Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux...
[pandora-kernel.git] / drivers / video / pxafb.c
1 /*
2  *  linux/drivers/video/pxafb.c
3  *
4  *  Copyright (C) 1999 Eric A. Thomas.
5  *  Copyright (C) 2004 Jean-Frederic Clere.
6  *  Copyright (C) 2004 Ian Campbell.
7  *  Copyright (C) 2004 Jeff Lackey.
8  *   Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
9  *  which in turn is
10  *   Based on acornfb.c Copyright (C) Russell King.
11  *
12  * This file is subject to the terms and conditions of the GNU General Public
13  * License.  See the file COPYING in the main directory of this archive for
14  * more details.
15  *
16  *              Intel PXA250/210 LCD Controller Frame Buffer Driver
17  *
18  * Please direct your questions and comments on this driver to the following
19  * email address:
20  *
21  *      linux-arm-kernel@lists.arm.linux.org.uk
22  *
23  */
24
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/errno.h>
30 #include <linux/string.h>
31 #include <linux/interrupt.h>
32 #include <linux/slab.h>
33 #include <linux/fb.h>
34 #include <linux/delay.h>
35 #include <linux/init.h>
36 #include <linux/ioport.h>
37 #include <linux/cpufreq.h>
38 #include <linux/platform_device.h>
39 #include <linux/dma-mapping.h>
40
41 #include <asm/hardware.h>
42 #include <asm/io.h>
43 #include <asm/irq.h>
44 #include <asm/uaccess.h>
45 #include <asm/div64.h>
46 #include <asm/arch/pxa-regs.h>
47 #include <asm/arch/bitfield.h>
48 #include <asm/arch/pxafb.h>
49
50 /*
51  * Complain if VAR is out of range.
52  */
53 #define DEBUG_VAR 1
54
55 #include "pxafb.h"
56
57 /* Bits which should not be set in machine configuration structures */
58 #define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM|LCCR0_BM|LCCR0_QDM|LCCR0_DIS|LCCR0_EFM|LCCR0_IUM|LCCR0_SFM|LCCR0_LDM|LCCR0_ENB)
59 #define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP|LCCR3_VSP|LCCR3_PCD|LCCR3_BPP)
60
61 static void (*pxafb_backlight_power)(int);
62 static void (*pxafb_lcd_power)(int);
63
64 static int pxafb_activate_var(struct fb_var_screeninfo *var, struct pxafb_info *);
65 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state);
66
67 #ifdef CONFIG_FB_PXA_PARAMETERS
68 #define PXAFB_OPTIONS_SIZE 256
69 static char g_options[PXAFB_OPTIONS_SIZE] __initdata = "";
70 #endif
71
72 static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state)
73 {
74         unsigned long flags;
75
76         local_irq_save(flags);
77         /*
78          * We need to handle two requests being made at the same time.
79          * There are two important cases:
80          *  1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
81          *     We must perform the unblanking, which will do our REENABLE for us.
82          *  2. When we are blanking, but immediately unblank before we have
83          *     blanked.  We do the "REENABLE" thing here as well, just to be sure.
84          */
85         if (fbi->task_state == C_ENABLE && state == C_REENABLE)
86                 state = (u_int) -1;
87         if (fbi->task_state == C_DISABLE && state == C_ENABLE)
88                 state = C_REENABLE;
89
90         if (state != (u_int)-1) {
91                 fbi->task_state = state;
92                 schedule_work(&fbi->task);
93         }
94         local_irq_restore(flags);
95 }
96
97 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
98 {
99         chan &= 0xffff;
100         chan >>= 16 - bf->length;
101         return chan << bf->offset;
102 }
103
104 static int
105 pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
106                        u_int trans, struct fb_info *info)
107 {
108         struct pxafb_info *fbi = (struct pxafb_info *)info;
109         u_int val, ret = 1;
110
111         if (regno < fbi->palette_size) {
112                 if (fbi->fb.var.grayscale) {
113                         val = ((blue >> 8) & 0x00ff);
114                 } else {
115                         val  = ((red   >>  0) & 0xf800);
116                         val |= ((green >>  5) & 0x07e0);
117                         val |= ((blue  >> 11) & 0x001f);
118                 }
119                 fbi->palette_cpu[regno] = val;
120                 ret = 0;
121         }
122         return ret;
123 }
124
125 static int
126 pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
127                    u_int trans, struct fb_info *info)
128 {
129         struct pxafb_info *fbi = (struct pxafb_info *)info;
130         unsigned int val;
131         int ret = 1;
132
133         /*
134          * If inverse mode was selected, invert all the colours
135          * rather than the register number.  The register number
136          * is what you poke into the framebuffer to produce the
137          * colour you requested.
138          */
139         if (fbi->cmap_inverse) {
140                 red   = 0xffff - red;
141                 green = 0xffff - green;
142                 blue  = 0xffff - blue;
143         }
144
145         /*
146          * If greyscale is true, then we convert the RGB value
147          * to greyscale no matter what visual we are using.
148          */
149         if (fbi->fb.var.grayscale)
150                 red = green = blue = (19595 * red + 38470 * green +
151                                         7471 * blue) >> 16;
152
153         switch (fbi->fb.fix.visual) {
154         case FB_VISUAL_TRUECOLOR:
155                 /*
156                  * 16-bit True Colour.  We encode the RGB value
157                  * according to the RGB bitfield information.
158                  */
159                 if (regno < 16) {
160                         u32 *pal = fbi->fb.pseudo_palette;
161
162                         val  = chan_to_field(red, &fbi->fb.var.red);
163                         val |= chan_to_field(green, &fbi->fb.var.green);
164                         val |= chan_to_field(blue, &fbi->fb.var.blue);
165
166                         pal[regno] = val;
167                         ret = 0;
168                 }
169                 break;
170
171         case FB_VISUAL_STATIC_PSEUDOCOLOR:
172         case FB_VISUAL_PSEUDOCOLOR:
173                 ret = pxafb_setpalettereg(regno, red, green, blue, trans, info);
174                 break;
175         }
176
177         return ret;
178 }
179
180 /*
181  *  pxafb_bpp_to_lccr3():
182  *    Convert a bits per pixel value to the correct bit pattern for LCCR3
183  */
184 static int pxafb_bpp_to_lccr3(struct fb_var_screeninfo *var)
185 {
186         int ret = 0;
187         switch (var->bits_per_pixel) {
188         case 1:  ret = LCCR3_1BPP; break;
189         case 2:  ret = LCCR3_2BPP; break;
190         case 4:  ret = LCCR3_4BPP; break;
191         case 8:  ret = LCCR3_8BPP; break;
192         case 16: ret = LCCR3_16BPP; break;
193         }
194         return ret;
195 }
196
197 #ifdef CONFIG_CPU_FREQ
198 /*
199  *  pxafb_display_dma_period()
200  *    Calculate the minimum period (in picoseconds) between two DMA
201  *    requests for the LCD controller.  If we hit this, it means we're
202  *    doing nothing but LCD DMA.
203  */
204 static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var)
205 {
206        /*
207         * Period = pixclock * bits_per_byte * bytes_per_transfer
208         *              / memory_bits_per_pixel;
209         */
210        return var->pixclock * 8 * 16 / var->bits_per_pixel;
211 }
212
213 extern unsigned int get_clk_frequency_khz(int info);
214 #endif
215
216 /*
217  *  pxafb_check_var():
218  *    Get the video params out of 'var'. If a value doesn't fit, round it up,
219  *    if it's too big, return -EINVAL.
220  *
221  *    Round up in the following order: bits_per_pixel, xres,
222  *    yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
223  *    bitfields, horizontal timing, vertical timing.
224  */
225 static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
226 {
227         struct pxafb_info *fbi = (struct pxafb_info *)info;
228
229         if (var->xres < MIN_XRES)
230                 var->xres = MIN_XRES;
231         if (var->yres < MIN_YRES)
232                 var->yres = MIN_YRES;
233         if (var->xres > fbi->max_xres)
234                 return -EINVAL;
235         if (var->yres > fbi->max_yres)
236                 return -EINVAL;
237         var->xres_virtual =
238                 max(var->xres_virtual, var->xres);
239         var->yres_virtual =
240                 max(var->yres_virtual, var->yres);
241
242         /*
243          * Setup the RGB parameters for this display.
244          *
245          * The pixel packing format is described on page 7-11 of the
246          * PXA2XX Developer's Manual.
247          */
248         if (var->bits_per_pixel == 16) {
249                 var->red.offset   = 11; var->red.length   = 5;
250                 var->green.offset = 5;  var->green.length = 6;
251                 var->blue.offset  = 0;  var->blue.length  = 5;
252                 var->transp.offset = var->transp.length = 0;
253         } else {
254                 var->red.offset = var->green.offset = var->blue.offset = var->transp.offset = 0;
255                 var->red.length   = 8;
256                 var->green.length = 8;
257                 var->blue.length  = 8;
258                 var->transp.length = 0;
259         }
260
261 #ifdef CONFIG_CPU_FREQ
262         pr_debug("pxafb: dma period = %d ps, clock = %d kHz\n",
263                  pxafb_display_dma_period(var),
264                  get_clk_frequency_khz(0));
265 #endif
266
267         return 0;
268 }
269
270 static inline void pxafb_set_truecolor(u_int is_true_color)
271 {
272         pr_debug("pxafb: true_color = %d\n", is_true_color);
273         // do your machine-specific setup if needed
274 }
275
276 /*
277  * pxafb_set_par():
278  *      Set the user defined part of the display for the specified console
279  */
280 static int pxafb_set_par(struct fb_info *info)
281 {
282         struct pxafb_info *fbi = (struct pxafb_info *)info;
283         struct fb_var_screeninfo *var = &info->var;
284         unsigned long palette_mem_size;
285
286         pr_debug("pxafb: set_par\n");
287
288         if (var->bits_per_pixel == 16)
289                 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
290         else if (!fbi->cmap_static)
291                 fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
292         else {
293                 /*
294                  * Some people have weird ideas about wanting static
295                  * pseudocolor maps.  I suspect their user space
296                  * applications are broken.
297                  */
298                 fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
299         }
300
301         fbi->fb.fix.line_length = var->xres_virtual *
302                                   var->bits_per_pixel / 8;
303         if (var->bits_per_pixel == 16)
304                 fbi->palette_size = 0;
305         else
306                 fbi->palette_size = var->bits_per_pixel == 1 ? 4 : 1 << var->bits_per_pixel;
307
308         palette_mem_size = fbi->palette_size * sizeof(u16);
309
310         pr_debug("pxafb: palette_mem_size = 0x%08lx\n", palette_mem_size);
311
312         fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
313         fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
314
315         /*
316          * Set (any) board control register to handle new color depth
317          */
318         pxafb_set_truecolor(fbi->fb.fix.visual == FB_VISUAL_TRUECOLOR);
319
320         if (fbi->fb.var.bits_per_pixel == 16)
321                 fb_dealloc_cmap(&fbi->fb.cmap);
322         else
323                 fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0);
324
325         pxafb_activate_var(var, fbi);
326
327         return 0;
328 }
329
330 /*
331  * Formal definition of the VESA spec:
332  *  On
333  *      This refers to the state of the display when it is in full operation
334  *  Stand-By
335  *      This defines an optional operating state of minimal power reduction with
336  *      the shortest recovery time
337  *  Suspend
338  *      This refers to a level of power management in which substantial power
339  *      reduction is achieved by the display.  The display can have a longer
340  *      recovery time from this state than from the Stand-by state
341  *  Off
342  *      This indicates that the display is consuming the lowest level of power
343  *      and is non-operational. Recovery from this state may optionally require
344  *      the user to manually power on the monitor
345  *
346  *  Now, the fbdev driver adds an additional state, (blank), where they
347  *  turn off the video (maybe by colormap tricks), but don't mess with the
348  *  video itself: think of it semantically between on and Stand-By.
349  *
350  *  So here's what we should do in our fbdev blank routine:
351  *
352  *      VESA_NO_BLANKING (mode 0)       Video on,  front/back light on
353  *      VESA_VSYNC_SUSPEND (mode 1)     Video on,  front/back light off
354  *      VESA_HSYNC_SUSPEND (mode 2)     Video on,  front/back light off
355  *      VESA_POWERDOWN (mode 3)         Video off, front/back light off
356  *
357  *  This will match the matrox implementation.
358  */
359
360 /*
361  * pxafb_blank():
362  *      Blank the display by setting all palette values to zero.  Note, the
363  *      16 bpp mode does not really use the palette, so this will not
364  *      blank the display in all modes.
365  */
366 static int pxafb_blank(int blank, struct fb_info *info)
367 {
368         struct pxafb_info *fbi = (struct pxafb_info *)info;
369         int i;
370
371         pr_debug("pxafb: blank=%d\n", blank);
372
373         switch (blank) {
374         case FB_BLANK_POWERDOWN:
375         case FB_BLANK_VSYNC_SUSPEND:
376         case FB_BLANK_HSYNC_SUSPEND:
377         case FB_BLANK_NORMAL:
378                 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
379                     fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
380                         for (i = 0; i < fbi->palette_size; i++)
381                                 pxafb_setpalettereg(i, 0, 0, 0, 0, info);
382
383                 pxafb_schedule_work(fbi, C_DISABLE);
384                 //TODO if (pxafb_blank_helper) pxafb_blank_helper(blank);
385                 break;
386
387         case FB_BLANK_UNBLANK:
388                 //TODO if (pxafb_blank_helper) pxafb_blank_helper(blank);
389                 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
390                     fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
391                         fb_set_cmap(&fbi->fb.cmap, info);
392                 pxafb_schedule_work(fbi, C_ENABLE);
393         }
394         return 0;
395 }
396
397 static int pxafb_mmap(struct fb_info *info,
398                       struct vm_area_struct *vma)
399 {
400         struct pxafb_info *fbi = (struct pxafb_info *)info;
401         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
402
403         if (off < info->fix.smem_len) {
404                 vma->vm_pgoff += 1;
405                 return dma_mmap_writecombine(fbi->dev, vma, fbi->map_cpu,
406                                              fbi->map_dma, fbi->map_size);
407         }
408         return -EINVAL;
409 }
410
411 static struct fb_ops pxafb_ops = {
412         .owner          = THIS_MODULE,
413         .fb_check_var   = pxafb_check_var,
414         .fb_set_par     = pxafb_set_par,
415         .fb_setcolreg   = pxafb_setcolreg,
416         .fb_fillrect    = cfb_fillrect,
417         .fb_copyarea    = cfb_copyarea,
418         .fb_imageblit   = cfb_imageblit,
419         .fb_blank       = pxafb_blank,
420         .fb_mmap        = pxafb_mmap,
421 };
422
423 /*
424  * Calculate the PCD value from the clock rate (in picoseconds).
425  * We take account of the PPCR clock setting.
426  * From PXA Developer's Manual:
427  *
428  *   PixelClock =      LCLK
429  *                -------------
430  *                2 ( PCD + 1 )
431  *
432  *   PCD =      LCLK
433  *         ------------- - 1
434  *         2(PixelClock)
435  *
436  * Where:
437  *   LCLK = LCD/Memory Clock
438  *   PCD = LCCR3[7:0]
439  *
440  * PixelClock here is in Hz while the pixclock argument given is the
441  * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
442  *
443  * The function get_lclk_frequency_10khz returns LCLK in units of
444  * 10khz. Calling the result of this function lclk gives us the
445  * following
446  *
447  *    PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
448  *          -------------------------------------- - 1
449  *                          2
450  *
451  * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
452  */
453 static inline unsigned int get_pcd(unsigned int pixclock)
454 {
455         unsigned long long pcd;
456
457         /* FIXME: Need to take into account Double Pixel Clock mode
458          * (DPC) bit? or perhaps set it based on the various clock
459          * speeds */
460
461         pcd = (unsigned long long)get_lcdclk_frequency_10khz() * pixclock;
462         do_div(pcd, 100000000 * 2);
463         /* no need for this, since we should subtract 1 anyway. they cancel */
464         /* pcd += 1; */ /* make up for integer math truncations */
465         return (unsigned int)pcd;
466 }
467
468 /*
469  * Some touchscreens need hsync information from the video driver to
470  * function correctly. We export it here.
471  */
472 static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd)
473 {
474         unsigned long long htime;
475
476         if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) {
477                 fbi->hsync_time=0;
478                 return;
479         }
480
481         htime = (unsigned long long)get_lcdclk_frequency_10khz() * 10000;
482         do_div(htime, pcd * fbi->fb.var.hsync_len);
483         fbi->hsync_time = htime;
484 }
485
486 unsigned long pxafb_get_hsync_time(struct device *dev)
487 {
488         struct pxafb_info *fbi = dev_get_drvdata(dev);
489
490         /* If display is blanked/suspended, hsync isn't active */
491         if (!fbi || (fbi->state != C_ENABLE))
492                 return 0;
493
494         return fbi->hsync_time;
495 }
496 EXPORT_SYMBOL(pxafb_get_hsync_time);
497
498 /*
499  * pxafb_activate_var():
500  *      Configures LCD Controller based on entries in var parameter.  Settings are
501  *      only written to the controller if changes were made.
502  */
503 static int pxafb_activate_var(struct fb_var_screeninfo *var, struct pxafb_info *fbi)
504 {
505         struct pxafb_lcd_reg new_regs;
506         u_long flags;
507         u_int lines_per_panel, pcd = get_pcd(var->pixclock);
508
509         pr_debug("pxafb: Configuring PXA LCD\n");
510
511         pr_debug("var: xres=%d hslen=%d lm=%d rm=%d\n",
512                  var->xres, var->hsync_len,
513                  var->left_margin, var->right_margin);
514         pr_debug("var: yres=%d vslen=%d um=%d bm=%d\n",
515                  var->yres, var->vsync_len,
516                  var->upper_margin, var->lower_margin);
517         pr_debug("var: pixclock=%d pcd=%d\n", var->pixclock, pcd);
518
519 #if DEBUG_VAR
520         if (var->xres < 16        || var->xres > 1024)
521                 printk(KERN_ERR "%s: invalid xres %d\n",
522                         fbi->fb.fix.id, var->xres);
523         switch(var->bits_per_pixel) {
524         case 1:
525         case 2:
526         case 4:
527         case 8:
528         case 16:
529                 break;
530         default:
531                 printk(KERN_ERR "%s: invalid bit depth %d\n",
532                        fbi->fb.fix.id, var->bits_per_pixel);
533                 break;
534         }
535         if (var->hsync_len < 1    || var->hsync_len > 64)
536                 printk(KERN_ERR "%s: invalid hsync_len %d\n",
537                         fbi->fb.fix.id, var->hsync_len);
538         if (var->left_margin < 1  || var->left_margin > 255)
539                 printk(KERN_ERR "%s: invalid left_margin %d\n",
540                         fbi->fb.fix.id, var->left_margin);
541         if (var->right_margin < 1 || var->right_margin > 255)
542                 printk(KERN_ERR "%s: invalid right_margin %d\n",
543                         fbi->fb.fix.id, var->right_margin);
544         if (var->yres < 1         || var->yres > 1024)
545                 printk(KERN_ERR "%s: invalid yres %d\n",
546                         fbi->fb.fix.id, var->yres);
547         if (var->vsync_len < 1    || var->vsync_len > 64)
548                 printk(KERN_ERR "%s: invalid vsync_len %d\n",
549                         fbi->fb.fix.id, var->vsync_len);
550         if (var->upper_margin < 0 || var->upper_margin > 255)
551                 printk(KERN_ERR "%s: invalid upper_margin %d\n",
552                         fbi->fb.fix.id, var->upper_margin);
553         if (var->lower_margin < 0 || var->lower_margin > 255)
554                 printk(KERN_ERR "%s: invalid lower_margin %d\n",
555                         fbi->fb.fix.id, var->lower_margin);
556 #endif
557
558         new_regs.lccr0 = fbi->lccr0 |
559                 (LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM |
560                  LCCR0_QDM | LCCR0_BM  | LCCR0_OUM);
561
562         new_regs.lccr1 =
563                 LCCR1_DisWdth(var->xres) +
564                 LCCR1_HorSnchWdth(var->hsync_len) +
565                 LCCR1_BegLnDel(var->left_margin) +
566                 LCCR1_EndLnDel(var->right_margin);
567
568         /*
569          * If we have a dual scan LCD, we need to halve
570          * the YRES parameter.
571          */
572         lines_per_panel = var->yres;
573         if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual)
574                 lines_per_panel /= 2;
575
576         new_regs.lccr2 =
577                 LCCR2_DisHght(lines_per_panel) +
578                 LCCR2_VrtSnchWdth(var->vsync_len) +
579                 LCCR2_BegFrmDel(var->upper_margin) +
580                 LCCR2_EndFrmDel(var->lower_margin);
581
582         new_regs.lccr3 = fbi->lccr3 |
583                 pxafb_bpp_to_lccr3(var) |
584                 (var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) |
585                 (var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL);
586
587         if (pcd)
588                 new_regs.lccr3 |= LCCR3_PixClkDiv(pcd);
589
590         pr_debug("nlccr0 = 0x%08x\n", new_regs.lccr0);
591         pr_debug("nlccr1 = 0x%08x\n", new_regs.lccr1);
592         pr_debug("nlccr2 = 0x%08x\n", new_regs.lccr2);
593         pr_debug("nlccr3 = 0x%08x\n", new_regs.lccr3);
594
595         /* Update shadow copy atomically */
596         local_irq_save(flags);
597
598         /* setup dma descriptors */
599         fbi->dmadesc_fblow_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 3*16);
600         fbi->dmadesc_fbhigh_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 2*16);
601         fbi->dmadesc_palette_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 1*16);
602
603         fbi->dmadesc_fblow_dma = fbi->palette_dma - 3*16;
604         fbi->dmadesc_fbhigh_dma = fbi->palette_dma - 2*16;
605         fbi->dmadesc_palette_dma = fbi->palette_dma - 1*16;
606
607 #define BYTES_PER_PANEL (lines_per_panel * fbi->fb.fix.line_length)
608
609         /* populate descriptors */
610         fbi->dmadesc_fblow_cpu->fdadr = fbi->dmadesc_fblow_dma;
611         fbi->dmadesc_fblow_cpu->fsadr = fbi->screen_dma + BYTES_PER_PANEL;
612         fbi->dmadesc_fblow_cpu->fidr  = 0;
613         fbi->dmadesc_fblow_cpu->ldcmd = BYTES_PER_PANEL;
614
615         fbi->fdadr1 = fbi->dmadesc_fblow_dma; /* only used in dual-panel mode */
616
617         fbi->dmadesc_fbhigh_cpu->fsadr = fbi->screen_dma;
618         fbi->dmadesc_fbhigh_cpu->fidr = 0;
619         fbi->dmadesc_fbhigh_cpu->ldcmd = BYTES_PER_PANEL;
620
621         fbi->dmadesc_palette_cpu->fsadr = fbi->palette_dma;
622         fbi->dmadesc_palette_cpu->fidr  = 0;
623         fbi->dmadesc_palette_cpu->ldcmd = (fbi->palette_size * 2) | LDCMD_PAL;
624
625         if (var->bits_per_pixel == 16) {
626                 /* palette shouldn't be loaded in true-color mode */
627                 fbi->dmadesc_fbhigh_cpu->fdadr = fbi->dmadesc_fbhigh_dma;
628                 fbi->fdadr0 = fbi->dmadesc_fbhigh_dma; /* no pal just fbhigh */
629                 /* init it to something, even though we won't be using it */
630                 fbi->dmadesc_palette_cpu->fdadr = fbi->dmadesc_palette_dma;
631         } else {
632                 fbi->dmadesc_palette_cpu->fdadr = fbi->dmadesc_fbhigh_dma;
633                 fbi->dmadesc_fbhigh_cpu->fdadr = fbi->dmadesc_palette_dma;
634                 fbi->fdadr0 = fbi->dmadesc_palette_dma; /* flips back and forth between pal and fbhigh */
635         }
636
637 #if 0
638         pr_debug("fbi->dmadesc_fblow_cpu = 0x%p\n", fbi->dmadesc_fblow_cpu);
639         pr_debug("fbi->dmadesc_fbhigh_cpu = 0x%p\n", fbi->dmadesc_fbhigh_cpu);
640         pr_debug("fbi->dmadesc_palette_cpu = 0x%p\n", fbi->dmadesc_palette_cpu);
641         pr_debug("fbi->dmadesc_fblow_dma = 0x%x\n", fbi->dmadesc_fblow_dma);
642         pr_debug("fbi->dmadesc_fbhigh_dma = 0x%x\n", fbi->dmadesc_fbhigh_dma);
643         pr_debug("fbi->dmadesc_palette_dma = 0x%x\n", fbi->dmadesc_palette_dma);
644
645         pr_debug("fbi->dmadesc_fblow_cpu->fdadr = 0x%x\n", fbi->dmadesc_fblow_cpu->fdadr);
646         pr_debug("fbi->dmadesc_fbhigh_cpu->fdadr = 0x%x\n", fbi->dmadesc_fbhigh_cpu->fdadr);
647         pr_debug("fbi->dmadesc_palette_cpu->fdadr = 0x%x\n", fbi->dmadesc_palette_cpu->fdadr);
648
649         pr_debug("fbi->dmadesc_fblow_cpu->fsadr = 0x%x\n", fbi->dmadesc_fblow_cpu->fsadr);
650         pr_debug("fbi->dmadesc_fbhigh_cpu->fsadr = 0x%x\n", fbi->dmadesc_fbhigh_cpu->fsadr);
651         pr_debug("fbi->dmadesc_palette_cpu->fsadr = 0x%x\n", fbi->dmadesc_palette_cpu->fsadr);
652
653         pr_debug("fbi->dmadesc_fblow_cpu->ldcmd = 0x%x\n", fbi->dmadesc_fblow_cpu->ldcmd);
654         pr_debug("fbi->dmadesc_fbhigh_cpu->ldcmd = 0x%x\n", fbi->dmadesc_fbhigh_cpu->ldcmd);
655         pr_debug("fbi->dmadesc_palette_cpu->ldcmd = 0x%x\n", fbi->dmadesc_palette_cpu->ldcmd);
656 #endif
657
658         fbi->reg_lccr0 = new_regs.lccr0;
659         fbi->reg_lccr1 = new_regs.lccr1;
660         fbi->reg_lccr2 = new_regs.lccr2;
661         fbi->reg_lccr3 = new_regs.lccr3;
662         set_hsync_time(fbi, pcd);
663         local_irq_restore(flags);
664
665         /*
666          * Only update the registers if the controller is enabled
667          * and something has changed.
668          */
669         if ((LCCR0  != fbi->reg_lccr0) || (LCCR1  != fbi->reg_lccr1) ||
670             (LCCR2  != fbi->reg_lccr2) || (LCCR3  != fbi->reg_lccr3) ||
671             (FDADR0 != fbi->fdadr0)    || (FDADR1 != fbi->fdadr1))
672                 pxafb_schedule_work(fbi, C_REENABLE);
673
674         return 0;
675 }
676
677 /*
678  * NOTE!  The following functions are purely helpers for set_ctrlr_state.
679  * Do not call them directly; set_ctrlr_state does the correct serialisation
680  * to ensure that things happen in the right way 100% of time time.
681  *      -- rmk
682  */
683 static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on)
684 {
685         pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff");
686
687         if (pxafb_backlight_power)
688                 pxafb_backlight_power(on);
689 }
690
691 static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on)
692 {
693         pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff");
694
695         if (pxafb_lcd_power)
696                 pxafb_lcd_power(on);
697 }
698
699 static void pxafb_setup_gpio(struct pxafb_info *fbi)
700 {
701         int gpio, ldd_bits;
702         unsigned int lccr0 = fbi->lccr0;
703
704         /*
705          * setup is based on type of panel supported
706         */
707
708         /* 4 bit interface */
709         if ((lccr0 & LCCR0_CMS) == LCCR0_Mono &&
710             (lccr0 & LCCR0_SDS) == LCCR0_Sngl &&
711             (lccr0 & LCCR0_DPD) == LCCR0_4PixMono)
712                 ldd_bits = 4;
713
714         /* 8 bit interface */
715         else if (((lccr0 & LCCR0_CMS) == LCCR0_Mono &&
716                   ((lccr0 & LCCR0_SDS) == LCCR0_Dual || (lccr0 & LCCR0_DPD) == LCCR0_8PixMono)) ||
717                  ((lccr0 & LCCR0_CMS) == LCCR0_Color &&
718                   (lccr0 & LCCR0_PAS) == LCCR0_Pas && (lccr0 & LCCR0_SDS) == LCCR0_Sngl))
719                 ldd_bits = 8;
720
721         /* 16 bit interface */
722         else if ((lccr0 & LCCR0_CMS) == LCCR0_Color &&
723                  ((lccr0 & LCCR0_SDS) == LCCR0_Dual || (lccr0 & LCCR0_PAS) == LCCR0_Act))
724                 ldd_bits = 16;
725
726         else {
727                 printk(KERN_ERR "pxafb_setup_gpio: unable to determine bits per pixel\n");
728                 return;
729         }
730
731         for (gpio = 58; ldd_bits; gpio++, ldd_bits--)
732                 pxa_gpio_mode(gpio | GPIO_ALT_FN_2_OUT);
733         pxa_gpio_mode(GPIO74_LCD_FCLK_MD);
734         pxa_gpio_mode(GPIO75_LCD_LCLK_MD);
735         pxa_gpio_mode(GPIO76_LCD_PCLK_MD);
736         pxa_gpio_mode(GPIO77_LCD_ACBIAS_MD);
737 }
738
739 static void pxafb_enable_controller(struct pxafb_info *fbi)
740 {
741         pr_debug("pxafb: Enabling LCD controller\n");
742         pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr0);
743         pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr1);
744         pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0);
745         pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1);
746         pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2);
747         pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3);
748
749         /* enable LCD controller clock */
750         pxa_set_cken(CKEN16_LCD, 1);
751
752         /* Sequence from 11.7.10 */
753         LCCR3 = fbi->reg_lccr3;
754         LCCR2 = fbi->reg_lccr2;
755         LCCR1 = fbi->reg_lccr1;
756         LCCR0 = fbi->reg_lccr0 & ~LCCR0_ENB;
757
758         FDADR0 = fbi->fdadr0;
759         FDADR1 = fbi->fdadr1;
760         LCCR0 |= LCCR0_ENB;
761
762         pr_debug("FDADR0 0x%08x\n", (unsigned int) FDADR0);
763         pr_debug("FDADR1 0x%08x\n", (unsigned int) FDADR1);
764         pr_debug("LCCR0 0x%08x\n", (unsigned int) LCCR0);
765         pr_debug("LCCR1 0x%08x\n", (unsigned int) LCCR1);
766         pr_debug("LCCR2 0x%08x\n", (unsigned int) LCCR2);
767         pr_debug("LCCR3 0x%08x\n", (unsigned int) LCCR3);
768 }
769
770 static void pxafb_disable_controller(struct pxafb_info *fbi)
771 {
772         DECLARE_WAITQUEUE(wait, current);
773
774         pr_debug("pxafb: disabling LCD controller\n");
775
776         set_current_state(TASK_UNINTERRUPTIBLE);
777         add_wait_queue(&fbi->ctrlr_wait, &wait);
778
779         LCSR = 0xffffffff;      /* Clear LCD Status Register */
780         LCCR0 &= ~LCCR0_LDM;    /* Enable LCD Disable Done Interrupt */
781         LCCR0 |= LCCR0_DIS;     /* Disable LCD Controller */
782
783         schedule_timeout(200 * HZ / 1000);
784         remove_wait_queue(&fbi->ctrlr_wait, &wait);
785
786         /* disable LCD controller clock */
787         pxa_set_cken(CKEN16_LCD, 0);
788 }
789
790 /*
791  *  pxafb_handle_irq: Handle 'LCD DONE' interrupts.
792  */
793 static irqreturn_t pxafb_handle_irq(int irq, void *dev_id, struct pt_regs *regs)
794 {
795         struct pxafb_info *fbi = dev_id;
796         unsigned int lcsr = LCSR;
797
798         if (lcsr & LCSR_LDD) {
799                 LCCR0 |= LCCR0_LDM;
800                 wake_up(&fbi->ctrlr_wait);
801         }
802
803         LCSR = lcsr;
804         return IRQ_HANDLED;
805 }
806
807 /*
808  * This function must be called from task context only, since it will
809  * sleep when disabling the LCD controller, or if we get two contending
810  * processes trying to alter state.
811  */
812 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state)
813 {
814         u_int old_state;
815
816         down(&fbi->ctrlr_sem);
817
818         old_state = fbi->state;
819
820         /*
821          * Hack around fbcon initialisation.
822          */
823         if (old_state == C_STARTUP && state == C_REENABLE)
824                 state = C_ENABLE;
825
826         switch (state) {
827         case C_DISABLE_CLKCHANGE:
828                 /*
829                  * Disable controller for clock change.  If the
830                  * controller is already disabled, then do nothing.
831                  */
832                 if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
833                         fbi->state = state;
834                         //TODO __pxafb_lcd_power(fbi, 0);
835                         pxafb_disable_controller(fbi);
836                 }
837                 break;
838
839         case C_DISABLE_PM:
840         case C_DISABLE:
841                 /*
842                  * Disable controller
843                  */
844                 if (old_state != C_DISABLE) {
845                         fbi->state = state;
846                         __pxafb_backlight_power(fbi, 0);
847                         __pxafb_lcd_power(fbi, 0);
848                         if (old_state != C_DISABLE_CLKCHANGE)
849                                 pxafb_disable_controller(fbi);
850                 }
851                 break;
852
853         case C_ENABLE_CLKCHANGE:
854                 /*
855                  * Enable the controller after clock change.  Only
856                  * do this if we were disabled for the clock change.
857                  */
858                 if (old_state == C_DISABLE_CLKCHANGE) {
859                         fbi->state = C_ENABLE;
860                         pxafb_enable_controller(fbi);
861                         //TODO __pxafb_lcd_power(fbi, 1);
862                 }
863                 break;
864
865         case C_REENABLE:
866                 /*
867                  * Re-enable the controller only if it was already
868                  * enabled.  This is so we reprogram the control
869                  * registers.
870                  */
871                 if (old_state == C_ENABLE) {
872                         pxafb_disable_controller(fbi);
873                         pxafb_setup_gpio(fbi);
874                         pxafb_enable_controller(fbi);
875                 }
876                 break;
877
878         case C_ENABLE_PM:
879                 /*
880                  * Re-enable the controller after PM.  This is not
881                  * perfect - think about the case where we were doing
882                  * a clock change, and we suspended half-way through.
883                  */
884                 if (old_state != C_DISABLE_PM)
885                         break;
886                 /* fall through */
887
888         case C_ENABLE:
889                 /*
890                  * Power up the LCD screen, enable controller, and
891                  * turn on the backlight.
892                  */
893                 if (old_state != C_ENABLE) {
894                         fbi->state = C_ENABLE;
895                         pxafb_setup_gpio(fbi);
896                         pxafb_enable_controller(fbi);
897                         __pxafb_lcd_power(fbi, 1);
898                         __pxafb_backlight_power(fbi, 1);
899                 }
900                 break;
901         }
902         up(&fbi->ctrlr_sem);
903 }
904
905 /*
906  * Our LCD controller task (which is called when we blank or unblank)
907  * via keventd.
908  */
909 static void pxafb_task(void *dummy)
910 {
911         struct pxafb_info *fbi = dummy;
912         u_int state = xchg(&fbi->task_state, -1);
913
914         set_ctrlr_state(fbi, state);
915 }
916
917 #ifdef CONFIG_CPU_FREQ
918 /*
919  * CPU clock speed change handler.  We need to adjust the LCD timing
920  * parameters when the CPU clock is adjusted by the power management
921  * subsystem.
922  *
923  * TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
924  */
925 static int
926 pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data)
927 {
928         struct pxafb_info *fbi = TO_INF(nb, freq_transition);
929         //TODO struct cpufreq_freqs *f = data;
930         u_int pcd;
931
932         switch (val) {
933         case CPUFREQ_PRECHANGE:
934                 set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
935                 break;
936
937         case CPUFREQ_POSTCHANGE:
938                 pcd = get_pcd(fbi->fb.var.pixclock);
939                 set_hsync_time(fbi, pcd);
940                 fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd);
941                 set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
942                 break;
943         }
944         return 0;
945 }
946
947 static int
948 pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data)
949 {
950         struct pxafb_info *fbi = TO_INF(nb, freq_policy);
951         struct fb_var_screeninfo *var = &fbi->fb.var;
952         struct cpufreq_policy *policy = data;
953
954         switch (val) {
955         case CPUFREQ_ADJUST:
956         case CPUFREQ_INCOMPATIBLE:
957                 printk(KERN_DEBUG "min dma period: %d ps, "
958                         "new clock %d kHz\n", pxafb_display_dma_period(var),
959                         policy->max);
960                 // TODO: fill in min/max values
961                 break;
962 #if 0
963         case CPUFREQ_NOTIFY:
964                 printk(KERN_ERR "%s: got CPUFREQ_NOTIFY\n", __FUNCTION__);
965                 do {} while(0);
966                 /* todo: panic if min/max values aren't fulfilled
967                  * [can't really happen unless there's a bug in the
968                  * CPU policy verification process *
969                  */
970                 break;
971 #endif
972         }
973         return 0;
974 }
975 #endif
976
977 #ifdef CONFIG_PM
978 /*
979  * Power management hooks.  Note that we won't be called from IRQ context,
980  * unlike the blank functions above, so we may sleep.
981  */
982 static int pxafb_suspend(struct platform_device *dev, pm_message_t state)
983 {
984         struct pxafb_info *fbi = platform_get_drvdata(dev);
985
986         set_ctrlr_state(fbi, C_DISABLE_PM);
987         return 0;
988 }
989
990 static int pxafb_resume(struct platform_device *dev)
991 {
992         struct pxafb_info *fbi = platform_get_drvdata(dev);
993
994         set_ctrlr_state(fbi, C_ENABLE_PM);
995         return 0;
996 }
997 #else
998 #define pxafb_suspend   NULL
999 #define pxafb_resume    NULL
1000 #endif
1001
1002 /*
1003  * pxafb_map_video_memory():
1004  *      Allocates the DRAM memory for the frame buffer.  This buffer is
1005  *      remapped into a non-cached, non-buffered, memory region to
1006  *      allow palette and pixel writes to occur without flushing the
1007  *      cache.  Once this area is remapped, all virtual memory
1008  *      access to the video memory should occur at the new region.
1009  */
1010 static int __init pxafb_map_video_memory(struct pxafb_info *fbi)
1011 {
1012         u_long palette_mem_size;
1013
1014         /*
1015          * We reserve one page for the palette, plus the size
1016          * of the framebuffer.
1017          */
1018         fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
1019         fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size,
1020                                               &fbi->map_dma, GFP_KERNEL);
1021
1022         if (fbi->map_cpu) {
1023                 /* prevent initial garbage on screen */
1024                 memset(fbi->map_cpu, 0, fbi->map_size);
1025                 fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE;
1026                 fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
1027                 /*
1028                  * FIXME: this is actually the wrong thing to place in
1029                  * smem_start.  But fbdev suffers from the problem that
1030                  * it needs an API which doesn't exist (in this case,
1031                  * dma_writecombine_mmap)
1032                  */
1033                 fbi->fb.fix.smem_start = fbi->screen_dma;
1034
1035                 fbi->palette_size = fbi->fb.var.bits_per_pixel == 8 ? 256 : 16;
1036
1037                 palette_mem_size = fbi->palette_size * sizeof(u16);
1038                 pr_debug("pxafb: palette_mem_size = 0x%08lx\n", palette_mem_size);
1039
1040                 fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
1041                 fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
1042         }
1043
1044         return fbi->map_cpu ? 0 : -ENOMEM;
1045 }
1046
1047 static struct pxafb_info * __init pxafb_init_fbinfo(struct device *dev)
1048 {
1049         struct pxafb_info *fbi;
1050         void *addr;
1051         struct pxafb_mach_info *inf = dev->platform_data;
1052
1053         /* Alloc the pxafb_info and pseudo_palette in one step */
1054         fbi = kmalloc(sizeof(struct pxafb_info) + sizeof(u32) * 16, GFP_KERNEL);
1055         if (!fbi)
1056                 return NULL;
1057
1058         memset(fbi, 0, sizeof(struct pxafb_info));
1059         fbi->dev = dev;
1060
1061         strcpy(fbi->fb.fix.id, PXA_NAME);
1062
1063         fbi->fb.fix.type        = FB_TYPE_PACKED_PIXELS;
1064         fbi->fb.fix.type_aux    = 0;
1065         fbi->fb.fix.xpanstep    = 0;
1066         fbi->fb.fix.ypanstep    = 0;
1067         fbi->fb.fix.ywrapstep   = 0;
1068         fbi->fb.fix.accel       = FB_ACCEL_NONE;
1069
1070         fbi->fb.var.nonstd      = 0;
1071         fbi->fb.var.activate    = FB_ACTIVATE_NOW;
1072         fbi->fb.var.height      = -1;
1073         fbi->fb.var.width       = -1;
1074         fbi->fb.var.accel_flags = 0;
1075         fbi->fb.var.vmode       = FB_VMODE_NONINTERLACED;
1076
1077         fbi->fb.fbops           = &pxafb_ops;
1078         fbi->fb.flags           = FBINFO_DEFAULT;
1079         fbi->fb.node            = -1;
1080
1081         addr = fbi;
1082         addr = addr + sizeof(struct pxafb_info);
1083         fbi->fb.pseudo_palette  = addr;
1084
1085         fbi->max_xres                   = inf->xres;
1086         fbi->fb.var.xres                = inf->xres;
1087         fbi->fb.var.xres_virtual        = inf->xres;
1088         fbi->max_yres                   = inf->yres;
1089         fbi->fb.var.yres                = inf->yres;
1090         fbi->fb.var.yres_virtual        = inf->yres;
1091         fbi->max_bpp                    = inf->bpp;
1092         fbi->fb.var.bits_per_pixel      = inf->bpp;
1093         fbi->fb.var.pixclock            = inf->pixclock;
1094         fbi->fb.var.hsync_len           = inf->hsync_len;
1095         fbi->fb.var.left_margin         = inf->left_margin;
1096         fbi->fb.var.right_margin        = inf->right_margin;
1097         fbi->fb.var.vsync_len           = inf->vsync_len;
1098         fbi->fb.var.upper_margin        = inf->upper_margin;
1099         fbi->fb.var.lower_margin        = inf->lower_margin;
1100         fbi->fb.var.sync                = inf->sync;
1101         fbi->fb.var.grayscale           = inf->cmap_greyscale;
1102         fbi->cmap_inverse               = inf->cmap_inverse;
1103         fbi->cmap_static                = inf->cmap_static;
1104         fbi->lccr0                      = inf->lccr0;
1105         fbi->lccr3                      = inf->lccr3;
1106         fbi->state                      = C_STARTUP;
1107         fbi->task_state                 = (u_char)-1;
1108         fbi->fb.fix.smem_len            = fbi->max_xres * fbi->max_yres *
1109                                           fbi->max_bpp / 8;
1110
1111         init_waitqueue_head(&fbi->ctrlr_wait);
1112         INIT_WORK(&fbi->task, pxafb_task, fbi);
1113         init_MUTEX(&fbi->ctrlr_sem);
1114
1115         return fbi;
1116 }
1117
1118 #ifdef CONFIG_FB_PXA_PARAMETERS
1119 static int __init pxafb_parse_options(struct device *dev, char *options)
1120 {
1121         struct pxafb_mach_info *inf = dev->platform_data;
1122         char *this_opt;
1123
1124         if (!options || !*options)
1125                 return 0;
1126
1127         dev_dbg(dev, "options are \"%s\"\n", options ? options : "null");
1128
1129         /* could be made table driven or similar?... */
1130         while ((this_opt = strsep(&options, ",")) != NULL) {
1131                 if (!strncmp(this_opt, "mode:", 5)) {
1132                         const char *name = this_opt+5;
1133                         unsigned int namelen = strlen(name);
1134                         int res_specified = 0, bpp_specified = 0;
1135                         unsigned int xres = 0, yres = 0, bpp = 0;
1136                         int yres_specified = 0;
1137                         int i;
1138                         for (i = namelen-1; i >= 0; i--) {
1139                                 switch (name[i]) {
1140                                 case '-':
1141                                         namelen = i;
1142                                         if (!bpp_specified && !yres_specified) {
1143                                                 bpp = simple_strtoul(&name[i+1], NULL, 0);
1144                                                 bpp_specified = 1;
1145                                         } else
1146                                                 goto done;
1147                                         break;
1148                                 case 'x':
1149                                         if (!yres_specified) {
1150                                                 yres = simple_strtoul(&name[i+1], NULL, 0);
1151                                                 yres_specified = 1;
1152                                         } else
1153                                                 goto done;
1154                                         break;
1155                                 case '0'...'9':
1156                                         break;
1157                                 default:
1158                                         goto done;
1159                                 }
1160                         }
1161                         if (i < 0 && yres_specified) {
1162                                 xres = simple_strtoul(name, NULL, 0);
1163                                 res_specified = 1;
1164                         }
1165                 done:
1166                         if (res_specified) {
1167                                 dev_info(dev, "overriding resolution: %dx%d\n", xres, yres);
1168                                 inf->xres = xres; inf->yres = yres;
1169                         }
1170                         if (bpp_specified)
1171                                 switch (bpp) {
1172                                 case 1:
1173                                 case 2:
1174                                 case 4:
1175                                 case 8:
1176                                 case 16:
1177                                         inf->bpp = bpp;
1178                                         dev_info(dev, "overriding bit depth: %d\n", bpp);
1179                                         break;
1180                                 default:
1181                                         dev_err(dev, "Depth %d is not valid\n", bpp);
1182                                 }
1183                 } else if (!strncmp(this_opt, "pixclock:", 9)) {
1184                         inf->pixclock = simple_strtoul(this_opt+9, NULL, 0);
1185                         dev_info(dev, "override pixclock: %ld\n", inf->pixclock);
1186                 } else if (!strncmp(this_opt, "left:", 5)) {
1187                         inf->left_margin = simple_strtoul(this_opt+5, NULL, 0);
1188                         dev_info(dev, "override left: %u\n", inf->left_margin);
1189                 } else if (!strncmp(this_opt, "right:", 6)) {
1190                         inf->right_margin = simple_strtoul(this_opt+6, NULL, 0);
1191                         dev_info(dev, "override right: %u\n", inf->right_margin);
1192                 } else if (!strncmp(this_opt, "upper:", 6)) {
1193                         inf->upper_margin = simple_strtoul(this_opt+6, NULL, 0);
1194                         dev_info(dev, "override upper: %u\n", inf->upper_margin);
1195                 } else if (!strncmp(this_opt, "lower:", 6)) {
1196                         inf->lower_margin = simple_strtoul(this_opt+6, NULL, 0);
1197                         dev_info(dev, "override lower: %u\n", inf->lower_margin);
1198                 } else if (!strncmp(this_opt, "hsynclen:", 9)) {
1199                         inf->hsync_len = simple_strtoul(this_opt+9, NULL, 0);
1200                         dev_info(dev, "override hsynclen: %u\n", inf->hsync_len);
1201                 } else if (!strncmp(this_opt, "vsynclen:", 9)) {
1202                         inf->vsync_len = simple_strtoul(this_opt+9, NULL, 0);
1203                         dev_info(dev, "override vsynclen: %u\n", inf->vsync_len);
1204                 } else if (!strncmp(this_opt, "hsync:", 6)) {
1205                         if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1206                                 dev_info(dev, "override hsync: Active Low\n");
1207                                 inf->sync &= ~FB_SYNC_HOR_HIGH_ACT;
1208                         } else {
1209                                 dev_info(dev, "override hsync: Active High\n");
1210                                 inf->sync |= FB_SYNC_HOR_HIGH_ACT;
1211                         }
1212                 } else if (!strncmp(this_opt, "vsync:", 6)) {
1213                         if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1214                                 dev_info(dev, "override vsync: Active Low\n");
1215                                 inf->sync &= ~FB_SYNC_VERT_HIGH_ACT;
1216                         } else {
1217                                 dev_info(dev, "override vsync: Active High\n");
1218                                 inf->sync |= FB_SYNC_VERT_HIGH_ACT;
1219                         }
1220                 } else if (!strncmp(this_opt, "dpc:", 4)) {
1221                         if (simple_strtoul(this_opt+4, NULL, 0) == 0) {
1222                                 dev_info(dev, "override double pixel clock: false\n");
1223                                 inf->lccr3 &= ~LCCR3_DPC;
1224                         } else {
1225                                 dev_info(dev, "override double pixel clock: true\n");
1226                                 inf->lccr3 |= LCCR3_DPC;
1227                         }
1228                 } else if (!strncmp(this_opt, "outputen:", 9)) {
1229                         if (simple_strtoul(this_opt+9, NULL, 0) == 0) {
1230                                 dev_info(dev, "override output enable: active low\n");
1231                                 inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL;
1232                         } else {
1233                                 dev_info(dev, "override output enable: active high\n");
1234                                 inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH;
1235                         }
1236                 } else if (!strncmp(this_opt, "pixclockpol:", 12)) {
1237                         if (simple_strtoul(this_opt+12, NULL, 0) == 0) {
1238                                 dev_info(dev, "override pixel clock polarity: falling edge\n");
1239                                 inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg;
1240                         } else {
1241                                 dev_info(dev, "override pixel clock polarity: rising edge\n");
1242                                 inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg;
1243                         }
1244                 } else if (!strncmp(this_opt, "color", 5)) {
1245                         inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color;
1246                 } else if (!strncmp(this_opt, "mono", 4)) {
1247                         inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono;
1248                 } else if (!strncmp(this_opt, "active", 6)) {
1249                         inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act;
1250                 } else if (!strncmp(this_opt, "passive", 7)) {
1251                         inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas;
1252                 } else if (!strncmp(this_opt, "single", 6)) {
1253                         inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl;
1254                 } else if (!strncmp(this_opt, "dual", 4)) {
1255                         inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual;
1256                 } else if (!strncmp(this_opt, "4pix", 4)) {
1257                         inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono;
1258                 } else if (!strncmp(this_opt, "8pix", 4)) {
1259                         inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono;
1260                 } else {
1261                         dev_err(dev, "unknown option: %s\n", this_opt);
1262                         return -EINVAL;
1263                 }
1264         }
1265         return 0;
1266
1267 }
1268 #endif
1269
1270 int __init pxafb_probe(struct platform_device *dev)
1271 {
1272         struct pxafb_info *fbi;
1273         struct pxafb_mach_info *inf;
1274         int ret;
1275
1276         dev_dbg(&dev->dev, "pxafb_probe\n");
1277
1278         inf = dev->dev.platform_data;
1279         ret = -ENOMEM;
1280         fbi = NULL;
1281         if (!inf)
1282                 goto failed;
1283
1284 #ifdef CONFIG_FB_PXA_PARAMETERS
1285         ret = pxafb_parse_options(&dev->dev, g_options);
1286         if (ret < 0)
1287                 goto failed;
1288 #endif
1289
1290 #ifdef DEBUG_VAR
1291         /* Check for various illegal bit-combinations. Currently only
1292          * a warning is given. */
1293
1294         if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK)
1295                 dev_warn(&dev->dev, "machine LCCR0 setting contains illegal bits: %08x\n",
1296                         inf->lccr0 & LCCR0_INVALID_CONFIG_MASK);
1297         if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK)
1298                 dev_warn(&dev->dev, "machine LCCR3 setting contains illegal bits: %08x\n",
1299                         inf->lccr3 & LCCR3_INVALID_CONFIG_MASK);
1300         if (inf->lccr0 & LCCR0_DPD &&
1301             ((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas ||
1302              (inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl ||
1303              (inf->lccr0 & LCCR0_CMS) != LCCR0_Mono))
1304                 dev_warn(&dev->dev, "Double Pixel Data (DPD) mode is only valid in passive mono"
1305                          " single panel mode\n");
1306         if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act &&
1307             (inf->lccr0 & LCCR0_SDS) == LCCR0_Dual)
1308                 dev_warn(&dev->dev, "Dual panel only valid in passive mode\n");
1309         if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas &&
1310              (inf->upper_margin || inf->lower_margin))
1311                 dev_warn(&dev->dev, "Upper and lower margins must be 0 in passive mode\n");
1312 #endif
1313
1314         dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n",inf->xres, inf->yres, inf->bpp);
1315         if (inf->xres == 0 || inf->yres == 0 || inf->bpp == 0) {
1316                 dev_err(&dev->dev, "Invalid resolution or bit depth\n");
1317                 ret = -EINVAL;
1318                 goto failed;
1319         }
1320         pxafb_backlight_power = inf->pxafb_backlight_power;
1321         pxafb_lcd_power = inf->pxafb_lcd_power;
1322         fbi = pxafb_init_fbinfo(&dev->dev);
1323         if (!fbi) {
1324                 dev_err(&dev->dev, "Failed to initialize framebuffer device\n");
1325                 ret = -ENOMEM; // only reason for pxafb_init_fbinfo to fail is kmalloc
1326                 goto failed;
1327         }
1328
1329         /* Initialize video memory */
1330         ret = pxafb_map_video_memory(fbi);
1331         if (ret) {
1332                 dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret);
1333                 ret = -ENOMEM;
1334                 goto failed;
1335         }
1336
1337         ret = request_irq(IRQ_LCD, pxafb_handle_irq, IRQF_DISABLED, "LCD", fbi);
1338         if (ret) {
1339                 dev_err(&dev->dev, "request_irq failed: %d\n", ret);
1340                 ret = -EBUSY;
1341                 goto failed;
1342         }
1343
1344         /*
1345          * This makes sure that our colour bitfield
1346          * descriptors are correctly initialised.
1347          */
1348         pxafb_check_var(&fbi->fb.var, &fbi->fb);
1349         pxafb_set_par(&fbi->fb);
1350
1351         platform_set_drvdata(dev, fbi);
1352
1353         ret = register_framebuffer(&fbi->fb);
1354         if (ret < 0) {
1355                 dev_err(&dev->dev, "Failed to register framebuffer device: %d\n", ret);
1356                 goto failed;
1357         }
1358
1359 #ifdef CONFIG_PM
1360         // TODO
1361 #endif
1362
1363 #ifdef CONFIG_CPU_FREQ
1364         fbi->freq_transition.notifier_call = pxafb_freq_transition;
1365         fbi->freq_policy.notifier_call = pxafb_freq_policy;
1366         cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER);
1367         cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER);
1368 #endif
1369
1370         /*
1371          * Ok, now enable the LCD controller
1372          */
1373         set_ctrlr_state(fbi, C_ENABLE);
1374
1375         return 0;
1376
1377 failed:
1378         platform_set_drvdata(dev, NULL);
1379         kfree(fbi);
1380         return ret;
1381 }
1382
1383 static struct platform_driver pxafb_driver = {
1384         .probe          = pxafb_probe,
1385 #ifdef CONFIG_PM
1386         .suspend        = pxafb_suspend,
1387         .resume         = pxafb_resume,
1388 #endif
1389         .driver         = {
1390                 .name   = "pxa2xx-fb",
1391         },
1392 };
1393
1394 #ifndef MODULE
1395 int __devinit pxafb_setup(char *options)
1396 {
1397 # ifdef CONFIG_FB_PXA_PARAMETERS
1398         if (options)
1399                 strlcpy(g_options, options, sizeof(g_options));
1400 # endif
1401         return 0;
1402 }
1403 #else
1404 # ifdef CONFIG_FB_PXA_PARAMETERS
1405 module_param_string(options, g_options, sizeof(g_options), 0);
1406 MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.txt)");
1407 # endif
1408 #endif
1409
1410 int __devinit pxafb_init(void)
1411 {
1412 #ifndef MODULE
1413         char *option = NULL;
1414
1415         if (fb_get_options("pxafb", &option))
1416                 return -ENODEV;
1417         pxafb_setup(option);
1418 #endif
1419         return platform_driver_register(&pxafb_driver);
1420 }
1421
1422 module_init(pxafb_init);
1423
1424 MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
1425 MODULE_LICENSE("GPL");