Btrfs: rework allocation clustering
[pandora-kernel.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include "compat.h"
30 #include "crc32c.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "volumes.h"
36 #include "print-tree.h"
37 #include "async-thread.h"
38 #include "locking.h"
39 #include "ref-cache.h"
40 #include "tree-log.h"
41 #include "free-space-cache.h"
42
43 static struct extent_io_ops btree_extent_io_ops;
44 static void end_workqueue_fn(struct btrfs_work *work);
45
46 /*
47  * end_io_wq structs are used to do processing in task context when an IO is
48  * complete.  This is used during reads to verify checksums, and it is used
49  * by writes to insert metadata for new file extents after IO is complete.
50  */
51 struct end_io_wq {
52         struct bio *bio;
53         bio_end_io_t *end_io;
54         void *private;
55         struct btrfs_fs_info *info;
56         int error;
57         int metadata;
58         struct list_head list;
59         struct btrfs_work work;
60 };
61
62 /*
63  * async submit bios are used to offload expensive checksumming
64  * onto the worker threads.  They checksum file and metadata bios
65  * just before they are sent down the IO stack.
66  */
67 struct async_submit_bio {
68         struct inode *inode;
69         struct bio *bio;
70         struct list_head list;
71         extent_submit_bio_hook_t *submit_bio_start;
72         extent_submit_bio_hook_t *submit_bio_done;
73         int rw;
74         int mirror_num;
75         unsigned long bio_flags;
76         struct btrfs_work work;
77 };
78
79 /* These are used to set the lockdep class on the extent buffer locks.
80  * The class is set by the readpage_end_io_hook after the buffer has
81  * passed csum validation but before the pages are unlocked.
82  *
83  * The lockdep class is also set by btrfs_init_new_buffer on freshly
84  * allocated blocks.
85  *
86  * The class is based on the level in the tree block, which allows lockdep
87  * to know that lower nodes nest inside the locks of higher nodes.
88  *
89  * We also add a check to make sure the highest level of the tree is
90  * the same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this
91  * code needs update as well.
92  */
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94 # if BTRFS_MAX_LEVEL != 8
95 #  error
96 # endif
97 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
98 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
99         /* leaf */
100         "btrfs-extent-00",
101         "btrfs-extent-01",
102         "btrfs-extent-02",
103         "btrfs-extent-03",
104         "btrfs-extent-04",
105         "btrfs-extent-05",
106         "btrfs-extent-06",
107         "btrfs-extent-07",
108         /* highest possible level */
109         "btrfs-extent-08",
110 };
111 #endif
112
113 /*
114  * extents on the btree inode are pretty simple, there's one extent
115  * that covers the entire device
116  */
117 static struct extent_map *btree_get_extent(struct inode *inode,
118                 struct page *page, size_t page_offset, u64 start, u64 len,
119                 int create)
120 {
121         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
122         struct extent_map *em;
123         int ret;
124
125         spin_lock(&em_tree->lock);
126         em = lookup_extent_mapping(em_tree, start, len);
127         if (em) {
128                 em->bdev =
129                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
130                 spin_unlock(&em_tree->lock);
131                 goto out;
132         }
133         spin_unlock(&em_tree->lock);
134
135         em = alloc_extent_map(GFP_NOFS);
136         if (!em) {
137                 em = ERR_PTR(-ENOMEM);
138                 goto out;
139         }
140         em->start = 0;
141         em->len = (u64)-1;
142         em->block_len = (u64)-1;
143         em->block_start = 0;
144         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
145
146         spin_lock(&em_tree->lock);
147         ret = add_extent_mapping(em_tree, em);
148         if (ret == -EEXIST) {
149                 u64 failed_start = em->start;
150                 u64 failed_len = em->len;
151
152                 free_extent_map(em);
153                 em = lookup_extent_mapping(em_tree, start, len);
154                 if (em) {
155                         ret = 0;
156                 } else {
157                         em = lookup_extent_mapping(em_tree, failed_start,
158                                                    failed_len);
159                         ret = -EIO;
160                 }
161         } else if (ret) {
162                 free_extent_map(em);
163                 em = NULL;
164         }
165         spin_unlock(&em_tree->lock);
166
167         if (ret)
168                 em = ERR_PTR(ret);
169 out:
170         return em;
171 }
172
173 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
174 {
175         return btrfs_crc32c(seed, data, len);
176 }
177
178 void btrfs_csum_final(u32 crc, char *result)
179 {
180         *(__le32 *)result = ~cpu_to_le32(crc);
181 }
182
183 /*
184  * compute the csum for a btree block, and either verify it or write it
185  * into the csum field of the block.
186  */
187 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
188                            int verify)
189 {
190         u16 csum_size =
191                 btrfs_super_csum_size(&root->fs_info->super_copy);
192         char *result = NULL;
193         unsigned long len;
194         unsigned long cur_len;
195         unsigned long offset = BTRFS_CSUM_SIZE;
196         char *map_token = NULL;
197         char *kaddr;
198         unsigned long map_start;
199         unsigned long map_len;
200         int err;
201         u32 crc = ~(u32)0;
202         unsigned long inline_result;
203
204         len = buf->len - offset;
205         while (len > 0) {
206                 err = map_private_extent_buffer(buf, offset, 32,
207                                         &map_token, &kaddr,
208                                         &map_start, &map_len, KM_USER0);
209                 if (err)
210                         return 1;
211                 cur_len = min(len, map_len - (offset - map_start));
212                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
213                                       crc, cur_len);
214                 len -= cur_len;
215                 offset += cur_len;
216                 unmap_extent_buffer(buf, map_token, KM_USER0);
217         }
218         if (csum_size > sizeof(inline_result)) {
219                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
220                 if (!result)
221                         return 1;
222         } else {
223                 result = (char *)&inline_result;
224         }
225
226         btrfs_csum_final(crc, result);
227
228         if (verify) {
229                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
230                         u32 val;
231                         u32 found = 0;
232                         memcpy(&found, result, csum_size);
233
234                         read_extent_buffer(buf, &val, 0, csum_size);
235                         printk(KERN_INFO "btrfs: %s checksum verify failed "
236                                "on %llu wanted %X found %X level %d\n",
237                                root->fs_info->sb->s_id,
238                                buf->start, val, found, btrfs_header_level(buf));
239                         if (result != (char *)&inline_result)
240                                 kfree(result);
241                         return 1;
242                 }
243         } else {
244                 write_extent_buffer(buf, result, 0, csum_size);
245         }
246         if (result != (char *)&inline_result)
247                 kfree(result);
248         return 0;
249 }
250
251 /*
252  * we can't consider a given block up to date unless the transid of the
253  * block matches the transid in the parent node's pointer.  This is how we
254  * detect blocks that either didn't get written at all or got written
255  * in the wrong place.
256  */
257 static int verify_parent_transid(struct extent_io_tree *io_tree,
258                                  struct extent_buffer *eb, u64 parent_transid)
259 {
260         int ret;
261
262         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
263                 return 0;
264
265         lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
266         if (extent_buffer_uptodate(io_tree, eb) &&
267             btrfs_header_generation(eb) == parent_transid) {
268                 ret = 0;
269                 goto out;
270         }
271         printk("parent transid verify failed on %llu wanted %llu found %llu\n",
272                (unsigned long long)eb->start,
273                (unsigned long long)parent_transid,
274                (unsigned long long)btrfs_header_generation(eb));
275         ret = 1;
276         clear_extent_buffer_uptodate(io_tree, eb);
277 out:
278         unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
279                       GFP_NOFS);
280         return ret;
281 }
282
283 /*
284  * helper to read a given tree block, doing retries as required when
285  * the checksums don't match and we have alternate mirrors to try.
286  */
287 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
288                                           struct extent_buffer *eb,
289                                           u64 start, u64 parent_transid)
290 {
291         struct extent_io_tree *io_tree;
292         int ret;
293         int num_copies = 0;
294         int mirror_num = 0;
295
296         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
297         while (1) {
298                 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
299                                                btree_get_extent, mirror_num);
300                 if (!ret &&
301                     !verify_parent_transid(io_tree, eb, parent_transid))
302                         return ret;
303
304                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
305                                               eb->start, eb->len);
306                 if (num_copies == 1)
307                         return ret;
308
309                 mirror_num++;
310                 if (mirror_num > num_copies)
311                         return ret;
312         }
313         return -EIO;
314 }
315
316 /*
317  * checksum a dirty tree block before IO.  This has extra checks to make sure
318  * we only fill in the checksum field in the first page of a multi-page block
319  */
320
321 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
322 {
323         struct extent_io_tree *tree;
324         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
325         u64 found_start;
326         int found_level;
327         unsigned long len;
328         struct extent_buffer *eb;
329         int ret;
330
331         tree = &BTRFS_I(page->mapping->host)->io_tree;
332
333         if (page->private == EXTENT_PAGE_PRIVATE)
334                 goto out;
335         if (!page->private)
336                 goto out;
337         len = page->private >> 2;
338         WARN_ON(len == 0);
339
340         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
341         ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
342                                              btrfs_header_generation(eb));
343         BUG_ON(ret);
344         found_start = btrfs_header_bytenr(eb);
345         if (found_start != start) {
346                 WARN_ON(1);
347                 goto err;
348         }
349         if (eb->first_page != page) {
350                 WARN_ON(1);
351                 goto err;
352         }
353         if (!PageUptodate(page)) {
354                 WARN_ON(1);
355                 goto err;
356         }
357         found_level = btrfs_header_level(eb);
358
359         csum_tree_block(root, eb, 0);
360 err:
361         free_extent_buffer(eb);
362 out:
363         return 0;
364 }
365
366 static int check_tree_block_fsid(struct btrfs_root *root,
367                                  struct extent_buffer *eb)
368 {
369         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
370         u8 fsid[BTRFS_UUID_SIZE];
371         int ret = 1;
372
373         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
374                            BTRFS_FSID_SIZE);
375         while (fs_devices) {
376                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
377                         ret = 0;
378                         break;
379                 }
380                 fs_devices = fs_devices->seed;
381         }
382         return ret;
383 }
384
385 #ifdef CONFIG_DEBUG_LOCK_ALLOC
386 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
387 {
388         lockdep_set_class_and_name(&eb->lock,
389                            &btrfs_eb_class[level],
390                            btrfs_eb_name[level]);
391 }
392 #endif
393
394 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
395                                struct extent_state *state)
396 {
397         struct extent_io_tree *tree;
398         u64 found_start;
399         int found_level;
400         unsigned long len;
401         struct extent_buffer *eb;
402         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
403         int ret = 0;
404
405         tree = &BTRFS_I(page->mapping->host)->io_tree;
406         if (page->private == EXTENT_PAGE_PRIVATE)
407                 goto out;
408         if (!page->private)
409                 goto out;
410
411         len = page->private >> 2;
412         WARN_ON(len == 0);
413
414         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
415
416         found_start = btrfs_header_bytenr(eb);
417         if (found_start != start) {
418                 printk(KERN_INFO "btrfs bad tree block start %llu %llu\n",
419                        (unsigned long long)found_start,
420                        (unsigned long long)eb->start);
421                 ret = -EIO;
422                 goto err;
423         }
424         if (eb->first_page != page) {
425                 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
426                        eb->first_page->index, page->index);
427                 WARN_ON(1);
428                 ret = -EIO;
429                 goto err;
430         }
431         if (check_tree_block_fsid(root, eb)) {
432                 printk(KERN_INFO "btrfs bad fsid on block %llu\n",
433                        (unsigned long long)eb->start);
434                 ret = -EIO;
435                 goto err;
436         }
437         found_level = btrfs_header_level(eb);
438
439         btrfs_set_buffer_lockdep_class(eb, found_level);
440
441         ret = csum_tree_block(root, eb, 1);
442         if (ret)
443                 ret = -EIO;
444
445         end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
446         end = eb->start + end - 1;
447 err:
448         free_extent_buffer(eb);
449 out:
450         return ret;
451 }
452
453 static void end_workqueue_bio(struct bio *bio, int err)
454 {
455         struct end_io_wq *end_io_wq = bio->bi_private;
456         struct btrfs_fs_info *fs_info;
457
458         fs_info = end_io_wq->info;
459         end_io_wq->error = err;
460         end_io_wq->work.func = end_workqueue_fn;
461         end_io_wq->work.flags = 0;
462
463         if (bio->bi_rw & (1 << BIO_RW)) {
464                 if (end_io_wq->metadata)
465                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
466                                            &end_io_wq->work);
467                 else
468                         btrfs_queue_worker(&fs_info->endio_write_workers,
469                                            &end_io_wq->work);
470         } else {
471                 if (end_io_wq->metadata)
472                         btrfs_queue_worker(&fs_info->endio_meta_workers,
473                                            &end_io_wq->work);
474                 else
475                         btrfs_queue_worker(&fs_info->endio_workers,
476                                            &end_io_wq->work);
477         }
478 }
479
480 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
481                         int metadata)
482 {
483         struct end_io_wq *end_io_wq;
484         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
485         if (!end_io_wq)
486                 return -ENOMEM;
487
488         end_io_wq->private = bio->bi_private;
489         end_io_wq->end_io = bio->bi_end_io;
490         end_io_wq->info = info;
491         end_io_wq->error = 0;
492         end_io_wq->bio = bio;
493         end_io_wq->metadata = metadata;
494
495         bio->bi_private = end_io_wq;
496         bio->bi_end_io = end_workqueue_bio;
497         return 0;
498 }
499
500 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
501 {
502         unsigned long limit = min_t(unsigned long,
503                                     info->workers.max_workers,
504                                     info->fs_devices->open_devices);
505         return 256 * limit;
506 }
507
508 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
509 {
510         return atomic_read(&info->nr_async_bios) >
511                 btrfs_async_submit_limit(info);
512 }
513
514 static void run_one_async_start(struct btrfs_work *work)
515 {
516         struct btrfs_fs_info *fs_info;
517         struct async_submit_bio *async;
518
519         async = container_of(work, struct  async_submit_bio, work);
520         fs_info = BTRFS_I(async->inode)->root->fs_info;
521         async->submit_bio_start(async->inode, async->rw, async->bio,
522                                async->mirror_num, async->bio_flags);
523 }
524
525 static void run_one_async_done(struct btrfs_work *work)
526 {
527         struct btrfs_fs_info *fs_info;
528         struct async_submit_bio *async;
529         int limit;
530
531         async = container_of(work, struct  async_submit_bio, work);
532         fs_info = BTRFS_I(async->inode)->root->fs_info;
533
534         limit = btrfs_async_submit_limit(fs_info);
535         limit = limit * 2 / 3;
536
537         atomic_dec(&fs_info->nr_async_submits);
538
539         if (atomic_read(&fs_info->nr_async_submits) < limit &&
540             waitqueue_active(&fs_info->async_submit_wait))
541                 wake_up(&fs_info->async_submit_wait);
542
543         async->submit_bio_done(async->inode, async->rw, async->bio,
544                                async->mirror_num, async->bio_flags);
545 }
546
547 static void run_one_async_free(struct btrfs_work *work)
548 {
549         struct async_submit_bio *async;
550
551         async = container_of(work, struct  async_submit_bio, work);
552         kfree(async);
553 }
554
555 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
556                         int rw, struct bio *bio, int mirror_num,
557                         unsigned long bio_flags,
558                         extent_submit_bio_hook_t *submit_bio_start,
559                         extent_submit_bio_hook_t *submit_bio_done)
560 {
561         struct async_submit_bio *async;
562
563         async = kmalloc(sizeof(*async), GFP_NOFS);
564         if (!async)
565                 return -ENOMEM;
566
567         async->inode = inode;
568         async->rw = rw;
569         async->bio = bio;
570         async->mirror_num = mirror_num;
571         async->submit_bio_start = submit_bio_start;
572         async->submit_bio_done = submit_bio_done;
573
574         async->work.func = run_one_async_start;
575         async->work.ordered_func = run_one_async_done;
576         async->work.ordered_free = run_one_async_free;
577
578         async->work.flags = 0;
579         async->bio_flags = bio_flags;
580
581         atomic_inc(&fs_info->nr_async_submits);
582         btrfs_queue_worker(&fs_info->workers, &async->work);
583 #if 0
584         int limit = btrfs_async_submit_limit(fs_info);
585         if (atomic_read(&fs_info->nr_async_submits) > limit) {
586                 wait_event_timeout(fs_info->async_submit_wait,
587                            (atomic_read(&fs_info->nr_async_submits) < limit),
588                            HZ/10);
589
590                 wait_event_timeout(fs_info->async_submit_wait,
591                            (atomic_read(&fs_info->nr_async_bios) < limit),
592                            HZ/10);
593         }
594 #endif
595         while (atomic_read(&fs_info->async_submit_draining) &&
596               atomic_read(&fs_info->nr_async_submits)) {
597                 wait_event(fs_info->async_submit_wait,
598                            (atomic_read(&fs_info->nr_async_submits) == 0));
599         }
600
601         return 0;
602 }
603
604 static int btree_csum_one_bio(struct bio *bio)
605 {
606         struct bio_vec *bvec = bio->bi_io_vec;
607         int bio_index = 0;
608         struct btrfs_root *root;
609
610         WARN_ON(bio->bi_vcnt <= 0);
611         while (bio_index < bio->bi_vcnt) {
612                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
613                 csum_dirty_buffer(root, bvec->bv_page);
614                 bio_index++;
615                 bvec++;
616         }
617         return 0;
618 }
619
620 static int __btree_submit_bio_start(struct inode *inode, int rw,
621                                     struct bio *bio, int mirror_num,
622                                     unsigned long bio_flags)
623 {
624         /*
625          * when we're called for a write, we're already in the async
626          * submission context.  Just jump into btrfs_map_bio
627          */
628         btree_csum_one_bio(bio);
629         return 0;
630 }
631
632 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
633                                  int mirror_num, unsigned long bio_flags)
634 {
635         /*
636          * when we're called for a write, we're already in the async
637          * submission context.  Just jump into btrfs_map_bio
638          */
639         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
640 }
641
642 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
643                                  int mirror_num, unsigned long bio_flags)
644 {
645         int ret;
646
647         ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
648                                           bio, 1);
649         BUG_ON(ret);
650
651         if (!(rw & (1 << BIO_RW))) {
652                 /*
653                  * called for a read, do the setup so that checksum validation
654                  * can happen in the async kernel threads
655                  */
656                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
657                                      mirror_num, 0);
658         }
659         /*
660          * kthread helpers are used to submit writes so that checksumming
661          * can happen in parallel across all CPUs
662          */
663         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
664                                    inode, rw, bio, mirror_num, 0,
665                                    __btree_submit_bio_start,
666                                    __btree_submit_bio_done);
667 }
668
669 static int btree_writepage(struct page *page, struct writeback_control *wbc)
670 {
671         struct extent_io_tree *tree;
672         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
673         struct extent_buffer *eb;
674         int was_dirty;
675
676         tree = &BTRFS_I(page->mapping->host)->io_tree;
677         if (!(current->flags & PF_MEMALLOC)) {
678                 return extent_write_full_page(tree, page,
679                                               btree_get_extent, wbc);
680         }
681
682         redirty_page_for_writepage(wbc, page);
683         eb = btrfs_find_tree_block(root, page_offset(page),
684                                       PAGE_CACHE_SIZE);
685         WARN_ON(!eb);
686
687         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
688         if (!was_dirty) {
689                 spin_lock(&root->fs_info->delalloc_lock);
690                 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
691                 spin_unlock(&root->fs_info->delalloc_lock);
692         }
693         free_extent_buffer(eb);
694
695         unlock_page(page);
696         return 0;
697 }
698
699 static int btree_writepages(struct address_space *mapping,
700                             struct writeback_control *wbc)
701 {
702         struct extent_io_tree *tree;
703         tree = &BTRFS_I(mapping->host)->io_tree;
704         if (wbc->sync_mode == WB_SYNC_NONE) {
705                 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
706                 u64 num_dirty;
707                 unsigned long thresh = 32 * 1024 * 1024;
708
709                 if (wbc->for_kupdate)
710                         return 0;
711
712                 /* this is a bit racy, but that's ok */
713                 num_dirty = root->fs_info->dirty_metadata_bytes;
714                 if (num_dirty < thresh)
715                         return 0;
716         }
717         return extent_writepages(tree, mapping, btree_get_extent, wbc);
718 }
719
720 static int btree_readpage(struct file *file, struct page *page)
721 {
722         struct extent_io_tree *tree;
723         tree = &BTRFS_I(page->mapping->host)->io_tree;
724         return extent_read_full_page(tree, page, btree_get_extent);
725 }
726
727 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
728 {
729         struct extent_io_tree *tree;
730         struct extent_map_tree *map;
731         int ret;
732
733         if (PageWriteback(page) || PageDirty(page))
734                 return 0;
735
736         tree = &BTRFS_I(page->mapping->host)->io_tree;
737         map = &BTRFS_I(page->mapping->host)->extent_tree;
738
739         ret = try_release_extent_state(map, tree, page, gfp_flags);
740         if (!ret)
741                 return 0;
742
743         ret = try_release_extent_buffer(tree, page);
744         if (ret == 1) {
745                 ClearPagePrivate(page);
746                 set_page_private(page, 0);
747                 page_cache_release(page);
748         }
749
750         return ret;
751 }
752
753 static void btree_invalidatepage(struct page *page, unsigned long offset)
754 {
755         struct extent_io_tree *tree;
756         tree = &BTRFS_I(page->mapping->host)->io_tree;
757         extent_invalidatepage(tree, page, offset);
758         btree_releasepage(page, GFP_NOFS);
759         if (PagePrivate(page)) {
760                 printk(KERN_WARNING "btrfs warning page private not zero "
761                        "on page %llu\n", (unsigned long long)page_offset(page));
762                 ClearPagePrivate(page);
763                 set_page_private(page, 0);
764                 page_cache_release(page);
765         }
766 }
767
768 #if 0
769 static int btree_writepage(struct page *page, struct writeback_control *wbc)
770 {
771         struct buffer_head *bh;
772         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
773         struct buffer_head *head;
774         if (!page_has_buffers(page)) {
775                 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
776                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
777         }
778         head = page_buffers(page);
779         bh = head;
780         do {
781                 if (buffer_dirty(bh))
782                         csum_tree_block(root, bh, 0);
783                 bh = bh->b_this_page;
784         } while (bh != head);
785         return block_write_full_page(page, btree_get_block, wbc);
786 }
787 #endif
788
789 static struct address_space_operations btree_aops = {
790         .readpage       = btree_readpage,
791         .writepage      = btree_writepage,
792         .writepages     = btree_writepages,
793         .releasepage    = btree_releasepage,
794         .invalidatepage = btree_invalidatepage,
795         .sync_page      = block_sync_page,
796 };
797
798 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
799                          u64 parent_transid)
800 {
801         struct extent_buffer *buf = NULL;
802         struct inode *btree_inode = root->fs_info->btree_inode;
803         int ret = 0;
804
805         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
806         if (!buf)
807                 return 0;
808         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
809                                  buf, 0, 0, btree_get_extent, 0);
810         free_extent_buffer(buf);
811         return ret;
812 }
813
814 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
815                                             u64 bytenr, u32 blocksize)
816 {
817         struct inode *btree_inode = root->fs_info->btree_inode;
818         struct extent_buffer *eb;
819         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
820                                 bytenr, blocksize, GFP_NOFS);
821         return eb;
822 }
823
824 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
825                                                  u64 bytenr, u32 blocksize)
826 {
827         struct inode *btree_inode = root->fs_info->btree_inode;
828         struct extent_buffer *eb;
829
830         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
831                                  bytenr, blocksize, NULL, GFP_NOFS);
832         return eb;
833 }
834
835
836 int btrfs_write_tree_block(struct extent_buffer *buf)
837 {
838         return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
839                                       buf->start + buf->len - 1, WB_SYNC_ALL);
840 }
841
842 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
843 {
844         return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
845                                   buf->start, buf->start + buf->len - 1);
846 }
847
848 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
849                                       u32 blocksize, u64 parent_transid)
850 {
851         struct extent_buffer *buf = NULL;
852         struct inode *btree_inode = root->fs_info->btree_inode;
853         struct extent_io_tree *io_tree;
854         int ret;
855
856         io_tree = &BTRFS_I(btree_inode)->io_tree;
857
858         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
859         if (!buf)
860                 return NULL;
861
862         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
863
864         if (ret == 0)
865                 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
866         else
867                 WARN_ON(1);
868         return buf;
869
870 }
871
872 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
873                      struct extent_buffer *buf)
874 {
875         struct inode *btree_inode = root->fs_info->btree_inode;
876         if (btrfs_header_generation(buf) ==
877             root->fs_info->running_transaction->transid) {
878                 btrfs_assert_tree_locked(buf);
879
880                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
881                         spin_lock(&root->fs_info->delalloc_lock);
882                         if (root->fs_info->dirty_metadata_bytes >= buf->len)
883                                 root->fs_info->dirty_metadata_bytes -= buf->len;
884                         else
885                                 WARN_ON(1);
886                         spin_unlock(&root->fs_info->delalloc_lock);
887                 }
888
889                 /* ugh, clear_extent_buffer_dirty needs to lock the page */
890                 btrfs_set_lock_blocking(buf);
891                 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
892                                           buf);
893         }
894         return 0;
895 }
896
897 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
898                         u32 stripesize, struct btrfs_root *root,
899                         struct btrfs_fs_info *fs_info,
900                         u64 objectid)
901 {
902         root->node = NULL;
903         root->commit_root = NULL;
904         root->ref_tree = NULL;
905         root->sectorsize = sectorsize;
906         root->nodesize = nodesize;
907         root->leafsize = leafsize;
908         root->stripesize = stripesize;
909         root->ref_cows = 0;
910         root->track_dirty = 0;
911
912         root->fs_info = fs_info;
913         root->objectid = objectid;
914         root->last_trans = 0;
915         root->highest_inode = 0;
916         root->last_inode_alloc = 0;
917         root->name = NULL;
918         root->in_sysfs = 0;
919
920         INIT_LIST_HEAD(&root->dirty_list);
921         INIT_LIST_HEAD(&root->orphan_list);
922         INIT_LIST_HEAD(&root->dead_list);
923         spin_lock_init(&root->node_lock);
924         spin_lock_init(&root->list_lock);
925         mutex_init(&root->objectid_mutex);
926         mutex_init(&root->log_mutex);
927         init_waitqueue_head(&root->log_writer_wait);
928         init_waitqueue_head(&root->log_commit_wait[0]);
929         init_waitqueue_head(&root->log_commit_wait[1]);
930         atomic_set(&root->log_commit[0], 0);
931         atomic_set(&root->log_commit[1], 0);
932         atomic_set(&root->log_writers, 0);
933         root->log_batch = 0;
934         root->log_transid = 0;
935         extent_io_tree_init(&root->dirty_log_pages,
936                              fs_info->btree_inode->i_mapping, GFP_NOFS);
937
938         btrfs_leaf_ref_tree_init(&root->ref_tree_struct);
939         root->ref_tree = &root->ref_tree_struct;
940
941         memset(&root->root_key, 0, sizeof(root->root_key));
942         memset(&root->root_item, 0, sizeof(root->root_item));
943         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
944         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
945         root->defrag_trans_start = fs_info->generation;
946         init_completion(&root->kobj_unregister);
947         root->defrag_running = 0;
948         root->defrag_level = 0;
949         root->root_key.objectid = objectid;
950         root->anon_super.s_root = NULL;
951         root->anon_super.s_dev = 0;
952         INIT_LIST_HEAD(&root->anon_super.s_list);
953         INIT_LIST_HEAD(&root->anon_super.s_instances);
954         init_rwsem(&root->anon_super.s_umount);
955
956         return 0;
957 }
958
959 static int find_and_setup_root(struct btrfs_root *tree_root,
960                                struct btrfs_fs_info *fs_info,
961                                u64 objectid,
962                                struct btrfs_root *root)
963 {
964         int ret;
965         u32 blocksize;
966         u64 generation;
967
968         __setup_root(tree_root->nodesize, tree_root->leafsize,
969                      tree_root->sectorsize, tree_root->stripesize,
970                      root, fs_info, objectid);
971         ret = btrfs_find_last_root(tree_root, objectid,
972                                    &root->root_item, &root->root_key);
973         BUG_ON(ret);
974
975         generation = btrfs_root_generation(&root->root_item);
976         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
977         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
978                                      blocksize, generation);
979         BUG_ON(!root->node);
980         return 0;
981 }
982
983 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
984                              struct btrfs_fs_info *fs_info)
985 {
986         struct extent_buffer *eb;
987         struct btrfs_root *log_root_tree = fs_info->log_root_tree;
988         u64 start = 0;
989         u64 end = 0;
990         int ret;
991
992         if (!log_root_tree)
993                 return 0;
994
995         while (1) {
996                 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
997                                     0, &start, &end, EXTENT_DIRTY);
998                 if (ret)
999                         break;
1000
1001                 clear_extent_dirty(&log_root_tree->dirty_log_pages,
1002                                    start, end, GFP_NOFS);
1003         }
1004         eb = fs_info->log_root_tree->node;
1005
1006         WARN_ON(btrfs_header_level(eb) != 0);
1007         WARN_ON(btrfs_header_nritems(eb) != 0);
1008
1009         ret = btrfs_free_reserved_extent(fs_info->tree_root,
1010                                 eb->start, eb->len);
1011         BUG_ON(ret);
1012
1013         free_extent_buffer(eb);
1014         kfree(fs_info->log_root_tree);
1015         fs_info->log_root_tree = NULL;
1016         return 0;
1017 }
1018
1019 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1020                                          struct btrfs_fs_info *fs_info)
1021 {
1022         struct btrfs_root *root;
1023         struct btrfs_root *tree_root = fs_info->tree_root;
1024         struct extent_buffer *leaf;
1025
1026         root = kzalloc(sizeof(*root), GFP_NOFS);
1027         if (!root)
1028                 return ERR_PTR(-ENOMEM);
1029
1030         __setup_root(tree_root->nodesize, tree_root->leafsize,
1031                      tree_root->sectorsize, tree_root->stripesize,
1032                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1033
1034         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1035         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1036         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1037         /*
1038          * log trees do not get reference counted because they go away
1039          * before a real commit is actually done.  They do store pointers
1040          * to file data extents, and those reference counts still get
1041          * updated (along with back refs to the log tree).
1042          */
1043         root->ref_cows = 0;
1044
1045         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1046                                       0, BTRFS_TREE_LOG_OBJECTID,
1047                                       trans->transid, 0, 0, 0);
1048         if (IS_ERR(leaf)) {
1049                 kfree(root);
1050                 return ERR_CAST(leaf);
1051         }
1052
1053         root->node = leaf;
1054         btrfs_set_header_nritems(root->node, 0);
1055         btrfs_set_header_level(root->node, 0);
1056         btrfs_set_header_bytenr(root->node, root->node->start);
1057         btrfs_set_header_generation(root->node, trans->transid);
1058         btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID);
1059
1060         write_extent_buffer(root->node, root->fs_info->fsid,
1061                             (unsigned long)btrfs_header_fsid(root->node),
1062                             BTRFS_FSID_SIZE);
1063         btrfs_mark_buffer_dirty(root->node);
1064         btrfs_tree_unlock(root->node);
1065         return root;
1066 }
1067
1068 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1069                              struct btrfs_fs_info *fs_info)
1070 {
1071         struct btrfs_root *log_root;
1072
1073         log_root = alloc_log_tree(trans, fs_info);
1074         if (IS_ERR(log_root))
1075                 return PTR_ERR(log_root);
1076         WARN_ON(fs_info->log_root_tree);
1077         fs_info->log_root_tree = log_root;
1078         return 0;
1079 }
1080
1081 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1082                        struct btrfs_root *root)
1083 {
1084         struct btrfs_root *log_root;
1085         struct btrfs_inode_item *inode_item;
1086
1087         log_root = alloc_log_tree(trans, root->fs_info);
1088         if (IS_ERR(log_root))
1089                 return PTR_ERR(log_root);
1090
1091         log_root->last_trans = trans->transid;
1092         log_root->root_key.offset = root->root_key.objectid;
1093
1094         inode_item = &log_root->root_item.inode;
1095         inode_item->generation = cpu_to_le64(1);
1096         inode_item->size = cpu_to_le64(3);
1097         inode_item->nlink = cpu_to_le32(1);
1098         inode_item->nbytes = cpu_to_le64(root->leafsize);
1099         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1100
1101         btrfs_set_root_bytenr(&log_root->root_item, log_root->node->start);
1102         btrfs_set_root_generation(&log_root->root_item, trans->transid);
1103
1104         WARN_ON(root->log_root);
1105         root->log_root = log_root;
1106         root->log_transid = 0;
1107         return 0;
1108 }
1109
1110 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1111                                                struct btrfs_key *location)
1112 {
1113         struct btrfs_root *root;
1114         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1115         struct btrfs_path *path;
1116         struct extent_buffer *l;
1117         u64 highest_inode;
1118         u64 generation;
1119         u32 blocksize;
1120         int ret = 0;
1121
1122         root = kzalloc(sizeof(*root), GFP_NOFS);
1123         if (!root)
1124                 return ERR_PTR(-ENOMEM);
1125         if (location->offset == (u64)-1) {
1126                 ret = find_and_setup_root(tree_root, fs_info,
1127                                           location->objectid, root);
1128                 if (ret) {
1129                         kfree(root);
1130                         return ERR_PTR(ret);
1131                 }
1132                 goto insert;
1133         }
1134
1135         __setup_root(tree_root->nodesize, tree_root->leafsize,
1136                      tree_root->sectorsize, tree_root->stripesize,
1137                      root, fs_info, location->objectid);
1138
1139         path = btrfs_alloc_path();
1140         BUG_ON(!path);
1141         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1142         if (ret != 0) {
1143                 if (ret > 0)
1144                         ret = -ENOENT;
1145                 goto out;
1146         }
1147         l = path->nodes[0];
1148         read_extent_buffer(l, &root->root_item,
1149                btrfs_item_ptr_offset(l, path->slots[0]),
1150                sizeof(root->root_item));
1151         memcpy(&root->root_key, location, sizeof(*location));
1152         ret = 0;
1153 out:
1154         btrfs_release_path(root, path);
1155         btrfs_free_path(path);
1156         if (ret) {
1157                 kfree(root);
1158                 return ERR_PTR(ret);
1159         }
1160         generation = btrfs_root_generation(&root->root_item);
1161         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1162         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1163                                      blocksize, generation);
1164         BUG_ON(!root->node);
1165 insert:
1166         if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1167                 root->ref_cows = 1;
1168                 ret = btrfs_find_highest_inode(root, &highest_inode);
1169                 if (ret == 0) {
1170                         root->highest_inode = highest_inode;
1171                         root->last_inode_alloc = highest_inode;
1172                 }
1173         }
1174         return root;
1175 }
1176
1177 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1178                                         u64 root_objectid)
1179 {
1180         struct btrfs_root *root;
1181
1182         if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1183                 return fs_info->tree_root;
1184         if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1185                 return fs_info->extent_root;
1186
1187         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1188                                  (unsigned long)root_objectid);
1189         return root;
1190 }
1191
1192 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1193                                               struct btrfs_key *location)
1194 {
1195         struct btrfs_root *root;
1196         int ret;
1197
1198         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1199                 return fs_info->tree_root;
1200         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1201                 return fs_info->extent_root;
1202         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1203                 return fs_info->chunk_root;
1204         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1205                 return fs_info->dev_root;
1206         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1207                 return fs_info->csum_root;
1208
1209         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1210                                  (unsigned long)location->objectid);
1211         if (root)
1212                 return root;
1213
1214         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1215         if (IS_ERR(root))
1216                 return root;
1217
1218         set_anon_super(&root->anon_super, NULL);
1219
1220         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1221                                 (unsigned long)root->root_key.objectid,
1222                                 root);
1223         if (ret) {
1224                 free_extent_buffer(root->node);
1225                 kfree(root);
1226                 return ERR_PTR(ret);
1227         }
1228         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
1229                 ret = btrfs_find_dead_roots(fs_info->tree_root,
1230                                             root->root_key.objectid, root);
1231                 BUG_ON(ret);
1232                 btrfs_orphan_cleanup(root);
1233         }
1234         return root;
1235 }
1236
1237 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1238                                       struct btrfs_key *location,
1239                                       const char *name, int namelen)
1240 {
1241         struct btrfs_root *root;
1242         int ret;
1243
1244         root = btrfs_read_fs_root_no_name(fs_info, location);
1245         if (!root)
1246                 return NULL;
1247
1248         if (root->in_sysfs)
1249                 return root;
1250
1251         ret = btrfs_set_root_name(root, name, namelen);
1252         if (ret) {
1253                 free_extent_buffer(root->node);
1254                 kfree(root);
1255                 return ERR_PTR(ret);
1256         }
1257 #if 0
1258         ret = btrfs_sysfs_add_root(root);
1259         if (ret) {
1260                 free_extent_buffer(root->node);
1261                 kfree(root->name);
1262                 kfree(root);
1263                 return ERR_PTR(ret);
1264         }
1265 #endif
1266         root->in_sysfs = 1;
1267         return root;
1268 }
1269
1270 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1271 {
1272         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1273         int ret = 0;
1274         struct btrfs_device *device;
1275         struct backing_dev_info *bdi;
1276 #if 0
1277         if ((bdi_bits & (1 << BDI_write_congested)) &&
1278             btrfs_congested_async(info, 0))
1279                 return 1;
1280 #endif
1281         list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1282                 if (!device->bdev)
1283                         continue;
1284                 bdi = blk_get_backing_dev_info(device->bdev);
1285                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1286                         ret = 1;
1287                         break;
1288                 }
1289         }
1290         return ret;
1291 }
1292
1293 /*
1294  * this unplugs every device on the box, and it is only used when page
1295  * is null
1296  */
1297 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1298 {
1299         struct btrfs_device *device;
1300         struct btrfs_fs_info *info;
1301
1302         info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1303         list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1304                 if (!device->bdev)
1305                         continue;
1306
1307                 bdi = blk_get_backing_dev_info(device->bdev);
1308                 if (bdi->unplug_io_fn)
1309                         bdi->unplug_io_fn(bdi, page);
1310         }
1311 }
1312
1313 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1314 {
1315         struct inode *inode;
1316         struct extent_map_tree *em_tree;
1317         struct extent_map *em;
1318         struct address_space *mapping;
1319         u64 offset;
1320
1321         /* the generic O_DIRECT read code does this */
1322         if (1 || !page) {
1323                 __unplug_io_fn(bdi, page);
1324                 return;
1325         }
1326
1327         /*
1328          * page->mapping may change at any time.  Get a consistent copy
1329          * and use that for everything below
1330          */
1331         smp_mb();
1332         mapping = page->mapping;
1333         if (!mapping)
1334                 return;
1335
1336         inode = mapping->host;
1337
1338         /*
1339          * don't do the expensive searching for a small number of
1340          * devices
1341          */
1342         if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1343                 __unplug_io_fn(bdi, page);
1344                 return;
1345         }
1346
1347         offset = page_offset(page);
1348
1349         em_tree = &BTRFS_I(inode)->extent_tree;
1350         spin_lock(&em_tree->lock);
1351         em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1352         spin_unlock(&em_tree->lock);
1353         if (!em) {
1354                 __unplug_io_fn(bdi, page);
1355                 return;
1356         }
1357
1358         if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1359                 free_extent_map(em);
1360                 __unplug_io_fn(bdi, page);
1361                 return;
1362         }
1363         offset = offset - em->start;
1364         btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1365                           em->block_start + offset, page);
1366         free_extent_map(em);
1367 }
1368
1369 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1370 {
1371         bdi_init(bdi);
1372         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1373         bdi->state              = 0;
1374         bdi->capabilities       = default_backing_dev_info.capabilities;
1375         bdi->unplug_io_fn       = btrfs_unplug_io_fn;
1376         bdi->unplug_io_data     = info;
1377         bdi->congested_fn       = btrfs_congested_fn;
1378         bdi->congested_data     = info;
1379         return 0;
1380 }
1381
1382 static int bio_ready_for_csum(struct bio *bio)
1383 {
1384         u64 length = 0;
1385         u64 buf_len = 0;
1386         u64 start = 0;
1387         struct page *page;
1388         struct extent_io_tree *io_tree = NULL;
1389         struct btrfs_fs_info *info = NULL;
1390         struct bio_vec *bvec;
1391         int i;
1392         int ret;
1393
1394         bio_for_each_segment(bvec, bio, i) {
1395                 page = bvec->bv_page;
1396                 if (page->private == EXTENT_PAGE_PRIVATE) {
1397                         length += bvec->bv_len;
1398                         continue;
1399                 }
1400                 if (!page->private) {
1401                         length += bvec->bv_len;
1402                         continue;
1403                 }
1404                 length = bvec->bv_len;
1405                 buf_len = page->private >> 2;
1406                 start = page_offset(page) + bvec->bv_offset;
1407                 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1408                 info = BTRFS_I(page->mapping->host)->root->fs_info;
1409         }
1410         /* are we fully contained in this bio? */
1411         if (buf_len <= length)
1412                 return 1;
1413
1414         ret = extent_range_uptodate(io_tree, start + length,
1415                                     start + buf_len - 1);
1416         if (ret == 1)
1417                 return ret;
1418         return ret;
1419 }
1420
1421 /*
1422  * called by the kthread helper functions to finally call the bio end_io
1423  * functions.  This is where read checksum verification actually happens
1424  */
1425 static void end_workqueue_fn(struct btrfs_work *work)
1426 {
1427         struct bio *bio;
1428         struct end_io_wq *end_io_wq;
1429         struct btrfs_fs_info *fs_info;
1430         int error;
1431
1432         end_io_wq = container_of(work, struct end_io_wq, work);
1433         bio = end_io_wq->bio;
1434         fs_info = end_io_wq->info;
1435
1436         /* metadata bio reads are special because the whole tree block must
1437          * be checksummed at once.  This makes sure the entire block is in
1438          * ram and up to date before trying to verify things.  For
1439          * blocksize <= pagesize, it is basically a noop
1440          */
1441         if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
1442             !bio_ready_for_csum(bio)) {
1443                 btrfs_queue_worker(&fs_info->endio_meta_workers,
1444                                    &end_io_wq->work);
1445                 return;
1446         }
1447         error = end_io_wq->error;
1448         bio->bi_private = end_io_wq->private;
1449         bio->bi_end_io = end_io_wq->end_io;
1450         kfree(end_io_wq);
1451         bio_endio(bio, error);
1452 }
1453
1454 static int cleaner_kthread(void *arg)
1455 {
1456         struct btrfs_root *root = arg;
1457
1458         do {
1459                 smp_mb();
1460                 if (root->fs_info->closing)
1461                         break;
1462
1463                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1464                 mutex_lock(&root->fs_info->cleaner_mutex);
1465                 btrfs_clean_old_snapshots(root);
1466                 mutex_unlock(&root->fs_info->cleaner_mutex);
1467
1468                 if (freezing(current)) {
1469                         refrigerator();
1470                 } else {
1471                         smp_mb();
1472                         if (root->fs_info->closing)
1473                                 break;
1474                         set_current_state(TASK_INTERRUPTIBLE);
1475                         schedule();
1476                         __set_current_state(TASK_RUNNING);
1477                 }
1478         } while (!kthread_should_stop());
1479         return 0;
1480 }
1481
1482 static int transaction_kthread(void *arg)
1483 {
1484         struct btrfs_root *root = arg;
1485         struct btrfs_trans_handle *trans;
1486         struct btrfs_transaction *cur;
1487         unsigned long now;
1488         unsigned long delay;
1489         int ret;
1490
1491         do {
1492                 smp_mb();
1493                 if (root->fs_info->closing)
1494                         break;
1495
1496                 delay = HZ * 30;
1497                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1498                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1499
1500                 mutex_lock(&root->fs_info->trans_mutex);
1501                 cur = root->fs_info->running_transaction;
1502                 if (!cur) {
1503                         mutex_unlock(&root->fs_info->trans_mutex);
1504                         goto sleep;
1505                 }
1506
1507                 now = get_seconds();
1508                 if (now < cur->start_time || now - cur->start_time < 30) {
1509                         mutex_unlock(&root->fs_info->trans_mutex);
1510                         delay = HZ * 5;
1511                         goto sleep;
1512                 }
1513                 mutex_unlock(&root->fs_info->trans_mutex);
1514                 trans = btrfs_start_transaction(root, 1);
1515                 ret = btrfs_commit_transaction(trans, root);
1516
1517 sleep:
1518                 wake_up_process(root->fs_info->cleaner_kthread);
1519                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1520
1521                 if (freezing(current)) {
1522                         refrigerator();
1523                 } else {
1524                         if (root->fs_info->closing)
1525                                 break;
1526                         set_current_state(TASK_INTERRUPTIBLE);
1527                         schedule_timeout(delay);
1528                         __set_current_state(TASK_RUNNING);
1529                 }
1530         } while (!kthread_should_stop());
1531         return 0;
1532 }
1533
1534 struct btrfs_root *open_ctree(struct super_block *sb,
1535                               struct btrfs_fs_devices *fs_devices,
1536                               char *options)
1537 {
1538         u32 sectorsize;
1539         u32 nodesize;
1540         u32 leafsize;
1541         u32 blocksize;
1542         u32 stripesize;
1543         u64 generation;
1544         u64 features;
1545         struct btrfs_key location;
1546         struct buffer_head *bh;
1547         struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1548                                                  GFP_NOFS);
1549         struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1550                                                  GFP_NOFS);
1551         struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1552                                                GFP_NOFS);
1553         struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1554                                                 GFP_NOFS);
1555         struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1556                                                 GFP_NOFS);
1557         struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1558                                               GFP_NOFS);
1559         struct btrfs_root *log_tree_root;
1560
1561         int ret;
1562         int err = -EINVAL;
1563
1564         struct btrfs_super_block *disk_super;
1565
1566         if (!extent_root || !tree_root || !fs_info ||
1567             !chunk_root || !dev_root || !csum_root) {
1568                 err = -ENOMEM;
1569                 goto fail;
1570         }
1571         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1572         INIT_LIST_HEAD(&fs_info->trans_list);
1573         INIT_LIST_HEAD(&fs_info->dead_roots);
1574         INIT_LIST_HEAD(&fs_info->hashers);
1575         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1576         INIT_LIST_HEAD(&fs_info->ordered_operations);
1577         spin_lock_init(&fs_info->delalloc_lock);
1578         spin_lock_init(&fs_info->new_trans_lock);
1579         spin_lock_init(&fs_info->ref_cache_lock);
1580
1581         init_completion(&fs_info->kobj_unregister);
1582         fs_info->tree_root = tree_root;
1583         fs_info->extent_root = extent_root;
1584         fs_info->csum_root = csum_root;
1585         fs_info->chunk_root = chunk_root;
1586         fs_info->dev_root = dev_root;
1587         fs_info->fs_devices = fs_devices;
1588         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1589         INIT_LIST_HEAD(&fs_info->space_info);
1590         btrfs_mapping_init(&fs_info->mapping_tree);
1591         atomic_set(&fs_info->nr_async_submits, 0);
1592         atomic_set(&fs_info->async_delalloc_pages, 0);
1593         atomic_set(&fs_info->async_submit_draining, 0);
1594         atomic_set(&fs_info->nr_async_bios, 0);
1595         atomic_set(&fs_info->throttles, 0);
1596         atomic_set(&fs_info->throttle_gen, 0);
1597         fs_info->sb = sb;
1598         fs_info->max_extent = (u64)-1;
1599         fs_info->max_inline = 8192 * 1024;
1600         setup_bdi(fs_info, &fs_info->bdi);
1601         fs_info->btree_inode = new_inode(sb);
1602         fs_info->btree_inode->i_ino = 1;
1603         fs_info->btree_inode->i_nlink = 1;
1604
1605         fs_info->thread_pool_size = min_t(unsigned long,
1606                                           num_online_cpus() + 2, 8);
1607
1608         INIT_LIST_HEAD(&fs_info->ordered_extents);
1609         spin_lock_init(&fs_info->ordered_extent_lock);
1610
1611         sb->s_blocksize = 4096;
1612         sb->s_blocksize_bits = blksize_bits(4096);
1613
1614         /*
1615          * we set the i_size on the btree inode to the max possible int.
1616          * the real end of the address space is determined by all of
1617          * the devices in the system
1618          */
1619         fs_info->btree_inode->i_size = OFFSET_MAX;
1620         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1621         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1622
1623         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1624                              fs_info->btree_inode->i_mapping,
1625                              GFP_NOFS);
1626         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1627                              GFP_NOFS);
1628
1629         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1630
1631         spin_lock_init(&fs_info->block_group_cache_lock);
1632         fs_info->block_group_cache_tree.rb_node = NULL;
1633
1634         extent_io_tree_init(&fs_info->pinned_extents,
1635                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1636         fs_info->do_barriers = 1;
1637
1638         INIT_LIST_HEAD(&fs_info->dead_reloc_roots);
1639         btrfs_leaf_ref_tree_init(&fs_info->reloc_ref_tree);
1640         btrfs_leaf_ref_tree_init(&fs_info->shared_ref_tree);
1641
1642         BTRFS_I(fs_info->btree_inode)->root = tree_root;
1643         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1644                sizeof(struct btrfs_key));
1645         insert_inode_hash(fs_info->btree_inode);
1646
1647         mutex_init(&fs_info->trans_mutex);
1648         mutex_init(&fs_info->ordered_operations_mutex);
1649         mutex_init(&fs_info->tree_log_mutex);
1650         mutex_init(&fs_info->drop_mutex);
1651         mutex_init(&fs_info->chunk_mutex);
1652         mutex_init(&fs_info->transaction_kthread_mutex);
1653         mutex_init(&fs_info->cleaner_mutex);
1654         mutex_init(&fs_info->volume_mutex);
1655         mutex_init(&fs_info->tree_reloc_mutex);
1656
1657         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1658         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1659
1660         init_waitqueue_head(&fs_info->transaction_throttle);
1661         init_waitqueue_head(&fs_info->transaction_wait);
1662         init_waitqueue_head(&fs_info->async_submit_wait);
1663
1664         __setup_root(4096, 4096, 4096, 4096, tree_root,
1665                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
1666
1667
1668         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1669         if (!bh)
1670                 goto fail_iput;
1671
1672         memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1673         memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1674                sizeof(fs_info->super_for_commit));
1675         brelse(bh);
1676
1677         memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1678
1679         disk_super = &fs_info->super_copy;
1680         if (!btrfs_super_root(disk_super))
1681                 goto fail_iput;
1682
1683         ret = btrfs_parse_options(tree_root, options);
1684         if (ret) {
1685                 err = ret;
1686                 goto fail_iput;
1687         }
1688
1689         features = btrfs_super_incompat_flags(disk_super) &
1690                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
1691         if (features) {
1692                 printk(KERN_ERR "BTRFS: couldn't mount because of "
1693                        "unsupported optional features (%Lx).\n",
1694                        features);
1695                 err = -EINVAL;
1696                 goto fail_iput;
1697         }
1698
1699         features = btrfs_super_compat_ro_flags(disk_super) &
1700                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
1701         if (!(sb->s_flags & MS_RDONLY) && features) {
1702                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1703                        "unsupported option features (%Lx).\n",
1704                        features);
1705                 err = -EINVAL;
1706                 goto fail_iput;
1707         }
1708
1709         /*
1710          * we need to start all the end_io workers up front because the
1711          * queue work function gets called at interrupt time, and so it
1712          * cannot dynamically grow.
1713          */
1714         btrfs_init_workers(&fs_info->workers, "worker",
1715                            fs_info->thread_pool_size);
1716
1717         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1718                            fs_info->thread_pool_size);
1719
1720         btrfs_init_workers(&fs_info->submit_workers, "submit",
1721                            min_t(u64, fs_devices->num_devices,
1722                            fs_info->thread_pool_size));
1723
1724         /* a higher idle thresh on the submit workers makes it much more
1725          * likely that bios will be send down in a sane order to the
1726          * devices
1727          */
1728         fs_info->submit_workers.idle_thresh = 64;
1729
1730         fs_info->workers.idle_thresh = 16;
1731         fs_info->workers.ordered = 1;
1732
1733         fs_info->delalloc_workers.idle_thresh = 2;
1734         fs_info->delalloc_workers.ordered = 1;
1735
1736         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
1737         btrfs_init_workers(&fs_info->endio_workers, "endio",
1738                            fs_info->thread_pool_size);
1739         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1740                            fs_info->thread_pool_size);
1741         btrfs_init_workers(&fs_info->endio_meta_write_workers,
1742                            "endio-meta-write", fs_info->thread_pool_size);
1743         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1744                            fs_info->thread_pool_size);
1745
1746         /*
1747          * endios are largely parallel and should have a very
1748          * low idle thresh
1749          */
1750         fs_info->endio_workers.idle_thresh = 4;
1751         fs_info->endio_meta_workers.idle_thresh = 4;
1752
1753         fs_info->endio_write_workers.idle_thresh = 64;
1754         fs_info->endio_meta_write_workers.idle_thresh = 64;
1755
1756         btrfs_start_workers(&fs_info->workers, 1);
1757         btrfs_start_workers(&fs_info->submit_workers, 1);
1758         btrfs_start_workers(&fs_info->delalloc_workers, 1);
1759         btrfs_start_workers(&fs_info->fixup_workers, 1);
1760         btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1761         btrfs_start_workers(&fs_info->endio_meta_workers,
1762                             fs_info->thread_pool_size);
1763         btrfs_start_workers(&fs_info->endio_meta_write_workers,
1764                             fs_info->thread_pool_size);
1765         btrfs_start_workers(&fs_info->endio_write_workers,
1766                             fs_info->thread_pool_size);
1767
1768         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1769         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1770                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1771
1772         nodesize = btrfs_super_nodesize(disk_super);
1773         leafsize = btrfs_super_leafsize(disk_super);
1774         sectorsize = btrfs_super_sectorsize(disk_super);
1775         stripesize = btrfs_super_stripesize(disk_super);
1776         tree_root->nodesize = nodesize;
1777         tree_root->leafsize = leafsize;
1778         tree_root->sectorsize = sectorsize;
1779         tree_root->stripesize = stripesize;
1780
1781         sb->s_blocksize = sectorsize;
1782         sb->s_blocksize_bits = blksize_bits(sectorsize);
1783
1784         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1785                     sizeof(disk_super->magic))) {
1786                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1787                 goto fail_sb_buffer;
1788         }
1789
1790         mutex_lock(&fs_info->chunk_mutex);
1791         ret = btrfs_read_sys_array(tree_root);
1792         mutex_unlock(&fs_info->chunk_mutex);
1793         if (ret) {
1794                 printk(KERN_WARNING "btrfs: failed to read the system "
1795                        "array on %s\n", sb->s_id);
1796                 goto fail_sys_array;
1797         }
1798
1799         blocksize = btrfs_level_size(tree_root,
1800                                      btrfs_super_chunk_root_level(disk_super));
1801         generation = btrfs_super_chunk_root_generation(disk_super);
1802
1803         __setup_root(nodesize, leafsize, sectorsize, stripesize,
1804                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1805
1806         chunk_root->node = read_tree_block(chunk_root,
1807                                            btrfs_super_chunk_root(disk_super),
1808                                            blocksize, generation);
1809         BUG_ON(!chunk_root->node);
1810
1811         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1812            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1813            BTRFS_UUID_SIZE);
1814
1815         mutex_lock(&fs_info->chunk_mutex);
1816         ret = btrfs_read_chunk_tree(chunk_root);
1817         mutex_unlock(&fs_info->chunk_mutex);
1818         if (ret) {
1819                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1820                        sb->s_id);
1821                 goto fail_chunk_root;
1822         }
1823
1824         btrfs_close_extra_devices(fs_devices);
1825
1826         blocksize = btrfs_level_size(tree_root,
1827                                      btrfs_super_root_level(disk_super));
1828         generation = btrfs_super_generation(disk_super);
1829
1830         tree_root->node = read_tree_block(tree_root,
1831                                           btrfs_super_root(disk_super),
1832                                           blocksize, generation);
1833         if (!tree_root->node)
1834                 goto fail_chunk_root;
1835
1836
1837         ret = find_and_setup_root(tree_root, fs_info,
1838                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1839         if (ret)
1840                 goto fail_tree_root;
1841         extent_root->track_dirty = 1;
1842
1843         ret = find_and_setup_root(tree_root, fs_info,
1844                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
1845         dev_root->track_dirty = 1;
1846         if (ret)
1847                 goto fail_extent_root;
1848
1849         ret = find_and_setup_root(tree_root, fs_info,
1850                                   BTRFS_CSUM_TREE_OBJECTID, csum_root);
1851         if (ret)
1852                 goto fail_extent_root;
1853
1854         csum_root->track_dirty = 1;
1855
1856         btrfs_read_block_groups(extent_root);
1857
1858         fs_info->generation = generation;
1859         fs_info->last_trans_committed = generation;
1860         fs_info->data_alloc_profile = (u64)-1;
1861         fs_info->metadata_alloc_profile = (u64)-1;
1862         fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1863         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1864                                                "btrfs-cleaner");
1865         if (IS_ERR(fs_info->cleaner_kthread))
1866                 goto fail_csum_root;
1867
1868         fs_info->transaction_kthread = kthread_run(transaction_kthread,
1869                                                    tree_root,
1870                                                    "btrfs-transaction");
1871         if (IS_ERR(fs_info->transaction_kthread))
1872                 goto fail_cleaner;
1873
1874         if (btrfs_super_log_root(disk_super) != 0) {
1875                 u64 bytenr = btrfs_super_log_root(disk_super);
1876
1877                 if (fs_devices->rw_devices == 0) {
1878                         printk(KERN_WARNING "Btrfs log replay required "
1879                                "on RO media\n");
1880                         err = -EIO;
1881                         goto fail_trans_kthread;
1882                 }
1883                 blocksize =
1884                      btrfs_level_size(tree_root,
1885                                       btrfs_super_log_root_level(disk_super));
1886
1887                 log_tree_root = kzalloc(sizeof(struct btrfs_root),
1888                                                       GFP_NOFS);
1889
1890                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1891                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1892
1893                 log_tree_root->node = read_tree_block(tree_root, bytenr,
1894                                                       blocksize,
1895                                                       generation + 1);
1896                 ret = btrfs_recover_log_trees(log_tree_root);
1897                 BUG_ON(ret);
1898
1899                 if (sb->s_flags & MS_RDONLY) {
1900                         ret =  btrfs_commit_super(tree_root);
1901                         BUG_ON(ret);
1902                 }
1903         }
1904
1905         if (!(sb->s_flags & MS_RDONLY)) {
1906                 ret = btrfs_cleanup_reloc_trees(tree_root);
1907                 BUG_ON(ret);
1908         }
1909
1910         location.objectid = BTRFS_FS_TREE_OBJECTID;
1911         location.type = BTRFS_ROOT_ITEM_KEY;
1912         location.offset = (u64)-1;
1913
1914         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
1915         if (!fs_info->fs_root)
1916                 goto fail_trans_kthread;
1917         return tree_root;
1918
1919 fail_trans_kthread:
1920         kthread_stop(fs_info->transaction_kthread);
1921 fail_cleaner:
1922         kthread_stop(fs_info->cleaner_kthread);
1923
1924         /*
1925          * make sure we're done with the btree inode before we stop our
1926          * kthreads
1927          */
1928         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1929         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1930
1931 fail_csum_root:
1932         free_extent_buffer(csum_root->node);
1933 fail_extent_root:
1934         free_extent_buffer(extent_root->node);
1935 fail_tree_root:
1936         free_extent_buffer(tree_root->node);
1937 fail_chunk_root:
1938         free_extent_buffer(chunk_root->node);
1939 fail_sys_array:
1940         free_extent_buffer(dev_root->node);
1941 fail_sb_buffer:
1942         btrfs_stop_workers(&fs_info->fixup_workers);
1943         btrfs_stop_workers(&fs_info->delalloc_workers);
1944         btrfs_stop_workers(&fs_info->workers);
1945         btrfs_stop_workers(&fs_info->endio_workers);
1946         btrfs_stop_workers(&fs_info->endio_meta_workers);
1947         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1948         btrfs_stop_workers(&fs_info->endio_write_workers);
1949         btrfs_stop_workers(&fs_info->submit_workers);
1950 fail_iput:
1951         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1952         iput(fs_info->btree_inode);
1953
1954         btrfs_close_devices(fs_info->fs_devices);
1955         btrfs_mapping_tree_free(&fs_info->mapping_tree);
1956         bdi_destroy(&fs_info->bdi);
1957
1958 fail:
1959         kfree(extent_root);
1960         kfree(tree_root);
1961         kfree(fs_info);
1962         kfree(chunk_root);
1963         kfree(dev_root);
1964         kfree(csum_root);
1965         return ERR_PTR(err);
1966 }
1967
1968 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1969 {
1970         char b[BDEVNAME_SIZE];
1971
1972         if (uptodate) {
1973                 set_buffer_uptodate(bh);
1974         } else {
1975                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1976                         printk(KERN_WARNING "lost page write due to "
1977                                         "I/O error on %s\n",
1978                                        bdevname(bh->b_bdev, b));
1979                 }
1980                 /* note, we dont' set_buffer_write_io_error because we have
1981                  * our own ways of dealing with the IO errors
1982                  */
1983                 clear_buffer_uptodate(bh);
1984         }
1985         unlock_buffer(bh);
1986         put_bh(bh);
1987 }
1988
1989 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
1990 {
1991         struct buffer_head *bh;
1992         struct buffer_head *latest = NULL;
1993         struct btrfs_super_block *super;
1994         int i;
1995         u64 transid = 0;
1996         u64 bytenr;
1997
1998         /* we would like to check all the supers, but that would make
1999          * a btrfs mount succeed after a mkfs from a different FS.
2000          * So, we need to add a special mount option to scan for
2001          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2002          */
2003         for (i = 0; i < 1; i++) {
2004                 bytenr = btrfs_sb_offset(i);
2005                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2006                         break;
2007                 bh = __bread(bdev, bytenr / 4096, 4096);
2008                 if (!bh)
2009                         continue;
2010
2011                 super = (struct btrfs_super_block *)bh->b_data;
2012                 if (btrfs_super_bytenr(super) != bytenr ||
2013                     strncmp((char *)(&super->magic), BTRFS_MAGIC,
2014                             sizeof(super->magic))) {
2015                         brelse(bh);
2016                         continue;
2017                 }
2018
2019                 if (!latest || btrfs_super_generation(super) > transid) {
2020                         brelse(latest);
2021                         latest = bh;
2022                         transid = btrfs_super_generation(super);
2023                 } else {
2024                         brelse(bh);
2025                 }
2026         }
2027         return latest;
2028 }
2029
2030 static int write_dev_supers(struct btrfs_device *device,
2031                             struct btrfs_super_block *sb,
2032                             int do_barriers, int wait, int max_mirrors)
2033 {
2034         struct buffer_head *bh;
2035         int i;
2036         int ret;
2037         int errors = 0;
2038         u32 crc;
2039         u64 bytenr;
2040         int last_barrier = 0;
2041
2042         if (max_mirrors == 0)
2043                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2044
2045         /* make sure only the last submit_bh does a barrier */
2046         if (do_barriers) {
2047                 for (i = 0; i < max_mirrors; i++) {
2048                         bytenr = btrfs_sb_offset(i);
2049                         if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2050                             device->total_bytes)
2051                                 break;
2052                         last_barrier = i;
2053                 }
2054         }
2055
2056         for (i = 0; i < max_mirrors; i++) {
2057                 bytenr = btrfs_sb_offset(i);
2058                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2059                         break;
2060
2061                 if (wait) {
2062                         bh = __find_get_block(device->bdev, bytenr / 4096,
2063                                               BTRFS_SUPER_INFO_SIZE);
2064                         BUG_ON(!bh);
2065                         brelse(bh);
2066                         wait_on_buffer(bh);
2067                         if (buffer_uptodate(bh)) {
2068                                 brelse(bh);
2069                                 continue;
2070                         }
2071                 } else {
2072                         btrfs_set_super_bytenr(sb, bytenr);
2073
2074                         crc = ~(u32)0;
2075                         crc = btrfs_csum_data(NULL, (char *)sb +
2076                                               BTRFS_CSUM_SIZE, crc,
2077                                               BTRFS_SUPER_INFO_SIZE -
2078                                               BTRFS_CSUM_SIZE);
2079                         btrfs_csum_final(crc, sb->csum);
2080
2081                         bh = __getblk(device->bdev, bytenr / 4096,
2082                                       BTRFS_SUPER_INFO_SIZE);
2083                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2084
2085                         set_buffer_uptodate(bh);
2086                         get_bh(bh);
2087                         lock_buffer(bh);
2088                         bh->b_end_io = btrfs_end_buffer_write_sync;
2089                 }
2090
2091                 if (i == last_barrier && do_barriers && device->barriers) {
2092                         ret = submit_bh(WRITE_BARRIER, bh);
2093                         if (ret == -EOPNOTSUPP) {
2094                                 printk("btrfs: disabling barriers on dev %s\n",
2095                                        device->name);
2096                                 set_buffer_uptodate(bh);
2097                                 device->barriers = 0;
2098                                 get_bh(bh);
2099                                 lock_buffer(bh);
2100                                 ret = submit_bh(WRITE, bh);
2101                         }
2102                 } else {
2103                         ret = submit_bh(WRITE, bh);
2104                 }
2105
2106                 if (!ret && wait) {
2107                         wait_on_buffer(bh);
2108                         if (!buffer_uptodate(bh))
2109                                 errors++;
2110                 } else if (ret) {
2111                         errors++;
2112                 }
2113                 if (wait)
2114                         brelse(bh);
2115         }
2116         return errors < i ? 0 : -1;
2117 }
2118
2119 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2120 {
2121         struct list_head *head = &root->fs_info->fs_devices->devices;
2122         struct btrfs_device *dev;
2123         struct btrfs_super_block *sb;
2124         struct btrfs_dev_item *dev_item;
2125         int ret;
2126         int do_barriers;
2127         int max_errors;
2128         int total_errors = 0;
2129         u64 flags;
2130
2131         max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2132         do_barriers = !btrfs_test_opt(root, NOBARRIER);
2133
2134         sb = &root->fs_info->super_for_commit;
2135         dev_item = &sb->dev_item;
2136         list_for_each_entry(dev, head, dev_list) {
2137                 if (!dev->bdev) {
2138                         total_errors++;
2139                         continue;
2140                 }
2141                 if (!dev->in_fs_metadata || !dev->writeable)
2142                         continue;
2143
2144                 btrfs_set_stack_device_generation(dev_item, 0);
2145                 btrfs_set_stack_device_type(dev_item, dev->type);
2146                 btrfs_set_stack_device_id(dev_item, dev->devid);
2147                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2148                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2149                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2150                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2151                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2152                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2153                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2154
2155                 flags = btrfs_super_flags(sb);
2156                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2157
2158                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2159                 if (ret)
2160                         total_errors++;
2161         }
2162         if (total_errors > max_errors) {
2163                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2164                        total_errors);
2165                 BUG();
2166         }
2167
2168         total_errors = 0;
2169         list_for_each_entry(dev, head, dev_list) {
2170                 if (!dev->bdev)
2171                         continue;
2172                 if (!dev->in_fs_metadata || !dev->writeable)
2173                         continue;
2174
2175                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2176                 if (ret)
2177                         total_errors++;
2178         }
2179         if (total_errors > max_errors) {
2180                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2181                        total_errors);
2182                 BUG();
2183         }
2184         return 0;
2185 }
2186
2187 int write_ctree_super(struct btrfs_trans_handle *trans,
2188                       struct btrfs_root *root, int max_mirrors)
2189 {
2190         int ret;
2191
2192         ret = write_all_supers(root, max_mirrors);
2193         return ret;
2194 }
2195
2196 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2197 {
2198         radix_tree_delete(&fs_info->fs_roots_radix,
2199                           (unsigned long)root->root_key.objectid);
2200         if (root->anon_super.s_dev) {
2201                 down_write(&root->anon_super.s_umount);
2202                 kill_anon_super(&root->anon_super);
2203         }
2204         if (root->node)
2205                 free_extent_buffer(root->node);
2206         if (root->commit_root)
2207                 free_extent_buffer(root->commit_root);
2208         kfree(root->name);
2209         kfree(root);
2210         return 0;
2211 }
2212
2213 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2214 {
2215         int ret;
2216         struct btrfs_root *gang[8];
2217         int i;
2218
2219         while (1) {
2220                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2221                                              (void **)gang, 0,
2222                                              ARRAY_SIZE(gang));
2223                 if (!ret)
2224                         break;
2225                 for (i = 0; i < ret; i++)
2226                         btrfs_free_fs_root(fs_info, gang[i]);
2227         }
2228         return 0;
2229 }
2230
2231 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2232 {
2233         u64 root_objectid = 0;
2234         struct btrfs_root *gang[8];
2235         int i;
2236         int ret;
2237
2238         while (1) {
2239                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2240                                              (void **)gang, root_objectid,
2241                                              ARRAY_SIZE(gang));
2242                 if (!ret)
2243                         break;
2244                 for (i = 0; i < ret; i++) {
2245                         root_objectid = gang[i]->root_key.objectid;
2246                         ret = btrfs_find_dead_roots(fs_info->tree_root,
2247                                                     root_objectid, gang[i]);
2248                         BUG_ON(ret);
2249                         btrfs_orphan_cleanup(gang[i]);
2250                 }
2251                 root_objectid++;
2252         }
2253         return 0;
2254 }
2255
2256 int btrfs_commit_super(struct btrfs_root *root)
2257 {
2258         struct btrfs_trans_handle *trans;
2259         int ret;
2260
2261         mutex_lock(&root->fs_info->cleaner_mutex);
2262         btrfs_clean_old_snapshots(root);
2263         mutex_unlock(&root->fs_info->cleaner_mutex);
2264         trans = btrfs_start_transaction(root, 1);
2265         ret = btrfs_commit_transaction(trans, root);
2266         BUG_ON(ret);
2267         /* run commit again to drop the original snapshot */
2268         trans = btrfs_start_transaction(root, 1);
2269         btrfs_commit_transaction(trans, root);
2270         ret = btrfs_write_and_wait_transaction(NULL, root);
2271         BUG_ON(ret);
2272
2273         ret = write_ctree_super(NULL, root, 0);
2274         return ret;
2275 }
2276
2277 int close_ctree(struct btrfs_root *root)
2278 {
2279         struct btrfs_fs_info *fs_info = root->fs_info;
2280         int ret;
2281
2282         fs_info->closing = 1;
2283         smp_mb();
2284
2285         kthread_stop(root->fs_info->transaction_kthread);
2286         kthread_stop(root->fs_info->cleaner_kthread);
2287
2288         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2289                 ret =  btrfs_commit_super(root);
2290                 if (ret)
2291                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2292         }
2293
2294         if (fs_info->delalloc_bytes) {
2295                 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2296                        fs_info->delalloc_bytes);
2297         }
2298         if (fs_info->total_ref_cache_size) {
2299                 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2300                        (unsigned long long)fs_info->total_ref_cache_size);
2301         }
2302
2303         if (fs_info->extent_root->node)
2304                 free_extent_buffer(fs_info->extent_root->node);
2305
2306         if (fs_info->tree_root->node)
2307                 free_extent_buffer(fs_info->tree_root->node);
2308
2309         if (root->fs_info->chunk_root->node)
2310                 free_extent_buffer(root->fs_info->chunk_root->node);
2311
2312         if (root->fs_info->dev_root->node)
2313                 free_extent_buffer(root->fs_info->dev_root->node);
2314
2315         if (root->fs_info->csum_root->node)
2316                 free_extent_buffer(root->fs_info->csum_root->node);
2317
2318         btrfs_free_block_groups(root->fs_info);
2319
2320         del_fs_roots(fs_info);
2321
2322         iput(fs_info->btree_inode);
2323
2324         btrfs_stop_workers(&fs_info->fixup_workers);
2325         btrfs_stop_workers(&fs_info->delalloc_workers);
2326         btrfs_stop_workers(&fs_info->workers);
2327         btrfs_stop_workers(&fs_info->endio_workers);
2328         btrfs_stop_workers(&fs_info->endio_meta_workers);
2329         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2330         btrfs_stop_workers(&fs_info->endio_write_workers);
2331         btrfs_stop_workers(&fs_info->submit_workers);
2332
2333 #if 0
2334         while (!list_empty(&fs_info->hashers)) {
2335                 struct btrfs_hasher *hasher;
2336                 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
2337                                     hashers);
2338                 list_del(&hasher->hashers);
2339                 crypto_free_hash(&fs_info->hash_tfm);
2340                 kfree(hasher);
2341         }
2342 #endif
2343         btrfs_close_devices(fs_info->fs_devices);
2344         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2345
2346         bdi_destroy(&fs_info->bdi);
2347
2348         kfree(fs_info->extent_root);
2349         kfree(fs_info->tree_root);
2350         kfree(fs_info->chunk_root);
2351         kfree(fs_info->dev_root);
2352         kfree(fs_info->csum_root);
2353         return 0;
2354 }
2355
2356 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2357 {
2358         int ret;
2359         struct inode *btree_inode = buf->first_page->mapping->host;
2360
2361         ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
2362         if (!ret)
2363                 return ret;
2364
2365         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2366                                     parent_transid);
2367         return !ret;
2368 }
2369
2370 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2371 {
2372         struct inode *btree_inode = buf->first_page->mapping->host;
2373         return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2374                                           buf);
2375 }
2376
2377 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2378 {
2379         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2380         u64 transid = btrfs_header_generation(buf);
2381         struct inode *btree_inode = root->fs_info->btree_inode;
2382         int was_dirty;
2383
2384         btrfs_assert_tree_locked(buf);
2385         if (transid != root->fs_info->generation) {
2386                 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2387                        "found %llu running %llu\n",
2388                         (unsigned long long)buf->start,
2389                         (unsigned long long)transid,
2390                         (unsigned long long)root->fs_info->generation);
2391                 WARN_ON(1);
2392         }
2393         was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2394                                             buf);
2395         if (!was_dirty) {
2396                 spin_lock(&root->fs_info->delalloc_lock);
2397                 root->fs_info->dirty_metadata_bytes += buf->len;
2398                 spin_unlock(&root->fs_info->delalloc_lock);
2399         }
2400 }
2401
2402 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2403 {
2404         /*
2405          * looks as though older kernels can get into trouble with
2406          * this code, they end up stuck in balance_dirty_pages forever
2407          */
2408         struct extent_io_tree *tree;
2409         u64 num_dirty;
2410         u64 start = 0;
2411         unsigned long thresh = 32 * 1024 * 1024;
2412         tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
2413
2414         if (current_is_pdflush() || current->flags & PF_MEMALLOC)
2415                 return;
2416
2417         num_dirty = count_range_bits(tree, &start, (u64)-1,
2418                                      thresh, EXTENT_DIRTY);
2419         if (num_dirty > thresh) {
2420                 balance_dirty_pages_ratelimited_nr(
2421                                    root->fs_info->btree_inode->i_mapping, 1);
2422         }
2423         return;
2424 }
2425
2426 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2427 {
2428         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2429         int ret;
2430         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2431         if (ret == 0)
2432                 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2433         return ret;
2434 }
2435
2436 int btree_lock_page_hook(struct page *page)
2437 {
2438         struct inode *inode = page->mapping->host;
2439         struct btrfs_root *root = BTRFS_I(inode)->root;
2440         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2441         struct extent_buffer *eb;
2442         unsigned long len;
2443         u64 bytenr = page_offset(page);
2444
2445         if (page->private == EXTENT_PAGE_PRIVATE)
2446                 goto out;
2447
2448         len = page->private >> 2;
2449         eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2450         if (!eb)
2451                 goto out;
2452
2453         btrfs_tree_lock(eb);
2454         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2455
2456         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2457                 spin_lock(&root->fs_info->delalloc_lock);
2458                 if (root->fs_info->dirty_metadata_bytes >= eb->len)
2459                         root->fs_info->dirty_metadata_bytes -= eb->len;
2460                 else
2461                         WARN_ON(1);
2462                 spin_unlock(&root->fs_info->delalloc_lock);
2463         }
2464
2465         btrfs_tree_unlock(eb);
2466         free_extent_buffer(eb);
2467 out:
2468         lock_page(page);
2469         return 0;
2470 }
2471
2472 static struct extent_io_ops btree_extent_io_ops = {
2473         .write_cache_pages_lock_hook = btree_lock_page_hook,
2474         .readpage_end_io_hook = btree_readpage_end_io_hook,
2475         .submit_bio_hook = btree_submit_bio_hook,
2476         /* note we're sharing with inode.c for the merge bio hook */
2477         .merge_bio_hook = btrfs_merge_bio_hook,
2478 };