Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/sameo/mfd-2.6
[pandora-kernel.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "compat.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20
21 static struct kmem_cache *extent_state_cache;
22 static struct kmem_cache *extent_buffer_cache;
23
24 static LIST_HEAD(buffers);
25 static LIST_HEAD(states);
26
27 #define LEAK_DEBUG 0
28 #if LEAK_DEBUG
29 static DEFINE_SPINLOCK(leak_lock);
30 #endif
31
32 #define BUFFER_LRU_MAX 64
33
34 struct tree_entry {
35         u64 start;
36         u64 end;
37         struct rb_node rb_node;
38 };
39
40 struct extent_page_data {
41         struct bio *bio;
42         struct extent_io_tree *tree;
43         get_extent_t *get_extent;
44
45         /* tells writepage not to lock the state bits for this range
46          * it still does the unlocking
47          */
48         unsigned int extent_locked:1;
49
50         /* tells the submit_bio code to use a WRITE_SYNC */
51         unsigned int sync_io:1;
52 };
53
54 int __init extent_io_init(void)
55 {
56         extent_state_cache = kmem_cache_create("extent_state",
57                         sizeof(struct extent_state), 0,
58                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
59         if (!extent_state_cache)
60                 return -ENOMEM;
61
62         extent_buffer_cache = kmem_cache_create("extent_buffers",
63                         sizeof(struct extent_buffer), 0,
64                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
65         if (!extent_buffer_cache)
66                 goto free_state_cache;
67         return 0;
68
69 free_state_cache:
70         kmem_cache_destroy(extent_state_cache);
71         return -ENOMEM;
72 }
73
74 void extent_io_exit(void)
75 {
76         struct extent_state *state;
77         struct extent_buffer *eb;
78
79         while (!list_empty(&states)) {
80                 state = list_entry(states.next, struct extent_state, leak_list);
81                 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
82                        "state %lu in tree %p refs %d\n",
83                        (unsigned long long)state->start,
84                        (unsigned long long)state->end,
85                        state->state, state->tree, atomic_read(&state->refs));
86                 list_del(&state->leak_list);
87                 kmem_cache_free(extent_state_cache, state);
88
89         }
90
91         while (!list_empty(&buffers)) {
92                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
93                 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
94                        "refs %d\n", (unsigned long long)eb->start,
95                        eb->len, atomic_read(&eb->refs));
96                 list_del(&eb->leak_list);
97                 kmem_cache_free(extent_buffer_cache, eb);
98         }
99         if (extent_state_cache)
100                 kmem_cache_destroy(extent_state_cache);
101         if (extent_buffer_cache)
102                 kmem_cache_destroy(extent_buffer_cache);
103 }
104
105 void extent_io_tree_init(struct extent_io_tree *tree,
106                           struct address_space *mapping, gfp_t mask)
107 {
108         tree->state = RB_ROOT;
109         INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
110         tree->ops = NULL;
111         tree->dirty_bytes = 0;
112         spin_lock_init(&tree->lock);
113         spin_lock_init(&tree->buffer_lock);
114         tree->mapping = mapping;
115 }
116
117 static struct extent_state *alloc_extent_state(gfp_t mask)
118 {
119         struct extent_state *state;
120 #if LEAK_DEBUG
121         unsigned long flags;
122 #endif
123
124         state = kmem_cache_alloc(extent_state_cache, mask);
125         if (!state)
126                 return state;
127         state->state = 0;
128         state->private = 0;
129         state->tree = NULL;
130 #if LEAK_DEBUG
131         spin_lock_irqsave(&leak_lock, flags);
132         list_add(&state->leak_list, &states);
133         spin_unlock_irqrestore(&leak_lock, flags);
134 #endif
135         atomic_set(&state->refs, 1);
136         init_waitqueue_head(&state->wq);
137         return state;
138 }
139
140 void free_extent_state(struct extent_state *state)
141 {
142         if (!state)
143                 return;
144         if (atomic_dec_and_test(&state->refs)) {
145 #if LEAK_DEBUG
146                 unsigned long flags;
147 #endif
148                 WARN_ON(state->tree);
149 #if LEAK_DEBUG
150                 spin_lock_irqsave(&leak_lock, flags);
151                 list_del(&state->leak_list);
152                 spin_unlock_irqrestore(&leak_lock, flags);
153 #endif
154                 kmem_cache_free(extent_state_cache, state);
155         }
156 }
157
158 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
159                                    struct rb_node *node)
160 {
161         struct rb_node **p = &root->rb_node;
162         struct rb_node *parent = NULL;
163         struct tree_entry *entry;
164
165         while (*p) {
166                 parent = *p;
167                 entry = rb_entry(parent, struct tree_entry, rb_node);
168
169                 if (offset < entry->start)
170                         p = &(*p)->rb_left;
171                 else if (offset > entry->end)
172                         p = &(*p)->rb_right;
173                 else
174                         return parent;
175         }
176
177         entry = rb_entry(node, struct tree_entry, rb_node);
178         rb_link_node(node, parent, p);
179         rb_insert_color(node, root);
180         return NULL;
181 }
182
183 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
184                                      struct rb_node **prev_ret,
185                                      struct rb_node **next_ret)
186 {
187         struct rb_root *root = &tree->state;
188         struct rb_node *n = root->rb_node;
189         struct rb_node *prev = NULL;
190         struct rb_node *orig_prev = NULL;
191         struct tree_entry *entry;
192         struct tree_entry *prev_entry = NULL;
193
194         while (n) {
195                 entry = rb_entry(n, struct tree_entry, rb_node);
196                 prev = n;
197                 prev_entry = entry;
198
199                 if (offset < entry->start)
200                         n = n->rb_left;
201                 else if (offset > entry->end)
202                         n = n->rb_right;
203                 else
204                         return n;
205         }
206
207         if (prev_ret) {
208                 orig_prev = prev;
209                 while (prev && offset > prev_entry->end) {
210                         prev = rb_next(prev);
211                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
212                 }
213                 *prev_ret = prev;
214                 prev = orig_prev;
215         }
216
217         if (next_ret) {
218                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
219                 while (prev && offset < prev_entry->start) {
220                         prev = rb_prev(prev);
221                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
222                 }
223                 *next_ret = prev;
224         }
225         return NULL;
226 }
227
228 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
229                                           u64 offset)
230 {
231         struct rb_node *prev = NULL;
232         struct rb_node *ret;
233
234         ret = __etree_search(tree, offset, &prev, NULL);
235         if (!ret)
236                 return prev;
237         return ret;
238 }
239
240 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
241                      struct extent_state *other)
242 {
243         if (tree->ops && tree->ops->merge_extent_hook)
244                 tree->ops->merge_extent_hook(tree->mapping->host, new,
245                                              other);
246 }
247
248 /*
249  * utility function to look for merge candidates inside a given range.
250  * Any extents with matching state are merged together into a single
251  * extent in the tree.  Extents with EXTENT_IO in their state field
252  * are not merged because the end_io handlers need to be able to do
253  * operations on them without sleeping (or doing allocations/splits).
254  *
255  * This should be called with the tree lock held.
256  */
257 static int merge_state(struct extent_io_tree *tree,
258                        struct extent_state *state)
259 {
260         struct extent_state *other;
261         struct rb_node *other_node;
262
263         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
264                 return 0;
265
266         other_node = rb_prev(&state->rb_node);
267         if (other_node) {
268                 other = rb_entry(other_node, struct extent_state, rb_node);
269                 if (other->end == state->start - 1 &&
270                     other->state == state->state) {
271                         merge_cb(tree, state, other);
272                         state->start = other->start;
273                         other->tree = NULL;
274                         rb_erase(&other->rb_node, &tree->state);
275                         free_extent_state(other);
276                 }
277         }
278         other_node = rb_next(&state->rb_node);
279         if (other_node) {
280                 other = rb_entry(other_node, struct extent_state, rb_node);
281                 if (other->start == state->end + 1 &&
282                     other->state == state->state) {
283                         merge_cb(tree, state, other);
284                         other->start = state->start;
285                         state->tree = NULL;
286                         rb_erase(&state->rb_node, &tree->state);
287                         free_extent_state(state);
288                         state = NULL;
289                 }
290         }
291
292         return 0;
293 }
294
295 static int set_state_cb(struct extent_io_tree *tree,
296                          struct extent_state *state, int *bits)
297 {
298         if (tree->ops && tree->ops->set_bit_hook) {
299                 return tree->ops->set_bit_hook(tree->mapping->host,
300                                                state, bits);
301         }
302
303         return 0;
304 }
305
306 static void clear_state_cb(struct extent_io_tree *tree,
307                            struct extent_state *state, int *bits)
308 {
309         if (tree->ops && tree->ops->clear_bit_hook)
310                 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
311 }
312
313 /*
314  * insert an extent_state struct into the tree.  'bits' are set on the
315  * struct before it is inserted.
316  *
317  * This may return -EEXIST if the extent is already there, in which case the
318  * state struct is freed.
319  *
320  * The tree lock is not taken internally.  This is a utility function and
321  * probably isn't what you want to call (see set/clear_extent_bit).
322  */
323 static int insert_state(struct extent_io_tree *tree,
324                         struct extent_state *state, u64 start, u64 end,
325                         int *bits)
326 {
327         struct rb_node *node;
328         int bits_to_set = *bits & ~EXTENT_CTLBITS;
329         int ret;
330
331         if (end < start) {
332                 printk(KERN_ERR "btrfs end < start %llu %llu\n",
333                        (unsigned long long)end,
334                        (unsigned long long)start);
335                 WARN_ON(1);
336         }
337         state->start = start;
338         state->end = end;
339         ret = set_state_cb(tree, state, bits);
340         if (ret)
341                 return ret;
342
343         if (bits_to_set & EXTENT_DIRTY)
344                 tree->dirty_bytes += end - start + 1;
345         state->state |= bits_to_set;
346         node = tree_insert(&tree->state, end, &state->rb_node);
347         if (node) {
348                 struct extent_state *found;
349                 found = rb_entry(node, struct extent_state, rb_node);
350                 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
351                        "%llu %llu\n", (unsigned long long)found->start,
352                        (unsigned long long)found->end,
353                        (unsigned long long)start, (unsigned long long)end);
354                 free_extent_state(state);
355                 return -EEXIST;
356         }
357         state->tree = tree;
358         merge_state(tree, state);
359         return 0;
360 }
361
362 static int split_cb(struct extent_io_tree *tree, struct extent_state *orig,
363                      u64 split)
364 {
365         if (tree->ops && tree->ops->split_extent_hook)
366                 return tree->ops->split_extent_hook(tree->mapping->host,
367                                                     orig, split);
368         return 0;
369 }
370
371 /*
372  * split a given extent state struct in two, inserting the preallocated
373  * struct 'prealloc' as the newly created second half.  'split' indicates an
374  * offset inside 'orig' where it should be split.
375  *
376  * Before calling,
377  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
378  * are two extent state structs in the tree:
379  * prealloc: [orig->start, split - 1]
380  * orig: [ split, orig->end ]
381  *
382  * The tree locks are not taken by this function. They need to be held
383  * by the caller.
384  */
385 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
386                        struct extent_state *prealloc, u64 split)
387 {
388         struct rb_node *node;
389
390         split_cb(tree, orig, split);
391
392         prealloc->start = orig->start;
393         prealloc->end = split - 1;
394         prealloc->state = orig->state;
395         orig->start = split;
396
397         node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
398         if (node) {
399                 free_extent_state(prealloc);
400                 return -EEXIST;
401         }
402         prealloc->tree = tree;
403         return 0;
404 }
405
406 /*
407  * utility function to clear some bits in an extent state struct.
408  * it will optionally wake up any one waiting on this state (wake == 1), or
409  * forcibly remove the state from the tree (delete == 1).
410  *
411  * If no bits are set on the state struct after clearing things, the
412  * struct is freed and removed from the tree
413  */
414 static int clear_state_bit(struct extent_io_tree *tree,
415                             struct extent_state *state,
416                             int *bits, int wake)
417 {
418         int bits_to_clear = *bits & ~EXTENT_CTLBITS;
419         int ret = state->state & bits_to_clear;
420
421         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
422                 u64 range = state->end - state->start + 1;
423                 WARN_ON(range > tree->dirty_bytes);
424                 tree->dirty_bytes -= range;
425         }
426         clear_state_cb(tree, state, bits);
427         state->state &= ~bits_to_clear;
428         if (wake)
429                 wake_up(&state->wq);
430         if (state->state == 0) {
431                 if (state->tree) {
432                         rb_erase(&state->rb_node, &tree->state);
433                         state->tree = NULL;
434                         free_extent_state(state);
435                 } else {
436                         WARN_ON(1);
437                 }
438         } else {
439                 merge_state(tree, state);
440         }
441         return ret;
442 }
443
444 /*
445  * clear some bits on a range in the tree.  This may require splitting
446  * or inserting elements in the tree, so the gfp mask is used to
447  * indicate which allocations or sleeping are allowed.
448  *
449  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
450  * the given range from the tree regardless of state (ie for truncate).
451  *
452  * the range [start, end] is inclusive.
453  *
454  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
455  * bits were already set, or zero if none of the bits were already set.
456  */
457 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
458                      int bits, int wake, int delete,
459                      struct extent_state **cached_state,
460                      gfp_t mask)
461 {
462         struct extent_state *state;
463         struct extent_state *cached;
464         struct extent_state *prealloc = NULL;
465         struct rb_node *next_node;
466         struct rb_node *node;
467         u64 last_end;
468         int err;
469         int set = 0;
470         int clear = 0;
471
472         if (delete)
473                 bits |= ~EXTENT_CTLBITS;
474         bits |= EXTENT_FIRST_DELALLOC;
475
476         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
477                 clear = 1;
478 again:
479         if (!prealloc && (mask & __GFP_WAIT)) {
480                 prealloc = alloc_extent_state(mask);
481                 if (!prealloc)
482                         return -ENOMEM;
483         }
484
485         spin_lock(&tree->lock);
486         if (cached_state) {
487                 cached = *cached_state;
488
489                 if (clear) {
490                         *cached_state = NULL;
491                         cached_state = NULL;
492                 }
493
494                 if (cached && cached->tree && cached->start == start) {
495                         if (clear)
496                                 atomic_dec(&cached->refs);
497                         state = cached;
498                         goto hit_next;
499                 }
500                 if (clear)
501                         free_extent_state(cached);
502         }
503         /*
504          * this search will find the extents that end after
505          * our range starts
506          */
507         node = tree_search(tree, start);
508         if (!node)
509                 goto out;
510         state = rb_entry(node, struct extent_state, rb_node);
511 hit_next:
512         if (state->start > end)
513                 goto out;
514         WARN_ON(state->end < start);
515         last_end = state->end;
516
517         /*
518          *     | ---- desired range ---- |
519          *  | state | or
520          *  | ------------- state -------------- |
521          *
522          * We need to split the extent we found, and may flip
523          * bits on second half.
524          *
525          * If the extent we found extends past our range, we
526          * just split and search again.  It'll get split again
527          * the next time though.
528          *
529          * If the extent we found is inside our range, we clear
530          * the desired bit on it.
531          */
532
533         if (state->start < start) {
534                 if (!prealloc)
535                         prealloc = alloc_extent_state(GFP_ATOMIC);
536                 err = split_state(tree, state, prealloc, start);
537                 BUG_ON(err == -EEXIST);
538                 prealloc = NULL;
539                 if (err)
540                         goto out;
541                 if (state->end <= end) {
542                         set |= clear_state_bit(tree, state, &bits, wake);
543                         if (last_end == (u64)-1)
544                                 goto out;
545                         start = last_end + 1;
546                 }
547                 goto search_again;
548         }
549         /*
550          * | ---- desired range ---- |
551          *                        | state |
552          * We need to split the extent, and clear the bit
553          * on the first half
554          */
555         if (state->start <= end && state->end > end) {
556                 if (!prealloc)
557                         prealloc = alloc_extent_state(GFP_ATOMIC);
558                 err = split_state(tree, state, prealloc, end + 1);
559                 BUG_ON(err == -EEXIST);
560                 if (wake)
561                         wake_up(&state->wq);
562
563                 set |= clear_state_bit(tree, prealloc, &bits, wake);
564
565                 prealloc = NULL;
566                 goto out;
567         }
568
569         if (state->end < end && prealloc && !need_resched())
570                 next_node = rb_next(&state->rb_node);
571         else
572                 next_node = NULL;
573
574         set |= clear_state_bit(tree, state, &bits, wake);
575         if (last_end == (u64)-1)
576                 goto out;
577         start = last_end + 1;
578         if (start <= end && next_node) {
579                 state = rb_entry(next_node, struct extent_state,
580                                  rb_node);
581                 if (state->start == start)
582                         goto hit_next;
583         }
584         goto search_again;
585
586 out:
587         spin_unlock(&tree->lock);
588         if (prealloc)
589                 free_extent_state(prealloc);
590
591         return set;
592
593 search_again:
594         if (start > end)
595                 goto out;
596         spin_unlock(&tree->lock);
597         if (mask & __GFP_WAIT)
598                 cond_resched();
599         goto again;
600 }
601
602 static int wait_on_state(struct extent_io_tree *tree,
603                          struct extent_state *state)
604                 __releases(tree->lock)
605                 __acquires(tree->lock)
606 {
607         DEFINE_WAIT(wait);
608         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
609         spin_unlock(&tree->lock);
610         schedule();
611         spin_lock(&tree->lock);
612         finish_wait(&state->wq, &wait);
613         return 0;
614 }
615
616 /*
617  * waits for one or more bits to clear on a range in the state tree.
618  * The range [start, end] is inclusive.
619  * The tree lock is taken by this function
620  */
621 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
622 {
623         struct extent_state *state;
624         struct rb_node *node;
625
626         spin_lock(&tree->lock);
627 again:
628         while (1) {
629                 /*
630                  * this search will find all the extents that end after
631                  * our range starts
632                  */
633                 node = tree_search(tree, start);
634                 if (!node)
635                         break;
636
637                 state = rb_entry(node, struct extent_state, rb_node);
638
639                 if (state->start > end)
640                         goto out;
641
642                 if (state->state & bits) {
643                         start = state->start;
644                         atomic_inc(&state->refs);
645                         wait_on_state(tree, state);
646                         free_extent_state(state);
647                         goto again;
648                 }
649                 start = state->end + 1;
650
651                 if (start > end)
652                         break;
653
654                 if (need_resched()) {
655                         spin_unlock(&tree->lock);
656                         cond_resched();
657                         spin_lock(&tree->lock);
658                 }
659         }
660 out:
661         spin_unlock(&tree->lock);
662         return 0;
663 }
664
665 static int set_state_bits(struct extent_io_tree *tree,
666                            struct extent_state *state,
667                            int *bits)
668 {
669         int ret;
670         int bits_to_set = *bits & ~EXTENT_CTLBITS;
671
672         ret = set_state_cb(tree, state, bits);
673         if (ret)
674                 return ret;
675         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
676                 u64 range = state->end - state->start + 1;
677                 tree->dirty_bytes += range;
678         }
679         state->state |= bits_to_set;
680
681         return 0;
682 }
683
684 static void cache_state(struct extent_state *state,
685                         struct extent_state **cached_ptr)
686 {
687         if (cached_ptr && !(*cached_ptr)) {
688                 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
689                         *cached_ptr = state;
690                         atomic_inc(&state->refs);
691                 }
692         }
693 }
694
695 static void uncache_state(struct extent_state **cached_ptr)
696 {
697         if (cached_ptr && (*cached_ptr)) {
698                 struct extent_state *state = *cached_ptr;
699                 *cached_ptr = NULL;
700                 free_extent_state(state);
701         }
702 }
703
704 /*
705  * set some bits on a range in the tree.  This may require allocations or
706  * sleeping, so the gfp mask is used to indicate what is allowed.
707  *
708  * If any of the exclusive bits are set, this will fail with -EEXIST if some
709  * part of the range already has the desired bits set.  The start of the
710  * existing range is returned in failed_start in this case.
711  *
712  * [start, end] is inclusive This takes the tree lock.
713  */
714
715 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
716                    int bits, int exclusive_bits, u64 *failed_start,
717                    struct extent_state **cached_state, gfp_t mask)
718 {
719         struct extent_state *state;
720         struct extent_state *prealloc = NULL;
721         struct rb_node *node;
722         int err = 0;
723         u64 last_start;
724         u64 last_end;
725
726         bits |= EXTENT_FIRST_DELALLOC;
727 again:
728         if (!prealloc && (mask & __GFP_WAIT)) {
729                 prealloc = alloc_extent_state(mask);
730                 if (!prealloc)
731                         return -ENOMEM;
732         }
733
734         spin_lock(&tree->lock);
735         if (cached_state && *cached_state) {
736                 state = *cached_state;
737                 if (state->start == start && state->tree) {
738                         node = &state->rb_node;
739                         goto hit_next;
740                 }
741         }
742         /*
743          * this search will find all the extents that end after
744          * our range starts.
745          */
746         node = tree_search(tree, start);
747         if (!node) {
748                 err = insert_state(tree, prealloc, start, end, &bits);
749                 prealloc = NULL;
750                 BUG_ON(err == -EEXIST);
751                 goto out;
752         }
753         state = rb_entry(node, struct extent_state, rb_node);
754 hit_next:
755         last_start = state->start;
756         last_end = state->end;
757
758         /*
759          * | ---- desired range ---- |
760          * | state |
761          *
762          * Just lock what we found and keep going
763          */
764         if (state->start == start && state->end <= end) {
765                 struct rb_node *next_node;
766                 if (state->state & exclusive_bits) {
767                         *failed_start = state->start;
768                         err = -EEXIST;
769                         goto out;
770                 }
771
772                 err = set_state_bits(tree, state, &bits);
773                 if (err)
774                         goto out;
775
776                 cache_state(state, cached_state);
777                 merge_state(tree, state);
778                 if (last_end == (u64)-1)
779                         goto out;
780
781                 start = last_end + 1;
782                 if (start < end && prealloc && !need_resched()) {
783                         next_node = rb_next(node);
784                         if (next_node) {
785                                 state = rb_entry(next_node, struct extent_state,
786                                                  rb_node);
787                                 if (state->start == start)
788                                         goto hit_next;
789                         }
790                 }
791                 goto search_again;
792         }
793
794         /*
795          *     | ---- desired range ---- |
796          * | state |
797          *   or
798          * | ------------- state -------------- |
799          *
800          * We need to split the extent we found, and may flip bits on
801          * second half.
802          *
803          * If the extent we found extends past our
804          * range, we just split and search again.  It'll get split
805          * again the next time though.
806          *
807          * If the extent we found is inside our range, we set the
808          * desired bit on it.
809          */
810         if (state->start < start) {
811                 if (state->state & exclusive_bits) {
812                         *failed_start = start;
813                         err = -EEXIST;
814                         goto out;
815                 }
816                 err = split_state(tree, state, prealloc, start);
817                 BUG_ON(err == -EEXIST);
818                 prealloc = NULL;
819                 if (err)
820                         goto out;
821                 if (state->end <= end) {
822                         err = set_state_bits(tree, state, &bits);
823                         if (err)
824                                 goto out;
825                         cache_state(state, cached_state);
826                         merge_state(tree, state);
827                         if (last_end == (u64)-1)
828                                 goto out;
829                         start = last_end + 1;
830                 }
831                 goto search_again;
832         }
833         /*
834          * | ---- desired range ---- |
835          *     | state | or               | state |
836          *
837          * There's a hole, we need to insert something in it and
838          * ignore the extent we found.
839          */
840         if (state->start > start) {
841                 u64 this_end;
842                 if (end < last_start)
843                         this_end = end;
844                 else
845                         this_end = last_start - 1;
846                 err = insert_state(tree, prealloc, start, this_end,
847                                    &bits);
848                 BUG_ON(err == -EEXIST);
849                 if (err) {
850                         prealloc = NULL;
851                         goto out;
852                 }
853                 cache_state(prealloc, cached_state);
854                 prealloc = NULL;
855                 start = this_end + 1;
856                 goto search_again;
857         }
858         /*
859          * | ---- desired range ---- |
860          *                        | state |
861          * We need to split the extent, and set the bit
862          * on the first half
863          */
864         if (state->start <= end && state->end > end) {
865                 if (state->state & exclusive_bits) {
866                         *failed_start = start;
867                         err = -EEXIST;
868                         goto out;
869                 }
870                 err = split_state(tree, state, prealloc, end + 1);
871                 BUG_ON(err == -EEXIST);
872
873                 err = set_state_bits(tree, prealloc, &bits);
874                 if (err) {
875                         prealloc = NULL;
876                         goto out;
877                 }
878                 cache_state(prealloc, cached_state);
879                 merge_state(tree, prealloc);
880                 prealloc = NULL;
881                 goto out;
882         }
883
884         goto search_again;
885
886 out:
887         spin_unlock(&tree->lock);
888         if (prealloc)
889                 free_extent_state(prealloc);
890
891         return err;
892
893 search_again:
894         if (start > end)
895                 goto out;
896         spin_unlock(&tree->lock);
897         if (mask & __GFP_WAIT)
898                 cond_resched();
899         goto again;
900 }
901
902 /* wrappers around set/clear extent bit */
903 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
904                      gfp_t mask)
905 {
906         return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
907                               NULL, mask);
908 }
909
910 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
911                     int bits, gfp_t mask)
912 {
913         return set_extent_bit(tree, start, end, bits, 0, NULL,
914                               NULL, mask);
915 }
916
917 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
918                       int bits, gfp_t mask)
919 {
920         return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
921 }
922
923 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
924                         struct extent_state **cached_state, gfp_t mask)
925 {
926         return set_extent_bit(tree, start, end,
927                               EXTENT_DELALLOC | EXTENT_DIRTY | EXTENT_UPTODATE,
928                               0, NULL, cached_state, mask);
929 }
930
931 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
932                        gfp_t mask)
933 {
934         return clear_extent_bit(tree, start, end,
935                                 EXTENT_DIRTY | EXTENT_DELALLOC |
936                                 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
937 }
938
939 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
940                      gfp_t mask)
941 {
942         return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
943                               NULL, mask);
944 }
945
946 static int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
947                        gfp_t mask)
948 {
949         return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0,
950                                 NULL, mask);
951 }
952
953 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
954                         struct extent_state **cached_state, gfp_t mask)
955 {
956         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
957                               NULL, cached_state, mask);
958 }
959
960 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
961                                  u64 end, struct extent_state **cached_state,
962                                  gfp_t mask)
963 {
964         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
965                                 cached_state, mask);
966 }
967
968 int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
969 {
970         return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
971 }
972
973 /*
974  * either insert or lock state struct between start and end use mask to tell
975  * us if waiting is desired.
976  */
977 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
978                      int bits, struct extent_state **cached_state, gfp_t mask)
979 {
980         int err;
981         u64 failed_start;
982         while (1) {
983                 err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
984                                      EXTENT_LOCKED, &failed_start,
985                                      cached_state, mask);
986                 if (err == -EEXIST && (mask & __GFP_WAIT)) {
987                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
988                         start = failed_start;
989                 } else {
990                         break;
991                 }
992                 WARN_ON(start > end);
993         }
994         return err;
995 }
996
997 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
998 {
999         return lock_extent_bits(tree, start, end, 0, NULL, mask);
1000 }
1001
1002 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1003                     gfp_t mask)
1004 {
1005         int err;
1006         u64 failed_start;
1007
1008         err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1009                              &failed_start, NULL, mask);
1010         if (err == -EEXIST) {
1011                 if (failed_start > start)
1012                         clear_extent_bit(tree, start, failed_start - 1,
1013                                          EXTENT_LOCKED, 1, 0, NULL, mask);
1014                 return 0;
1015         }
1016         return 1;
1017 }
1018
1019 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1020                          struct extent_state **cached, gfp_t mask)
1021 {
1022         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1023                                 mask);
1024 }
1025
1026 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1027 {
1028         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1029                                 mask);
1030 }
1031
1032 /*
1033  * helper function to set pages and extents in the tree dirty
1034  */
1035 int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
1036 {
1037         unsigned long index = start >> PAGE_CACHE_SHIFT;
1038         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1039         struct page *page;
1040
1041         while (index <= end_index) {
1042                 page = find_get_page(tree->mapping, index);
1043                 BUG_ON(!page);
1044                 __set_page_dirty_nobuffers(page);
1045                 page_cache_release(page);
1046                 index++;
1047         }
1048         return 0;
1049 }
1050
1051 /*
1052  * helper function to set both pages and extents in the tree writeback
1053  */
1054 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1055 {
1056         unsigned long index = start >> PAGE_CACHE_SHIFT;
1057         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1058         struct page *page;
1059
1060         while (index <= end_index) {
1061                 page = find_get_page(tree->mapping, index);
1062                 BUG_ON(!page);
1063                 set_page_writeback(page);
1064                 page_cache_release(page);
1065                 index++;
1066         }
1067         return 0;
1068 }
1069
1070 /*
1071  * find the first offset in the io tree with 'bits' set. zero is
1072  * returned if we find something, and *start_ret and *end_ret are
1073  * set to reflect the state struct that was found.
1074  *
1075  * If nothing was found, 1 is returned, < 0 on error
1076  */
1077 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1078                           u64 *start_ret, u64 *end_ret, int bits)
1079 {
1080         struct rb_node *node;
1081         struct extent_state *state;
1082         int ret = 1;
1083
1084         spin_lock(&tree->lock);
1085         /*
1086          * this search will find all the extents that end after
1087          * our range starts.
1088          */
1089         node = tree_search(tree, start);
1090         if (!node)
1091                 goto out;
1092
1093         while (1) {
1094                 state = rb_entry(node, struct extent_state, rb_node);
1095                 if (state->end >= start && (state->state & bits)) {
1096                         *start_ret = state->start;
1097                         *end_ret = state->end;
1098                         ret = 0;
1099                         break;
1100                 }
1101                 node = rb_next(node);
1102                 if (!node)
1103                         break;
1104         }
1105 out:
1106         spin_unlock(&tree->lock);
1107         return ret;
1108 }
1109
1110 /* find the first state struct with 'bits' set after 'start', and
1111  * return it.  tree->lock must be held.  NULL will returned if
1112  * nothing was found after 'start'
1113  */
1114 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1115                                                  u64 start, int bits)
1116 {
1117         struct rb_node *node;
1118         struct extent_state *state;
1119
1120         /*
1121          * this search will find all the extents that end after
1122          * our range starts.
1123          */
1124         node = tree_search(tree, start);
1125         if (!node)
1126                 goto out;
1127
1128         while (1) {
1129                 state = rb_entry(node, struct extent_state, rb_node);
1130                 if (state->end >= start && (state->state & bits))
1131                         return state;
1132
1133                 node = rb_next(node);
1134                 if (!node)
1135                         break;
1136         }
1137 out:
1138         return NULL;
1139 }
1140
1141 /*
1142  * find a contiguous range of bytes in the file marked as delalloc, not
1143  * more than 'max_bytes'.  start and end are used to return the range,
1144  *
1145  * 1 is returned if we find something, 0 if nothing was in the tree
1146  */
1147 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1148                                         u64 *start, u64 *end, u64 max_bytes,
1149                                         struct extent_state **cached_state)
1150 {
1151         struct rb_node *node;
1152         struct extent_state *state;
1153         u64 cur_start = *start;
1154         u64 found = 0;
1155         u64 total_bytes = 0;
1156
1157         spin_lock(&tree->lock);
1158
1159         /*
1160          * this search will find all the extents that end after
1161          * our range starts.
1162          */
1163         node = tree_search(tree, cur_start);
1164         if (!node) {
1165                 if (!found)
1166                         *end = (u64)-1;
1167                 goto out;
1168         }
1169
1170         while (1) {
1171                 state = rb_entry(node, struct extent_state, rb_node);
1172                 if (found && (state->start != cur_start ||
1173                               (state->state & EXTENT_BOUNDARY))) {
1174                         goto out;
1175                 }
1176                 if (!(state->state & EXTENT_DELALLOC)) {
1177                         if (!found)
1178                                 *end = state->end;
1179                         goto out;
1180                 }
1181                 if (!found) {
1182                         *start = state->start;
1183                         *cached_state = state;
1184                         atomic_inc(&state->refs);
1185                 }
1186                 found++;
1187                 *end = state->end;
1188                 cur_start = state->end + 1;
1189                 node = rb_next(node);
1190                 if (!node)
1191                         break;
1192                 total_bytes += state->end - state->start + 1;
1193                 if (total_bytes >= max_bytes)
1194                         break;
1195         }
1196 out:
1197         spin_unlock(&tree->lock);
1198         return found;
1199 }
1200
1201 static noinline int __unlock_for_delalloc(struct inode *inode,
1202                                           struct page *locked_page,
1203                                           u64 start, u64 end)
1204 {
1205         int ret;
1206         struct page *pages[16];
1207         unsigned long index = start >> PAGE_CACHE_SHIFT;
1208         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1209         unsigned long nr_pages = end_index - index + 1;
1210         int i;
1211
1212         if (index == locked_page->index && end_index == index)
1213                 return 0;
1214
1215         while (nr_pages > 0) {
1216                 ret = find_get_pages_contig(inode->i_mapping, index,
1217                                      min_t(unsigned long, nr_pages,
1218                                      ARRAY_SIZE(pages)), pages);
1219                 for (i = 0; i < ret; i++) {
1220                         if (pages[i] != locked_page)
1221                                 unlock_page(pages[i]);
1222                         page_cache_release(pages[i]);
1223                 }
1224                 nr_pages -= ret;
1225                 index += ret;
1226                 cond_resched();
1227         }
1228         return 0;
1229 }
1230
1231 static noinline int lock_delalloc_pages(struct inode *inode,
1232                                         struct page *locked_page,
1233                                         u64 delalloc_start,
1234                                         u64 delalloc_end)
1235 {
1236         unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1237         unsigned long start_index = index;
1238         unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1239         unsigned long pages_locked = 0;
1240         struct page *pages[16];
1241         unsigned long nrpages;
1242         int ret;
1243         int i;
1244
1245         /* the caller is responsible for locking the start index */
1246         if (index == locked_page->index && index == end_index)
1247                 return 0;
1248
1249         /* skip the page at the start index */
1250         nrpages = end_index - index + 1;
1251         while (nrpages > 0) {
1252                 ret = find_get_pages_contig(inode->i_mapping, index,
1253                                      min_t(unsigned long,
1254                                      nrpages, ARRAY_SIZE(pages)), pages);
1255                 if (ret == 0) {
1256                         ret = -EAGAIN;
1257                         goto done;
1258                 }
1259                 /* now we have an array of pages, lock them all */
1260                 for (i = 0; i < ret; i++) {
1261                         /*
1262                          * the caller is taking responsibility for
1263                          * locked_page
1264                          */
1265                         if (pages[i] != locked_page) {
1266                                 lock_page(pages[i]);
1267                                 if (!PageDirty(pages[i]) ||
1268                                     pages[i]->mapping != inode->i_mapping) {
1269                                         ret = -EAGAIN;
1270                                         unlock_page(pages[i]);
1271                                         page_cache_release(pages[i]);
1272                                         goto done;
1273                                 }
1274                         }
1275                         page_cache_release(pages[i]);
1276                         pages_locked++;
1277                 }
1278                 nrpages -= ret;
1279                 index += ret;
1280                 cond_resched();
1281         }
1282         ret = 0;
1283 done:
1284         if (ret && pages_locked) {
1285                 __unlock_for_delalloc(inode, locked_page,
1286                               delalloc_start,
1287                               ((u64)(start_index + pages_locked - 1)) <<
1288                               PAGE_CACHE_SHIFT);
1289         }
1290         return ret;
1291 }
1292
1293 /*
1294  * find a contiguous range of bytes in the file marked as delalloc, not
1295  * more than 'max_bytes'.  start and end are used to return the range,
1296  *
1297  * 1 is returned if we find something, 0 if nothing was in the tree
1298  */
1299 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1300                                              struct extent_io_tree *tree,
1301                                              struct page *locked_page,
1302                                              u64 *start, u64 *end,
1303                                              u64 max_bytes)
1304 {
1305         u64 delalloc_start;
1306         u64 delalloc_end;
1307         u64 found;
1308         struct extent_state *cached_state = NULL;
1309         int ret;
1310         int loops = 0;
1311
1312 again:
1313         /* step one, find a bunch of delalloc bytes starting at start */
1314         delalloc_start = *start;
1315         delalloc_end = 0;
1316         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1317                                     max_bytes, &cached_state);
1318         if (!found || delalloc_end <= *start) {
1319                 *start = delalloc_start;
1320                 *end = delalloc_end;
1321                 free_extent_state(cached_state);
1322                 return found;
1323         }
1324
1325         /*
1326          * start comes from the offset of locked_page.  We have to lock
1327          * pages in order, so we can't process delalloc bytes before
1328          * locked_page
1329          */
1330         if (delalloc_start < *start)
1331                 delalloc_start = *start;
1332
1333         /*
1334          * make sure to limit the number of pages we try to lock down
1335          * if we're looping.
1336          */
1337         if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1338                 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1339
1340         /* step two, lock all the pages after the page that has start */
1341         ret = lock_delalloc_pages(inode, locked_page,
1342                                   delalloc_start, delalloc_end);
1343         if (ret == -EAGAIN) {
1344                 /* some of the pages are gone, lets avoid looping by
1345                  * shortening the size of the delalloc range we're searching
1346                  */
1347                 free_extent_state(cached_state);
1348                 if (!loops) {
1349                         unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1350                         max_bytes = PAGE_CACHE_SIZE - offset;
1351                         loops = 1;
1352                         goto again;
1353                 } else {
1354                         found = 0;
1355                         goto out_failed;
1356                 }
1357         }
1358         BUG_ON(ret);
1359
1360         /* step three, lock the state bits for the whole range */
1361         lock_extent_bits(tree, delalloc_start, delalloc_end,
1362                          0, &cached_state, GFP_NOFS);
1363
1364         /* then test to make sure it is all still delalloc */
1365         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1366                              EXTENT_DELALLOC, 1, cached_state);
1367         if (!ret) {
1368                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1369                                      &cached_state, GFP_NOFS);
1370                 __unlock_for_delalloc(inode, locked_page,
1371                               delalloc_start, delalloc_end);
1372                 cond_resched();
1373                 goto again;
1374         }
1375         free_extent_state(cached_state);
1376         *start = delalloc_start;
1377         *end = delalloc_end;
1378 out_failed:
1379         return found;
1380 }
1381
1382 int extent_clear_unlock_delalloc(struct inode *inode,
1383                                 struct extent_io_tree *tree,
1384                                 u64 start, u64 end, struct page *locked_page,
1385                                 unsigned long op)
1386 {
1387         int ret;
1388         struct page *pages[16];
1389         unsigned long index = start >> PAGE_CACHE_SHIFT;
1390         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1391         unsigned long nr_pages = end_index - index + 1;
1392         int i;
1393         int clear_bits = 0;
1394
1395         if (op & EXTENT_CLEAR_UNLOCK)
1396                 clear_bits |= EXTENT_LOCKED;
1397         if (op & EXTENT_CLEAR_DIRTY)
1398                 clear_bits |= EXTENT_DIRTY;
1399
1400         if (op & EXTENT_CLEAR_DELALLOC)
1401                 clear_bits |= EXTENT_DELALLOC;
1402
1403         clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1404         if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1405                     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1406                     EXTENT_SET_PRIVATE2)))
1407                 return 0;
1408
1409         while (nr_pages > 0) {
1410                 ret = find_get_pages_contig(inode->i_mapping, index,
1411                                      min_t(unsigned long,
1412                                      nr_pages, ARRAY_SIZE(pages)), pages);
1413                 for (i = 0; i < ret; i++) {
1414
1415                         if (op & EXTENT_SET_PRIVATE2)
1416                                 SetPagePrivate2(pages[i]);
1417
1418                         if (pages[i] == locked_page) {
1419                                 page_cache_release(pages[i]);
1420                                 continue;
1421                         }
1422                         if (op & EXTENT_CLEAR_DIRTY)
1423                                 clear_page_dirty_for_io(pages[i]);
1424                         if (op & EXTENT_SET_WRITEBACK)
1425                                 set_page_writeback(pages[i]);
1426                         if (op & EXTENT_END_WRITEBACK)
1427                                 end_page_writeback(pages[i]);
1428                         if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1429                                 unlock_page(pages[i]);
1430                         page_cache_release(pages[i]);
1431                 }
1432                 nr_pages -= ret;
1433                 index += ret;
1434                 cond_resched();
1435         }
1436         return 0;
1437 }
1438
1439 /*
1440  * count the number of bytes in the tree that have a given bit(s)
1441  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1442  * cached.  The total number found is returned.
1443  */
1444 u64 count_range_bits(struct extent_io_tree *tree,
1445                      u64 *start, u64 search_end, u64 max_bytes,
1446                      unsigned long bits, int contig)
1447 {
1448         struct rb_node *node;
1449         struct extent_state *state;
1450         u64 cur_start = *start;
1451         u64 total_bytes = 0;
1452         u64 last = 0;
1453         int found = 0;
1454
1455         if (search_end <= cur_start) {
1456                 WARN_ON(1);
1457                 return 0;
1458         }
1459
1460         spin_lock(&tree->lock);
1461         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1462                 total_bytes = tree->dirty_bytes;
1463                 goto out;
1464         }
1465         /*
1466          * this search will find all the extents that end after
1467          * our range starts.
1468          */
1469         node = tree_search(tree, cur_start);
1470         if (!node)
1471                 goto out;
1472
1473         while (1) {
1474                 state = rb_entry(node, struct extent_state, rb_node);
1475                 if (state->start > search_end)
1476                         break;
1477                 if (contig && found && state->start > last + 1)
1478                         break;
1479                 if (state->end >= cur_start && (state->state & bits) == bits) {
1480                         total_bytes += min(search_end, state->end) + 1 -
1481                                        max(cur_start, state->start);
1482                         if (total_bytes >= max_bytes)
1483                                 break;
1484                         if (!found) {
1485                                 *start = state->start;
1486                                 found = 1;
1487                         }
1488                         last = state->end;
1489                 } else if (contig && found) {
1490                         break;
1491                 }
1492                 node = rb_next(node);
1493                 if (!node)
1494                         break;
1495         }
1496 out:
1497         spin_unlock(&tree->lock);
1498         return total_bytes;
1499 }
1500
1501 /*
1502  * set the private field for a given byte offset in the tree.  If there isn't
1503  * an extent_state there already, this does nothing.
1504  */
1505 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1506 {
1507         struct rb_node *node;
1508         struct extent_state *state;
1509         int ret = 0;
1510
1511         spin_lock(&tree->lock);
1512         /*
1513          * this search will find all the extents that end after
1514          * our range starts.
1515          */
1516         node = tree_search(tree, start);
1517         if (!node) {
1518                 ret = -ENOENT;
1519                 goto out;
1520         }
1521         state = rb_entry(node, struct extent_state, rb_node);
1522         if (state->start != start) {
1523                 ret = -ENOENT;
1524                 goto out;
1525         }
1526         state->private = private;
1527 out:
1528         spin_unlock(&tree->lock);
1529         return ret;
1530 }
1531
1532 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1533 {
1534         struct rb_node *node;
1535         struct extent_state *state;
1536         int ret = 0;
1537
1538         spin_lock(&tree->lock);
1539         /*
1540          * this search will find all the extents that end after
1541          * our range starts.
1542          */
1543         node = tree_search(tree, start);
1544         if (!node) {
1545                 ret = -ENOENT;
1546                 goto out;
1547         }
1548         state = rb_entry(node, struct extent_state, rb_node);
1549         if (state->start != start) {
1550                 ret = -ENOENT;
1551                 goto out;
1552         }
1553         *private = state->private;
1554 out:
1555         spin_unlock(&tree->lock);
1556         return ret;
1557 }
1558
1559 /*
1560  * searches a range in the state tree for a given mask.
1561  * If 'filled' == 1, this returns 1 only if every extent in the tree
1562  * has the bits set.  Otherwise, 1 is returned if any bit in the
1563  * range is found set.
1564  */
1565 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1566                    int bits, int filled, struct extent_state *cached)
1567 {
1568         struct extent_state *state = NULL;
1569         struct rb_node *node;
1570         int bitset = 0;
1571
1572         spin_lock(&tree->lock);
1573         if (cached && cached->tree && cached->start == start)
1574                 node = &cached->rb_node;
1575         else
1576                 node = tree_search(tree, start);
1577         while (node && start <= end) {
1578                 state = rb_entry(node, struct extent_state, rb_node);
1579
1580                 if (filled && state->start > start) {
1581                         bitset = 0;
1582                         break;
1583                 }
1584
1585                 if (state->start > end)
1586                         break;
1587
1588                 if (state->state & bits) {
1589                         bitset = 1;
1590                         if (!filled)
1591                                 break;
1592                 } else if (filled) {
1593                         bitset = 0;
1594                         break;
1595                 }
1596
1597                 if (state->end == (u64)-1)
1598                         break;
1599
1600                 start = state->end + 1;
1601                 if (start > end)
1602                         break;
1603                 node = rb_next(node);
1604                 if (!node) {
1605                         if (filled)
1606                                 bitset = 0;
1607                         break;
1608                 }
1609         }
1610         spin_unlock(&tree->lock);
1611         return bitset;
1612 }
1613
1614 /*
1615  * helper function to set a given page up to date if all the
1616  * extents in the tree for that page are up to date
1617  */
1618 static int check_page_uptodate(struct extent_io_tree *tree,
1619                                struct page *page)
1620 {
1621         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1622         u64 end = start + PAGE_CACHE_SIZE - 1;
1623         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1624                 SetPageUptodate(page);
1625         return 0;
1626 }
1627
1628 /*
1629  * helper function to unlock a page if all the extents in the tree
1630  * for that page are unlocked
1631  */
1632 static int check_page_locked(struct extent_io_tree *tree,
1633                              struct page *page)
1634 {
1635         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1636         u64 end = start + PAGE_CACHE_SIZE - 1;
1637         if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1638                 unlock_page(page);
1639         return 0;
1640 }
1641
1642 /*
1643  * helper function to end page writeback if all the extents
1644  * in the tree for that page are done with writeback
1645  */
1646 static int check_page_writeback(struct extent_io_tree *tree,
1647                              struct page *page)
1648 {
1649         end_page_writeback(page);
1650         return 0;
1651 }
1652
1653 /* lots and lots of room for performance fixes in the end_bio funcs */
1654
1655 /*
1656  * after a writepage IO is done, we need to:
1657  * clear the uptodate bits on error
1658  * clear the writeback bits in the extent tree for this IO
1659  * end_page_writeback if the page has no more pending IO
1660  *
1661  * Scheduling is not allowed, so the extent state tree is expected
1662  * to have one and only one object corresponding to this IO.
1663  */
1664 static void end_bio_extent_writepage(struct bio *bio, int err)
1665 {
1666         int uptodate = err == 0;
1667         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1668         struct extent_io_tree *tree;
1669         u64 start;
1670         u64 end;
1671         int whole_page;
1672         int ret;
1673
1674         do {
1675                 struct page *page = bvec->bv_page;
1676                 tree = &BTRFS_I(page->mapping->host)->io_tree;
1677
1678                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1679                          bvec->bv_offset;
1680                 end = start + bvec->bv_len - 1;
1681
1682                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1683                         whole_page = 1;
1684                 else
1685                         whole_page = 0;
1686
1687                 if (--bvec >= bio->bi_io_vec)
1688                         prefetchw(&bvec->bv_page->flags);
1689                 if (tree->ops && tree->ops->writepage_end_io_hook) {
1690                         ret = tree->ops->writepage_end_io_hook(page, start,
1691                                                        end, NULL, uptodate);
1692                         if (ret)
1693                                 uptodate = 0;
1694                 }
1695
1696                 if (!uptodate && tree->ops &&
1697                     tree->ops->writepage_io_failed_hook) {
1698                         ret = tree->ops->writepage_io_failed_hook(bio, page,
1699                                                          start, end, NULL);
1700                         if (ret == 0) {
1701                                 uptodate = (err == 0);
1702                                 continue;
1703                         }
1704                 }
1705
1706                 if (!uptodate) {
1707                         clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
1708                         ClearPageUptodate(page);
1709                         SetPageError(page);
1710                 }
1711
1712                 if (whole_page)
1713                         end_page_writeback(page);
1714                 else
1715                         check_page_writeback(tree, page);
1716         } while (bvec >= bio->bi_io_vec);
1717
1718         bio_put(bio);
1719 }
1720
1721 /*
1722  * after a readpage IO is done, we need to:
1723  * clear the uptodate bits on error
1724  * set the uptodate bits if things worked
1725  * set the page up to date if all extents in the tree are uptodate
1726  * clear the lock bit in the extent tree
1727  * unlock the page if there are no other extents locked for it
1728  *
1729  * Scheduling is not allowed, so the extent state tree is expected
1730  * to have one and only one object corresponding to this IO.
1731  */
1732 static void end_bio_extent_readpage(struct bio *bio, int err)
1733 {
1734         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1735         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
1736         struct bio_vec *bvec = bio->bi_io_vec;
1737         struct extent_io_tree *tree;
1738         u64 start;
1739         u64 end;
1740         int whole_page;
1741         int ret;
1742
1743         if (err)
1744                 uptodate = 0;
1745
1746         do {
1747                 struct page *page = bvec->bv_page;
1748                 struct extent_state *cached = NULL;
1749                 struct extent_state *state;
1750
1751                 tree = &BTRFS_I(page->mapping->host)->io_tree;
1752
1753                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1754                         bvec->bv_offset;
1755                 end = start + bvec->bv_len - 1;
1756
1757                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1758                         whole_page = 1;
1759                 else
1760                         whole_page = 0;
1761
1762                 if (++bvec <= bvec_end)
1763                         prefetchw(&bvec->bv_page->flags);
1764
1765                 spin_lock(&tree->lock);
1766                 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
1767                 if (state && state->start == start) {
1768                         /*
1769                          * take a reference on the state, unlock will drop
1770                          * the ref
1771                          */
1772                         cache_state(state, &cached);
1773                 }
1774                 spin_unlock(&tree->lock);
1775
1776                 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1777                         ret = tree->ops->readpage_end_io_hook(page, start, end,
1778                                                               state);
1779                         if (ret)
1780                                 uptodate = 0;
1781                 }
1782                 if (!uptodate && tree->ops &&
1783                     tree->ops->readpage_io_failed_hook) {
1784                         ret = tree->ops->readpage_io_failed_hook(bio, page,
1785                                                          start, end, NULL);
1786                         if (ret == 0) {
1787                                 uptodate =
1788                                         test_bit(BIO_UPTODATE, &bio->bi_flags);
1789                                 if (err)
1790                                         uptodate = 0;
1791                                 uncache_state(&cached);
1792                                 continue;
1793                         }
1794                 }
1795
1796                 if (uptodate) {
1797                         set_extent_uptodate(tree, start, end, &cached,
1798                                             GFP_ATOMIC);
1799                 }
1800                 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
1801
1802                 if (whole_page) {
1803                         if (uptodate) {
1804                                 SetPageUptodate(page);
1805                         } else {
1806                                 ClearPageUptodate(page);
1807                                 SetPageError(page);
1808                         }
1809                         unlock_page(page);
1810                 } else {
1811                         if (uptodate) {
1812                                 check_page_uptodate(tree, page);
1813                         } else {
1814                                 ClearPageUptodate(page);
1815                                 SetPageError(page);
1816                         }
1817                         check_page_locked(tree, page);
1818                 }
1819         } while (bvec <= bvec_end);
1820
1821         bio_put(bio);
1822 }
1823
1824 /*
1825  * IO done from prepare_write is pretty simple, we just unlock
1826  * the structs in the extent tree when done, and set the uptodate bits
1827  * as appropriate.
1828  */
1829 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1830 {
1831         const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1832         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1833         struct extent_io_tree *tree;
1834         u64 start;
1835         u64 end;
1836
1837         do {
1838                 struct page *page = bvec->bv_page;
1839                 struct extent_state *cached = NULL;
1840                 tree = &BTRFS_I(page->mapping->host)->io_tree;
1841
1842                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1843                         bvec->bv_offset;
1844                 end = start + bvec->bv_len - 1;
1845
1846                 if (--bvec >= bio->bi_io_vec)
1847                         prefetchw(&bvec->bv_page->flags);
1848
1849                 if (uptodate) {
1850                         set_extent_uptodate(tree, start, end, &cached,
1851                                             GFP_ATOMIC);
1852                 } else {
1853                         ClearPageUptodate(page);
1854                         SetPageError(page);
1855                 }
1856
1857                 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
1858
1859         } while (bvec >= bio->bi_io_vec);
1860
1861         bio_put(bio);
1862 }
1863
1864 struct bio *
1865 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1866                 gfp_t gfp_flags)
1867 {
1868         struct bio *bio;
1869
1870         bio = bio_alloc(gfp_flags, nr_vecs);
1871
1872         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1873                 while (!bio && (nr_vecs /= 2))
1874                         bio = bio_alloc(gfp_flags, nr_vecs);
1875         }
1876
1877         if (bio) {
1878                 bio->bi_size = 0;
1879                 bio->bi_bdev = bdev;
1880                 bio->bi_sector = first_sector;
1881         }
1882         return bio;
1883 }
1884
1885 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1886                           unsigned long bio_flags)
1887 {
1888         int ret = 0;
1889         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1890         struct page *page = bvec->bv_page;
1891         struct extent_io_tree *tree = bio->bi_private;
1892         u64 start;
1893
1894         start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1895
1896         bio->bi_private = NULL;
1897
1898         bio_get(bio);
1899
1900         if (tree->ops && tree->ops->submit_bio_hook)
1901                 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1902                                            mirror_num, bio_flags, start);
1903         else
1904                 submit_bio(rw, bio);
1905         if (bio_flagged(bio, BIO_EOPNOTSUPP))
1906                 ret = -EOPNOTSUPP;
1907         bio_put(bio);
1908         return ret;
1909 }
1910
1911 static int submit_extent_page(int rw, struct extent_io_tree *tree,
1912                               struct page *page, sector_t sector,
1913                               size_t size, unsigned long offset,
1914                               struct block_device *bdev,
1915                               struct bio **bio_ret,
1916                               unsigned long max_pages,
1917                               bio_end_io_t end_io_func,
1918                               int mirror_num,
1919                               unsigned long prev_bio_flags,
1920                               unsigned long bio_flags)
1921 {
1922         int ret = 0;
1923         struct bio *bio;
1924         int nr;
1925         int contig = 0;
1926         int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
1927         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
1928         size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
1929
1930         if (bio_ret && *bio_ret) {
1931                 bio = *bio_ret;
1932                 if (old_compressed)
1933                         contig = bio->bi_sector == sector;
1934                 else
1935                         contig = bio->bi_sector + (bio->bi_size >> 9) ==
1936                                 sector;
1937
1938                 if (prev_bio_flags != bio_flags || !contig ||
1939                     (tree->ops && tree->ops->merge_bio_hook &&
1940                      tree->ops->merge_bio_hook(page, offset, page_size, bio,
1941                                                bio_flags)) ||
1942                     bio_add_page(bio, page, page_size, offset) < page_size) {
1943                         ret = submit_one_bio(rw, bio, mirror_num,
1944                                              prev_bio_flags);
1945                         bio = NULL;
1946                 } else {
1947                         return 0;
1948                 }
1949         }
1950         if (this_compressed)
1951                 nr = BIO_MAX_PAGES;
1952         else
1953                 nr = bio_get_nr_vecs(bdev);
1954
1955         bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1956         if (!bio)
1957                 return -ENOMEM;
1958
1959         bio_add_page(bio, page, page_size, offset);
1960         bio->bi_end_io = end_io_func;
1961         bio->bi_private = tree;
1962
1963         if (bio_ret)
1964                 *bio_ret = bio;
1965         else
1966                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
1967
1968         return ret;
1969 }
1970
1971 void set_page_extent_mapped(struct page *page)
1972 {
1973         if (!PagePrivate(page)) {
1974                 SetPagePrivate(page);
1975                 page_cache_get(page);
1976                 set_page_private(page, EXTENT_PAGE_PRIVATE);
1977         }
1978 }
1979
1980 static void set_page_extent_head(struct page *page, unsigned long len)
1981 {
1982         WARN_ON(!PagePrivate(page));
1983         set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1984 }
1985
1986 /*
1987  * basic readpage implementation.  Locked extent state structs are inserted
1988  * into the tree that are removed when the IO is done (by the end_io
1989  * handlers)
1990  */
1991 static int __extent_read_full_page(struct extent_io_tree *tree,
1992                                    struct page *page,
1993                                    get_extent_t *get_extent,
1994                                    struct bio **bio, int mirror_num,
1995                                    unsigned long *bio_flags)
1996 {
1997         struct inode *inode = page->mapping->host;
1998         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1999         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2000         u64 end;
2001         u64 cur = start;
2002         u64 extent_offset;
2003         u64 last_byte = i_size_read(inode);
2004         u64 block_start;
2005         u64 cur_end;
2006         sector_t sector;
2007         struct extent_map *em;
2008         struct block_device *bdev;
2009         struct btrfs_ordered_extent *ordered;
2010         int ret;
2011         int nr = 0;
2012         size_t page_offset = 0;
2013         size_t iosize;
2014         size_t disk_io_size;
2015         size_t blocksize = inode->i_sb->s_blocksize;
2016         unsigned long this_bio_flag = 0;
2017
2018         set_page_extent_mapped(page);
2019
2020         if (!PageUptodate(page)) {
2021                 if (cleancache_get_page(page) == 0) {
2022                         BUG_ON(blocksize != PAGE_SIZE);
2023                         goto out;
2024                 }
2025         }
2026
2027         end = page_end;
2028         while (1) {
2029                 lock_extent(tree, start, end, GFP_NOFS);
2030                 ordered = btrfs_lookup_ordered_extent(inode, start);
2031                 if (!ordered)
2032                         break;
2033                 unlock_extent(tree, start, end, GFP_NOFS);
2034                 btrfs_start_ordered_extent(inode, ordered, 1);
2035                 btrfs_put_ordered_extent(ordered);
2036         }
2037
2038         if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2039                 char *userpage;
2040                 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2041
2042                 if (zero_offset) {
2043                         iosize = PAGE_CACHE_SIZE - zero_offset;
2044                         userpage = kmap_atomic(page, KM_USER0);
2045                         memset(userpage + zero_offset, 0, iosize);
2046                         flush_dcache_page(page);
2047                         kunmap_atomic(userpage, KM_USER0);
2048                 }
2049         }
2050         while (cur <= end) {
2051                 if (cur >= last_byte) {
2052                         char *userpage;
2053                         struct extent_state *cached = NULL;
2054
2055                         iosize = PAGE_CACHE_SIZE - page_offset;
2056                         userpage = kmap_atomic(page, KM_USER0);
2057                         memset(userpage + page_offset, 0, iosize);
2058                         flush_dcache_page(page);
2059                         kunmap_atomic(userpage, KM_USER0);
2060                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2061                                             &cached, GFP_NOFS);
2062                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2063                                              &cached, GFP_NOFS);
2064                         break;
2065                 }
2066                 em = get_extent(inode, page, page_offset, cur,
2067                                 end - cur + 1, 0);
2068                 if (IS_ERR(em) || !em) {
2069                         SetPageError(page);
2070                         unlock_extent(tree, cur, end, GFP_NOFS);
2071                         break;
2072                 }
2073                 extent_offset = cur - em->start;
2074                 BUG_ON(extent_map_end(em) <= cur);
2075                 BUG_ON(end < cur);
2076
2077                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2078                         this_bio_flag = EXTENT_BIO_COMPRESSED;
2079                         extent_set_compress_type(&this_bio_flag,
2080                                                  em->compress_type);
2081                 }
2082
2083                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2084                 cur_end = min(extent_map_end(em) - 1, end);
2085                 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2086                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2087                         disk_io_size = em->block_len;
2088                         sector = em->block_start >> 9;
2089                 } else {
2090                         sector = (em->block_start + extent_offset) >> 9;
2091                         disk_io_size = iosize;
2092                 }
2093                 bdev = em->bdev;
2094                 block_start = em->block_start;
2095                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2096                         block_start = EXTENT_MAP_HOLE;
2097                 free_extent_map(em);
2098                 em = NULL;
2099
2100                 /* we've found a hole, just zero and go on */
2101                 if (block_start == EXTENT_MAP_HOLE) {
2102                         char *userpage;
2103                         struct extent_state *cached = NULL;
2104
2105                         userpage = kmap_atomic(page, KM_USER0);
2106                         memset(userpage + page_offset, 0, iosize);
2107                         flush_dcache_page(page);
2108                         kunmap_atomic(userpage, KM_USER0);
2109
2110                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2111                                             &cached, GFP_NOFS);
2112                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2113                                              &cached, GFP_NOFS);
2114                         cur = cur + iosize;
2115                         page_offset += iosize;
2116                         continue;
2117                 }
2118                 /* the get_extent function already copied into the page */
2119                 if (test_range_bit(tree, cur, cur_end,
2120                                    EXTENT_UPTODATE, 1, NULL)) {
2121                         check_page_uptodate(tree, page);
2122                         unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2123                         cur = cur + iosize;
2124                         page_offset += iosize;
2125                         continue;
2126                 }
2127                 /* we have an inline extent but it didn't get marked up
2128                  * to date.  Error out
2129                  */
2130                 if (block_start == EXTENT_MAP_INLINE) {
2131                         SetPageError(page);
2132                         unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2133                         cur = cur + iosize;
2134                         page_offset += iosize;
2135                         continue;
2136                 }
2137
2138                 ret = 0;
2139                 if (tree->ops && tree->ops->readpage_io_hook) {
2140                         ret = tree->ops->readpage_io_hook(page, cur,
2141                                                           cur + iosize - 1);
2142                 }
2143                 if (!ret) {
2144                         unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2145                         pnr -= page->index;
2146                         ret = submit_extent_page(READ, tree, page,
2147                                          sector, disk_io_size, page_offset,
2148                                          bdev, bio, pnr,
2149                                          end_bio_extent_readpage, mirror_num,
2150                                          *bio_flags,
2151                                          this_bio_flag);
2152                         nr++;
2153                         *bio_flags = this_bio_flag;
2154                 }
2155                 if (ret)
2156                         SetPageError(page);
2157                 cur = cur + iosize;
2158                 page_offset += iosize;
2159         }
2160 out:
2161         if (!nr) {
2162                 if (!PageError(page))
2163                         SetPageUptodate(page);
2164                 unlock_page(page);
2165         }
2166         return 0;
2167 }
2168
2169 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2170                             get_extent_t *get_extent)
2171 {
2172         struct bio *bio = NULL;
2173         unsigned long bio_flags = 0;
2174         int ret;
2175
2176         ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2177                                       &bio_flags);
2178         if (bio)
2179                 ret = submit_one_bio(READ, bio, 0, bio_flags);
2180         return ret;
2181 }
2182
2183 static noinline void update_nr_written(struct page *page,
2184                                       struct writeback_control *wbc,
2185                                       unsigned long nr_written)
2186 {
2187         wbc->nr_to_write -= nr_written;
2188         if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2189             wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2190                 page->mapping->writeback_index = page->index + nr_written;
2191 }
2192
2193 /*
2194  * the writepage semantics are similar to regular writepage.  extent
2195  * records are inserted to lock ranges in the tree, and as dirty areas
2196  * are found, they are marked writeback.  Then the lock bits are removed
2197  * and the end_io handler clears the writeback ranges
2198  */
2199 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2200                               void *data)
2201 {
2202         struct inode *inode = page->mapping->host;
2203         struct extent_page_data *epd = data;
2204         struct extent_io_tree *tree = epd->tree;
2205         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2206         u64 delalloc_start;
2207         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2208         u64 end;
2209         u64 cur = start;
2210         u64 extent_offset;
2211         u64 last_byte = i_size_read(inode);
2212         u64 block_start;
2213         u64 iosize;
2214         sector_t sector;
2215         struct extent_state *cached_state = NULL;
2216         struct extent_map *em;
2217         struct block_device *bdev;
2218         int ret;
2219         int nr = 0;
2220         size_t pg_offset = 0;
2221         size_t blocksize;
2222         loff_t i_size = i_size_read(inode);
2223         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2224         u64 nr_delalloc;
2225         u64 delalloc_end;
2226         int page_started;
2227         int compressed;
2228         int write_flags;
2229         unsigned long nr_written = 0;
2230
2231         if (wbc->sync_mode == WB_SYNC_ALL)
2232                 write_flags = WRITE_SYNC;
2233         else
2234                 write_flags = WRITE;
2235
2236         trace___extent_writepage(page, inode, wbc);
2237
2238         WARN_ON(!PageLocked(page));
2239         pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2240         if (page->index > end_index ||
2241            (page->index == end_index && !pg_offset)) {
2242                 page->mapping->a_ops->invalidatepage(page, 0);
2243                 unlock_page(page);
2244                 return 0;
2245         }
2246
2247         if (page->index == end_index) {
2248                 char *userpage;
2249
2250                 userpage = kmap_atomic(page, KM_USER0);
2251                 memset(userpage + pg_offset, 0,
2252                        PAGE_CACHE_SIZE - pg_offset);
2253                 kunmap_atomic(userpage, KM_USER0);
2254                 flush_dcache_page(page);
2255         }
2256         pg_offset = 0;
2257
2258         set_page_extent_mapped(page);
2259
2260         delalloc_start = start;
2261         delalloc_end = 0;
2262         page_started = 0;
2263         if (!epd->extent_locked) {
2264                 u64 delalloc_to_write = 0;
2265                 /*
2266                  * make sure the wbc mapping index is at least updated
2267                  * to this page.
2268                  */
2269                 update_nr_written(page, wbc, 0);
2270
2271                 while (delalloc_end < page_end) {
2272                         nr_delalloc = find_lock_delalloc_range(inode, tree,
2273                                                        page,
2274                                                        &delalloc_start,
2275                                                        &delalloc_end,
2276                                                        128 * 1024 * 1024);
2277                         if (nr_delalloc == 0) {
2278                                 delalloc_start = delalloc_end + 1;
2279                                 continue;
2280                         }
2281                         tree->ops->fill_delalloc(inode, page, delalloc_start,
2282                                                  delalloc_end, &page_started,
2283                                                  &nr_written);
2284                         /*
2285                          * delalloc_end is already one less than the total
2286                          * length, so we don't subtract one from
2287                          * PAGE_CACHE_SIZE
2288                          */
2289                         delalloc_to_write += (delalloc_end - delalloc_start +
2290                                               PAGE_CACHE_SIZE) >>
2291                                               PAGE_CACHE_SHIFT;
2292                         delalloc_start = delalloc_end + 1;
2293                 }
2294                 if (wbc->nr_to_write < delalloc_to_write) {
2295                         int thresh = 8192;
2296
2297                         if (delalloc_to_write < thresh * 2)
2298                                 thresh = delalloc_to_write;
2299                         wbc->nr_to_write = min_t(u64, delalloc_to_write,
2300                                                  thresh);
2301                 }
2302
2303                 /* did the fill delalloc function already unlock and start
2304                  * the IO?
2305                  */
2306                 if (page_started) {
2307                         ret = 0;
2308                         /*
2309                          * we've unlocked the page, so we can't update
2310                          * the mapping's writeback index, just update
2311                          * nr_to_write.
2312                          */
2313                         wbc->nr_to_write -= nr_written;
2314                         goto done_unlocked;
2315                 }
2316         }
2317         if (tree->ops && tree->ops->writepage_start_hook) {
2318                 ret = tree->ops->writepage_start_hook(page, start,
2319                                                       page_end);
2320                 if (ret == -EAGAIN) {
2321                         redirty_page_for_writepage(wbc, page);
2322                         update_nr_written(page, wbc, nr_written);
2323                         unlock_page(page);
2324                         ret = 0;
2325                         goto done_unlocked;
2326                 }
2327         }
2328
2329         /*
2330          * we don't want to touch the inode after unlocking the page,
2331          * so we update the mapping writeback index now
2332          */
2333         update_nr_written(page, wbc, nr_written + 1);
2334
2335         end = page_end;
2336         if (last_byte <= start) {
2337                 if (tree->ops && tree->ops->writepage_end_io_hook)
2338                         tree->ops->writepage_end_io_hook(page, start,
2339                                                          page_end, NULL, 1);
2340                 goto done;
2341         }
2342
2343         blocksize = inode->i_sb->s_blocksize;
2344
2345         while (cur <= end) {
2346                 if (cur >= last_byte) {
2347                         if (tree->ops && tree->ops->writepage_end_io_hook)
2348                                 tree->ops->writepage_end_io_hook(page, cur,
2349                                                          page_end, NULL, 1);
2350                         break;
2351                 }
2352                 em = epd->get_extent(inode, page, pg_offset, cur,
2353                                      end - cur + 1, 1);
2354                 if (IS_ERR(em) || !em) {
2355                         SetPageError(page);
2356                         break;
2357                 }
2358
2359                 extent_offset = cur - em->start;
2360                 BUG_ON(extent_map_end(em) <= cur);
2361                 BUG_ON(end < cur);
2362                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2363                 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2364                 sector = (em->block_start + extent_offset) >> 9;
2365                 bdev = em->bdev;
2366                 block_start = em->block_start;
2367                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2368                 free_extent_map(em);
2369                 em = NULL;
2370
2371                 /*
2372                  * compressed and inline extents are written through other
2373                  * paths in the FS
2374                  */
2375                 if (compressed || block_start == EXTENT_MAP_HOLE ||
2376                     block_start == EXTENT_MAP_INLINE) {
2377                         /*
2378                          * end_io notification does not happen here for
2379                          * compressed extents
2380                          */
2381                         if (!compressed && tree->ops &&
2382                             tree->ops->writepage_end_io_hook)
2383                                 tree->ops->writepage_end_io_hook(page, cur,
2384                                                          cur + iosize - 1,
2385                                                          NULL, 1);
2386                         else if (compressed) {
2387                                 /* we don't want to end_page_writeback on
2388                                  * a compressed extent.  this happens
2389                                  * elsewhere
2390                                  */
2391                                 nr++;
2392                         }
2393
2394                         cur += iosize;
2395                         pg_offset += iosize;
2396                         continue;
2397                 }
2398                 /* leave this out until we have a page_mkwrite call */
2399                 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2400                                    EXTENT_DIRTY, 0, NULL)) {
2401                         cur = cur + iosize;
2402                         pg_offset += iosize;
2403                         continue;
2404                 }
2405
2406                 if (tree->ops && tree->ops->writepage_io_hook) {
2407                         ret = tree->ops->writepage_io_hook(page, cur,
2408                                                 cur + iosize - 1);
2409                 } else {
2410                         ret = 0;
2411                 }
2412                 if (ret) {
2413                         SetPageError(page);
2414                 } else {
2415                         unsigned long max_nr = end_index + 1;
2416
2417                         set_range_writeback(tree, cur, cur + iosize - 1);
2418                         if (!PageWriteback(page)) {
2419                                 printk(KERN_ERR "btrfs warning page %lu not "
2420                                        "writeback, cur %llu end %llu\n",
2421                                        page->index, (unsigned long long)cur,
2422                                        (unsigned long long)end);
2423                         }
2424
2425                         ret = submit_extent_page(write_flags, tree, page,
2426                                                  sector, iosize, pg_offset,
2427                                                  bdev, &epd->bio, max_nr,
2428                                                  end_bio_extent_writepage,
2429                                                  0, 0, 0);
2430                         if (ret)
2431                                 SetPageError(page);
2432                 }
2433                 cur = cur + iosize;
2434                 pg_offset += iosize;
2435                 nr++;
2436         }
2437 done:
2438         if (nr == 0) {
2439                 /* make sure the mapping tag for page dirty gets cleared */
2440                 set_page_writeback(page);
2441                 end_page_writeback(page);
2442         }
2443         unlock_page(page);
2444
2445 done_unlocked:
2446
2447         /* drop our reference on any cached states */
2448         free_extent_state(cached_state);
2449         return 0;
2450 }
2451
2452 /**
2453  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2454  * @mapping: address space structure to write
2455  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2456  * @writepage: function called for each page
2457  * @data: data passed to writepage function
2458  *
2459  * If a page is already under I/O, write_cache_pages() skips it, even
2460  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2461  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2462  * and msync() need to guarantee that all the data which was dirty at the time
2463  * the call was made get new I/O started against them.  If wbc->sync_mode is
2464  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2465  * existing IO to complete.
2466  */
2467 static int extent_write_cache_pages(struct extent_io_tree *tree,
2468                              struct address_space *mapping,
2469                              struct writeback_control *wbc,
2470                              writepage_t writepage, void *data,
2471                              void (*flush_fn)(void *))
2472 {
2473         int ret = 0;
2474         int done = 0;
2475         int nr_to_write_done = 0;
2476         struct pagevec pvec;
2477         int nr_pages;
2478         pgoff_t index;
2479         pgoff_t end;            /* Inclusive */
2480         int scanned = 0;
2481
2482         pagevec_init(&pvec, 0);
2483         if (wbc->range_cyclic) {
2484                 index = mapping->writeback_index; /* Start from prev offset */
2485                 end = -1;
2486         } else {
2487                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2488                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2489                 scanned = 1;
2490         }
2491 retry:
2492         while (!done && !nr_to_write_done && (index <= end) &&
2493                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2494                               PAGECACHE_TAG_DIRTY, min(end - index,
2495                                   (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2496                 unsigned i;
2497
2498                 scanned = 1;
2499                 for (i = 0; i < nr_pages; i++) {
2500                         struct page *page = pvec.pages[i];
2501
2502                         /*
2503                          * At this point we hold neither mapping->tree_lock nor
2504                          * lock on the page itself: the page may be truncated or
2505                          * invalidated (changing page->mapping to NULL), or even
2506                          * swizzled back from swapper_space to tmpfs file
2507                          * mapping
2508                          */
2509                         if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2510                                 tree->ops->write_cache_pages_lock_hook(page);
2511                         else
2512                                 lock_page(page);
2513
2514                         if (unlikely(page->mapping != mapping)) {
2515                                 unlock_page(page);
2516                                 continue;
2517                         }
2518
2519                         if (!wbc->range_cyclic && page->index > end) {
2520                                 done = 1;
2521                                 unlock_page(page);
2522                                 continue;
2523                         }
2524
2525                         if (wbc->sync_mode != WB_SYNC_NONE) {
2526                                 if (PageWriteback(page))
2527                                         flush_fn(data);
2528                                 wait_on_page_writeback(page);
2529                         }
2530
2531                         if (PageWriteback(page) ||
2532                             !clear_page_dirty_for_io(page)) {
2533                                 unlock_page(page);
2534                                 continue;
2535                         }
2536
2537                         ret = (*writepage)(page, wbc, data);
2538
2539                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2540                                 unlock_page(page);
2541                                 ret = 0;
2542                         }
2543                         if (ret)
2544                                 done = 1;
2545
2546                         /*
2547                          * the filesystem may choose to bump up nr_to_write.
2548                          * We have to make sure to honor the new nr_to_write
2549                          * at any time
2550                          */
2551                         nr_to_write_done = wbc->nr_to_write <= 0;
2552                 }
2553                 pagevec_release(&pvec);
2554                 cond_resched();
2555         }
2556         if (!scanned && !done) {
2557                 /*
2558                  * We hit the last page and there is more work to be done: wrap
2559                  * back to the start of the file
2560                  */
2561                 scanned = 1;
2562                 index = 0;
2563                 goto retry;
2564         }
2565         return ret;
2566 }
2567
2568 static void flush_epd_write_bio(struct extent_page_data *epd)
2569 {
2570         if (epd->bio) {
2571                 if (epd->sync_io)
2572                         submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
2573                 else
2574                         submit_one_bio(WRITE, epd->bio, 0, 0);
2575                 epd->bio = NULL;
2576         }
2577 }
2578
2579 static noinline void flush_write_bio(void *data)
2580 {
2581         struct extent_page_data *epd = data;
2582         flush_epd_write_bio(epd);
2583 }
2584
2585 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2586                           get_extent_t *get_extent,
2587                           struct writeback_control *wbc)
2588 {
2589         int ret;
2590         struct address_space *mapping = page->mapping;
2591         struct extent_page_data epd = {
2592                 .bio = NULL,
2593                 .tree = tree,
2594                 .get_extent = get_extent,
2595                 .extent_locked = 0,
2596                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2597         };
2598         struct writeback_control wbc_writepages = {
2599                 .sync_mode      = wbc->sync_mode,
2600                 .older_than_this = NULL,
2601                 .nr_to_write    = 64,
2602                 .range_start    = page_offset(page) + PAGE_CACHE_SIZE,
2603                 .range_end      = (loff_t)-1,
2604         };
2605
2606         ret = __extent_writepage(page, wbc, &epd);
2607
2608         extent_write_cache_pages(tree, mapping, &wbc_writepages,
2609                                  __extent_writepage, &epd, flush_write_bio);
2610         flush_epd_write_bio(&epd);
2611         return ret;
2612 }
2613
2614 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
2615                               u64 start, u64 end, get_extent_t *get_extent,
2616                               int mode)
2617 {
2618         int ret = 0;
2619         struct address_space *mapping = inode->i_mapping;
2620         struct page *page;
2621         unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
2622                 PAGE_CACHE_SHIFT;
2623
2624         struct extent_page_data epd = {
2625                 .bio = NULL,
2626                 .tree = tree,
2627                 .get_extent = get_extent,
2628                 .extent_locked = 1,
2629                 .sync_io = mode == WB_SYNC_ALL,
2630         };
2631         struct writeback_control wbc_writepages = {
2632                 .sync_mode      = mode,
2633                 .older_than_this = NULL,
2634                 .nr_to_write    = nr_pages * 2,
2635                 .range_start    = start,
2636                 .range_end      = end + 1,
2637         };
2638
2639         while (start <= end) {
2640                 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
2641                 if (clear_page_dirty_for_io(page))
2642                         ret = __extent_writepage(page, &wbc_writepages, &epd);
2643                 else {
2644                         if (tree->ops && tree->ops->writepage_end_io_hook)
2645                                 tree->ops->writepage_end_io_hook(page, start,
2646                                                  start + PAGE_CACHE_SIZE - 1,
2647                                                  NULL, 1);
2648                         unlock_page(page);
2649                 }
2650                 page_cache_release(page);
2651                 start += PAGE_CACHE_SIZE;
2652         }
2653
2654         flush_epd_write_bio(&epd);
2655         return ret;
2656 }
2657
2658 int extent_writepages(struct extent_io_tree *tree,
2659                       struct address_space *mapping,
2660                       get_extent_t *get_extent,
2661                       struct writeback_control *wbc)
2662 {
2663         int ret = 0;
2664         struct extent_page_data epd = {
2665                 .bio = NULL,
2666                 .tree = tree,
2667                 .get_extent = get_extent,
2668                 .extent_locked = 0,
2669                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2670         };
2671
2672         ret = extent_write_cache_pages(tree, mapping, wbc,
2673                                        __extent_writepage, &epd,
2674                                        flush_write_bio);
2675         flush_epd_write_bio(&epd);
2676         return ret;
2677 }
2678
2679 int extent_readpages(struct extent_io_tree *tree,
2680                      struct address_space *mapping,
2681                      struct list_head *pages, unsigned nr_pages,
2682                      get_extent_t get_extent)
2683 {
2684         struct bio *bio = NULL;
2685         unsigned page_idx;
2686         unsigned long bio_flags = 0;
2687
2688         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2689                 struct page *page = list_entry(pages->prev, struct page, lru);
2690
2691                 prefetchw(&page->flags);
2692                 list_del(&page->lru);
2693                 if (!add_to_page_cache_lru(page, mapping,
2694                                         page->index, GFP_NOFS)) {
2695                         __extent_read_full_page(tree, page, get_extent,
2696                                                 &bio, 0, &bio_flags);
2697                 }
2698                 page_cache_release(page);
2699         }
2700         BUG_ON(!list_empty(pages));
2701         if (bio)
2702                 submit_one_bio(READ, bio, 0, bio_flags);
2703         return 0;
2704 }
2705
2706 /*
2707  * basic invalidatepage code, this waits on any locked or writeback
2708  * ranges corresponding to the page, and then deletes any extent state
2709  * records from the tree
2710  */
2711 int extent_invalidatepage(struct extent_io_tree *tree,
2712                           struct page *page, unsigned long offset)
2713 {
2714         struct extent_state *cached_state = NULL;
2715         u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2716         u64 end = start + PAGE_CACHE_SIZE - 1;
2717         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2718
2719         start += (offset + blocksize - 1) & ~(blocksize - 1);
2720         if (start > end)
2721                 return 0;
2722
2723         lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS);
2724         wait_on_page_writeback(page);
2725         clear_extent_bit(tree, start, end,
2726                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2727                          EXTENT_DO_ACCOUNTING,
2728                          1, 1, &cached_state, GFP_NOFS);
2729         return 0;
2730 }
2731
2732 /*
2733  * simple commit_write call, set_range_dirty is used to mark both
2734  * the pages and the extent records as dirty
2735  */
2736 int extent_commit_write(struct extent_io_tree *tree,
2737                         struct inode *inode, struct page *page,
2738                         unsigned from, unsigned to)
2739 {
2740         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2741
2742         set_page_extent_mapped(page);
2743         set_page_dirty(page);
2744
2745         if (pos > inode->i_size) {
2746                 i_size_write(inode, pos);
2747                 mark_inode_dirty(inode);
2748         }
2749         return 0;
2750 }
2751
2752 int extent_prepare_write(struct extent_io_tree *tree,
2753                          struct inode *inode, struct page *page,
2754                          unsigned from, unsigned to, get_extent_t *get_extent)
2755 {
2756         u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2757         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2758         u64 block_start;
2759         u64 orig_block_start;
2760         u64 block_end;
2761         u64 cur_end;
2762         struct extent_map *em;
2763         unsigned blocksize = 1 << inode->i_blkbits;
2764         size_t page_offset = 0;
2765         size_t block_off_start;
2766         size_t block_off_end;
2767         int err = 0;
2768         int iocount = 0;
2769         int ret = 0;
2770         int isnew;
2771
2772         set_page_extent_mapped(page);
2773
2774         block_start = (page_start + from) & ~((u64)blocksize - 1);
2775         block_end = (page_start + to - 1) | (blocksize - 1);
2776         orig_block_start = block_start;
2777
2778         lock_extent(tree, page_start, page_end, GFP_NOFS);
2779         while (block_start <= block_end) {
2780                 em = get_extent(inode, page, page_offset, block_start,
2781                                 block_end - block_start + 1, 1);
2782                 if (IS_ERR(em) || !em)
2783                         goto err;
2784
2785                 cur_end = min(block_end, extent_map_end(em) - 1);
2786                 block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2787                 block_off_end = block_off_start + blocksize;
2788                 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2789
2790                 if (!PageUptodate(page) && isnew &&
2791                     (block_off_end > to || block_off_start < from)) {
2792                         void *kaddr;
2793
2794                         kaddr = kmap_atomic(page, KM_USER0);
2795                         if (block_off_end > to)
2796                                 memset(kaddr + to, 0, block_off_end - to);
2797                         if (block_off_start < from)
2798                                 memset(kaddr + block_off_start, 0,
2799                                        from - block_off_start);
2800                         flush_dcache_page(page);
2801                         kunmap_atomic(kaddr, KM_USER0);
2802                 }
2803                 if ((em->block_start != EXTENT_MAP_HOLE &&
2804                      em->block_start != EXTENT_MAP_INLINE) &&
2805                     !isnew && !PageUptodate(page) &&
2806                     (block_off_end > to || block_off_start < from) &&
2807                     !test_range_bit(tree, block_start, cur_end,
2808                                     EXTENT_UPTODATE, 1, NULL)) {
2809                         u64 sector;
2810                         u64 extent_offset = block_start - em->start;
2811                         size_t iosize;
2812                         sector = (em->block_start + extent_offset) >> 9;
2813                         iosize = (cur_end - block_start + blocksize) &
2814                                 ~((u64)blocksize - 1);
2815                         /*
2816                          * we've already got the extent locked, but we
2817                          * need to split the state such that our end_bio
2818                          * handler can clear the lock.
2819                          */
2820                         set_extent_bit(tree, block_start,
2821                                        block_start + iosize - 1,
2822                                        EXTENT_LOCKED, 0, NULL, NULL, GFP_NOFS);
2823                         ret = submit_extent_page(READ, tree, page,
2824                                          sector, iosize, page_offset, em->bdev,
2825                                          NULL, 1,
2826                                          end_bio_extent_preparewrite, 0,
2827                                          0, 0);
2828                         if (ret && !err)
2829                                 err = ret;
2830                         iocount++;
2831                         block_start = block_start + iosize;
2832                 } else {
2833                         struct extent_state *cached = NULL;
2834
2835                         set_extent_uptodate(tree, block_start, cur_end, &cached,
2836                                             GFP_NOFS);
2837                         unlock_extent_cached(tree, block_start, cur_end,
2838                                              &cached, GFP_NOFS);
2839                         block_start = cur_end + 1;
2840                 }
2841                 page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2842                 free_extent_map(em);
2843         }
2844         if (iocount) {
2845                 wait_extent_bit(tree, orig_block_start,
2846                                 block_end, EXTENT_LOCKED);
2847         }
2848         check_page_uptodate(tree, page);
2849 err:
2850         /* FIXME, zero out newly allocated blocks on error */
2851         return err;
2852 }
2853
2854 /*
2855  * a helper for releasepage, this tests for areas of the page that
2856  * are locked or under IO and drops the related state bits if it is safe
2857  * to drop the page.
2858  */
2859 int try_release_extent_state(struct extent_map_tree *map,
2860                              struct extent_io_tree *tree, struct page *page,
2861                              gfp_t mask)
2862 {
2863         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2864         u64 end = start + PAGE_CACHE_SIZE - 1;
2865         int ret = 1;
2866
2867         if (test_range_bit(tree, start, end,
2868                            EXTENT_IOBITS, 0, NULL))
2869                 ret = 0;
2870         else {
2871                 if ((mask & GFP_NOFS) == GFP_NOFS)
2872                         mask = GFP_NOFS;
2873                 /*
2874                  * at this point we can safely clear everything except the
2875                  * locked bit and the nodatasum bit
2876                  */
2877                 ret = clear_extent_bit(tree, start, end,
2878                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
2879                                  0, 0, NULL, mask);
2880
2881                 /* if clear_extent_bit failed for enomem reasons,
2882                  * we can't allow the release to continue.
2883                  */
2884                 if (ret < 0)
2885                         ret = 0;
2886                 else
2887                         ret = 1;
2888         }
2889         return ret;
2890 }
2891
2892 /*
2893  * a helper for releasepage.  As long as there are no locked extents
2894  * in the range corresponding to the page, both state records and extent
2895  * map records are removed
2896  */
2897 int try_release_extent_mapping(struct extent_map_tree *map,
2898                                struct extent_io_tree *tree, struct page *page,
2899                                gfp_t mask)
2900 {
2901         struct extent_map *em;
2902         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2903         u64 end = start + PAGE_CACHE_SIZE - 1;
2904
2905         if ((mask & __GFP_WAIT) &&
2906             page->mapping->host->i_size > 16 * 1024 * 1024) {
2907                 u64 len;
2908                 while (start <= end) {
2909                         len = end - start + 1;
2910                         write_lock(&map->lock);
2911                         em = lookup_extent_mapping(map, start, len);
2912                         if (!em || IS_ERR(em)) {
2913                                 write_unlock(&map->lock);
2914                                 break;
2915                         }
2916                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2917                             em->start != start) {
2918                                 write_unlock(&map->lock);
2919                                 free_extent_map(em);
2920                                 break;
2921                         }
2922                         if (!test_range_bit(tree, em->start,
2923                                             extent_map_end(em) - 1,
2924                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
2925                                             0, NULL)) {
2926                                 remove_extent_mapping(map, em);
2927                                 /* once for the rb tree */
2928                                 free_extent_map(em);
2929                         }
2930                         start = extent_map_end(em);
2931                         write_unlock(&map->lock);
2932
2933                         /* once for us */
2934                         free_extent_map(em);
2935                 }
2936         }
2937         return try_release_extent_state(map, tree, page, mask);
2938 }
2939
2940 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2941                 get_extent_t *get_extent)
2942 {
2943         struct inode *inode = mapping->host;
2944         struct extent_state *cached_state = NULL;
2945         u64 start = iblock << inode->i_blkbits;
2946         sector_t sector = 0;
2947         size_t blksize = (1 << inode->i_blkbits);
2948         struct extent_map *em;
2949
2950         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2951                          0, &cached_state, GFP_NOFS);
2952         em = get_extent(inode, NULL, 0, start, blksize, 0);
2953         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start,
2954                              start + blksize - 1, &cached_state, GFP_NOFS);
2955         if (!em || IS_ERR(em))
2956                 return 0;
2957
2958         if (em->block_start > EXTENT_MAP_LAST_BYTE)
2959                 goto out;
2960
2961         sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2962 out:
2963         free_extent_map(em);
2964         return sector;
2965 }
2966
2967 /*
2968  * helper function for fiemap, which doesn't want to see any holes.
2969  * This maps until we find something past 'last'
2970  */
2971 static struct extent_map *get_extent_skip_holes(struct inode *inode,
2972                                                 u64 offset,
2973                                                 u64 last,
2974                                                 get_extent_t *get_extent)
2975 {
2976         u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
2977         struct extent_map *em;
2978         u64 len;
2979
2980         if (offset >= last)
2981                 return NULL;
2982
2983         while(1) {
2984                 len = last - offset;
2985                 if (len == 0)
2986                         break;
2987                 len = (len + sectorsize - 1) & ~(sectorsize - 1);
2988                 em = get_extent(inode, NULL, 0, offset, len, 0);
2989                 if (!em || IS_ERR(em))
2990                         return em;
2991
2992                 /* if this isn't a hole return it */
2993                 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
2994                     em->block_start != EXTENT_MAP_HOLE) {
2995                         return em;
2996                 }
2997
2998                 /* this is a hole, advance to the next extent */
2999                 offset = extent_map_end(em);
3000                 free_extent_map(em);
3001                 if (offset >= last)
3002                         break;
3003         }
3004         return NULL;
3005 }
3006
3007 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3008                 __u64 start, __u64 len, get_extent_t *get_extent)
3009 {
3010         int ret = 0;
3011         u64 off = start;
3012         u64 max = start + len;
3013         u32 flags = 0;
3014         u32 found_type;
3015         u64 last;
3016         u64 last_for_get_extent = 0;
3017         u64 disko = 0;
3018         u64 isize = i_size_read(inode);
3019         struct btrfs_key found_key;
3020         struct extent_map *em = NULL;
3021         struct extent_state *cached_state = NULL;
3022         struct btrfs_path *path;
3023         struct btrfs_file_extent_item *item;
3024         int end = 0;
3025         u64 em_start = 0;
3026         u64 em_len = 0;
3027         u64 em_end = 0;
3028         unsigned long emflags;
3029
3030         if (len == 0)
3031                 return -EINVAL;
3032
3033         path = btrfs_alloc_path();
3034         if (!path)
3035                 return -ENOMEM;
3036         path->leave_spinning = 1;
3037
3038         /*
3039          * lookup the last file extent.  We're not using i_size here
3040          * because there might be preallocation past i_size
3041          */
3042         ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3043                                        path, inode->i_ino, -1, 0);
3044         if (ret < 0) {
3045                 btrfs_free_path(path);
3046                 return ret;
3047         }
3048         WARN_ON(!ret);
3049         path->slots[0]--;
3050         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3051                               struct btrfs_file_extent_item);
3052         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3053         found_type = btrfs_key_type(&found_key);
3054
3055         /* No extents, but there might be delalloc bits */
3056         if (found_key.objectid != inode->i_ino ||
3057             found_type != BTRFS_EXTENT_DATA_KEY) {
3058                 /* have to trust i_size as the end */
3059                 last = (u64)-1;
3060                 last_for_get_extent = isize;
3061         } else {
3062                 /*
3063                  * remember the start of the last extent.  There are a
3064                  * bunch of different factors that go into the length of the
3065                  * extent, so its much less complex to remember where it started
3066                  */
3067                 last = found_key.offset;
3068                 last_for_get_extent = last + 1;
3069         }
3070         btrfs_free_path(path);
3071
3072         /*
3073          * we might have some extents allocated but more delalloc past those
3074          * extents.  so, we trust isize unless the start of the last extent is
3075          * beyond isize
3076          */
3077         if (last < isize) {
3078                 last = (u64)-1;
3079                 last_for_get_extent = isize;
3080         }
3081
3082         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3083                          &cached_state, GFP_NOFS);
3084
3085         em = get_extent_skip_holes(inode, off, last_for_get_extent,
3086                                    get_extent);
3087         if (!em)
3088                 goto out;
3089         if (IS_ERR(em)) {
3090                 ret = PTR_ERR(em);
3091                 goto out;
3092         }
3093
3094         while (!end) {
3095                 u64 offset_in_extent;
3096
3097                 /* break if the extent we found is outside the range */
3098                 if (em->start >= max || extent_map_end(em) < off)
3099                         break;
3100
3101                 /*
3102                  * get_extent may return an extent that starts before our
3103                  * requested range.  We have to make sure the ranges
3104                  * we return to fiemap always move forward and don't
3105                  * overlap, so adjust the offsets here
3106                  */
3107                 em_start = max(em->start, off);
3108
3109                 /*
3110                  * record the offset from the start of the extent
3111                  * for adjusting the disk offset below
3112                  */
3113                 offset_in_extent = em_start - em->start;
3114                 em_end = extent_map_end(em);
3115                 em_len = em_end - em_start;
3116                 emflags = em->flags;
3117                 disko = 0;
3118                 flags = 0;
3119
3120                 /*
3121                  * bump off for our next call to get_extent
3122                  */
3123                 off = extent_map_end(em);
3124                 if (off >= max)
3125                         end = 1;
3126
3127                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3128                         end = 1;
3129                         flags |= FIEMAP_EXTENT_LAST;
3130                 } else if (em->block_start == EXTENT_MAP_INLINE) {
3131                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
3132                                   FIEMAP_EXTENT_NOT_ALIGNED);
3133                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3134                         flags |= (FIEMAP_EXTENT_DELALLOC |
3135                                   FIEMAP_EXTENT_UNKNOWN);
3136                 } else {
3137                         disko = em->block_start + offset_in_extent;
3138                 }
3139                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3140                         flags |= FIEMAP_EXTENT_ENCODED;
3141
3142                 free_extent_map(em);
3143                 em = NULL;
3144                 if ((em_start >= last) || em_len == (u64)-1 ||
3145                    (last == (u64)-1 && isize <= em_end)) {
3146                         flags |= FIEMAP_EXTENT_LAST;
3147                         end = 1;
3148                 }
3149
3150                 /* now scan forward to see if this is really the last extent. */
3151                 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3152                                            get_extent);
3153                 if (IS_ERR(em)) {
3154                         ret = PTR_ERR(em);
3155                         goto out;
3156                 }
3157                 if (!em) {
3158                         flags |= FIEMAP_EXTENT_LAST;
3159                         end = 1;
3160                 }
3161                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3162                                               em_len, flags);
3163                 if (ret)
3164                         goto out_free;
3165         }
3166 out_free:
3167         free_extent_map(em);
3168 out:
3169         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3170                              &cached_state, GFP_NOFS);
3171         return ret;
3172 }
3173
3174 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
3175                                               unsigned long i)
3176 {
3177         struct page *p;
3178         struct address_space *mapping;
3179
3180         if (i == 0)
3181                 return eb->first_page;
3182         i += eb->start >> PAGE_CACHE_SHIFT;
3183         mapping = eb->first_page->mapping;
3184         if (!mapping)
3185                 return NULL;
3186
3187         /*
3188          * extent_buffer_page is only called after pinning the page
3189          * by increasing the reference count.  So we know the page must
3190          * be in the radix tree.
3191          */
3192         rcu_read_lock();
3193         p = radix_tree_lookup(&mapping->page_tree, i);
3194         rcu_read_unlock();
3195
3196         return p;
3197 }
3198
3199 static inline unsigned long num_extent_pages(u64 start, u64 len)
3200 {
3201         return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3202                 (start >> PAGE_CACHE_SHIFT);
3203 }
3204
3205 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3206                                                    u64 start,
3207                                                    unsigned long len,
3208                                                    gfp_t mask)
3209 {
3210         struct extent_buffer *eb = NULL;
3211 #if LEAK_DEBUG
3212         unsigned long flags;
3213 #endif
3214
3215         eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3216         if (eb == NULL)
3217                 return NULL;
3218         eb->start = start;
3219         eb->len = len;
3220         spin_lock_init(&eb->lock);
3221         init_waitqueue_head(&eb->lock_wq);
3222
3223 #if LEAK_DEBUG
3224         spin_lock_irqsave(&leak_lock, flags);
3225         list_add(&eb->leak_list, &buffers);
3226         spin_unlock_irqrestore(&leak_lock, flags);
3227 #endif
3228         atomic_set(&eb->refs, 1);
3229
3230         return eb;
3231 }
3232
3233 static void __free_extent_buffer(struct extent_buffer *eb)
3234 {
3235 #if LEAK_DEBUG
3236         unsigned long flags;
3237         spin_lock_irqsave(&leak_lock, flags);
3238         list_del(&eb->leak_list);
3239         spin_unlock_irqrestore(&leak_lock, flags);
3240 #endif
3241         kmem_cache_free(extent_buffer_cache, eb);
3242 }
3243
3244 /*
3245  * Helper for releasing extent buffer page.
3246  */
3247 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3248                                                 unsigned long start_idx)
3249 {
3250         unsigned long index;
3251         struct page *page;
3252
3253         if (!eb->first_page)
3254                 return;
3255
3256         index = num_extent_pages(eb->start, eb->len);
3257         if (start_idx >= index)
3258                 return;
3259
3260         do {
3261                 index--;
3262                 page = extent_buffer_page(eb, index);
3263                 if (page)
3264                         page_cache_release(page);
3265         } while (index != start_idx);
3266 }
3267
3268 /*
3269  * Helper for releasing the extent buffer.
3270  */
3271 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3272 {
3273         btrfs_release_extent_buffer_page(eb, 0);
3274         __free_extent_buffer(eb);
3275 }
3276
3277 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
3278                                           u64 start, unsigned long len,
3279                                           struct page *page0,
3280                                           gfp_t mask)
3281 {
3282         unsigned long num_pages = num_extent_pages(start, len);
3283         unsigned long i;
3284         unsigned long index = start >> PAGE_CACHE_SHIFT;
3285         struct extent_buffer *eb;
3286         struct extent_buffer *exists = NULL;
3287         struct page *p;
3288         struct address_space *mapping = tree->mapping;
3289         int uptodate = 1;
3290         int ret;
3291
3292         rcu_read_lock();
3293         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3294         if (eb && atomic_inc_not_zero(&eb->refs)) {
3295                 rcu_read_unlock();
3296                 mark_page_accessed(eb->first_page);
3297                 return eb;
3298         }
3299         rcu_read_unlock();
3300
3301         eb = __alloc_extent_buffer(tree, start, len, mask);
3302         if (!eb)
3303                 return NULL;
3304
3305         if (page0) {
3306                 eb->first_page = page0;
3307                 i = 1;
3308                 index++;
3309                 page_cache_get(page0);
3310                 mark_page_accessed(page0);
3311                 set_page_extent_mapped(page0);
3312                 set_page_extent_head(page0, len);
3313                 uptodate = PageUptodate(page0);
3314         } else {
3315                 i = 0;
3316         }
3317         for (; i < num_pages; i++, index++) {
3318                 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
3319                 if (!p) {
3320                         WARN_ON(1);
3321                         goto free_eb;
3322                 }
3323                 set_page_extent_mapped(p);
3324                 mark_page_accessed(p);
3325                 if (i == 0) {
3326                         eb->first_page = p;
3327                         set_page_extent_head(p, len);
3328                 } else {
3329                         set_page_private(p, EXTENT_PAGE_PRIVATE);
3330                 }
3331                 if (!PageUptodate(p))
3332                         uptodate = 0;
3333
3334                 /*
3335                  * see below about how we avoid a nasty race with release page
3336                  * and why we unlock later
3337                  */
3338                 if (i != 0)
3339                         unlock_page(p);
3340         }
3341         if (uptodate)
3342                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3343
3344         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
3345         if (ret)
3346                 goto free_eb;
3347
3348         spin_lock(&tree->buffer_lock);
3349         ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
3350         if (ret == -EEXIST) {
3351                 exists = radix_tree_lookup(&tree->buffer,
3352                                                 start >> PAGE_CACHE_SHIFT);
3353                 /* add one reference for the caller */
3354                 atomic_inc(&exists->refs);
3355                 spin_unlock(&tree->buffer_lock);
3356                 radix_tree_preload_end();
3357                 goto free_eb;
3358         }
3359         /* add one reference for the tree */
3360         atomic_inc(&eb->refs);
3361         spin_unlock(&tree->buffer_lock);
3362         radix_tree_preload_end();
3363
3364         /*
3365          * there is a race where release page may have
3366          * tried to find this extent buffer in the radix
3367          * but failed.  It will tell the VM it is safe to
3368          * reclaim the, and it will clear the page private bit.
3369          * We must make sure to set the page private bit properly
3370          * after the extent buffer is in the radix tree so
3371          * it doesn't get lost
3372          */
3373         set_page_extent_mapped(eb->first_page);
3374         set_page_extent_head(eb->first_page, eb->len);
3375         if (!page0)
3376                 unlock_page(eb->first_page);
3377         return eb;
3378
3379 free_eb:
3380         if (eb->first_page && !page0)
3381                 unlock_page(eb->first_page);
3382
3383         if (!atomic_dec_and_test(&eb->refs))
3384                 return exists;
3385         btrfs_release_extent_buffer(eb);
3386         return exists;
3387 }
3388
3389 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3390                                          u64 start, unsigned long len,
3391                                           gfp_t mask)
3392 {
3393         struct extent_buffer *eb;
3394
3395         rcu_read_lock();
3396         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3397         if (eb && atomic_inc_not_zero(&eb->refs)) {
3398                 rcu_read_unlock();
3399                 mark_page_accessed(eb->first_page);
3400                 return eb;
3401         }
3402         rcu_read_unlock();
3403
3404         return NULL;
3405 }
3406
3407 void free_extent_buffer(struct extent_buffer *eb)
3408 {
3409         if (!eb)
3410                 return;
3411
3412         if (!atomic_dec_and_test(&eb->refs))
3413                 return;
3414
3415         WARN_ON(1);
3416 }
3417
3418 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3419                               struct extent_buffer *eb)
3420 {
3421         unsigned long i;
3422         unsigned long num_pages;
3423         struct page *page;
3424
3425         num_pages = num_extent_pages(eb->start, eb->len);
3426
3427         for (i = 0; i < num_pages; i++) {
3428                 page = extent_buffer_page(eb, i);
3429                 if (!PageDirty(page))
3430                         continue;
3431
3432                 lock_page(page);
3433                 WARN_ON(!PagePrivate(page));
3434
3435                 set_page_extent_mapped(page);
3436                 if (i == 0)
3437                         set_page_extent_head(page, eb->len);
3438
3439                 clear_page_dirty_for_io(page);
3440                 spin_lock_irq(&page->mapping->tree_lock);
3441                 if (!PageDirty(page)) {
3442                         radix_tree_tag_clear(&page->mapping->page_tree,
3443                                                 page_index(page),
3444                                                 PAGECACHE_TAG_DIRTY);
3445                 }
3446                 spin_unlock_irq(&page->mapping->tree_lock);
3447                 unlock_page(page);
3448         }
3449         return 0;
3450 }
3451
3452 int wait_on_extent_buffer_writeback(struct extent_io_tree *tree,
3453                                     struct extent_buffer *eb)
3454 {
3455         return wait_on_extent_writeback(tree, eb->start,
3456                                         eb->start + eb->len - 1);
3457 }
3458
3459 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3460                              struct extent_buffer *eb)
3461 {
3462         unsigned long i;
3463         unsigned long num_pages;
3464         int was_dirty = 0;
3465
3466         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3467         num_pages = num_extent_pages(eb->start, eb->len);
3468         for (i = 0; i < num_pages; i++)
3469                 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3470         return was_dirty;
3471 }
3472
3473 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3474                                 struct extent_buffer *eb,
3475                                 struct extent_state **cached_state)
3476 {
3477         unsigned long i;
3478         struct page *page;
3479         unsigned long num_pages;
3480
3481         num_pages = num_extent_pages(eb->start, eb->len);
3482         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3483
3484         clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3485                               cached_state, GFP_NOFS);
3486         for (i = 0; i < num_pages; i++) {
3487                 page = extent_buffer_page(eb, i);
3488                 if (page)
3489                         ClearPageUptodate(page);
3490         }
3491         return 0;
3492 }
3493
3494 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3495                                 struct extent_buffer *eb)
3496 {
3497         unsigned long i;
3498         struct page *page;
3499         unsigned long num_pages;
3500
3501         num_pages = num_extent_pages(eb->start, eb->len);
3502
3503         set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3504                             NULL, GFP_NOFS);
3505         for (i = 0; i < num_pages; i++) {
3506                 page = extent_buffer_page(eb, i);
3507                 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3508                     ((i == num_pages - 1) &&
3509                      ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3510                         check_page_uptodate(tree, page);
3511                         continue;
3512                 }
3513                 SetPageUptodate(page);
3514         }
3515         return 0;
3516 }
3517
3518 int extent_range_uptodate(struct extent_io_tree *tree,
3519                           u64 start, u64 end)
3520 {
3521         struct page *page;
3522         int ret;
3523         int pg_uptodate = 1;
3524         int uptodate;
3525         unsigned long index;
3526
3527         ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL);
3528         if (ret)
3529                 return 1;
3530         while (start <= end) {
3531                 index = start >> PAGE_CACHE_SHIFT;
3532                 page = find_get_page(tree->mapping, index);
3533                 uptodate = PageUptodate(page);
3534                 page_cache_release(page);
3535                 if (!uptodate) {
3536                         pg_uptodate = 0;
3537                         break;
3538                 }
3539                 start += PAGE_CACHE_SIZE;
3540         }
3541         return pg_uptodate;
3542 }
3543
3544 int extent_buffer_uptodate(struct extent_io_tree *tree,
3545                            struct extent_buffer *eb,
3546                            struct extent_state *cached_state)
3547 {
3548         int ret = 0;
3549         unsigned long num_pages;
3550         unsigned long i;
3551         struct page *page;
3552         int pg_uptodate = 1;
3553
3554         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3555                 return 1;
3556
3557         ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3558                            EXTENT_UPTODATE, 1, cached_state);
3559         if (ret)
3560                 return ret;
3561
3562         num_pages = num_extent_pages(eb->start, eb->len);
3563         for (i = 0; i < num_pages; i++) {
3564                 page = extent_buffer_page(eb, i);
3565                 if (!PageUptodate(page)) {
3566                         pg_uptodate = 0;
3567                         break;
3568                 }
3569         }
3570         return pg_uptodate;
3571 }
3572
3573 int read_extent_buffer_pages(struct extent_io_tree *tree,
3574                              struct extent_buffer *eb,
3575                              u64 start, int wait,
3576                              get_extent_t *get_extent, int mirror_num)
3577 {
3578         unsigned long i;
3579         unsigned long start_i;
3580         struct page *page;
3581         int err;
3582         int ret = 0;
3583         int locked_pages = 0;
3584         int all_uptodate = 1;
3585         int inc_all_pages = 0;
3586         unsigned long num_pages;
3587         struct bio *bio = NULL;
3588         unsigned long bio_flags = 0;
3589
3590         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3591                 return 0;
3592
3593         if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3594                            EXTENT_UPTODATE, 1, NULL)) {
3595                 return 0;
3596         }
3597
3598         if (start) {
3599                 WARN_ON(start < eb->start);
3600                 start_i = (start >> PAGE_CACHE_SHIFT) -
3601                         (eb->start >> PAGE_CACHE_SHIFT);
3602         } else {
3603                 start_i = 0;
3604         }
3605
3606         num_pages = num_extent_pages(eb->start, eb->len);
3607         for (i = start_i; i < num_pages; i++) {
3608                 page = extent_buffer_page(eb, i);
3609                 if (!wait) {
3610                         if (!trylock_page(page))
3611                                 goto unlock_exit;
3612                 } else {
3613                         lock_page(page);
3614                 }
3615                 locked_pages++;
3616                 if (!PageUptodate(page))
3617                         all_uptodate = 0;
3618         }
3619         if (all_uptodate) {
3620                 if (start_i == 0)
3621                         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3622                 goto unlock_exit;
3623         }
3624
3625         for (i = start_i; i < num_pages; i++) {
3626                 page = extent_buffer_page(eb, i);
3627
3628                 WARN_ON(!PagePrivate(page));
3629
3630                 set_page_extent_mapped(page);
3631                 if (i == 0)
3632                         set_page_extent_head(page, eb->len);
3633
3634                 if (inc_all_pages)
3635                         page_cache_get(page);
3636                 if (!PageUptodate(page)) {
3637                         if (start_i == 0)
3638                                 inc_all_pages = 1;
3639                         ClearPageError(page);
3640                         err = __extent_read_full_page(tree, page,
3641                                                       get_extent, &bio,
3642                                                       mirror_num, &bio_flags);
3643                         if (err)
3644                                 ret = err;
3645                 } else {
3646                         unlock_page(page);
3647                 }
3648         }
3649
3650         if (bio)
3651                 submit_one_bio(READ, bio, mirror_num, bio_flags);
3652
3653         if (ret || !wait)
3654                 return ret;
3655
3656         for (i = start_i; i < num_pages; i++) {
3657                 page = extent_buffer_page(eb, i);
3658                 wait_on_page_locked(page);
3659                 if (!PageUptodate(page))
3660                         ret = -EIO;
3661         }
3662
3663         if (!ret)
3664                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3665         return ret;
3666
3667 unlock_exit:
3668         i = start_i;
3669         while (locked_pages > 0) {
3670                 page = extent_buffer_page(eb, i);
3671                 i++;
3672                 unlock_page(page);
3673                 locked_pages--;
3674         }
3675         return ret;
3676 }
3677
3678 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
3679                         unsigned long start,
3680                         unsigned long len)
3681 {
3682         size_t cur;
3683         size_t offset;
3684         struct page *page;
3685         char *kaddr;
3686         char *dst = (char *)dstv;
3687         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3688         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3689
3690         WARN_ON(start > eb->len);
3691         WARN_ON(start + len > eb->start + eb->len);
3692
3693         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3694
3695         while (len > 0) {
3696                 page = extent_buffer_page(eb, i);
3697
3698                 cur = min(len, (PAGE_CACHE_SIZE - offset));
3699                 kaddr = kmap_atomic(page, KM_USER1);
3700                 memcpy(dst, kaddr + offset, cur);
3701                 kunmap_atomic(kaddr, KM_USER1);
3702
3703                 dst += cur;
3704                 len -= cur;
3705                 offset = 0;
3706                 i++;
3707         }
3708 }
3709
3710 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3711                                unsigned long min_len, char **token, char **map,
3712                                unsigned long *map_start,
3713                                unsigned long *map_len, int km)
3714 {
3715         size_t offset = start & (PAGE_CACHE_SIZE - 1);
3716         char *kaddr;
3717         struct page *p;
3718         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3719         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3720         unsigned long end_i = (start_offset + start + min_len - 1) >>
3721                 PAGE_CACHE_SHIFT;
3722
3723         if (i != end_i)
3724                 return -EINVAL;
3725
3726         if (i == 0) {
3727                 offset = start_offset;
3728                 *map_start = 0;
3729         } else {
3730                 offset = 0;
3731                 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3732         }
3733
3734         if (start + min_len > eb->len) {
3735                 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
3736                        "wanted %lu %lu\n", (unsigned long long)eb->start,
3737                        eb->len, start, min_len);
3738                 WARN_ON(1);
3739                 return -EINVAL;
3740         }
3741
3742         p = extent_buffer_page(eb, i);
3743         kaddr = kmap_atomic(p, km);
3744         *token = kaddr;
3745         *map = kaddr + offset;
3746         *map_len = PAGE_CACHE_SIZE - offset;
3747         return 0;
3748 }
3749
3750 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
3751                       unsigned long min_len,
3752                       char **token, char **map,
3753                       unsigned long *map_start,
3754                       unsigned long *map_len, int km)
3755 {
3756         int err;
3757         int save = 0;
3758         if (eb->map_token) {
3759                 unmap_extent_buffer(eb, eb->map_token, km);
3760                 eb->map_token = NULL;
3761                 save = 1;
3762         }
3763         err = map_private_extent_buffer(eb, start, min_len, token, map,
3764                                        map_start, map_len, km);
3765         if (!err && save) {
3766                 eb->map_token = *token;
3767                 eb->kaddr = *map;
3768                 eb->map_start = *map_start;
3769                 eb->map_len = *map_len;
3770         }
3771         return err;
3772 }
3773
3774 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
3775 {
3776         kunmap_atomic(token, km);
3777 }
3778
3779 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3780                           unsigned long start,
3781                           unsigned long len)
3782 {
3783         size_t cur;
3784         size_t offset;
3785         struct page *page;
3786         char *kaddr;
3787         char *ptr = (char *)ptrv;
3788         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3789         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3790         int ret = 0;
3791
3792         WARN_ON(start > eb->len);
3793         WARN_ON(start + len > eb->start + eb->len);
3794
3795         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3796
3797         while (len > 0) {
3798                 page = extent_buffer_page(eb, i);
3799
3800                 cur = min(len, (PAGE_CACHE_SIZE - offset));
3801
3802                 kaddr = kmap_atomic(page, KM_USER0);
3803                 ret = memcmp(ptr, kaddr + offset, cur);
3804                 kunmap_atomic(kaddr, KM_USER0);
3805                 if (ret)
3806                         break;
3807
3808                 ptr += cur;
3809                 len -= cur;
3810                 offset = 0;
3811                 i++;
3812         }
3813         return ret;
3814 }
3815
3816 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3817                          unsigned long start, unsigned long len)
3818 {
3819         size_t cur;
3820         size_t offset;
3821         struct page *page;
3822         char *kaddr;
3823         char *src = (char *)srcv;
3824         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3825         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3826
3827         WARN_ON(start > eb->len);
3828         WARN_ON(start + len > eb->start + eb->len);
3829
3830         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3831
3832         while (len > 0) {
3833                 page = extent_buffer_page(eb, i);
3834                 WARN_ON(!PageUptodate(page));
3835
3836                 cur = min(len, PAGE_CACHE_SIZE - offset);
3837                 kaddr = kmap_atomic(page, KM_USER1);
3838                 memcpy(kaddr + offset, src, cur);
3839                 kunmap_atomic(kaddr, KM_USER1);
3840
3841                 src += cur;
3842                 len -= cur;
3843                 offset = 0;
3844                 i++;
3845         }
3846 }
3847
3848 void memset_extent_buffer(struct extent_buffer *eb, char c,
3849                           unsigned long start, unsigned long len)
3850 {
3851         size_t cur;
3852         size_t offset;
3853         struct page *page;
3854         char *kaddr;
3855         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3856         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3857
3858         WARN_ON(start > eb->len);
3859         WARN_ON(start + len > eb->start + eb->len);
3860
3861         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3862
3863         while (len > 0) {
3864                 page = extent_buffer_page(eb, i);
3865                 WARN_ON(!PageUptodate(page));
3866
3867                 cur = min(len, PAGE_CACHE_SIZE - offset);
3868                 kaddr = kmap_atomic(page, KM_USER0);
3869                 memset(kaddr + offset, c, cur);
3870                 kunmap_atomic(kaddr, KM_USER0);
3871
3872                 len -= cur;
3873                 offset = 0;
3874                 i++;
3875         }
3876 }
3877
3878 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3879                         unsigned long dst_offset, unsigned long src_offset,
3880                         unsigned long len)
3881 {
3882         u64 dst_len = dst->len;
3883         size_t cur;
3884         size_t offset;
3885         struct page *page;
3886         char *kaddr;
3887         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3888         unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3889
3890         WARN_ON(src->len != dst_len);
3891
3892         offset = (start_offset + dst_offset) &
3893                 ((unsigned long)PAGE_CACHE_SIZE - 1);
3894
3895         while (len > 0) {
3896                 page = extent_buffer_page(dst, i);
3897                 WARN_ON(!PageUptodate(page));
3898
3899                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3900
3901                 kaddr = kmap_atomic(page, KM_USER0);
3902                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3903                 kunmap_atomic(kaddr, KM_USER0);
3904
3905                 src_offset += cur;
3906                 len -= cur;
3907                 offset = 0;
3908                 i++;
3909         }
3910 }
3911
3912 static void move_pages(struct page *dst_page, struct page *src_page,
3913                        unsigned long dst_off, unsigned long src_off,
3914                        unsigned long len)
3915 {
3916         char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3917         if (dst_page == src_page) {
3918                 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3919         } else {
3920                 char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3921                 char *p = dst_kaddr + dst_off + len;
3922                 char *s = src_kaddr + src_off + len;
3923
3924                 while (len--)
3925                         *--p = *--s;
3926
3927                 kunmap_atomic(src_kaddr, KM_USER1);
3928         }
3929         kunmap_atomic(dst_kaddr, KM_USER0);
3930 }
3931
3932 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
3933 {
3934         unsigned long distance = (src > dst) ? src - dst : dst - src;
3935         return distance < len;
3936 }
3937
3938 static void copy_pages(struct page *dst_page, struct page *src_page,
3939                        unsigned long dst_off, unsigned long src_off,
3940                        unsigned long len)
3941 {
3942         char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3943         char *src_kaddr;
3944
3945         if (dst_page != src_page) {
3946                 src_kaddr = kmap_atomic(src_page, KM_USER1);
3947         } else {
3948                 src_kaddr = dst_kaddr;
3949                 BUG_ON(areas_overlap(src_off, dst_off, len));
3950         }
3951
3952         memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3953         kunmap_atomic(dst_kaddr, KM_USER0);
3954         if (dst_page != src_page)
3955                 kunmap_atomic(src_kaddr, KM_USER1);
3956 }
3957
3958 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3959                            unsigned long src_offset, unsigned long len)
3960 {
3961         size_t cur;
3962         size_t dst_off_in_page;
3963         size_t src_off_in_page;
3964         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3965         unsigned long dst_i;
3966         unsigned long src_i;
3967
3968         if (src_offset + len > dst->len) {
3969                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3970                        "len %lu dst len %lu\n", src_offset, len, dst->len);
3971                 BUG_ON(1);
3972         }
3973         if (dst_offset + len > dst->len) {
3974                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3975                        "len %lu dst len %lu\n", dst_offset, len, dst->len);
3976                 BUG_ON(1);
3977         }
3978
3979         while (len > 0) {
3980                 dst_off_in_page = (start_offset + dst_offset) &
3981                         ((unsigned long)PAGE_CACHE_SIZE - 1);
3982                 src_off_in_page = (start_offset + src_offset) &
3983                         ((unsigned long)PAGE_CACHE_SIZE - 1);
3984
3985                 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3986                 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3987
3988                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3989                                                src_off_in_page));
3990                 cur = min_t(unsigned long, cur,
3991                         (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3992
3993                 copy_pages(extent_buffer_page(dst, dst_i),
3994                            extent_buffer_page(dst, src_i),
3995                            dst_off_in_page, src_off_in_page, cur);
3996
3997                 src_offset += cur;
3998                 dst_offset += cur;
3999                 len -= cur;
4000         }
4001 }
4002
4003 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4004                            unsigned long src_offset, unsigned long len)
4005 {
4006         size_t cur;
4007         size_t dst_off_in_page;
4008         size_t src_off_in_page;
4009         unsigned long dst_end = dst_offset + len - 1;
4010         unsigned long src_end = src_offset + len - 1;
4011         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4012         unsigned long dst_i;
4013         unsigned long src_i;
4014
4015         if (src_offset + len > dst->len) {
4016                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4017                        "len %lu len %lu\n", src_offset, len, dst->len);
4018                 BUG_ON(1);
4019         }
4020         if (dst_offset + len > dst->len) {
4021                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4022                        "len %lu len %lu\n", dst_offset, len, dst->len);
4023                 BUG_ON(1);
4024         }
4025         if (!areas_overlap(src_offset, dst_offset, len)) {
4026                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4027                 return;
4028         }
4029         while (len > 0) {
4030                 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4031                 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4032
4033                 dst_off_in_page = (start_offset + dst_end) &
4034                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4035                 src_off_in_page = (start_offset + src_end) &
4036                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4037
4038                 cur = min_t(unsigned long, len, src_off_in_page + 1);
4039                 cur = min(cur, dst_off_in_page + 1);
4040                 move_pages(extent_buffer_page(dst, dst_i),
4041                            extent_buffer_page(dst, src_i),
4042                            dst_off_in_page - cur + 1,
4043                            src_off_in_page - cur + 1, cur);
4044
4045                 dst_end -= cur;
4046                 src_end -= cur;
4047                 len -= cur;
4048         }
4049 }
4050
4051 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4052 {
4053         struct extent_buffer *eb =
4054                         container_of(head, struct extent_buffer, rcu_head);
4055
4056         btrfs_release_extent_buffer(eb);
4057 }
4058
4059 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
4060 {
4061         u64 start = page_offset(page);
4062         struct extent_buffer *eb;
4063         int ret = 1;
4064
4065         spin_lock(&tree->buffer_lock);
4066         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4067         if (!eb) {
4068                 spin_unlock(&tree->buffer_lock);
4069                 return ret;
4070         }
4071
4072         if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4073                 ret = 0;
4074                 goto out;
4075         }
4076
4077         /*
4078          * set @eb->refs to 0 if it is already 1, and then release the @eb.
4079          * Or go back.
4080          */
4081         if (atomic_cmpxchg(&eb->refs, 1, 0) != 1) {
4082                 ret = 0;
4083                 goto out;
4084         }
4085
4086         radix_tree_delete(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4087 out:
4088         spin_unlock(&tree->buffer_lock);
4089
4090         /* at this point we can safely release the extent buffer */
4091         if (atomic_read(&eb->refs) == 0)
4092                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4093         return ret;
4094 }