Merge branch 'spi/merge' of git://git.secretlab.ca/git/linux-2.6
[pandora-kernel.git] / fs / btrfs / compression.c
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "ordered-data.h"
42 #include "compression.h"
43 #include "extent_io.h"
44 #include "extent_map.h"
45
46 struct compressed_bio {
47         /* number of bios pending for this compressed extent */
48         atomic_t pending_bios;
49
50         /* the pages with the compressed data on them */
51         struct page **compressed_pages;
52
53         /* inode that owns this data */
54         struct inode *inode;
55
56         /* starting offset in the inode for our pages */
57         u64 start;
58
59         /* number of bytes in the inode we're working on */
60         unsigned long len;
61
62         /* number of bytes on disk */
63         unsigned long compressed_len;
64
65         /* the compression algorithm for this bio */
66         int compress_type;
67
68         /* number of compressed pages in the array */
69         unsigned long nr_pages;
70
71         /* IO errors */
72         int errors;
73         int mirror_num;
74
75         /* for reads, this is the bio we are copying the data into */
76         struct bio *orig_bio;
77
78         /*
79          * the start of a variable length array of checksums only
80          * used by reads
81          */
82         u32 sums;
83 };
84
85 static inline int compressed_bio_size(struct btrfs_root *root,
86                                       unsigned long disk_size)
87 {
88         u16 csum_size = btrfs_super_csum_size(&root->fs_info->super_copy);
89         return sizeof(struct compressed_bio) +
90                 ((disk_size + root->sectorsize - 1) / root->sectorsize) *
91                 csum_size;
92 }
93
94 static struct bio *compressed_bio_alloc(struct block_device *bdev,
95                                         u64 first_byte, gfp_t gfp_flags)
96 {
97         int nr_vecs;
98
99         nr_vecs = bio_get_nr_vecs(bdev);
100         return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
101 }
102
103 static int check_compressed_csum(struct inode *inode,
104                                  struct compressed_bio *cb,
105                                  u64 disk_start)
106 {
107         int ret;
108         struct btrfs_root *root = BTRFS_I(inode)->root;
109         struct page *page;
110         unsigned long i;
111         char *kaddr;
112         u32 csum;
113         u32 *cb_sum = &cb->sums;
114
115         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
116                 return 0;
117
118         for (i = 0; i < cb->nr_pages; i++) {
119                 page = cb->compressed_pages[i];
120                 csum = ~(u32)0;
121
122                 kaddr = kmap_atomic(page, KM_USER0);
123                 csum = btrfs_csum_data(root, kaddr, csum, PAGE_CACHE_SIZE);
124                 btrfs_csum_final(csum, (char *)&csum);
125                 kunmap_atomic(kaddr, KM_USER0);
126
127                 if (csum != *cb_sum) {
128                         printk(KERN_INFO "btrfs csum failed ino %lu "
129                                "extent %llu csum %u "
130                                "wanted %u mirror %d\n", inode->i_ino,
131                                (unsigned long long)disk_start,
132                                csum, *cb_sum, cb->mirror_num);
133                         ret = -EIO;
134                         goto fail;
135                 }
136                 cb_sum++;
137
138         }
139         ret = 0;
140 fail:
141         return ret;
142 }
143
144 /* when we finish reading compressed pages from the disk, we
145  * decompress them and then run the bio end_io routines on the
146  * decompressed pages (in the inode address space).
147  *
148  * This allows the checksumming and other IO error handling routines
149  * to work normally
150  *
151  * The compressed pages are freed here, and it must be run
152  * in process context
153  */
154 static void end_compressed_bio_read(struct bio *bio, int err)
155 {
156         struct compressed_bio *cb = bio->bi_private;
157         struct inode *inode;
158         struct page *page;
159         unsigned long index;
160         int ret;
161
162         if (err)
163                 cb->errors = 1;
164
165         /* if there are more bios still pending for this compressed
166          * extent, just exit
167          */
168         if (!atomic_dec_and_test(&cb->pending_bios))
169                 goto out;
170
171         inode = cb->inode;
172         ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
173         if (ret)
174                 goto csum_failed;
175
176         /* ok, we're the last bio for this extent, lets start
177          * the decompression.
178          */
179         ret = btrfs_decompress_biovec(cb->compress_type,
180                                       cb->compressed_pages,
181                                       cb->start,
182                                       cb->orig_bio->bi_io_vec,
183                                       cb->orig_bio->bi_vcnt,
184                                       cb->compressed_len);
185 csum_failed:
186         if (ret)
187                 cb->errors = 1;
188
189         /* release the compressed pages */
190         index = 0;
191         for (index = 0; index < cb->nr_pages; index++) {
192                 page = cb->compressed_pages[index];
193                 page->mapping = NULL;
194                 page_cache_release(page);
195         }
196
197         /* do io completion on the original bio */
198         if (cb->errors) {
199                 bio_io_error(cb->orig_bio);
200         } else {
201                 int bio_index = 0;
202                 struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
203
204                 /*
205                  * we have verified the checksum already, set page
206                  * checked so the end_io handlers know about it
207                  */
208                 while (bio_index < cb->orig_bio->bi_vcnt) {
209                         SetPageChecked(bvec->bv_page);
210                         bvec++;
211                         bio_index++;
212                 }
213                 bio_endio(cb->orig_bio, 0);
214         }
215
216         /* finally free the cb struct */
217         kfree(cb->compressed_pages);
218         kfree(cb);
219 out:
220         bio_put(bio);
221 }
222
223 /*
224  * Clear the writeback bits on all of the file
225  * pages for a compressed write
226  */
227 static noinline int end_compressed_writeback(struct inode *inode, u64 start,
228                                              unsigned long ram_size)
229 {
230         unsigned long index = start >> PAGE_CACHE_SHIFT;
231         unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
232         struct page *pages[16];
233         unsigned long nr_pages = end_index - index + 1;
234         int i;
235         int ret;
236
237         while (nr_pages > 0) {
238                 ret = find_get_pages_contig(inode->i_mapping, index,
239                                      min_t(unsigned long,
240                                      nr_pages, ARRAY_SIZE(pages)), pages);
241                 if (ret == 0) {
242                         nr_pages -= 1;
243                         index += 1;
244                         continue;
245                 }
246                 for (i = 0; i < ret; i++) {
247                         end_page_writeback(pages[i]);
248                         page_cache_release(pages[i]);
249                 }
250                 nr_pages -= ret;
251                 index += ret;
252         }
253         /* the inode may be gone now */
254         return 0;
255 }
256
257 /*
258  * do the cleanup once all the compressed pages hit the disk.
259  * This will clear writeback on the file pages and free the compressed
260  * pages.
261  *
262  * This also calls the writeback end hooks for the file pages so that
263  * metadata and checksums can be updated in the file.
264  */
265 static void end_compressed_bio_write(struct bio *bio, int err)
266 {
267         struct extent_io_tree *tree;
268         struct compressed_bio *cb = bio->bi_private;
269         struct inode *inode;
270         struct page *page;
271         unsigned long index;
272
273         if (err)
274                 cb->errors = 1;
275
276         /* if there are more bios still pending for this compressed
277          * extent, just exit
278          */
279         if (!atomic_dec_and_test(&cb->pending_bios))
280                 goto out;
281
282         /* ok, we're the last bio for this extent, step one is to
283          * call back into the FS and do all the end_io operations
284          */
285         inode = cb->inode;
286         tree = &BTRFS_I(inode)->io_tree;
287         cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
288         tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
289                                          cb->start,
290                                          cb->start + cb->len - 1,
291                                          NULL, 1);
292         cb->compressed_pages[0]->mapping = NULL;
293
294         end_compressed_writeback(inode, cb->start, cb->len);
295         /* note, our inode could be gone now */
296
297         /*
298          * release the compressed pages, these came from alloc_page and
299          * are not attached to the inode at all
300          */
301         index = 0;
302         for (index = 0; index < cb->nr_pages; index++) {
303                 page = cb->compressed_pages[index];
304                 page->mapping = NULL;
305                 page_cache_release(page);
306         }
307
308         /* finally free the cb struct */
309         kfree(cb->compressed_pages);
310         kfree(cb);
311 out:
312         bio_put(bio);
313 }
314
315 /*
316  * worker function to build and submit bios for previously compressed pages.
317  * The corresponding pages in the inode should be marked for writeback
318  * and the compressed pages should have a reference on them for dropping
319  * when the IO is complete.
320  *
321  * This also checksums the file bytes and gets things ready for
322  * the end io hooks.
323  */
324 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
325                                  unsigned long len, u64 disk_start,
326                                  unsigned long compressed_len,
327                                  struct page **compressed_pages,
328                                  unsigned long nr_pages)
329 {
330         struct bio *bio = NULL;
331         struct btrfs_root *root = BTRFS_I(inode)->root;
332         struct compressed_bio *cb;
333         unsigned long bytes_left;
334         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
335         int page_index = 0;
336         struct page *page;
337         u64 first_byte = disk_start;
338         struct block_device *bdev;
339         int ret;
340
341         WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
342         cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
343         atomic_set(&cb->pending_bios, 0);
344         cb->errors = 0;
345         cb->inode = inode;
346         cb->start = start;
347         cb->len = len;
348         cb->mirror_num = 0;
349         cb->compressed_pages = compressed_pages;
350         cb->compressed_len = compressed_len;
351         cb->orig_bio = NULL;
352         cb->nr_pages = nr_pages;
353
354         bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
355
356         bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
357         bio->bi_private = cb;
358         bio->bi_end_io = end_compressed_bio_write;
359         atomic_inc(&cb->pending_bios);
360
361         /* create and submit bios for the compressed pages */
362         bytes_left = compressed_len;
363         for (page_index = 0; page_index < cb->nr_pages; page_index++) {
364                 page = compressed_pages[page_index];
365                 page->mapping = inode->i_mapping;
366                 if (bio->bi_size)
367                         ret = io_tree->ops->merge_bio_hook(page, 0,
368                                                            PAGE_CACHE_SIZE,
369                                                            bio, 0);
370                 else
371                         ret = 0;
372
373                 page->mapping = NULL;
374                 if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
375                     PAGE_CACHE_SIZE) {
376                         bio_get(bio);
377
378                         /*
379                          * inc the count before we submit the bio so
380                          * we know the end IO handler won't happen before
381                          * we inc the count.  Otherwise, the cb might get
382                          * freed before we're done setting it up
383                          */
384                         atomic_inc(&cb->pending_bios);
385                         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
386                         BUG_ON(ret);
387
388                         ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
389                         BUG_ON(ret);
390
391                         ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
392                         BUG_ON(ret);
393
394                         bio_put(bio);
395
396                         bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
397                         bio->bi_private = cb;
398                         bio->bi_end_io = end_compressed_bio_write;
399                         bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
400                 }
401                 if (bytes_left < PAGE_CACHE_SIZE) {
402                         printk("bytes left %lu compress len %lu nr %lu\n",
403                                bytes_left, cb->compressed_len, cb->nr_pages);
404                 }
405                 bytes_left -= PAGE_CACHE_SIZE;
406                 first_byte += PAGE_CACHE_SIZE;
407                 cond_resched();
408         }
409         bio_get(bio);
410
411         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
412         BUG_ON(ret);
413
414         ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
415         BUG_ON(ret);
416
417         ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
418         BUG_ON(ret);
419
420         bio_put(bio);
421         return 0;
422 }
423
424 static noinline int add_ra_bio_pages(struct inode *inode,
425                                      u64 compressed_end,
426                                      struct compressed_bio *cb)
427 {
428         unsigned long end_index;
429         unsigned long page_index;
430         u64 last_offset;
431         u64 isize = i_size_read(inode);
432         int ret;
433         struct page *page;
434         unsigned long nr_pages = 0;
435         struct extent_map *em;
436         struct address_space *mapping = inode->i_mapping;
437         struct extent_map_tree *em_tree;
438         struct extent_io_tree *tree;
439         u64 end;
440         int misses = 0;
441
442         page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
443         last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
444         em_tree = &BTRFS_I(inode)->extent_tree;
445         tree = &BTRFS_I(inode)->io_tree;
446
447         if (isize == 0)
448                 return 0;
449
450         end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
451
452         while (last_offset < compressed_end) {
453                 page_index = last_offset >> PAGE_CACHE_SHIFT;
454
455                 if (page_index > end_index)
456                         break;
457
458                 rcu_read_lock();
459                 page = radix_tree_lookup(&mapping->page_tree, page_index);
460                 rcu_read_unlock();
461                 if (page) {
462                         misses++;
463                         if (misses > 4)
464                                 break;
465                         goto next;
466                 }
467
468                 page = __page_cache_alloc(mapping_gfp_mask(mapping) &
469                                                                 ~__GFP_FS);
470                 if (!page)
471                         break;
472
473                 if (add_to_page_cache_lru(page, mapping, page_index,
474                                                                 GFP_NOFS)) {
475                         page_cache_release(page);
476                         goto next;
477                 }
478
479                 end = last_offset + PAGE_CACHE_SIZE - 1;
480                 /*
481                  * at this point, we have a locked page in the page cache
482                  * for these bytes in the file.  But, we have to make
483                  * sure they map to this compressed extent on disk.
484                  */
485                 set_page_extent_mapped(page);
486                 lock_extent(tree, last_offset, end, GFP_NOFS);
487                 read_lock(&em_tree->lock);
488                 em = lookup_extent_mapping(em_tree, last_offset,
489                                            PAGE_CACHE_SIZE);
490                 read_unlock(&em_tree->lock);
491
492                 if (!em || last_offset < em->start ||
493                     (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
494                     (em->block_start >> 9) != cb->orig_bio->bi_sector) {
495                         free_extent_map(em);
496                         unlock_extent(tree, last_offset, end, GFP_NOFS);
497                         unlock_page(page);
498                         page_cache_release(page);
499                         break;
500                 }
501                 free_extent_map(em);
502
503                 if (page->index == end_index) {
504                         char *userpage;
505                         size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
506
507                         if (zero_offset) {
508                                 int zeros;
509                                 zeros = PAGE_CACHE_SIZE - zero_offset;
510                                 userpage = kmap_atomic(page, KM_USER0);
511                                 memset(userpage + zero_offset, 0, zeros);
512                                 flush_dcache_page(page);
513                                 kunmap_atomic(userpage, KM_USER0);
514                         }
515                 }
516
517                 ret = bio_add_page(cb->orig_bio, page,
518                                    PAGE_CACHE_SIZE, 0);
519
520                 if (ret == PAGE_CACHE_SIZE) {
521                         nr_pages++;
522                         page_cache_release(page);
523                 } else {
524                         unlock_extent(tree, last_offset, end, GFP_NOFS);
525                         unlock_page(page);
526                         page_cache_release(page);
527                         break;
528                 }
529 next:
530                 last_offset += PAGE_CACHE_SIZE;
531         }
532         return 0;
533 }
534
535 /*
536  * for a compressed read, the bio we get passed has all the inode pages
537  * in it.  We don't actually do IO on those pages but allocate new ones
538  * to hold the compressed pages on disk.
539  *
540  * bio->bi_sector points to the compressed extent on disk
541  * bio->bi_io_vec points to all of the inode pages
542  * bio->bi_vcnt is a count of pages
543  *
544  * After the compressed pages are read, we copy the bytes into the
545  * bio we were passed and then call the bio end_io calls
546  */
547 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
548                                  int mirror_num, unsigned long bio_flags)
549 {
550         struct extent_io_tree *tree;
551         struct extent_map_tree *em_tree;
552         struct compressed_bio *cb;
553         struct btrfs_root *root = BTRFS_I(inode)->root;
554         unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
555         unsigned long compressed_len;
556         unsigned long nr_pages;
557         unsigned long page_index;
558         struct page *page;
559         struct block_device *bdev;
560         struct bio *comp_bio;
561         u64 cur_disk_byte = (u64)bio->bi_sector << 9;
562         u64 em_len;
563         u64 em_start;
564         struct extent_map *em;
565         int ret = -ENOMEM;
566         u32 *sums;
567
568         tree = &BTRFS_I(inode)->io_tree;
569         em_tree = &BTRFS_I(inode)->extent_tree;
570
571         /* we need the actual starting offset of this extent in the file */
572         read_lock(&em_tree->lock);
573         em = lookup_extent_mapping(em_tree,
574                                    page_offset(bio->bi_io_vec->bv_page),
575                                    PAGE_CACHE_SIZE);
576         read_unlock(&em_tree->lock);
577
578         compressed_len = em->block_len;
579         cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
580         if (!cb)
581                 goto out;
582
583         atomic_set(&cb->pending_bios, 0);
584         cb->errors = 0;
585         cb->inode = inode;
586         cb->mirror_num = mirror_num;
587         sums = &cb->sums;
588
589         cb->start = em->orig_start;
590         em_len = em->len;
591         em_start = em->start;
592
593         free_extent_map(em);
594         em = NULL;
595
596         cb->len = uncompressed_len;
597         cb->compressed_len = compressed_len;
598         cb->compress_type = extent_compress_type(bio_flags);
599         cb->orig_bio = bio;
600
601         nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
602                                  PAGE_CACHE_SIZE;
603         cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
604                                        GFP_NOFS);
605         if (!cb->compressed_pages)
606                 goto fail1;
607
608         bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
609
610         for (page_index = 0; page_index < nr_pages; page_index++) {
611                 cb->compressed_pages[page_index] = alloc_page(GFP_NOFS |
612                                                               __GFP_HIGHMEM);
613                 if (!cb->compressed_pages[page_index])
614                         goto fail2;
615         }
616         cb->nr_pages = nr_pages;
617
618         add_ra_bio_pages(inode, em_start + em_len, cb);
619
620         /* include any pages we added in add_ra-bio_pages */
621         uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
622         cb->len = uncompressed_len;
623
624         comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
625         if (!comp_bio)
626                 goto fail2;
627         comp_bio->bi_private = cb;
628         comp_bio->bi_end_io = end_compressed_bio_read;
629         atomic_inc(&cb->pending_bios);
630
631         for (page_index = 0; page_index < nr_pages; page_index++) {
632                 page = cb->compressed_pages[page_index];
633                 page->mapping = inode->i_mapping;
634                 page->index = em_start >> PAGE_CACHE_SHIFT;
635
636                 if (comp_bio->bi_size)
637                         ret = tree->ops->merge_bio_hook(page, 0,
638                                                         PAGE_CACHE_SIZE,
639                                                         comp_bio, 0);
640                 else
641                         ret = 0;
642
643                 page->mapping = NULL;
644                 if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
645                     PAGE_CACHE_SIZE) {
646                         bio_get(comp_bio);
647
648                         ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
649                         BUG_ON(ret);
650
651                         /*
652                          * inc the count before we submit the bio so
653                          * we know the end IO handler won't happen before
654                          * we inc the count.  Otherwise, the cb might get
655                          * freed before we're done setting it up
656                          */
657                         atomic_inc(&cb->pending_bios);
658
659                         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
660                                 btrfs_lookup_bio_sums(root, inode, comp_bio,
661                                                       sums);
662                         }
663                         sums += (comp_bio->bi_size + root->sectorsize - 1) /
664                                 root->sectorsize;
665
666                         ret = btrfs_map_bio(root, READ, comp_bio,
667                                             mirror_num, 0);
668                         BUG_ON(ret);
669
670                         bio_put(comp_bio);
671
672                         comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
673                                                         GFP_NOFS);
674                         comp_bio->bi_private = cb;
675                         comp_bio->bi_end_io = end_compressed_bio_read;
676
677                         bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
678                 }
679                 cur_disk_byte += PAGE_CACHE_SIZE;
680         }
681         bio_get(comp_bio);
682
683         ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
684         BUG_ON(ret);
685
686         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
687                 btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
688
689         ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
690         BUG_ON(ret);
691
692         bio_put(comp_bio);
693         return 0;
694
695 fail2:
696         for (page_index = 0; page_index < nr_pages; page_index++)
697                 free_page((unsigned long)cb->compressed_pages[page_index]);
698
699         kfree(cb->compressed_pages);
700 fail1:
701         kfree(cb);
702 out:
703         free_extent_map(em);
704         return ret;
705 }
706
707 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
708 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
709 static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
710 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
711 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
712
713 struct btrfs_compress_op *btrfs_compress_op[] = {
714         &btrfs_zlib_compress,
715         &btrfs_lzo_compress,
716 };
717
718 int __init btrfs_init_compress(void)
719 {
720         int i;
721
722         for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
723                 INIT_LIST_HEAD(&comp_idle_workspace[i]);
724                 spin_lock_init(&comp_workspace_lock[i]);
725                 atomic_set(&comp_alloc_workspace[i], 0);
726                 init_waitqueue_head(&comp_workspace_wait[i]);
727         }
728         return 0;
729 }
730
731 /*
732  * this finds an available workspace or allocates a new one
733  * ERR_PTR is returned if things go bad.
734  */
735 static struct list_head *find_workspace(int type)
736 {
737         struct list_head *workspace;
738         int cpus = num_online_cpus();
739         int idx = type - 1;
740
741         struct list_head *idle_workspace        = &comp_idle_workspace[idx];
742         spinlock_t *workspace_lock              = &comp_workspace_lock[idx];
743         atomic_t *alloc_workspace               = &comp_alloc_workspace[idx];
744         wait_queue_head_t *workspace_wait       = &comp_workspace_wait[idx];
745         int *num_workspace                      = &comp_num_workspace[idx];
746 again:
747         spin_lock(workspace_lock);
748         if (!list_empty(idle_workspace)) {
749                 workspace = idle_workspace->next;
750                 list_del(workspace);
751                 (*num_workspace)--;
752                 spin_unlock(workspace_lock);
753                 return workspace;
754
755         }
756         if (atomic_read(alloc_workspace) > cpus) {
757                 DEFINE_WAIT(wait);
758
759                 spin_unlock(workspace_lock);
760                 prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
761                 if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
762                         schedule();
763                 finish_wait(workspace_wait, &wait);
764                 goto again;
765         }
766         atomic_inc(alloc_workspace);
767         spin_unlock(workspace_lock);
768
769         workspace = btrfs_compress_op[idx]->alloc_workspace();
770         if (IS_ERR(workspace)) {
771                 atomic_dec(alloc_workspace);
772                 wake_up(workspace_wait);
773         }
774         return workspace;
775 }
776
777 /*
778  * put a workspace struct back on the list or free it if we have enough
779  * idle ones sitting around
780  */
781 static void free_workspace(int type, struct list_head *workspace)
782 {
783         int idx = type - 1;
784         struct list_head *idle_workspace        = &comp_idle_workspace[idx];
785         spinlock_t *workspace_lock              = &comp_workspace_lock[idx];
786         atomic_t *alloc_workspace               = &comp_alloc_workspace[idx];
787         wait_queue_head_t *workspace_wait       = &comp_workspace_wait[idx];
788         int *num_workspace                      = &comp_num_workspace[idx];
789
790         spin_lock(workspace_lock);
791         if (*num_workspace < num_online_cpus()) {
792                 list_add_tail(workspace, idle_workspace);
793                 (*num_workspace)++;
794                 spin_unlock(workspace_lock);
795                 goto wake;
796         }
797         spin_unlock(workspace_lock);
798
799         btrfs_compress_op[idx]->free_workspace(workspace);
800         atomic_dec(alloc_workspace);
801 wake:
802         if (waitqueue_active(workspace_wait))
803                 wake_up(workspace_wait);
804 }
805
806 /*
807  * cleanup function for module exit
808  */
809 static void free_workspaces(void)
810 {
811         struct list_head *workspace;
812         int i;
813
814         for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
815                 while (!list_empty(&comp_idle_workspace[i])) {
816                         workspace = comp_idle_workspace[i].next;
817                         list_del(workspace);
818                         btrfs_compress_op[i]->free_workspace(workspace);
819                         atomic_dec(&comp_alloc_workspace[i]);
820                 }
821         }
822 }
823
824 /*
825  * given an address space and start/len, compress the bytes.
826  *
827  * pages are allocated to hold the compressed result and stored
828  * in 'pages'
829  *
830  * out_pages is used to return the number of pages allocated.  There
831  * may be pages allocated even if we return an error
832  *
833  * total_in is used to return the number of bytes actually read.  It
834  * may be smaller then len if we had to exit early because we
835  * ran out of room in the pages array or because we cross the
836  * max_out threshold.
837  *
838  * total_out is used to return the total number of compressed bytes
839  *
840  * max_out tells us the max number of bytes that we're allowed to
841  * stuff into pages
842  */
843 int btrfs_compress_pages(int type, struct address_space *mapping,
844                          u64 start, unsigned long len,
845                          struct page **pages,
846                          unsigned long nr_dest_pages,
847                          unsigned long *out_pages,
848                          unsigned long *total_in,
849                          unsigned long *total_out,
850                          unsigned long max_out)
851 {
852         struct list_head *workspace;
853         int ret;
854
855         workspace = find_workspace(type);
856         if (IS_ERR(workspace))
857                 return -1;
858
859         ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
860                                                       start, len, pages,
861                                                       nr_dest_pages, out_pages,
862                                                       total_in, total_out,
863                                                       max_out);
864         free_workspace(type, workspace);
865         return ret;
866 }
867
868 /*
869  * pages_in is an array of pages with compressed data.
870  *
871  * disk_start is the starting logical offset of this array in the file
872  *
873  * bvec is a bio_vec of pages from the file that we want to decompress into
874  *
875  * vcnt is the count of pages in the biovec
876  *
877  * srclen is the number of bytes in pages_in
878  *
879  * The basic idea is that we have a bio that was created by readpages.
880  * The pages in the bio are for the uncompressed data, and they may not
881  * be contiguous.  They all correspond to the range of bytes covered by
882  * the compressed extent.
883  */
884 int btrfs_decompress_biovec(int type, struct page **pages_in, u64 disk_start,
885                             struct bio_vec *bvec, int vcnt, size_t srclen)
886 {
887         struct list_head *workspace;
888         int ret;
889
890         workspace = find_workspace(type);
891         if (IS_ERR(workspace))
892                 return -ENOMEM;
893
894         ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
895                                                          disk_start,
896                                                          bvec, vcnt, srclen);
897         free_workspace(type, workspace);
898         return ret;
899 }
900
901 /*
902  * a less complex decompression routine.  Our compressed data fits in a
903  * single page, and we want to read a single page out of it.
904  * start_byte tells us the offset into the compressed data we're interested in
905  */
906 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
907                      unsigned long start_byte, size_t srclen, size_t destlen)
908 {
909         struct list_head *workspace;
910         int ret;
911
912         workspace = find_workspace(type);
913         if (IS_ERR(workspace))
914                 return -ENOMEM;
915
916         ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
917                                                   dest_page, start_byte,
918                                                   srclen, destlen);
919
920         free_workspace(type, workspace);
921         return ret;
922 }
923
924 void btrfs_exit_compress(void)
925 {
926         free_workspaces();
927 }
928
929 /*
930  * Copy uncompressed data from working buffer to pages.
931  *
932  * buf_start is the byte offset we're of the start of our workspace buffer.
933  *
934  * total_out is the last byte of the buffer
935  */
936 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
937                               unsigned long total_out, u64 disk_start,
938                               struct bio_vec *bvec, int vcnt,
939                               unsigned long *page_index,
940                               unsigned long *pg_offset)
941 {
942         unsigned long buf_offset;
943         unsigned long current_buf_start;
944         unsigned long start_byte;
945         unsigned long working_bytes = total_out - buf_start;
946         unsigned long bytes;
947         char *kaddr;
948         struct page *page_out = bvec[*page_index].bv_page;
949
950         /*
951          * start byte is the first byte of the page we're currently
952          * copying into relative to the start of the compressed data.
953          */
954         start_byte = page_offset(page_out) - disk_start;
955
956         /* we haven't yet hit data corresponding to this page */
957         if (total_out <= start_byte)
958                 return 1;
959
960         /*
961          * the start of the data we care about is offset into
962          * the middle of our working buffer
963          */
964         if (total_out > start_byte && buf_start < start_byte) {
965                 buf_offset = start_byte - buf_start;
966                 working_bytes -= buf_offset;
967         } else {
968                 buf_offset = 0;
969         }
970         current_buf_start = buf_start;
971
972         /* copy bytes from the working buffer into the pages */
973         while (working_bytes > 0) {
974                 bytes = min(PAGE_CACHE_SIZE - *pg_offset,
975                             PAGE_CACHE_SIZE - buf_offset);
976                 bytes = min(bytes, working_bytes);
977                 kaddr = kmap_atomic(page_out, KM_USER0);
978                 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
979                 kunmap_atomic(kaddr, KM_USER0);
980                 flush_dcache_page(page_out);
981
982                 *pg_offset += bytes;
983                 buf_offset += bytes;
984                 working_bytes -= bytes;
985                 current_buf_start += bytes;
986
987                 /* check if we need to pick another page */
988                 if (*pg_offset == PAGE_CACHE_SIZE) {
989                         (*page_index)++;
990                         if (*page_index >= vcnt)
991                                 return 0;
992
993                         page_out = bvec[*page_index].bv_page;
994                         *pg_offset = 0;
995                         start_byte = page_offset(page_out) - disk_start;
996
997                         /*
998                          * make sure our new page is covered by this
999                          * working buffer
1000                          */
1001                         if (total_out <= start_byte)
1002                                 return 1;
1003
1004                         /*
1005                          * the next page in the biovec might not be adjacent
1006                          * to the last page, but it might still be found
1007                          * inside this working buffer. bump our offset pointer
1008                          */
1009                         if (total_out > start_byte &&
1010                             current_buf_start < start_byte) {
1011                                 buf_offset = start_byte - buf_start;
1012                                 working_bytes = total_out - start_byte;
1013                                 current_buf_start = buf_start + buf_offset;
1014                         }
1015                 }
1016         }
1017
1018         return 1;
1019 }