Pull acpi_device_handle_cleanup into release branch
[pandora-kernel.git] / drivers / video / intelfb / intelfbhw.c
1 /*
2  * intelfb
3  *
4  * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
5  *
6  * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
7  *                   2004 Sylvain Meyer
8  *
9  * This driver consists of two parts.  The first part (intelfbdrv.c) provides
10  * the basic fbdev interfaces, is derived in part from the radeonfb and
11  * vesafb drivers, and is covered by the GPL.  The second part (intelfbhw.c)
12  * provides the code to program the hardware.  Most of it is derived from
13  * the i810/i830 XFree86 driver.  The HW-specific code is covered here
14  * under a dual license (GPL and MIT/XFree86 license).
15  *
16  * Author: David Dawes
17  *
18  */
19
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/tty.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fb.h>
31 #include <linux/ioport.h>
32 #include <linux/init.h>
33 #include <linux/pci.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36
37 #include <asm/io.h>
38
39 #include "intelfb.h"
40 #include "intelfbhw.h"
41
42 struct pll_min_max {
43         int min_m, max_m, min_m1, max_m1;
44         int min_m2, max_m2, min_n, max_n;
45         int min_p, max_p, min_p1, max_p1;
46         int min_vco, max_vco, p_transition_clk, ref_clk;
47         int p_inc_lo, p_inc_hi;
48 };
49
50 #define PLLS_I8xx 0
51 #define PLLS_I9xx 1
52 #define PLLS_MAX 2
53
54 static struct pll_min_max plls[PLLS_MAX] = {
55         { 108, 140, 18, 26,
56           6, 16, 3, 16,
57           4, 128, 0, 31,
58           930000, 1400000, 165000, 48000,
59           4, 2 }, //I8xx
60
61         { 75, 120, 10, 20,
62           5, 9, 4, 7,
63           5, 80, 1, 8,
64           1400000, 2800000, 200000, 96000,
65           10, 5 }  //I9xx
66 };
67
68 int
69 intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
70 {
71         u32 tmp;
72         if (!pdev || !dinfo)
73                 return 1;
74
75         switch (pdev->device) {
76         case PCI_DEVICE_ID_INTEL_830M:
77                 dinfo->name = "Intel(R) 830M";
78                 dinfo->chipset = INTEL_830M;
79                 dinfo->mobile = 1;
80                 dinfo->pll_index = PLLS_I8xx;
81                 return 0;
82         case PCI_DEVICE_ID_INTEL_845G:
83                 dinfo->name = "Intel(R) 845G";
84                 dinfo->chipset = INTEL_845G;
85                 dinfo->mobile = 0;
86                 dinfo->pll_index = PLLS_I8xx;
87                 return 0;
88         case PCI_DEVICE_ID_INTEL_85XGM:
89                 tmp = 0;
90                 dinfo->mobile = 1;
91                 dinfo->pll_index = PLLS_I8xx;
92                 pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
93                 switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
94                         INTEL_85X_VARIANT_MASK) {
95                 case INTEL_VAR_855GME:
96                         dinfo->name = "Intel(R) 855GME";
97                         dinfo->chipset = INTEL_855GME;
98                         return 0;
99                 case INTEL_VAR_855GM:
100                         dinfo->name = "Intel(R) 855GM";
101                         dinfo->chipset = INTEL_855GM;
102                         return 0;
103                 case INTEL_VAR_852GME:
104                         dinfo->name = "Intel(R) 852GME";
105                         dinfo->chipset = INTEL_852GME;
106                         return 0;
107                 case INTEL_VAR_852GM:
108                         dinfo->name = "Intel(R) 852GM";
109                         dinfo->chipset = INTEL_852GM;
110                         return 0;
111                 default:
112                         dinfo->name = "Intel(R) 852GM/855GM";
113                         dinfo->chipset = INTEL_85XGM;
114                         return 0;
115                 }
116                 break;
117         case PCI_DEVICE_ID_INTEL_865G:
118                 dinfo->name = "Intel(R) 865G";
119                 dinfo->chipset = INTEL_865G;
120                 dinfo->mobile = 0;
121                 dinfo->pll_index = PLLS_I8xx;
122                 return 0;
123         case PCI_DEVICE_ID_INTEL_915G:
124                 dinfo->name = "Intel(R) 915G";
125                 dinfo->chipset = INTEL_915G;
126                 dinfo->mobile = 0;
127                 dinfo->pll_index = PLLS_I9xx;
128                 return 0;
129         case PCI_DEVICE_ID_INTEL_915GM:
130                 dinfo->name = "Intel(R) 915GM";
131                 dinfo->chipset = INTEL_915GM;
132                 dinfo->mobile = 1;
133                 dinfo->pll_index = PLLS_I9xx;
134                 return 0;
135         case PCI_DEVICE_ID_INTEL_945G:
136                 dinfo->name = "Intel(R) 945G";
137                 dinfo->chipset = INTEL_945G;
138                 dinfo->mobile = 0;
139                 dinfo->pll_index = PLLS_I9xx;
140                 return 0;
141         case PCI_DEVICE_ID_INTEL_945GM:
142                 dinfo->name = "Intel(R) 945GM";
143                 dinfo->chipset = INTEL_945GM;
144                 dinfo->mobile = 1;
145                 dinfo->pll_index = PLLS_I9xx;
146                 return 0;
147         default:
148                 return 1;
149         }
150 }
151
152 int
153 intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
154                      int *stolen_size)
155 {
156         struct pci_dev *bridge_dev;
157         u16 tmp;
158         int stolen_overhead;
159
160         if (!pdev || !aperture_size || !stolen_size)
161                 return 1;
162
163         /* Find the bridge device.  It is always 0:0.0 */
164         if (!(bridge_dev = pci_find_slot(0, PCI_DEVFN(0, 0)))) {
165                 ERR_MSG("cannot find bridge device\n");
166                 return 1;
167         }
168
169         /* Get the fb aperture size and "stolen" memory amount. */
170         tmp = 0;
171         pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
172         switch (pdev->device) {
173         case PCI_DEVICE_ID_INTEL_915G:
174         case PCI_DEVICE_ID_INTEL_915GM:
175         case PCI_DEVICE_ID_INTEL_945G:
176         case PCI_DEVICE_ID_INTEL_945GM:
177                 /* 915 and 945 chipsets support a 256MB aperture.
178                    Aperture size is determined by inspected the
179                    base address of the aperture. */
180                 if (pci_resource_start(pdev, 2) & 0x08000000)
181                         *aperture_size = MB(128);
182                 else
183                         *aperture_size = MB(256);
184                 break;
185         default:
186                 if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
187                         *aperture_size = MB(64);
188                 else
189                         *aperture_size = MB(128);
190                 break;
191         }
192
193         /* Stolen memory size is reduced by the GTT and the popup.
194            GTT is 1K per MB of aperture size, and popup is 4K. */
195         stolen_overhead = (*aperture_size / MB(1)) + 4;
196         switch(pdev->device) {
197         case PCI_DEVICE_ID_INTEL_830M:
198         case PCI_DEVICE_ID_INTEL_845G:
199                 switch (tmp & INTEL_830_GMCH_GMS_MASK) {
200                 case INTEL_830_GMCH_GMS_STOLEN_512:
201                         *stolen_size = KB(512) - KB(stolen_overhead);
202                         return 0;
203                 case INTEL_830_GMCH_GMS_STOLEN_1024:
204                         *stolen_size = MB(1) - KB(stolen_overhead);
205                         return 0;
206                 case INTEL_830_GMCH_GMS_STOLEN_8192:
207                         *stolen_size = MB(8) - KB(stolen_overhead);
208                         return 0;
209                 case INTEL_830_GMCH_GMS_LOCAL:
210                         ERR_MSG("only local memory found\n");
211                         return 1;
212                 case INTEL_830_GMCH_GMS_DISABLED:
213                         ERR_MSG("video memory is disabled\n");
214                         return 1;
215                 default:
216                         ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
217                                 tmp & INTEL_830_GMCH_GMS_MASK);
218                         return 1;
219                 }
220                 break;
221         default:
222                 switch (tmp & INTEL_855_GMCH_GMS_MASK) {
223                 case INTEL_855_GMCH_GMS_STOLEN_1M:
224                         *stolen_size = MB(1) - KB(stolen_overhead);
225                         return 0;
226                 case INTEL_855_GMCH_GMS_STOLEN_4M:
227                         *stolen_size = MB(4) - KB(stolen_overhead);
228                         return 0;
229                 case INTEL_855_GMCH_GMS_STOLEN_8M:
230                         *stolen_size = MB(8) - KB(stolen_overhead);
231                         return 0;
232                 case INTEL_855_GMCH_GMS_STOLEN_16M:
233                         *stolen_size = MB(16) - KB(stolen_overhead);
234                         return 0;
235                 case INTEL_855_GMCH_GMS_STOLEN_32M:
236                         *stolen_size = MB(32) - KB(stolen_overhead);
237                         return 0;
238                 case INTEL_915G_GMCH_GMS_STOLEN_48M:
239                         *stolen_size = MB(48) - KB(stolen_overhead);
240                         return 0;
241                 case INTEL_915G_GMCH_GMS_STOLEN_64M:
242                         *stolen_size = MB(64) - KB(stolen_overhead);
243                         return 0;
244                 case INTEL_855_GMCH_GMS_DISABLED:
245                         ERR_MSG("video memory is disabled\n");
246                         return 0;
247                 default:
248                         ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
249                                 tmp & INTEL_855_GMCH_GMS_MASK);
250                         return 1;
251                 }
252         }
253 }
254
255 int
256 intelfbhw_check_non_crt(struct intelfb_info *dinfo)
257 {
258         int dvo = 0;
259
260         if (INREG(LVDS) & PORT_ENABLE)
261                 dvo |= LVDS_PORT;
262         if (INREG(DVOA) & PORT_ENABLE)
263                 dvo |= DVOA_PORT;
264         if (INREG(DVOB) & PORT_ENABLE)
265                 dvo |= DVOB_PORT;
266         if (INREG(DVOC) & PORT_ENABLE)
267                 dvo |= DVOC_PORT;
268
269         return dvo;
270 }
271
272 const char *
273 intelfbhw_dvo_to_string(int dvo)
274 {
275         if (dvo & DVOA_PORT)
276                 return "DVO port A";
277         else if (dvo & DVOB_PORT)
278                 return "DVO port B";
279         else if (dvo & DVOC_PORT)
280                 return "DVO port C";
281         else if (dvo & LVDS_PORT)
282                 return "LVDS port";
283         else
284                 return NULL;
285 }
286
287
288 int
289 intelfbhw_validate_mode(struct intelfb_info *dinfo,
290                         struct fb_var_screeninfo *var)
291 {
292         int bytes_per_pixel;
293         int tmp;
294
295 #if VERBOSE > 0
296         DBG_MSG("intelfbhw_validate_mode\n");
297 #endif
298
299         bytes_per_pixel = var->bits_per_pixel / 8;
300         if (bytes_per_pixel == 3)
301                 bytes_per_pixel = 4;
302
303         /* Check if enough video memory. */
304         tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
305         if (tmp > dinfo->fb.size) {
306                 WRN_MSG("Not enough video ram for mode "
307                         "(%d KByte vs %d KByte).\n",
308                         BtoKB(tmp), BtoKB(dinfo->fb.size));
309                 return 1;
310         }
311
312         /* Check if x/y limits are OK. */
313         if (var->xres - 1 > HACTIVE_MASK) {
314                 WRN_MSG("X resolution too large (%d vs %d).\n",
315                         var->xres, HACTIVE_MASK + 1);
316                 return 1;
317         }
318         if (var->yres - 1 > VACTIVE_MASK) {
319                 WRN_MSG("Y resolution too large (%d vs %d).\n",
320                         var->yres, VACTIVE_MASK + 1);
321                 return 1;
322         }
323
324         /* Check for interlaced/doublescan modes. */
325         if (var->vmode & FB_VMODE_INTERLACED) {
326                 WRN_MSG("Mode is interlaced.\n");
327                 return 1;
328         }
329         if (var->vmode & FB_VMODE_DOUBLE) {
330                 WRN_MSG("Mode is double-scan.\n");
331                 return 1;
332         }
333
334         /* Check if clock is OK. */
335         tmp = 1000000000 / var->pixclock;
336         if (tmp < MIN_CLOCK) {
337                 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
338                         (tmp + 500) / 1000, MIN_CLOCK / 1000);
339                 return 1;
340         }
341         if (tmp > MAX_CLOCK) {
342                 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
343                         (tmp + 500) / 1000, MAX_CLOCK / 1000);
344                 return 1;
345         }
346
347         return 0;
348 }
349
350 int
351 intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
352 {
353         struct intelfb_info *dinfo = GET_DINFO(info);
354         u32 offset, xoffset, yoffset;
355
356 #if VERBOSE > 0
357         DBG_MSG("intelfbhw_pan_display\n");
358 #endif
359
360         xoffset = ROUND_DOWN_TO(var->xoffset, 8);
361         yoffset = var->yoffset;
362
363         if ((xoffset + var->xres > var->xres_virtual) ||
364             (yoffset + var->yres > var->yres_virtual))
365                 return -EINVAL;
366
367         offset = (yoffset * dinfo->pitch) +
368                  (xoffset * var->bits_per_pixel) / 8;
369
370         offset += dinfo->fb.offset << 12;
371
372         OUTREG(DSPABASE, offset);
373
374         return 0;
375 }
376
377 /* Blank the screen. */
378 void
379 intelfbhw_do_blank(int blank, struct fb_info *info)
380 {
381         struct intelfb_info *dinfo = GET_DINFO(info);
382         u32 tmp;
383
384 #if VERBOSE > 0
385         DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
386 #endif
387
388         /* Turn plane A on or off */
389         tmp = INREG(DSPACNTR);
390         if (blank)
391                 tmp &= ~DISPPLANE_PLANE_ENABLE;
392         else
393                 tmp |= DISPPLANE_PLANE_ENABLE;
394         OUTREG(DSPACNTR, tmp);
395         /* Flush */
396         tmp = INREG(DSPABASE);
397         OUTREG(DSPABASE, tmp);
398
399         /* Turn off/on the HW cursor */
400 #if VERBOSE > 0
401         DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
402 #endif
403         if (dinfo->cursor_on) {
404                 if (blank) {
405                         intelfbhw_cursor_hide(dinfo);
406                 } else {
407                         intelfbhw_cursor_show(dinfo);
408                 }
409                 dinfo->cursor_on = 1;
410         }
411         dinfo->cursor_blanked = blank;
412
413         /* Set DPMS level */
414         tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
415         switch (blank) {
416         case FB_BLANK_UNBLANK:
417         case FB_BLANK_NORMAL:
418                 tmp |= ADPA_DPMS_D0;
419                 break;
420         case FB_BLANK_VSYNC_SUSPEND:
421                 tmp |= ADPA_DPMS_D1;
422                 break;
423         case FB_BLANK_HSYNC_SUSPEND:
424                 tmp |= ADPA_DPMS_D2;
425                 break;
426         case FB_BLANK_POWERDOWN:
427                 tmp |= ADPA_DPMS_D3;
428                 break;
429         }
430         OUTREG(ADPA, tmp);
431
432         return;
433 }
434
435
436 void
437 intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
438                     unsigned red, unsigned green, unsigned blue,
439                     unsigned transp)
440 {
441 #if VERBOSE > 0
442         DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
443                 regno, red, green, blue);
444 #endif
445
446         u32 palette_reg = (dinfo->pipe == PIPE_A) ?
447                           PALETTE_A : PALETTE_B;
448
449         OUTREG(palette_reg + (regno << 2),
450                (red << PALETTE_8_RED_SHIFT) |
451                (green << PALETTE_8_GREEN_SHIFT) |
452                (blue << PALETTE_8_BLUE_SHIFT));
453 }
454
455
456 int
457 intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
458                         int flag)
459 {
460         int i;
461
462 #if VERBOSE > 0
463         DBG_MSG("intelfbhw_read_hw_state\n");
464 #endif
465
466         if (!hw || !dinfo)
467                 return -1;
468
469         /* Read in as much of the HW state as possible. */
470         hw->vga0_divisor = INREG(VGA0_DIVISOR);
471         hw->vga1_divisor = INREG(VGA1_DIVISOR);
472         hw->vga_pd = INREG(VGAPD);
473         hw->dpll_a = INREG(DPLL_A);
474         hw->dpll_b = INREG(DPLL_B);
475         hw->fpa0 = INREG(FPA0);
476         hw->fpa1 = INREG(FPA1);
477         hw->fpb0 = INREG(FPB0);
478         hw->fpb1 = INREG(FPB1);
479
480         if (flag == 1)
481                 return flag;
482
483 #if 0
484         /* This seems to be a problem with the 852GM/855GM */
485         for (i = 0; i < PALETTE_8_ENTRIES; i++) {
486                 hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
487                 hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
488         }
489 #endif
490
491         if (flag == 2)
492                 return flag;
493
494         hw->htotal_a = INREG(HTOTAL_A);
495         hw->hblank_a = INREG(HBLANK_A);
496         hw->hsync_a = INREG(HSYNC_A);
497         hw->vtotal_a = INREG(VTOTAL_A);
498         hw->vblank_a = INREG(VBLANK_A);
499         hw->vsync_a = INREG(VSYNC_A);
500         hw->src_size_a = INREG(SRC_SIZE_A);
501         hw->bclrpat_a = INREG(BCLRPAT_A);
502         hw->htotal_b = INREG(HTOTAL_B);
503         hw->hblank_b = INREG(HBLANK_B);
504         hw->hsync_b = INREG(HSYNC_B);
505         hw->vtotal_b = INREG(VTOTAL_B);
506         hw->vblank_b = INREG(VBLANK_B);
507         hw->vsync_b = INREG(VSYNC_B);
508         hw->src_size_b = INREG(SRC_SIZE_B);
509         hw->bclrpat_b = INREG(BCLRPAT_B);
510
511         if (flag == 3)
512                 return flag;
513
514         hw->adpa = INREG(ADPA);
515         hw->dvoa = INREG(DVOA);
516         hw->dvob = INREG(DVOB);
517         hw->dvoc = INREG(DVOC);
518         hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
519         hw->dvob_srcdim = INREG(DVOB_SRCDIM);
520         hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
521         hw->lvds = INREG(LVDS);
522
523         if (flag == 4)
524                 return flag;
525
526         hw->pipe_a_conf = INREG(PIPEACONF);
527         hw->pipe_b_conf = INREG(PIPEBCONF);
528         hw->disp_arb = INREG(DISPARB);
529
530         if (flag == 5)
531                 return flag;
532
533         hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
534         hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
535         hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
536         hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
537
538         if (flag == 6)
539                 return flag;
540
541         for (i = 0; i < 4; i++) {
542                 hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
543                 hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
544         }
545
546         if (flag == 7)
547                 return flag;
548
549         hw->cursor_size = INREG(CURSOR_SIZE);
550
551         if (flag == 8)
552                 return flag;
553
554         hw->disp_a_ctrl = INREG(DSPACNTR);
555         hw->disp_b_ctrl = INREG(DSPBCNTR);
556         hw->disp_a_base = INREG(DSPABASE);
557         hw->disp_b_base = INREG(DSPBBASE);
558         hw->disp_a_stride = INREG(DSPASTRIDE);
559         hw->disp_b_stride = INREG(DSPBSTRIDE);
560
561         if (flag == 9)
562                 return flag;
563
564         hw->vgacntrl = INREG(VGACNTRL);
565
566         if (flag == 10)
567                 return flag;
568
569         hw->add_id = INREG(ADD_ID);
570
571         if (flag == 11)
572                 return flag;
573
574         for (i = 0; i < 7; i++) {
575                 hw->swf0x[i] = INREG(SWF00 + (i << 2));
576                 hw->swf1x[i] = INREG(SWF10 + (i << 2));
577                 if (i < 3)
578                         hw->swf3x[i] = INREG(SWF30 + (i << 2));
579         }
580
581         for (i = 0; i < 8; i++)
582                 hw->fence[i] = INREG(FENCE + (i << 2));
583
584         hw->instpm = INREG(INSTPM);
585         hw->mem_mode = INREG(MEM_MODE);
586         hw->fw_blc_0 = INREG(FW_BLC_0);
587         hw->fw_blc_1 = INREG(FW_BLC_1);
588
589         return 0;
590 }
591
592
593 static int calc_vclock3(int index, int m, int n, int p)
594 {
595         if (p == 0 || n == 0)
596                 return 0;
597         return plls[index].ref_clk * m / n / p;
598 }
599
600 static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2, int lvds)
601 {
602         struct pll_min_max *pll = &plls[index];
603         u32 m, vco, p;
604
605         m = (5 * (m1 + 2)) + (m2 + 2);
606         n += 2;
607         vco = pll->ref_clk * m / n;
608
609         if (index == PLLS_I8xx) {
610                 p = ((p1 + 2) * (1 << (p2 + 1)));
611         } else {
612                 p = ((p1) * (p2 ? 5 : 10));
613         }
614         return vco / p;
615 }
616
617 static void
618 intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll, int *o_p1, int *o_p2)
619 {
620         int p1, p2;
621
622         if (IS_I9XX(dinfo)) {
623                 if (dpll & DPLL_P1_FORCE_DIV2)
624                         p1 = 1;
625                 else
626                         p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
627                 
628                 p1 = ffs(p1);
629
630                 p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
631         } else {
632                 if (dpll & DPLL_P1_FORCE_DIV2)
633                         p1 = 0;
634                 else
635                         p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
636                 p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
637         }
638
639         *o_p1 = p1;
640         *o_p2 = p2;
641 }
642
643
644 void
645 intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
646 {
647 #if REGDUMP
648         int i, m1, m2, n, p1, p2;
649         int index = dinfo->pll_index;
650         DBG_MSG("intelfbhw_print_hw_state\n");
651
652         if (!hw || !dinfo)
653                 return;
654         /* Read in as much of the HW state as possible. */
655         printk("hw state dump start\n");
656         printk("        VGA0_DIVISOR:           0x%08x\n", hw->vga0_divisor);
657         printk("        VGA1_DIVISOR:           0x%08x\n", hw->vga1_divisor);
658         printk("        VGAPD:                  0x%08x\n", hw->vga_pd);
659         n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
660         m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
661         m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
662
663         intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
664
665         printk("        VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
666                m1, m2, n, p1, p2);
667         printk("        VGA0: clock is %d\n",
668                calc_vclock(index, m1, m2, n, p1, p2, 0));
669
670         n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
671         m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
672         m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
673
674         intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
675         printk("        VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
676                m1, m2, n, p1, p2);
677         printk("        VGA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
678
679         printk("        DPLL_A:                 0x%08x\n", hw->dpll_a);
680         printk("        DPLL_B:                 0x%08x\n", hw->dpll_b);
681         printk("        FPA0:                   0x%08x\n", hw->fpa0);
682         printk("        FPA1:                   0x%08x\n", hw->fpa1);
683         printk("        FPB0:                   0x%08x\n", hw->fpb0);
684         printk("        FPB1:                   0x%08x\n", hw->fpb1);
685
686         n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
687         m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
688         m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
689
690         intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
691
692         printk("        PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
693                m1, m2, n, p1, p2);
694         printk("        PLLA0: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
695
696         n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
697         m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
698         m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
699
700         intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
701
702         printk("        PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
703                m1, m2, n, p1, p2);
704         printk("        PLLA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
705
706 #if 0
707         printk("        PALETTE_A:\n");
708         for (i = 0; i < PALETTE_8_ENTRIES)
709                 printk("        %3d:    0x%08x\n", i, hw->palette_a[i]);
710         printk("        PALETTE_B:\n");
711         for (i = 0; i < PALETTE_8_ENTRIES)
712                 printk("        %3d:    0x%08x\n", i, hw->palette_b[i]);
713 #endif
714
715         printk("        HTOTAL_A:               0x%08x\n", hw->htotal_a);
716         printk("        HBLANK_A:               0x%08x\n", hw->hblank_a);
717         printk("        HSYNC_A:                0x%08x\n", hw->hsync_a);
718         printk("        VTOTAL_A:               0x%08x\n", hw->vtotal_a);
719         printk("        VBLANK_A:               0x%08x\n", hw->vblank_a);
720         printk("        VSYNC_A:                0x%08x\n", hw->vsync_a);
721         printk("        SRC_SIZE_A:             0x%08x\n", hw->src_size_a);
722         printk("        BCLRPAT_A:              0x%08x\n", hw->bclrpat_a);
723         printk("        HTOTAL_B:               0x%08x\n", hw->htotal_b);
724         printk("        HBLANK_B:               0x%08x\n", hw->hblank_b);
725         printk("        HSYNC_B:                0x%08x\n", hw->hsync_b);
726         printk("        VTOTAL_B:               0x%08x\n", hw->vtotal_b);
727         printk("        VBLANK_B:               0x%08x\n", hw->vblank_b);
728         printk("        VSYNC_B:                0x%08x\n", hw->vsync_b);
729         printk("        SRC_SIZE_B:             0x%08x\n", hw->src_size_b);
730         printk("        BCLRPAT_B:              0x%08x\n", hw->bclrpat_b);
731
732         printk("        ADPA:                   0x%08x\n", hw->adpa);
733         printk("        DVOA:                   0x%08x\n", hw->dvoa);
734         printk("        DVOB:                   0x%08x\n", hw->dvob);
735         printk("        DVOC:                   0x%08x\n", hw->dvoc);
736         printk("        DVOA_SRCDIM:            0x%08x\n", hw->dvoa_srcdim);
737         printk("        DVOB_SRCDIM:            0x%08x\n", hw->dvob_srcdim);
738         printk("        DVOC_SRCDIM:            0x%08x\n", hw->dvoc_srcdim);
739         printk("        LVDS:                   0x%08x\n", hw->lvds);
740
741         printk("        PIPEACONF:              0x%08x\n", hw->pipe_a_conf);
742         printk("        PIPEBCONF:              0x%08x\n", hw->pipe_b_conf);
743         printk("        DISPARB:                0x%08x\n", hw->disp_arb);
744
745         printk("        CURSOR_A_CONTROL:       0x%08x\n", hw->cursor_a_control);
746         printk("        CURSOR_B_CONTROL:       0x%08x\n", hw->cursor_b_control);
747         printk("        CURSOR_A_BASEADDR:      0x%08x\n", hw->cursor_a_base);
748         printk("        CURSOR_B_BASEADDR:      0x%08x\n", hw->cursor_b_base);
749
750         printk("        CURSOR_A_PALETTE:       ");
751         for (i = 0; i < 4; i++) {
752                 printk("0x%08x", hw->cursor_a_palette[i]);
753                 if (i < 3)
754                         printk(", ");
755         }
756         printk("\n");
757         printk("        CURSOR_B_PALETTE:       ");
758         for (i = 0; i < 4; i++) {
759                 printk("0x%08x", hw->cursor_b_palette[i]);
760                 if (i < 3)
761                         printk(", ");
762         }
763         printk("\n");
764
765         printk("        CURSOR_SIZE:            0x%08x\n", hw->cursor_size);
766
767         printk("        DSPACNTR:               0x%08x\n", hw->disp_a_ctrl);
768         printk("        DSPBCNTR:               0x%08x\n", hw->disp_b_ctrl);
769         printk("        DSPABASE:               0x%08x\n", hw->disp_a_base);
770         printk("        DSPBBASE:               0x%08x\n", hw->disp_b_base);
771         printk("        DSPASTRIDE:             0x%08x\n", hw->disp_a_stride);
772         printk("        DSPBSTRIDE:             0x%08x\n", hw->disp_b_stride);
773
774         printk("        VGACNTRL:               0x%08x\n", hw->vgacntrl);
775         printk("        ADD_ID:                 0x%08x\n", hw->add_id);
776
777         for (i = 0; i < 7; i++) {
778                 printk("        SWF0%d                  0x%08x\n", i,
779                         hw->swf0x[i]);
780         }
781         for (i = 0; i < 7; i++) {
782                 printk("        SWF1%d                  0x%08x\n", i,
783                         hw->swf1x[i]);
784         }
785         for (i = 0; i < 3; i++) {
786                 printk("        SWF3%d                  0x%08x\n", i,
787                        hw->swf3x[i]);
788         }
789         for (i = 0; i < 8; i++)
790                 printk("        FENCE%d                 0x%08x\n", i,
791                        hw->fence[i]);
792
793         printk("        INSTPM                  0x%08x\n", hw->instpm);
794         printk("        MEM_MODE                0x%08x\n", hw->mem_mode);
795         printk("        FW_BLC_0                0x%08x\n", hw->fw_blc_0);
796         printk("        FW_BLC_1                0x%08x\n", hw->fw_blc_1);
797
798         printk("hw state dump end\n");
799 #endif
800 }
801
802
803
804 /* Split the M parameter into M1 and M2. */
805 static int
806 splitm(int index, unsigned int m, unsigned int *retm1, unsigned int *retm2)
807 {
808         int m1, m2;
809         int testm;
810         struct pll_min_max *pll = &plls[index];
811
812         /* no point optimising too much - brute force m */
813         for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
814                 for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
815                         testm = (5 * (m1 + 2)) + (m2 + 2);
816                         if (testm == m) {
817                                 *retm1 = (unsigned int)m1;
818                                 *retm2 = (unsigned int)m2;
819                                 return 0;
820                         }
821                 }
822         }
823         return 1;
824 }
825
826 /* Split the P parameter into P1 and P2. */
827 static int
828 splitp(int index, unsigned int p, unsigned int *retp1, unsigned int *retp2)
829 {
830         int p1, p2;
831         struct pll_min_max *pll = &plls[index];
832
833         if (index == PLLS_I9xx) {
834                 p2 = (p % 10) ? 1 : 0;
835
836                 p1 = p / (p2 ? 5 : 10);
837
838                 *retp1 = (unsigned int)p1;
839                 *retp2 = (unsigned int)p2;
840                 return 0;
841         }
842
843         if (p % 4 == 0)
844                 p2 = 1;
845         else
846                 p2 = 0;
847         p1 = (p / (1 << (p2 + 1))) - 2;
848         if (p % 4 == 0 && p1 < pll->min_p1) {
849                 p2 = 0;
850                 p1 = (p / (1 << (p2 + 1))) - 2;
851         }
852         if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
853             (p1 + 2) * (1 << (p2 + 1)) != p) {
854                 return 1;
855         } else {
856                 *retp1 = (unsigned int)p1;
857                 *retp2 = (unsigned int)p2;
858                 return 0;
859         }
860 }
861
862 static int
863 calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
864                 u32 *retp2, u32 *retclock)
865 {
866         u32 m1, m2, n, p1, p2, n1, testm;
867         u32 f_vco, p, p_best = 0, m, f_out = 0;
868         u32 err_max, err_target, err_best = 10000000;
869         u32 n_best = 0, m_best = 0, f_best, f_err;
870         u32 p_min, p_max, p_inc, div_max;
871         struct pll_min_max *pll = &plls[index];
872
873         /* Accept 0.5% difference, but aim for 0.1% */
874         err_max = 5 * clock / 1000;
875         err_target = clock / 1000;
876
877         DBG_MSG("Clock is %d\n", clock);
878
879         div_max = pll->max_vco / clock;
880
881         p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
882         p_min = p_inc;
883         p_max = ROUND_DOWN_TO(div_max, p_inc);
884         if (p_min < pll->min_p)
885                 p_min = pll->min_p;
886         if (p_max > pll->max_p)
887                 p_max = pll->max_p;
888
889         DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
890
891         p = p_min;
892         do {
893                 if (splitp(index, p, &p1, &p2)) {
894                         WRN_MSG("cannot split p = %d\n", p);
895                         p += p_inc;
896                         continue;
897                 }
898                 n = pll->min_n;
899                 f_vco = clock * p;
900
901                 do {
902                         m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
903                         if (m < pll->min_m)
904                                 m = pll->min_m + 1;
905                         if (m > pll->max_m)
906                                 m = pll->max_m - 1;
907                         for (testm = m - 1; testm <= m; testm++) {
908                                 f_out = calc_vclock3(index, m, n, p);
909                                 if (splitm(index, testm, &m1, &m2)) {
910                                         WRN_MSG("cannot split m = %d\n", m);
911                                         n++;
912                                         continue;
913                                 }
914                                 if (clock > f_out)
915                                         f_err = clock - f_out;
916                                 else/* slightly bias the error for bigger clocks */
917                                         f_err = f_out - clock + 1;
918
919                                 if (f_err < err_best) {
920                                         m_best = testm;
921                                         n_best = n;
922                                         p_best = p;
923                                         f_best = f_out;
924                                         err_best = f_err;
925                                 }
926                         }
927                         n++;
928                 } while ((n <= pll->max_n) && (f_out >= clock));
929                 p += p_inc;
930         } while ((p <= p_max));
931
932         if (!m_best) {
933                 WRN_MSG("cannot find parameters for clock %d\n", clock);
934                 return 1;
935         }
936         m = m_best;
937         n = n_best;
938         p = p_best;
939         splitm(index, m, &m1, &m2);
940         splitp(index, p, &p1, &p2);
941         n1 = n - 2;
942
943         DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
944                 "f: %d (%d), VCO: %d\n",
945                 m, m1, m2, n, n1, p, p1, p2,
946                 calc_vclock3(index, m, n, p),
947                 calc_vclock(index, m1, m2, n1, p1, p2, 0),
948                 calc_vclock3(index, m, n, p) * p);
949         *retm1 = m1;
950         *retm2 = m2;
951         *retn = n1;
952         *retp1 = p1;
953         *retp2 = p2;
954         *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
955
956         return 0;
957 }
958
959 static __inline__ int
960 check_overflow(u32 value, u32 limit, const char *description)
961 {
962         if (value > limit) {
963                 WRN_MSG("%s value %d exceeds limit %d\n",
964                         description, value, limit);
965                 return 1;
966         }
967         return 0;
968 }
969
970 /* It is assumed that hw is filled in with the initial state information. */
971 int
972 intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
973                      struct fb_var_screeninfo *var)
974 {
975         int pipe = PIPE_A;
976         u32 *dpll, *fp0, *fp1;
977         u32 m1, m2, n, p1, p2, clock_target, clock;
978         u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
979         u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
980         u32 vsync_pol, hsync_pol;
981         u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
982         u32 stride_alignment;
983
984         DBG_MSG("intelfbhw_mode_to_hw\n");
985
986         /* Disable VGA */
987         hw->vgacntrl |= VGA_DISABLE;
988
989         /* Check whether pipe A or pipe B is enabled. */
990         if (hw->pipe_a_conf & PIPECONF_ENABLE)
991                 pipe = PIPE_A;
992         else if (hw->pipe_b_conf & PIPECONF_ENABLE)
993                 pipe = PIPE_B;
994
995         /* Set which pipe's registers will be set. */
996         if (pipe == PIPE_B) {
997                 dpll = &hw->dpll_b;
998                 fp0 = &hw->fpb0;
999                 fp1 = &hw->fpb1;
1000                 hs = &hw->hsync_b;
1001                 hb = &hw->hblank_b;
1002                 ht = &hw->htotal_b;
1003                 vs = &hw->vsync_b;
1004                 vb = &hw->vblank_b;
1005                 vt = &hw->vtotal_b;
1006                 ss = &hw->src_size_b;
1007                 pipe_conf = &hw->pipe_b_conf;
1008         } else {
1009                 dpll = &hw->dpll_a;
1010                 fp0 = &hw->fpa0;
1011                 fp1 = &hw->fpa1;
1012                 hs = &hw->hsync_a;
1013                 hb = &hw->hblank_a;
1014                 ht = &hw->htotal_a;
1015                 vs = &hw->vsync_a;
1016                 vb = &hw->vblank_a;
1017                 vt = &hw->vtotal_a;
1018                 ss = &hw->src_size_a;
1019                 pipe_conf = &hw->pipe_a_conf;
1020         }
1021
1022         /* Use ADPA register for sync control. */
1023         hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
1024
1025         /* sync polarity */
1026         hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
1027                         ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1028         vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
1029                         ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1030         hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
1031                       (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
1032         hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
1033                     (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
1034
1035         /* Connect correct pipe to the analog port DAC */
1036         hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
1037         hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
1038
1039         /* Set DPMS state to D0 (on) */
1040         hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
1041         hw->adpa |= ADPA_DPMS_D0;
1042
1043         hw->adpa |= ADPA_DAC_ENABLE;
1044
1045         *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
1046         *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
1047         *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
1048
1049         /* Desired clock in kHz */
1050         clock_target = 1000000000 / var->pixclock;
1051
1052         if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
1053                             &n, &p1, &p2, &clock)) {
1054                 WRN_MSG("calc_pll_params failed\n");
1055                 return 1;
1056         }
1057
1058         /* Check for overflow. */
1059         if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1060                 return 1;
1061         if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1062                 return 1;
1063         if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1064                 return 1;
1065         if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1066                 return 1;
1067         if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1068                 return 1;
1069
1070         *dpll &= ~DPLL_P1_FORCE_DIV2;
1071         *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1072                    (DPLL_P1_MASK << DPLL_P1_SHIFT));
1073
1074         if (IS_I9XX(dinfo)) {
1075                 *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
1076                 *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
1077         } else {
1078                 *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1079         }
1080
1081         *fp0 = (n << FP_N_DIVISOR_SHIFT) |
1082                (m1 << FP_M1_DIVISOR_SHIFT) |
1083                (m2 << FP_M2_DIVISOR_SHIFT);
1084         *fp1 = *fp0;
1085
1086         hw->dvob &= ~PORT_ENABLE;
1087         hw->dvoc &= ~PORT_ENABLE;
1088
1089         /* Use display plane A. */
1090         hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1091         hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1092         hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1093         switch (intelfb_var_to_depth(var)) {
1094         case 8:
1095                 hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1096                 break;
1097         case 15:
1098                 hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1099                 break;
1100         case 16:
1101                 hw->disp_a_ctrl |= DISPPLANE_16BPP;
1102                 break;
1103         case 24:
1104                 hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1105                 break;
1106         }
1107         hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1108         hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1109
1110         /* Set CRTC registers. */
1111         hactive = var->xres;
1112         hsync_start = hactive + var->right_margin;
1113         hsync_end = hsync_start + var->hsync_len;
1114         htotal = hsync_end + var->left_margin;
1115         hblank_start = hactive;
1116         hblank_end = htotal;
1117
1118         DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1119                 hactive, hsync_start, hsync_end, htotal, hblank_start,
1120                 hblank_end);
1121
1122         vactive = var->yres;
1123         vsync_start = vactive + var->lower_margin;
1124         vsync_end = vsync_start + var->vsync_len;
1125         vtotal = vsync_end + var->upper_margin;
1126         vblank_start = vactive;
1127         vblank_end = vtotal;
1128         vblank_end = vsync_end + 1;
1129
1130         DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1131                 vactive, vsync_start, vsync_end, vtotal, vblank_start,
1132                 vblank_end);
1133
1134         /* Adjust for register values, and check for overflow. */
1135         hactive--;
1136         if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1137                 return 1;
1138         hsync_start--;
1139         if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1140                 return 1;
1141         hsync_end--;
1142         if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1143                 return 1;
1144         htotal--;
1145         if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1146                 return 1;
1147         hblank_start--;
1148         if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1149                 return 1;
1150         hblank_end--;
1151         if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1152                 return 1;
1153
1154         vactive--;
1155         if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1156                 return 1;
1157         vsync_start--;
1158         if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1159                 return 1;
1160         vsync_end--;
1161         if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1162                 return 1;
1163         vtotal--;
1164         if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1165                 return 1;
1166         vblank_start--;
1167         if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1168                 return 1;
1169         vblank_end--;
1170         if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1171                 return 1;
1172
1173         *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1174         *hb = (hblank_start << HBLANKSTART_SHIFT) |
1175               (hblank_end << HSYNCEND_SHIFT);
1176         *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1177
1178         *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1179         *vb = (vblank_start << VBLANKSTART_SHIFT) |
1180               (vblank_end << VSYNCEND_SHIFT);
1181         *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1182         *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1183               (vactive << SRC_SIZE_VERT_SHIFT);
1184
1185         hw->disp_a_stride = dinfo->pitch;
1186         DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1187
1188         hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1189                           var->xoffset * var->bits_per_pixel / 8;
1190
1191         hw->disp_a_base += dinfo->fb.offset << 12;
1192
1193         /* Check stride alignment. */
1194         stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
1195                                             STRIDE_ALIGNMENT;
1196         if (hw->disp_a_stride % stride_alignment != 0) {
1197                 WRN_MSG("display stride %d has bad alignment %d\n",
1198                         hw->disp_a_stride, stride_alignment);
1199                 return 1;
1200         }
1201
1202         /* Set the palette to 8-bit mode. */
1203         *pipe_conf &= ~PIPECONF_GAMMA;
1204         return 0;
1205 }
1206
1207 /* Program a (non-VGA) video mode. */
1208 int
1209 intelfbhw_program_mode(struct intelfb_info *dinfo,
1210                      const struct intelfb_hwstate *hw, int blank)
1211 {
1212         int pipe = PIPE_A;
1213         u32 tmp;
1214         const u32 *dpll, *fp0, *fp1, *pipe_conf;
1215         const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1216         u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
1217         u32 hsync_reg, htotal_reg, hblank_reg;
1218         u32 vsync_reg, vtotal_reg, vblank_reg;
1219         u32 src_size_reg;
1220         u32 count, tmp_val[3];
1221
1222         /* Assume single pipe, display plane A, analog CRT. */
1223
1224 #if VERBOSE > 0
1225         DBG_MSG("intelfbhw_program_mode\n");
1226 #endif
1227
1228         /* Disable VGA */
1229         tmp = INREG(VGACNTRL);
1230         tmp |= VGA_DISABLE;
1231         OUTREG(VGACNTRL, tmp);
1232
1233         /* Check whether pipe A or pipe B is enabled. */
1234         if (hw->pipe_a_conf & PIPECONF_ENABLE)
1235                 pipe = PIPE_A;
1236         else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1237                 pipe = PIPE_B;
1238
1239         dinfo->pipe = pipe;
1240
1241         if (pipe == PIPE_B) {
1242                 dpll = &hw->dpll_b;
1243                 fp0 = &hw->fpb0;
1244                 fp1 = &hw->fpb1;
1245                 pipe_conf = &hw->pipe_b_conf;
1246                 hs = &hw->hsync_b;
1247                 hb = &hw->hblank_b;
1248                 ht = &hw->htotal_b;
1249                 vs = &hw->vsync_b;
1250                 vb = &hw->vblank_b;
1251                 vt = &hw->vtotal_b;
1252                 ss = &hw->src_size_b;
1253                 dpll_reg = DPLL_B;
1254                 fp0_reg = FPB0;
1255                 fp1_reg = FPB1;
1256                 pipe_conf_reg = PIPEBCONF;
1257                 hsync_reg = HSYNC_B;
1258                 htotal_reg = HTOTAL_B;
1259                 hblank_reg = HBLANK_B;
1260                 vsync_reg = VSYNC_B;
1261                 vtotal_reg = VTOTAL_B;
1262                 vblank_reg = VBLANK_B;
1263                 src_size_reg = SRC_SIZE_B;
1264         } else {
1265                 dpll = &hw->dpll_a;
1266                 fp0 = &hw->fpa0;
1267                 fp1 = &hw->fpa1;
1268                 pipe_conf = &hw->pipe_a_conf;
1269                 hs = &hw->hsync_a;
1270                 hb = &hw->hblank_a;
1271                 ht = &hw->htotal_a;
1272                 vs = &hw->vsync_a;
1273                 vb = &hw->vblank_a;
1274                 vt = &hw->vtotal_a;
1275                 ss = &hw->src_size_a;
1276                 dpll_reg = DPLL_A;
1277                 fp0_reg = FPA0;
1278                 fp1_reg = FPA1;
1279                 pipe_conf_reg = PIPEACONF;
1280                 hsync_reg = HSYNC_A;
1281                 htotal_reg = HTOTAL_A;
1282                 hblank_reg = HBLANK_A;
1283                 vsync_reg = VSYNC_A;
1284                 vtotal_reg = VTOTAL_A;
1285                 vblank_reg = VBLANK_A;
1286                 src_size_reg = SRC_SIZE_A;
1287         }
1288
1289         /* turn off pipe */
1290         tmp = INREG(pipe_conf_reg);
1291         tmp &= ~PIPECONF_ENABLE;
1292         OUTREG(pipe_conf_reg, tmp);
1293
1294         count = 0;
1295         do {
1296                 tmp_val[count%3] = INREG(0x70000);
1297                 if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1]==tmp_val[2]))
1298                         break;
1299                 count++;
1300                 udelay(1);
1301                 if (count % 200 == 0) {
1302                         tmp = INREG(pipe_conf_reg);
1303                         tmp &= ~PIPECONF_ENABLE;
1304                         OUTREG(pipe_conf_reg, tmp);
1305                 }
1306         } while(count < 2000);
1307
1308         OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1309
1310         /* Disable planes A and B. */
1311         tmp = INREG(DSPACNTR);
1312         tmp &= ~DISPPLANE_PLANE_ENABLE;
1313         OUTREG(DSPACNTR, tmp);
1314         tmp = INREG(DSPBCNTR);
1315         tmp &= ~DISPPLANE_PLANE_ENABLE;
1316         OUTREG(DSPBCNTR, tmp);
1317
1318         /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1319         mdelay(20);
1320
1321         OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
1322         OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
1323         OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1324
1325         /* Disable Sync */
1326         tmp = INREG(ADPA);
1327         tmp &= ~ADPA_DPMS_CONTROL_MASK;
1328         tmp |= ADPA_DPMS_D3;
1329         OUTREG(ADPA, tmp);
1330
1331         /* do some funky magic - xyzzy */
1332         OUTREG(0x61204, 0xabcd0000);
1333
1334         /* turn off PLL */
1335         tmp = INREG(dpll_reg);
1336         dpll_reg &= ~DPLL_VCO_ENABLE;
1337         OUTREG(dpll_reg, tmp);
1338
1339         /* Set PLL parameters */
1340         OUTREG(fp0_reg, *fp0);
1341         OUTREG(fp1_reg, *fp1);
1342
1343         /* Enable PLL */
1344         OUTREG(dpll_reg, *dpll);
1345
1346         /* Set DVOs B/C */
1347         OUTREG(DVOB, hw->dvob);
1348         OUTREG(DVOC, hw->dvoc);
1349
1350         /* undo funky magic */
1351         OUTREG(0x61204, 0x00000000);
1352
1353         /* Set ADPA */
1354         OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
1355         OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1356
1357         /* Set pipe parameters */
1358         OUTREG(hsync_reg, *hs);
1359         OUTREG(hblank_reg, *hb);
1360         OUTREG(htotal_reg, *ht);
1361         OUTREG(vsync_reg, *vs);
1362         OUTREG(vblank_reg, *vb);
1363         OUTREG(vtotal_reg, *vt);
1364         OUTREG(src_size_reg, *ss);
1365
1366         /* Enable pipe */
1367         OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1368
1369         /* Enable sync */
1370         tmp = INREG(ADPA);
1371         tmp &= ~ADPA_DPMS_CONTROL_MASK;
1372         tmp |= ADPA_DPMS_D0;
1373         OUTREG(ADPA, tmp);
1374
1375         /* setup display plane */
1376         if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1377                 /*
1378                  *      i830M errata: the display plane must be enabled
1379                  *      to allow writes to the other bits in the plane
1380                  *      control register.
1381                  */
1382                 tmp = INREG(DSPACNTR);
1383                 if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1384                         tmp |= DISPPLANE_PLANE_ENABLE;
1385                         OUTREG(DSPACNTR, tmp);
1386                         OUTREG(DSPACNTR,
1387                                hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1388                         mdelay(1);
1389                 }
1390         }
1391
1392         OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1393         OUTREG(DSPASTRIDE, hw->disp_a_stride);
1394         OUTREG(DSPABASE, hw->disp_a_base);
1395
1396         /* Enable plane */
1397         if (!blank) {
1398                 tmp = INREG(DSPACNTR);
1399                 tmp |= DISPPLANE_PLANE_ENABLE;
1400                 OUTREG(DSPACNTR, tmp);
1401                 OUTREG(DSPABASE, hw->disp_a_base);
1402         }
1403
1404         return 0;
1405 }
1406
1407 /* forward declarations */
1408 static void refresh_ring(struct intelfb_info *dinfo);
1409 static void reset_state(struct intelfb_info *dinfo);
1410 static void do_flush(struct intelfb_info *dinfo);
1411
1412 static int
1413 wait_ring(struct intelfb_info *dinfo, int n)
1414 {
1415         int i = 0;
1416         unsigned long end;
1417         u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1418
1419 #if VERBOSE > 0
1420         DBG_MSG("wait_ring: %d\n", n);
1421 #endif
1422
1423         end = jiffies + (HZ * 3);
1424         while (dinfo->ring_space < n) {
1425                 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1426                 if (dinfo->ring_tail + RING_MIN_FREE < dinfo->ring_head)
1427                         dinfo->ring_space = dinfo->ring_head
1428                                 - (dinfo->ring_tail + RING_MIN_FREE);
1429                 else
1430                         dinfo->ring_space = (dinfo->ring.size +
1431                                              dinfo->ring_head)
1432                                 - (dinfo->ring_tail + RING_MIN_FREE);
1433                 if (dinfo->ring_head != last_head) {
1434                         end = jiffies + (HZ * 3);
1435                         last_head = dinfo->ring_head;
1436                 }
1437                 i++;
1438                 if (time_before(end, jiffies)) {
1439                         if (!i) {
1440                                 /* Try again */
1441                                 reset_state(dinfo);
1442                                 refresh_ring(dinfo);
1443                                 do_flush(dinfo);
1444                                 end = jiffies + (HZ * 3);
1445                                 i = 1;
1446                         } else {
1447                                 WRN_MSG("ring buffer : space: %d wanted %d\n",
1448                                         dinfo->ring_space, n);
1449                                 WRN_MSG("lockup - turning off hardware "
1450                                         "acceleration\n");
1451                                 dinfo->ring_lockup = 1;
1452                                 break;
1453                         }
1454                 }
1455                 udelay(1);
1456         }
1457         return i;
1458 }
1459
1460 static void
1461 do_flush(struct intelfb_info *dinfo) {
1462         START_RING(2);
1463         OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1464         OUT_RING(MI_NOOP);
1465         ADVANCE_RING();
1466 }
1467
1468 void
1469 intelfbhw_do_sync(struct intelfb_info *dinfo)
1470 {
1471 #if VERBOSE > 0
1472         DBG_MSG("intelfbhw_do_sync\n");
1473 #endif
1474
1475         if (!dinfo->accel)
1476                 return;
1477
1478         /*
1479          * Send a flush, then wait until the ring is empty.  This is what
1480          * the XFree86 driver does, and actually it doesn't seem a lot worse
1481          * than the recommended method (both have problems).
1482          */
1483         do_flush(dinfo);
1484         wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1485         dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1486 }
1487
1488 static void
1489 refresh_ring(struct intelfb_info *dinfo)
1490 {
1491 #if VERBOSE > 0
1492         DBG_MSG("refresh_ring\n");
1493 #endif
1494
1495         dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1496         dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1497         if (dinfo->ring_tail + RING_MIN_FREE < dinfo->ring_head)
1498                 dinfo->ring_space = dinfo->ring_head
1499                         - (dinfo->ring_tail + RING_MIN_FREE);
1500         else
1501                 dinfo->ring_space = (dinfo->ring.size + dinfo->ring_head)
1502                         - (dinfo->ring_tail + RING_MIN_FREE);
1503 }
1504
1505 static void
1506 reset_state(struct intelfb_info *dinfo)
1507 {
1508         int i;
1509         u32 tmp;
1510
1511 #if VERBOSE > 0
1512         DBG_MSG("reset_state\n");
1513 #endif
1514
1515         for (i = 0; i < FENCE_NUM; i++)
1516                 OUTREG(FENCE + (i << 2), 0);
1517
1518         /* Flush the ring buffer if it's enabled. */
1519         tmp = INREG(PRI_RING_LENGTH);
1520         if (tmp & RING_ENABLE) {
1521 #if VERBOSE > 0
1522                 DBG_MSG("reset_state: ring was enabled\n");
1523 #endif
1524                 refresh_ring(dinfo);
1525                 intelfbhw_do_sync(dinfo);
1526                 DO_RING_IDLE();
1527         }
1528
1529         OUTREG(PRI_RING_LENGTH, 0);
1530         OUTREG(PRI_RING_HEAD, 0);
1531         OUTREG(PRI_RING_TAIL, 0);
1532         OUTREG(PRI_RING_START, 0);
1533 }
1534
1535 /* Stop the 2D engine, and turn off the ring buffer. */
1536 void
1537 intelfbhw_2d_stop(struct intelfb_info *dinfo)
1538 {
1539 #if VERBOSE > 0
1540         DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
1541                 dinfo->ring_active);
1542 #endif
1543
1544         if (!dinfo->accel)
1545                 return;
1546
1547         dinfo->ring_active = 0;
1548         reset_state(dinfo);
1549 }
1550
1551 /*
1552  * Enable the ring buffer, and initialise the 2D engine.
1553  * It is assumed that the graphics engine has been stopped by previously
1554  * calling intelfb_2d_stop().
1555  */
1556 void
1557 intelfbhw_2d_start(struct intelfb_info *dinfo)
1558 {
1559 #if VERBOSE > 0
1560         DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1561                 dinfo->accel, dinfo->ring_active);
1562 #endif
1563
1564         if (!dinfo->accel)
1565                 return;
1566
1567         /* Initialise the primary ring buffer. */
1568         OUTREG(PRI_RING_LENGTH, 0);
1569         OUTREG(PRI_RING_TAIL, 0);
1570         OUTREG(PRI_RING_HEAD, 0);
1571
1572         OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1573         OUTREG(PRI_RING_LENGTH,
1574                 ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1575                 RING_NO_REPORT | RING_ENABLE);
1576         refresh_ring(dinfo);
1577         dinfo->ring_active = 1;
1578 }
1579
1580 /* 2D fillrect (solid fill or invert) */
1581 void
1582 intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
1583                       u32 color, u32 pitch, u32 bpp, u32 rop)
1584 {
1585         u32 br00, br09, br13, br14, br16;
1586
1587 #if VERBOSE > 0
1588         DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1589                 "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1590 #endif
1591
1592         br00 = COLOR_BLT_CMD;
1593         br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1594         br13 = (rop << ROP_SHIFT) | pitch;
1595         br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1596         br16 = color;
1597
1598         switch (bpp) {
1599         case 8:
1600                 br13 |= COLOR_DEPTH_8;
1601                 break;
1602         case 16:
1603                 br13 |= COLOR_DEPTH_16;
1604                 break;
1605         case 32:
1606                 br13 |= COLOR_DEPTH_32;
1607                 br00 |= WRITE_ALPHA | WRITE_RGB;
1608                 break;
1609         }
1610
1611         START_RING(6);
1612         OUT_RING(br00);
1613         OUT_RING(br13);
1614         OUT_RING(br14);
1615         OUT_RING(br09);
1616         OUT_RING(br16);
1617         OUT_RING(MI_NOOP);
1618         ADVANCE_RING();
1619
1620 #if VERBOSE > 0
1621         DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1622                 dinfo->ring_tail, dinfo->ring_space);
1623 #endif
1624 }
1625
1626 void
1627 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1628                     u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1629 {
1630         u32 br00, br09, br11, br12, br13, br22, br23, br26;
1631
1632 #if VERBOSE > 0
1633         DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1634                 curx, cury, dstx, dsty, w, h, pitch, bpp);
1635 #endif
1636
1637         br00 = XY_SRC_COPY_BLT_CMD;
1638         br09 = dinfo->fb_start;
1639         br11 = (pitch << PITCH_SHIFT);
1640         br12 = dinfo->fb_start;
1641         br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1642         br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1643         br23 = ((dstx + w) << WIDTH_SHIFT) |
1644                ((dsty + h) << HEIGHT_SHIFT);
1645         br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1646
1647         switch (bpp) {
1648         case 8:
1649                 br13 |= COLOR_DEPTH_8;
1650                 break;
1651         case 16:
1652                 br13 |= COLOR_DEPTH_16;
1653                 break;
1654         case 32:
1655                 br13 |= COLOR_DEPTH_32;
1656                 br00 |= WRITE_ALPHA | WRITE_RGB;
1657                 break;
1658         }
1659
1660         START_RING(8);
1661         OUT_RING(br00);
1662         OUT_RING(br13);
1663         OUT_RING(br22);
1664         OUT_RING(br23);
1665         OUT_RING(br09);
1666         OUT_RING(br26);
1667         OUT_RING(br11);
1668         OUT_RING(br12);
1669         ADVANCE_RING();
1670 }
1671
1672 int
1673 intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1674                        u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
1675 {
1676         int nbytes, ndwords, pad, tmp;
1677         u32 br00, br09, br13, br18, br19, br22, br23;
1678         int dat, ix, iy, iw;
1679         int i, j;
1680
1681 #if VERBOSE > 0
1682         DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1683 #endif
1684
1685         /* size in bytes of a padded scanline */
1686         nbytes = ROUND_UP_TO(w, 16) / 8;
1687
1688         /* Total bytes of padded scanline data to write out. */
1689         nbytes = nbytes * h;
1690
1691         /*
1692          * Check if the glyph data exceeds the immediate mode limit.
1693          * It would take a large font (1K pixels) to hit this limit.
1694          */
1695         if (nbytes > MAX_MONO_IMM_SIZE)
1696                 return 0;
1697
1698         /* Src data is packaged a dword (32-bit) at a time. */
1699         ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1700
1701         /*
1702          * Ring has to be padded to a quad word. But because the command starts
1703            with 7 bytes, pad only if there is an even number of ndwords
1704          */
1705         pad = !(ndwords % 2);
1706
1707         tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1708         br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1709         br09 = dinfo->fb_start;
1710         br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1711         br18 = bg;
1712         br19 = fg;
1713         br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1714         br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1715
1716         switch (bpp) {
1717         case 8:
1718                 br13 |= COLOR_DEPTH_8;
1719                 break;
1720         case 16:
1721                 br13 |= COLOR_DEPTH_16;
1722                 break;
1723         case 32:
1724                 br13 |= COLOR_DEPTH_32;
1725                 br00 |= WRITE_ALPHA | WRITE_RGB;
1726                 break;
1727         }
1728
1729         START_RING(8 + ndwords);
1730         OUT_RING(br00);
1731         OUT_RING(br13);
1732         OUT_RING(br22);
1733         OUT_RING(br23);
1734         OUT_RING(br09);
1735         OUT_RING(br18);
1736         OUT_RING(br19);
1737         ix = iy = 0;
1738         iw = ROUND_UP_TO(w, 8) / 8;
1739         while (ndwords--) {
1740                 dat = 0;
1741                 for (j = 0; j < 2; ++j) {
1742                         for (i = 0; i < 2; ++i) {
1743                                 if (ix != iw || i == 0)
1744                                         dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1745                         }
1746                         if (ix == iw && iy != (h-1)) {
1747                                 ix = 0;
1748                                 ++iy;
1749                         }
1750                 }
1751                 OUT_RING(dat);
1752         }
1753         if (pad)
1754                 OUT_RING(MI_NOOP);
1755         ADVANCE_RING();
1756
1757         return 1;
1758 }
1759
1760 /* HW cursor functions. */
1761 void
1762 intelfbhw_cursor_init(struct intelfb_info *dinfo)
1763 {
1764         u32 tmp;
1765
1766 #if VERBOSE > 0
1767         DBG_MSG("intelfbhw_cursor_init\n");
1768 #endif
1769
1770         if (dinfo->mobile || IS_I9XX(dinfo)) {
1771                 if (!dinfo->cursor.physical)
1772                         return;
1773                 tmp = INREG(CURSOR_A_CONTROL);
1774                 tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1775                          CURSOR_MEM_TYPE_LOCAL |
1776                          (1 << CURSOR_PIPE_SELECT_SHIFT));
1777                 tmp |= CURSOR_MODE_DISABLE;
1778                 OUTREG(CURSOR_A_CONTROL, tmp);
1779                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1780         } else {
1781                 tmp = INREG(CURSOR_CONTROL);
1782                 tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1783                          CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1784                 tmp = CURSOR_FORMAT_3C;
1785                 OUTREG(CURSOR_CONTROL, tmp);
1786                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1787                 tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1788                       (64 << CURSOR_SIZE_V_SHIFT);
1789                 OUTREG(CURSOR_SIZE, tmp);
1790         }
1791 }
1792
1793 void
1794 intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1795 {
1796         u32 tmp;
1797
1798 #if VERBOSE > 0
1799         DBG_MSG("intelfbhw_cursor_hide\n");
1800 #endif
1801
1802         dinfo->cursor_on = 0;
1803         if (dinfo->mobile || IS_I9XX(dinfo)) {
1804                 if (!dinfo->cursor.physical)
1805                         return;
1806                 tmp = INREG(CURSOR_A_CONTROL);
1807                 tmp &= ~CURSOR_MODE_MASK;
1808                 tmp |= CURSOR_MODE_DISABLE;
1809                 OUTREG(CURSOR_A_CONTROL, tmp);
1810                 /* Flush changes */
1811                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1812         } else {
1813                 tmp = INREG(CURSOR_CONTROL);
1814                 tmp &= ~CURSOR_ENABLE;
1815                 OUTREG(CURSOR_CONTROL, tmp);
1816         }
1817 }
1818
1819 void
1820 intelfbhw_cursor_show(struct intelfb_info *dinfo)
1821 {
1822         u32 tmp;
1823
1824 #if VERBOSE > 0
1825         DBG_MSG("intelfbhw_cursor_show\n");
1826 #endif
1827
1828         dinfo->cursor_on = 1;
1829
1830         if (dinfo->cursor_blanked)
1831                 return;
1832
1833         if (dinfo->mobile || IS_I9XX(dinfo)) {
1834                 if (!dinfo->cursor.physical)
1835                         return;
1836                 tmp = INREG(CURSOR_A_CONTROL);
1837                 tmp &= ~CURSOR_MODE_MASK;
1838                 tmp |= CURSOR_MODE_64_4C_AX;
1839                 OUTREG(CURSOR_A_CONTROL, tmp);
1840                 /* Flush changes */
1841                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1842         } else {
1843                 tmp = INREG(CURSOR_CONTROL);
1844                 tmp |= CURSOR_ENABLE;
1845                 OUTREG(CURSOR_CONTROL, tmp);
1846         }
1847 }
1848
1849 void
1850 intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1851 {
1852         u32 tmp;
1853
1854 #if VERBOSE > 0
1855         DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1856 #endif
1857
1858         /*
1859          * Sets the position. The coordinates are assumed to already
1860          * have any offset adjusted. Assume that the cursor is never
1861          * completely off-screen, and that x, y are always >= 0.
1862          */
1863
1864         tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1865               ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1866         OUTREG(CURSOR_A_POSITION, tmp);
1867
1868         if (IS_I9XX(dinfo)) {
1869                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1870         }
1871 }
1872
1873 void
1874 intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1875 {
1876 #if VERBOSE > 0
1877         DBG_MSG("intelfbhw_cursor_setcolor\n");
1878 #endif
1879
1880         OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1881         OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1882         OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1883         OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1884 }
1885
1886 void
1887 intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1888                       u8 *data)
1889 {
1890         u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1891         int i, j, w = width / 8;
1892         int mod = width % 8, t_mask, d_mask;
1893
1894 #if VERBOSE > 0
1895         DBG_MSG("intelfbhw_cursor_load\n");
1896 #endif
1897
1898         if (!dinfo->cursor.virtual)
1899                 return;
1900
1901         t_mask = 0xff >> mod;
1902         d_mask = ~(0xff >> mod);
1903         for (i = height; i--; ) {
1904                 for (j = 0; j < w; j++) {
1905                         writeb(0x00, addr + j);
1906                         writeb(*(data++), addr + j+8);
1907                 }
1908                 if (mod) {
1909                         writeb(t_mask, addr + j);
1910                         writeb(*(data++) & d_mask, addr + j+8);
1911                 }
1912                 addr += 16;
1913         }
1914 }
1915
1916 void
1917 intelfbhw_cursor_reset(struct intelfb_info *dinfo) {
1918         u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1919         int i, j;
1920
1921 #if VERBOSE > 0
1922         DBG_MSG("intelfbhw_cursor_reset\n");
1923 #endif
1924
1925         if (!dinfo->cursor.virtual)
1926                 return;
1927
1928         for (i = 64; i--; ) {
1929                 for (j = 0; j < 8; j++) {
1930                         writeb(0xff, addr + j+0);
1931                         writeb(0x00, addr + j+8);
1932                 }
1933                 addr += 16;
1934         }
1935 }