Btrfs: BUG to BUG_ON changes
[pandora-kernel.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "locking.h"
25
26 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
27                       *root, struct btrfs_path *path, int level);
28 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_key *ins_key,
30                       struct btrfs_path *path, int data_size, int extend);
31 static int push_node_left(struct btrfs_trans_handle *trans,
32                           struct btrfs_root *root, struct extent_buffer *dst,
33                           struct extent_buffer *src, int empty);
34 static int balance_node_right(struct btrfs_trans_handle *trans,
35                               struct btrfs_root *root,
36                               struct extent_buffer *dst_buf,
37                               struct extent_buffer *src_buf);
38 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
39                    struct btrfs_path *path, int level, int slot);
40
41 struct btrfs_path *btrfs_alloc_path(void)
42 {
43         struct btrfs_path *path;
44         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
45         if (path)
46                 path->reada = 1;
47         return path;
48 }
49
50 /*
51  * set all locked nodes in the path to blocking locks.  This should
52  * be done before scheduling
53  */
54 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
55 {
56         int i;
57         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
58                 if (p->nodes[i] && p->locks[i])
59                         btrfs_set_lock_blocking(p->nodes[i]);
60         }
61 }
62
63 /*
64  * reset all the locked nodes in the patch to spinning locks.
65  *
66  * held is used to keep lockdep happy, when lockdep is enabled
67  * we set held to a blocking lock before we go around and
68  * retake all the spinlocks in the path.  You can safely use NULL
69  * for held
70  */
71 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
72                                         struct extent_buffer *held)
73 {
74         int i;
75
76 #ifdef CONFIG_DEBUG_LOCK_ALLOC
77         /* lockdep really cares that we take all of these spinlocks
78          * in the right order.  If any of the locks in the path are not
79          * currently blocking, it is going to complain.  So, make really
80          * really sure by forcing the path to blocking before we clear
81          * the path blocking.
82          */
83         if (held)
84                 btrfs_set_lock_blocking(held);
85         btrfs_set_path_blocking(p);
86 #endif
87
88         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
89                 if (p->nodes[i] && p->locks[i])
90                         btrfs_clear_lock_blocking(p->nodes[i]);
91         }
92
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94         if (held)
95                 btrfs_clear_lock_blocking(held);
96 #endif
97 }
98
99 /* this also releases the path */
100 void btrfs_free_path(struct btrfs_path *p)
101 {
102         btrfs_release_path(NULL, p);
103         kmem_cache_free(btrfs_path_cachep, p);
104 }
105
106 /*
107  * path release drops references on the extent buffers in the path
108  * and it drops any locks held by this path
109  *
110  * It is safe to call this on paths that no locks or extent buffers held.
111  */
112 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
113 {
114         int i;
115
116         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
117                 p->slots[i] = 0;
118                 if (!p->nodes[i])
119                         continue;
120                 if (p->locks[i]) {
121                         btrfs_tree_unlock(p->nodes[i]);
122                         p->locks[i] = 0;
123                 }
124                 free_extent_buffer(p->nodes[i]);
125                 p->nodes[i] = NULL;
126         }
127 }
128
129 /*
130  * safely gets a reference on the root node of a tree.  A lock
131  * is not taken, so a concurrent writer may put a different node
132  * at the root of the tree.  See btrfs_lock_root_node for the
133  * looping required.
134  *
135  * The extent buffer returned by this has a reference taken, so
136  * it won't disappear.  It may stop being the root of the tree
137  * at any time because there are no locks held.
138  */
139 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
140 {
141         struct extent_buffer *eb;
142         spin_lock(&root->node_lock);
143         eb = root->node;
144         extent_buffer_get(eb);
145         spin_unlock(&root->node_lock);
146         return eb;
147 }
148
149 /* loop around taking references on and locking the root node of the
150  * tree until you end up with a lock on the root.  A locked buffer
151  * is returned, with a reference held.
152  */
153 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
154 {
155         struct extent_buffer *eb;
156
157         while (1) {
158                 eb = btrfs_root_node(root);
159                 btrfs_tree_lock(eb);
160
161                 spin_lock(&root->node_lock);
162                 if (eb == root->node) {
163                         spin_unlock(&root->node_lock);
164                         break;
165                 }
166                 spin_unlock(&root->node_lock);
167
168                 btrfs_tree_unlock(eb);
169                 free_extent_buffer(eb);
170         }
171         return eb;
172 }
173
174 /* cowonly root (everything not a reference counted cow subvolume), just get
175  * put onto a simple dirty list.  transaction.c walks this to make sure they
176  * get properly updated on disk.
177  */
178 static void add_root_to_dirty_list(struct btrfs_root *root)
179 {
180         if (root->track_dirty && list_empty(&root->dirty_list)) {
181                 list_add(&root->dirty_list,
182                          &root->fs_info->dirty_cowonly_roots);
183         }
184 }
185
186 /*
187  * used by snapshot creation to make a copy of a root for a tree with
188  * a given objectid.  The buffer with the new root node is returned in
189  * cow_ret, and this func returns zero on success or a negative error code.
190  */
191 int btrfs_copy_root(struct btrfs_trans_handle *trans,
192                       struct btrfs_root *root,
193                       struct extent_buffer *buf,
194                       struct extent_buffer **cow_ret, u64 new_root_objectid)
195 {
196         struct extent_buffer *cow;
197         u32 nritems;
198         int ret = 0;
199         int level;
200         struct btrfs_root *new_root;
201
202         new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
203         if (!new_root)
204                 return -ENOMEM;
205
206         memcpy(new_root, root, sizeof(*new_root));
207         new_root->root_key.objectid = new_root_objectid;
208
209         WARN_ON(root->ref_cows && trans->transid !=
210                 root->fs_info->running_transaction->transid);
211         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
212
213         level = btrfs_header_level(buf);
214         nritems = btrfs_header_nritems(buf);
215
216         cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0,
217                                      new_root_objectid, trans->transid,
218                                      level, buf->start, 0);
219         if (IS_ERR(cow)) {
220                 kfree(new_root);
221                 return PTR_ERR(cow);
222         }
223
224         copy_extent_buffer(cow, buf, 0, 0, cow->len);
225         btrfs_set_header_bytenr(cow, cow->start);
226         btrfs_set_header_generation(cow, trans->transid);
227         btrfs_set_header_owner(cow, new_root_objectid);
228         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
229
230         write_extent_buffer(cow, root->fs_info->fsid,
231                             (unsigned long)btrfs_header_fsid(cow),
232                             BTRFS_FSID_SIZE);
233
234         WARN_ON(btrfs_header_generation(buf) > trans->transid);
235         ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL);
236         kfree(new_root);
237
238         if (ret)
239                 return ret;
240
241         btrfs_mark_buffer_dirty(cow);
242         *cow_ret = cow;
243         return 0;
244 }
245
246 /*
247  * does the dirty work in cow of a single block.  The parent block (if
248  * supplied) is updated to point to the new cow copy.  The new buffer is marked
249  * dirty and returned locked.  If you modify the block it needs to be marked
250  * dirty again.
251  *
252  * search_start -- an allocation hint for the new block
253  *
254  * empty_size -- a hint that you plan on doing more cow.  This is the size in
255  * bytes the allocator should try to find free next to the block it returns.
256  * This is just a hint and may be ignored by the allocator.
257  */
258 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
259                              struct btrfs_root *root,
260                              struct extent_buffer *buf,
261                              struct extent_buffer *parent, int parent_slot,
262                              struct extent_buffer **cow_ret,
263                              u64 search_start, u64 empty_size)
264 {
265         u64 parent_start;
266         struct extent_buffer *cow;
267         u32 nritems;
268         int ret = 0;
269         int level;
270         int unlock_orig = 0;
271
272         if (*cow_ret == buf)
273                 unlock_orig = 1;
274
275         btrfs_assert_tree_locked(buf);
276
277         if (parent)
278                 parent_start = parent->start;
279         else
280                 parent_start = 0;
281
282         WARN_ON(root->ref_cows && trans->transid !=
283                 root->fs_info->running_transaction->transid);
284         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
285
286         level = btrfs_header_level(buf);
287         nritems = btrfs_header_nritems(buf);
288
289         cow = btrfs_alloc_free_block(trans, root, buf->len,
290                                      parent_start, root->root_key.objectid,
291                                      trans->transid, level,
292                                      search_start, empty_size);
293         if (IS_ERR(cow))
294                 return PTR_ERR(cow);
295
296         /* cow is set to blocking by btrfs_init_new_buffer */
297
298         copy_extent_buffer(cow, buf, 0, 0, cow->len);
299         btrfs_set_header_bytenr(cow, cow->start);
300         btrfs_set_header_generation(cow, trans->transid);
301         btrfs_set_header_owner(cow, root->root_key.objectid);
302         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
303
304         write_extent_buffer(cow, root->fs_info->fsid,
305                             (unsigned long)btrfs_header_fsid(cow),
306                             BTRFS_FSID_SIZE);
307
308         WARN_ON(btrfs_header_generation(buf) > trans->transid);
309         if (btrfs_header_generation(buf) != trans->transid) {
310                 u32 nr_extents;
311                 ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents);
312                 if (ret)
313                         return ret;
314
315                 ret = btrfs_cache_ref(trans, root, buf, nr_extents);
316                 WARN_ON(ret);
317         } else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) {
318                 /*
319                  * There are only two places that can drop reference to
320                  * tree blocks owned by living reloc trees, one is here,
321                  * the other place is btrfs_drop_subtree. In both places,
322                  * we check reference count while tree block is locked.
323                  * Furthermore, if reference count is one, it won't get
324                  * increased by someone else.
325                  */
326                 u32 refs;
327                 ret = btrfs_lookup_extent_ref(trans, root, buf->start,
328                                               buf->len, &refs);
329                 BUG_ON(ret);
330                 if (refs == 1) {
331                         ret = btrfs_update_ref(trans, root, buf, cow,
332                                                0, nritems);
333                         clean_tree_block(trans, root, buf);
334                 } else {
335                         ret = btrfs_inc_ref(trans, root, buf, cow, NULL);
336                 }
337                 BUG_ON(ret);
338         } else {
339                 ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems);
340                 if (ret)
341                         return ret;
342                 clean_tree_block(trans, root, buf);
343         }
344
345         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
346                 ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start);
347                 WARN_ON(ret);
348         }
349
350         if (buf == root->node) {
351                 WARN_ON(parent && parent != buf);
352
353                 spin_lock(&root->node_lock);
354                 root->node = cow;
355                 extent_buffer_get(cow);
356                 spin_unlock(&root->node_lock);
357
358                 if (buf != root->commit_root) {
359                         btrfs_free_extent(trans, root, buf->start,
360                                           buf->len, buf->start,
361                                           root->root_key.objectid,
362                                           btrfs_header_generation(buf),
363                                           level, 1);
364                 }
365                 free_extent_buffer(buf);
366                 add_root_to_dirty_list(root);
367         } else {
368                 btrfs_set_node_blockptr(parent, parent_slot,
369                                         cow->start);
370                 WARN_ON(trans->transid == 0);
371                 btrfs_set_node_ptr_generation(parent, parent_slot,
372                                               trans->transid);
373                 btrfs_mark_buffer_dirty(parent);
374                 WARN_ON(btrfs_header_generation(parent) != trans->transid);
375                 btrfs_free_extent(trans, root, buf->start, buf->len,
376                                   parent_start, btrfs_header_owner(parent),
377                                   btrfs_header_generation(parent), level, 1);
378         }
379         if (unlock_orig)
380                 btrfs_tree_unlock(buf);
381         free_extent_buffer(buf);
382         btrfs_mark_buffer_dirty(cow);
383         *cow_ret = cow;
384         return 0;
385 }
386
387 /*
388  * cows a single block, see __btrfs_cow_block for the real work.
389  * This version of it has extra checks so that a block isn't cow'd more than
390  * once per transaction, as long as it hasn't been written yet
391  */
392 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
393                     struct btrfs_root *root, struct extent_buffer *buf,
394                     struct extent_buffer *parent, int parent_slot,
395                     struct extent_buffer **cow_ret)
396 {
397         u64 search_start;
398         int ret;
399
400         if (trans->transaction != root->fs_info->running_transaction) {
401                 printk(KERN_CRIT "trans %llu running %llu\n",
402                        (unsigned long long)trans->transid,
403                        (unsigned long long)
404                        root->fs_info->running_transaction->transid);
405                 WARN_ON(1);
406         }
407         if (trans->transid != root->fs_info->generation) {
408                 printk(KERN_CRIT "trans %llu running %llu\n",
409                        (unsigned long long)trans->transid,
410                        (unsigned long long)root->fs_info->generation);
411                 WARN_ON(1);
412         }
413
414         if (btrfs_header_generation(buf) == trans->transid &&
415             btrfs_header_owner(buf) == root->root_key.objectid &&
416             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
417                 *cow_ret = buf;
418                 return 0;
419         }
420
421         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
422
423         if (parent)
424                 btrfs_set_lock_blocking(parent);
425         btrfs_set_lock_blocking(buf);
426
427         ret = __btrfs_cow_block(trans, root, buf, parent,
428                                  parent_slot, cow_ret, search_start, 0);
429         return ret;
430 }
431
432 /*
433  * helper function for defrag to decide if two blocks pointed to by a
434  * node are actually close by
435  */
436 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
437 {
438         if (blocknr < other && other - (blocknr + blocksize) < 32768)
439                 return 1;
440         if (blocknr > other && blocknr - (other + blocksize) < 32768)
441                 return 1;
442         return 0;
443 }
444
445 /*
446  * compare two keys in a memcmp fashion
447  */
448 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
449 {
450         struct btrfs_key k1;
451
452         btrfs_disk_key_to_cpu(&k1, disk);
453
454         if (k1.objectid > k2->objectid)
455                 return 1;
456         if (k1.objectid < k2->objectid)
457                 return -1;
458         if (k1.type > k2->type)
459                 return 1;
460         if (k1.type < k2->type)
461                 return -1;
462         if (k1.offset > k2->offset)
463                 return 1;
464         if (k1.offset < k2->offset)
465                 return -1;
466         return 0;
467 }
468
469 /*
470  * same as comp_keys only with two btrfs_key's
471  */
472 static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
473 {
474         if (k1->objectid > k2->objectid)
475                 return 1;
476         if (k1->objectid < k2->objectid)
477                 return -1;
478         if (k1->type > k2->type)
479                 return 1;
480         if (k1->type < k2->type)
481                 return -1;
482         if (k1->offset > k2->offset)
483                 return 1;
484         if (k1->offset < k2->offset)
485                 return -1;
486         return 0;
487 }
488
489 /*
490  * this is used by the defrag code to go through all the
491  * leaves pointed to by a node and reallocate them so that
492  * disk order is close to key order
493  */
494 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
495                        struct btrfs_root *root, struct extent_buffer *parent,
496                        int start_slot, int cache_only, u64 *last_ret,
497                        struct btrfs_key *progress)
498 {
499         struct extent_buffer *cur;
500         u64 blocknr;
501         u64 gen;
502         u64 search_start = *last_ret;
503         u64 last_block = 0;
504         u64 other;
505         u32 parent_nritems;
506         int end_slot;
507         int i;
508         int err = 0;
509         int parent_level;
510         int uptodate;
511         u32 blocksize;
512         int progress_passed = 0;
513         struct btrfs_disk_key disk_key;
514
515         parent_level = btrfs_header_level(parent);
516         if (cache_only && parent_level != 1)
517                 return 0;
518
519         if (trans->transaction != root->fs_info->running_transaction)
520                 WARN_ON(1);
521         if (trans->transid != root->fs_info->generation)
522                 WARN_ON(1);
523
524         parent_nritems = btrfs_header_nritems(parent);
525         blocksize = btrfs_level_size(root, parent_level - 1);
526         end_slot = parent_nritems;
527
528         if (parent_nritems == 1)
529                 return 0;
530
531         btrfs_set_lock_blocking(parent);
532
533         for (i = start_slot; i < end_slot; i++) {
534                 int close = 1;
535
536                 if (!parent->map_token) {
537                         map_extent_buffer(parent,
538                                         btrfs_node_key_ptr_offset(i),
539                                         sizeof(struct btrfs_key_ptr),
540                                         &parent->map_token, &parent->kaddr,
541                                         &parent->map_start, &parent->map_len,
542                                         KM_USER1);
543                 }
544                 btrfs_node_key(parent, &disk_key, i);
545                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
546                         continue;
547
548                 progress_passed = 1;
549                 blocknr = btrfs_node_blockptr(parent, i);
550                 gen = btrfs_node_ptr_generation(parent, i);
551                 if (last_block == 0)
552                         last_block = blocknr;
553
554                 if (i > 0) {
555                         other = btrfs_node_blockptr(parent, i - 1);
556                         close = close_blocks(blocknr, other, blocksize);
557                 }
558                 if (!close && i < end_slot - 2) {
559                         other = btrfs_node_blockptr(parent, i + 1);
560                         close = close_blocks(blocknr, other, blocksize);
561                 }
562                 if (close) {
563                         last_block = blocknr;
564                         continue;
565                 }
566                 if (parent->map_token) {
567                         unmap_extent_buffer(parent, parent->map_token,
568                                             KM_USER1);
569                         parent->map_token = NULL;
570                 }
571
572                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
573                 if (cur)
574                         uptodate = btrfs_buffer_uptodate(cur, gen);
575                 else
576                         uptodate = 0;
577                 if (!cur || !uptodate) {
578                         if (cache_only) {
579                                 free_extent_buffer(cur);
580                                 continue;
581                         }
582                         if (!cur) {
583                                 cur = read_tree_block(root, blocknr,
584                                                          blocksize, gen);
585                         } else if (!uptodate) {
586                                 btrfs_read_buffer(cur, gen);
587                         }
588                 }
589                 if (search_start == 0)
590                         search_start = last_block;
591
592                 btrfs_tree_lock(cur);
593                 btrfs_set_lock_blocking(cur);
594                 err = __btrfs_cow_block(trans, root, cur, parent, i,
595                                         &cur, search_start,
596                                         min(16 * blocksize,
597                                             (end_slot - i) * blocksize));
598                 if (err) {
599                         btrfs_tree_unlock(cur);
600                         free_extent_buffer(cur);
601                         break;
602                 }
603                 search_start = cur->start;
604                 last_block = cur->start;
605                 *last_ret = search_start;
606                 btrfs_tree_unlock(cur);
607                 free_extent_buffer(cur);
608         }
609         if (parent->map_token) {
610                 unmap_extent_buffer(parent, parent->map_token,
611                                     KM_USER1);
612                 parent->map_token = NULL;
613         }
614         return err;
615 }
616
617 /*
618  * The leaf data grows from end-to-front in the node.
619  * this returns the address of the start of the last item,
620  * which is the stop of the leaf data stack
621  */
622 static inline unsigned int leaf_data_end(struct btrfs_root *root,
623                                          struct extent_buffer *leaf)
624 {
625         u32 nr = btrfs_header_nritems(leaf);
626         if (nr == 0)
627                 return BTRFS_LEAF_DATA_SIZE(root);
628         return btrfs_item_offset_nr(leaf, nr - 1);
629 }
630
631 /*
632  * extra debugging checks to make sure all the items in a key are
633  * well formed and in the proper order
634  */
635 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
636                       int level)
637 {
638         struct extent_buffer *parent = NULL;
639         struct extent_buffer *node = path->nodes[level];
640         struct btrfs_disk_key parent_key;
641         struct btrfs_disk_key node_key;
642         int parent_slot;
643         int slot;
644         struct btrfs_key cpukey;
645         u32 nritems = btrfs_header_nritems(node);
646
647         if (path->nodes[level + 1])
648                 parent = path->nodes[level + 1];
649
650         slot = path->slots[level];
651         BUG_ON(nritems == 0);
652         if (parent) {
653                 parent_slot = path->slots[level + 1];
654                 btrfs_node_key(parent, &parent_key, parent_slot);
655                 btrfs_node_key(node, &node_key, 0);
656                 BUG_ON(memcmp(&parent_key, &node_key,
657                               sizeof(struct btrfs_disk_key)));
658                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
659                        btrfs_header_bytenr(node));
660         }
661         BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
662         if (slot != 0) {
663                 btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
664                 btrfs_node_key(node, &node_key, slot);
665                 BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
666         }
667         if (slot < nritems - 1) {
668                 btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
669                 btrfs_node_key(node, &node_key, slot);
670                 BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
671         }
672         return 0;
673 }
674
675 /*
676  * extra checking to make sure all the items in a leaf are
677  * well formed and in the proper order
678  */
679 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
680                       int level)
681 {
682         struct extent_buffer *leaf = path->nodes[level];
683         struct extent_buffer *parent = NULL;
684         int parent_slot;
685         struct btrfs_key cpukey;
686         struct btrfs_disk_key parent_key;
687         struct btrfs_disk_key leaf_key;
688         int slot = path->slots[0];
689
690         u32 nritems = btrfs_header_nritems(leaf);
691
692         if (path->nodes[level + 1])
693                 parent = path->nodes[level + 1];
694
695         if (nritems == 0)
696                 return 0;
697
698         if (parent) {
699                 parent_slot = path->slots[level + 1];
700                 btrfs_node_key(parent, &parent_key, parent_slot);
701                 btrfs_item_key(leaf, &leaf_key, 0);
702
703                 BUG_ON(memcmp(&parent_key, &leaf_key,
704                        sizeof(struct btrfs_disk_key)));
705                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
706                        btrfs_header_bytenr(leaf));
707         }
708         if (slot != 0 && slot < nritems - 1) {
709                 btrfs_item_key(leaf, &leaf_key, slot);
710                 btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
711                 if (comp_keys(&leaf_key, &cpukey) <= 0) {
712                         btrfs_print_leaf(root, leaf);
713                         printk(KERN_CRIT "slot %d offset bad key\n", slot);
714                         BUG_ON(1);
715                 }
716                 if (btrfs_item_offset_nr(leaf, slot - 1) !=
717                        btrfs_item_end_nr(leaf, slot)) {
718                         btrfs_print_leaf(root, leaf);
719                         printk(KERN_CRIT "slot %d offset bad\n", slot);
720                         BUG_ON(1);
721                 }
722         }
723         if (slot < nritems - 1) {
724                 btrfs_item_key(leaf, &leaf_key, slot);
725                 btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
726                 BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
727                 if (btrfs_item_offset_nr(leaf, slot) !=
728                         btrfs_item_end_nr(leaf, slot + 1)) {
729                         btrfs_print_leaf(root, leaf);
730                         printk(KERN_CRIT "slot %d offset bad\n", slot);
731                         BUG_ON(1);
732                 }
733         }
734         BUG_ON(btrfs_item_offset_nr(leaf, 0) +
735                btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
736         return 0;
737 }
738
739 static noinline int check_block(struct btrfs_root *root,
740                                 struct btrfs_path *path, int level)
741 {
742         return 0;
743         if (level == 0)
744                 return check_leaf(root, path, level);
745         return check_node(root, path, level);
746 }
747
748 /*
749  * search for key in the extent_buffer.  The items start at offset p,
750  * and they are item_size apart.  There are 'max' items in p.
751  *
752  * the slot in the array is returned via slot, and it points to
753  * the place where you would insert key if it is not found in
754  * the array.
755  *
756  * slot may point to max if the key is bigger than all of the keys
757  */
758 static noinline int generic_bin_search(struct extent_buffer *eb,
759                                        unsigned long p,
760                                        int item_size, struct btrfs_key *key,
761                                        int max, int *slot)
762 {
763         int low = 0;
764         int high = max;
765         int mid;
766         int ret;
767         struct btrfs_disk_key *tmp = NULL;
768         struct btrfs_disk_key unaligned;
769         unsigned long offset;
770         char *map_token = NULL;
771         char *kaddr = NULL;
772         unsigned long map_start = 0;
773         unsigned long map_len = 0;
774         int err;
775
776         while (low < high) {
777                 mid = (low + high) / 2;
778                 offset = p + mid * item_size;
779
780                 if (!map_token || offset < map_start ||
781                     (offset + sizeof(struct btrfs_disk_key)) >
782                     map_start + map_len) {
783                         if (map_token) {
784                                 unmap_extent_buffer(eb, map_token, KM_USER0);
785                                 map_token = NULL;
786                         }
787
788                         err = map_private_extent_buffer(eb, offset,
789                                                 sizeof(struct btrfs_disk_key),
790                                                 &map_token, &kaddr,
791                                                 &map_start, &map_len, KM_USER0);
792
793                         if (!err) {
794                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
795                                                         map_start);
796                         } else {
797                                 read_extent_buffer(eb, &unaligned,
798                                                    offset, sizeof(unaligned));
799                                 tmp = &unaligned;
800                         }
801
802                 } else {
803                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
804                                                         map_start);
805                 }
806                 ret = comp_keys(tmp, key);
807
808                 if (ret < 0)
809                         low = mid + 1;
810                 else if (ret > 0)
811                         high = mid;
812                 else {
813                         *slot = mid;
814                         if (map_token)
815                                 unmap_extent_buffer(eb, map_token, KM_USER0);
816                         return 0;
817                 }
818         }
819         *slot = low;
820         if (map_token)
821                 unmap_extent_buffer(eb, map_token, KM_USER0);
822         return 1;
823 }
824
825 /*
826  * simple bin_search frontend that does the right thing for
827  * leaves vs nodes
828  */
829 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
830                       int level, int *slot)
831 {
832         if (level == 0) {
833                 return generic_bin_search(eb,
834                                           offsetof(struct btrfs_leaf, items),
835                                           sizeof(struct btrfs_item),
836                                           key, btrfs_header_nritems(eb),
837                                           slot);
838         } else {
839                 return generic_bin_search(eb,
840                                           offsetof(struct btrfs_node, ptrs),
841                                           sizeof(struct btrfs_key_ptr),
842                                           key, btrfs_header_nritems(eb),
843                                           slot);
844         }
845         return -1;
846 }
847
848 /* given a node and slot number, this reads the blocks it points to.  The
849  * extent buffer is returned with a reference taken (but unlocked).
850  * NULL is returned on error.
851  */
852 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
853                                    struct extent_buffer *parent, int slot)
854 {
855         int level = btrfs_header_level(parent);
856         if (slot < 0)
857                 return NULL;
858         if (slot >= btrfs_header_nritems(parent))
859                 return NULL;
860
861         BUG_ON(level == 0);
862
863         return read_tree_block(root, btrfs_node_blockptr(parent, slot),
864                        btrfs_level_size(root, level - 1),
865                        btrfs_node_ptr_generation(parent, slot));
866 }
867
868 /*
869  * node level balancing, used to make sure nodes are in proper order for
870  * item deletion.  We balance from the top down, so we have to make sure
871  * that a deletion won't leave an node completely empty later on.
872  */
873 static noinline int balance_level(struct btrfs_trans_handle *trans,
874                          struct btrfs_root *root,
875                          struct btrfs_path *path, int level)
876 {
877         struct extent_buffer *right = NULL;
878         struct extent_buffer *mid;
879         struct extent_buffer *left = NULL;
880         struct extent_buffer *parent = NULL;
881         int ret = 0;
882         int wret;
883         int pslot;
884         int orig_slot = path->slots[level];
885         int err_on_enospc = 0;
886         u64 orig_ptr;
887
888         if (level == 0)
889                 return 0;
890
891         mid = path->nodes[level];
892
893         WARN_ON(!path->locks[level]);
894         WARN_ON(btrfs_header_generation(mid) != trans->transid);
895
896         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
897
898         if (level < BTRFS_MAX_LEVEL - 1)
899                 parent = path->nodes[level + 1];
900         pslot = path->slots[level + 1];
901
902         /*
903          * deal with the case where there is only one pointer in the root
904          * by promoting the node below to a root
905          */
906         if (!parent) {
907                 struct extent_buffer *child;
908
909                 if (btrfs_header_nritems(mid) != 1)
910                         return 0;
911
912                 /* promote the child to a root */
913                 child = read_node_slot(root, mid, 0);
914                 BUG_ON(!child);
915                 btrfs_tree_lock(child);
916                 btrfs_set_lock_blocking(child);
917                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
918                 BUG_ON(ret);
919
920                 spin_lock(&root->node_lock);
921                 root->node = child;
922                 spin_unlock(&root->node_lock);
923
924                 ret = btrfs_update_extent_ref(trans, root, child->start,
925                                               child->len,
926                                               mid->start, child->start,
927                                               root->root_key.objectid,
928                                               trans->transid, level - 1);
929                 BUG_ON(ret);
930
931                 add_root_to_dirty_list(root);
932                 btrfs_tree_unlock(child);
933
934                 path->locks[level] = 0;
935                 path->nodes[level] = NULL;
936                 clean_tree_block(trans, root, mid);
937                 btrfs_tree_unlock(mid);
938                 /* once for the path */
939                 free_extent_buffer(mid);
940                 ret = btrfs_free_extent(trans, root, mid->start, mid->len,
941                                         mid->start, root->root_key.objectid,
942                                         btrfs_header_generation(mid),
943                                         level, 1);
944                 /* once for the root ptr */
945                 free_extent_buffer(mid);
946                 return ret;
947         }
948         if (btrfs_header_nritems(mid) >
949             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
950                 return 0;
951
952         if (trans->transaction->delayed_refs.flushing &&
953             btrfs_header_nritems(mid) > 2)
954                 return 0;
955
956         if (btrfs_header_nritems(mid) < 2)
957                 err_on_enospc = 1;
958
959         left = read_node_slot(root, parent, pslot - 1);
960         if (left) {
961                 btrfs_tree_lock(left);
962                 btrfs_set_lock_blocking(left);
963                 wret = btrfs_cow_block(trans, root, left,
964                                        parent, pslot - 1, &left);
965                 if (wret) {
966                         ret = wret;
967                         goto enospc;
968                 }
969         }
970         right = read_node_slot(root, parent, pslot + 1);
971         if (right) {
972                 btrfs_tree_lock(right);
973                 btrfs_set_lock_blocking(right);
974                 wret = btrfs_cow_block(trans, root, right,
975                                        parent, pslot + 1, &right);
976                 if (wret) {
977                         ret = wret;
978                         goto enospc;
979                 }
980         }
981
982         /* first, try to make some room in the middle buffer */
983         if (left) {
984                 orig_slot += btrfs_header_nritems(left);
985                 wret = push_node_left(trans, root, left, mid, 1);
986                 if (wret < 0)
987                         ret = wret;
988                 if (btrfs_header_nritems(mid) < 2)
989                         err_on_enospc = 1;
990         }
991
992         /*
993          * then try to empty the right most buffer into the middle
994          */
995         if (right) {
996                 wret = push_node_left(trans, root, mid, right, 1);
997                 if (wret < 0 && wret != -ENOSPC)
998                         ret = wret;
999                 if (btrfs_header_nritems(right) == 0) {
1000                         u64 bytenr = right->start;
1001                         u64 generation = btrfs_header_generation(parent);
1002                         u32 blocksize = right->len;
1003
1004                         clean_tree_block(trans, root, right);
1005                         btrfs_tree_unlock(right);
1006                         free_extent_buffer(right);
1007                         right = NULL;
1008                         wret = del_ptr(trans, root, path, level + 1, pslot +
1009                                        1);
1010                         if (wret)
1011                                 ret = wret;
1012                         wret = btrfs_free_extent(trans, root, bytenr,
1013                                                  blocksize, parent->start,
1014                                                  btrfs_header_owner(parent),
1015                                                  generation, level, 1);
1016                         if (wret)
1017                                 ret = wret;
1018                 } else {
1019                         struct btrfs_disk_key right_key;
1020                         btrfs_node_key(right, &right_key, 0);
1021                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1022                         btrfs_mark_buffer_dirty(parent);
1023                 }
1024         }
1025         if (btrfs_header_nritems(mid) == 1) {
1026                 /*
1027                  * we're not allowed to leave a node with one item in the
1028                  * tree during a delete.  A deletion from lower in the tree
1029                  * could try to delete the only pointer in this node.
1030                  * So, pull some keys from the left.
1031                  * There has to be a left pointer at this point because
1032                  * otherwise we would have pulled some pointers from the
1033                  * right
1034                  */
1035                 BUG_ON(!left);
1036                 wret = balance_node_right(trans, root, mid, left);
1037                 if (wret < 0) {
1038                         ret = wret;
1039                         goto enospc;
1040                 }
1041                 if (wret == 1) {
1042                         wret = push_node_left(trans, root, left, mid, 1);
1043                         if (wret < 0)
1044                                 ret = wret;
1045                 }
1046                 BUG_ON(wret == 1);
1047         }
1048         if (btrfs_header_nritems(mid) == 0) {
1049                 /* we've managed to empty the middle node, drop it */
1050                 u64 root_gen = btrfs_header_generation(parent);
1051                 u64 bytenr = mid->start;
1052                 u32 blocksize = mid->len;
1053
1054                 clean_tree_block(trans, root, mid);
1055                 btrfs_tree_unlock(mid);
1056                 free_extent_buffer(mid);
1057                 mid = NULL;
1058                 wret = del_ptr(trans, root, path, level + 1, pslot);
1059                 if (wret)
1060                         ret = wret;
1061                 wret = btrfs_free_extent(trans, root, bytenr, blocksize,
1062                                          parent->start,
1063                                          btrfs_header_owner(parent),
1064                                          root_gen, level, 1);
1065                 if (wret)
1066                         ret = wret;
1067         } else {
1068                 /* update the parent key to reflect our changes */
1069                 struct btrfs_disk_key mid_key;
1070                 btrfs_node_key(mid, &mid_key, 0);
1071                 btrfs_set_node_key(parent, &mid_key, pslot);
1072                 btrfs_mark_buffer_dirty(parent);
1073         }
1074
1075         /* update the path */
1076         if (left) {
1077                 if (btrfs_header_nritems(left) > orig_slot) {
1078                         extent_buffer_get(left);
1079                         /* left was locked after cow */
1080                         path->nodes[level] = left;
1081                         path->slots[level + 1] -= 1;
1082                         path->slots[level] = orig_slot;
1083                         if (mid) {
1084                                 btrfs_tree_unlock(mid);
1085                                 free_extent_buffer(mid);
1086                         }
1087                 } else {
1088                         orig_slot -= btrfs_header_nritems(left);
1089                         path->slots[level] = orig_slot;
1090                 }
1091         }
1092         /* double check we haven't messed things up */
1093         check_block(root, path, level);
1094         if (orig_ptr !=
1095             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1096                 BUG();
1097 enospc:
1098         if (right) {
1099                 btrfs_tree_unlock(right);
1100                 free_extent_buffer(right);
1101         }
1102         if (left) {
1103                 if (path->nodes[level] != left)
1104                         btrfs_tree_unlock(left);
1105                 free_extent_buffer(left);
1106         }
1107         return ret;
1108 }
1109
1110 /* Node balancing for insertion.  Here we only split or push nodes around
1111  * when they are completely full.  This is also done top down, so we
1112  * have to be pessimistic.
1113  */
1114 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1115                                           struct btrfs_root *root,
1116                                           struct btrfs_path *path, int level)
1117 {
1118         struct extent_buffer *right = NULL;
1119         struct extent_buffer *mid;
1120         struct extent_buffer *left = NULL;
1121         struct extent_buffer *parent = NULL;
1122         int ret = 0;
1123         int wret;
1124         int pslot;
1125         int orig_slot = path->slots[level];
1126         u64 orig_ptr;
1127
1128         if (level == 0)
1129                 return 1;
1130
1131         mid = path->nodes[level];
1132         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1133         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1134
1135         if (level < BTRFS_MAX_LEVEL - 1)
1136                 parent = path->nodes[level + 1];
1137         pslot = path->slots[level + 1];
1138
1139         if (!parent)
1140                 return 1;
1141
1142         left = read_node_slot(root, parent, pslot - 1);
1143
1144         /* first, try to make some room in the middle buffer */
1145         if (left) {
1146                 u32 left_nr;
1147
1148                 btrfs_tree_lock(left);
1149                 btrfs_set_lock_blocking(left);
1150
1151                 left_nr = btrfs_header_nritems(left);
1152                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1153                         wret = 1;
1154                 } else {
1155                         ret = btrfs_cow_block(trans, root, left, parent,
1156                                               pslot - 1, &left);
1157                         if (ret)
1158                                 wret = 1;
1159                         else {
1160                                 wret = push_node_left(trans, root,
1161                                                       left, mid, 0);
1162                         }
1163                 }
1164                 if (wret < 0)
1165                         ret = wret;
1166                 if (wret == 0) {
1167                         struct btrfs_disk_key disk_key;
1168                         orig_slot += left_nr;
1169                         btrfs_node_key(mid, &disk_key, 0);
1170                         btrfs_set_node_key(parent, &disk_key, pslot);
1171                         btrfs_mark_buffer_dirty(parent);
1172                         if (btrfs_header_nritems(left) > orig_slot) {
1173                                 path->nodes[level] = left;
1174                                 path->slots[level + 1] -= 1;
1175                                 path->slots[level] = orig_slot;
1176                                 btrfs_tree_unlock(mid);
1177                                 free_extent_buffer(mid);
1178                         } else {
1179                                 orig_slot -=
1180                                         btrfs_header_nritems(left);
1181                                 path->slots[level] = orig_slot;
1182                                 btrfs_tree_unlock(left);
1183                                 free_extent_buffer(left);
1184                         }
1185                         return 0;
1186                 }
1187                 btrfs_tree_unlock(left);
1188                 free_extent_buffer(left);
1189         }
1190         right = read_node_slot(root, parent, pslot + 1);
1191
1192         /*
1193          * then try to empty the right most buffer into the middle
1194          */
1195         if (right) {
1196                 u32 right_nr;
1197
1198                 btrfs_tree_lock(right);
1199                 btrfs_set_lock_blocking(right);
1200
1201                 right_nr = btrfs_header_nritems(right);
1202                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1203                         wret = 1;
1204                 } else {
1205                         ret = btrfs_cow_block(trans, root, right,
1206                                               parent, pslot + 1,
1207                                               &right);
1208                         if (ret)
1209                                 wret = 1;
1210                         else {
1211                                 wret = balance_node_right(trans, root,
1212                                                           right, mid);
1213                         }
1214                 }
1215                 if (wret < 0)
1216                         ret = wret;
1217                 if (wret == 0) {
1218                         struct btrfs_disk_key disk_key;
1219
1220                         btrfs_node_key(right, &disk_key, 0);
1221                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
1222                         btrfs_mark_buffer_dirty(parent);
1223
1224                         if (btrfs_header_nritems(mid) <= orig_slot) {
1225                                 path->nodes[level] = right;
1226                                 path->slots[level + 1] += 1;
1227                                 path->slots[level] = orig_slot -
1228                                         btrfs_header_nritems(mid);
1229                                 btrfs_tree_unlock(mid);
1230                                 free_extent_buffer(mid);
1231                         } else {
1232                                 btrfs_tree_unlock(right);
1233                                 free_extent_buffer(right);
1234                         }
1235                         return 0;
1236                 }
1237                 btrfs_tree_unlock(right);
1238                 free_extent_buffer(right);
1239         }
1240         return 1;
1241 }
1242
1243 /*
1244  * readahead one full node of leaves, finding things that are close
1245  * to the block in 'slot', and triggering ra on them.
1246  */
1247 static void reada_for_search(struct btrfs_root *root,
1248                              struct btrfs_path *path,
1249                              int level, int slot, u64 objectid)
1250 {
1251         struct extent_buffer *node;
1252         struct btrfs_disk_key disk_key;
1253         u32 nritems;
1254         u64 search;
1255         u64 target;
1256         u64 nread = 0;
1257         int direction = path->reada;
1258         struct extent_buffer *eb;
1259         u32 nr;
1260         u32 blocksize;
1261         u32 nscan = 0;
1262
1263         if (level != 1)
1264                 return;
1265
1266         if (!path->nodes[level])
1267                 return;
1268
1269         node = path->nodes[level];
1270
1271         search = btrfs_node_blockptr(node, slot);
1272         blocksize = btrfs_level_size(root, level - 1);
1273         eb = btrfs_find_tree_block(root, search, blocksize);
1274         if (eb) {
1275                 free_extent_buffer(eb);
1276                 return;
1277         }
1278
1279         target = search;
1280
1281         nritems = btrfs_header_nritems(node);
1282         nr = slot;
1283         while (1) {
1284                 if (direction < 0) {
1285                         if (nr == 0)
1286                                 break;
1287                         nr--;
1288                 } else if (direction > 0) {
1289                         nr++;
1290                         if (nr >= nritems)
1291                                 break;
1292                 }
1293                 if (path->reada < 0 && objectid) {
1294                         btrfs_node_key(node, &disk_key, nr);
1295                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
1296                                 break;
1297                 }
1298                 search = btrfs_node_blockptr(node, nr);
1299                 if ((search <= target && target - search <= 65536) ||
1300                     (search > target && search - target <= 65536)) {
1301                         readahead_tree_block(root, search, blocksize,
1302                                      btrfs_node_ptr_generation(node, nr));
1303                         nread += blocksize;
1304                 }
1305                 nscan++;
1306                 if ((nread > 65536 || nscan > 32))
1307                         break;
1308         }
1309 }
1310
1311 /*
1312  * returns -EAGAIN if it had to drop the path, or zero if everything was in
1313  * cache
1314  */
1315 static noinline int reada_for_balance(struct btrfs_root *root,
1316                                       struct btrfs_path *path, int level)
1317 {
1318         int slot;
1319         int nritems;
1320         struct extent_buffer *parent;
1321         struct extent_buffer *eb;
1322         u64 gen;
1323         u64 block1 = 0;
1324         u64 block2 = 0;
1325         int ret = 0;
1326         int blocksize;
1327
1328         parent = path->nodes[level - 1];
1329         if (!parent)
1330                 return 0;
1331
1332         nritems = btrfs_header_nritems(parent);
1333         slot = path->slots[level];
1334         blocksize = btrfs_level_size(root, level);
1335
1336         if (slot > 0) {
1337                 block1 = btrfs_node_blockptr(parent, slot - 1);
1338                 gen = btrfs_node_ptr_generation(parent, slot - 1);
1339                 eb = btrfs_find_tree_block(root, block1, blocksize);
1340                 if (eb && btrfs_buffer_uptodate(eb, gen))
1341                         block1 = 0;
1342                 free_extent_buffer(eb);
1343         }
1344         if (slot < nritems) {
1345                 block2 = btrfs_node_blockptr(parent, slot + 1);
1346                 gen = btrfs_node_ptr_generation(parent, slot + 1);
1347                 eb = btrfs_find_tree_block(root, block2, blocksize);
1348                 if (eb && btrfs_buffer_uptodate(eb, gen))
1349                         block2 = 0;
1350                 free_extent_buffer(eb);
1351         }
1352         if (block1 || block2) {
1353                 ret = -EAGAIN;
1354                 btrfs_release_path(root, path);
1355                 if (block1)
1356                         readahead_tree_block(root, block1, blocksize, 0);
1357                 if (block2)
1358                         readahead_tree_block(root, block2, blocksize, 0);
1359
1360                 if (block1) {
1361                         eb = read_tree_block(root, block1, blocksize, 0);
1362                         free_extent_buffer(eb);
1363                 }
1364                 if (block1) {
1365                         eb = read_tree_block(root, block2, blocksize, 0);
1366                         free_extent_buffer(eb);
1367                 }
1368         }
1369         return ret;
1370 }
1371
1372
1373 /*
1374  * when we walk down the tree, it is usually safe to unlock the higher layers
1375  * in the tree.  The exceptions are when our path goes through slot 0, because
1376  * operations on the tree might require changing key pointers higher up in the
1377  * tree.
1378  *
1379  * callers might also have set path->keep_locks, which tells this code to keep
1380  * the lock if the path points to the last slot in the block.  This is part of
1381  * walking through the tree, and selecting the next slot in the higher block.
1382  *
1383  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1384  * if lowest_unlock is 1, level 0 won't be unlocked
1385  */
1386 static noinline void unlock_up(struct btrfs_path *path, int level,
1387                                int lowest_unlock)
1388 {
1389         int i;
1390         int skip_level = level;
1391         int no_skips = 0;
1392         struct extent_buffer *t;
1393
1394         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1395                 if (!path->nodes[i])
1396                         break;
1397                 if (!path->locks[i])
1398                         break;
1399                 if (!no_skips && path->slots[i] == 0) {
1400                         skip_level = i + 1;
1401                         continue;
1402                 }
1403                 if (!no_skips && path->keep_locks) {
1404                         u32 nritems;
1405                         t = path->nodes[i];
1406                         nritems = btrfs_header_nritems(t);
1407                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
1408                                 skip_level = i + 1;
1409                                 continue;
1410                         }
1411                 }
1412                 if (skip_level < i && i >= lowest_unlock)
1413                         no_skips = 1;
1414
1415                 t = path->nodes[i];
1416                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1417                         btrfs_tree_unlock(t);
1418                         path->locks[i] = 0;
1419                 }
1420         }
1421 }
1422
1423 /*
1424  * This releases any locks held in the path starting at level and
1425  * going all the way up to the root.
1426  *
1427  * btrfs_search_slot will keep the lock held on higher nodes in a few
1428  * corner cases, such as COW of the block at slot zero in the node.  This
1429  * ignores those rules, and it should only be called when there are no
1430  * more updates to be done higher up in the tree.
1431  */
1432 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1433 {
1434         int i;
1435
1436         if (path->keep_locks || path->lowest_level)
1437                 return;
1438
1439         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1440                 if (!path->nodes[i])
1441                         continue;
1442                 if (!path->locks[i])
1443                         continue;
1444                 btrfs_tree_unlock(path->nodes[i]);
1445                 path->locks[i] = 0;
1446         }
1447 }
1448
1449 /*
1450  * helper function for btrfs_search_slot.  The goal is to find a block
1451  * in cache without setting the path to blocking.  If we find the block
1452  * we return zero and the path is unchanged.
1453  *
1454  * If we can't find the block, we set the path blocking and do some
1455  * reada.  -EAGAIN is returned and the search must be repeated.
1456  */
1457 static int
1458 read_block_for_search(struct btrfs_trans_handle *trans,
1459                        struct btrfs_root *root, struct btrfs_path *p,
1460                        struct extent_buffer **eb_ret, int level, int slot,
1461                        struct btrfs_key *key)
1462 {
1463         u64 blocknr;
1464         u64 gen;
1465         u32 blocksize;
1466         struct extent_buffer *b = *eb_ret;
1467         struct extent_buffer *tmp;
1468
1469         blocknr = btrfs_node_blockptr(b, slot);
1470         gen = btrfs_node_ptr_generation(b, slot);
1471         blocksize = btrfs_level_size(root, level - 1);
1472
1473         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1474         if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1475                 *eb_ret = tmp;
1476                 return 0;
1477         }
1478
1479         /*
1480          * reduce lock contention at high levels
1481          * of the btree by dropping locks before
1482          * we read.
1483          */
1484         btrfs_release_path(NULL, p);
1485         if (tmp)
1486                 free_extent_buffer(tmp);
1487         if (p->reada)
1488                 reada_for_search(root, p, level, slot, key->objectid);
1489
1490         tmp = read_tree_block(root, blocknr, blocksize, gen);
1491         if (tmp)
1492                 free_extent_buffer(tmp);
1493         return -EAGAIN;
1494 }
1495
1496 /*
1497  * helper function for btrfs_search_slot.  This does all of the checks
1498  * for node-level blocks and does any balancing required based on
1499  * the ins_len.
1500  *
1501  * If no extra work was required, zero is returned.  If we had to
1502  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1503  * start over
1504  */
1505 static int
1506 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1507                        struct btrfs_root *root, struct btrfs_path *p,
1508                        struct extent_buffer *b, int level, int ins_len)
1509 {
1510         int ret;
1511         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1512             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1513                 int sret;
1514
1515                 sret = reada_for_balance(root, p, level);
1516                 if (sret)
1517                         goto again;
1518
1519                 btrfs_set_path_blocking(p);
1520                 sret = split_node(trans, root, p, level);
1521                 btrfs_clear_path_blocking(p, NULL);
1522
1523                 BUG_ON(sret > 0);
1524                 if (sret) {
1525                         ret = sret;
1526                         goto done;
1527                 }
1528                 b = p->nodes[level];
1529         } else if (ins_len < 0 && btrfs_header_nritems(b) <
1530                    BTRFS_NODEPTRS_PER_BLOCK(root) / 4) {
1531                 int sret;
1532
1533                 sret = reada_for_balance(root, p, level);
1534                 if (sret)
1535                         goto again;
1536
1537                 btrfs_set_path_blocking(p);
1538                 sret = balance_level(trans, root, p, level);
1539                 btrfs_clear_path_blocking(p, NULL);
1540
1541                 if (sret) {
1542                         ret = sret;
1543                         goto done;
1544                 }
1545                 b = p->nodes[level];
1546                 if (!b) {
1547                         btrfs_release_path(NULL, p);
1548                         goto again;
1549                 }
1550                 BUG_ON(btrfs_header_nritems(b) == 1);
1551         }
1552         return 0;
1553
1554 again:
1555         ret = -EAGAIN;
1556 done:
1557         return ret;
1558 }
1559
1560 /*
1561  * look for key in the tree.  path is filled in with nodes along the way
1562  * if key is found, we return zero and you can find the item in the leaf
1563  * level of the path (level 0)
1564  *
1565  * If the key isn't found, the path points to the slot where it should
1566  * be inserted, and 1 is returned.  If there are other errors during the
1567  * search a negative error number is returned.
1568  *
1569  * if ins_len > 0, nodes and leaves will be split as we walk down the
1570  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1571  * possible)
1572  */
1573 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1574                       *root, struct btrfs_key *key, struct btrfs_path *p, int
1575                       ins_len, int cow)
1576 {
1577         struct extent_buffer *b;
1578         int slot;
1579         int ret;
1580         int level;
1581         int lowest_unlock = 1;
1582         u8 lowest_level = 0;
1583
1584         lowest_level = p->lowest_level;
1585         WARN_ON(lowest_level && ins_len > 0);
1586         WARN_ON(p->nodes[0] != NULL);
1587
1588         if (ins_len < 0)
1589                 lowest_unlock = 2;
1590
1591 again:
1592         if (p->skip_locking)
1593                 b = btrfs_root_node(root);
1594         else
1595                 b = btrfs_lock_root_node(root);
1596
1597         while (b) {
1598                 level = btrfs_header_level(b);
1599
1600                 /*
1601                  * setup the path here so we can release it under lock
1602                  * contention with the cow code
1603                  */
1604                 p->nodes[level] = b;
1605                 if (!p->skip_locking)
1606                         p->locks[level] = 1;
1607
1608                 if (cow) {
1609                         int wret;
1610
1611                         /*
1612                          * if we don't really need to cow this block
1613                          * then we don't want to set the path blocking,
1614                          * so we test it here
1615                          */
1616                         if (btrfs_header_generation(b) == trans->transid &&
1617                             btrfs_header_owner(b) == root->root_key.objectid &&
1618                             !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) {
1619                                 goto cow_done;
1620                         }
1621                         btrfs_set_path_blocking(p);
1622
1623                         wret = btrfs_cow_block(trans, root, b,
1624                                                p->nodes[level + 1],
1625                                                p->slots[level + 1], &b);
1626                         if (wret) {
1627                                 free_extent_buffer(b);
1628                                 ret = wret;
1629                                 goto done;
1630                         }
1631                 }
1632 cow_done:
1633                 BUG_ON(!cow && ins_len);
1634                 if (level != btrfs_header_level(b))
1635                         WARN_ON(1);
1636                 level = btrfs_header_level(b);
1637
1638                 p->nodes[level] = b;
1639                 if (!p->skip_locking)
1640                         p->locks[level] = 1;
1641
1642                 btrfs_clear_path_blocking(p, NULL);
1643
1644                 /*
1645                  * we have a lock on b and as long as we aren't changing
1646                  * the tree, there is no way to for the items in b to change.
1647                  * It is safe to drop the lock on our parent before we
1648                  * go through the expensive btree search on b.
1649                  *
1650                  * If cow is true, then we might be changing slot zero,
1651                  * which may require changing the parent.  So, we can't
1652                  * drop the lock until after we know which slot we're
1653                  * operating on.
1654                  */
1655                 if (!cow)
1656                         btrfs_unlock_up_safe(p, level + 1);
1657
1658                 ret = check_block(root, p, level);
1659                 if (ret) {
1660                         ret = -1;
1661                         goto done;
1662                 }
1663
1664                 ret = bin_search(b, key, level, &slot);
1665
1666                 if (level != 0) {
1667                         if (ret && slot > 0)
1668                                 slot -= 1;
1669                         p->slots[level] = slot;
1670                         ret = setup_nodes_for_search(trans, root, p, b, level,
1671                                                      ins_len);
1672                         if (ret == -EAGAIN)
1673                                 goto again;
1674                         else if (ret)
1675                                 goto done;
1676                         b = p->nodes[level];
1677                         slot = p->slots[level];
1678
1679                         unlock_up(p, level, lowest_unlock);
1680
1681                         /* this is only true while dropping a snapshot */
1682                         if (level == lowest_level) {
1683                                 ret = 0;
1684                                 goto done;
1685                         }
1686
1687                         ret = read_block_for_search(trans, root, p,
1688                                                     &b, level, slot, key);
1689                         if (ret == -EAGAIN)
1690                                 goto again;
1691
1692                         if (!p->skip_locking) {
1693                                 int lret;
1694
1695                                 btrfs_clear_path_blocking(p, NULL);
1696                                 lret = btrfs_try_spin_lock(b);
1697
1698                                 if (!lret) {
1699                                         btrfs_set_path_blocking(p);
1700                                         btrfs_tree_lock(b);
1701                                         btrfs_clear_path_blocking(p, b);
1702                                 }
1703                         }
1704                 } else {
1705                         p->slots[level] = slot;
1706                         if (ins_len > 0 &&
1707                             btrfs_leaf_free_space(root, b) < ins_len) {
1708                                 int sret;
1709
1710                                 btrfs_set_path_blocking(p);
1711                                 sret = split_leaf(trans, root, key,
1712                                                       p, ins_len, ret == 0);
1713                                 btrfs_clear_path_blocking(p, NULL);
1714
1715                                 BUG_ON(sret > 0);
1716                                 if (sret) {
1717                                         ret = sret;
1718                                         goto done;
1719                                 }
1720                         }
1721                         if (!p->search_for_split)
1722                                 unlock_up(p, level, lowest_unlock);
1723                         goto done;
1724                 }
1725         }
1726         ret = 1;
1727 done:
1728         /*
1729          * we don't really know what they plan on doing with the path
1730          * from here on, so for now just mark it as blocking
1731          */
1732         if (!p->leave_spinning)
1733                 btrfs_set_path_blocking(p);
1734         return ret;
1735 }
1736
1737 int btrfs_merge_path(struct btrfs_trans_handle *trans,
1738                      struct btrfs_root *root,
1739                      struct btrfs_key *node_keys,
1740                      u64 *nodes, int lowest_level)
1741 {
1742         struct extent_buffer *eb;
1743         struct extent_buffer *parent;
1744         struct btrfs_key key;
1745         u64 bytenr;
1746         u64 generation;
1747         u32 blocksize;
1748         int level;
1749         int slot;
1750         int key_match;
1751         int ret;
1752
1753         eb = btrfs_lock_root_node(root);
1754         ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb);
1755         BUG_ON(ret);
1756
1757         btrfs_set_lock_blocking(eb);
1758
1759         parent = eb;
1760         while (1) {
1761                 level = btrfs_header_level(parent);
1762                 if (level == 0 || level <= lowest_level)
1763                         break;
1764
1765                 ret = bin_search(parent, &node_keys[lowest_level], level,
1766                                  &slot);
1767                 if (ret && slot > 0)
1768                         slot--;
1769
1770                 bytenr = btrfs_node_blockptr(parent, slot);
1771                 if (nodes[level - 1] == bytenr)
1772                         break;
1773
1774                 blocksize = btrfs_level_size(root, level - 1);
1775                 generation = btrfs_node_ptr_generation(parent, slot);
1776                 btrfs_node_key_to_cpu(eb, &key, slot);
1777                 key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key));
1778
1779                 if (generation == trans->transid) {
1780                         eb = read_tree_block(root, bytenr, blocksize,
1781                                              generation);
1782                         btrfs_tree_lock(eb);
1783                         btrfs_set_lock_blocking(eb);
1784                 }
1785
1786                 /*
1787                  * if node keys match and node pointer hasn't been modified
1788                  * in the running transaction, we can merge the path. for
1789                  * blocks owened by reloc trees, the node pointer check is
1790                  * skipped, this is because these blocks are fully controlled
1791                  * by the space balance code, no one else can modify them.
1792                  */
1793                 if (!nodes[level - 1] || !key_match ||
1794                     (generation == trans->transid &&
1795                      btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) {
1796                         if (level == 1 || level == lowest_level + 1) {
1797                                 if (generation == trans->transid) {
1798                                         btrfs_tree_unlock(eb);
1799                                         free_extent_buffer(eb);
1800                                 }
1801                                 break;
1802                         }
1803
1804                         if (generation != trans->transid) {
1805                                 eb = read_tree_block(root, bytenr, blocksize,
1806                                                 generation);
1807                                 btrfs_tree_lock(eb);
1808                                 btrfs_set_lock_blocking(eb);
1809                         }
1810
1811                         ret = btrfs_cow_block(trans, root, eb, parent, slot,
1812                                               &eb);
1813                         BUG_ON(ret);
1814
1815                         if (root->root_key.objectid ==
1816                             BTRFS_TREE_RELOC_OBJECTID) {
1817                                 if (!nodes[level - 1]) {
1818                                         nodes[level - 1] = eb->start;
1819                                         memcpy(&node_keys[level - 1], &key,
1820                                                sizeof(node_keys[0]));
1821                                 } else {
1822                                         WARN_ON(1);
1823                                 }
1824                         }
1825
1826                         btrfs_tree_unlock(parent);
1827                         free_extent_buffer(parent);
1828                         parent = eb;
1829                         continue;
1830                 }
1831
1832                 btrfs_set_node_blockptr(parent, slot, nodes[level - 1]);
1833                 btrfs_set_node_ptr_generation(parent, slot, trans->transid);
1834                 btrfs_mark_buffer_dirty(parent);
1835
1836                 ret = btrfs_inc_extent_ref(trans, root,
1837                                         nodes[level - 1],
1838                                         blocksize, parent->start,
1839                                         btrfs_header_owner(parent),
1840                                         btrfs_header_generation(parent),
1841                                         level - 1);
1842                 BUG_ON(ret);
1843
1844                 /*
1845                  * If the block was created in the running transaction,
1846                  * it's possible this is the last reference to it, so we
1847                  * should drop the subtree.
1848                  */
1849                 if (generation == trans->transid) {
1850                         ret = btrfs_drop_subtree(trans, root, eb, parent);
1851                         BUG_ON(ret);
1852                         btrfs_tree_unlock(eb);
1853                         free_extent_buffer(eb);
1854                 } else {
1855                         ret = btrfs_free_extent(trans, root, bytenr,
1856                                         blocksize, parent->start,
1857                                         btrfs_header_owner(parent),
1858                                         btrfs_header_generation(parent),
1859                                         level - 1, 1);
1860                         BUG_ON(ret);
1861                 }
1862                 break;
1863         }
1864         btrfs_tree_unlock(parent);
1865         free_extent_buffer(parent);
1866         return 0;
1867 }
1868
1869 /*
1870  * adjust the pointers going up the tree, starting at level
1871  * making sure the right key of each node is points to 'key'.
1872  * This is used after shifting pointers to the left, so it stops
1873  * fixing up pointers when a given leaf/node is not in slot 0 of the
1874  * higher levels
1875  *
1876  * If this fails to write a tree block, it returns -1, but continues
1877  * fixing up the blocks in ram so the tree is consistent.
1878  */
1879 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1880                           struct btrfs_root *root, struct btrfs_path *path,
1881                           struct btrfs_disk_key *key, int level)
1882 {
1883         int i;
1884         int ret = 0;
1885         struct extent_buffer *t;
1886
1887         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1888                 int tslot = path->slots[i];
1889                 if (!path->nodes[i])
1890                         break;
1891                 t = path->nodes[i];
1892                 btrfs_set_node_key(t, key, tslot);
1893                 btrfs_mark_buffer_dirty(path->nodes[i]);
1894                 if (tslot != 0)
1895                         break;
1896         }
1897         return ret;
1898 }
1899
1900 /*
1901  * update item key.
1902  *
1903  * This function isn't completely safe. It's the caller's responsibility
1904  * that the new key won't break the order
1905  */
1906 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1907                             struct btrfs_root *root, struct btrfs_path *path,
1908                             struct btrfs_key *new_key)
1909 {
1910         struct btrfs_disk_key disk_key;
1911         struct extent_buffer *eb;
1912         int slot;
1913
1914         eb = path->nodes[0];
1915         slot = path->slots[0];
1916         if (slot > 0) {
1917                 btrfs_item_key(eb, &disk_key, slot - 1);
1918                 if (comp_keys(&disk_key, new_key) >= 0)
1919                         return -1;
1920         }
1921         if (slot < btrfs_header_nritems(eb) - 1) {
1922                 btrfs_item_key(eb, &disk_key, slot + 1);
1923                 if (comp_keys(&disk_key, new_key) <= 0)
1924                         return -1;
1925         }
1926
1927         btrfs_cpu_key_to_disk(&disk_key, new_key);
1928         btrfs_set_item_key(eb, &disk_key, slot);
1929         btrfs_mark_buffer_dirty(eb);
1930         if (slot == 0)
1931                 fixup_low_keys(trans, root, path, &disk_key, 1);
1932         return 0;
1933 }
1934
1935 /*
1936  * try to push data from one node into the next node left in the
1937  * tree.
1938  *
1939  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1940  * error, and > 0 if there was no room in the left hand block.
1941  */
1942 static int push_node_left(struct btrfs_trans_handle *trans,
1943                           struct btrfs_root *root, struct extent_buffer *dst,
1944                           struct extent_buffer *src, int empty)
1945 {
1946         int push_items = 0;
1947         int src_nritems;
1948         int dst_nritems;
1949         int ret = 0;
1950
1951         src_nritems = btrfs_header_nritems(src);
1952         dst_nritems = btrfs_header_nritems(dst);
1953         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1954         WARN_ON(btrfs_header_generation(src) != trans->transid);
1955         WARN_ON(btrfs_header_generation(dst) != trans->transid);
1956
1957         if (!empty && src_nritems <= 8)
1958                 return 1;
1959
1960         if (push_items <= 0)
1961                 return 1;
1962
1963         if (empty) {
1964                 push_items = min(src_nritems, push_items);
1965                 if (push_items < src_nritems) {
1966                         /* leave at least 8 pointers in the node if
1967                          * we aren't going to empty it
1968                          */
1969                         if (src_nritems - push_items < 8) {
1970                                 if (push_items <= 8)
1971                                         return 1;
1972                                 push_items -= 8;
1973                         }
1974                 }
1975         } else
1976                 push_items = min(src_nritems - 8, push_items);
1977
1978         copy_extent_buffer(dst, src,
1979                            btrfs_node_key_ptr_offset(dst_nritems),
1980                            btrfs_node_key_ptr_offset(0),
1981                            push_items * sizeof(struct btrfs_key_ptr));
1982
1983         if (push_items < src_nritems) {
1984                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1985                                       btrfs_node_key_ptr_offset(push_items),
1986                                       (src_nritems - push_items) *
1987                                       sizeof(struct btrfs_key_ptr));
1988         }
1989         btrfs_set_header_nritems(src, src_nritems - push_items);
1990         btrfs_set_header_nritems(dst, dst_nritems + push_items);
1991         btrfs_mark_buffer_dirty(src);
1992         btrfs_mark_buffer_dirty(dst);
1993
1994         ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items);
1995         BUG_ON(ret);
1996
1997         return ret;
1998 }
1999
2000 /*
2001  * try to push data from one node into the next node right in the
2002  * tree.
2003  *
2004  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2005  * error, and > 0 if there was no room in the right hand block.
2006  *
2007  * this will  only push up to 1/2 the contents of the left node over
2008  */
2009 static int balance_node_right(struct btrfs_trans_handle *trans,
2010                               struct btrfs_root *root,
2011                               struct extent_buffer *dst,
2012                               struct extent_buffer *src)
2013 {
2014         int push_items = 0;
2015         int max_push;
2016         int src_nritems;
2017         int dst_nritems;
2018         int ret = 0;
2019
2020         WARN_ON(btrfs_header_generation(src) != trans->transid);
2021         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2022
2023         src_nritems = btrfs_header_nritems(src);
2024         dst_nritems = btrfs_header_nritems(dst);
2025         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2026         if (push_items <= 0)
2027                 return 1;
2028
2029         if (src_nritems < 4)
2030                 return 1;
2031
2032         max_push = src_nritems / 2 + 1;
2033         /* don't try to empty the node */
2034         if (max_push >= src_nritems)
2035                 return 1;
2036
2037         if (max_push < push_items)
2038                 push_items = max_push;
2039
2040         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2041                                       btrfs_node_key_ptr_offset(0),
2042                                       (dst_nritems) *
2043                                       sizeof(struct btrfs_key_ptr));
2044
2045         copy_extent_buffer(dst, src,
2046                            btrfs_node_key_ptr_offset(0),
2047                            btrfs_node_key_ptr_offset(src_nritems - push_items),
2048                            push_items * sizeof(struct btrfs_key_ptr));
2049
2050         btrfs_set_header_nritems(src, src_nritems - push_items);
2051         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2052
2053         btrfs_mark_buffer_dirty(src);
2054         btrfs_mark_buffer_dirty(dst);
2055
2056         ret = btrfs_update_ref(trans, root, src, dst, 0, push_items);
2057         BUG_ON(ret);
2058
2059         return ret;
2060 }
2061
2062 /*
2063  * helper function to insert a new root level in the tree.
2064  * A new node is allocated, and a single item is inserted to
2065  * point to the existing root
2066  *
2067  * returns zero on success or < 0 on failure.
2068  */
2069 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2070                            struct btrfs_root *root,
2071                            struct btrfs_path *path, int level)
2072 {
2073         u64 lower_gen;
2074         struct extent_buffer *lower;
2075         struct extent_buffer *c;
2076         struct extent_buffer *old;
2077         struct btrfs_disk_key lower_key;
2078         int ret;
2079
2080         BUG_ON(path->nodes[level]);
2081         BUG_ON(path->nodes[level-1] != root->node);
2082
2083         lower = path->nodes[level-1];
2084         if (level == 1)
2085                 btrfs_item_key(lower, &lower_key, 0);
2086         else
2087                 btrfs_node_key(lower, &lower_key, 0);
2088
2089         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2090                                    root->root_key.objectid, trans->transid,
2091                                    level, root->node->start, 0);
2092         if (IS_ERR(c))
2093                 return PTR_ERR(c);
2094
2095         memset_extent_buffer(c, 0, 0, root->nodesize);
2096         btrfs_set_header_nritems(c, 1);
2097         btrfs_set_header_level(c, level);
2098         btrfs_set_header_bytenr(c, c->start);
2099         btrfs_set_header_generation(c, trans->transid);
2100         btrfs_set_header_owner(c, root->root_key.objectid);
2101
2102         write_extent_buffer(c, root->fs_info->fsid,
2103                             (unsigned long)btrfs_header_fsid(c),
2104                             BTRFS_FSID_SIZE);
2105
2106         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2107                             (unsigned long)btrfs_header_chunk_tree_uuid(c),
2108                             BTRFS_UUID_SIZE);
2109
2110         btrfs_set_node_key(c, &lower_key, 0);
2111         btrfs_set_node_blockptr(c, 0, lower->start);
2112         lower_gen = btrfs_header_generation(lower);
2113         WARN_ON(lower_gen != trans->transid);
2114
2115         btrfs_set_node_ptr_generation(c, 0, lower_gen);
2116
2117         btrfs_mark_buffer_dirty(c);
2118
2119         spin_lock(&root->node_lock);
2120         old = root->node;
2121         root->node = c;
2122         spin_unlock(&root->node_lock);
2123
2124         ret = btrfs_update_extent_ref(trans, root, lower->start,
2125                                       lower->len, lower->start, c->start,
2126                                       root->root_key.objectid,
2127                                       trans->transid, level - 1);
2128         BUG_ON(ret);
2129
2130         /* the super has an extra ref to root->node */
2131         free_extent_buffer(old);
2132
2133         add_root_to_dirty_list(root);
2134         extent_buffer_get(c);
2135         path->nodes[level] = c;
2136         path->locks[level] = 1;
2137         path->slots[level] = 0;
2138         return 0;
2139 }
2140
2141 /*
2142  * worker function to insert a single pointer in a node.
2143  * the node should have enough room for the pointer already
2144  *
2145  * slot and level indicate where you want the key to go, and
2146  * blocknr is the block the key points to.
2147  *
2148  * returns zero on success and < 0 on any error
2149  */
2150 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2151                       *root, struct btrfs_path *path, struct btrfs_disk_key
2152                       *key, u64 bytenr, int slot, int level)
2153 {
2154         struct extent_buffer *lower;
2155         int nritems;
2156
2157         BUG_ON(!path->nodes[level]);
2158         lower = path->nodes[level];
2159         nritems = btrfs_header_nritems(lower);
2160         BUG_ON(slot > nritems);
2161         if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2162                 BUG();
2163         if (slot != nritems) {
2164                 memmove_extent_buffer(lower,
2165                               btrfs_node_key_ptr_offset(slot + 1),
2166                               btrfs_node_key_ptr_offset(slot),
2167                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
2168         }
2169         btrfs_set_node_key(lower, key, slot);
2170         btrfs_set_node_blockptr(lower, slot, bytenr);
2171         WARN_ON(trans->transid == 0);
2172         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2173         btrfs_set_header_nritems(lower, nritems + 1);
2174         btrfs_mark_buffer_dirty(lower);
2175         return 0;
2176 }
2177
2178 /*
2179  * split the node at the specified level in path in two.
2180  * The path is corrected to point to the appropriate node after the split
2181  *
2182  * Before splitting this tries to make some room in the node by pushing
2183  * left and right, if either one works, it returns right away.
2184  *
2185  * returns 0 on success and < 0 on failure
2186  */
2187 static noinline int split_node(struct btrfs_trans_handle *trans,
2188                                struct btrfs_root *root,
2189                                struct btrfs_path *path, int level)
2190 {
2191         struct extent_buffer *c;
2192         struct extent_buffer *split;
2193         struct btrfs_disk_key disk_key;
2194         int mid;
2195         int ret;
2196         int wret;
2197         u32 c_nritems;
2198
2199         c = path->nodes[level];
2200         WARN_ON(btrfs_header_generation(c) != trans->transid);
2201         if (c == root->node) {
2202                 /* trying to split the root, lets make a new one */
2203                 ret = insert_new_root(trans, root, path, level + 1);
2204                 if (ret)
2205                         return ret;
2206         } else if (!trans->transaction->delayed_refs.flushing) {
2207                 ret = push_nodes_for_insert(trans, root, path, level);
2208                 c = path->nodes[level];
2209                 if (!ret && btrfs_header_nritems(c) <
2210                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2211                         return 0;
2212                 if (ret < 0)
2213                         return ret;
2214         }
2215
2216         c_nritems = btrfs_header_nritems(c);
2217
2218         split = btrfs_alloc_free_block(trans, root, root->nodesize,
2219                                         path->nodes[level + 1]->start,
2220                                         root->root_key.objectid,
2221                                         trans->transid, level, c->start, 0);
2222         if (IS_ERR(split))
2223                 return PTR_ERR(split);
2224
2225         btrfs_set_header_flags(split, btrfs_header_flags(c));
2226         btrfs_set_header_level(split, btrfs_header_level(c));
2227         btrfs_set_header_bytenr(split, split->start);
2228         btrfs_set_header_generation(split, trans->transid);
2229         btrfs_set_header_owner(split, root->root_key.objectid);
2230         btrfs_set_header_flags(split, 0);
2231         write_extent_buffer(split, root->fs_info->fsid,
2232                             (unsigned long)btrfs_header_fsid(split),
2233                             BTRFS_FSID_SIZE);
2234         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2235                             (unsigned long)btrfs_header_chunk_tree_uuid(split),
2236                             BTRFS_UUID_SIZE);
2237
2238         mid = (c_nritems + 1) / 2;
2239
2240         copy_extent_buffer(split, c,
2241                            btrfs_node_key_ptr_offset(0),
2242                            btrfs_node_key_ptr_offset(mid),
2243                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2244         btrfs_set_header_nritems(split, c_nritems - mid);
2245         btrfs_set_header_nritems(c, mid);
2246         ret = 0;
2247
2248         btrfs_mark_buffer_dirty(c);
2249         btrfs_mark_buffer_dirty(split);
2250
2251         btrfs_node_key(split, &disk_key, 0);
2252         wret = insert_ptr(trans, root, path, &disk_key, split->start,
2253                           path->slots[level + 1] + 1,
2254                           level + 1);
2255         if (wret)
2256                 ret = wret;
2257
2258         ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid);
2259         BUG_ON(ret);
2260
2261         if (path->slots[level] >= mid) {
2262                 path->slots[level] -= mid;
2263                 btrfs_tree_unlock(c);
2264                 free_extent_buffer(c);
2265                 path->nodes[level] = split;
2266                 path->slots[level + 1] += 1;
2267         } else {
2268                 btrfs_tree_unlock(split);
2269                 free_extent_buffer(split);
2270         }
2271         return ret;
2272 }
2273
2274 /*
2275  * how many bytes are required to store the items in a leaf.  start
2276  * and nr indicate which items in the leaf to check.  This totals up the
2277  * space used both by the item structs and the item data
2278  */
2279 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2280 {
2281         int data_len;
2282         int nritems = btrfs_header_nritems(l);
2283         int end = min(nritems, start + nr) - 1;
2284
2285         if (!nr)
2286                 return 0;
2287         data_len = btrfs_item_end_nr(l, start);
2288         data_len = data_len - btrfs_item_offset_nr(l, end);
2289         data_len += sizeof(struct btrfs_item) * nr;
2290         WARN_ON(data_len < 0);
2291         return data_len;
2292 }
2293
2294 /*
2295  * The space between the end of the leaf items and
2296  * the start of the leaf data.  IOW, how much room
2297  * the leaf has left for both items and data
2298  */
2299 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2300                                    struct extent_buffer *leaf)
2301 {
2302         int nritems = btrfs_header_nritems(leaf);
2303         int ret;
2304         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2305         if (ret < 0) {
2306                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2307                        "used %d nritems %d\n",
2308                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2309                        leaf_space_used(leaf, 0, nritems), nritems);
2310         }
2311         return ret;
2312 }
2313
2314 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2315                                       struct btrfs_root *root,
2316                                       struct btrfs_path *path,
2317                                       int data_size, int empty,
2318                                       struct extent_buffer *right,
2319                                       int free_space, u32 left_nritems)
2320 {
2321         struct extent_buffer *left = path->nodes[0];
2322         struct extent_buffer *upper = path->nodes[1];
2323         struct btrfs_disk_key disk_key;
2324         int slot;
2325         u32 i;
2326         int push_space = 0;
2327         int push_items = 0;
2328         struct btrfs_item *item;
2329         u32 nr;
2330         u32 right_nritems;
2331         u32 data_end;
2332         u32 this_item_size;
2333         int ret;
2334
2335         if (empty)
2336                 nr = 0;
2337         else
2338                 nr = 1;
2339
2340         if (path->slots[0] >= left_nritems)
2341                 push_space += data_size;
2342
2343         slot = path->slots[1];
2344         i = left_nritems - 1;
2345         while (i >= nr) {
2346                 item = btrfs_item_nr(left, i);
2347
2348                 if (!empty && push_items > 0) {
2349                         if (path->slots[0] > i)
2350                                 break;
2351                         if (path->slots[0] == i) {
2352                                 int space = btrfs_leaf_free_space(root, left);
2353                                 if (space + push_space * 2 > free_space)
2354                                         break;
2355                         }
2356                 }
2357
2358                 if (path->slots[0] == i)
2359                         push_space += data_size;
2360
2361                 if (!left->map_token) {
2362                         map_extent_buffer(left, (unsigned long)item,
2363                                         sizeof(struct btrfs_item),
2364                                         &left->map_token, &left->kaddr,
2365                                         &left->map_start, &left->map_len,
2366                                         KM_USER1);
2367                 }
2368
2369                 this_item_size = btrfs_item_size(left, item);
2370                 if (this_item_size + sizeof(*item) + push_space > free_space)
2371                         break;
2372
2373                 push_items++;
2374                 push_space += this_item_size + sizeof(*item);
2375                 if (i == 0)
2376                         break;
2377                 i--;
2378         }
2379         if (left->map_token) {
2380                 unmap_extent_buffer(left, left->map_token, KM_USER1);
2381                 left->map_token = NULL;
2382         }
2383
2384         if (push_items == 0)
2385                 goto out_unlock;
2386
2387         if (!empty && push_items == left_nritems)
2388                 WARN_ON(1);
2389
2390         /* push left to right */
2391         right_nritems = btrfs_header_nritems(right);
2392
2393         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2394         push_space -= leaf_data_end(root, left);
2395
2396         /* make room in the right data area */
2397         data_end = leaf_data_end(root, right);
2398         memmove_extent_buffer(right,
2399                               btrfs_leaf_data(right) + data_end - push_space,
2400                               btrfs_leaf_data(right) + data_end,
2401                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
2402
2403         /* copy from the left data area */
2404         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2405                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2406                      btrfs_leaf_data(left) + leaf_data_end(root, left),
2407                      push_space);
2408
2409         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2410                               btrfs_item_nr_offset(0),
2411                               right_nritems * sizeof(struct btrfs_item));
2412
2413         /* copy the items from left to right */
2414         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2415                    btrfs_item_nr_offset(left_nritems - push_items),
2416                    push_items * sizeof(struct btrfs_item));
2417
2418         /* update the item pointers */
2419         right_nritems += push_items;
2420         btrfs_set_header_nritems(right, right_nritems);
2421         push_space = BTRFS_LEAF_DATA_SIZE(root);
2422         for (i = 0; i < right_nritems; i++) {
2423                 item = btrfs_item_nr(right, i);
2424                 if (!right->map_token) {
2425                         map_extent_buffer(right, (unsigned long)item,
2426                                         sizeof(struct btrfs_item),
2427                                         &right->map_token, &right->kaddr,
2428                                         &right->map_start, &right->map_len,
2429                                         KM_USER1);
2430                 }
2431                 push_space -= btrfs_item_size(right, item);
2432                 btrfs_set_item_offset(right, item, push_space);
2433         }
2434
2435         if (right->map_token) {
2436                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2437                 right->map_token = NULL;
2438         }
2439         left_nritems -= push_items;
2440         btrfs_set_header_nritems(left, left_nritems);
2441
2442         if (left_nritems)
2443                 btrfs_mark_buffer_dirty(left);
2444         btrfs_mark_buffer_dirty(right);
2445
2446         ret = btrfs_update_ref(trans, root, left, right, 0, push_items);
2447         BUG_ON(ret);
2448
2449         btrfs_item_key(right, &disk_key, 0);
2450         btrfs_set_node_key(upper, &disk_key, slot + 1);
2451         btrfs_mark_buffer_dirty(upper);
2452
2453         /* then fixup the leaf pointer in the path */
2454         if (path->slots[0] >= left_nritems) {
2455                 path->slots[0] -= left_nritems;
2456                 if (btrfs_header_nritems(path->nodes[0]) == 0)
2457                         clean_tree_block(trans, root, path->nodes[0]);
2458                 btrfs_tree_unlock(path->nodes[0]);
2459                 free_extent_buffer(path->nodes[0]);
2460                 path->nodes[0] = right;
2461                 path->slots[1] += 1;
2462         } else {
2463                 btrfs_tree_unlock(right);
2464                 free_extent_buffer(right);
2465         }
2466         return 0;
2467
2468 out_unlock:
2469         btrfs_tree_unlock(right);
2470         free_extent_buffer(right);
2471         return 1;
2472 }
2473
2474 /*
2475  * push some data in the path leaf to the right, trying to free up at
2476  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2477  *
2478  * returns 1 if the push failed because the other node didn't have enough
2479  * room, 0 if everything worked out and < 0 if there were major errors.
2480  */
2481 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2482                            *root, struct btrfs_path *path, int data_size,
2483                            int empty)
2484 {
2485         struct extent_buffer *left = path->nodes[0];
2486         struct extent_buffer *right;
2487         struct extent_buffer *upper;
2488         int slot;
2489         int free_space;
2490         u32 left_nritems;
2491         int ret;
2492
2493         if (!path->nodes[1])
2494                 return 1;
2495
2496         slot = path->slots[1];
2497         upper = path->nodes[1];
2498         if (slot >= btrfs_header_nritems(upper) - 1)
2499                 return 1;
2500
2501         btrfs_assert_tree_locked(path->nodes[1]);
2502
2503         right = read_node_slot(root, upper, slot + 1);
2504         btrfs_tree_lock(right);
2505         btrfs_set_lock_blocking(right);
2506
2507         free_space = btrfs_leaf_free_space(root, right);
2508         if (free_space < data_size)
2509                 goto out_unlock;
2510
2511         /* cow and double check */
2512         ret = btrfs_cow_block(trans, root, right, upper,
2513                               slot + 1, &right);
2514         if (ret)
2515                 goto out_unlock;
2516
2517         free_space = btrfs_leaf_free_space(root, right);
2518         if (free_space < data_size)
2519                 goto out_unlock;
2520
2521         left_nritems = btrfs_header_nritems(left);
2522         if (left_nritems == 0)
2523                 goto out_unlock;
2524
2525         return __push_leaf_right(trans, root, path, data_size, empty,
2526                                 right, free_space, left_nritems);
2527 out_unlock:
2528         btrfs_tree_unlock(right);
2529         free_extent_buffer(right);
2530         return 1;
2531 }
2532
2533 /*
2534  * push some data in the path leaf to the left, trying to free up at
2535  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2536  */
2537 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2538                                      struct btrfs_root *root,
2539                                      struct btrfs_path *path, int data_size,
2540                                      int empty, struct extent_buffer *left,
2541                                      int free_space, int right_nritems)
2542 {
2543         struct btrfs_disk_key disk_key;
2544         struct extent_buffer *right = path->nodes[0];
2545         int slot;
2546         int i;
2547         int push_space = 0;
2548         int push_items = 0;
2549         struct btrfs_item *item;
2550         u32 old_left_nritems;
2551         u32 nr;
2552         int ret = 0;
2553         int wret;
2554         u32 this_item_size;
2555         u32 old_left_item_size;
2556
2557         slot = path->slots[1];
2558
2559         if (empty)
2560                 nr = right_nritems;
2561         else
2562                 nr = right_nritems - 1;
2563
2564         for (i = 0; i < nr; i++) {
2565                 item = btrfs_item_nr(right, i);
2566                 if (!right->map_token) {
2567                         map_extent_buffer(right, (unsigned long)item,
2568                                         sizeof(struct btrfs_item),
2569                                         &right->map_token, &right->kaddr,
2570                                         &right->map_start, &right->map_len,
2571                                         KM_USER1);
2572                 }
2573
2574                 if (!empty && push_items > 0) {
2575                         if (path->slots[0] < i)
2576                                 break;
2577                         if (path->slots[0] == i) {
2578                                 int space = btrfs_leaf_free_space(root, right);
2579                                 if (space + push_space * 2 > free_space)
2580                                         break;
2581                         }
2582                 }
2583
2584                 if (path->slots[0] == i)
2585                         push_space += data_size;
2586
2587                 this_item_size = btrfs_item_size(right, item);
2588                 if (this_item_size + sizeof(*item) + push_space > free_space)
2589                         break;
2590
2591                 push_items++;
2592                 push_space += this_item_size + sizeof(*item);
2593         }
2594
2595         if (right->map_token) {
2596                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2597                 right->map_token = NULL;
2598         }
2599
2600         if (push_items == 0) {
2601                 ret = 1;
2602                 goto out;
2603         }
2604         if (!empty && push_items == btrfs_header_nritems(right))
2605                 WARN_ON(1);
2606
2607         /* push data from right to left */
2608         copy_extent_buffer(left, right,
2609                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
2610                            btrfs_item_nr_offset(0),
2611                            push_items * sizeof(struct btrfs_item));
2612
2613         push_space = BTRFS_LEAF_DATA_SIZE(root) -
2614                      btrfs_item_offset_nr(right, push_items - 1);
2615
2616         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2617                      leaf_data_end(root, left) - push_space,
2618                      btrfs_leaf_data(right) +
2619                      btrfs_item_offset_nr(right, push_items - 1),
2620                      push_space);
2621         old_left_nritems = btrfs_header_nritems(left);
2622         BUG_ON(old_left_nritems <= 0);
2623
2624         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2625         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2626                 u32 ioff;
2627
2628                 item = btrfs_item_nr(left, i);
2629                 if (!left->map_token) {
2630                         map_extent_buffer(left, (unsigned long)item,
2631                                         sizeof(struct btrfs_item),
2632                                         &left->map_token, &left->kaddr,
2633                                         &left->map_start, &left->map_len,
2634                                         KM_USER1);
2635                 }
2636
2637                 ioff = btrfs_item_offset(left, item);
2638                 btrfs_set_item_offset(left, item,
2639                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2640         }
2641         btrfs_set_header_nritems(left, old_left_nritems + push_items);
2642         if (left->map_token) {
2643                 unmap_extent_buffer(left, left->map_token, KM_USER1);
2644                 left->map_token = NULL;
2645         }
2646
2647         /* fixup right node */
2648         if (push_items > right_nritems) {
2649                 printk(KERN_CRIT "push items %d nr %u\n", push_items,
2650                        right_nritems);
2651                 WARN_ON(1);
2652         }
2653
2654         if (push_items < right_nritems) {
2655                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2656                                                   leaf_data_end(root, right);
2657                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
2658                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
2659                                       btrfs_leaf_data(right) +
2660                                       leaf_data_end(root, right), push_space);
2661
2662                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2663                               btrfs_item_nr_offset(push_items),
2664                              (btrfs_header_nritems(right) - push_items) *
2665                              sizeof(struct btrfs_item));
2666         }
2667         right_nritems -= push_items;
2668         btrfs_set_header_nritems(right, right_nritems);
2669         push_space = BTRFS_LEAF_DATA_SIZE(root);
2670         for (i = 0; i < right_nritems; i++) {
2671                 item = btrfs_item_nr(right, i);
2672
2673                 if (!right->map_token) {
2674                         map_extent_buffer(right, (unsigned long)item,
2675                                         sizeof(struct btrfs_item),
2676                                         &right->map_token, &right->kaddr,
2677                                         &right->map_start, &right->map_len,
2678                                         KM_USER1);
2679                 }
2680
2681                 push_space = push_space - btrfs_item_size(right, item);
2682                 btrfs_set_item_offset(right, item, push_space);
2683         }
2684         if (right->map_token) {
2685                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2686                 right->map_token = NULL;
2687         }
2688
2689         btrfs_mark_buffer_dirty(left);
2690         if (right_nritems)
2691                 btrfs_mark_buffer_dirty(right);
2692
2693         ret = btrfs_update_ref(trans, root, right, left,
2694                                old_left_nritems, push_items);
2695         BUG_ON(ret);
2696
2697         btrfs_item_key(right, &disk_key, 0);
2698         wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2699         if (wret)
2700                 ret = wret;
2701
2702         /* then fixup the leaf pointer in the path */
2703         if (path->slots[0] < push_items) {
2704                 path->slots[0] += old_left_nritems;
2705                 if (btrfs_header_nritems(path->nodes[0]) == 0)
2706                         clean_tree_block(trans, root, path->nodes[0]);
2707                 btrfs_tree_unlock(path->nodes[0]);
2708                 free_extent_buffer(path->nodes[0]);
2709                 path->nodes[0] = left;
2710                 path->slots[1] -= 1;
2711         } else {
2712                 btrfs_tree_unlock(left);
2713                 free_extent_buffer(left);
2714                 path->slots[0] -= push_items;
2715         }
2716         BUG_ON(path->slots[0] < 0);
2717         return ret;
2718 out:
2719         btrfs_tree_unlock(left);
2720         free_extent_buffer(left);
2721         return ret;
2722 }
2723
2724 /*
2725  * push some data in the path leaf to the left, trying to free up at
2726  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2727  */
2728 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2729                           *root, struct btrfs_path *path, int data_size,
2730                           int empty)
2731 {
2732         struct extent_buffer *right = path->nodes[0];
2733         struct extent_buffer *left;
2734         int slot;
2735         int free_space;
2736         u32 right_nritems;
2737         int ret = 0;
2738
2739         slot = path->slots[1];
2740         if (slot == 0)
2741                 return 1;
2742         if (!path->nodes[1])
2743                 return 1;
2744
2745         right_nritems = btrfs_header_nritems(right);
2746         if (right_nritems == 0)
2747                 return 1;
2748
2749         btrfs_assert_tree_locked(path->nodes[1]);
2750
2751         left = read_node_slot(root, path->nodes[1], slot - 1);
2752         btrfs_tree_lock(left);
2753         btrfs_set_lock_blocking(left);
2754
2755         free_space = btrfs_leaf_free_space(root, left);
2756         if (free_space < data_size) {
2757                 ret = 1;
2758                 goto out;
2759         }
2760
2761         /* cow and double check */
2762         ret = btrfs_cow_block(trans, root, left,
2763                               path->nodes[1], slot - 1, &left);
2764         if (ret) {
2765                 /* we hit -ENOSPC, but it isn't fatal here */
2766                 ret = 1;
2767                 goto out;
2768         }
2769
2770         free_space = btrfs_leaf_free_space(root, left);
2771         if (free_space < data_size) {
2772                 ret = 1;
2773                 goto out;
2774         }
2775
2776         return __push_leaf_left(trans, root, path, data_size,
2777                                empty, left, free_space, right_nritems);
2778 out:
2779         btrfs_tree_unlock(left);
2780         free_extent_buffer(left);
2781         return ret;
2782 }
2783
2784 /*
2785  * split the path's leaf in two, making sure there is at least data_size
2786  * available for the resulting leaf level of the path.
2787  *
2788  * returns 0 if all went well and < 0 on failure.
2789  */
2790 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2791                                struct btrfs_root *root,
2792                                struct btrfs_path *path,
2793                                struct extent_buffer *l,
2794                                struct extent_buffer *right,
2795                                int slot, int mid, int nritems)
2796 {
2797         int data_copy_size;
2798         int rt_data_off;
2799         int i;
2800         int ret = 0;
2801         int wret;
2802         struct btrfs_disk_key disk_key;
2803
2804         nritems = nritems - mid;
2805         btrfs_set_header_nritems(right, nritems);
2806         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2807
2808         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2809                            btrfs_item_nr_offset(mid),
2810                            nritems * sizeof(struct btrfs_item));
2811
2812         copy_extent_buffer(right, l,
2813                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2814                      data_copy_size, btrfs_leaf_data(l) +
2815                      leaf_data_end(root, l), data_copy_size);
2816
2817         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2818                       btrfs_item_end_nr(l, mid);
2819
2820         for (i = 0; i < nritems; i++) {
2821                 struct btrfs_item *item = btrfs_item_nr(right, i);
2822                 u32 ioff;
2823
2824                 if (!right->map_token) {
2825                         map_extent_buffer(right, (unsigned long)item,
2826                                         sizeof(struct btrfs_item),
2827                                         &right->map_token, &right->kaddr,
2828                                         &right->map_start, &right->map_len,
2829                                         KM_USER1);
2830                 }
2831
2832                 ioff = btrfs_item_offset(right, item);
2833                 btrfs_set_item_offset(right, item, ioff + rt_data_off);
2834         }
2835
2836         if (right->map_token) {
2837                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2838                 right->map_token = NULL;
2839         }
2840
2841         btrfs_set_header_nritems(l, mid);
2842         ret = 0;
2843         btrfs_item_key(right, &disk_key, 0);
2844         wret = insert_ptr(trans, root, path, &disk_key, right->start,
2845                           path->slots[1] + 1, 1);
2846         if (wret)
2847                 ret = wret;
2848
2849         btrfs_mark_buffer_dirty(right);
2850         btrfs_mark_buffer_dirty(l);
2851         BUG_ON(path->slots[0] != slot);
2852
2853         ret = btrfs_update_ref(trans, root, l, right, 0, nritems);
2854         BUG_ON(ret);
2855
2856         if (mid <= slot) {
2857                 btrfs_tree_unlock(path->nodes[0]);
2858                 free_extent_buffer(path->nodes[0]);
2859                 path->nodes[0] = right;
2860                 path->slots[0] -= mid;
2861                 path->slots[1] += 1;
2862         } else {
2863                 btrfs_tree_unlock(right);
2864                 free_extent_buffer(right);
2865         }
2866
2867         BUG_ON(path->slots[0] < 0);
2868
2869         return ret;
2870 }
2871
2872 /*
2873  * split the path's leaf in two, making sure there is at least data_size
2874  * available for the resulting leaf level of the path.
2875  *
2876  * returns 0 if all went well and < 0 on failure.
2877  */
2878 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2879                                struct btrfs_root *root,
2880                                struct btrfs_key *ins_key,
2881                                struct btrfs_path *path, int data_size,
2882                                int extend)
2883 {
2884         struct extent_buffer *l;
2885         u32 nritems;
2886         int mid;
2887         int slot;
2888         struct extent_buffer *right;
2889         int ret = 0;
2890         int wret;
2891         int double_split;
2892         int num_doubles = 0;
2893
2894         /* first try to make some room by pushing left and right */
2895         if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY &&
2896             !trans->transaction->delayed_refs.flushing) {
2897                 wret = push_leaf_right(trans, root, path, data_size, 0);
2898                 if (wret < 0)
2899                         return wret;
2900                 if (wret) {
2901                         wret = push_leaf_left(trans, root, path, data_size, 0);
2902                         if (wret < 0)
2903                                 return wret;
2904                 }
2905                 l = path->nodes[0];
2906
2907                 /* did the pushes work? */
2908                 if (btrfs_leaf_free_space(root, l) >= data_size)
2909                         return 0;
2910         }
2911
2912         if (!path->nodes[1]) {
2913                 ret = insert_new_root(trans, root, path, 1);
2914                 if (ret)
2915                         return ret;
2916         }
2917 again:
2918         double_split = 0;
2919         l = path->nodes[0];
2920         slot = path->slots[0];
2921         nritems = btrfs_header_nritems(l);
2922         mid = (nritems + 1) / 2;
2923
2924         right = btrfs_alloc_free_block(trans, root, root->leafsize,
2925                                         path->nodes[1]->start,
2926                                         root->root_key.objectid,
2927                                         trans->transid, 0, l->start, 0);
2928         if (IS_ERR(right)) {
2929                 BUG_ON(1);
2930                 return PTR_ERR(right);
2931         }
2932
2933         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2934         btrfs_set_header_bytenr(right, right->start);
2935         btrfs_set_header_generation(right, trans->transid);
2936         btrfs_set_header_owner(right, root->root_key.objectid);
2937         btrfs_set_header_level(right, 0);
2938         write_extent_buffer(right, root->fs_info->fsid,
2939                             (unsigned long)btrfs_header_fsid(right),
2940                             BTRFS_FSID_SIZE);
2941
2942         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2943                             (unsigned long)btrfs_header_chunk_tree_uuid(right),
2944                             BTRFS_UUID_SIZE);
2945
2946         if (mid <= slot) {
2947                 if (nritems == 1 ||
2948                     leaf_space_used(l, mid, nritems - mid) + data_size >
2949                         BTRFS_LEAF_DATA_SIZE(root)) {
2950                         if (slot >= nritems) {
2951                                 struct btrfs_disk_key disk_key;
2952
2953                                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2954                                 btrfs_set_header_nritems(right, 0);
2955                                 wret = insert_ptr(trans, root, path,
2956                                                   &disk_key, right->start,
2957                                                   path->slots[1] + 1, 1);
2958                                 if (wret)
2959                                         ret = wret;
2960
2961                                 btrfs_tree_unlock(path->nodes[0]);
2962                                 free_extent_buffer(path->nodes[0]);
2963                                 path->nodes[0] = right;
2964                                 path->slots[0] = 0;
2965                                 path->slots[1] += 1;
2966                                 btrfs_mark_buffer_dirty(right);
2967                                 return ret;
2968                         }
2969                         mid = slot;
2970                         if (mid != nritems &&
2971                             leaf_space_used(l, mid, nritems - mid) +
2972                             data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2973                                 double_split = 1;
2974                         }
2975                 }
2976         } else {
2977                 if (leaf_space_used(l, 0, mid) + data_size >
2978                         BTRFS_LEAF_DATA_SIZE(root)) {
2979                         if (!extend && data_size && slot == 0) {
2980                                 struct btrfs_disk_key disk_key;
2981
2982                                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2983                                 btrfs_set_header_nritems(right, 0);
2984                                 wret = insert_ptr(trans, root, path,
2985                                                   &disk_key,
2986                                                   right->start,
2987                                                   path->slots[1], 1);
2988                                 if (wret)
2989                                         ret = wret;
2990                                 btrfs_tree_unlock(path->nodes[0]);
2991                                 free_extent_buffer(path->nodes[0]);
2992                                 path->nodes[0] = right;
2993                                 path->slots[0] = 0;
2994                                 if (path->slots[1] == 0) {
2995                                         wret = fixup_low_keys(trans, root,
2996                                                       path, &disk_key, 1);
2997                                         if (wret)
2998                                                 ret = wret;
2999                                 }
3000                                 btrfs_mark_buffer_dirty(right);
3001                                 return ret;
3002                         } else if ((extend || !data_size) && slot == 0) {
3003                                 mid = 1;
3004                         } else {
3005                                 mid = slot;
3006                                 if (mid != nritems &&
3007                                     leaf_space_used(l, mid, nritems - mid) +
3008                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3009                                         double_split = 1;
3010                                 }
3011                         }
3012                 }
3013         }
3014
3015         ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3016         BUG_ON(ret);
3017
3018         if (double_split) {
3019                 BUG_ON(num_doubles != 0);
3020                 num_doubles++;
3021                 goto again;
3022         }
3023
3024         return ret;
3025 }
3026
3027 /*
3028  * This function splits a single item into two items,
3029  * giving 'new_key' to the new item and splitting the
3030  * old one at split_offset (from the start of the item).
3031  *
3032  * The path may be released by this operation.  After
3033  * the split, the path is pointing to the old item.  The
3034  * new item is going to be in the same node as the old one.
3035  *
3036  * Note, the item being split must be smaller enough to live alone on
3037  * a tree block with room for one extra struct btrfs_item
3038  *
3039  * This allows us to split the item in place, keeping a lock on the
3040  * leaf the entire time.
3041  */
3042 int btrfs_split_item(struct btrfs_trans_handle *trans,
3043                      struct btrfs_root *root,
3044                      struct btrfs_path *path,
3045                      struct btrfs_key *new_key,
3046                      unsigned long split_offset)
3047 {
3048         u32 item_size;
3049         struct extent_buffer *leaf;
3050         struct btrfs_key orig_key;
3051         struct btrfs_item *item;
3052         struct btrfs_item *new_item;
3053         int ret = 0;
3054         int slot;
3055         u32 nritems;
3056         u32 orig_offset;
3057         struct btrfs_disk_key disk_key;
3058         char *buf;
3059
3060         leaf = path->nodes[0];
3061         btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
3062         if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
3063                 goto split;
3064
3065         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3066         btrfs_release_path(root, path);
3067
3068         path->search_for_split = 1;
3069         path->keep_locks = 1;
3070
3071         ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
3072         path->search_for_split = 0;
3073
3074         /* if our item isn't there or got smaller, return now */
3075         if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
3076                                                         path->slots[0])) {
3077                 path->keep_locks = 0;
3078                 return -EAGAIN;
3079         }
3080
3081         btrfs_set_path_blocking(path);
3082         ret = split_leaf(trans, root, &orig_key, path,
3083                          sizeof(struct btrfs_item), 1);
3084         path->keep_locks = 0;
3085         BUG_ON(ret);
3086
3087         btrfs_unlock_up_safe(path, 1);
3088         leaf = path->nodes[0];
3089         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3090
3091 split:
3092         /*
3093          * make sure any changes to the path from split_leaf leave it
3094          * in a blocking state
3095          */
3096         btrfs_set_path_blocking(path);
3097
3098         item = btrfs_item_nr(leaf, path->slots[0]);
3099         orig_offset = btrfs_item_offset(leaf, item);
3100         item_size = btrfs_item_size(leaf, item);
3101
3102         buf = kmalloc(item_size, GFP_NOFS);
3103         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3104                             path->slots[0]), item_size);
3105         slot = path->slots[0] + 1;
3106         leaf = path->nodes[0];
3107
3108         nritems = btrfs_header_nritems(leaf);
3109
3110         if (slot != nritems) {
3111                 /* shift the items */
3112                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3113                               btrfs_item_nr_offset(slot),
3114                               (nritems - slot) * sizeof(struct btrfs_item));
3115
3116         }
3117
3118         btrfs_cpu_key_to_disk(&disk_key, new_key);
3119         btrfs_set_item_key(leaf, &disk_key, slot);
3120
3121         new_item = btrfs_item_nr(leaf, slot);
3122
3123         btrfs_set_item_offset(leaf, new_item, orig_offset);
3124         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3125
3126         btrfs_set_item_offset(leaf, item,
3127                               orig_offset + item_size - split_offset);
3128         btrfs_set_item_size(leaf, item, split_offset);
3129
3130         btrfs_set_header_nritems(leaf, nritems + 1);
3131
3132         /* write the data for the start of the original item */
3133         write_extent_buffer(leaf, buf,
3134                             btrfs_item_ptr_offset(leaf, path->slots[0]),
3135                             split_offset);
3136
3137         /* write the data for the new item */
3138         write_extent_buffer(leaf, buf + split_offset,
3139                             btrfs_item_ptr_offset(leaf, slot),
3140                             item_size - split_offset);
3141         btrfs_mark_buffer_dirty(leaf);
3142
3143         ret = 0;
3144         if (btrfs_leaf_free_space(root, leaf) < 0) {
3145                 btrfs_print_leaf(root, leaf);
3146                 BUG();
3147         }
3148         kfree(buf);
3149         return ret;
3150 }
3151
3152 /*
3153  * make the item pointed to by the path smaller.  new_size indicates
3154  * how small to make it, and from_end tells us if we just chop bytes
3155  * off the end of the item or if we shift the item to chop bytes off
3156  * the front.
3157  */
3158 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3159                         struct btrfs_root *root,
3160                         struct btrfs_path *path,
3161                         u32 new_size, int from_end)
3162 {
3163         int ret = 0;
3164         int slot;
3165         int slot_orig;
3166         struct extent_buffer *leaf;
3167         struct btrfs_item *item;
3168         u32 nritems;
3169         unsigned int data_end;
3170         unsigned int old_data_start;
3171         unsigned int old_size;
3172         unsigned int size_diff;
3173         int i;
3174
3175         slot_orig = path->slots[0];
3176         leaf = path->nodes[0];
3177         slot = path->slots[0];
3178
3179         old_size = btrfs_item_size_nr(leaf, slot);
3180         if (old_size == new_size)
3181                 return 0;
3182
3183         nritems = btrfs_header_nritems(leaf);
3184         data_end = leaf_data_end(root, leaf);
3185
3186         old_data_start = btrfs_item_offset_nr(leaf, slot);
3187
3188         size_diff = old_size - new_size;
3189
3190         BUG_ON(slot < 0);
3191         BUG_ON(slot >= nritems);
3192
3193         /*
3194          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3195          */
3196         /* first correct the data pointers */
3197         for (i = slot; i < nritems; i++) {
3198                 u32 ioff;
3199                 item = btrfs_item_nr(leaf, i);
3200
3201                 if (!leaf->map_token) {
3202                         map_extent_buffer(leaf, (unsigned long)item,
3203                                         sizeof(struct btrfs_item),
3204                                         &leaf->map_token, &leaf->kaddr,
3205                                         &leaf->map_start, &leaf->map_len,
3206                                         KM_USER1);
3207                 }
3208
3209                 ioff = btrfs_item_offset(leaf, item);
3210                 btrfs_set_item_offset(leaf, item, ioff + size_diff);
3211         }
3212
3213         if (leaf->map_token) {
3214                 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3215                 leaf->map_token = NULL;
3216         }
3217
3218         /* shift the data */
3219         if (from_end) {
3220                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3221                               data_end + size_diff, btrfs_leaf_data(leaf) +
3222                               data_end, old_data_start + new_size - data_end);
3223         } else {
3224                 struct btrfs_disk_key disk_key;
3225                 u64 offset;
3226
3227                 btrfs_item_key(leaf, &disk_key, slot);
3228
3229                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3230                         unsigned long ptr;
3231                         struct btrfs_file_extent_item *fi;
3232
3233                         fi = btrfs_item_ptr(leaf, slot,
3234                                             struct btrfs_file_extent_item);
3235                         fi = (struct btrfs_file_extent_item *)(
3236                              (unsigned long)fi - size_diff);
3237
3238                         if (btrfs_file_extent_type(leaf, fi) ==
3239                             BTRFS_FILE_EXTENT_INLINE) {
3240                                 ptr = btrfs_item_ptr_offset(leaf, slot);
3241                                 memmove_extent_buffer(leaf, ptr,
3242                                       (unsigned long)fi,
3243                                       offsetof(struct btrfs_file_extent_item,
3244                                                  disk_bytenr));
3245                         }
3246                 }
3247
3248                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3249                               data_end + size_diff, btrfs_leaf_data(leaf) +
3250                               data_end, old_data_start - data_end);
3251
3252                 offset = btrfs_disk_key_offset(&disk_key);
3253                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3254                 btrfs_set_item_key(leaf, &disk_key, slot);
3255                 if (slot == 0)
3256                         fixup_low_keys(trans, root, path, &disk_key, 1);
3257         }
3258
3259         item = btrfs_item_nr(leaf, slot);
3260         btrfs_set_item_size(leaf, item, new_size);
3261         btrfs_mark_buffer_dirty(leaf);
3262
3263         ret = 0;
3264         if (btrfs_leaf_free_space(root, leaf) < 0) {
3265                 btrfs_print_leaf(root, leaf);
3266                 BUG();
3267         }
3268         return ret;
3269 }
3270
3271 /*
3272  * make the item pointed to by the path bigger, data_size is the new size.
3273  */
3274 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3275                       struct btrfs_root *root, struct btrfs_path *path,
3276                       u32 data_size)
3277 {
3278         int ret = 0;
3279         int slot;
3280         int slot_orig;
3281         struct extent_buffer *leaf;
3282         struct btrfs_item *item;
3283         u32 nritems;
3284         unsigned int data_end;
3285         unsigned int old_data;
3286         unsigned int old_size;
3287         int i;
3288
3289         slot_orig = path->slots[0];
3290         leaf = path->nodes[0];
3291
3292         nritems = btrfs_header_nritems(leaf);
3293         data_end = leaf_data_end(root, leaf);
3294
3295         if (btrfs_leaf_free_space(root, leaf) < data_size) {
3296                 btrfs_print_leaf(root, leaf);
3297                 BUG();
3298         }
3299         slot = path->slots[0];
3300         old_data = btrfs_item_end_nr(leaf, slot);
3301
3302         BUG_ON(slot < 0);
3303         if (slot >= nritems) {
3304                 btrfs_print_leaf(root, leaf);
3305                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
3306                        slot, nritems);
3307                 BUG_ON(1);
3308         }
3309
3310         /*
3311          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3312          */
3313         /* first correct the data pointers */
3314         for (i = slot; i < nritems; i++) {
3315                 u32 ioff;
3316                 item = btrfs_item_nr(leaf, i);
3317
3318                 if (!leaf->map_token) {
3319                         map_extent_buffer(leaf, (unsigned long)item,
3320                                         sizeof(struct btrfs_item),
3321                                         &leaf->map_token, &leaf->kaddr,
3322                                         &leaf->map_start, &leaf->map_len,
3323                                         KM_USER1);
3324                 }
3325                 ioff = btrfs_item_offset(leaf, item);
3326                 btrfs_set_item_offset(leaf, item, ioff - data_size);
3327         }
3328
3329         if (leaf->map_token) {
3330                 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3331                 leaf->map_token = NULL;
3332         }
3333
3334         /* shift the data */
3335         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3336                       data_end - data_size, btrfs_leaf_data(leaf) +
3337                       data_end, old_data - data_end);
3338
3339         data_end = old_data;
3340         old_size = btrfs_item_size_nr(leaf, slot);
3341         item = btrfs_item_nr(leaf, slot);
3342         btrfs_set_item_size(leaf, item, old_size + data_size);
3343         btrfs_mark_buffer_dirty(leaf);
3344
3345         ret = 0;
3346         if (btrfs_leaf_free_space(root, leaf) < 0) {
3347                 btrfs_print_leaf(root, leaf);
3348                 BUG();
3349         }
3350         return ret;
3351 }
3352
3353 /*
3354  * Given a key and some data, insert items into the tree.
3355  * This does all the path init required, making room in the tree if needed.
3356  * Returns the number of keys that were inserted.
3357  */
3358 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3359                             struct btrfs_root *root,
3360                             struct btrfs_path *path,
3361                             struct btrfs_key *cpu_key, u32 *data_size,
3362                             int nr)
3363 {
3364         struct extent_buffer *leaf;
3365         struct btrfs_item *item;
3366         int ret = 0;
3367         int slot;
3368         int i;
3369         u32 nritems;
3370         u32 total_data = 0;
3371         u32 total_size = 0;
3372         unsigned int data_end;
3373         struct btrfs_disk_key disk_key;
3374         struct btrfs_key found_key;
3375
3376         for (i = 0; i < nr; i++) {
3377                 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3378                     BTRFS_LEAF_DATA_SIZE(root)) {
3379                         break;
3380                         nr = i;
3381                 }
3382                 total_data += data_size[i];
3383                 total_size += data_size[i] + sizeof(struct btrfs_item);
3384         }
3385         BUG_ON(nr == 0);
3386
3387         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3388         if (ret == 0)
3389                 return -EEXIST;
3390         if (ret < 0)
3391                 goto out;
3392
3393         leaf = path->nodes[0];
3394
3395         nritems = btrfs_header_nritems(leaf);
3396         data_end = leaf_data_end(root, leaf);
3397
3398         if (btrfs_leaf_free_space(root, leaf) < total_size) {
3399                 for (i = nr; i >= 0; i--) {
3400                         total_data -= data_size[i];
3401                         total_size -= data_size[i] + sizeof(struct btrfs_item);
3402                         if (total_size < btrfs_leaf_free_space(root, leaf))
3403                                 break;
3404                 }
3405                 nr = i;
3406         }
3407
3408         slot = path->slots[0];
3409         BUG_ON(slot < 0);
3410
3411         if (slot != nritems) {
3412                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3413
3414                 item = btrfs_item_nr(leaf, slot);
3415                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3416
3417                 /* figure out how many keys we can insert in here */
3418                 total_data = data_size[0];
3419                 for (i = 1; i < nr; i++) {
3420                         if (comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3421                                 break;
3422                         total_data += data_size[i];
3423                 }
3424                 nr = i;
3425
3426                 if (old_data < data_end) {
3427                         btrfs_print_leaf(root, leaf);
3428                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3429                                slot, old_data, data_end);
3430                         BUG_ON(1);
3431                 }
3432                 /*
3433                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
3434                  */
3435                 /* first correct the data pointers */
3436                 WARN_ON(leaf->map_token);
3437                 for (i = slot; i < nritems; i++) {
3438                         u32 ioff;
3439
3440                         item = btrfs_item_nr(leaf, i);
3441                         if (!leaf->map_token) {
3442                                 map_extent_buffer(leaf, (unsigned long)item,
3443                                         sizeof(struct btrfs_item),
3444                                         &leaf->map_token, &leaf->kaddr,
3445                                         &leaf->map_start, &leaf->map_len,
3446                                         KM_USER1);
3447                         }
3448
3449                         ioff = btrfs_item_offset(leaf, item);
3450                         btrfs_set_item_offset(leaf, item, ioff - total_data);
3451                 }
3452                 if (leaf->map_token) {
3453                         unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3454                         leaf->map_token = NULL;
3455                 }
3456
3457                 /* shift the items */
3458                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3459                               btrfs_item_nr_offset(slot),
3460                               (nritems - slot) * sizeof(struct btrfs_item));
3461
3462                 /* shift the data */
3463                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3464                               data_end - total_data, btrfs_leaf_data(leaf) +
3465                               data_end, old_data - data_end);
3466                 data_end = old_data;
3467         } else {
3468                 /*
3469                  * this sucks but it has to be done, if we are inserting at
3470                  * the end of the leaf only insert 1 of the items, since we
3471                  * have no way of knowing whats on the next leaf and we'd have
3472                  * to drop our current locks to figure it out
3473                  */
3474                 nr = 1;
3475         }
3476
3477         /* setup the item for the new data */
3478         for (i = 0; i < nr; i++) {
3479                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3480                 btrfs_set_item_key(leaf, &disk_key, slot + i);
3481                 item = btrfs_item_nr(leaf, slot + i);
3482                 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3483                 data_end -= data_size[i];
3484                 btrfs_set_item_size(leaf, item, data_size[i]);
3485         }
3486         btrfs_set_header_nritems(leaf, nritems + nr);
3487         btrfs_mark_buffer_dirty(leaf);
3488
3489         ret = 0;
3490         if (slot == 0) {
3491                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3492                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3493         }
3494
3495         if (btrfs_leaf_free_space(root, leaf) < 0) {
3496                 btrfs_print_leaf(root, leaf);
3497                 BUG();
3498         }
3499 out:
3500         if (!ret)
3501                 ret = nr;
3502         return ret;
3503 }
3504
3505 /*
3506  * this is a helper for btrfs_insert_empty_items, the main goal here is
3507  * to save stack depth by doing the bulk of the work in a function
3508  * that doesn't call btrfs_search_slot
3509  */
3510 static noinline_for_stack int
3511 setup_items_for_insert(struct btrfs_trans_handle *trans,
3512                       struct btrfs_root *root, struct btrfs_path *path,
3513                       struct btrfs_key *cpu_key, u32 *data_size,
3514                       u32 total_data, u32 total_size, int nr)
3515 {
3516         struct btrfs_item *item;
3517         int i;
3518         u32 nritems;
3519         unsigned int data_end;
3520         struct btrfs_disk_key disk_key;
3521         int ret;
3522         struct extent_buffer *leaf;
3523         int slot;
3524
3525         leaf = path->nodes[0];
3526         slot = path->slots[0];
3527
3528         nritems = btrfs_header_nritems(leaf);
3529         data_end = leaf_data_end(root, leaf);
3530
3531         if (btrfs_leaf_free_space(root, leaf) < total_size) {
3532                 btrfs_print_leaf(root, leaf);
3533                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
3534                        total_size, btrfs_leaf_free_space(root, leaf));
3535                 BUG();
3536         }
3537
3538         if (slot != nritems) {
3539                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3540
3541                 if (old_data < data_end) {
3542                         btrfs_print_leaf(root, leaf);
3543                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3544                                slot, old_data, data_end);
3545                         BUG_ON(1);
3546                 }
3547                 /*
3548                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
3549                  */
3550                 /* first correct the data pointers */
3551                 WARN_ON(leaf->map_token);
3552                 for (i = slot; i < nritems; i++) {
3553                         u32 ioff;
3554
3555                         item = btrfs_item_nr(leaf, i);
3556                         if (!leaf->map_token) {
3557                                 map_extent_buffer(leaf, (unsigned long)item,
3558                                         sizeof(struct btrfs_item),
3559                                         &leaf->map_token, &leaf->kaddr,
3560                                         &leaf->map_start, &leaf->map_len,
3561                                         KM_USER1);
3562                         }
3563
3564                         ioff = btrfs_item_offset(leaf, item);
3565                         btrfs_set_item_offset(leaf, item, ioff - total_data);
3566                 }
3567                 if (leaf->map_token) {
3568                         unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3569                         leaf->map_token = NULL;
3570                 }
3571
3572                 /* shift the items */
3573                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3574                               btrfs_item_nr_offset(slot),
3575                               (nritems - slot) * sizeof(struct btrfs_item));
3576
3577                 /* shift the data */
3578                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3579                               data_end - total_data, btrfs_leaf_data(leaf) +
3580                               data_end, old_data - data_end);
3581                 data_end = old_data;
3582         }
3583
3584         /* setup the item for the new data */
3585         for (i = 0; i < nr; i++) {
3586                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3587                 btrfs_set_item_key(leaf, &disk_key, slot + i);
3588                 item = btrfs_item_nr(leaf, slot + i);
3589                 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3590                 data_end -= data_size[i];
3591                 btrfs_set_item_size(leaf, item, data_size[i]);
3592         }
3593
3594         btrfs_set_header_nritems(leaf, nritems + nr);
3595
3596         ret = 0;
3597         if (slot == 0) {
3598                 struct btrfs_disk_key disk_key;
3599                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3600                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3601         }
3602         btrfs_unlock_up_safe(path, 1);
3603         btrfs_mark_buffer_dirty(leaf);
3604
3605         if (btrfs_leaf_free_space(root, leaf) < 0) {
3606                 btrfs_print_leaf(root, leaf);
3607                 BUG();
3608         }
3609         return ret;
3610 }
3611
3612 /*
3613  * Given a key and some data, insert items into the tree.
3614  * This does all the path init required, making room in the tree if needed.
3615  */
3616 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3617                             struct btrfs_root *root,
3618                             struct btrfs_path *path,
3619                             struct btrfs_key *cpu_key, u32 *data_size,
3620                             int nr)
3621 {
3622         struct extent_buffer *leaf;
3623         int ret = 0;
3624         int slot;
3625         int i;
3626         u32 total_size = 0;
3627         u32 total_data = 0;
3628
3629         for (i = 0; i < nr; i++)
3630                 total_data += data_size[i];
3631
3632         total_size = total_data + (nr * sizeof(struct btrfs_item));
3633         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3634         if (ret == 0)
3635                 return -EEXIST;
3636         if (ret < 0)
3637                 goto out;
3638
3639         leaf = path->nodes[0];
3640         slot = path->slots[0];
3641         BUG_ON(slot < 0);
3642
3643         ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3644                                total_data, total_size, nr);
3645
3646 out:
3647         return ret;
3648 }
3649
3650 /*
3651  * Given a key and some data, insert an item into the tree.
3652  * This does all the path init required, making room in the tree if needed.
3653  */
3654 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3655                       *root, struct btrfs_key *cpu_key, void *data, u32
3656                       data_size)
3657 {
3658         int ret = 0;
3659         struct btrfs_path *path;
3660         struct extent_buffer *leaf;
3661         unsigned long ptr;
3662
3663         path = btrfs_alloc_path();
3664         BUG_ON(!path);
3665         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3666         if (!ret) {
3667                 leaf = path->nodes[0];
3668                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3669                 write_extent_buffer(leaf, data, ptr, data_size);
3670                 btrfs_mark_buffer_dirty(leaf);
3671         }
3672         btrfs_free_path(path);
3673         return ret;
3674 }
3675
3676 /*
3677  * delete the pointer from a given node.
3678  *
3679  * the tree should have been previously balanced so the deletion does not
3680  * empty a node.
3681  */
3682 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3683                    struct btrfs_path *path, int level, int slot)
3684 {
3685         struct extent_buffer *parent = path->nodes[level];
3686         u32 nritems;
3687         int ret = 0;
3688         int wret;
3689
3690         nritems = btrfs_header_nritems(parent);
3691         if (slot != nritems - 1) {
3692                 memmove_extent_buffer(parent,
3693                               btrfs_node_key_ptr_offset(slot),
3694                               btrfs_node_key_ptr_offset(slot + 1),
3695                               sizeof(struct btrfs_key_ptr) *
3696                               (nritems - slot - 1));
3697         }
3698         nritems--;
3699         btrfs_set_header_nritems(parent, nritems);
3700         if (nritems == 0 && parent == root->node) {
3701                 BUG_ON(btrfs_header_level(root->node) != 1);
3702                 /* just turn the root into a leaf and break */
3703                 btrfs_set_header_level(root->node, 0);
3704         } else if (slot == 0) {
3705                 struct btrfs_disk_key disk_key;
3706
3707                 btrfs_node_key(parent, &disk_key, 0);
3708                 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3709                 if (wret)
3710                         ret = wret;
3711         }
3712         btrfs_mark_buffer_dirty(parent);
3713         return ret;
3714 }
3715
3716 /*
3717  * a helper function to delete the leaf pointed to by path->slots[1] and
3718  * path->nodes[1].  bytenr is the node block pointer, but since the callers
3719  * already know it, it is faster to have them pass it down than to
3720  * read it out of the node again.
3721  *
3722  * This deletes the pointer in path->nodes[1] and frees the leaf
3723  * block extent.  zero is returned if it all worked out, < 0 otherwise.
3724  *
3725  * The path must have already been setup for deleting the leaf, including
3726  * all the proper balancing.  path->nodes[1] must be locked.
3727  */
3728 noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3729                             struct btrfs_root *root,
3730                             struct btrfs_path *path, u64 bytenr)
3731 {
3732         int ret;
3733         u64 root_gen = btrfs_header_generation(path->nodes[1]);
3734         u64 parent_start = path->nodes[1]->start;
3735         u64 parent_owner = btrfs_header_owner(path->nodes[1]);
3736
3737         ret = del_ptr(trans, root, path, 1, path->slots[1]);
3738         if (ret)
3739                 return ret;
3740
3741         /*
3742          * btrfs_free_extent is expensive, we want to make sure we
3743          * aren't holding any locks when we call it
3744          */
3745         btrfs_unlock_up_safe(path, 0);
3746
3747         ret = btrfs_free_extent(trans, root, bytenr,
3748                                 btrfs_level_size(root, 0),
3749                                 parent_start, parent_owner,
3750                                 root_gen, 0, 1);
3751         return ret;
3752 }
3753 /*
3754  * delete the item at the leaf level in path.  If that empties
3755  * the leaf, remove it from the tree
3756  */
3757 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3758                     struct btrfs_path *path, int slot, int nr)
3759 {
3760         struct extent_buffer *leaf;
3761         struct btrfs_item *item;
3762         int last_off;
3763         int dsize = 0;
3764         int ret = 0;
3765         int wret;
3766         int i;
3767         u32 nritems;
3768
3769         leaf = path->nodes[0];
3770         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3771
3772         for (i = 0; i < nr; i++)
3773                 dsize += btrfs_item_size_nr(leaf, slot + i);
3774
3775         nritems = btrfs_header_nritems(leaf);
3776
3777         if (slot + nr != nritems) {
3778                 int data_end = leaf_data_end(root, leaf);
3779
3780                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3781                               data_end + dsize,
3782                               btrfs_leaf_data(leaf) + data_end,
3783                               last_off - data_end);
3784
3785                 for (i = slot + nr; i < nritems; i++) {
3786                         u32 ioff;
3787
3788                         item = btrfs_item_nr(leaf, i);
3789                         if (!leaf->map_token) {
3790                                 map_extent_buffer(leaf, (unsigned long)item,
3791                                         sizeof(struct btrfs_item),
3792                                         &leaf->map_token, &leaf->kaddr,
3793                                         &leaf->map_start, &leaf->map_len,
3794                                         KM_USER1);
3795                         }
3796                         ioff = btrfs_item_offset(leaf, item);
3797                         btrfs_set_item_offset(leaf, item, ioff + dsize);
3798                 }
3799
3800                 if (leaf->map_token) {
3801                         unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3802                         leaf->map_token = NULL;
3803                 }
3804
3805                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3806                               btrfs_item_nr_offset(slot + nr),
3807                               sizeof(struct btrfs_item) *
3808                               (nritems - slot - nr));
3809         }
3810         btrfs_set_header_nritems(leaf, nritems - nr);
3811         nritems -= nr;
3812
3813         /* delete the leaf if we've emptied it */
3814         if (nritems == 0) {
3815                 if (leaf == root->node) {
3816                         btrfs_set_header_level(leaf, 0);
3817                 } else {
3818                         ret = btrfs_del_leaf(trans, root, path, leaf->start);
3819                         BUG_ON(ret);
3820                 }
3821         } else {
3822                 int used = leaf_space_used(leaf, 0, nritems);
3823                 if (slot == 0) {
3824                         struct btrfs_disk_key disk_key;
3825
3826                         btrfs_item_key(leaf, &disk_key, 0);
3827                         wret = fixup_low_keys(trans, root, path,
3828                                               &disk_key, 1);
3829                         if (wret)
3830                                 ret = wret;
3831                 }
3832
3833                 /* delete the leaf if it is mostly empty */
3834                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 4 &&
3835                     !trans->transaction->delayed_refs.flushing) {
3836                         /* push_leaf_left fixes the path.
3837                          * make sure the path still points to our leaf
3838                          * for possible call to del_ptr below
3839                          */
3840                         slot = path->slots[1];
3841                         extent_buffer_get(leaf);
3842
3843                         btrfs_set_path_blocking(path);
3844                         wret = push_leaf_left(trans, root, path, 1, 1);
3845                         if (wret < 0 && wret != -ENOSPC)
3846                                 ret = wret;
3847
3848                         if (path->nodes[0] == leaf &&
3849                             btrfs_header_nritems(leaf)) {
3850                                 wret = push_leaf_right(trans, root, path, 1, 1);
3851                                 if (wret < 0 && wret != -ENOSPC)
3852                                         ret = wret;
3853                         }
3854
3855                         if (btrfs_header_nritems(leaf) == 0) {
3856                                 path->slots[1] = slot;
3857                                 ret = btrfs_del_leaf(trans, root, path,
3858                                                      leaf->start);
3859                                 BUG_ON(ret);
3860                                 free_extent_buffer(leaf);
3861                         } else {
3862                                 /* if we're still in the path, make sure
3863                                  * we're dirty.  Otherwise, one of the
3864                                  * push_leaf functions must have already
3865                                  * dirtied this buffer
3866                                  */
3867                                 if (path->nodes[0] == leaf)
3868                                         btrfs_mark_buffer_dirty(leaf);
3869                                 free_extent_buffer(leaf);
3870                         }
3871                 } else {
3872                         btrfs_mark_buffer_dirty(leaf);
3873                 }
3874         }
3875         return ret;
3876 }
3877
3878 /*
3879  * search the tree again to find a leaf with lesser keys
3880  * returns 0 if it found something or 1 if there are no lesser leaves.
3881  * returns < 0 on io errors.
3882  *
3883  * This may release the path, and so you may lose any locks held at the
3884  * time you call it.
3885  */
3886 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3887 {
3888         struct btrfs_key key;
3889         struct btrfs_disk_key found_key;
3890         int ret;
3891
3892         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3893
3894         if (key.offset > 0)
3895                 key.offset--;
3896         else if (key.type > 0)
3897                 key.type--;
3898         else if (key.objectid > 0)
3899                 key.objectid--;
3900         else
3901                 return 1;
3902
3903         btrfs_release_path(root, path);
3904         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3905         if (ret < 0)
3906                 return ret;
3907         btrfs_item_key(path->nodes[0], &found_key, 0);
3908         ret = comp_keys(&found_key, &key);
3909         if (ret < 0)
3910                 return 0;
3911         return 1;
3912 }
3913
3914 /*
3915  * A helper function to walk down the tree starting at min_key, and looking
3916  * for nodes or leaves that are either in cache or have a minimum
3917  * transaction id.  This is used by the btree defrag code, and tree logging
3918  *
3919  * This does not cow, but it does stuff the starting key it finds back
3920  * into min_key, so you can call btrfs_search_slot with cow=1 on the
3921  * key and get a writable path.
3922  *
3923  * This does lock as it descends, and path->keep_locks should be set
3924  * to 1 by the caller.
3925  *
3926  * This honors path->lowest_level to prevent descent past a given level
3927  * of the tree.
3928  *
3929  * min_trans indicates the oldest transaction that you are interested
3930  * in walking through.  Any nodes or leaves older than min_trans are
3931  * skipped over (without reading them).
3932  *
3933  * returns zero if something useful was found, < 0 on error and 1 if there
3934  * was nothing in the tree that matched the search criteria.
3935  */
3936 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3937                          struct btrfs_key *max_key,
3938                          struct btrfs_path *path, int cache_only,
3939                          u64 min_trans)
3940 {
3941         struct extent_buffer *cur;
3942         struct btrfs_key found_key;
3943         int slot;
3944         int sret;
3945         u32 nritems;
3946         int level;
3947         int ret = 1;
3948
3949         WARN_ON(!path->keep_locks);
3950 again:
3951         cur = btrfs_lock_root_node(root);
3952         level = btrfs_header_level(cur);
3953         WARN_ON(path->nodes[level]);
3954         path->nodes[level] = cur;
3955         path->locks[level] = 1;
3956
3957         if (btrfs_header_generation(cur) < min_trans) {
3958                 ret = 1;
3959                 goto out;
3960         }
3961         while (1) {
3962                 nritems = btrfs_header_nritems(cur);
3963                 level = btrfs_header_level(cur);
3964                 sret = bin_search(cur, min_key, level, &slot);
3965
3966                 /* at the lowest level, we're done, setup the path and exit */
3967                 if (level == path->lowest_level) {
3968                         if (slot >= nritems)
3969                                 goto find_next_key;
3970                         ret = 0;
3971                         path->slots[level] = slot;
3972                         btrfs_item_key_to_cpu(cur, &found_key, slot);
3973                         goto out;
3974                 }
3975                 if (sret && slot > 0)
3976                         slot--;
3977                 /*
3978                  * check this node pointer against the cache_only and
3979                  * min_trans parameters.  If it isn't in cache or is too
3980                  * old, skip to the next one.
3981                  */
3982                 while (slot < nritems) {
3983                         u64 blockptr;
3984                         u64 gen;
3985                         struct extent_buffer *tmp;
3986                         struct btrfs_disk_key disk_key;
3987
3988                         blockptr = btrfs_node_blockptr(cur, slot);
3989                         gen = btrfs_node_ptr_generation(cur, slot);
3990                         if (gen < min_trans) {
3991                                 slot++;
3992                                 continue;
3993                         }
3994                         if (!cache_only)
3995                                 break;
3996
3997                         if (max_key) {
3998                                 btrfs_node_key(cur, &disk_key, slot);
3999                                 if (comp_keys(&disk_key, max_key) >= 0) {
4000                                         ret = 1;
4001                                         goto out;
4002                                 }
4003                         }
4004
4005                         tmp = btrfs_find_tree_block(root, blockptr,
4006                                             btrfs_level_size(root, level - 1));
4007
4008                         if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
4009                                 free_extent_buffer(tmp);
4010                                 break;
4011                         }
4012                         if (tmp)
4013                                 free_extent_buffer(tmp);
4014                         slot++;
4015                 }
4016 find_next_key:
4017                 /*
4018                  * we didn't find a candidate key in this node, walk forward
4019                  * and find another one
4020                  */
4021                 if (slot >= nritems) {
4022                         path->slots[level] = slot;
4023                         btrfs_set_path_blocking(path);
4024                         sret = btrfs_find_next_key(root, path, min_key, level,
4025                                                   cache_only, min_trans);
4026                         if (sret == 0) {
4027                                 btrfs_release_path(root, path);
4028                                 goto again;
4029                         } else {
4030                                 goto out;
4031                         }
4032                 }
4033                 /* save our key for returning back */
4034                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4035                 path->slots[level] = slot;
4036                 if (level == path->lowest_level) {
4037                         ret = 0;
4038                         unlock_up(path, level, 1);
4039                         goto out;
4040                 }
4041                 btrfs_set_path_blocking(path);
4042                 cur = read_node_slot(root, cur, slot);
4043
4044                 btrfs_tree_lock(cur);
4045
4046                 path->locks[level - 1] = 1;
4047                 path->nodes[level - 1] = cur;
4048                 unlock_up(path, level, 1);
4049                 btrfs_clear_path_blocking(path, NULL);
4050         }
4051 out:
4052         if (ret == 0)
4053                 memcpy(min_key, &found_key, sizeof(found_key));
4054         btrfs_set_path_blocking(path);
4055         return ret;
4056 }
4057
4058 /*
4059  * this is similar to btrfs_next_leaf, but does not try to preserve
4060  * and fixup the path.  It looks for and returns the next key in the
4061  * tree based on the current path and the cache_only and min_trans
4062  * parameters.
4063  *
4064  * 0 is returned if another key is found, < 0 if there are any errors
4065  * and 1 is returned if there are no higher keys in the tree
4066  *
4067  * path->keep_locks should be set to 1 on the search made before
4068  * calling this function.
4069  */
4070 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4071                         struct btrfs_key *key, int lowest_level,
4072                         int cache_only, u64 min_trans)
4073 {
4074         int level = lowest_level;
4075         int slot;
4076         struct extent_buffer *c;
4077
4078         WARN_ON(!path->keep_locks);
4079         while (level < BTRFS_MAX_LEVEL) {
4080                 if (!path->nodes[level])
4081                         return 1;
4082
4083                 slot = path->slots[level] + 1;
4084                 c = path->nodes[level];
4085 next:
4086                 if (slot >= btrfs_header_nritems(c)) {
4087                         level++;
4088                         if (level == BTRFS_MAX_LEVEL)
4089                                 return 1;
4090                         continue;
4091                 }
4092                 if (level == 0)
4093                         btrfs_item_key_to_cpu(c, key, slot);
4094                 else {
4095                         u64 blockptr = btrfs_node_blockptr(c, slot);
4096                         u64 gen = btrfs_node_ptr_generation(c, slot);
4097
4098                         if (cache_only) {
4099                                 struct extent_buffer *cur;
4100                                 cur = btrfs_find_tree_block(root, blockptr,
4101                                             btrfs_level_size(root, level - 1));
4102                                 if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4103                                         slot++;
4104                                         if (cur)
4105                                                 free_extent_buffer(cur);
4106                                         goto next;
4107                                 }
4108                                 free_extent_buffer(cur);
4109                         }
4110                         if (gen < min_trans) {
4111                                 slot++;
4112                                 goto next;
4113                         }
4114                         btrfs_node_key_to_cpu(c, key, slot);
4115                 }
4116                 return 0;
4117         }
4118         return 1;
4119 }
4120
4121 /*
4122  * search the tree again to find a leaf with greater keys
4123  * returns 0 if it found something or 1 if there are no greater leaves.
4124  * returns < 0 on io errors.
4125  */
4126 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4127 {
4128         int slot;
4129         int level;
4130         struct extent_buffer *c;
4131         struct extent_buffer *next;
4132         struct btrfs_key key;
4133         u32 nritems;
4134         int ret;
4135         int old_spinning = path->leave_spinning;
4136         int force_blocking = 0;
4137
4138         nritems = btrfs_header_nritems(path->nodes[0]);
4139         if (nritems == 0)
4140                 return 1;
4141
4142         /*
4143          * we take the blocks in an order that upsets lockdep.  Using
4144          * blocking mode is the only way around it.
4145          */
4146 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4147         force_blocking = 1;
4148 #endif
4149
4150         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4151 again:
4152         level = 1;
4153         next = NULL;
4154         btrfs_release_path(root, path);
4155
4156         path->keep_locks = 1;
4157
4158         if (!force_blocking)
4159                 path->leave_spinning = 1;
4160
4161         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4162         path->keep_locks = 0;
4163
4164         if (ret < 0)
4165                 return ret;
4166
4167         nritems = btrfs_header_nritems(path->nodes[0]);
4168         /*
4169          * by releasing the path above we dropped all our locks.  A balance
4170          * could have added more items next to the key that used to be
4171          * at the very end of the block.  So, check again here and
4172          * advance the path if there are now more items available.
4173          */
4174         if (nritems > 0 && path->slots[0] < nritems - 1) {
4175                 path->slots[0]++;
4176                 ret = 0;
4177                 goto done;
4178         }
4179
4180         while (level < BTRFS_MAX_LEVEL) {
4181                 if (!path->nodes[level]) {
4182                         ret = 1;
4183                         goto done;
4184                 }
4185
4186                 slot = path->slots[level] + 1;
4187                 c = path->nodes[level];
4188                 if (slot >= btrfs_header_nritems(c)) {
4189                         level++;
4190                         if (level == BTRFS_MAX_LEVEL) {
4191                                 ret = 1;
4192                                 goto done;
4193                         }
4194                         continue;
4195                 }
4196
4197                 if (next) {
4198                         btrfs_tree_unlock(next);
4199                         free_extent_buffer(next);
4200                 }
4201
4202                 next = c;
4203                 ret = read_block_for_search(NULL, root, path, &next, level,
4204                                             slot, &key);
4205                 if (ret == -EAGAIN)
4206                         goto again;
4207
4208                 if (!path->skip_locking) {
4209                         ret = btrfs_try_spin_lock(next);
4210                         if (!ret) {
4211                                 btrfs_set_path_blocking(path);
4212                                 btrfs_tree_lock(next);
4213                                 if (!force_blocking)
4214                                         btrfs_clear_path_blocking(path, next);
4215                         }
4216                         if (force_blocking)
4217                                 btrfs_set_lock_blocking(next);
4218                 }
4219                 break;
4220         }
4221         path->slots[level] = slot;
4222         while (1) {
4223                 level--;
4224                 c = path->nodes[level];
4225                 if (path->locks[level])
4226                         btrfs_tree_unlock(c);
4227
4228                 free_extent_buffer(c);
4229                 path->nodes[level] = next;
4230                 path->slots[level] = 0;
4231                 if (!path->skip_locking)
4232                         path->locks[level] = 1;
4233
4234                 if (!level)
4235                         break;
4236
4237                 ret = read_block_for_search(NULL, root, path, &next, level,
4238                                             0, &key);
4239                 if (ret == -EAGAIN)
4240                         goto again;
4241
4242                 if (!path->skip_locking) {
4243                         btrfs_assert_tree_locked(path->nodes[level]);
4244                         ret = btrfs_try_spin_lock(next);
4245                         if (!ret) {
4246                                 btrfs_set_path_blocking(path);
4247                                 btrfs_tree_lock(next);
4248                                 if (!force_blocking)
4249                                         btrfs_clear_path_blocking(path, next);
4250                         }
4251                         if (force_blocking)
4252                                 btrfs_set_lock_blocking(next);
4253                 }
4254         }
4255         ret = 0;
4256 done:
4257         unlock_up(path, 0, 1);
4258         path->leave_spinning = old_spinning;
4259         if (!old_spinning)
4260                 btrfs_set_path_blocking(path);
4261
4262         return ret;
4263 }
4264
4265 /*
4266  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4267  * searching until it gets past min_objectid or finds an item of 'type'
4268  *
4269  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4270  */
4271 int btrfs_previous_item(struct btrfs_root *root,
4272                         struct btrfs_path *path, u64 min_objectid,
4273                         int type)
4274 {
4275         struct btrfs_key found_key;
4276         struct extent_buffer *leaf;
4277         u32 nritems;
4278         int ret;
4279
4280         while (1) {
4281                 if (path->slots[0] == 0) {
4282                         btrfs_set_path_blocking(path);
4283                         ret = btrfs_prev_leaf(root, path);
4284                         if (ret != 0)
4285                                 return ret;
4286                 } else {
4287                         path->slots[0]--;
4288                 }
4289                 leaf = path->nodes[0];
4290                 nritems = btrfs_header_nritems(leaf);
4291                 if (nritems == 0)
4292                         return 1;
4293                 if (path->slots[0] == nritems)
4294                         path->slots[0]--;
4295
4296                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4297                 if (found_key.type == type)
4298                         return 0;
4299                 if (found_key.objectid < min_objectid)
4300                         break;
4301                 if (found_key.objectid == min_objectid &&
4302                     found_key.type < type)
4303                         break;
4304         }
4305         return 1;
4306 }