);
1225                         BUG_ON(ret);
1226                 }
1227
1228                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1229                                 cur_offset, cur_offset + num_bytes - 1,
1230                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1231                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1232                                 EXTENT_SET_PRIVATE2);
1233                 cur_offset = extent_end;
1234                 if (cur_offset > end)
1235                         break;
1236         }
1237         btrfs_release_path(path);
1238
1239         if (cur_offset <= end && cow_start == (u64)-1)
1240                 cow_start = cur_offset;
1241         if (cow_start != (u64)-1) {
1242                 ret = cow_file_range(inode, locked_page, cow_start, end,
1243                                      page_started, nr_written, 1);
1244                 BUG_ON(ret);
1245         }
1246
1247         if (nolock) {
1248                 ret = btrfs_end_transaction_nolock(trans, root);
1249                 BUG_ON(ret);
1250         } else {
1251                 ret = btrfs_end_transaction(trans, root);
1252                 BUG_ON(ret);
1253         }
1254         btrfs_free_path(path);
1255         return 0;
1256 }
1257
1258 /*
1259  * extent_io.c call back to do delayed allocation processing
1260  */
1261 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1262                               u64 start, u64 end, int *page_started,
1263                               unsigned long *nr_written)
1264 {
1265         int ret;
1266         struct btrfs_root *root = BTRFS_I(inode)->root;
1267
1268         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1269                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1270                                          page_started, 1, nr_written);
1271         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1272                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1273                                          page_started, 0, nr_written);
1274         else if (!btrfs_test_opt(root, COMPRESS) &&
1275                  !(BTRFS_I(inode)->force_compress) &&
1276                  !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1277                 ret = cow_file_range(inode, locked_page, start, end,
1278                                       page_started, nr_written, 1);
1279         else
1280                 ret = cow_file_range_async(inode, locked_page, start, end,
1281                                            page_started, nr_written);
1282         return ret;
1283 }
1284
1285 static int btrfs_split_extent_hook(struct inode *inode,
1286                                    struct extent_state *orig, u64 split)
1287 {
1288         /* not delalloc, ignore it */
1289         if (!(orig->state & EXTENT_DELALLOC))
1290                 return 0;
1291
1292         spin_lock(&BTRFS_I(inode)->lock);
1293         BTRFS_I(inode)->outstanding_extents++;
1294         spin_unlock(&BTRFS_I(inode)->lock);
1295         return 0;
1296 }
1297
1298 /*
1299  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1300  * extents so we can keep track of new extents that are just merged onto old
1301  * extents, such as when we are doing sequential writes, so we can properly
1302  * account for the metadata space we'll need.
1303  */
1304 static int btrfs_merge_extent_hook(struct inode *inode,
1305                                    struct extent_state *new,
1306                                    struct extent_state *other)
1307 {
1308         /* not delalloc, ignore it */
1309         if (!(other->state & EXTENT_DELALLOC))
1310                 return 0;
1311
1312         spin_lock(&BTRFS_I(inode)->lock);
1313         BTRFS_I(inode)->outstanding_extents--;
1314         spin_unlock(&BTRFS_I(inode)->lock);
1315         return 0;
1316 }
1317
1318 /*
1319  * extent_io.c set_bit_hook, used to track delayed allocation
1320  * bytes in this file, and to maintain the list of inodes that
1321  * have pending delalloc work to be done.
1322  */
1323 static int btrfs_set_bit_hook(struct inode *inode,
1324                               struct extent_state *state, int *bits)
1325 {
1326
1327         /*
1328          * set_bit and clear bit hooks normally require _irqsave/restore
1329          * but in this case, we are only testing for the DELALLOC
1330          * bit, which is only set or cleared with irqs on
1331          */
1332         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1333                 struct btrfs_root *root = BTRFS_I(inode)->root;
1334                 u64 len = state->end + 1 - state->start;
1335                 bool do_list = !btrfs_is_free_space_inode(root, inode);
1336
1337                 if (*bits & EXTENT_FIRST_DELALLOC) {
1338                         *bits &= ~EXTENT_FIRST_DELALLOC;
1339                 } else {
1340                         spin_lock(&BTRFS_I(inode)->lock);
1341                         BTRFS_I(inode)->outstanding_extents++;
1342                         spin_unlock(&BTRFS_I(inode)->lock);
1343                 }
1344
1345                 spin_lock(&root->fs_info->delalloc_lock);
1346                 BTRFS_I(inode)->delalloc_bytes += len;
1347                 root->fs_info->delalloc_bytes += len;
1348                 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1349                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1350                                       &root->fs_info->delalloc_inodes);
1351                 }
1352                 spin_unlock(&root->fs_info->delalloc_lock);
1353         }
1354         return 0;
1355 }
1356
1357 /*
1358  * extent_io.c clear_bit_hook, see set_bit_hook for why
1359  */
1360 static int btrfs_clear_bit_hook(struct inode *inode,
1361                                 struct extent_state *state, int *bits)
1362 {
1363         /*
1364          * set_bit and clear bit hooks normally require _irqsave/restore
1365          * but in this case, we are only testing for the DELALLOC
1366          * bit, which is only set or cleared with irqs on
1367          */
1368         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1369                 struct btrfs_root *root = BTRFS_I(inode)->root;
1370                 u64 len = state->end + 1 - state->start;
1371                 bool do_list = !btrfs_is_free_space_inode(root, inode);
1372
1373                 if (*bits & EXTENT_FIRST_DELALLOC) {
1374                         *bits &= ~EXTENT_FIRST_DELALLOC;
1375                 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1376                         spin_lock(&BTRFS_I(inode)->lock);
1377                         BTRFS_I(inode)->outstanding_extents--;
1378                         spin_unlock(&BTRFS_I(inode)->lock);
1379                 }
1380
1381                 if (*bits & EXTENT_DO_ACCOUNTING)
1382                         btrfs_delalloc_release_metadata(inode, len);
1383
1384                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1385                     && do_list)
1386                         btrfs_free_reserved_data_space(inode, len);
1387
1388                 spin_lock(&root->fs_info->delalloc_lock);
1389                 root->fs_info->delalloc_bytes -= len;
1390                 BTRFS_I(inode)->delalloc_bytes -= len;
1391
1392                 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1393                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1394                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1395                 }
1396                 spin_unlock(&root->fs_info->delalloc_lock);
1397         }
1398         return 0;
1399 }
1400
1401 /*
1402  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1403  * we don't create bios that span stripes or chunks
1404  */
1405 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1406                          size_t size, struct bio *bio,
1407                          unsigned long bio_flags)
1408 {
1409         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1410         struct btrfs_mapping_tree *map_tree;
1411         u64 logical = (u64)bio->bi_sector << 9;
1412         u64 length = 0;
1413         u64 map_length;
1414         int ret;
1415
1416         if (bio_flags & EXTENT_BIO_COMPRESSED)
1417                 return 0;
1418
1419         length = bio->bi_size;
1420         map_tree = &root->fs_info->mapping_tree;
1421         map_length = length;
1422         ret = btrfs_map_block(map_tree, READ, logical,
1423                               &map_length, NULL, 0);
1424
1425         if (map_length < length + size)
1426                 return 1;
1427         return ret;
1428 }
1429
1430 /*
1431  * in order to insert checksums into the metadata in large chunks,
1432  * we wait until bio submission time.   All the pages in the bio are
1433  * checksummed and sums are attached onto the ordered extent record.
1434  *
1435  * At IO completion time the cums attached on the ordered extent record
1436  * are inserted into the btree
1437  */
1438 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1439                                     struct bio *bio, int mirror_num,
1440                                     unsigned long bio_flags,
1441                                     u64 bio_offset)
1442 {
1443         struct btrfs_root *root = BTRFS_I(inode)->root;
1444         int ret = 0;
1445
1446         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1447         BUG_ON(ret);
1448         return 0;
1449 }
1450
1451 /*
1452  * in order to insert checksums into the metadata in large chunks,
1453  * we wait until bio submission time.   All the pages in the bio are
1454  * checksummed and sums are attached onto the ordered extent record.
1455  *
1456  * At IO completion time the cums attached on the ordered extent record
1457  * are inserted into the btree
1458  */
1459 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1460                           int mirror_num, unsigned long bio_flags,
1461                           u64 bio_offset)
1462 {
1463         struct btrfs_root *root = BTRFS_I(inode)->root;
1464         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1465 }
1466
1467 /*
1468  * extent_io.c submission hook. This does the right thing for csum calculation
1469  * on write, or reading the csums from the tree before a read
1470  */
1471 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1472                           int mirror_num, unsigned long bio_flags,
1473                           u64 bio_offset)
1474 {
1475         struct btrfs_root *root = BTRFS_I(inode)->root;
1476         int ret = 0;
1477         int skip_sum;
1478
1479         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1480
1481         if (btrfs_is_free_space_inode(root, inode))
1482                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1483         else
1484                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1485         BUG_ON(ret);
1486
1487         if (!(rw & REQ_WRITE)) {
1488                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1489                         return btrfs_submit_compressed_read(inode, bio,
1490                                                     mirror_num, bio_flags);
1491                 } else if (!skip_sum) {
1492                         ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1493                         if (ret)
1494                                 return ret;
1495                 }
1496                 goto mapit;
1497         } else if (!skip_sum) {
1498                 /* csum items have already been cloned */
1499                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1500                         goto mapit;
1501                 /* we're doing a write, do the async checksumming */
1502                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1503                                    inode, rw, bio, mirror_num,
1504                                    bio_flags, bio_offset,
1505                                    __btrfs_submit_bio_start,
1506                                    __btrfs_submit_bio_done);
1507         }
1508
1509 mapit:
1510         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1511 }
1512
1513 /*
1514  * given a list of ordered sums record them in the inode.  This happens
1515  * at IO completion time based on sums calculated at bio submission time.
1516  */
1517 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1518                              struct inode *inode, u64 file_offset,
1519                              struct list_head *list)
1520 {
1521         struct btrfs_ordered_sum *sum;
1522
1523         list_for_each_entry(sum, list, list) {
1524                 btrfs_csum_file_blocks(trans,
1525                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1526         }
1527         return 0;
1528 }
1529
1530 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1531                               struct extent_state **cached_state)
1532 {
1533         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1534                 WARN_ON(1);
1535         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1536                                    cached_state, GFP_NOFS);
1537 }
1538
1539 /* see btrfs_writepage_start_hook for details on why this is required */
1540 struct btrfs_writepage_fixup {
1541         struct page *page;
1542         struct btrfs_work work;
1543 };
1544
1545 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1546 {
1547         struct btrfs_writepage_fixup *fixup;
1548         struct btrfs_ordered_extent *ordered;
1549         struct extent_state *cached_state = NULL;
1550         struct page *page;
1551         struct inode *inode;
1552         u64 page_start;
1553         u64 page_end;
1554
1555         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1556         page = fixup->page;
1557 again:
1558         lock_page(page);
1559         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1560                 ClearPageChecked(page);
1561                 goto out_page;
1562         }
1563
1564         inode = page->mapping->host;
1565         page_start = page_offset(page);
1566         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1567
1568         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1569                          &cached_state, GFP_NOFS);
1570
1571         /* already ordered? We're done */
1572         if (PagePrivate2(page))
1573                 goto out;
1574
1575         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1576         if (ordered) {
1577                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1578                                      page_end, &cached_state, GFP_NOFS);
1579                 unlock_page(page);
1580                 btrfs_start_ordered_extent(inode, ordered, 1);
1581                 goto again;
1582         }
1583
1584         BUG();
1585         btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1586         ClearPageChecked(page);
1587 out:
1588         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1589                              &cached_state, GFP_NOFS);
1590 out_page:
1591         unlock_page(page);
1592         page_cache_release(page);
1593         kfree(fixup);
1594 }
1595
1596 /*
1597  * There are a few paths in the higher layers of the kernel that directly
1598  * set the page dirty bit without asking the filesystem if it is a
1599  * good idea.  This causes problems because we want to make sure COW
1600  * properly happens and the data=ordered rules are followed.
1601  *
1602  * In our case any range that doesn't have the ORDERED bit set
1603  * hasn't been properly setup for IO.  We kick off an async process
1604  * to fix it up.  The async helper will wait for ordered extents, set
1605  * the delalloc bit and make it safe to write the page.
1606  */
1607 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1608 {
1609         struct inode *inode = page->mapping->host;
1610         struct btrfs_writepage_fixup *fixup;
1611         struct btrfs_root *root = BTRFS_I(inode)->root;
1612
1613         /* this page is properly in the ordered list */
1614         if (TestClearPagePrivate2(page))
1615                 return 0;
1616
1617         if (PageChecked(page))
1618                 return -EAGAIN;
1619
1620         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1621         if (!fixup)
1622                 return -EAGAIN;
1623
1624         SetPageChecked(page);
1625         page_cache_get(page);
1626         fixup->work.func = btrfs_writepage_fixup_worker;
1627         fixup->page = page;
1628         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1629         return -EAGAIN;
1630 }
1631
1632 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1633                                        struct inode *inode, u64 file_pos,
1634                                        u64 disk_bytenr, u64 disk_num_bytes,
1635                                        u64 num_bytes, u64 ram_bytes,
1636                                        u8 compression, u8 encryption,
1637                                        u16 other_encoding, int extent_type)
1638 {
1639         struct btrfs_root *root = BTRFS_I(inode)->root;
1640         struct btrfs_file_extent_item *fi;
1641         struct btrfs_path *path;
1642         struct extent_buffer *leaf;
1643         struct btrfs_key ins;
1644         u64 hint;
1645         int ret;
1646
1647         path = btrfs_alloc_path();
1648         BUG_ON(!path);
1649
1650         path->leave_spinning = 1;
1651
1652         /*
1653          * we may be replacing one extent in the tree with another.
1654          * The new extent is pinned in the extent map, and we don't want
1655          * to drop it from the cache until it is completely in the btree.
1656          *
1657          * So, tell btrfs_drop_extents to leave this extent in the cache.
1658          * the caller is expected to unpin it and allow it to be merged
1659          * with the others.
1660          */
1661         ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1662                                  &hint, 0);
1663         BUG_ON(ret);
1664
1665         ins.objectid = btrfs_ino(inode);
1666         ins.offset = file_pos;
1667         ins.type = BTRFS_EXTENT_DATA_KEY;
1668         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1669         BUG_ON(ret);
1670         leaf = path->nodes[0];
1671         fi = btrfs_item_ptr(leaf, path->slots[0],
1672                             struct btrfs_file_extent_item);
1673         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1674         btrfs_set_file_extent_type(leaf, fi, extent_type);
1675         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1676         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1677         btrfs_set_file_extent_offset(leaf, fi, 0);
1678         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1679         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1680         btrfs_set_file_extent_compression(leaf, fi, compression);
1681         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1682         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1683
1684         btrfs_unlock_up_safe(path, 1);
1685         btrfs_set_lock_blocking(leaf);
1686
1687         btrfs_mark_buffer_dirty(leaf);
1688
1689         inode_add_bytes(inode, num_bytes);
1690
1691         ins.objectid = disk_bytenr;
1692         ins.offset = disk_num_bytes;
1693         ins.type = BTRFS_EXTENT_ITEM_KEY;
1694         ret = btrfs_alloc_reserved_file_extent(trans, root,
1695                                         root->root_key.objectid,
1696                                         btrfs_ino(inode), file_pos, &ins);
1697         BUG_ON(ret);
1698         btrfs_free_path(path);
1699
1700         return 0;
1701 }
1702
1703 /*
1704  * helper function for btrfs_finish_ordered_io, this
1705  * just reads in some of the csum leaves to prime them into ram
1706  * before we start the transaction.  It limits the amount of btree
1707  * reads required while inside the transaction.
1708  */
1709 /* as ordered data IO finishes, this gets called so we can finish
1710  * an ordered extent if the range of bytes in the file it covers are
1711  * fully written.
1712  */
1713 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1714 {
1715         struct btrfs_root *root = BTRFS_I(inode)->root;
1716         struct btrfs_trans_handle *trans = NULL;
1717         struct btrfs_ordered_extent *ordered_extent = NULL;
1718         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1719         struct extent_state *cached_state = NULL;
1720         int compress_type = 0;
1721         int ret;
1722         bool nolock;
1723
1724         ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1725                                              end - start + 1);
1726         if (!ret)
1727                 return 0;
1728         BUG_ON(!ordered_extent);
1729
1730         nolock = btrfs_is_free_space_inode(root, inode);
1731
1732         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1733                 BUG_ON(!list_empty(&ordered_extent->list));
1734                 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1735                 if (!ret) {
1736                         if (nolock)
1737                                 trans = btrfs_join_transaction_nolock(root);
1738                         else
1739                                 trans = btrfs_join_transaction(root);
1740                         BUG_ON(IS_ERR(trans));
1741                         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1742                         ret = btrfs_update_inode(trans, root, inode);
1743                         BUG_ON(ret);
1744                 }
1745                 goto out;
1746         }
1747
1748         lock_extent_bits(io_tree, ordered_extent->file_offset,
1749                          ordered_extent->file_offset + ordered_extent->len - 1,
1750                          0, &cached_state, GFP_NOFS);
1751
1752         if (nolock)
1753                 trans = btrfs_join_transaction_nolock(root);
1754         else
1755                 trans = btrfs_join_transaction(root);
1756         BUG_ON(IS_ERR(trans));
1757         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1758
1759         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1760                 compress_type = ordered_extent->compress_type;
1761         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1762                 BUG_ON(compress_type);
1763                 ret = btrfs_mark_extent_written(trans, inode,
1764                                                 ordered_extent->file_offset,
1765                                                 ordered_extent->file_offset +
1766                                                 ordered_extent->len);
1767                 BUG_ON(ret);
1768         } else {
1769                 BUG_ON(root == root->fs_info->tree_root);
1770                 ret = insert_reserved_file_extent(trans, inode,
1771                                                 ordered_extent->file_offset,
1772                                                 ordered_extent->start,
1773                                                 ordered_extent->disk_len,
1774                                                 ordered_extent->len,
1775                                                 ordered_extent->len,
1776                                                 compress_type, 0, 0,
1777                                                 BTRFS_FILE_EXTENT_REG);
1778                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1779                                    ordered_extent->file_offset,
1780                                    ordered_extent->len);
1781                 BUG_ON(ret);
1782         }
1783         unlock_extent_cached(io_tree, ordered_extent->file_offset,
1784                              ordered_extent->file_offset +
1785                              ordered_extent->len - 1, &cached_state, GFP_NOFS);
1786
1787         add_pending_csums(trans, inode, ordered_extent->file_offset,
1788                           &ordered_extent->list);
1789
1790         ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1791         if (!ret) {
1792                 ret = btrfs_update_inode(trans, root, inode);
1793                 BUG_ON(ret);
1794         }
1795         ret = 0;
1796 out:
1797         if (nolock) {
1798                 if (trans)
1799                         btrfs_end_transaction_nolock(trans, root);
1800         } else {
1801                 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1802                 if (trans)
1803                         btrfs_end_transaction(trans, root);
1804         }
1805
1806         /* once for us */
1807         btrfs_put_ordered_extent(ordered_extent);
1808         /* once for the tree */
1809         btrfs_put_ordered_extent(ordered_extent);
1810
1811         return 0;
1812 }
1813
1814 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1815                                 struct extent_state *state, int uptodate)
1816 {
1817         trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1818
1819         ClearPagePrivate2(page);
1820         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1821 }
1822
1823 /*
1824  * When IO fails, either with EIO or csum verification fails, we
1825  * try other mirrors that might have a good copy of the data.  This
1826  * io_failure_record is used to record state as we go through all the
1827  * mirrors.  If another mirror has good data, the page is set up to date
1828  * and things continue.  If a good mirror can't be found, the original
1829  * bio end_io callback is called to indicate things have failed.
1830  */
1831 struct io_failure_record {
1832         struct page *page;
1833         u64 start;
1834         u64 len;
1835         u64 logical;
1836         unsigned long bio_flags;
1837         int last_mirror;
1838 };
1839
1840 static int btrfs_io_failed_hook(struct bio *failed_bio,
1841                          struct page *page, u64 start, u64 end,
1842                          struct extent_state *state)
1843 {
1844         struct io_failure_record *failrec = NULL;
1845         u64 private;
1846         struct extent_map *em;
1847         struct inode *inode = page->mapping->host;
1848         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1849         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1850         struct bio *bio;
1851         int num_copies;
1852         int ret;
1853         int rw;
1854         u64 logical;
1855
1856         ret = get_state_private(failure_tree, start, &private);
1857         if (ret) {
1858                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1859                 if (!failrec)
1860                         return -ENOMEM;
1861                 failrec->start = start;
1862                 failrec->len = end - start + 1;
1863                 failrec->last_mirror = 0;
1864                 failrec->bio_flags = 0;
1865
1866                 read_lock(&em_tree->lock);
1867                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1868                 if (em->start > start || em->start + em->len < start) {
1869                         free_extent_map(em);
1870                         em = NULL;
1871                 }
1872                 read_unlock(&em_tree->lock);
1873
1874                 if (IS_ERR_OR_NULL(em)) {
1875                         kfree(failrec);
1876                         return -EIO;
1877                 }
1878                 logical = start - em->start;
1879                 logical = em->block_start + logical;
1880                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1881                         logical = em->block_start;
1882                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1883                         extent_set_compress_type(&failrec->bio_flags,
1884                                                  em->compress_type);
1885                 }
1886                 failrec->logical = logical;
1887                 free_extent_map(em);
1888                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1889                                 EXTENT_DIRTY, GFP_NOFS);
1890                 set_state_private(failure_tree, start,
1891                                  (u64)(unsigned long)failrec);
1892         } else {
1893                 failrec = (struct io_failure_record *)(unsigned long)private;
1894         }
1895         num_copies = btrfs_num_copies(
1896                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1897                               failrec->logical, failrec->len);
1898         failrec->last_mirror++;
1899         if (!state) {
1900                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1901                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1902                                                     failrec->start,
1903                                                     EXTENT_LOCKED);
1904                 if (state && state->start != failrec->start)
1905                         state = NULL;
1906                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1907         }
1908         if (!state || failrec->last_mirror > num_copies) {
1909                 set_state_private(failure_tree, failrec->start, 0);
1910                 clear_extent_bits(failure_tree, failrec->start,
1911                                   failrec->start + failrec->len - 1,
1912                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1913                 kfree(failrec);
1914                 return -EIO;
1915         }
1916         bio = bio_alloc(GFP_NOFS, 1);
1917         bio->bi_private = state;
1918         bio->bi_end_io = failed_bio->bi_end_io;
1919         bio->bi_sector = failrec->logical >> 9;
1920         bio->bi_bdev = failed_bio->bi_bdev;
1921         bio->bi_size = 0;
1922
1923         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1924         if (failed_bio->bi_rw & REQ_WRITE)
1925                 rw = WRITE;
1926         else
1927                 rw = READ;
1928
1929         ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1930                                                       failrec->last_mirror,
1931                                                       failrec->bio_flags, 0);
1932         return ret;
1933 }
1934
1935 /*
1936  * each time an IO finishes, we do a fast check in the IO failure tree
1937  * to see if we need to process or clean up an io_failure_record
1938  */
1939 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1940 {
1941         u64 private;
1942         u64 private_failure;
1943         struct io_failure_record *failure;
1944         int ret;
1945
1946         private = 0;
1947         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1948                              (u64)-1, 1, EXTENT_DIRTY, 0)) {
1949                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1950                                         start, &private_failure);
1951                 if (ret == 0) {
1952                         failure = (struct io_failure_record *)(unsigned long)
1953                                    private_failure;
1954                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1955                                           failure->start, 0);
1956                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1957                                           failure->start,
1958                                           failure->start + failure->len - 1,
1959                                           EXTENT_DIRTY | EXTENT_LOCKED,
1960                                           GFP_NOFS);
1961                         kfree(failure);
1962                 }
1963         }
1964         return 0;
1965 }
1966
1967 /*
1968  * when reads are done, we need to check csums to verify the data is correct
1969  * if there's a match, we allow the bio to finish.  If not, we go through
1970  * the io_failure_record routines to find good copies
1971  */
1972 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1973                                struct extent_state *state)
1974 {
1975         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1976         struct inode *inode = page->mapping->host;
1977         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1978         char *kaddr;
1979         u64 private = ~(u32)0;
1980         int ret;
1981         struct btrfs_root *root = BTRFS_I(inode)->root;
1982         u32 csum = ~(u32)0;
1983
1984         if (PageChecked(page)) {
1985                 ClearPageChecked(page);
1986                 goto good;
1987         }
1988
1989         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1990                 goto good;
1991
1992         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1993             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1994                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1995                                   GFP_NOFS);
1996                 return 0;
1997         }
1998
1999         if (state && state->start == start) {
2000                 private = state->private;
2001                 ret = 0;
2002         } else {
2003                 ret = get_state_private(io_tree, start, &private);
2004         }
2005         kaddr = kmap_atomic(page, KM_USER0);
2006         if (ret)
2007                 goto zeroit;
2008
2009         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
2010         btrfs_csum_final(csum, (char *)&csum);
2011         if (csum != private)
2012                 goto zeroit;
2013
2014         kunmap_atomic(kaddr, KM_USER0);
2015 good:
2016         /* if the io failure tree for this inode is non-empty,
2017          * check to see if we've recovered from a failed IO
2018          */
2019         btrfs_clean_io_failures(inode, start);
2020         return 0;
2021
2022 zeroit:
2023         printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
2024                        "private %llu\n",
2025                        (unsigned long long)btrfs_ino(page->mapping->host),
2026                        (unsigned long long)start, csum,
2027                        (unsigned long long)private);
2028         memset(kaddr + offset, 1, end - start + 1);
2029         flush_dcache_page(page);
2030         kunmap_atomic(kaddr, KM_USER0);
2031         if (private == 0)
2032                 return 0;
2033         return -EIO;
2034 }
2035
2036 struct delayed_iput {
2037         struct list_head list;
2038         struct inode *inode;
2039 };
2040
2041 void btrfs_add_delayed_iput(struct inode *inode)
2042 {
2043         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2044         struct delayed_iput *delayed;
2045
2046         if (atomic_add_unless(&inode->i_count, -1, 1))
2047                 return;
2048
2049         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2050         delayed->inode = inode;
2051
2052         spin_lock(&fs_info->delayed_iput_lock);
2053         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2054         spin_unlock(&fs_info->delayed_iput_lock);
2055 }
2056
2057 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2058 {
2059         LIST_HEAD(list);
2060         struct btrfs_fs_info *fs_info = root->fs_info;
2061         struct delayed_iput *delayed;
2062         int empty;
2063
2064         spin_lock(&fs_info->delayed_iput_lock);
2065         empty = list_empty(&fs_info->delayed_iputs);
2066         spin_unlock(&fs_info->delayed_iput_lock);
2067         if (empty)
2068                 return;
2069
2070         down_read(&root->fs_info->cleanup_work_sem);
2071         spin_lock(&fs_info->delayed_iput_lock);
2072         list_splice_init(&fs_info->delayed_iputs, &list);
2073         spin_unlock(&fs_info->delayed_iput_lock);
2074
2075         while (!list_empty(&list)) {
2076                 delayed = list_entry(list.next, struct delayed_iput, list);
2077                 list_del(&delayed->list);
2078                 iput(delayed->inode);
2079                 kfree(delayed);
2080         }
2081         up_read(&root->fs_info->cleanup_work_sem);
2082 }
2083
2084 /*
2085  * calculate extra metadata reservation when snapshotting a subvolume
2086  * contains orphan files.
2087  */
2088 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2089                                 struct btrfs_pending_snapshot *pending,
2090                                 u64 *bytes_to_reserve)
2091 {
2092         struct btrfs_root *root;
2093         struct btrfs_block_rsv *block_rsv;
2094         u64 num_bytes;
2095         int index;
2096
2097         root = pending->root;
2098         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2099                 return;
2100
2101         block_rsv = root->orphan_block_rsv;
2102
2103         /* orphan block reservation for the snapshot */
2104         num_bytes = block_rsv->size;
2105
2106         /*
2107          * after the snapshot is created, COWing tree blocks may use more
2108          * space than it frees. So we should make sure there is enough
2109          * reserved space.
2110          */
2111         index = trans->transid & 0x1;
2112         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2113                 num_bytes += block_rsv->size -
2114                              (block_rsv->reserved + block_rsv->freed[index]);
2115         }
2116
2117         *bytes_to_reserve += num_bytes;
2118 }
2119
2120 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2121                                 struct btrfs_pending_snapshot *pending)
2122 {
2123         struct btrfs_root *root = pending->root;
2124         struct btrfs_root *snap = pending->snap;
2125         struct btrfs_block_rsv *block_rsv;
2126         u64 num_bytes;
2127         int index;
2128         int ret;
2129
2130         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2131                 return;
2132
2133         /* refill source subvolume's orphan block reservation */
2134         block_rsv = root->orphan_block_rsv;
2135         index = trans->transid & 0x1;
2136         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2137                 num_bytes = block_rsv->size -
2138                             (block_rsv->reserved + block_rsv->freed[index]);
2139                 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2140                                               root->orphan_block_rsv,
2141                                               num_bytes);
2142                 BUG_ON(ret);
2143         }
2144
2145         /* setup orphan block reservation for the snapshot */
2146         block_rsv = btrfs_alloc_block_rsv(snap);
2147         BUG_ON(!block_rsv);
2148
2149         btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2150         snap->orphan_block_rsv = block_rsv;
2151
2152         num_bytes = root->orphan_block_rsv->size;
2153         ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2154                                       block_rsv, num_bytes);
2155         BUG_ON(ret);
2156
2157 #if 0
2158         /* insert orphan item for the snapshot */
2159         WARN_ON(!root->orphan_item_inserted);
2160         ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2161                                        snap->root_key.objectid);
2162         BUG_ON(ret);
2163         snap->orphan_item_inserted = 1;
2164 #endif
2165 }
2166
2167 enum btrfs_orphan_cleanup_state {
2168         ORPHAN_CLEANUP_STARTED  = 1,
2169         ORPHAN_CLEANUP_DONE     = 2,
2170 };
2171
2172 /*
2173  * This is called in transaction commmit time. If there are no orphan
2174  * files in the subvolume, it removes orphan item and frees block_rsv
2175  * structure.
2176  */
2177 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2178                               struct btrfs_root *root)
2179 {
2180         int ret;
2181
2182         if (!list_empty(&root->orphan_list) ||
2183             root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2184                 return;
2185
2186         if (root->orphan_item_inserted &&
2187             btrfs_root_refs(&root->root_item) > 0) {
2188                 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2189                                             root->root_key.objectid);
2190                 BUG_ON(ret);
2191                 root->orphan_item_inserted = 0;
2192         }
2193
2194         if (root->orphan_block_rsv) {
2195                 WARN_ON(root->orphan_block_rsv->size > 0);
2196                 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2197                 root->orphan_block_rsv = NULL;
2198         }
2199 }
2200
2201 /*
2202  * This creates an orphan entry for the given inode in case something goes
2203  * wrong in the middle of an unlink/truncate.
2204  *
2205  * NOTE: caller of this function should reserve 5 units of metadata for
2206  *       this function.
2207  */
2208 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2209 {
2210         struct btrfs_root *root = BTRFS_I(inode)->root;
2211         struct btrfs_block_rsv *block_rsv = NULL;
2212         int reserve = 0;
2213         int insert = 0;
2214         int ret;
2215
2216         if (!root->orphan_block_rsv) {
2217                 block_rsv = btrfs_alloc_block_rsv(root);
2218                 BUG_ON(!block_rsv);
2219         }
2220
2221         spin_lock(&root->orphan_lock);
2222         if (!root->orphan_block_rsv) {
2223                 root->orphan_block_rsv = block_rsv;
2224         } else if (block_rsv) {
2225                 btrfs_free_block_rsv(root, block_rsv);
2226                 block_rsv = NULL;
2227         }
2228
2229         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2230                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2231 #if 0
2232                 /*
2233                  * For proper ENOSPC handling, we should do orphan
2234                  * cleanup when mounting. But this introduces backward
2235                  * compatibility issue.
2236                  */
2237                 if (!xchg(&root->orphan_item_inserted, 1))
2238                         insert = 2;
2239                 else
2240                         insert = 1;
2241 #endif
2242                 insert = 1;
2243         }
2244
2245         if (!BTRFS_I(inode)->orphan_meta_reserved) {
2246                 BTRFS_I(inode)->orphan_meta_reserved = 1;
2247                 reserve = 1;
2248         }
2249         spin_unlock(&root->orphan_lock);
2250
2251         if (block_rsv)
2252                 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2253
2254         /* grab metadata reservation from transaction handle */
2255         if (reserve) {
2256                 ret = btrfs_orphan_reserve_metadata(trans, inode);
2257                 BUG_ON(ret);
2258         }
2259
2260         /* insert an orphan item to track this unlinked/truncated file */
2261         if (insert >= 1) {
2262                 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2263                 BUG_ON(ret);
2264         }
2265
2266         /* insert an orphan item to track subvolume contains orphan files */
2267         if (insert >= 2) {
2268                 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2269                                                root->root_key.objectid);
2270                 BUG_ON(ret);
2271         }
2272         return 0;
2273 }
2274
2275 /*
2276  * We have done the truncate/delete so we can go ahead and remove the orphan
2277  * item for this particular inode.
2278  */
2279 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2280 {
2281         struct btrfs_root *root = BTRFS_I(inode)->root;
2282         int delete_item = 0;
2283         int release_rsv = 0;
2284         int ret = 0;
2285
2286         spin_lock(&root->orphan_lock);
2287         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2288                 list_del_init(&BTRFS_I(inode)->i_orphan);
2289                 delete_item = 1;
2290         }
2291
2292         if (BTRFS_I(inode)->orphan_meta_reserved) {
2293                 BTRFS_I(inode)->orphan_meta_reserved = 0;
2294                 release_rsv = 1;
2295         }
2296         spin_unlock(&root->orphan_lock);
2297
2298         if (trans && delete_item) {
2299                 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2300                 BUG_ON(ret);
2301         }
2302
2303         if (release_rsv)
2304                 btrfs_orphan_release_metadata(inode);
2305
2306         return 0;
2307 }
2308
2309 /*
2310  * this cleans up any orphans that may be left on the list from the last use
2311  * of this root.
2312  */
2313 int btrfs_orphan_cleanup(struct btrfs_root *root)
2314 {
2315         struct btrfs_path *path;
2316         struct extent_buffer *leaf;
2317         struct btrfs_key key, found_key;
2318         struct btrfs_trans_handle *trans;
2319         struct inode *inode;
2320         int ret = 0, nr_unlink = 0, nr_truncate = 0;
2321
2322         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2323                 return 0;
2324
2325         path = btrfs_alloc_path();
2326         if (!path) {
2327                 ret = -ENOMEM;
2328                 goto out;
2329         }
2330         path->reada = -1;
2331
2332         key.objectid = BTRFS_ORPHAN_OBJECTID;
2333         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2334         key.offset = (u64)-1;
2335
2336         while (1) {
2337                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2338                 if (ret < 0)
2339                         goto out;
2340
2341                 /*
2342                  * if ret == 0 means we found what we were searching for, which
2343                  * is weird, but possible, so only screw with path if we didn't
2344                  * find the key and see if we have stuff that matches
2345                  */
2346                 if (ret > 0) {
2347                         ret = 0;
2348                         if (path->slots[0] == 0)
2349                                 break;
2350                         path->slots[0]--;
2351                 }
2352
2353                 /* pull out the item */
2354                 leaf = path->nodes[0];
2355                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2356
2357                 /* make sure the item matches what we want */
2358                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2359                         break;
2360                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2361                         break;
2362
2363                 /* release the path since we're done with it */
2364                 btrfs_release_path(path);
2365
2366                 /*
2367                  * this is where we are basically btrfs_lookup, without the
2368                  * crossing root thing.  we store the inode number in the
2369                  * offset of the orphan item.
2370                  */
2371                 found_key.objectid = found_key.offset;
2372                 found_key.type = BTRFS_INODE_ITEM_KEY;
2373                 found_key.offset = 0;
2374                 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2375                 if (IS_ERR(inode)) {
2376                         ret = PTR_ERR(inode);
2377                         goto out;
2378                 }
2379
2380                 /*
2381                  * add this inode to the orphan list so btrfs_orphan_del does
2382                  * the proper thing when we hit it
2383                  */
2384                 spin_lock(&root->orphan_lock);
2385                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2386                 spin_unlock(&root->orphan_lock);
2387
2388                 /*
2389                  * if this is a bad inode, means we actually succeeded in
2390                  * removing the inode, but not the orphan record, which means
2391                  * we need to manually delete the orphan since iput will just
2392                  * do a destroy_inode
2393                  */
2394                 if (is_bad_inode(inode)) {
2395                         trans = btrfs_start_transaction(root, 0);
2396                         if (IS_ERR(trans)) {
2397                                 ret = PTR_ERR(trans);
2398                                 goto out;
2399                         }
2400                         btrfs_orphan_del(trans, inode);
2401                         btrfs_end_transaction(trans, root);
2402                         iput(inode);
2403                         continue;
2404                 }
2405
2406                 /* if we have links, this was a truncate, lets do that */
2407                 if (inode->i_nlink) {
2408                         if (!S_ISREG(inode->i_mode)) {
2409                                 WARN_ON(1);
2410                                 iput(inode);
2411                                 continue;
2412                         }
2413                         nr_truncate++;
2414                         ret = btrfs_truncate(inode);
2415                 } else {
2416                         nr_unlink++;
2417                 }
2418
2419                 /* this will do delete_inode and everything for us */
2420                 iput(inode);
2421                 if (ret)
2422                         goto out;
2423         }
2424         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2425
2426         if (root->orphan_block_rsv)
2427                 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2428                                         (u64)-1);
2429
2430         if (root->orphan_block_rsv || root->orphan_item_inserted) {
2431                 trans = btrfs_join_transaction(root);
2432                 if (!IS_ERR(trans))
2433                         btrfs_end_transaction(trans, root);
2434         }
2435
2436         if (nr_unlink)
2437                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2438         if (nr_truncate)
2439                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2440
2441 out:
2442         if (ret)
2443                 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2444         btrfs_free_path(path);
2445         return ret;
2446 }
2447
2448 /*
2449  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2450  * don't find any xattrs, we know there can't be any acls.
2451  *
2452  * slot is the slot the inode is in, objectid is the objectid of the inode
2453  */
2454 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2455                                           int slot, u64 objectid)
2456 {
2457         u32 nritems = btrfs_header_nritems(leaf);
2458         struct btrfs_key found_key;
2459         int scanned = 0;
2460
2461         slot++;
2462         while (slot < nritems) {
2463                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2464
2465                 /* we found a different objectid, there must not be acls */
2466                 if (found_key.objectid != objectid)
2467                         return 0;
2468
2469                 /* we found an xattr, assume we've got an acl */
2470                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2471                         return 1;
2472
2473                 /*
2474                  * we found a key greater than an xattr key, there can't
2475                  * be any acls later on
2476                  */
2477                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2478                         return 0;
2479
2480                 slot++;
2481                 scanned++;
2482
2483                 /*
2484                  * it goes inode, inode backrefs, xattrs, extents,
2485                  * so if there are a ton of hard links to an inode there can
2486                  * be a lot of backrefs.  Don't waste time searching too hard,
2487                  * this is just an optimization
2488                  */
2489                 if (scanned >= 8)
2490                         break;
2491         }
2492         /* we hit the end of the leaf before we found an xattr or
2493          * something larger than an xattr.  We have to assume the inode
2494          * has acls
2495          */
2496         return 1;
2497 }
2498
2499 /*
2500  * read an inode from the btree into the in-memory inode
2501  */
2502 static void btrfs_read_locked_inode(struct inode *inode)
2503 {
2504         struct btrfs_path *path;
2505         struct extent_buffer *leaf;
2506         struct btrfs_inode_item *inode_item;
2507         struct btrfs_timespec *tspec;
2508         struct btrfs_root *root = BTRFS_I(inode)->root;
2509         struct btrfs_key location;
2510         int maybe_acls;
2511         u32 rdev;
2512         int ret;
2513         bool filled = false;
2514
2515         ret = btrfs_fill_inode(inode, &rdev);
2516         if (!ret)
2517                 filled = true;
2518
2519         path = btrfs_alloc_path();
2520         BUG_ON(!path);
2521         path->leave_spinning = 1;
2522         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2523
2524         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2525         if (ret)
2526                 goto make_bad;
2527
2528         leaf = path->nodes[0];
2529
2530         if (filled)
2531                 goto cache_acl;
2532
2533         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2534                                     struct btrfs_inode_item);
2535         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2536         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2537         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2538         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2539         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2540
2541         tspec = btrfs_inode_atime(inode_item);
2542         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2543         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2544
2545         tspec = btrfs_inode_mtime(inode_item);
2546         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2547         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2548
2549         tspec = btrfs_inode_ctime(inode_item);
2550         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2551         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2552
2553         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2554         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2555         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2556         inode->i_generation = BTRFS_I(inode)->generation;
2557         inode->i_rdev = 0;
2558         rdev = btrfs_inode_rdev(leaf, inode_item);
2559
2560         BTRFS_I(inode)->index_cnt = (u64)-1;
2561         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2562 cache_acl:
2563         /*
2564          * try to precache a NULL acl entry for files that don't have
2565          * any xattrs or acls
2566          */
2567         maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2568                                            btrfs_ino(inode));
2569         if (!maybe_acls)
2570                 cache_no_acl(inode);
2571
2572         btrfs_free_path(path);
2573
2574         switch (inode->i_mode & S_IFMT) {
2575         case S_IFREG:
2576                 inode->i_mapping->a_ops = &btrfs_aops;
2577                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2578                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2579                 inode->i_fop = &btrfs_file_operations;
2580                 inode->i_op = &btrfs_file_inode_operations;
2581                 break;
2582         case S_IFDIR:
2583                 inode->i_fop = &btrfs_dir_file_operations;
2584                 if (root == root->fs_info->tree_root)
2585                         inode->i_op = &btrfs_dir_ro_inode_operations;
2586                 else
2587                         inode->i_op = &btrfs_dir_inode_operations;
2588                 break;
2589         case S_IFLNK:
2590                 inode->i_op = &btrfs_symlink_inode_operations;
2591                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2592                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2593                 break;
2594         default:
2595                 inode->i_op = &btrfs_special_inode_operations;
2596                 init_special_inode(inode, inode->i_mode, rdev);
2597                 break;
2598         }
2599
2600         btrfs_update_iflags(inode);
2601         return;
2602
2603 make_bad:
2604         btrfs_free_path(path);
2605         make_bad_inode(inode);
2606 }
2607
2608 /*
2609  * given a leaf and an inode, copy the inode fields into the leaf
2610  */
2611 static void fill_inode_item(struct btrfs_trans_handle *trans,
2612                             struct extent_buffer *leaf,
2613                             struct btrfs_inode_item *item,
2614                             struct inode *inode)
2615 {
2616         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2617         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2618         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2619         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2620         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2621
2622         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2623                                inode->i_atime.tv_sec);
2624         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2625                                 inode->i_atime.tv_nsec);
2626
2627         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2628                                inode->i_mtime.tv_sec);
2629         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2630                                 inode->i_mtime.tv_nsec);
2631
2632         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2633                                inode->i_ctime.tv_sec);
2634         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2635                                 inode->i_ctime.tv_nsec);
2636
2637         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2638         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2639         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2640         btrfs_set_inode_transid(leaf, item, trans->transid);
2641         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2642         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2643         btrfs_set_inode_block_group(leaf, item, 0);
2644 }
2645
2646 /*
2647  * copy everything in the in-memory inode into the btree.
2648  */
2649 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2650                                 struct btrfs_root *root, struct inode *inode)
2651 {
2652         struct btrfs_inode_item *inode_item;
2653         struct btrfs_path *path;
2654         struct extent_buffer *leaf;
2655         int ret;
2656
2657         /*
2658          * If the inode is a free space inode, we can deadlock during commit
2659          * if we put it into the delayed code.
2660          *
2661          * The data relocation inode should also be directly updated
2662          * without delay
2663          */
2664         if (!btrfs_is_free_space_inode(root, inode)
2665             && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2666                 ret = btrfs_delayed_update_inode(trans, root, inode);
2667                 if (!ret)
2668                         btrfs_set_inode_last_trans(trans, inode);
2669                 return ret;
2670         }
2671
2672         path = btrfs_alloc_path();
2673         if (!path)
2674                 return -ENOMEM;
2675
2676         path->leave_spinning = 1;
2677         ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2678                                  1);
2679         if (ret) {
2680                 if (ret > 0)
2681                         ret = -ENOENT;
2682                 goto failed;
2683         }
2684
2685         btrfs_unlock_up_safe(path, 1);
2686         leaf = path->nodes[0];
2687         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2688                                     struct btrfs_inode_item);
2689
2690         fill_inode_item(trans, leaf, inode_item, inode);
2691         btrfs_mark_buffer_dirty(leaf);
2692         btrfs_set_inode_last_trans(trans, inode);
2693         ret = 0;
2694 failed:
2695         btrfs_free_path(path);
2696         return ret;
2697 }
2698
2699 /*
2700  * unlink helper that gets used here in inode.c and in the tree logging
2701  * recovery code.  It remove a link in a directory with a given name, and
2702  * also drops the back refs in the inode to the directory
2703  */
2704 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2705                                 struct btrfs_root *root,
2706                                 struct inode *dir, struct inode *inode,
2707                                 const char *name, int name_len)
2708 {
2709         struct btrfs_path *path;
2710         int ret = 0;
2711         struct extent_buffer *leaf;
2712         struct btrfs_dir_item *di;
2713         struct btrfs_key key;
2714         u64 index;
2715         u64 ino = btrfs_ino(inode);
2716         u64 dir_ino = btrfs_ino(dir);
2717
2718         path = btrfs_alloc_path();
2719         if (!path) {
2720                 ret = -ENOMEM;
2721                 goto out;
2722         }
2723
2724         path->leave_spinning = 1;
2725         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2726                                     name, name_len, -1);
2727         if (IS_ERR(di)) {
2728                 ret = PTR_ERR(di);
2729                 goto err;
2730         }
2731         if (!di) {
2732                 ret = -ENOENT;
2733                 goto err;
2734         }
2735         leaf = path->nodes[0];
2736         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2737         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2738         if (ret)
2739                 goto err;
2740         btrfs_release_path(path);
2741
2742         ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2743                                   dir_ino, &index);
2744         if (ret) {
2745                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2746                        "inode %llu parent %llu\n", name_len, name,
2747                        (unsigned long long)ino, (unsigned long long)dir_ino);
2748                 goto err;
2749         }
2750
2751         ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2752         if (ret)
2753                 goto err;
2754
2755         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2756                                          inode, dir_ino);
2757         BUG_ON(ret != 0 && ret != -ENOENT);
2758
2759         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2760                                            dir, index);
2761         if (ret == -ENOENT)
2762                 ret = 0;
2763 err:
2764         btrfs_free_path(path);
2765         if (ret)
2766                 goto out;
2767
2768         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2769         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2770         btrfs_update_inode(trans, root, dir);
2771 out:
2772         return ret;
2773 }
2774
2775 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2776                        struct btrfs_root *root,
2777                        struct inode *dir, struct inode *inode,
2778                        const char *name, int name_len)
2779 {
2780         int ret;
2781         ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2782         if (!ret) {
2783                 btrfs_drop_nlink(inode);
2784                 ret = btrfs_update_inode(trans, root, inode);
2785         }
2786         return ret;
2787 }
2788                 
2789
2790 /* helper to check if there is any shared block in the path */
2791 static int check_path_shared(struct btrfs_root *root,
2792                              struct btrfs_path *path)
2793 {
2794         struct extent_buffer *eb;
2795         int level;
2796         u64 refs = 1;
2797
2798         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2799                 int ret;
2800
2801                 if (!path->nodes[level])
2802                         break;
2803                 eb = path->nodes[level];
2804                 if (!btrfs_block_can_be_shared(root, eb))
2805                         continue;
2806                 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2807                                                &refs, NULL);
2808                 if (refs > 1)
2809                         return 1;
2810         }
2811         return 0;
2812 }
2813
2814 /*
2815  * helper to start transaction for unlink and rmdir.
2816  *
2817  * unlink and rmdir are special in btrfs, they do not always free space.
2818  * so in enospc case, we should make sure they will free space before
2819  * allowing them to use the global metadata reservation.
2820  */
2821 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2822                                                        struct dentry *dentry)
2823 {
2824         struct btrfs_trans_handle *trans;
2825         struct btrfs_root *root = BTRFS_I(dir)->root;
2826         struct btrfs_path *path;
2827         struct btrfs_inode_ref *ref;
2828         struct btrfs_dir_item *di;
2829         struct inode *inode = dentry->d_inode;
2830         u64 index;
2831         int check_link = 1;
2832         int err = -ENOSPC;
2833         int ret;
2834         u64 ino = btrfs_ino(inode);
2835         u64 dir_ino = btrfs_ino(dir);
2836
2837         trans = btrfs_start_transaction(root, 10);
2838         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2839                 return trans;
2840
2841         if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2842                 return ERR_PTR(-ENOSPC);
2843
2844         /* check if there is someone else holds reference */
2845         if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2846                 return ERR_PTR(-ENOSPC);
2847
2848         if (atomic_read(&inode->i_count) > 2)
2849                 return ERR_PTR(-ENOSPC);
2850
2851         if (xchg(&root->fs_info->enospc_unlink, 1))
2852                 return ERR_PTR(-ENOSPC);
2853
2854         path = btrfs_alloc_path();
2855         if (!path) {
2856                 root->fs_info->enospc_unlink = 0;
2857                 return ERR_PTR(-ENOMEM);
2858         }
2859
2860         trans = btrfs_start_transaction(root, 0);
2861         if (IS_ERR(trans)) {
2862                 btrfs_free_path(path);
2863                 root->fs_info->enospc_unlink = 0;
2864                 return trans;
2865         }
2866
2867         path->skip_locking = 1;
2868         path->search_commit_root = 1;
2869
2870         ret = btrfs_lookup_inode(trans, root, path,
2871                                 &BTRFS_I(dir)->location, 0);
2872         if (ret < 0) {
2873                 err = ret;
2874                 goto out;
2875         }
2876         if (ret == 0) {
2877                 if (check_path_shared(root, path))
2878                         goto out;
2879         } else {
2880                 check_link = 0;
2881         }
2882         btrfs_release_path(path);
2883
2884         ret = btrfs_lookup_inode(trans, root, path,
2885                                 &BTRFS_I(inode)->location, 0);
2886         if (ret < 0) {
2887                 err = ret;
2888                 goto out;
2889         }
2890         if (ret == 0) {
2891                 if (check_path_shared(root, path))
2892                         goto out;
2893         } else {
2894                 check_link = 0;
2895         }
2896         btrfs_release_path(path);
2897
2898         if (ret == 0 && S_ISREG(inode->i_mode)) {
2899                 ret = btrfs_lookup_file_extent(trans, root, path,
2900                                                ino, (u64)-1, 0);
2901                 if (ret < 0) {
2902                         err = ret;
2903                         goto out;
2904                 }
2905                 BUG_ON(ret == 0);
2906                 if (check_path_shared(root, path))
2907                         goto out;
2908                 btrfs_release_path(path);
2909         }
2910
2911         if (!check_link) {
2912                 err = 0;
2913                 goto out;
2914         }
2915
2916         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2917                                 dentry->d_name.name, dentry->d_name.len, 0);
2918         if (IS_ERR(di)) {
2919                 err = PTR_ERR(di);
2920                 goto out;
2921         }
2922         if (di) {
2923                 if (check_path_shared(root, path))
2924                         goto out;
2925         } else {
2926                 err = 0;
2927                 goto out;
2928         }
2929         btrfs_release_path(path);
2930
2931         ref = btrfs_lookup_inode_ref(trans, root, path,
2932                                 dentry->d_name.name, dentry->d_name.len,
2933                                 ino, dir_ino, 0);
2934         if (IS_ERR(ref)) {
2935                 err = PTR_ERR(ref);
2936                 goto out;
2937         }
2938         BUG_ON(!ref);
2939         if (check_path_shared(root, path))
2940                 goto out;
2941         index = btrfs_inode_ref_index(path->nodes[0], ref);
2942         btrfs_release_path(path);
2943
2944         /*
2945          * This is a commit root search, if we can lookup inode item and other
2946          * relative items in the commit root, it means the transaction of
2947          * dir/file creation has been committed, and the dir index item that we
2948          * delay to insert has also been inserted into the commit root. So
2949          * we needn't worry about the delayed insertion of the dir index item
2950          * here.
2951          */
2952         di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
2953                                 dentry->d_name.name, dentry->d_name.len, 0);
2954         if (IS_ERR(di)) {
2955                 err = PTR_ERR(di);
2956                 goto out;
2957         }
2958         BUG_ON(ret == -ENOENT);
2959         if (check_path_shared(root, path))
2960                 goto out;
2961
2962         err = 0;
2963 out:
2964         btrfs_free_path(path);
2965         if (err) {
2966                 btrfs_end_transaction(trans, root);
2967                 root->fs_info->enospc_unlink = 0;
2968                 return ERR_PTR(err);
2969         }
2970
2971         trans->block_rsv = &root->fs_info->global_block_rsv;
2972         return trans;
2973 }
2974
2975 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2976                                struct btrfs_root *root)
2977 {
2978         if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2979                 BUG_ON(!root->fs_info->enospc_unlink);
2980                 root->fs_info->enospc_unlink = 0;
2981         }
2982         btrfs_end_transaction_throttle(trans, root);
2983 }
2984
2985 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2986 {
2987         struct btrfs_root *root = BTRFS_I(dir)->root;
2988         struct btrfs_trans_handle *trans;
2989         struct inode *inode = dentry->d_inode;
2990         int ret;
2991         unsigned long nr = 0;
2992
2993         trans = __unlink_start_trans(dir, dentry);
2994         if (IS_ERR(trans))
2995                 return PTR_ERR(trans);
2996
2997         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2998
2999         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3000                                  dentry->d_name.name, dentry->d_name.len);
3001         BUG_ON(ret);
3002
3003         if (inode->i_nlink == 0) {
3004                 ret = btrfs_orphan_add(trans, inode);
3005                 BUG_ON(ret);
3006         }
3007
3008         nr = trans->blocks_used;
3009         __unlink_end_trans(trans, root);
3010         btrfs_btree_balance_dirty(root, nr);
3011         return ret;
3012 }
3013
3014 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3015                         struct btrfs_root *root,
3016                         struct inode *dir, u64 objectid,
3017                         const char *name, int name_len)
3018 {
3019         struct btrfs_path *path;
3020         struct extent_buffer *leaf;
3021         struct btrfs_dir_item *di;
3022         struct btrfs_key key;
3023         u64 index;
3024         int ret;
3025         u64 dir_ino = btrfs_ino(dir);
3026
3027         path = btrfs_alloc_path();
3028         if (!path)
3029                 return -ENOMEM;
3030
3031         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3032                                    name, name_len, -1);
3033         BUG_ON(IS_ERR_OR_NULL(di));
3034
3035         leaf = path->nodes[0];
3036         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3037         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3038         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3039         BUG_ON(ret);
3040         btrfs_release_path(path);
3041
3042         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3043                                  objectid, root->root_key.objectid,
3044                                  dir_ino, &index, name, name_len);
3045         if (ret < 0) {
3046                 BUG_ON(ret != -ENOENT);
3047                 di = btrfs_search_dir_index_item(root, path, dir_ino,
3048                                                  name, name_len);
3049                 BUG_ON(IS_ERR_OR_NULL(di));
3050
3051                 leaf = path->nodes[0];
3052                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3053                 btrfs_release_path(path);
3054                 index = key.offset;
3055         }
3056         btrfs_release_path(path);
3057
3058         ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3059         BUG_ON(ret);
3060
3061         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3062         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3063         ret = btrfs_update_inode(trans, root, dir);
3064         BUG_ON(ret);
3065
3066         btrfs_free_path(path);
3067         return 0;
3068 }
3069
3070 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3071 {
3072         struct inode *inode = dentry->d_inode;
3073         int err = 0;
3074         struct btrfs_root *root = BTRFS_I(dir)->root;
3075         struct btrfs_trans_handle *trans;
3076         unsigned long nr = 0;
3077
3078         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3079             btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3080                 return -ENOTEMPTY;
3081
3082         trans = __unlink_start_trans(dir, dentry);
3083         if (IS_ERR(trans))
3084                 return PTR_ERR(trans);
3085
3086         if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3087                 err = btrfs_unlink_subvol(trans, root, dir,
3088                                           BTRFS_I(inode)->location.objectid,
3089                                           dentry->d_name.name,
3090                                           dentry->d_name.len);
3091                 goto out;
3092         }
3093
3094         err = btrfs_orphan_add(trans, inode);
3095         if (err)
3096                 goto out;
3097
3098         /* now the directory is empty */
3099         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3100                                  dentry->d_name.name, dentry->d_name.len);
3101         if (!err)
3102                 btrfs_i_size_write(inode, 0);
3103 out:
3104         nr = trans->blocks_used;
3105         __unlink_end_trans(trans, root);
3106         btrfs_btree_balance_dirty(root, nr);
3107
3108         return err;
3109 }
3110
3111 /*
3112  * this can truncate away extent items, csum items and directory items.
3113  * It starts at a high offset and removes keys until it can't find
3114  * any higher than new_size
3115  *
3116  * csum items that cross the new i_size are truncated to the new size
3117  * as well.
3118  *
3119  * min_type is the minimum key type to truncate down to.  If set to 0, this
3120  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3121  */
3122 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3123                                struct btrfs_root *root,
3124                                struct inode *inode,
3125                                u64 new_size, u32 min_type)
3126 {
3127         struct btrfs_path *path;
3128         struct extent_buffer *leaf;
3129         struct btrfs_file_extent_item *fi;
3130         struct btrfs_key key;
3131         struct btrfs_key found_key;
3132         u64 extent_start = 0;
3133         u64 extent_num_bytes = 0;
3134         u64 extent_offset = 0;
3135         u64 item_end = 0;
3136         u64 mask = root->sectorsize - 1;
3137         u32 found_type = (u8)-1;
3138         int found_extent;
3139         int del_item;
3140         int pending_del_nr = 0;
3141         int pending_del_slot = 0;
3142         int extent_type = -1;
3143         int encoding;
3144         int ret;
3145         int err = 0;
3146         u64 ino = btrfs_ino(inode);
3147
3148         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3149
3150         if (root->ref_cows || root == root->fs_info->tree_root)
3151                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3152
3153         /*
3154          * This function is also used to drop the items in the log tree before
3155          * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3156          * it is used to drop the loged items. So we shouldn't kill the delayed
3157          * items.
3158          */
3159         if (min_type == 0 && root == BTRFS_I(inode)->root)
3160                 btrfs_kill_delayed_inode_items(inode);
3161
3162         path = btrfs_alloc_path();
3163         BUG_ON(!path);
3164         path->reada = -1;
3165
3166         key.objectid = ino;
3167         key.offset = (u64)-1;
3168         key.type = (u8)-1;
3169
3170 search_again:
3171         path->leave_spinning = 1;
3172         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3173         if (ret < 0) {
3174                 err = ret;
3175                 goto out;
3176         }
3177
3178         if (ret > 0) {
3179                 /* there are no items in the tree for us to truncate, we're
3180                  * done
3181                  */
3182                 if (path->slots[0] == 0)
3183                         goto out;
3184                 path->slots[0]--;
3185         }
3186
3187         while (1) {
3188                 fi = NULL;
3189                 leaf = path->nodes[0];
3190                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3191                 found_type = btrfs_key_type(&found_key);
3192                 encoding = 0;
3193
3194                 if (found_key.objectid != ino)
3195                         break;
3196
3197                 if (found_type < min_type)
3198                         break;
3199
3200                 item_end = found_key.offset;
3201                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3202                         fi = btrfs_item_ptr(leaf, path->slots[0],
3203                                             struct btrfs_file_extent_item);
3204                         extent_type = btrfs_file_extent_type(leaf, fi);
3205                         encoding = btrfs_file_extent_compression(leaf, fi);
3206                         encoding |= btrfs_file_extent_encryption(leaf, fi);
3207                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3208
3209                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3210                                 item_end +=
3211                                     btrfs_file_extent_num_bytes(leaf, fi);
3212                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3213                                 item_end += btrfs_file_extent_inline_len(leaf,
3214                                                                          fi);
3215                         }
3216                         item_end--;
3217                 }
3218                 if (found_type > min_type) {
3219                         del_item = 1;
3220                 } else {
3221                         if (item_end < new_size)
3222                                 break;
3223                         if (found_key.offset >= new_size)
3224                                 del_item = 1;
3225                         else
3226                                 del_item = 0;
3227                 }
3228                 found_extent = 0;
3229                 /* FIXME, shrink the extent if the ref count is only 1 */
3230                 if (found_type != BTRFS_EXTENT_DATA_KEY)
3231                         goto delete;
3232
3233                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3234                         u64 num_dec;
3235                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3236                         if (!del_item && !encoding) {
3237                                 u64 orig_num_bytes =
3238                                         btrfs_file_extent_num_bytes(leaf, fi);
3239                                 extent_num_bytes = new_size -
3240                                         found_key.offset + root->sectorsize - 1;
3241                                 extent_num_bytes = extent_num_bytes &
3242                                         ~((u64)root->sectorsize - 1);
3243                                 btrfs_set_file_extent_num_bytes(leaf, fi,
3244                                                          extent_num_bytes);
3245                                 num_dec = (orig_num_bytes -
3246                                            extent_num_bytes);
3247                                 if (root->ref_cows && extent_start != 0)
3248                                         inode_sub_bytes(inode, num_dec);
3249                                 btrfs_mark_buffer_dirty(leaf);
3250                         } else {
3251                                 extent_num_bytes =
3252                                         btrfs_file_extent_disk_num_bytes(leaf,
3253                                                                          fi);
3254                                 extent_offset = found_key.offset -
3255                                         btrfs_file_extent_offset(leaf, fi);
3256
3257                                 /* FIXME blocksize != 4096 */
3258                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3259                                 if (extent_start != 0) {
3260                                         found_extent = 1;
3261                                         if (root->ref_cows)
3262                                                 inode_sub_bytes(inode, num_dec);
3263                                 }
3264                         }
3265                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3266                         /*
3267                          * we can't truncate inline items that have had
3268                          * special encodings
3269                          */
3270                         if (!del_item &&
3271                             btrfs_file_extent_compression(leaf, fi) == 0 &&
3272                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
3273                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3274                                 u32 size = new_size - found_key.offset;
3275
3276                                 if (root->ref_cows) {
3277                                         inode_sub_bytes(inode, item_end + 1 -
3278                                                         new_size);
3279                                 }
3280                                 size =
3281                                     btrfs_file_extent_calc_inline_size(size);
3282                                 ret = btrfs_truncate_item(trans, root, path,
3283                                                           size, 1);
3284                         } else if (root->ref_cows) {
3285                                 inode_sub_bytes(inode, item_end + 1 -
3286                                                 found_key.offset);
3287                         }
3288                 }
3289 delete:
3290                 if (del_item) {
3291                         if (!pending_del_nr) {
3292                                 /* no pending yet, add ourselves */
3293                                 pending_del_slot = path->slots[0];
3294                                 pending_del_nr = 1;
3295                         } else if (pending_del_nr &&
3296                                    path->slots[0] + 1 == pending_del_slot) {
3297                                 /* hop on the pending chunk */
3298                                 pending_del_nr++;
3299                                 pending_del_slot = path->slots[0];
3300                         } else {
3301                                 BUG();
3302                         }
3303                 } else {
3304                         break;
3305                 }
3306                 if (found_extent && (root->ref_cows ||
3307                                      root == root->fs_info->tree_root)) {
3308                         btrfs_set_path_blocking(path);
3309                         ret = btrfs_free_extent(trans, root, extent_start,
3310                                                 extent_num_bytes, 0,
3311                                                 btrfs_header_owner(leaf),
3312                                                 ino, extent_offset);
3313                         BUG_ON(ret);
3314                 }
3315
3316                 if (found_type == BTRFS_INODE_ITEM_KEY)
3317                         break;
3318
3319                 if (path->slots[0] == 0 ||
3320                     path->slots[0] != pending_del_slot) {
3321                         if (root->ref_cows &&
3322                             BTRFS_I(inode)->location.objectid !=
3323                                                 BTRFS_FREE_INO_OBJECTID) {
3324                                 err = -EAGAIN;
3325                                 goto out;
3326                         }
3327                         if (pending_del_nr) {
3328                                 ret = btrfs_del_items(trans, root, path,
3329                                                 pending_del_slot,
3330                                                 pending_del_nr);
3331                                 BUG_ON(ret);
3332                                 pending_del_nr = 0;
3333                         }
3334                         btrfs_release_path(path);
3335                         goto search_again;
3336                 } else {
3337                         path->slots[0]--;
3338                 }
3339         }
3340 out:
3341         if (pending_del_nr) {
3342                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3343                                       pending_del_nr);
3344                 BUG_ON(ret);
3345         }
3346         btrfs_free_path(path);
3347         return err;
3348 }
3349
3350 /*
3351  * taken from block_truncate_page, but does cow as it zeros out
3352  * any bytes left in the last page in the file.
3353  */
3354 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3355 {
3356         struct inode *inode = mapping->host;
3357         struct btrfs_root *root = BTRFS_I(inode)->root;
3358         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3359         struct btrfs_ordered_extent *ordered;
3360         struct extent_state *cached_state = NULL;
3361         char *kaddr;
3362         u32 blocksize = root->sectorsize;
3363         pgoff_t index = from >> PAGE_CACHE_SHIFT;
3364         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3365         struct page *page;
3366         int ret = 0;
3367         u64 page_start;
3368         u64 page_end;
3369
3370         if ((offset & (blocksize - 1)) == 0)
3371                 goto out;
3372         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3373         if (ret)
3374                 goto out;
3375
3376         ret = -ENOMEM;
3377 again:
3378         page = find_or_create_page(mapping, index, GFP_NOFS);
3379         if (!page) {
3380                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3381                 goto out;
3382         }
3383
3384         page_start = page_offset(page);
3385         page_end = page_start + PAGE_CACHE_SIZE - 1;
3386
3387         if (!PageUptodate(page)) {
3388                 ret = btrfs_readpage(NULL, page);
3389                 lock_page(page);
3390                 if (page->mapping != mapping) {
3391                         unlock_page(page);
3392                         page_cache_release(page);
3393                         goto again;
3394                 }
3395                 if (!PageUptodate(page)) {
3396                         ret = -EIO;
3397                         goto out_unlock;
3398                 }
3399         }
3400         wait_on_page_writeback(page);
3401
3402         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3403                          GFP_NOFS);
3404         set_page_extent_mapped(page);
3405
3406         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3407         if (ordered) {
3408                 unlock_extent_cached(io_tree, page_start, page_end,
3409                                      &cached_state, GFP_NOFS);
3410                 unlock_page(page);
3411                 page_cache_release(page);
3412                 btrfs_start_ordered_extent(inode, ordered, 1);
3413                 btrfs_put_ordered_extent(ordered);
3414                 goto again;
3415         }
3416
3417         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3418                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3419                           0, 0, &cached_state, GFP_NOFS);
3420
3421         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3422                                         &cached_state);
3423         if (ret) {
3424                 unlock_extent_cached(io_tree, page_start, page_end,
3425                                      &cached_state, GFP_NOFS);
3426                 goto out_unlock;
3427         }
3428
3429         ret = 0;
3430         if (offset != PAGE_CACHE_SIZE) {
3431                 kaddr = kmap(page);
3432                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3433                 flush_dcache_page(page);
3434                 kunmap(page);
3435         }
3436         ClearPageChecked(page);
3437         set_page_dirty(page);
3438         unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3439                              GFP_NOFS);
3440
3441 out_unlock:
3442         if (ret)
3443                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3444         unlock_page(page);
3445         page_cache_release(page);
3446 out:
3447         return ret;
3448 }
3449
3450 /*
3451  * This function puts in dummy file extents for the area we're creating a hole
3452  * for.  So if we are truncating this file to a larger size we need to insert
3453  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3454  * the range between oldsize and size
3455  */
3456 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3457 {
3458         struct btrfs_trans_handle *trans;
3459         struct btrfs_root *root = BTRFS_I(inode)->root;
3460         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3461         struct extent_map *em = NULL;
3462         struct extent_state *cached_state = NULL;
3463         u64 mask = root->sectorsize - 1;
3464         u64 hole_start = (oldsize + mask) & ~mask;
3465         u64 block_end = (size + mask) & ~mask;
3466         u64 last_byte;
3467         u64 cur_offset;
3468         u64 hole_size;
3469         int err = 0;
3470
3471         if (size <= hole_start)
3472                 return 0;
3473
3474         while (1) {
3475                 struct btrfs_ordered_extent *ordered;
3476                 btrfs_wait_ordered_range(inode, hole_start,
3477                                          block_end - hole_start);
3478                 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3479                                  &cached_state, GFP_NOFS);
3480                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3481                 if (!ordered)
3482                         break;
3483                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3484                                      &cached_state, GFP_NOFS);
3485                 btrfs_put_ordered_extent(ordered);
3486         }
3487
3488         cur_offset = hole_start;
3489         while (1) {
3490                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3491                                 block_end - cur_offset, 0);
3492                 BUG_ON(IS_ERR_OR_NULL(em));
3493                 last_byte = min(extent_map_end(em), block_end);
3494                 last_byte = (last_byte + mask) & ~mask;
3495                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3496                         u64 hint_byte = 0;
3497                         hole_size = last_byte - cur_offset;
3498
3499                         trans = btrfs_start_transaction(root, 2);
3500                         if (IS_ERR(trans)) {
3501                                 err = PTR_ERR(trans);
3502                                 break;
3503                         }
3504
3505                         err = btrfs_drop_extents(trans, inode, cur_offset,
3506                                                  cur_offset + hole_size,
3507                                                  &hint_byte, 1);
3508                         if (err)
3509                                 break;
3510
3511                         err = btrfs_insert_file_extent(trans, root,
3512                                         btrfs_ino(inode), cur_offset, 0,
3513                                         0, hole_size, 0, hole_size,
3514                                         0, 0, 0);
3515                         if (err)
3516                                 break;
3517
3518                         btrfs_drop_extent_cache(inode, hole_start,
3519                                         last_byte - 1, 0);
3520
3521                         btrfs_end_transaction(trans, root);
3522                 }
3523                 free_extent_map(em);
3524                 em = NULL;
3525                 cur_offset = last_byte;
3526                 if (cur_offset >= block_end)
3527                         break;
3528         }
3529
3530         free_extent_map(em);
3531         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3532                              GFP_NOFS);
3533         return err;
3534 }
3535
3536 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3537 {
3538         loff_t oldsize = i_size_read(inode);
3539         int ret;
3540
3541         if (newsize == oldsize)
3542                 return 0;
3543
3544         if (newsize > oldsize) {
3545                 i_size_write(inode, newsize);
3546                 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3547                 truncate_pagecache(inode, oldsize, newsize);
3548                 ret = btrfs_cont_expand(inode, oldsize, newsize);
3549                 if (ret) {
3550                         btrfs_setsize(inode, oldsize);
3551                         return ret;
3552                 }
3553
3554                 mark_inode_dirty(inode);
3555         } else {
3556
3557                 /*
3558                  * We're truncating a file that used to have good data down to
3559                  * zero. Make sure it gets into the ordered flush list so that
3560                  * any new writes get down to disk quickly.
3561                  */
3562                 if (newsize == 0)
3563                         BTRFS_I(inode)->ordered_data_close = 1;
3564
3565                 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3566                 truncate_setsize(inode, newsize);
3567                 ret = btrfs_truncate(inode);
3568         }
3569
3570         return ret;
3571 }
3572
3573 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3574 {
3575         struct inode *inode = dentry->d_inode;
3576         struct btrfs_root *root = BTRFS_I(inode)->root;
3577         int err;
3578
3579         if (btrfs_root_readonly(root))
3580                 return -EROFS;
3581
3582         err = inode_change_ok(inode, attr);
3583         if (err)
3584                 return err;
3585
3586         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3587                 err = btrfs_setsize(inode, attr->ia_size);
3588                 if (err)
3589                         return err;
3590         }
3591
3592         if (attr->ia_valid) {
3593                 setattr_copy(inode, attr);
3594                 mark_inode_dirty(inode);
3595
3596                 if (attr->ia_valid & ATTR_MODE)
3597                         err = btrfs_acl_chmod(inode);
3598         }
3599
3600         return err;
3601 }
3602
3603 void btrfs_evict_inode(struct inode *inode)
3604 {
3605         struct btrfs_trans_handle *trans;
3606         struct btrfs_root *root = BTRFS_I(inode)->root;
3607         unsigned long nr;
3608         int ret;
3609
3610         trace_btrfs_inode_evict(inode);
3611
3612         truncate_inode_pages(&inode->i_data, 0);
3613         if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3614                                btrfs_is_free_space_inode(root, inode)))
3615                 goto no_delete;
3616
3617         if (is_bad_inode(inode)) {
3618                 btrfs_orphan_del(NULL, inode);
3619                 goto no_delete;
3620         }
3621         /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3622         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3623
3624         if (root->fs_info->log_root_recovering) {
3625                 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3626                 goto no_delete;
3627         }
3628
3629         if (inode->i_nlink > 0) {
3630                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3631                 goto no_delete;
3632         }
3633
3634         btrfs_i_size_write(inode, 0);
3635
3636         while (1) {
3637                 trans = btrfs_join_transaction(root);
3638                 BUG_ON(IS_ERR(trans));
3639                 trans->block_rsv = root->orphan_block_rsv;
3640
3641                 ret = btrfs_block_rsv_check(trans, root,
3642                                             root->orphan_block_rsv, 0, 5);
3643                 if (ret) {
3644                         BUG_ON(ret != -EAGAIN);
3645                         ret = btrfs_commit_transaction(trans, root);
3646                         BUG_ON(ret);
3647                         continue;
3648                 }
3649
3650                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3651                 if (ret != -EAGAIN)
3652                         break;
3653
3654                 nr = trans->blocks_used;
3655                 btrfs_end_transaction(trans, root);
3656                 trans = NULL;
3657                 btrfs_btree_balance_dirty(root, nr);
3658
3659         }
3660
3661         if (ret == 0) {
3662                 ret = btrfs_orphan_del(trans, inode);
3663                 BUG_ON(ret);
3664         }
3665
3666         if (!(root == root->fs_info->tree_root ||
3667               root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3668                 btrfs_return_ino(root, btrfs_ino(inode));
3669
3670         nr = trans->blocks_used;
3671         btrfs_end_transaction(trans, root);
3672         btrfs_btree_balance_dirty(root, nr);
3673 no_delete:
3674         end_writeback(inode);
3675         return;
3676 }
3677
3678 /*
3679  * this returns the key found in the dir entry in the location pointer.
3680  * If no dir entries were found, location->objectid is 0.
3681  */
3682 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3683                                struct btrfs_key *location)
3684 {
3685         const char *name = dentry->d_name.name;
3686         int namelen = dentry->d_name.len;
3687         struct btrfs_dir_item *di;
3688         struct btrfs_path *path;
3689         struct btrfs_root *root = BTRFS_I(dir)->root;
3690         int ret = 0;
3691
3692         path = btrfs_alloc_path();
3693         BUG_ON(!path);
3694
3695         di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3696                                     namelen, 0);
3697         if (IS_ERR(di))
3698                 ret = PTR_ERR(di);
3699
3700         if (IS_ERR_OR_NULL(di))
3701                 goto out_err;
3702
3703         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3704 out:
3705         btrfs_free_path(path);
3706         return ret;
3707 out_err:
3708         location->objectid = 0;
3709         goto out;
3710 }
3711
3712 /*
3713  * when we hit a tree root in a directory, the btrfs part of the inode
3714  * needs to be changed to reflect the root directory of the tree root.  This
3715  * is kind of like crossing a mount point.
3716  */
3717 static int fixup_tree_root_location(struct btrfs_root *root,
3718                                     struct inode *dir,
3719                                     struct dentry *dentry,
3720                                     struct btrfs_key *location,
3721                                     struct btrfs_root **sub_root)
3722 {
3723         struct btrfs_path *path;
3724         struct btrfs_root *new_root;
3725         struct btrfs_root_ref *ref;
3726         struct extent_buffer *leaf;
3727         int ret;
3728         int err = 0;
3729
3730         path = btrfs_alloc_path();
3731         if (!path) {
3732                 err = -ENOMEM;
3733                 goto out;
3734         }
3735
3736         err = -ENOENT;
3737         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3738                                   BTRFS_I(dir)->root->root_key.objectid,
3739                                   location->objectid);
3740         if (ret) {
3741                 if (ret < 0)
3742                         err = ret;
3743                 goto out;
3744         }
3745
3746         leaf = path->nodes[0];
3747         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3748         if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3749             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3750                 goto out;
3751
3752         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3753                                    (unsigned long)(ref + 1),
3754                                    dentry->d_name.len);
3755         if (ret)
3756                 goto out;
3757
3758         btrfs_release_path(path);
3759
3760         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3761         if (IS_ERR(new_root)) {
3762                 err = PTR_ERR(new_root);
3763                 goto out;
3764         }
3765
3766         if (btrfs_root_refs(&new_root->root_item) == 0) {
3767                 err = -ENOENT;
3768                 goto out;
3769         }
3770
3771         *sub_root = new_root;
3772         location->objectid = btrfs_root_dirid(&new_root->root_item);
3773         location->type = BTRFS_INODE_ITEM_KEY;
3774         location->offset = 0;
3775         err = 0;
3776 out:
3777         btrfs_free_path(path);
3778         return err;
3779 }
3780
3781 static void inode_tree_add(struct inode *inode)
3782 {
3783         struct btrfs_root *root = BTRFS_I(inode)->root;
3784         struct btrfs_inode *entry;
3785         struct rb_node **p;
3786         struct rb_node *parent;
3787         u64 ino = btrfs_ino(inode);
3788 again:
3789         p = &root->inode_tree.rb_node;
3790         parent = NULL;
3791
3792         if (inode_unhashed(inode))
3793                 return;
3794
3795         spin_lock(&root->inode_lock);
3796         while (*p) {
3797                 parent = *p;
3798                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3799
3800                 if (ino < btrfs_ino(&entry->vfs_inode))
3801                         p = &parent->rb_left;
3802                 else if (ino > btrfs_ino(&entry->vfs_inode))
3803                         p = &parent->rb_right;
3804                 else {
3805                         WARN_ON(!(entry->vfs_inode.i_state &
3806                                   (I_WILL_FREE | I_FREEING)));
3807                         rb_erase(parent, &root->inode_tree);
3808                         RB_CLEAR_NODE(parent);
3809                         spin_unlock(&root->inode_lock);
3810                         goto again;
3811                 }
3812         }
3813         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3814         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3815         spin_unlock(&root->inode_lock);
3816 }
3817
3818 static void inode_tree_del(struct inode *inode)
3819 {
3820         struct btrfs_root *root = BTRFS_I(inode)->root;
3821         int empty = 0;
3822
3823         spin_lock(&root->inode_lock);
3824         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3825                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3826                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3827                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3828         }
3829         spin_unlock(&root->inode_lock);
3830
3831         /*
3832          * Free space cache has inodes in the tree root, but the tree root has a
3833          * root_refs of 0, so this could end up dropping the tree root as a
3834          * snapshot, so we need the extra !root->fs_info->tree_root check to
3835          * make sure we don't drop it.
3836          */
3837         if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3838             root != root->fs_info->tree_root) {
3839                 synchronize_srcu(&root->fs_info->subvol_srcu);
3840                 spin_lock(&root->inode_lock);
3841                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3842                 spin_unlock(&root->inode_lock);
3843                 if (empty)
3844                         btrfs_add_dead_root(root);
3845         }
3846 }
3847
3848 int btrfs_invalidate_inodes(struct btrfs_root *root)
3849 {
3850         struct rb_node *node;
3851         struct rb_node *prev;
3852         struct btrfs_inode *entry;
3853         struct inode *inode;
3854         u64 objectid = 0;
3855
3856         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3857
3858         spin_lock(&root->inode_lock);
3859 again:
3860         node = root->inode_tree.rb_node;
3861         prev = NULL;
3862         while (node) {
3863                 prev = node;
3864                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3865
3866                 if (objectid < btrfs_ino(&entry->vfs_inode))
3867                         node = node->rb_left;
3868                 else if (objectid > btrfs_ino(&entry->vfs_inode))
3869                         node = node->rb_right;
3870                 else
3871                         break;
3872         }
3873         if (!node) {
3874                 while (prev) {
3875                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
3876                         if (objectid <= btrfs_ino(&entry->vfs_inode)) {
3877                                 node = prev;
3878                                 break;
3879                         }
3880                         prev = rb_next(prev);
3881                 }
3882         }
3883         while (node) {
3884                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3885                 objectid = btrfs_ino(&entry->vfs_inode) + 1;
3886                 inode = igrab(&entry->vfs_inode);
3887                 if (inode) {
3888                         spin_unlock(&root->inode_lock);
3889                         if (atomic_read(&inode->i_count) > 1)
3890                                 d_prune_aliases(inode);
3891                         /*
3892                          * btrfs_drop_inode will have it removed from
3893                          * the inode cache when its usage count
3894                          * hits zero.
3895                          */
3896                         iput(inode);
3897                         cond_resched();
3898                         spin_lock(&root->inode_lock);
3899                         goto again;
3900                 }
3901
3902                 if (cond_resched_lock(&root->inode_lock))
3903                         goto again;
3904
3905                 node = rb_next(node);
3906         }
3907         spin_unlock(&root->inode_lock);
3908         return 0;
3909 }
3910
3911 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3912 {
3913         struct btrfs_iget_args *args = p;
3914         inode->i_ino = args->ino;
3915         BTRFS_I(inode)->root = args->root;
3916         btrfs_set_inode_space_info(args->root, inode);
3917         return 0;
3918 }
3919
3920 static int btrfs_find_actor(struct inode *inode, void *opaque)
3921 {
3922         struct btrfs_iget_args *args = opaque;
3923         return args->ino == btrfs_ino(inode) &&
3924                 args->root == BTRFS_I(inode)->root;
3925 }
3926
3927 static struct inode *btrfs_iget_locked(struct super_block *s,
3928                                        u64 objectid,
3929                                        struct btrfs_root *root)
3930 {
3931         struct inode *inode;
3932         struct btrfs_iget_args args;
3933         args.ino = objectid;
3934         args.root = root;
3935
3936         inode = iget5_locked(s, objectid, btrfs_find_actor,
3937                              btrfs_init_locked_inode,
3938                              (void *)&args);
3939         return inode;
3940 }
3941
3942 /* Get an inode object given its location and corresponding root.
3943  * Returns in *is_new if the inode was read from disk
3944  */
3945 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3946                          struct btrfs_root *root, int *new)
3947 {
3948         struct inode *inode;
3949
3950         inode = btrfs_iget_locked(s, location->objectid, root);
3951         if (!inode)
3952                 return ERR_PTR(-ENOMEM);
3953
3954         if (inode->i_state & I_NEW) {
3955                 BTRFS_I(inode)->root = root;
3956                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3957                 btrfs_read_locked_inode(inode);
3958                 inode_tree_add(inode);
3959                 unlock_new_inode(inode);
3960                 if (new)
3961                         *new = 1;
3962         }
3963
3964         return inode;
3965 }
3966
3967 static struct inode *new_simple_dir(struct super_block *s,
3968                                     struct btrfs_key *key,
3969                                     struct btrfs_root *root)
3970 {
3971         struct inode *inode = new_inode(s);
3972
3973         if (!inode)
3974                 return ERR_PTR(-ENOMEM);
3975
3976         BTRFS_I(inode)->root = root;
3977         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3978         BTRFS_I(inode)->dummy_inode = 1;
3979
3980         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3981         inode->i_op = &simple_dir_inode_operations;
3982         inode->i_fop = &simple_dir_operations;
3983         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3984         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3985
3986         return inode;
3987 }
3988
3989 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3990 {
3991         struct inode *inode;
3992         struct btrfs_root *root = BTRFS_I(dir)->root;
3993         struct btrfs_root *sub_root = root;
3994         struct btrfs_key location;
3995         int index;
3996         int ret = 0;
3997
3998         if (dentry->d_name.len > BTRFS_NAME_LEN)
3999                 return ERR_PTR(-ENAMETOOLONG);
4000
4001         if (unlikely(d_need_lookup(dentry))) {
4002                 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4003                 kfree(dentry->d_fsdata);
4004                 dentry->d_fsdata = NULL;
4005                 d_clear_need_lookup(dentry);
4006         } else {
4007                 ret = btrfs_inode_by_name(dir, dentry, &location);
4008         }
4009
4010         if (ret < 0)
4011                 return ERR_PTR(ret);
4012
4013         if (location.objectid == 0)
4014                 return NULL;
4015
4016         if (location.type == BTRFS_INODE_ITEM_KEY) {
4017                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4018                 return inode;
4019         }
4020
4021         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4022
4023         index = srcu_read_lock(&root->fs_info->subvol_srcu);
4024         ret = fixup_tree_root_location(root, dir, dentry,
4025                                        &location, &sub_root);
4026         if (ret < 0) {
4027                 if (ret != -ENOENT)
4028                         inode = ERR_PTR(ret);
4029                 else
4030                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
4031         } else {
4032                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4033         }
4034         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4035
4036         if (!IS_ERR(inode) && root != sub_root) {
4037                 down_read(&root->fs_info->cleanup_work_sem);
4038                 if (!(inode->i_sb->s_flags & MS_RDONLY))
4039                         ret = btrfs_orphan_cleanup(sub_root);
4040                 up_read(&root->fs_info->cleanup_work_sem);
4041                 if (ret)
4042                         inode = ERR_PTR(ret);
4043         }
4044
4045         return inode;
4046 }
4047
4048 static int btrfs_dentry_delete(const struct dentry *dentry)
4049 {
4050         struct btrfs_root *root;
4051
4052         if (!dentry->d_inode && !IS_ROOT(dentry))
4053                 dentry = dentry->d_parent;
4054
4055         if (dentry->d_inode) {
4056                 root = BTRFS_I(dentry->d_inode)->root;
4057                 if (btrfs_root_refs(&root->root_item) == 0)
4058                         return 1;
4059         }
4060         return 0;
4061 }
4062
4063 static void btrfs_dentry_release(struct dentry *dentry)
4064 {
4065         if (dentry->d_fsdata)
4066                 kfree(dentry->d_fsdata);
4067 }
4068
4069 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4070                                    struct nameidata *nd)
4071 {
4072         return d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4073 }
4074
4075 unsigned char btrfs_filetype_table[] = {
4076         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4077 };
4078
4079 static int btrfs_real_readdir(struct file *filp, void *dirent,
4080                               filldir_t filldir)
4081 {
4082         struct inode *inode = filp->f_dentry->d_inode;
4083         struct btrfs_root *root = BTRFS_I(inode)->root;
4084         struct btrfs_item *item;
4085         struct btrfs_dir_item *di;
4086         struct btrfs_key key;
4087         struct btrfs_key found_key;
4088         struct btrfs_path *path;
4089         struct list_head ins_list;
4090         struct list_head del_list;
4091         struct qstr q;
4092         int ret;
4093         struct extent_buffer *leaf;
4094         int slot;
4095         unsigned char d_type;
4096         int over = 0;
4097         u32 di_cur;
4098         u32 di_total;
4099         u32 di_len;
4100         int key_type = BTRFS_DIR_INDEX_KEY;
4101         char tmp_name[32];
4102         char *name_ptr;
4103         int name_len;
4104         int is_curr = 0;        /* filp->f_pos points to the current index? */
4105
4106         /* FIXME, use a real flag for deciding about the key type */
4107         if (root->fs_info->tree_root == root)
4108                 key_type = BTRFS_DIR_ITEM_KEY;
4109
4110         /* special case for "." */
4111         if (filp->f_pos == 0) {
4112                 over = filldir(dirent, ".", 1, 1, btrfs_ino(inode), DT_DIR);
4113                 if (over)
4114                         return 0;
4115                 filp->f_pos = 1;
4116         }
4117         /* special case for .., just use the back ref */
4118         if (filp->f_pos == 1) {
4119                 u64 pino = parent_ino(filp->f_path.dentry);
4120                 over = filldir(dirent, "..", 2,
4121                                2, pino, DT_DIR);
4122                 if (over)
4123                         return 0;
4124                 filp->f_pos = 2;
4125         }
4126         path = btrfs_alloc_path();
4127         if (!path)
4128                 return -ENOMEM;
4129
4130         path->reada = 1;
4131
4132         if (key_type == BTRFS_DIR_INDEX_KEY) {
4133                 INIT_LIST_HEAD(&ins_list);
4134                 INIT_LIST_HEAD(&del_list);
4135                 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4136         }
4137
4138         btrfs_set_key_type(&key, key_type);
4139         key.offset = filp->f_pos;
4140         key.objectid = btrfs_ino(inode);
4141
4142         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4143         if (ret < 0)
4144                 goto err;
4145
4146         while (1) {
4147                 leaf = path->nodes[0];
4148                 slot = path->slots[0];
4149                 if (slot >= btrfs_header_nritems(leaf)) {
4150                         ret = btrfs_next_leaf(root, path);
4151                         if (ret < 0)
4152                                 goto err;
4153                         else if (ret > 0)
4154                                 break;
4155                         continue;
4156                 }
4157
4158                 item = btrfs_item_nr(leaf, slot);
4159                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4160
4161                 if (found_key.objectid != key.objectid)
4162                         break;
4163                 if (btrfs_key_type(&found_key) != key_type)
4164                         break;
4165                 if (found_key.offset < filp->f_pos)
4166                         goto next;
4167                 if (key_type == BTRFS_DIR_INDEX_KEY &&
4168                     btrfs_should_delete_dir_index(&del_list,
4169                                                   found_key.offset))
4170                         goto next;
4171
4172                 filp->f_pos = found_key.offset;
4173                 is_curr = 1;
4174
4175                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4176                 di_cur = 0;
4177                 di_total = btrfs_item_size(leaf, item);
4178
4179                 while (di_cur < di_total) {
4180                         struct btrfs_key location;
4181                         struct dentry *tmp;
4182
4183                         if (verify_dir_item(root, leaf, di))
4184                                 break;
4185
4186                         name_len = btrfs_dir_name_len(leaf, di);
4187                         if (name_len <= sizeof(tmp_name)) {
4188                                 name_ptr = tmp_name;
4189                         } else {
4190                                 name_ptr = kmalloc(name_len, GFP_NOFS);
4191                                 if (!name_ptr) {
4192                                         ret = -ENOMEM;
4193                                         goto err;
4194                                 }
4195                         }
4196                         read_extent_buffer(leaf, name_ptr,
4197                                            (unsigned long)(di + 1), name_len);
4198
4199                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4200                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
4201
4202                         q.name = name_ptr;
4203                         q.len = name_len;
4204                         q.hash = full_name_hash(q.name, q.len);
4205                         tmp = d_lookup(filp->f_dentry, &q);
4206                         if (!tmp) {
4207                                 struct btrfs_key *newkey;
4208
4209                                 newkey = kzalloc(sizeof(struct btrfs_key),
4210                                                  GFP_NOFS);
4211                                 if (!newkey)
4212                                         goto no_dentry;
4213                                 tmp = d_alloc(filp->f_dentry, &q);
4214                                 if (!tmp) {
4215                                         kfree(newkey);
4216                                         dput(tmp);
4217                                         goto no_dentry;
4218                                 }
4219                                 memcpy(newkey, &location,
4220                                        sizeof(struct btrfs_key));
4221                                 tmp->d_fsdata = newkey;
4222                                 tmp->d_flags |= DCACHE_NEED_LOOKUP;
4223                                 d_rehash(tmp);
4224                                 dput(tmp);
4225                         } else {
4226                                 dput(tmp);
4227                         }
4228 no_dentry:
4229                         /* is this a reference to our own snapshot? If so
4230                          * skip it
4231                          */
4232                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
4233                             location.objectid == root->root_key.objectid) {
4234                                 over = 0;
4235                                 goto skip;
4236                         }
4237                         over = filldir(dirent, name_ptr, name_len,
4238                                        found_key.offset, location.objectid,
4239                                        d_type);
4240
4241 skip:
4242                         if (name_ptr != tmp_name)
4243                                 kfree(name_ptr);
4244
4245                         if (over)
4246                                 goto nopos;
4247                         di_len = btrfs_dir_name_len(leaf, di) +
4248                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
4249                         di_cur += di_len;
4250                         di = (struct btrfs_dir_item *)((char *)di + di_len);
4251                 }
4252 next:
4253                 path->slots[0]++;
4254         }
4255
4256         if (key_type == BTRFS_DIR_INDEX_KEY) {
4257                 if (is_curr)
4258                         filp->f_pos++;
4259                 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4260                                                       &ins_list);
4261                 if (ret)
4262                         goto nopos;
4263         }
4264
4265         /* Reached end of directory/root. Bump pos past the last item. */
4266         if (key_type == BTRFS_DIR_INDEX_KEY)
4267                 /*
4268                  * 32-bit glibc will use getdents64, but then strtol -
4269                  * so the last number we can serve is this.
4270                  */
4271                 filp->f_pos = 0x7fffffff;
4272         else
4273                 filp->f_pos++;
4274 nopos:
4275         ret = 0;
4276 err:
4277         if (key_type == BTRFS_DIR_INDEX_KEY)
4278                 btrfs_put_delayed_items(&ins_list, &del_list);
4279         btrfs_free_path(path);
4280         return ret;
4281 }
4282
4283 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4284 {
4285         struct btrfs_root *root = BTRFS_I(inode)->root;
4286         struct btrfs_trans_handle *trans;
4287         int ret = 0;
4288         bool nolock = false;
4289
4290         if (BTRFS_I(inode)->dummy_inode)
4291                 return 0;
4292
4293         if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
4294                 nolock = true;
4295
4296         if (wbc->sync_mode == WB_SYNC_ALL) {
4297                 if (nolock)
4298                         trans = btrfs_join_transaction_nolock(root);
4299                 else
4300                         trans = btrfs_join_transaction(root);
4301                 if (IS_ERR(trans))
4302                         return PTR_ERR(trans);
4303                 if (nolock)
4304                         ret = btrfs_end_transaction_nolock(trans, root);
4305                 else
4306                         ret = btrfs_commit_transaction(trans, root);
4307         }
4308         return ret;
4309 }
4310
4311 /*
4312  * This is somewhat expensive, updating the tree every time the
4313  * inode changes.  But, it is most likely to find the inode in cache.
4314  * FIXME, needs more benchmarking...there are no reasons other than performance
4315  * to keep or drop this code.
4316  */
4317 void btrfs_dirty_inode(struct inode *inode, int flags)
4318 {
4319         struct btrfs_root *root = BTRFS_I(inode)->root;
4320         struct btrfs_trans_handle *trans;
4321         int ret;
4322
4323         if (BTRFS_I(inode)->dummy_inode)
4324                 return;
4325
4326         trans = btrfs_join_transaction(root);
4327         BUG_ON(IS_ERR(trans));
4328
4329         ret = btrfs_update_inode(trans, root, inode);
4330         if (ret && ret == -ENOSPC) {
4331                 /* whoops, lets try again with the full transaction */
4332                 btrfs_end_transaction(trans, root);
4333                 trans = btrfs_start_transaction(root, 1);
4334                 if (IS_ERR(trans)) {
4335                         printk_ratelimited(KERN_ERR "btrfs: fail to "
4336                                        "dirty  inode %llu error %ld\n",
4337                                        (unsigned long long)btrfs_ino(inode),
4338                                        PTR_ERR(trans));
4339                         return;
4340                 }
4341
4342                 ret = btrfs_update_inode(trans, root, inode);
4343                 if (ret) {
4344                         printk_ratelimited(KERN_ERR "btrfs: fail to "
4345                                        "dirty  inode %llu error %d\n",
4346                                        (unsigned long long)btrfs_ino(inode),
4347                                        ret);
4348                 }
4349         }
4350         btrfs_end_transaction(trans, root);
4351         if (BTRFS_I(inode)->delayed_node)
4352                 btrfs_balance_delayed_items(root);
4353 }
4354
4355 /*
4356  * find the highest existing sequence number in a directory
4357  * and then set the in-memory index_cnt variable to reflect
4358  * free sequence numbers
4359  */
4360 static int btrfs_set_inode_index_count(struct inode *inode)
4361 {
4362         struct btrfs_root *root = BTRFS_I(inode)->root;
4363         struct btrfs_key key, found_key;
4364         struct btrfs_path *path;
4365         struct extent_buffer *leaf;
4366         int ret;
4367
4368         key.objectid = btrfs_ino(inode);
4369         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4370         key.offset = (u64)-1;
4371
4372         path = btrfs_alloc_path();
4373         if (!path)
4374                 return -ENOMEM;
4375
4376         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4377         if (ret < 0)
4378                 goto out;
4379         /* FIXME: we should be able to handle this */
4380         if (ret == 0)
4381                 goto out;
4382         ret = 0;
4383
4384         /*
4385          * MAGIC NUMBER EXPLANATION:
4386          * since we search a directory based on f_pos we have to start at 2
4387          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4388          * else has to start at 2
4389          */
4390         if (path->slots[0] == 0) {
4391                 BTRFS_I(inode)->index_cnt = 2;
4392                 goto out;
4393         }
4394
4395         path->slots[0]--;
4396
4397         leaf = path->nodes[0];
4398         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4399
4400         if (found_key.objectid != btrfs_ino(inode) ||
4401             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4402                 BTRFS_I(inode)->index_cnt = 2;
4403                 goto out;
4404         }
4405
4406         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4407 out:
4408         btrfs_free_path(path);
4409         return ret;
4410 }
4411
4412 /*
4413  * helper to find a free sequence number in a given directory.  This current
4414  * code is very simple, later versions will do smarter things in the btree
4415  */
4416 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4417 {
4418         int ret = 0;
4419
4420         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4421                 ret = btrfs_inode_delayed_dir_index_count(dir);
4422                 if (ret) {
4423                         ret = btrfs_set_inode_index_count(dir);
4424                         if (ret)
4425                                 return ret;
4426                 }
4427         }
4428
4429         *index = BTRFS_I(dir)->index_cnt;
4430         BTRFS_I(dir)->index_cnt++;
4431
4432         return ret;
4433 }
4434
4435 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4436                                      struct btrfs_root *root,
4437                                      struct inode *dir,
4438                                      const char *name, int name_len,
4439                                      u64 ref_objectid, u64 objectid, int mode,
4440                                      u64 *index)
4441 {
4442         struct inode *inode;
4443         struct btrfs_inode_item *inode_item;
4444         struct btrfs_key *location;
4445         struct btrfs_path *path;
4446         struct btrfs_inode_ref *ref;
4447         struct btrfs_key key[2];
4448         u32 sizes[2];
4449         unsigned long ptr;
4450         int ret;
4451         int owner;
4452
4453         path = btrfs_alloc_path();
4454         BUG_ON(!path);
4455
4456         inode = new_inode(root->fs_info->sb);
4457         if (!inode) {
4458                 btrfs_free_path(path);
4459                 return ERR_PTR(-ENOMEM);
4460         }
4461
4462         /*
4463          * we have to initialize this early, so we can reclaim the inode
4464          * number if we fail afterwards in this function.
4465          */
4466         inode->i_ino = objectid;
4467
4468         if (dir) {
4469                 trace_btrfs_inode_request(dir);
4470
4471                 ret = btrfs_set_inode_index(dir, index);
4472                 if (ret) {
4473                         btrfs_free_path(path);
4474                         iput(inode);
4475                         return ERR_PTR(ret);
4476                 }
4477         }
4478         /*
4479          * index_cnt is ignored for everything but a dir,
4480          * btrfs_get_inode_index_count has an explanation for the magic
4481          * number
4482          */
4483         BTRFS_I(inode)->index_cnt = 2;
4484         BTRFS_I(inode)->root = root;
4485         BTRFS_I(inode)->generation = trans->transid;
4486         inode->i_generation = BTRFS_I(inode)->generation;
4487         btrfs_set_inode_space_info(root, inode);
4488
4489         if (S_ISDIR(mode))
4490                 owner = 0;
4491         else
4492                 owner = 1;
4493
4494         key[0].objectid = objectid;
4495         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4496         key[0].offset = 0;
4497
4498         key[1].objectid = objectid;
4499         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4500         key[1].offset = ref_objectid;
4501
4502         sizes[0] = sizeof(struct btrfs_inode_item);
4503         sizes[1] = name_len + sizeof(*ref);
4504
4505         path->leave_spinning = 1;
4506         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4507         if (ret != 0)
4508                 goto fail;
4509
4510         inode_init_owner(inode, dir, mode);
4511         inode_set_bytes(inode, 0);
4512         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4513         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4514                                   struct btrfs_inode_item);
4515         fill_inode_item(trans, path->nodes[0], inode_item, inode);
4516
4517         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4518                              struct btrfs_inode_ref);
4519         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4520         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4521         ptr = (unsigned long)(ref + 1);
4522         write_extent_buffer(path->nodes[0], name, ptr, name_len);
4523
4524         btrfs_mark_buffer_dirty(path->nodes[0]);
4525         btrfs_free_path(path);
4526
4527         location = &BTRFS_I(inode)->location;
4528         location->objectid = objectid;
4529         location->offset = 0;
4530         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4531
4532         btrfs_inherit_iflags(inode, dir);
4533
4534         if (S_ISREG(mode)) {
4535                 if (btrfs_test_opt(root, NODATASUM))
4536                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4537                 if (btrfs_test_opt(root, NODATACOW) ||
4538                     (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4539                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4540         }
4541
4542         insert_inode_hash(inode);
4543         inode_tree_add(inode);
4544
4545         trace_btrfs_inode_new(inode);
4546         btrfs_set_inode_last_trans(trans, inode);
4547
4548         return inode;
4549 fail:
4550         if (dir)
4551                 BTRFS_I(dir)->index_cnt--;
4552         btrfs_free_path(path);
4553         iput(inode);
4554         return ERR_PTR(ret);
4555 }
4556
4557 static inline u8 btrfs_inode_type(struct inode *inode)
4558 {
4559         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4560 }
4561
4562 /*
4563  * utility function to add 'inode' into 'parent_inode' with
4564  * a give name and a given sequence number.
4565  * if 'add_backref' is true, also insert a backref from the
4566  * inode to the parent directory.
4567  */
4568 int btrfs_add_link(struct btrfs_trans_handle *trans,
4569                    struct inode *parent_inode, struct inode *inode,
4570                    const char *name, int name_len, int add_backref, u64 index)
4571 {
4572         int ret = 0;
4573         struct btrfs_key key;
4574         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4575         u64 ino = btrfs_ino(inode);
4576         u64 parent_ino = btrfs_ino(parent_inode);
4577
4578         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4579                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4580         } else {
4581                 key.objectid = ino;
4582                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4583                 key.offset = 0;
4584         }
4585
4586         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4587                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4588                                          key.objectid, root->root_key.objectid,
4589                                          parent_ino, index, name, name_len);
4590         } else if (add_backref) {
4591                 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4592                                              parent_ino, index);
4593         }
4594
4595         if (ret == 0) {
4596                 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4597                                             parent_inode, &key,
4598                                             btrfs_inode_type(inode), index);
4599                 BUG_ON(ret);
4600
4601                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4602                                    name_len * 2);
4603                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4604                 ret = btrfs_update_inode(trans, root, parent_inode);
4605         }
4606         return ret;
4607 }
4608
4609 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4610                             struct inode *dir, struct dentry *dentry,
4611                             struct inode *inode, int backref, u64 index)
4612 {
4613         int err = btrfs_add_link(trans, dir, inode,
4614                                  dentry->d_name.name, dentry->d_name.len,
4615                                  backref, index);
4616         if (!err) {
4617                 d_instantiate(dentry, inode);
4618                 return 0;
4619         }
4620         if (err > 0)
4621                 err = -EEXIST;
4622         return err;
4623 }
4624
4625 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4626                         int mode, dev_t rdev)
4627 {
4628         struct btrfs_trans_handle *trans;
4629         struct btrfs_root *root = BTRFS_I(dir)->root;
4630         struct inode *inode = NULL;
4631         int err;
4632         int drop_inode = 0;
4633         u64 objectid;
4634         unsigned long nr = 0;
4635         u64 index = 0;
4636
4637         if (!new_valid_dev(rdev))
4638                 return -EINVAL;
4639
4640         /*
4641          * 2 for inode item and ref
4642          * 2 for dir items
4643          * 1 for xattr if selinux is on
4644          */
4645         trans = btrfs_start_transaction(root, 5);
4646         if (IS_ERR(trans))
4647                 return PTR_ERR(trans);
4648
4649         err = btrfs_find_free_ino(root, &objectid);
4650         if (err)
4651                 goto out_unlock;
4652
4653         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4654                                 dentry->d_name.len, btrfs_ino(dir), objectid,
4655                                 mode, &index);
4656         if (IS_ERR(inode)) {
4657                 err = PTR_ERR(inode);
4658                 goto out_unlock;
4659         }
4660
4661         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4662         if (err) {
4663                 drop_inode = 1;
4664                 goto out_unlock;
4665         }
4666
4667         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4668         if (err)
4669                 drop_inode = 1;
4670         else {
4671                 inode->i_op = &btrfs_special_inode_operations;
4672                 init_special_inode(inode, inode->i_mode, rdev);
4673                 btrfs_update_inode(trans, root, inode);
4674         }
4675 out_unlock:
4676         nr = trans->blocks_used;
4677         btrfs_end_transaction_throttle(trans, root);
4678         btrfs_btree_balance_dirty(root, nr);
4679         if (drop_inode) {
4680                 inode_dec_link_count(inode);
4681                 iput(inode);
4682         }
4683         return err;
4684 }
4685
4686 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4687                         int mode, struct nameidata *nd)
4688 {
4689         struct btrfs_trans_handle *trans;
4690         struct btrfs_root *root = BTRFS_I(dir)->root;
4691         struct inode *inode = NULL;
4692         int drop_inode = 0;
4693         int err;
4694         unsigned long nr = 0;
4695         u64 objectid;
4696         u64 index = 0;
4697
4698         /*
4699          * 2 for inode item and ref
4700          * 2 for dir items
4701          * 1 for xattr if selinux is on
4702          */
4703         trans = btrfs_start_transaction(root, 5);
4704         if (IS_ERR(trans))
4705                 return PTR_ERR(trans);
4706
4707         err = btrfs_find_free_ino(root, &objectid);
4708         if (err)
4709                 goto out_unlock;
4710
4711         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4712                                 dentry->d_name.len, btrfs_ino(dir), objectid,
4713                                 mode, &index);
4714         if (IS_ERR(inode)) {
4715                 err = PTR_ERR(inode);
4716                 goto out_unlock;
4717         }
4718
4719         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4720         if (err) {
4721                 drop_inode = 1;
4722                 goto out_unlock;
4723         }
4724
4725         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4726         if (err)
4727                 drop_inode = 1;
4728         else {
4729                 inode->i_mapping->a_ops = &btrfs_aops;
4730                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4731                 inode->i_fop = &btrfs_file_operations;
4732                 inode->i_op = &btrfs_file_inode_operations;
4733                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4734         }
4735 out_unlock:
4736         nr = trans->blocks_used;
4737         btrfs_end_transaction_throttle(trans, root);
4738         if (drop_inode) {
4739                 inode_dec_link_count(inode);
4740                 iput(inode);
4741         }
4742         btrfs_btree_balance_dirty(root, nr);
4743         return err;
4744 }
4745
4746 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4747                       struct dentry *dentry)
4748 {
4749         struct btrfs_trans_handle *trans;
4750         struct btrfs_root *root = BTRFS_I(dir)->root;
4751         struct inode *inode = old_dentry->d_inode;
4752         u64 index;
4753         unsigned long nr = 0;
4754         int err;
4755         int drop_inode = 0;
4756
4757         /* do not allow sys_link's with other subvols of the same device */
4758         if (root->objectid != BTRFS_I(inode)->root->objectid)
4759                 return -EXDEV;
4760
4761         if (inode->i_nlink == ~0U)
4762                 return -EMLINK;
4763
4764         err = btrfs_set_inode_index(dir, &index);
4765         if (err)
4766                 goto fail;
4767
4768         /*
4769          * 2 items for inode and inode ref
4770          * 2 items for dir items
4771          * 1 item for parent inode
4772          */
4773         trans = btrfs_start_transaction(root, 5);
4774         if (IS_ERR(trans)) {
4775                 err = PTR_ERR(trans);
4776                 goto fail;
4777         }
4778
4779         btrfs_inc_nlink(inode);
4780         inode->i_ctime = CURRENT_TIME;
4781         ihold(inode);
4782
4783         err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4784
4785         if (err) {
4786                 drop_inode = 1;
4787         } else {
4788                 struct dentry *parent = dentry->d_parent;
4789                 err = btrfs_update_inode(trans, root, inode);
4790                 BUG_ON(err);
4791                 btrfs_log_new_name(trans, inode, NULL, parent);
4792         }
4793
4794         nr = trans->blocks_used;
4795         btrfs_end_transaction_throttle(trans, root);
4796 fail:
4797         if (drop_inode) {
4798                 inode_dec_link_count(inode);
4799                 iput(inode);
4800         }
4801         btrfs_btree_balance_dirty(root, nr);
4802         return err;
4803 }
4804
4805 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4806 {
4807         struct inode *inode = NULL;
4808         struct btrfs_trans_handle *trans;
4809         struct btrfs_root *root = BTRFS_I(dir)->root;
4810         int err = 0;
4811         int drop_on_err = 0;
4812         u64 objectid = 0;
4813         u64 index = 0;
4814         unsigned long nr = 1;
4815
4816         /*
4817          * 2 items for inode and ref
4818          * 2 items for dir items
4819          * 1 for xattr if selinux is on
4820          */
4821         trans = btrfs_start_transaction(root, 5);
4822         if (IS_ERR(trans))
4823                 return PTR_ERR(trans);
4824
4825         err = btrfs_find_free_ino(root, &objectid);
4826         if (err)
4827                 goto out_fail;
4828
4829         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4830                                 dentry->d_name.len, btrfs_ino(dir), objectid,
4831                                 S_IFDIR | mode, &index);
4832         if (IS_ERR(inode)) {
4833                 err = PTR_ERR(inode);
4834                 goto out_fail;
4835         }
4836
4837         drop_on_err = 1;
4838
4839         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4840         if (err)
4841                 goto out_fail;
4842
4843         inode->i_op = &btrfs_dir_inode_operations;
4844         inode->i_fop = &btrfs_dir_file_operations;
4845
4846         btrfs_i_size_write(inode, 0);
4847         err = btrfs_update_inode(trans, root, inode);
4848         if (err)
4849                 goto out_fail;
4850
4851         err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4852                              dentry->d_name.len, 0, index);
4853         if (err)
4854                 goto out_fail;
4855
4856         d_instantiate(dentry, inode);
4857         drop_on_err = 0;
4858
4859 out_fail:
4860         nr = trans->blocks_used;
4861         btrfs_end_transaction_throttle(trans, root);
4862         if (drop_on_err)
4863                 iput(inode);
4864         btrfs_btree_balance_dirty(root, nr);
4865         return err;
4866 }
4867
4868 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4869  * and an extent that you want to insert, deal with overlap and insert
4870  * the new extent into the tree.
4871  */
4872 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4873                                 struct extent_map *existing,
4874                                 struct extent_map *em,
4875                                 u64 map_start, u64 map_len)
4876 {
4877         u64 start_diff;
4878
4879         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4880         start_diff = map_start - em->start;
4881         em->start = map_start;
4882         em->len = map_len;
4883         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4884             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4885                 em->block_start += start_diff;
4886                 em->block_len -= start_diff;
4887         }
4888         return add_extent_mapping(em_tree, em);
4889 }
4890
4891 static noinline int uncompress_inline(struct btrfs_path *path,
4892                                       struct inode *inode, struct page *page,
4893                                       size_t pg_offset, u64 extent_offset,
4894                                       struct btrfs_file_extent_item *item)
4895 {
4896         int ret;
4897         struct extent_buffer *leaf = path->nodes[0];
4898         char *tmp;
4899         size_t max_size;
4900         unsigned long inline_size;
4901         unsigned long ptr;
4902         int compress_type;
4903
4904         WARN_ON(pg_offset != 0);
4905         compress_type = btrfs_file_extent_compression(leaf, item);
4906         max_size = btrfs_file_extent_ram_bytes(leaf, item);
4907         inline_size = btrfs_file_extent_inline_item_len(leaf,
4908                                         btrfs_item_nr(leaf, path->slots[0]));
4909         tmp = kmalloc(inline_size, GFP_NOFS);
4910         if (!tmp)
4911                 return -ENOMEM;
4912         ptr = btrfs_file_extent_inline_start(item);
4913
4914         read_extent_buffer(leaf, tmp, ptr, inline_size);
4915
4916         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4917         ret = btrfs_decompress(compress_type, tmp, page,
4918                                extent_offset, inline_size, max_size);
4919         if (ret) {
4920                 char *kaddr = kmap_atomic(page, KM_USER0);
4921                 unsigned long copy_size = min_t(u64,
4922                                   PAGE_CACHE_SIZE - pg_offset,
4923                                   max_size - extent_offset);
4924                 memset(kaddr + pg_offset, 0, copy_size);
4925                 kunmap_atomic(kaddr, KM_USER0);
4926         }
4927         kfree(tmp);
4928         return 0;
4929 }
4930
4931 /*
4932  * a bit scary, this does extent mapping from logical file offset to the disk.
4933  * the ugly parts come from merging extents from the disk with the in-ram
4934  * representation.  This gets more complex because of the data=ordered code,
4935  * where the in-ram extents might be locked pending data=ordered completion.
4936  *
4937  * This also copies inline extents directly into the page.
4938  */
4939
4940 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4941                                     size_t pg_offset, u64 start, u64 len,
4942                                     int create)
4943 {
4944         int ret;
4945         int err = 0;
4946         u64 bytenr;
4947         u64 extent_start = 0;
4948         u64 extent_end = 0;
4949         u64 objectid = btrfs_ino(inode);
4950         u32 found_type;
4951         struct btrfs_path *path = NULL;
4952         struct btrfs_root *root = BTRFS_I(inode)->root;
4953         struct btrfs_file_extent_item *item;
4954         struct extent_buffer *leaf;
4955         struct btrfs_key found_key;
4956         struct extent_map *em = NULL;
4957         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4958         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4959         struct btrfs_trans_handle *trans = NULL;
4960         int compress_type;
4961
4962 again:
4963         read_lock(&em_tree->lock);
4964         em = lookup_extent_mapping(em_tree, start, len);
4965         if (em)
4966                 em->bdev = root->fs_info->fs_devices->latest_bdev;
4967         read_unlock(&em_tree->lock);
4968
4969         if (em) {
4970                 if (em->start > start || em->start + em->len <= start)
4971                         free_extent_map(em);
4972                 else if (em->block_start == EXTENT_MAP_INLINE && page)
4973                         free_extent_map(em);
4974                 else
4975                         goto out;
4976         }
4977         em = alloc_extent_map();
4978         if (!em) {
4979                 err = -ENOMEM;
4980                 goto out;
4981         }
4982         em->bdev = root->fs_info->fs_devices->latest_bdev;
4983         em->start = EXTENT_MAP_HOLE;
4984         em->orig_start = EXTENT_MAP_HOLE;
4985         em->len = (u64)-1;
4986         em->block_len = (u64)-1;
4987
4988         if (!path) {
4989                 path = btrfs_alloc_path();
4990                 if (!path) {
4991                         err = -ENOMEM;
4992                         goto out;
4993                 }
4994                 /*
4995                  * Chances are we'll be called again, so go ahead and do
4996                  * readahead
4997                  */
4998                 path->reada = 1;
4999         }
5000
5001         ret = btrfs_lookup_file_extent(trans, root, path,
5002                                        objectid, start, trans != NULL);
5003         if (ret < 0) {
5004                 err = ret;
5005                 goto out;
5006         }
5007
5008         if (ret != 0) {
5009                 if (path->slots[0] == 0)
5010                         goto not_found;
5011                 path->slots[0]--;
5012         }
5013
5014         leaf = path->nodes[0];
5015         item = btrfs_item_ptr(leaf, path->slots[0],
5016                               struct btrfs_file_extent_item);
5017         /* are we inside the extent that was found? */
5018         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5019         found_type = btrfs_key_type(&found_key);
5020         if (found_key.objectid != objectid ||
5021             found_type != BTRFS_EXTENT_DATA_KEY) {
5022                 goto not_found;
5023         }
5024
5025         found_type = btrfs_file_extent_type(leaf, item);
5026         extent_start = found_key.offset;
5027         compress_type = btrfs_file_extent_compression(leaf, item);
5028         if (found_type == BTRFS_FILE_EXTENT_REG ||
5029             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5030                 extent_end = extent_start +
5031                        btrfs_file_extent_num_bytes(leaf, item);
5032         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5033                 size_t size;
5034                 size = btrfs_file_extent_inline_len(leaf, item);
5035                 extent_end = (extent_start + size + root->sectorsize - 1) &
5036                         ~((u64)root->sectorsize - 1);
5037         }
5038
5039         if (start >= extent_end) {
5040                 path->slots[0]++;
5041                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5042                         ret = btrfs_next_leaf(root, path);
5043                         if (ret < 0) {
5044                                 err = ret;
5045                                 goto out;
5046                         }
5047                         if (ret > 0)
5048                                 goto not_found;
5049                         leaf = path->nodes[0];
5050                 }
5051                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5052                 if (found_key.objectid != objectid ||
5053                     found_key.type != BTRFS_EXTENT_DATA_KEY)
5054                         goto not_found;
5055                 if (start + len <= found_key.offset)
5056                         goto not_found;
5057                 em->start = start;
5058                 em->len = found_key.offset - start;
5059                 goto not_found_em;
5060         }
5061
5062         if (found_type == BTRFS_FILE_EXTENT_REG ||
5063             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5064                 em->start = extent_start;
5065                 em->len = extent_end - extent_start;
5066                 em->orig_start = extent_start -
5067                                  btrfs_file_extent_offset(leaf, item);
5068                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5069                 if (bytenr == 0) {
5070                         em->block_start = EXTENT_MAP_HOLE;
5071                         goto insert;
5072                 }
5073                 if (compress_type != BTRFS_COMPRESS_NONE) {
5074                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5075                         em->compress_type = compress_type;
5076                         em->block_start = bytenr;
5077                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5078                                                                          item);
5079                 } else {
5080                         bytenr += btrfs_file_extent_offset(leaf, item);
5081                         em->block_start = bytenr;
5082                         em->block_len = em->len;
5083                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5084                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5085                 }
5086                 goto insert;
5087         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5088                 unsigned long ptr;
5089                 char *map;
5090                 size_t size;
5091                 size_t extent_offset;
5092                 size_t copy_size;
5093
5094                 em->block_start = EXTENT_MAP_INLINE;
5095                 if (!page || create) {
5096                         em->start = extent_start;
5097                         em->len = extent_end - extent_start;
5098                         goto out;
5099                 }
5100
5101                 size = btrfs_file_extent_inline_len(leaf, item);
5102                 extent_offset = page_offset(page) + pg_offset - extent_start;
5103                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5104                                 size - extent_offset);
5105                 em->start = extent_start + extent_offset;
5106                 em->len = (copy_size + root->sectorsize - 1) &
5107                         ~((u64)root->sectorsize - 1);
5108                 em->orig_start = EXTENT_MAP_INLINE;
5109                 if (compress_type) {
5110                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5111                         em->compress_type = compress_type;
5112                 }
5113                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5114                 if (create == 0 && !PageUptodate(page)) {
5115                         if (btrfs_file_extent_compression(leaf, item) !=
5116                             BTRFS_COMPRESS_NONE) {
5117                                 ret = uncompress_inline(path, inode, page,
5118                                                         pg_offset,
5119                                                         extent_offset, item);
5120                                 BUG_ON(ret);
5121                         } else {
5122                                 map = kmap(page);
5123                                 read_extent_buffer(leaf, map + pg_offset, ptr,
5124                                                    copy_size);
5125                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5126                                         memset(map + pg_offset + copy_size, 0,
5127                                                PAGE_CACHE_SIZE - pg_offset -
5128                                                copy_size);
5129                                 }
5130                                 kunmap(page);
5131                         }
5132                         flush_dcache_page(page);
5133                 } else if (create && PageUptodate(page)) {
5134                         WARN_ON(1);
5135                         if (!trans) {
5136                                 kunmap(page);
5137                                 free_extent_map(em);
5138                                 em = NULL;
5139
5140                                 btrfs_release_path(path);
5141                                 trans = btrfs_join_transaction(root);
5142
5143                                 if (IS_ERR(trans))
5144                                         return ERR_CAST(trans);
5145                                 goto again;
5146                         }
5147                         map = kmap(page);
5148                         write_extent_buffer(leaf, map + pg_offset, ptr,
5149                                             copy_size);
5150                         kunmap(page);
5151                         btrfs_mark_buffer_dirty(leaf);
5152                 }
5153                 set_extent_uptodate(io_tree, em->start,
5154                                     extent_map_end(em) - 1, NULL, GFP_NOFS);
5155                 goto insert;
5156         } else {
5157                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5158                 WARN_ON(1);
5159         }
5160 not_found:
5161         em->start = start;
5162         em->len = len;
5163 not_found_em:
5164         em->block_start = EXTENT_MAP_HOLE;
5165         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5166 insert:
5167         btrfs_release_path(path);
5168         if (em->start > start || extent_map_end(em) <= start) {
5169                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5170                        "[%llu %llu]\n", (unsigned long long)em->start,
5171                        (unsigned long long)em->len,
5172                        (unsigned long long)start,
5173                        (unsigned long long)len);
5174                 err = -EIO;
5175                 goto out;
5176         }
5177
5178         err = 0;
5179         write_lock(&em_tree->lock);
5180         ret = add_extent_mapping(em_tree, em);
5181         /* it is possible that someone inserted the extent into the tree
5182          * while we had the lock dropped.  It is also possible that
5183          * an overlapping map exists in the tree
5184          */
5185         if (ret == -EEXIST) {
5186                 struct extent_map *existing;
5187
5188                 ret = 0;
5189
5190                 existing = lookup_extent_mapping(em_tree, start, len);
5191                 if (existing && (existing->start > start ||
5192                     existing->start + existing->len <= start)) {
5193                         free_extent_map(existing);
5194                         existing = NULL;
5195                 }
5196                 if (!existing) {
5197                         existing = lookup_extent_mapping(em_tree, em->start,
5198                                                          em->len);
5199                         if (existing) {
5200                                 err = merge_extent_mapping(em_tree, existing,
5201                                                            em, start,
5202                                                            root->sectorsize);
5203                                 free_extent_map(existing);
5204                                 if (err) {
5205                                         free_extent_map(em);
5206                                         em = NULL;
5207                                 }
5208                         } else {
5209                                 err = -EIO;
5210                                 free_extent_map(em);
5211                                 em = NULL;
5212                         }
5213                 } else {
5214                         free_extent_map(em);
5215                         em = existing;
5216                         err = 0;
5217                 }
5218         }
5219         write_unlock(&em_tree->lock);
5220 out:
5221
5222         trace_btrfs_get_extent(root, em);
5223
5224         if (path)
5225                 btrfs_free_path(path);
5226         if (trans) {
5227                 ret = btrfs_end_transaction(trans, root);
5228                 if (!err)
5229                         err = ret;
5230         }
5231         if (err) {
5232                 free_extent_map(em);
5233                 return ERR_PTR(err);
5234         }
5235         return em;
5236 }
5237
5238 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5239                                            size_t pg_offset, u64 start, u64 len,
5240                                            int create)
5241 {
5242         struct extent_map *em;
5243         struct extent_map *hole_em = NULL;
5244         u64 range_start = start;
5245         u64 end;
5246         u64 found;
5247         u64 found_end;
5248         int err = 0;
5249
5250         em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5251         if (IS_ERR(em))
5252                 return em;
5253         if (em) {
5254                 /*
5255                  * if our em maps to a hole, there might
5256                  * actually be delalloc bytes behind it
5257                  */
5258                 if (em->block_start != EXTENT_MAP_HOLE)
5259                         return em;
5260                 else
5261                         hole_em = em;
5262         }
5263
5264         /* check to see if we've wrapped (len == -1 or similar) */
5265         end = start + len;
5266         if (end < start)
5267                 end = (u64)-1;
5268         else
5269                 end -= 1;
5270
5271         em = NULL;
5272
5273         /* ok, we didn't find anything, lets look for delalloc */
5274         found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5275                                  end, len, EXTENT_DELALLOC, 1);
5276         found_end = range_start + found;
5277         if (found_end < range_start)
5278                 found_end = (u64)-1;
5279
5280         /*
5281          * we didn't find anything useful, return
5282          * the original results from get_extent()
5283          */
5284         if (range_start > end || found_end <= start) {
5285                 em = hole_em;
5286                 hole_em = NULL;
5287                 goto out;
5288         }
5289
5290         /* adjust the range_start to make sure it doesn't
5291          * go backwards from the start they passed in
5292          */
5293         range_start = max(start,range_start);
5294         found = found_end - range_start;
5295
5296         if (found > 0) {
5297                 u64 hole_start = start;
5298                 u64 hole_len = len;
5299
5300                 em = alloc_extent_map();
5301                 if (!em) {
5302                         err = -ENOMEM;
5303                         goto out;
5304                 }
5305                 /*
5306                  * when btrfs_get_extent can't find anything it
5307                  * returns one huge hole
5308                  *
5309                  * make sure what it found really fits our range, and
5310                  * adjust to make sure it is based on the start from
5311                  * the caller
5312                  */
5313                 if (hole_em) {
5314                         u64 calc_end = extent_map_end(hole_em);
5315
5316                         if (calc_end <= start || (hole_em->start > end)) {
5317                                 free_extent_map(hole_em);
5318                                 hole_em = NULL;
5319                         } else {
5320                                 hole_start = max(hole_em->start, start);
5321                                 hole_len = calc_end - hole_start;
5322                         }
5323                 }
5324                 em->bdev = NULL;
5325                 if (hole_em && range_start > hole_start) {
5326                         /* our hole starts before our delalloc, so we
5327                          * have to return just the parts of the hole
5328                          * that go until  the delalloc starts
5329                          */
5330                         em->len = min(hole_len,
5331                                       range_start - hole_start);
5332                         em->start = hole_start;
5333                         em->orig_start = hole_start;
5334                         /*
5335                          * don't adjust block start at all,
5336                          * it is fixed at EXTENT_MAP_HOLE
5337                          */
5338                         em->block_start = hole_em->block_start;
5339                         em->block_len = hole_len;
5340                 } else {
5341                         em->start = range_start;
5342                         em->len = found;
5343                         em->orig_start = range_start;
5344                         em->block_start = EXTENT_MAP_DELALLOC;
5345                         em->block_len = found;
5346                 }
5347         } else if (hole_em) {
5348                 return hole_em;
5349         }
5350 out:
5351
5352         free_extent_map(hole_em);
5353         if (err) {
5354                 free_extent_map(em);
5355                 return ERR_PTR(err);
5356         }
5357         return em;
5358 }
5359
5360 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5361                                                   struct extent_map *em,
5362                                                   u64 start, u64 len)
5363 {
5364         struct btrfs_root *root = BTRFS_I(inode)->root;
5365         struct btrfs_trans_handle *trans;
5366         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5367         struct btrfs_key ins;
5368         u64 alloc_hint;
5369         int ret;
5370         bool insert = false;
5371
5372         /*
5373          * Ok if the extent map we looked up is a hole and is for the exact
5374          * range we want, there is no reason to allocate a new one, however if
5375          * it is not right then we need to free this one and drop the cache for
5376          * our range.
5377          */
5378         if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5379             em->len != len) {
5380                 free_extent_map(em);
5381                 em = NULL;
5382                 insert = true;
5383                 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5384         }
5385
5386         trans = btrfs_join_transaction(root);
5387         if (IS_ERR(trans))
5388                 return ERR_CAST(trans);
5389
5390         if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5391                 btrfs_add_inode_defrag(trans, inode);
5392
5393         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5394
5395         alloc_hint = get_extent_allocation_hint(inode, start, len);
5396         ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5397                                    alloc_hint, (u64)-1, &ins, 1);
5398         if (ret) {
5399                 em = ERR_PTR(ret);
5400                 goto out;
5401         }
5402
5403         if (!em) {
5404                 em = alloc_extent_map();
5405                 if (!em) {
5406                         em = ERR_PTR(-ENOMEM);
5407                         goto out;
5408                 }
5409         }
5410
5411         em->start = start;
5412         em->orig_start = em->start;
5413         em->len = ins.offset;
5414
5415         em->block_start = ins.objectid;
5416         em->block_len = ins.offset;
5417         em->bdev = root->fs_info->fs_devices->latest_bdev;
5418
5419         /*
5420          * We need to do this because if we're using the original em we searched
5421          * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5422          */
5423         em->flags = 0;
5424         set_bit(EXTENT_FLAG_PINNED, &em->flags);
5425
5426         while (insert) {
5427                 write_lock(&em_tree->lock);
5428                 ret = add_extent_mapping(em_tree, em);
5429                 write_unlock(&em_tree->lock);
5430                 if (ret != -EEXIST)
5431                         break;
5432                 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5433         }
5434
5435         ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5436                                            ins.offset, ins.offset, 0);
5437         if (ret) {
5438                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5439                 em = ERR_PTR(ret);
5440         }
5441 out:
5442         btrfs_end_transaction(trans, root);
5443         return em;
5444 }
5445
5446 /*
5447  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5448  * block must be cow'd
5449  */
5450 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5451                                       struct inode *inode, u64 offset, u64 len)
5452 {
5453         struct btrfs_path *path;
5454         int ret;
5455         struct extent_buffer *leaf;
5456         struct btrfs_root *root = BTRFS_I(inode)->root;
5457         struct btrfs_file_extent_item *fi;
5458         struct btrfs_key key;
5459         u64 disk_bytenr;
5460         u64 backref_offset;
5461         u64 extent_end;
5462         u64 num_bytes;
5463         int slot;
5464         int found_type;
5465
5466         path = btrfs_alloc_path();
5467         if (!path)
5468                 return -ENOMEM;
5469
5470         ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5471                                        offset, 0);
5472         if (ret < 0)
5473                 goto out;
5474
5475         slot = path->slots[0];
5476         if (ret == 1) {
5477                 if (slot == 0) {
5478                         /* can't find the item, must cow */
5479                         ret = 0;
5480                         goto out;
5481                 }
5482                 slot--;
5483         }
5484         ret = 0;
5485         leaf = path->nodes[0];
5486         btrfs_item_key_to_cpu(leaf, &key, slot);
5487         if (key.objectid != btrfs_ino(inode) ||
5488             key.type != BTRFS_EXTENT_DATA_KEY) {
5489                 /* not our file or wrong item type, must cow */
5490                 goto out;
5491         }
5492
5493         if (key.offset > offset) {
5494                 /* Wrong offset, must cow */
5495                 goto out;
5496         }
5497
5498         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5499         found_type = btrfs_file_extent_type(leaf, fi);
5500         if (found_type != BTRFS_FILE_EXTENT_REG &&
5501             found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5502                 /* not a regular extent, must cow */
5503                 goto out;
5504         }
5505         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5506         backref_offset = btrfs_file_extent_offset(leaf, fi);
5507
5508         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5509         if (extent_end < offset + len) {
5510                 /* extent doesn't include our full range, must cow */
5511                 goto out;
5512         }
5513
5514         if (btrfs_extent_readonly(root, disk_bytenr))
5515                 goto out;
5516
5517         /*
5518          * look for other files referencing this extent, if we
5519          * find any we must cow
5520          */
5521         if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5522                                   key.offset - backref_offset, disk_bytenr))
5523                 goto out;
5524
5525         /*
5526          * adjust disk_bytenr and num_bytes to cover just the bytes
5527          * in this extent we are about to write.  If there
5528          * are any csums in that range we have to cow in order
5529          * to keep the csums correct
5530          */
5531         disk_bytenr += backref_offset;
5532         disk_bytenr += offset - key.offset;
5533         num_bytes = min(offset + len, extent_end) - offset;
5534         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5535                                 goto out;
5536         /*
5537          * all of the above have passed, it is safe to overwrite this extent
5538          * without cow
5539          */
5540         ret = 1;
5541 out:
5542         btrfs_free_path(path);
5543         return ret;
5544 }
5545
5546 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5547                                    struct buffer_head *bh_result, int create)
5548 {
5549         struct extent_map *em;
5550         struct btrfs_root *root = BTRFS_I(inode)->root;
5551         u64 start = iblock << inode->i_blkbits;
5552         u64 len = bh_result->b_size;
5553         struct btrfs_trans_handle *trans;
5554
5555         em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5556         if (IS_ERR(em))
5557                 return PTR_ERR(em);
5558
5559         /*
5560          * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5561          * io.  INLINE is special, and we could probably kludge it in here, but
5562          * it's still buffered so for safety lets just fall back to the generic
5563          * buffered path.
5564          *
5565          * For COMPRESSED we _have_ to read the entire extent in so we can
5566          * decompress it, so there will be buffering required no matter what we
5567          * do, so go ahead and fallback to buffered.
5568          *
5569          * We return -ENOTBLK because thats what makes DIO go ahead and go back
5570          * to buffered IO.  Don't blame me, this is the price we pay for using
5571          * the generic code.
5572          */
5573         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5574             em->block_start == EXTENT_MAP_INLINE) {
5575                 free_extent_map(em);
5576                 return -ENOTBLK;
5577         }
5578
5579         /* Just a good old fashioned hole, return */
5580         if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5581                         test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5582                 free_extent_map(em);
5583                 /* DIO will do one hole at a time, so just unlock a sector */
5584                 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5585                               start + root->sectorsize - 1, GFP_NOFS);
5586                 return 0;
5587         }
5588
5589         /*
5590          * We don't allocate a new extent in the following cases
5591          *
5592          * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5593          * existing extent.
5594          * 2) The extent is marked as PREALLOC.  We're good to go here and can
5595          * just use the extent.
5596          *
5597          */
5598         if (!create) {
5599                 len = em->len - (start - em->start);
5600                 goto map;
5601         }
5602
5603         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5604             ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5605              em->block_start != EXTENT_MAP_HOLE)) {
5606                 int type;
5607                 int ret;
5608                 u64 block_start;
5609
5610                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5611                         type = BTRFS_ORDERED_PREALLOC;
5612                 else
5613                         type = BTRFS_ORDERED_NOCOW;
5614                 len = min(len, em->len - (start - em->start));
5615                 block_start = em->block_start + (start - em->start);
5616
5617                 /*
5618                  * we're not going to log anything, but we do need
5619                  * to make sure the current transaction stays open
5620                  * while we look for nocow cross refs
5621                  */
5622                 trans = btrfs_join_transaction(root);
5623                 if (IS_ERR(trans))
5624                         goto must_cow;
5625
5626                 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5627                         ret = btrfs_add_ordered_extent_dio(inode, start,
5628                                            block_start, len, len, type);
5629                         btrfs_end_transaction(trans, root);
5630                         if (ret) {
5631                                 free_extent_map(em);
5632                                 return ret;
5633                         }
5634                         goto unlock;
5635                 }
5636                 btrfs_end_transaction(trans, root);
5637         }
5638 must_cow:
5639         /*
5640          * this will cow the extent, reset the len in case we changed
5641          * it above
5642          */
5643         len = bh_result->b_size;
5644         em = btrfs_new_extent_direct(inode, em, start, len);
5645         if (IS_ERR(em))
5646                 return PTR_ERR(em);
5647         len = min(len, em->len - (start - em->start));
5648 unlock:
5649         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5650                           EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5651                           0, NULL, GFP_NOFS);
5652 map:
5653         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5654                 inode->i_blkbits;
5655         bh_result->b_size = len;
5656         bh_result->b_bdev = em->bdev;
5657         set_buffer_mapped(bh_result);
5658         if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5659                 set_buffer_new(bh_result);
5660
5661         free_extent_map(em);
5662
5663         return 0;
5664 }
5665
5666 struct btrfs_dio_private {
5667         struct inode *inode;
5668         u64 logical_offset;
5669         u64 disk_bytenr;
5670         u64 bytes;
5671         u32 *csums;
5672         void *private;
5673
5674         /* number of bios pending for this dio */
5675         atomic_t pending_bios;
5676
5677         /* IO errors */
5678         int errors;
5679
5680         struct bio *orig_bio;
5681 };
5682
5683 static void btrfs_endio_direct_read(struct bio *bio, int err)
5684 {
5685         struct btrfs_dio_private *dip = bio->bi_private;
5686         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5687         struct bio_vec *bvec = bio->bi_io_vec;
5688         struct inode *inode = dip->inode;
5689         struct btrfs_root *root = BTRFS_I(inode)->root;
5690         u64 start;
5691         u32 *private = dip->csums;
5692
5693         start = dip->logical_offset;
5694         do {
5695                 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5696                         struct page *page = bvec->bv_page;
5697                         char *kaddr;
5698                         u32 csum = ~(u32)0;
5699                         unsigned long flags;
5700
5701                         local_irq_save(flags);
5702                         kaddr = kmap_atomic(page, KM_IRQ0);
5703                         csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5704                                                csum, bvec->bv_len);
5705                         btrfs_csum_final(csum, (char *)&csum);
5706                         kunmap_atomic(kaddr, KM_IRQ0);
5707                         local_irq_restore(flags);
5708
5709                         flush_dcache_page(bvec->bv_page);
5710                         if (csum != *private) {
5711                                 printk(KERN_ERR "btrfs csum failed ino %llu off"
5712                                       " %llu csum %u private %u\n",
5713                                       (unsigned long long)btrfs_ino(inode),
5714                                       (unsigned long long)start,
5715                                       csum, *private);
5716                                 err = -EIO;
5717                         }
5718                 }
5719
5720                 start += bvec->bv_len;
5721                 private++;
5722                 bvec++;
5723         } while (bvec <= bvec_end);
5724
5725         unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5726                       dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5727         bio->bi_private = dip->private;
5728
5729         kfree(dip->csums);
5730         kfree(dip);
5731
5732         /* If we had a csum failure make sure to clear the uptodate flag */
5733         if (err)
5734                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5735         dio_end_io(bio, err);
5736 }
5737
5738 static void btrfs_endio_direct_write(struct bio *bio, int err)
5739 {
5740         struct btrfs_dio_private *dip = bio->bi_private;
5741         struct inode *inode = dip->inode;
5742         struct btrfs_root *root = BTRFS_I(inode)->root;
5743         struct btrfs_trans_handle *trans;
5744         struct btrfs_ordered_extent *ordered = NULL;
5745         struct extent_state *cached_state = NULL;
5746         u64 ordered_offset = dip->logical_offset;
5747         u64 ordered_bytes = dip->bytes;
5748         int ret;
5749
5750         if (err)
5751                 goto out_done;
5752 again:
5753         ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5754                                                    &ordered_offset,
5755                                                    ordered_bytes);
5756         if (!ret)
5757                 goto out_test;
5758
5759         BUG_ON(!ordered);
5760
5761         trans = btrfs_join_transaction(root);
5762         if (IS_ERR(trans)) {
5763                 err = -ENOMEM;
5764                 goto out;
5765         }
5766         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5767
5768         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5769                 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5770                 if (!ret)
5771                         ret = btrfs_update_inode(trans, root, inode);
5772                 err = ret;
5773                 goto out;
5774         }
5775
5776         lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5777                          ordered->file_offset + ordered->len - 1, 0,
5778                          &cached_state, GFP_NOFS);
5779
5780         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5781                 ret = btrfs_mark_extent_written(trans, inode,
5782                                                 ordered->file_offset,
5783                                                 ordered->file_offset +
5784                                                 ordered->len);
5785                 if (ret) {
5786                         err = ret;
5787                         goto out_unlock;
5788                 }
5789         } else {
5790                 ret = insert_reserved_file_extent(trans, inode,
5791                                                   ordered->file_offset,
5792                                                   ordered->start,
5793                                                   ordered->disk_len,
5794                                                   ordered->len,
5795                                                   ordered->len,
5796                                                   0, 0, 0,
5797                                                   BTRFS_FILE_EXTENT_REG);
5798                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5799                                    ordered->file_offset, ordered->len);
5800                 if (ret) {
5801                         err = ret;
5802                         WARN_ON(1);
5803                         goto out_unlock;
5804                 }
5805         }
5806
5807         add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5808         ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5809         if (!ret)
5810                 btrfs_update_inode(trans, root, inode);
5811         ret = 0;
5812 out_unlock:
5813         unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5814                              ordered->file_offset + ordered->len - 1,
5815                              &cached_state, GFP_NOFS);
5816 out:
5817         btrfs_delalloc_release_metadata(inode, ordered->len);
5818         btrfs_end_transaction(trans, root);
5819         ordered_offset = ordered->file_offset + ordered->len;
5820         btrfs_put_ordered_extent(ordered);
5821         btrfs_put_ordered_extent(ordered);
5822
5823 out_test:
5824         /*
5825          * our bio might span multiple ordered extents.  If we haven't
5826          * completed the accounting for the whole dio, go back and try again
5827          */
5828         if (ordered_offset < dip->logical_offset + dip->bytes) {
5829                 ordered_bytes = dip->logical_offset + dip->bytes -
5830                         ordered_offset;
5831                 goto again;
5832         }
5833 out_done:
5834         bio->bi_private = dip->private;
5835
5836         kfree(dip->csums);
5837         kfree(dip);
5838
5839         /* If we had an error make sure to clear the uptodate flag */
5840         if (err)
5841                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5842         dio_end_io(bio, err);
5843 }
5844
5845 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5846                                     struct bio *bio, int mirror_num,
5847                                     unsigned long bio_flags, u64 offset)
5848 {
5849         int ret;
5850         struct btrfs_root *root = BTRFS_I(inode)->root;
5851         ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5852         BUG_ON(ret);
5853         return 0;
5854 }
5855
5856 static void btrfs_end_dio_bio(struct bio *bio, int err)
5857 {
5858         struct btrfs_dio_private *dip = bio->bi_private;
5859
5860         if (err) {
5861                 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
5862                       "sector %#Lx len %u err no %d\n",
5863                       (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
5864                       (unsigned long long)bio->bi_sector, bio->bi_size, err);
5865                 dip->errors = 1;
5866
5867                 /*
5868                  * before atomic variable goto zero, we must make sure
5869                  * dip->errors is perceived to be set.
5870                  */
5871                 smp_mb__before_atomic_dec();
5872         }
5873
5874         /* if there are more bios still pending for this dio, just exit */
5875         if (!atomic_dec_and_test(&dip->pending_bios))
5876                 goto out;
5877
5878         if (dip->errors)
5879                 bio_io_error(dip->orig_bio);
5880         else {
5881                 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5882                 bio_endio(dip->orig_bio, 0);
5883         }
5884 out:
5885         bio_put(bio);
5886 }
5887
5888 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5889                                        u64 first_sector, gfp_t gfp_flags)
5890 {
5891         int nr_vecs = bio_get_nr_vecs(bdev);
5892         return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5893 }
5894
5895 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5896                                          int rw, u64 file_offset, int skip_sum,
5897                                          u32 *csums, int async_submit)
5898 {
5899         int write = rw & REQ_WRITE;
5900         struct btrfs_root *root = BTRFS_I(inode)->root;
5901         int ret;
5902
5903         bio_get(bio);
5904         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5905         if (ret)
5906                 goto err;
5907
5908         if (skip_sum)
5909                 goto map;
5910
5911         if (write && async_submit) {
5912                 ret = btrfs_wq_submit_bio(root->fs_info,
5913                                    inode, rw, bio, 0, 0,
5914                                    file_offset,
5915                                    __btrfs_submit_bio_start_direct_io,
5916                                    __btrfs_submit_bio_done);
5917                 goto err;
5918         } else if (write) {
5919                 /*
5920                  * If we aren't doing async submit, calculate the csum of the
5921                  * bio now.
5922                  */
5923                 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
5924                 if (ret)
5925                         goto err;
5926         } else if (!skip_sum) {
5927                 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
5928                                           file_offset, csums);
5929                 if (ret)
5930                         goto err;
5931         }
5932
5933 map:
5934         ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
5935 err:
5936         bio_put(bio);
5937         return ret;
5938 }
5939
5940 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5941                                     int skip_sum)
5942 {
5943         struct inode *inode = dip->inode;
5944         struct btrfs_root *root = BTRFS_I(inode)->root;
5945         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5946         struct bio *bio;
5947         struct bio *orig_bio = dip->orig_bio;
5948         struct bio_vec *bvec = orig_bio->bi_io_vec;
5949         u64 start_sector = orig_bio->bi_sector;
5950         u64 file_offset = dip->logical_offset;
5951         u64 submit_len = 0;
5952         u64 map_length;
5953         int nr_pages = 0;
5954         u32 *csums = dip->csums;
5955         int ret = 0;
5956         int async_submit = 0;
5957         int write = rw & REQ_WRITE;
5958
5959         map_length = orig_bio->bi_size;
5960         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5961                               &map_length, NULL, 0);
5962         if (ret) {
5963                 bio_put(orig_bio);
5964                 return -EIO;
5965         }
5966
5967         if (map_length >= orig_bio->bi_size) {
5968                 bio = orig_bio;
5969                 goto submit;
5970         }
5971
5972         async_submit = 1;
5973         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5974         if (!bio)
5975                 return -ENOMEM;
5976         bio->bi_private = dip;
5977         bio->bi_end_io = btrfs_end_dio_bio;
5978         atomic_inc(&dip->pending_bios);
5979
5980         while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5981                 if (unlikely(map_length < submit_len + bvec->bv_len ||
5982                     bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5983                                  bvec->bv_offset) < bvec->bv_len)) {
5984                         /*
5985                          * inc the count before we submit the bio so
5986                          * we know the end IO handler won't happen before
5987                          * we inc the count. Otherwise, the dip might get freed
5988                          * before we're done setting it up
5989                          */
5990                         atomic_inc(&dip->pending_bios);
5991                         ret = __btrfs_submit_dio_bio(bio, inode, rw,
5992                                                      file_offset, skip_sum,
5993                                                      csums, async_submit);
5994                         if (ret) {
5995                                 bio_put(bio);
5996                                 atomic_dec(&dip->pending_bios);
5997                                 goto out_err;
5998                         }
5999
6000                         /* Write's use the ordered csums */
6001                         if (!write && !skip_sum)
6002                                 csums = csums + nr_pages;
6003                         start_sector += submit_len >> 9;
6004                         file_offset += submit_len;
6005
6006                         submit_len = 0;
6007                         nr_pages = 0;
6008
6009                         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6010                                                   start_sector, GFP_NOFS);
6011                         if (!bio)
6012                                 goto out_err;
6013                         bio->bi_private = dip;
6014                         bio->bi_end_io = btrfs_end_dio_bio;
6015
6016                         map_length = orig_bio->bi_size;
6017                         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6018                                               &map_length, NULL, 0);
6019                         if (ret) {
6020                                 bio_put(bio);
6021                                 goto out_err;
6022                         }
6023                 } else {
6024                         submit_len += bvec->bv_len;
6025                         nr_pages ++;
6026                         bvec++;
6027                 }
6028         }
6029
6030 submit:
6031         ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6032                                      csums, async_submit);
6033         if (!ret)
6034                 return 0;
6035
6036         bio_put(bio);
6037 out_err:
6038         dip->errors = 1;
6039         /*
6040          * before atomic variable goto zero, we must
6041          * make sure dip->errors is perceived to be set.
6042          */
6043         smp_mb__before_atomic_dec();
6044         if (atomic_dec_and_test(&dip->pending_bios))
6045                 bio_io_error(dip->orig_bio);
6046
6047         /* bio_end_io() will handle error, so we needn't return it */
6048         return 0;
6049 }
6050
6051 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6052                                 loff_t file_offset)
6053 {
6054         struct btrfs_root *root = BTRFS_I(inode)->root;
6055         struct btrfs_dio_private *dip;
6056         struct bio_vec *bvec = bio->bi_io_vec;
6057         int skip_sum;
6058         int write = rw & REQ_WRITE;
6059         int ret = 0;
6060
6061         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6062
6063         dip = kmalloc(sizeof(*dip), GFP_NOFS);
6064         if (!dip) {
6065                 ret = -ENOMEM;
6066                 goto free_ordered;
6067         }
6068         dip->csums = NULL;
6069
6070         /* Write's use the ordered csum stuff, so we don't need dip->csums */
6071         if (!write && !skip_sum) {
6072                 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6073                 if (!dip->csums) {
6074                         kfree(dip);
6075                         ret = -ENOMEM;
6076                         goto free_ordered;
6077                 }
6078         }
6079
6080         dip->private = bio->bi_private;
6081         dip->inode = inode;
6082         dip->logical_offset = file_offset;
6083
6084         dip->bytes = 0;
6085         do {
6086                 dip->bytes += bvec->bv_len;
6087                 bvec++;
6088         } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6089
6090         dip->disk_bytenr = (u64)bio->bi_sector << 9;
6091         bio->bi_private = dip;
6092         dip->errors = 0;
6093         dip->orig_bio = bio;
6094         atomic_set(&dip->pending_bios, 0);
6095
6096         if (write)
6097                 bio->bi_end_io = btrfs_endio_direct_write;
6098         else
6099                 bio->bi_end_io = btrfs_endio_direct_read;
6100
6101         ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6102         if (!ret)
6103                 return;
6104 free_ordered:
6105         /*
6106          * If this is a write, we need to clean up the reserved space and kill
6107          * the ordered extent.
6108          */
6109         if (write) {
6110                 struct btrfs_ordered_extent *ordered;
6111                 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6112                 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6113                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6114                         btrfs_free_reserved_extent(root, ordered->start,
6115                                                    ordered->disk_len);
6116                 btrfs_put_ordered_extent(ordered);
6117                 btrfs_put_ordered_extent(ordered);
6118         }
6119         bio_endio(bio, ret);
6120 }
6121
6122 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6123                         const struct iovec *iov, loff_t offset,
6124                         unsigned long nr_segs)
6125 {
6126         int seg;
6127         int i;
6128         size_t size;
6129         unsigned long addr;
6130         unsigned blocksize_mask = root->sectorsize - 1;
6131         ssize_t retval = -EINVAL;
6132         loff_t end = offset;
6133
6134         if (offset & blocksize_mask)
6135                 goto out;
6136
6137         /* Check the memory alignment.  Blocks cannot straddle pages */
6138         for (seg = 0; seg < nr_segs; seg++) {
6139                 addr = (unsigned long)iov[seg].iov_base;
6140                 size = iov[seg].iov_len;
6141                 end += size;
6142                 if ((addr & blocksize_mask) || (size & blocksize_mask))
6143                         goto out;
6144
6145                 /* If this is a write we don't need to check anymore */
6146                 if (rw & WRITE)
6147                         continue;
6148
6149                 /*
6150                  * Check to make sure we don't have duplicate iov_base's in this
6151                  * iovec, if so return EINVAL, otherwise we'll get csum errors
6152                  * when reading back.
6153                  */
6154                 for (i = seg + 1; i < nr_segs; i++) {
6155                         if (iov[seg].iov_base == iov[i].iov_base)
6156                                 goto out;
6157                 }
6158         }
6159         retval = 0;
6160 out:
6161         return retval;
6162 }
6163 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6164                         const struct iovec *iov, loff_t offset,
6165                         unsigned long nr_segs)
6166 {
6167         struct file *file = iocb->ki_filp;
6168         struct inode *inode = file->f_mapping->host;
6169         struct btrfs_ordered_extent *ordered;
6170         struct extent_state *cached_state = NULL;
6171         u64 lockstart, lockend;
6172         ssize_t ret;
6173         int writing = rw & WRITE;
6174         int write_bits = 0;
6175         size_t count = iov_length(iov, nr_segs);
6176
6177         if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6178                             offset, nr_segs)) {
6179                 return 0;
6180         }
6181
6182         lockstart = offset;
6183         lockend = offset + count - 1;
6184
6185         if (writing) {
6186                 ret = btrfs_delalloc_reserve_space(inode, count);
6187                 if (ret)
6188                         goto out;
6189         }
6190
6191         while (1) {
6192                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6193                                  0, &cached_state, GFP_NOFS);
6194                 /*
6195                  * We're concerned with the entire range that we're going to be
6196                  * doing DIO to, so we need to make sure theres no ordered
6197                  * extents in this range.
6198                  */
6199                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6200                                                      lockend - lockstart + 1);
6201                 if (!ordered)
6202                         break;
6203                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6204                                      &cached_state, GFP_NOFS);
6205                 btrfs_start_ordered_extent(inode, ordered, 1);
6206                 btrfs_put_ordered_extent(ordered);
6207                 cond_resched();
6208         }
6209
6210         /*
6211          * we don't use btrfs_set_extent_delalloc because we don't want
6212          * the dirty or uptodate bits
6213          */
6214         if (writing) {
6215                 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6216                 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6217                                      EXTENT_DELALLOC, 0, NULL, &cached_state,
6218                                      GFP_NOFS);
6219                 if (ret) {
6220                         clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6221                                          lockend, EXTENT_LOCKED | write_bits,
6222                                          1, 0, &cached_state, GFP_NOFS);
6223                         goto out;
6224                 }
6225         }
6226
6227         free_extent_state(cached_state);
6228         cached_state = NULL;
6229
6230         ret = __blockdev_direct_IO(rw, iocb, inode,
6231                    BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6232                    iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6233                    btrfs_submit_direct, 0);
6234
6235         if (ret < 0 && ret != -EIOCBQUEUED) {
6236                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6237                               offset + iov_length(iov, nr_segs) - 1,
6238                               EXTENT_LOCKED | write_bits, 1, 0,
6239                               &cached_state, GFP_NOFS);
6240         } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6241                 /*
6242                  * We're falling back to buffered, unlock the section we didn't
6243                  * do IO on.
6244                  */
6245                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6246                               offset + iov_length(iov, nr_segs) - 1,
6247                               EXTENT_LOCKED | write_bits, 1, 0,
6248                               &cached_state, GFP_NOFS);
6249         }
6250 out:
6251         free_extent_state(cached_state);
6252         return ret;
6253 }
6254
6255 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6256                 __u64 start, __u64 len)
6257 {
6258         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6259 }
6260
6261 int btrfs_readpage(struct file *file, struct page *page)
6262 {
6263         struct extent_io_tree *tree;
6264         tree = &BTRFS_I(page->mapping->host)->io_tree;
6265         return extent_read_full_page(tree, page, btrfs_get_extent);
6266 }
6267
6268 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6269 {
6270         struct extent_io_tree *tree;
6271
6272
6273         if (current->flags & PF_MEMALLOC) {
6274                 redirty_page_for_writepage(wbc, page);
6275                 unlock_page(page);
6276                 return 0;
6277         }
6278         tree = &BTRFS_I(page->mapping->host)->io_tree;
6279         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6280 }
6281
6282 int btrfs_writepages(struct address_space *mapping,
6283                      struct writeback_control *wbc)
6284 {
6285         struct extent_io_tree *tree;
6286
6287         tree = &BTRFS_I(mapping->host)->io_tree;
6288         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6289 }
6290
6291 static int
6292 btrfs_readpages(struct file *file, struct address_space *mapping,
6293                 struct list_head *pages, unsigned nr_pages)
6294 {
6295         struct extent_io_tree *tree;
6296         tree = &BTRFS_I(mapping->host)->io_tree;
6297         return extent_readpages(tree, mapping, pages, nr_pages,
6298                                 btrfs_get_extent);
6299 }
6300 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6301 {
6302         struct extent_io_tree *tree;
6303         struct extent_map_tree *map;
6304         int ret;
6305
6306         tree = &BTRFS_I(page->mapping->host)->io_tree;
6307         map = &BTRFS_I(page->mapping->host)->extent_tree;
6308         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6309         if (ret == 1) {
6310                 ClearPagePrivate(page);
6311                 set_page_private(page, 0);
6312                 page_cache_release(page);
6313         }
6314         return ret;
6315 }
6316
6317 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6318 {
6319         if (PageWriteback(page) || PageDirty(page))
6320                 return 0;
6321         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6322 }
6323
6324 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6325 {
6326         struct extent_io_tree *tree;
6327         struct btrfs_ordered_extent *ordered;
6328         struct extent_state *cached_state = NULL;
6329         u64 page_start = page_offset(page);
6330         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6331
6332
6333         /*
6334          * we have the page locked, so new writeback can't start,
6335          * and the dirty bit won't be cleared while we are here.
6336          *
6337          * Wait for IO on this page so that we can safely clear
6338          * the PagePrivate2 bit and do ordered accounting
6339          */
6340         wait_on_page_writeback(page);
6341
6342         tree = &BTRFS_I(page->mapping->host)->io_tree;
6343         if (offset) {
6344                 btrfs_releasepage(page, GFP_NOFS);
6345                 return;
6346         }
6347         lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6348                          GFP_NOFS);
6349         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6350                                            page_offset(page));
6351         if (ordered) {
6352                 /*
6353                  * IO on this page will never be started, so we need
6354                  * to account for any ordered extents now
6355                  */
6356                 clear_extent_bit(tree, page_start, page_end,
6357                                  EXTENT_DIRTY | EXTENT_DELALLOC |
6358                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6359                                  &cached_state, GFP_NOFS);
6360                 /*
6361                  * whoever cleared the private bit is responsible
6362                  * for the finish_ordered_io
6363                  */
6364                 if (TestClearPagePrivate2(page)) {
6365                         btrfs_finish_ordered_io(page->mapping->host,
6366                                                 page_start, page_end);
6367                 }
6368                 btrfs_put_ordered_extent(ordered);
6369                 cached_state = NULL;
6370                 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6371                                  GFP_NOFS);
6372         }
6373         clear_extent_bit(tree, page_start, page_end,
6374                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6375                  EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6376         __btrfs_releasepage(page, GFP_NOFS);
6377
6378         ClearPageChecked(page);
6379         if (PagePrivate(page)) {
6380                 ClearPagePrivate(page);
6381                 set_page_private(page, 0);
6382                 page_cache_release(page);
6383         }
6384 }
6385
6386 /*
6387  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6388  * called from a page fault handler when a page is first dirtied. Hence we must
6389  * be careful to check for EOF conditions here. We set the page up correctly
6390  * for a written page which means we get ENOSPC checking when writing into
6391  * holes and correct delalloc and unwritten extent mapping on filesystems that
6392  * support these features.
6393  *
6394  * We are not allowed to take the i_mutex here so we have to play games to
6395  * protect against truncate races as the page could now be beyond EOF.  Because
6396  * vmtruncate() writes the inode size before removing pages, once we have the
6397  * page lock we can determine safely if the page is beyond EOF. If it is not
6398  * beyond EOF, then the page is guaranteed safe against truncation until we
6399  * unlock the page.
6400  */
6401 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6402 {
6403         struct page *page = vmf->page;
6404         struct inode *inode = fdentry(vma->vm_file)->d_inode;
6405         struct btrfs_root *root = BTRFS_I(inode)->root;
6406         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6407         struct btrfs_ordered_extent *ordered;
6408         struct extent_state *cached_state = NULL;
6409         char *kaddr;
6410         unsigned long zero_start;
6411         loff_t size;
6412         int ret;
6413         u64 page_start;
6414         u64 page_end;
6415
6416         ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6417         if (ret) {
6418                 if (ret == -ENOMEM)
6419                         ret = VM_FAULT_OOM;
6420                 else /* -ENOSPC, -EIO, etc */
6421                         ret = VM_FAULT_SIGBUS;
6422                 goto out;
6423         }
6424
6425         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6426 again:
6427         lock_page(page);
6428         size = i_size_read(inode);
6429         page_start = page_offset(page);
6430         page_end = page_start + PAGE_CACHE_SIZE - 1;
6431
6432         if ((page->mapping != inode->i_mapping) ||
6433             (page_start >= size)) {
6434                 /* page got truncated out from underneath us */
6435                 goto out_unlock;
6436         }
6437         wait_on_page_writeback(page);
6438
6439         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6440                          GFP_NOFS);
6441         set_page_extent_mapped(page);
6442
6443         /*
6444          * we can't set the delalloc bits if there are pending ordered
6445          * extents.  Drop our locks and wait for them to finish
6446          */
6447         ordered = btrfs_lookup_ordered_extent(inode, page_start);
6448         if (ordered) {
6449                 unlock_extent_cached(io_tree, page_start, page_end,
6450                                      &cached_state, GFP_NOFS);
6451                 unlock_page(page);
6452                 btrfs_start_ordered_extent(inode, ordered, 1);
6453                 btrfs_put_ordered_extent(ordered);
6454                 goto again;
6455         }
6456
6457         /*
6458          * XXX - page_mkwrite gets called every time the page is dirtied, even
6459          * if it was already dirty, so for space accounting reasons we need to
6460          * clear any delalloc bits for the range we are fixing to save.  There
6461          * is probably a better way to do this, but for now keep consistent with
6462          * prepare_pages in the normal write path.
6463          */
6464         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6465                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6466                           0, 0, &cached_state, GFP_NOFS);
6467
6468         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6469                                         &cached_state);
6470         if (ret) {
6471                 unlock_extent_cached(io_tree, page_start, page_end,
6472                                      &cached_state, GFP_NOFS);
6473                 ret = VM_FAULT_SIGBUS;
6474                 goto out_unlock;
6475         }
6476         ret = 0;
6477
6478         /* page is wholly or partially inside EOF */
6479         if (page_start + PAGE_CACHE_SIZE > size)
6480                 zero_start = size & ~PAGE_CACHE_MASK;
6481         else
6482                 zero_start = PAGE_CACHE_SIZE;
6483
6484         if (zero_start != PAGE_CACHE_SIZE) {
6485                 kaddr = kmap(page);
6486                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6487                 flush_dcache_page(page);
6488                 kunmap(page);
6489         }
6490         ClearPageChecked(page);
6491         set_page_dirty(page);
6492         SetPageUptodate(page);
6493
6494         BTRFS_I(inode)->last_trans = root->fs_info->generation;
6495         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6496
6497         unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6498
6499 out_unlock:
6500         if (!ret)
6501                 return VM_FAULT_LOCKED;
6502         unlock_page(page);
6503         btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6504 out:
6505         return ret;
6506 }
6507
6508 static int btrfs_truncate(struct inode *inode)
6509 {
6510         struct btrfs_root *root = BTRFS_I(inode)->root;
6511         struct btrfs_block_rsv *rsv;
6512         int ret;
6513         int err = 0;
6514         struct btrfs_trans_handle *trans;
6515         unsigned long nr;
6516         u64 mask = root->sectorsize - 1;
6517
6518         ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6519         if (ret)
6520                 return ret;
6521
6522         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6523         btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6524
6525         /*
6526          * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
6527          * 3 things going on here
6528          *
6529          * 1) We need to reserve space for our orphan item and the space to
6530          * delete our orphan item.  Lord knows we don't want to have a dangling
6531          * orphan item because we didn't reserve space to remove it.
6532          *
6533          * 2) We need to reserve space to update our inode.
6534          *
6535          * 3) We need to have something to cache all the space that is going to
6536          * be free'd up by the truncate operation, but also have some slack
6537          * space reserved in case it uses space during the truncate (thank you
6538          * very much snapshotting).
6539          *
6540          * And we need these to all be seperate.  The fact is we can use alot of
6541          * space doing the truncate, and we have no earthly idea how much space
6542          * we will use, so we need the truncate reservation to be seperate so it
6543          * doesn't end up using space reserved for updating the inode or
6544          * removing the orphan item.  We also need to be able to stop the
6545          * transaction and start a new one, which means we need to be able to
6546          * update the inode several times, and we have no idea of knowing how
6547          * many times that will be, so we can't just reserve 1 item for the
6548          * entirety of the opration, so that has to be done seperately as well.
6549          * Then there is the orphan item, which does indeed need to be held on
6550          * to for the whole operation, and we need nobody to touch this reserved
6551          * space except the orphan code.
6552          *
6553          * So that leaves us with
6554          *
6555          * 1) root->orphan_block_rsv - for the orphan deletion.
6556          * 2) rsv - for the truncate reservation, which we will steal from the
6557          * transaction reservation.
6558          * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6559          * updating the inode.
6560          */
6561         rsv = btrfs_alloc_block_rsv(root);
6562         if (!rsv)
6563                 return -ENOMEM;
6564         btrfs_add_durable_block_rsv(root->fs_info, rsv);
6565
6566         trans = btrfs_start_transaction(root, 4);
6567         if (IS_ERR(trans)) {
6568                 err = PTR_ERR(trans);
6569                 goto out;
6570         }
6571
6572         /*
6573          * Reserve space for the truncate process.  Truncate should be adding
6574          * space, but if there are snapshots it may end up using space.
6575          */
6576         ret = btrfs_truncate_reserve_metadata(trans, root, rsv);
6577         BUG_ON(ret);
6578
6579         ret = btrfs_orphan_add(trans, inode);
6580         if (ret) {
6581                 btrfs_end_transaction(trans, root);
6582                 goto out;
6583         }
6584
6585         nr = trans->blocks_used;
6586         btrfs_end_transaction(trans, root);
6587         btrfs_btree_balance_dirty(root, nr);
6588
6589         /*
6590          * Ok so we've already migrated our bytes over for the truncate, so here
6591          * just reserve the one slot we need for updating the inode.
6592          */
6593         trans = btrfs_start_transaction(root, 1);
6594         if (IS_ERR(trans)) {
6595                 err = PTR_ERR(trans);
6596                 goto out;
6597         }
6598         trans->block_rsv = rsv;
6599
6600         /*
6601          * setattr is responsible for setting the ordered_data_close flag,
6602          * but that is only tested during the last file release.  That
6603          * could happen well after the next commit, leaving a great big
6604          * window where new writes may get lost if someone chooses to write
6605          * to this file after truncating to zero
6606          *
6607          * The inode doesn't have any dirty data here, and so if we commit
6608          * this is a noop.  If someone immediately starts writing to the inode
6609          * it is very likely we'll catch some of their writes in this
6610          * transaction, and the commit will find this file on the ordered
6611          * data list with good things to send down.
6612          *
6613          * This is a best effort solution, there is still a window where
6614          * using truncate to replace the contents of the file will
6615          * end up with a zero length file after a crash.
6616          */
6617         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6618                 btrfs_add_ordered_operation(trans, root, inode);
6619
6620         while (1) {
6621                 if (!trans) {
6622                         trans = btrfs_start_transaction(root, 3);
6623                         if (IS_ERR(trans)) {
6624                                 err = PTR_ERR(trans);
6625                                 goto out;
6626                         }
6627
6628                         ret = btrfs_truncate_reserve_metadata(trans, root,
6629                                                               rsv);
6630                         BUG_ON(ret);
6631
6632                         trans->block_rsv = rsv;
6633                 }
6634
6635                 ret = btrfs_truncate_inode_items(trans, root, inode,
6636                                                  inode->i_size,
6637                                                  BTRFS_EXTENT_DATA_KEY);
6638                 if (ret != -EAGAIN) {
6639                         err = ret;
6640                         break;
6641                 }
6642
6643                 trans->block_rsv = &root->fs_info->trans_block_rsv;
6644                 ret = btrfs_update_inode(trans, root, inode);
6645                 if (ret) {
6646                         err = ret;
6647                         break;
6648                 }
6649
6650                 nr = trans->blocks_used;
6651                 btrfs_end_transaction(trans, root);
6652                 trans = NULL;
6653                 btrfs_btree_balance_dirty(root, nr);
6654         }
6655
6656         if (ret == 0 && inode->i_nlink > 0) {
6657                 trans->block_rsv = root->orphan_block_rsv;
6658                 ret = btrfs_orphan_del(trans, inode);
6659                 if (ret)
6660                         err = ret;
6661         } else if (ret && inode->i_nlink > 0) {
6662                 /*
6663                  * Failed to do the truncate, remove us from the in memory
6664                  * orphan list.
6665                  */
6666                 ret = btrfs_orphan_del(NULL, inode);
6667         }
6668
6669         trans->block_rsv = &root->fs_info->trans_block_rsv;
6670         ret = btrfs_update_inode(trans, root, inode);
6671         if (ret && !err)
6672                 err = ret;
6673
6674         nr = trans->blocks_used;
6675         ret = btrfs_end_transaction_throttle(trans, root);
6676         btrfs_btree_balance_dirty(root, nr);
6677
6678 out:
6679         btrfs_free_block_rsv(root, rsv);
6680
6681         if (ret && !err)
6682                 err = ret;
6683
6684         return err;
6685 }
6686
6687 /*
6688  * create a new subvolume directory/inode (helper for the ioctl).
6689  */
6690 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6691                              struct btrfs_root *new_root, u64 new_dirid)
6692 {
6693         struct inode *inode;
6694         int err;
6695         u64 index = 0;
6696
6697         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6698                                 new_dirid, S_IFDIR | 0700, &index);
6699         if (IS_ERR(inode))
6700                 return PTR_ERR(inode);
6701         inode->i_op = &btrfs_dir_inode_operations;
6702         inode->i_fop = &btrfs_dir_file_operations;
6703
6704         inode->i_nlink = 1;
6705         btrfs_i_size_write(inode, 0);
6706
6707         err = btrfs_update_inode(trans, new_root, inode);
6708         BUG_ON(err);
6709
6710         iput(inode);
6711         return 0;
6712 }
6713
6714 /* helper function for file defrag and space balancing.  This
6715  * forces readahead on a given range of bytes in an inode
6716  */
6717 unsigned long btrfs_force_ra(struct address_space *mapping,
6718                               struct file_ra_state *ra, struct file *file,
6719                               pgoff_t offset, pgoff_t last_index)
6720 {
6721         pgoff_t req_size = last_index - offset + 1;
6722
6723         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6724         return offset + req_size;
6725 }
6726
6727 struct inode *btrfs_alloc_inode(struct super_block *sb)
6728 {
6729         struct btrfs_inode *ei;
6730         struct inode *inode;
6731
6732         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6733         if (!ei)
6734                 return NULL;
6735
6736         ei->root = NULL;
6737         ei->space_info = NULL;
6738         ei->generation = 0;
6739         ei->sequence = 0;
6740         ei->last_trans = 0;
6741         ei->last_sub_trans = 0;
6742         ei->logged_trans = 0;
6743         ei->delalloc_bytes = 0;
6744         ei->reserved_bytes = 0;
6745         ei->disk_i_size = 0;
6746         ei->flags = 0;
6747         ei->index_cnt = (u64)-1;
6748         ei->last_unlink_trans = 0;
6749
6750         spin_lock_init(&ei->lock);
6751         ei->outstanding_extents = 0;
6752         ei->reserved_extents = 0;
6753
6754         ei->ordered_data_close = 0;
6755         ei->orphan_meta_reserved = 0;
6756         ei->dummy_inode = 0;
6757         ei->in_defrag = 0;
6758         ei->force_compress = BTRFS_COMPRESS_NONE;
6759
6760         ei->delayed_node = NULL;
6761
6762         inode = &ei->vfs_inode;
6763         extent_map_tree_init(&ei->extent_tree);
6764         extent_io_tree_init(&ei->io_tree, &inode->i_data);
6765         extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
6766         mutex_init(&ei->log_mutex);
6767         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6768         INIT_LIST_HEAD(&ei->i_orphan);
6769         INIT_LIST_HEAD(&ei->delalloc_inodes);
6770         INIT_LIST_HEAD(&ei->ordered_operations);
6771         RB_CLEAR_NODE(&ei->rb_node);
6772
6773         return inode;
6774 }
6775
6776 static void btrfs_i_callback(struct rcu_head *head)
6777 {
6778         struct inode *inode = container_of(head, struct inode, i_rcu);
6779         INIT_LIST_HEAD(&inode->i_dentry);
6780         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6781 }
6782
6783 void btrfs_destroy_inode(struct inode *inode)
6784 {
6785         struct btrfs_ordered_extent *ordered;
6786         struct btrfs_root *root = BTRFS_I(inode)->root;
6787
6788         WARN_ON(!list_empty(&inode->i_dentry));
6789         WARN_ON(inode->i_data.nrpages);
6790         WARN_ON(BTRFS_I(inode)->outstanding_extents);
6791         WARN_ON(BTRFS_I(inode)->reserved_extents);
6792
6793         /*
6794          * This can happen where we create an inode, but somebody else also
6795          * created the same inode and we need to destroy the one we already
6796          * created.
6797          */
6798         if (!root)
6799                 goto free;
6800
6801         /*
6802          * Make sure we're properly removed from the ordered operation
6803          * lists.
6804          */
6805         smp_mb();
6806         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6807                 spin_lock(&root->fs_info->ordered_extent_lock);
6808                 list_del_init(&BTRFS_I(inode)->ordered_operations);
6809                 spin_unlock(&root->fs_info->ordered_extent_lock);
6810         }
6811
6812         spin_lock(&root->orphan_lock);
6813         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6814                 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6815                        (unsigned long long)btrfs_ino(inode));
6816                 list_del_init(&BTRFS_I(inode)->i_orphan);
6817         }
6818         spin_unlock(&root->orphan_lock);
6819
6820         while (1) {
6821                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6822                 if (!ordered)
6823                         break;
6824                 else {
6825                         printk(KERN_ERR "btrfs found ordered "
6826                                "extent %llu %llu on inode cleanup\n",
6827                                (unsigned long long)ordered->file_offset,
6828                                (unsigned long long)ordered->len);
6829                         btrfs_remove_ordered_extent(inode, ordered);
6830                         btrfs_put_ordered_extent(ordered);
6831                         btrfs_put_ordered_extent(ordered);
6832                 }
6833         }
6834         inode_tree_del(inode);
6835         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6836 free:
6837         btrfs_remove_delayed_node(inode);
6838         call_rcu(&inode->i_rcu, btrfs_i_callback);
6839 }
6840
6841 int btrfs_drop_inode(struct inode *inode)
6842 {
6843         struct btrfs_root *root = BTRFS_I(inode)->root;
6844
6845         if (btrfs_root_refs(&root->root_item) == 0 &&
6846             !btrfs_is_free_space_inode(root, inode))
6847                 return 1;
6848         else
6849                 return generic_drop_inode(inode);
6850 }
6851
6852 static void init_once(void *foo)
6853 {
6854         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6855
6856         inode_init_once(&ei->vfs_inode);
6857 }
6858
6859 void btrfs_destroy_cachep(void)
6860 {
6861         if (btrfs_inode_cachep)
6862                 kmem_cache_destroy(btrfs_inode_cachep);
6863         if (btrfs_trans_handle_cachep)
6864                 kmem_cache_destroy(btrfs_trans_handle_cachep);
6865         if (btrfs_transaction_cachep)
6866                 kmem_cache_destroy(btrfs_transaction_cachep);
6867         if (btrfs_path_cachep)
6868                 kmem_cache_destroy(btrfs_path_cachep);
6869         if (btrfs_free_space_cachep)
6870                 kmem_cache_destroy(btrfs_free_space_cachep);
6871 }
6872
6873 int btrfs_init_cachep(void)
6874 {
6875         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6876                         sizeof(struct btrfs_inode), 0,
6877                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6878         if (!btrfs_inode_cachep)
6879                 goto fail;
6880
6881         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6882                         sizeof(struct btrfs_trans_handle), 0,
6883                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6884         if (!btrfs_trans_handle_cachep)
6885                 goto fail;
6886
6887         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6888                         sizeof(struct btrfs_transaction), 0,
6889                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6890         if (!btrfs_transaction_cachep)
6891                 goto fail;
6892
6893         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6894                         sizeof(struct btrfs_path), 0,
6895                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6896         if (!btrfs_path_cachep)
6897                 goto fail;
6898
6899         btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6900                         sizeof(struct btrfs_free_space), 0,
6901                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6902         if (!btrfs_free_space_cachep)
6903                 goto fail;
6904
6905         return 0;
6906 fail:
6907         btrfs_destroy_cachep();
6908         return -ENOMEM;
6909 }
6910
6911 static int btrfs_getattr(struct vfsmount *mnt,
6912                          struct dentry *dentry, struct kstat *stat)
6913 {
6914         struct inode *inode = dentry->d_inode;
6915         generic_fillattr(inode, stat);
6916         stat->dev = BTRFS_I(inode)->root->anon_dev;
6917         stat->blksize = PAGE_CACHE_SIZE;
6918         stat->blocks = (inode_get_bytes(inode) +
6919                         BTRFS_I(inode)->delalloc_bytes) >> 9;
6920         return 0;
6921 }
6922
6923 /*
6924  * If a file is moved, it will inherit the cow and compression flags of the new
6925  * directory.
6926  */
6927 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6928 {
6929         struct btrfs_inode *b_dir = BTRFS_I(dir);
6930         struct btrfs_inode *b_inode = BTRFS_I(inode);
6931
6932         if (b_dir->flags & BTRFS_INODE_NODATACOW)
6933                 b_inode->flags |= BTRFS_INODE_NODATACOW;
6934         else
6935                 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6936
6937         if (b_dir->flags & BTRFS_INODE_COMPRESS)
6938                 b_inode->flags |= BTRFS_INODE_COMPRESS;
6939         else
6940                 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6941 }
6942
6943 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6944                            struct inode *new_dir, struct dentry *new_dentry)
6945 {
6946         struct btrfs_trans_handle *trans;
6947         struct btrfs_root *root = BTRFS_I(old_dir)->root;
6948         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6949         struct inode *new_inode = new_dentry->d_inode;
6950         struct inode *old_inode = old_dentry->d_inode;
6951         struct timespec ctime = CURRENT_TIME;
6952         u64 index = 0;
6953         u64 root_objectid;
6954         int ret;
6955         u64 old_ino = btrfs_ino(old_inode);
6956
6957         if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6958                 return -EPERM;
6959
6960         /* we only allow rename subvolume link between subvolumes */
6961         if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6962                 return -EXDEV;
6963
6964         if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6965             (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
6966                 return -ENOTEMPTY;
6967
6968         if (S_ISDIR(old_inode->i_mode) && new_inode &&
6969             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6970                 return -ENOTEMPTY;
6971         /*
6972          * we're using rename to replace one file with another.
6973          * and the replacement file is large.  Start IO on it now so
6974          * we don't add too much work to the end of the transaction
6975          */
6976         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6977             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6978                 filemap_flush(old_inode->i_mapping);
6979
6980         /* close the racy window with snapshot create/destroy ioctl */
6981         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
6982                 down_read(&root->fs_info->subvol_sem);
6983         /*
6984          * We want to reserve the absolute worst case amount of items.  So if
6985          * both inodes are subvols and we need to unlink them then that would
6986          * require 4 item modifications, but if they are both normal inodes it
6987          * would require 5 item modifications, so we'll assume their normal
6988          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6989          * should cover the worst case number of items we'll modify.
6990          */
6991         trans = btrfs_start_transaction(root, 20);
6992         if (IS_ERR(trans)) {
6993                 ret = PTR_ERR(trans);
6994                 goto out_notrans;
6995         }
6996
6997         if (dest != root)
6998                 btrfs_record_root_in_trans(trans, dest);
6999
7000         ret = btrfs_set_inode_index(new_dir, &index);
7001         if (ret)
7002                 goto out_fail;
7003
7004         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7005                 /* force full log commit if subvolume involved. */
7006                 root->fs_info->last_trans_log_full_commit = trans->transid;
7007         } else {
7008                 ret = btrfs_insert_inode_ref(trans, dest,
7009                                              new_dentry->d_name.name,
7010                                              new_dentry->d_name.len,
7011                                              old_ino,
7012                                              btrfs_ino(new_dir), index);
7013                 if (ret)
7014                         goto out_fail;
7015                 /*
7016                  * this is an ugly little race, but the rename is required
7017                  * to make sure that if we crash, the inode is either at the
7018                  * old name or the new one.  pinning the log transaction lets
7019                  * us make sure we don't allow a log commit to come in after
7020                  * we unlink the name but before we add the new name back in.
7021                  */
7022                 btrfs_pin_log_trans(root);
7023         }
7024         /*
7025          * make sure the inode gets flushed if it is replacing
7026          * something.
7027          */
7028         if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
7029                 btrfs_add_ordered_operation(trans, root, old_inode);
7030
7031         old_dir->i_ctime = old_dir->i_mtime = ctime;
7032         new_dir->i_ctime = new_dir->i_mtime = ctime;
7033         old_inode->i_ctime = ctime;
7034
7035         if (old_dentry->d_parent != new_dentry->d_parent)
7036                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7037
7038         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7039                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7040                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7041                                         old_dentry->d_name.name,
7042                                         old_dentry->d_name.len);
7043         } else {
7044                 ret = __btrfs_unlink_inode(trans, root, old_dir,
7045                                         old_dentry->d_inode,
7046                                         old_dentry->d_name.name,
7047                                         old_dentry->d_name.len);
7048                 if (!ret)
7049                         ret = btrfs_update_inode(trans, root, old_inode);
7050         }
7051         BUG_ON(ret);
7052
7053         if (new_inode) {
7054                 new_inode->i_ctime = CURRENT_TIME;
7055                 if (unlikely(btrfs_ino(new_inode) ==
7056                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7057                         root_objectid = BTRFS_I(new_inode)->location.objectid;
7058                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
7059                                                 root_objectid,
7060                                                 new_dentry->d_name.name,
7061                                                 new_dentry->d_name.len);
7062                         BUG_ON(new_inode->i_nlink == 0);
7063                 } else {
7064                         ret = btrfs_unlink_inode(trans, dest, new_dir,
7065                                                  new_dentry->d_inode,
7066                                                  new_dentry->d_name.name,
7067                                                  new_dentry->d_name.len);
7068                 }
7069                 BUG_ON(ret);
7070                 if (new_inode->i_nlink == 0) {
7071                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7072                         BUG_ON(ret);
7073                 }
7074         }
7075
7076         fixup_inode_flags(new_dir, old_inode);
7077
7078         ret = btrfs_add_link(trans, new_dir, old_inode,
7079                              new_dentry->d_name.name,
7080                              new_dentry->d_name.len, 0, index);
7081         BUG_ON(ret);
7082
7083         if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
7084                 struct dentry *parent = new_dentry->d_parent;
7085                 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7086                 btrfs_end_log_trans(root);
7087         }
7088 out_fail:
7089         btrfs_end_transaction_throttle(trans, root);
7090 out_notrans:
7091         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7092                 up_read(&root->fs_info->subvol_sem);
7093
7094         return ret;
7095 }
7096
7097 /*
7098  * some fairly slow code that needs optimization. This walks the list
7099  * of all the inodes with pending delalloc and forces them to disk.
7100  */
7101 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7102 {
7103         struct list_head *head = &root->fs_info->delalloc_inodes;
7104         struct btrfs_inode *binode;
7105         struct inode *inode;
7106
7107         if (root->fs_info->sb->s_flags & MS_RDONLY)
7108                 return -EROFS;
7109
7110         spin_lock(&root->fs_info->delalloc_lock);
7111         while (!list_empty(head)) {
7112                 binode = list_entry(head->next, struct btrfs_inode,
7113                                     delalloc_inodes);
7114                 inode = igrab(&binode->vfs_inode);
7115                 if (!inode)
7116                         list_del_init(&binode->delalloc_inodes);
7117                 spin_unlock(&root->fs_info->delalloc_lock);
7118                 if (inode) {
7119                         filemap_flush(inode->i_mapping);
7120                         if (delay_iput)
7121                                 btrfs_add_delayed_iput(inode);
7122                         else
7123                                 iput(inode);
7124                 }
7125                 cond_resched();
7126                 spin_lock(&root->fs_info->delalloc_lock);
7127         }
7128         spin_unlock(&root->fs_info->delalloc_lock);
7129
7130         /* the filemap_flush will queue IO into the worker threads, but
7131          * we have to make sure the IO is actually started and that
7132          * ordered extents get created before we return
7133          */
7134         atomic_inc(&root->fs_info->async_submit_draining);
7135         while (atomic_read(&root->fs_info->nr_async_submits) ||
7136               atomic_read(&root->fs_info->async_delalloc_pages)) {
7137                 wait_event(root->fs_info->async_submit_wait,
7138                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7139                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7140         }
7141         atomic_dec(&root->fs_info->async_submit_draining);
7142         return 0;
7143 }
7144
7145 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7146                          const char *symname)
7147 {
7148         struct btrfs_trans_handle *trans;
7149         struct btrfs_root *root = BTRFS_I(dir)->root;
7150         struct btrfs_path *path;
7151         struct btrfs_key key;
7152         struct inode *inode = NULL;
7153         int err;
7154         int drop_inode = 0;
7155         u64 objectid;
7156         u64 index = 0 ;
7157         int name_len;
7158         int datasize;
7159         unsigned long ptr;
7160         struct btrfs_file_extent_item *ei;
7161         struct extent_buffer *leaf;
7162         unsigned long nr = 0;
7163
7164         name_len = strlen(symname) + 1;
7165         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7166                 return -ENAMETOOLONG;
7167
7168         /*
7169          * 2 items for inode item and ref
7170          * 2 items for dir items
7171          * 1 item for xattr if selinux is on
7172          */
7173         trans = btrfs_start_transaction(root, 5);
7174         if (IS_ERR(trans))
7175                 return PTR_ERR(trans);
7176
7177         err = btrfs_find_free_ino(root, &objectid);
7178         if (err)
7179                 goto out_unlock;
7180
7181         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7182                                 dentry->d_name.len, btrfs_ino(dir), objectid,
7183                                 S_IFLNK|S_IRWXUGO, &index);
7184         if (IS_ERR(inode)) {
7185                 err = PTR_ERR(inode);
7186                 goto out_unlock;
7187         }
7188
7189         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7190         if (err) {
7191                 drop_inode = 1;
7192                 goto out_unlock;
7193         }
7194
7195         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7196         if (err)
7197                 drop_inode = 1;
7198         else {
7199                 inode->i_mapping->a_ops = &btrfs_aops;
7200                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7201                 inode->i_fop = &btrfs_file_operations;
7202                 inode->i_op = &btrfs_file_inode_operations;
7203                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7204         }
7205         if (drop_inode)
7206                 goto out_unlock;
7207
7208         path = btrfs_alloc_path();
7209         BUG_ON(!path);
7210         key.objectid = btrfs_ino(inode);
7211         key.offset = 0;
7212         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7213         datasize = btrfs_file_extent_calc_inline_size(name_len);
7214         err = btrfs_insert_empty_item(trans, root, path, &key,
7215                                       datasize);
7216         if (err) {
7217                 drop_inode = 1;
7218                 btrfs_free_path(path);
7219                 goto out_unlock;
7220         }
7221         leaf = path->nodes[0];
7222         ei = btrfs_item_ptr(leaf, path->slots[0],
7223                             struct btrfs_file_extent_item);
7224         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7225         btrfs_set_file_extent_type(leaf, ei,
7226                                    BTRFS_FILE_EXTENT_INLINE);
7227         btrfs_set_file_extent_encryption(leaf, ei, 0);
7228         btrfs_set_file_extent_compression(leaf, ei, 0);
7229         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7230         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7231
7232         ptr = btrfs_file_extent_inline_start(ei);
7233         write_extent_buffer(leaf, symname, ptr, name_len);
7234         btrfs_mark_buffer_dirty(leaf);
7235         btrfs_free_path(path);
7236
7237         inode->i_op = &btrfs_symlink_inode_operations;
7238         inode->i_mapping->a_ops = &btrfs_symlink_aops;
7239         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7240         inode_set_bytes(inode, name_len);
7241         btrfs_i_size_write(inode, name_len - 1);
7242         err = btrfs_update_inode(trans, root, inode);
7243         if (err)
7244                 drop_inode = 1;
7245
7246 out_unlock:
7247         nr = trans->blocks_used;
7248         btrfs_end_transaction_throttle(trans, root);
7249         if (drop_inode) {
7250                 inode_dec_link_count(inode);
7251                 iput(inode);
7252         }
7253         btrfs_btree_balance_dirty(root, nr);
7254         return err;
7255 }
7256
7257 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7258                                        u64 start, u64 num_bytes, u64 min_size,
7259                                        loff_t actual_len, u64 *alloc_hint,
7260                                        struct btrfs_trans_handle *trans)
7261 {
7262         struct btrfs_root *root = BTRFS_I(inode)->root;
7263         struct btrfs_key ins;
7264         u64 cur_offset = start;
7265         u64 i_size;
7266         int ret = 0;
7267         bool own_trans = true;
7268
7269         if (trans)
7270                 own_trans = false;
7271         while (num_bytes > 0) {
7272                 if (own_trans) {
7273                         trans = btrfs_start_transaction(root, 3);
7274                         if (IS_ERR(trans)) {
7275                                 ret = PTR_ERR(trans);
7276                                 break;
7277                         }
7278                 }
7279
7280                 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7281                                            0, *alloc_hint, (u64)-1, &ins, 1);
7282                 if (ret) {
7283                         if (own_trans)
7284                                 btrfs_end_transaction(trans, root);
7285                         break;
7286                 }
7287
7288                 ret = insert_reserved_file_extent(trans, inode,
7289                                                   cur_offset, ins.objectid,
7290                                                   ins.offset, ins.offset,
7291                                                   ins.offset, 0, 0, 0,
7292                                                   BTRFS_FILE_EXTENT_PREALLOC);
7293                 BUG_ON(ret);
7294                 btrfs_drop_extent_cache(inode, cur_offset,
7295                                         cur_offset + ins.offset -1, 0);
7296
7297                 num_bytes -= ins.offset;
7298                 cur_offset += ins.offset;
7299                 *alloc_hint = ins.objectid + ins.offset;
7300
7301                 inode->i_ctime = CURRENT_TIME;
7302                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7303                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7304                     (actual_len > inode->i_size) &&
7305                     (cur_offset > inode->i_size)) {
7306                         if (cur_offset > actual_len)
7307                                 i_size = actual_len;
7308                         else
7309                                 i_size = cur_offset;
7310                         i_size_write(inode, i_size);
7311                         btrfs_ordered_update_i_size(inode, i_size, NULL);
7312                 }
7313
7314                 ret = btrfs_update_inode(trans, root, inode);
7315                 BUG_ON(ret);
7316
7317                 if (own_trans)
7318                         btrfs_end_transaction(trans, root);
7319         }
7320         return ret;
7321 }
7322
7323 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7324                               u64 start, u64 num_bytes, u64 min_size,
7325                               loff_t actual_len, u64 *alloc_hint)
7326 {
7327         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7328                                            min_size, actual_len, alloc_hint,
7329                                            NULL);
7330 }
7331
7332 int btrfs_prealloc_file_range_trans(struct inode *inode,
7333                                     struct btrfs_trans_handle *trans, int mode,
7334                                     u64 start, u64 num_bytes, u64 min_size,
7335                                     loff_t actual_len, u64 *alloc_hint)
7336 {
7337         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7338                                            min_size, actual_len, alloc_hint, trans);
7339 }
7340
7341 static int btrfs_set_page_dirty(struct page *page)
7342 {
7343         return __set_page_dirty_nobuffers(page);
7344 }
7345
7346 static int btrfs_permission(struct inode *inode, int mask)
7347 {
7348         struct btrfs_root *root = BTRFS_I(inode)->root;
7349
7350         if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7351                 return -EROFS;
7352         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7353                 return -EACCES;
7354         return generic_permission(inode, mask);
7355 }
7356
7357 static const struct inode_operations btrfs_dir_inode_operations = {
7358         .getattr        = btrfs_getattr,
7359         .lookup         = btrfs_lookup,
7360         .create         = btrfs_create,
7361         .unlink         = btrfs_unlink,
7362         .link           = btrfs_link,
7363         .mkdir          = btrfs_mkdir,
7364         .rmdir          = btrfs_rmdir,
7365         .rename         = btrfs_rename,
7366         .symlink        = btrfs_symlink,
7367         .setattr        = btrfs_setattr,
7368         .mknod          = btrfs_mknod,
7369         .setxattr       = btrfs_setxattr,
7370         .getxattr       = btrfs_getxattr,
7371         .listxattr      = btrfs_listxattr,
7372         .removexattr    = btrfs_removexattr,
7373         .permission     = btrfs_permission,
7374         .get_acl        = btrfs_get_acl,
7375 };
7376 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7377         .lookup         = btrfs_lookup,
7378         .permission     = btrfs_permission,
7379         .get_acl        = btrfs_get_acl,
7380 };
7381
7382 static const struct file_operations btrfs_dir_file_operations = {
7383         .llseek         = generic_file_llseek,
7384         .read           = generic_read_dir,
7385         .readdir        = btrfs_real_readdir,
7386         .unlocked_ioctl = btrfs_ioctl,
7387 #ifdef CONFIG_COMPAT
7388         .compat_ioctl   = btrfs_ioctl,
7389 #endif
7390         .release        = btrfs_release_file,
7391         .fsync          = btrfs_sync_file,
7392 };
7393
7394 static struct extent_io_ops btrfs_extent_io_ops = {
7395         .fill_delalloc = run_delalloc_range,
7396         .submit_bio_hook = btrfs_submit_bio_hook,
7397         .merge_bio_hook = btrfs_merge_bio_hook,
7398         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7399         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7400         .writepage_start_hook = btrfs_writepage_start_hook,
7401         .readpage_io_failed_hook = btrfs_io_failed_hook,
7402         .set_bit_hook = btrfs_set_bit_hook,
7403         .clear_bit_hook = btrfs_clear_bit_hook,
7404         .merge_extent_hook = btrfs_merge_extent_hook,
7405         .split_extent_hook = btrfs_split_extent_hook,
7406 };
7407
7408 /*
7409  * btrfs doesn't support the bmap operation because swapfiles
7410  * use bmap to make a mapping of extents in the file.  They assume
7411  * these extents won't change over the life of the file and they
7412  * use the bmap result to do IO directly to the drive.
7413  *
7414  * the btrfs bmap call would return logical addresses that aren't
7415  * suitable for IO and they also will change frequently as COW
7416  * operations happen.  So, swapfile + btrfs == corruption.
7417  *
7418  * For now we're avoiding this by dropping bmap.
7419  */
7420 static const struct address_space_operations btrfs_aops = {
7421         .readpage       = btrfs_readpage,
7422         .writepage      = btrfs_writepage,
7423         .writepages     = btrfs_writepages,
7424         .readpages      = btrfs_readpages,
7425         .direct_IO      = btrfs_direct_IO,
7426         .invalidatepage = btrfs_invalidatepage,
7427         .releasepage    = btrfs_releasepage,
7428         .set_page_dirty = btrfs_set_page_dirty,
7429         .error_remove_page = generic_error_remove_page,
7430 };
7431
7432 static const struct address_space_operations btrfs_symlink_aops = {
7433         .readpage       = btrfs_readpage,
7434         .writepage      = btrfs_writepage,
7435         .invalidatepage = btrfs_invalidatepage,
7436         .releasepage    = btrfs_releasepage,
7437 };
7438
7439 static const struct inode_operations btrfs_file_inode_operations = {
7440         .getattr        = btrfs_getattr,
7441         .setattr        = btrfs_setattr,
7442         .setxattr       = btrfs_setxattr,
7443         .getxattr       = btrfs_getxattr,
7444         .listxattr      = btrfs_listxattr,
7445         .removexattr    = btrfs_removexattr,
7446         .permission     = btrfs_permission,
7447         .fiemap         = btrfs_fiemap,
7448         .get_acl        = btrfs_get_acl,
7449 };
7450 static const struct inode_operations btrfs_special_inode_operations = {
7451         .getattr        = btrfs_getattr,
7452         .setattr        = btrfs_setattr,
7453         .permission     = btrfs_permission,
7454         .setxattr       = btrfs_setxattr,
7455         .getxattr       = btrfs_getxattr,
7456         .listxattr      = btrfs_listxattr,
7457         .removexattr    = btrfs_removexattr,
7458         .get_acl        = btrfs_get_acl,
7459 };
7460 static const struct inode_operations btrfs_symlink_inode_operations = {
7461         .readlink       = generic_readlink,
7462         .follow_link    = page_follow_link_light,
7463         .put_link       = page_put_link,
7464         .getattr        = btrfs_getattr,
7465         .permission     = btrfs_permission,
7466         .setxattr       = btrfs_setxattr,
7467         .getxattr       = btrfs_getxattr,
7468         .listxattr      = btrfs_listxattr,
7469         .removexattr    = btrfs_removexattr,
7470         .get_acl        = btrfs_get_acl,
7471 };
7472
7473 const struct dentry_operations btrfs_dentry_operations = {
7474         .d_delete       = btrfs_dentry_delete,
7475         .d_release      = btrfs_dentry_release,
7476 };