intelfb: add vsync interrupt support
[pandora-kernel.git] / drivers / video / intelfb / intelfbhw.c
1 /*
2  * intelfb
3  *
4  * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
5  *
6  * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
7  *                   2004 Sylvain Meyer
8  *
9  * This driver consists of two parts.  The first part (intelfbdrv.c) provides
10  * the basic fbdev interfaces, is derived in part from the radeonfb and
11  * vesafb drivers, and is covered by the GPL.  The second part (intelfbhw.c)
12  * provides the code to program the hardware.  Most of it is derived from
13  * the i810/i830 XFree86 driver.  The HW-specific code is covered here
14  * under a dual license (GPL and MIT/XFree86 license).
15  *
16  * Author: David Dawes
17  *
18  */
19
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
21
22 #include <linux/config.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/string.h>
27 #include <linux/mm.h>
28 #include <linux/tty.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/fb.h>
32 #include <linux/ioport.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/interrupt.h>
38
39 #include <asm/io.h>
40
41 #include "intelfb.h"
42 #include "intelfbhw.h"
43
44 struct pll_min_max {
45         int min_m, max_m, min_m1, max_m1;
46         int min_m2, max_m2, min_n, max_n;
47         int min_p, max_p, min_p1, max_p1;
48         int min_vco, max_vco, p_transition_clk, ref_clk;
49         int p_inc_lo, p_inc_hi;
50 };
51
52 #define PLLS_I8xx 0
53 #define PLLS_I9xx 1
54 #define PLLS_MAX 2
55
56 static struct pll_min_max plls[PLLS_MAX] = {
57         { 108, 140, 18, 26,
58           6, 16, 3, 16,
59           4, 128, 0, 31,
60           930000, 1400000, 165000, 48000,
61           4, 2 }, //I8xx
62
63         { 75, 120, 10, 20,
64           5, 9, 4, 7,
65           5, 80, 1, 8,
66           1400000, 2800000, 200000, 96000,
67           10, 5 }  //I9xx
68 };
69
70 int
71 intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
72 {
73         u32 tmp;
74         if (!pdev || !dinfo)
75                 return 1;
76
77         switch (pdev->device) {
78         case PCI_DEVICE_ID_INTEL_830M:
79                 dinfo->name = "Intel(R) 830M";
80                 dinfo->chipset = INTEL_830M;
81                 dinfo->mobile = 1;
82                 dinfo->pll_index = PLLS_I8xx;
83                 return 0;
84         case PCI_DEVICE_ID_INTEL_845G:
85                 dinfo->name = "Intel(R) 845G";
86                 dinfo->chipset = INTEL_845G;
87                 dinfo->mobile = 0;
88                 dinfo->pll_index = PLLS_I8xx;
89                 return 0;
90         case PCI_DEVICE_ID_INTEL_85XGM:
91                 tmp = 0;
92                 dinfo->mobile = 1;
93                 dinfo->pll_index = PLLS_I8xx;
94                 pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
95                 switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
96                         INTEL_85X_VARIANT_MASK) {
97                 case INTEL_VAR_855GME:
98                         dinfo->name = "Intel(R) 855GME";
99                         dinfo->chipset = INTEL_855GME;
100                         return 0;
101                 case INTEL_VAR_855GM:
102                         dinfo->name = "Intel(R) 855GM";
103                         dinfo->chipset = INTEL_855GM;
104                         return 0;
105                 case INTEL_VAR_852GME:
106                         dinfo->name = "Intel(R) 852GME";
107                         dinfo->chipset = INTEL_852GME;
108                         return 0;
109                 case INTEL_VAR_852GM:
110                         dinfo->name = "Intel(R) 852GM";
111                         dinfo->chipset = INTEL_852GM;
112                         return 0;
113                 default:
114                         dinfo->name = "Intel(R) 852GM/855GM";
115                         dinfo->chipset = INTEL_85XGM;
116                         return 0;
117                 }
118                 break;
119         case PCI_DEVICE_ID_INTEL_865G:
120                 dinfo->name = "Intel(R) 865G";
121                 dinfo->chipset = INTEL_865G;
122                 dinfo->mobile = 0;
123                 dinfo->pll_index = PLLS_I8xx;
124                 return 0;
125         case PCI_DEVICE_ID_INTEL_915G:
126                 dinfo->name = "Intel(R) 915G";
127                 dinfo->chipset = INTEL_915G;
128                 dinfo->mobile = 0;
129                 dinfo->pll_index = PLLS_I9xx;
130                 return 0;
131         case PCI_DEVICE_ID_INTEL_915GM:
132                 dinfo->name = "Intel(R) 915GM";
133                 dinfo->chipset = INTEL_915GM;
134                 dinfo->mobile = 1;
135                 dinfo->pll_index = PLLS_I9xx;
136                 return 0;
137         case PCI_DEVICE_ID_INTEL_945G:
138                 dinfo->name = "Intel(R) 945G";
139                 dinfo->chipset = INTEL_945G;
140                 dinfo->mobile = 0;
141                 dinfo->pll_index = PLLS_I9xx;
142                 return 0;
143         case PCI_DEVICE_ID_INTEL_945GM:
144                 dinfo->name = "Intel(R) 945GM";
145                 dinfo->chipset = INTEL_945GM;
146                 dinfo->mobile = 1;
147                 dinfo->pll_index = PLLS_I9xx;
148                 return 0;
149         default:
150                 return 1;
151         }
152 }
153
154 int
155 intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
156                      int *stolen_size)
157 {
158         struct pci_dev *bridge_dev;
159         u16 tmp;
160         int stolen_overhead;
161
162         if (!pdev || !aperture_size || !stolen_size)
163                 return 1;
164
165         /* Find the bridge device.  It is always 0:0.0 */
166         if (!(bridge_dev = pci_find_slot(0, PCI_DEVFN(0, 0)))) {
167                 ERR_MSG("cannot find bridge device\n");
168                 return 1;
169         }
170
171         /* Get the fb aperture size and "stolen" memory amount. */
172         tmp = 0;
173         pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
174         switch (pdev->device) {
175         case PCI_DEVICE_ID_INTEL_915G:
176         case PCI_DEVICE_ID_INTEL_915GM:
177         case PCI_DEVICE_ID_INTEL_945G:
178         case PCI_DEVICE_ID_INTEL_945GM:
179                 /* 915 and 945 chipsets support a 256MB aperture.
180                    Aperture size is determined by inspected the
181                    base address of the aperture. */
182                 if (pci_resource_start(pdev, 2) & 0x08000000)
183                         *aperture_size = MB(128);
184                 else
185                         *aperture_size = MB(256);
186                 break;
187         default:
188                 if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
189                         *aperture_size = MB(64);
190                 else
191                         *aperture_size = MB(128);
192                 break;
193         }
194
195         /* Stolen memory size is reduced by the GTT and the popup.
196            GTT is 1K per MB of aperture size, and popup is 4K. */
197         stolen_overhead = (*aperture_size / MB(1)) + 4;
198         switch(pdev->device) {
199         case PCI_DEVICE_ID_INTEL_830M:
200         case PCI_DEVICE_ID_INTEL_845G:
201                 switch (tmp & INTEL_830_GMCH_GMS_MASK) {
202                 case INTEL_830_GMCH_GMS_STOLEN_512:
203                         *stolen_size = KB(512) - KB(stolen_overhead);
204                         return 0;
205                 case INTEL_830_GMCH_GMS_STOLEN_1024:
206                         *stolen_size = MB(1) - KB(stolen_overhead);
207                         return 0;
208                 case INTEL_830_GMCH_GMS_STOLEN_8192:
209                         *stolen_size = MB(8) - KB(stolen_overhead);
210                         return 0;
211                 case INTEL_830_GMCH_GMS_LOCAL:
212                         ERR_MSG("only local memory found\n");
213                         return 1;
214                 case INTEL_830_GMCH_GMS_DISABLED:
215                         ERR_MSG("video memory is disabled\n");
216                         return 1;
217                 default:
218                         ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
219                                 tmp & INTEL_830_GMCH_GMS_MASK);
220                         return 1;
221                 }
222                 break;
223         default:
224                 switch (tmp & INTEL_855_GMCH_GMS_MASK) {
225                 case INTEL_855_GMCH_GMS_STOLEN_1M:
226                         *stolen_size = MB(1) - KB(stolen_overhead);
227                         return 0;
228                 case INTEL_855_GMCH_GMS_STOLEN_4M:
229                         *stolen_size = MB(4) - KB(stolen_overhead);
230                         return 0;
231                 case INTEL_855_GMCH_GMS_STOLEN_8M:
232                         *stolen_size = MB(8) - KB(stolen_overhead);
233                         return 0;
234                 case INTEL_855_GMCH_GMS_STOLEN_16M:
235                         *stolen_size = MB(16) - KB(stolen_overhead);
236                         return 0;
237                 case INTEL_855_GMCH_GMS_STOLEN_32M:
238                         *stolen_size = MB(32) - KB(stolen_overhead);
239                         return 0;
240                 case INTEL_915G_GMCH_GMS_STOLEN_48M:
241                         *stolen_size = MB(48) - KB(stolen_overhead);
242                         return 0;
243                 case INTEL_915G_GMCH_GMS_STOLEN_64M:
244                         *stolen_size = MB(64) - KB(stolen_overhead);
245                         return 0;
246                 case INTEL_855_GMCH_GMS_DISABLED:
247                         ERR_MSG("video memory is disabled\n");
248                         return 0;
249                 default:
250                         ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
251                                 tmp & INTEL_855_GMCH_GMS_MASK);
252                         return 1;
253                 }
254         }
255 }
256
257 int
258 intelfbhw_check_non_crt(struct intelfb_info *dinfo)
259 {
260         int dvo = 0;
261
262         if (INREG(LVDS) & PORT_ENABLE)
263                 dvo |= LVDS_PORT;
264         if (INREG(DVOA) & PORT_ENABLE)
265                 dvo |= DVOA_PORT;
266         if (INREG(DVOB) & PORT_ENABLE)
267                 dvo |= DVOB_PORT;
268         if (INREG(DVOC) & PORT_ENABLE)
269                 dvo |= DVOC_PORT;
270
271         return dvo;
272 }
273
274 const char *
275 intelfbhw_dvo_to_string(int dvo)
276 {
277         if (dvo & DVOA_PORT)
278                 return "DVO port A";
279         else if (dvo & DVOB_PORT)
280                 return "DVO port B";
281         else if (dvo & DVOC_PORT)
282                 return "DVO port C";
283         else if (dvo & LVDS_PORT)
284                 return "LVDS port";
285         else
286                 return NULL;
287 }
288
289
290 int
291 intelfbhw_validate_mode(struct intelfb_info *dinfo,
292                         struct fb_var_screeninfo *var)
293 {
294         int bytes_per_pixel;
295         int tmp;
296
297 #if VERBOSE > 0
298         DBG_MSG("intelfbhw_validate_mode\n");
299 #endif
300
301         bytes_per_pixel = var->bits_per_pixel / 8;
302         if (bytes_per_pixel == 3)
303                 bytes_per_pixel = 4;
304
305         /* Check if enough video memory. */
306         tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
307         if (tmp > dinfo->fb.size) {
308                 WRN_MSG("Not enough video ram for mode "
309                         "(%d KByte vs %d KByte).\n",
310                         BtoKB(tmp), BtoKB(dinfo->fb.size));
311                 return 1;
312         }
313
314         /* Check if x/y limits are OK. */
315         if (var->xres - 1 > HACTIVE_MASK) {
316                 WRN_MSG("X resolution too large (%d vs %d).\n",
317                         var->xres, HACTIVE_MASK + 1);
318                 return 1;
319         }
320         if (var->yres - 1 > VACTIVE_MASK) {
321                 WRN_MSG("Y resolution too large (%d vs %d).\n",
322                         var->yres, VACTIVE_MASK + 1);
323                 return 1;
324         }
325
326         /* Check for interlaced/doublescan modes. */
327         if (var->vmode & FB_VMODE_INTERLACED) {
328                 WRN_MSG("Mode is interlaced.\n");
329                 return 1;
330         }
331         if (var->vmode & FB_VMODE_DOUBLE) {
332                 WRN_MSG("Mode is double-scan.\n");
333                 return 1;
334         }
335
336         /* Check if clock is OK. */
337         tmp = 1000000000 / var->pixclock;
338         if (tmp < MIN_CLOCK) {
339                 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
340                         (tmp + 500) / 1000, MIN_CLOCK / 1000);
341                 return 1;
342         }
343         if (tmp > MAX_CLOCK) {
344                 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
345                         (tmp + 500) / 1000, MAX_CLOCK / 1000);
346                 return 1;
347         }
348
349         return 0;
350 }
351
352 int
353 intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
354 {
355         struct intelfb_info *dinfo = GET_DINFO(info);
356         u32 offset, xoffset, yoffset;
357
358 #if VERBOSE > 0
359         DBG_MSG("intelfbhw_pan_display\n");
360 #endif
361
362         xoffset = ROUND_DOWN_TO(var->xoffset, 8);
363         yoffset = var->yoffset;
364
365         if ((xoffset + var->xres > var->xres_virtual) ||
366             (yoffset + var->yres > var->yres_virtual))
367                 return -EINVAL;
368
369         offset = (yoffset * dinfo->pitch) +
370                  (xoffset * var->bits_per_pixel) / 8;
371
372         offset += dinfo->fb.offset << 12;
373
374         OUTREG(DSPABASE, offset);
375
376         return 0;
377 }
378
379 /* Blank the screen. */
380 void
381 intelfbhw_do_blank(int blank, struct fb_info *info)
382 {
383         struct intelfb_info *dinfo = GET_DINFO(info);
384         u32 tmp;
385
386 #if VERBOSE > 0
387         DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
388 #endif
389
390         /* Turn plane A on or off */
391         tmp = INREG(DSPACNTR);
392         if (blank)
393                 tmp &= ~DISPPLANE_PLANE_ENABLE;
394         else
395                 tmp |= DISPPLANE_PLANE_ENABLE;
396         OUTREG(DSPACNTR, tmp);
397         /* Flush */
398         tmp = INREG(DSPABASE);
399         OUTREG(DSPABASE, tmp);
400
401         /* Turn off/on the HW cursor */
402 #if VERBOSE > 0
403         DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
404 #endif
405         if (dinfo->cursor_on) {
406                 if (blank) {
407                         intelfbhw_cursor_hide(dinfo);
408                 } else {
409                         intelfbhw_cursor_show(dinfo);
410                 }
411                 dinfo->cursor_on = 1;
412         }
413         dinfo->cursor_blanked = blank;
414
415         /* Set DPMS level */
416         tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
417         switch (blank) {
418         case FB_BLANK_UNBLANK:
419         case FB_BLANK_NORMAL:
420                 tmp |= ADPA_DPMS_D0;
421                 break;
422         case FB_BLANK_VSYNC_SUSPEND:
423                 tmp |= ADPA_DPMS_D1;
424                 break;
425         case FB_BLANK_HSYNC_SUSPEND:
426                 tmp |= ADPA_DPMS_D2;
427                 break;
428         case FB_BLANK_POWERDOWN:
429                 tmp |= ADPA_DPMS_D3;
430                 break;
431         }
432         OUTREG(ADPA, tmp);
433
434         return;
435 }
436
437
438 void
439 intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
440                     unsigned red, unsigned green, unsigned blue,
441                     unsigned transp)
442 {
443 #if VERBOSE > 0
444         DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
445                 regno, red, green, blue);
446 #endif
447
448         u32 palette_reg = (dinfo->pipe == PIPE_A) ?
449                           PALETTE_A : PALETTE_B;
450
451         OUTREG(palette_reg + (regno << 2),
452                (red << PALETTE_8_RED_SHIFT) |
453                (green << PALETTE_8_GREEN_SHIFT) |
454                (blue << PALETTE_8_BLUE_SHIFT));
455 }
456
457
458 int
459 intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
460                         int flag)
461 {
462         int i;
463
464 #if VERBOSE > 0
465         DBG_MSG("intelfbhw_read_hw_state\n");
466 #endif
467
468         if (!hw || !dinfo)
469                 return -1;
470
471         /* Read in as much of the HW state as possible. */
472         hw->vga0_divisor = INREG(VGA0_DIVISOR);
473         hw->vga1_divisor = INREG(VGA1_DIVISOR);
474         hw->vga_pd = INREG(VGAPD);
475         hw->dpll_a = INREG(DPLL_A);
476         hw->dpll_b = INREG(DPLL_B);
477         hw->fpa0 = INREG(FPA0);
478         hw->fpa1 = INREG(FPA1);
479         hw->fpb0 = INREG(FPB0);
480         hw->fpb1 = INREG(FPB1);
481
482         if (flag == 1)
483                 return flag;
484
485 #if 0
486         /* This seems to be a problem with the 852GM/855GM */
487         for (i = 0; i < PALETTE_8_ENTRIES; i++) {
488                 hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
489                 hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
490         }
491 #endif
492
493         if (flag == 2)
494                 return flag;
495
496         hw->htotal_a = INREG(HTOTAL_A);
497         hw->hblank_a = INREG(HBLANK_A);
498         hw->hsync_a = INREG(HSYNC_A);
499         hw->vtotal_a = INREG(VTOTAL_A);
500         hw->vblank_a = INREG(VBLANK_A);
501         hw->vsync_a = INREG(VSYNC_A);
502         hw->src_size_a = INREG(SRC_SIZE_A);
503         hw->bclrpat_a = INREG(BCLRPAT_A);
504         hw->htotal_b = INREG(HTOTAL_B);
505         hw->hblank_b = INREG(HBLANK_B);
506         hw->hsync_b = INREG(HSYNC_B);
507         hw->vtotal_b = INREG(VTOTAL_B);
508         hw->vblank_b = INREG(VBLANK_B);
509         hw->vsync_b = INREG(VSYNC_B);
510         hw->src_size_b = INREG(SRC_SIZE_B);
511         hw->bclrpat_b = INREG(BCLRPAT_B);
512
513         if (flag == 3)
514                 return flag;
515
516         hw->adpa = INREG(ADPA);
517         hw->dvoa = INREG(DVOA);
518         hw->dvob = INREG(DVOB);
519         hw->dvoc = INREG(DVOC);
520         hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
521         hw->dvob_srcdim = INREG(DVOB_SRCDIM);
522         hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
523         hw->lvds = INREG(LVDS);
524
525         if (flag == 4)
526                 return flag;
527
528         hw->pipe_a_conf = INREG(PIPEACONF);
529         hw->pipe_b_conf = INREG(PIPEBCONF);
530         hw->disp_arb = INREG(DISPARB);
531
532         if (flag == 5)
533                 return flag;
534
535         hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
536         hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
537         hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
538         hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
539
540         if (flag == 6)
541                 return flag;
542
543         for (i = 0; i < 4; i++) {
544                 hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
545                 hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
546         }
547
548         if (flag == 7)
549                 return flag;
550
551         hw->cursor_size = INREG(CURSOR_SIZE);
552
553         if (flag == 8)
554                 return flag;
555
556         hw->disp_a_ctrl = INREG(DSPACNTR);
557         hw->disp_b_ctrl = INREG(DSPBCNTR);
558         hw->disp_a_base = INREG(DSPABASE);
559         hw->disp_b_base = INREG(DSPBBASE);
560         hw->disp_a_stride = INREG(DSPASTRIDE);
561         hw->disp_b_stride = INREG(DSPBSTRIDE);
562
563         if (flag == 9)
564                 return flag;
565
566         hw->vgacntrl = INREG(VGACNTRL);
567
568         if (flag == 10)
569                 return flag;
570
571         hw->add_id = INREG(ADD_ID);
572
573         if (flag == 11)
574                 return flag;
575
576         for (i = 0; i < 7; i++) {
577                 hw->swf0x[i] = INREG(SWF00 + (i << 2));
578                 hw->swf1x[i] = INREG(SWF10 + (i << 2));
579                 if (i < 3)
580                         hw->swf3x[i] = INREG(SWF30 + (i << 2));
581         }
582
583         for (i = 0; i < 8; i++)
584                 hw->fence[i] = INREG(FENCE + (i << 2));
585
586         hw->instpm = INREG(INSTPM);
587         hw->mem_mode = INREG(MEM_MODE);
588         hw->fw_blc_0 = INREG(FW_BLC_0);
589         hw->fw_blc_1 = INREG(FW_BLC_1);
590
591         hw->hwstam = INREG16(HWSTAM);
592         hw->ier = INREG16(IER);
593         hw->iir = INREG16(IIR);
594         hw->imr = INREG16(IMR);
595
596         return 0;
597 }
598
599
600 static int calc_vclock3(int index, int m, int n, int p)
601 {
602         if (p == 0 || n == 0)
603                 return 0;
604         return plls[index].ref_clk * m / n / p;
605 }
606
607 static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2, int lvds)
608 {
609         struct pll_min_max *pll = &plls[index];
610         u32 m, vco, p;
611
612         m = (5 * (m1 + 2)) + (m2 + 2);
613         n += 2;
614         vco = pll->ref_clk * m / n;
615
616         if (index == PLLS_I8xx) {
617                 p = ((p1 + 2) * (1 << (p2 + 1)));
618         } else {
619                 p = ((p1) * (p2 ? 5 : 10));
620         }
621         return vco / p;
622 }
623
624 static void
625 intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll, int *o_p1, int *o_p2)
626 {
627         int p1, p2;
628
629         if (IS_I9XX(dinfo)) {
630                 if (dpll & DPLL_P1_FORCE_DIV2)
631                         p1 = 1;
632                 else
633                         p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
634                 
635                 p1 = ffs(p1);
636
637                 p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
638         } else {
639                 if (dpll & DPLL_P1_FORCE_DIV2)
640                         p1 = 0;
641                 else
642                         p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
643                 p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
644         }
645
646         *o_p1 = p1;
647         *o_p2 = p2;
648 }
649
650
651 void
652 intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
653 {
654 #if REGDUMP
655         int i, m1, m2, n, p1, p2;
656         int index = dinfo->pll_index;
657         DBG_MSG("intelfbhw_print_hw_state\n");
658
659         if (!hw || !dinfo)
660                 return;
661         /* Read in as much of the HW state as possible. */
662         printk("hw state dump start\n");
663         printk("        VGA0_DIVISOR:           0x%08x\n", hw->vga0_divisor);
664         printk("        VGA1_DIVISOR:           0x%08x\n", hw->vga1_divisor);
665         printk("        VGAPD:                  0x%08x\n", hw->vga_pd);
666         n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
667         m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
668         m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
669
670         intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
671
672         printk("        VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
673                m1, m2, n, p1, p2);
674         printk("        VGA0: clock is %d\n",
675                calc_vclock(index, m1, m2, n, p1, p2, 0));
676
677         n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
678         m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
679         m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
680
681         intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
682         printk("        VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
683                m1, m2, n, p1, p2);
684         printk("        VGA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
685
686         printk("        DPLL_A:                 0x%08x\n", hw->dpll_a);
687         printk("        DPLL_B:                 0x%08x\n", hw->dpll_b);
688         printk("        FPA0:                   0x%08x\n", hw->fpa0);
689         printk("        FPA1:                   0x%08x\n", hw->fpa1);
690         printk("        FPB0:                   0x%08x\n", hw->fpb0);
691         printk("        FPB1:                   0x%08x\n", hw->fpb1);
692
693         n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
694         m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
695         m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
696
697         intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
698
699         printk("        PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
700                m1, m2, n, p1, p2);
701         printk("        PLLA0: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
702
703         n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
704         m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
705         m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
706
707         intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
708
709         printk("        PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
710                m1, m2, n, p1, p2);
711         printk("        PLLA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
712
713 #if 0
714         printk("        PALETTE_A:\n");
715         for (i = 0; i < PALETTE_8_ENTRIES)
716                 printk("        %3d:    0x%08x\n", i, hw->palette_a[i]);
717         printk("        PALETTE_B:\n");
718         for (i = 0; i < PALETTE_8_ENTRIES)
719                 printk("        %3d:    0x%08x\n", i, hw->palette_b[i]);
720 #endif
721
722         printk("        HTOTAL_A:               0x%08x\n", hw->htotal_a);
723         printk("        HBLANK_A:               0x%08x\n", hw->hblank_a);
724         printk("        HSYNC_A:                0x%08x\n", hw->hsync_a);
725         printk("        VTOTAL_A:               0x%08x\n", hw->vtotal_a);
726         printk("        VBLANK_A:               0x%08x\n", hw->vblank_a);
727         printk("        VSYNC_A:                0x%08x\n", hw->vsync_a);
728         printk("        SRC_SIZE_A:             0x%08x\n", hw->src_size_a);
729         printk("        BCLRPAT_A:              0x%08x\n", hw->bclrpat_a);
730         printk("        HTOTAL_B:               0x%08x\n", hw->htotal_b);
731         printk("        HBLANK_B:               0x%08x\n", hw->hblank_b);
732         printk("        HSYNC_B:                0x%08x\n", hw->hsync_b);
733         printk("        VTOTAL_B:               0x%08x\n", hw->vtotal_b);
734         printk("        VBLANK_B:               0x%08x\n", hw->vblank_b);
735         printk("        VSYNC_B:                0x%08x\n", hw->vsync_b);
736         printk("        SRC_SIZE_B:             0x%08x\n", hw->src_size_b);
737         printk("        BCLRPAT_B:              0x%08x\n", hw->bclrpat_b);
738
739         printk("        ADPA:                   0x%08x\n", hw->adpa);
740         printk("        DVOA:                   0x%08x\n", hw->dvoa);
741         printk("        DVOB:                   0x%08x\n", hw->dvob);
742         printk("        DVOC:                   0x%08x\n", hw->dvoc);
743         printk("        DVOA_SRCDIM:            0x%08x\n", hw->dvoa_srcdim);
744         printk("        DVOB_SRCDIM:            0x%08x\n", hw->dvob_srcdim);
745         printk("        DVOC_SRCDIM:            0x%08x\n", hw->dvoc_srcdim);
746         printk("        LVDS:                   0x%08x\n", hw->lvds);
747
748         printk("        PIPEACONF:              0x%08x\n", hw->pipe_a_conf);
749         printk("        PIPEBCONF:              0x%08x\n", hw->pipe_b_conf);
750         printk("        DISPARB:                0x%08x\n", hw->disp_arb);
751
752         printk("        CURSOR_A_CONTROL:       0x%08x\n", hw->cursor_a_control);
753         printk("        CURSOR_B_CONTROL:       0x%08x\n", hw->cursor_b_control);
754         printk("        CURSOR_A_BASEADDR:      0x%08x\n", hw->cursor_a_base);
755         printk("        CURSOR_B_BASEADDR:      0x%08x\n", hw->cursor_b_base);
756
757         printk("        CURSOR_A_PALETTE:       ");
758         for (i = 0; i < 4; i++) {
759                 printk("0x%08x", hw->cursor_a_palette[i]);
760                 if (i < 3)
761                         printk(", ");
762         }
763         printk("\n");
764         printk("        CURSOR_B_PALETTE:       ");
765         for (i = 0; i < 4; i++) {
766                 printk("0x%08x", hw->cursor_b_palette[i]);
767                 if (i < 3)
768                         printk(", ");
769         }
770         printk("\n");
771
772         printk("        CURSOR_SIZE:            0x%08x\n", hw->cursor_size);
773
774         printk("        DSPACNTR:               0x%08x\n", hw->disp_a_ctrl);
775         printk("        DSPBCNTR:               0x%08x\n", hw->disp_b_ctrl);
776         printk("        DSPABASE:               0x%08x\n", hw->disp_a_base);
777         printk("        DSPBBASE:               0x%08x\n", hw->disp_b_base);
778         printk("        DSPASTRIDE:             0x%08x\n", hw->disp_a_stride);
779         printk("        DSPBSTRIDE:             0x%08x\n", hw->disp_b_stride);
780
781         printk("        VGACNTRL:               0x%08x\n", hw->vgacntrl);
782         printk("        ADD_ID:                 0x%08x\n", hw->add_id);
783
784         for (i = 0; i < 7; i++) {
785                 printk("        SWF0%d                  0x%08x\n", i,
786                         hw->swf0x[i]);
787         }
788         for (i = 0; i < 7; i++) {
789                 printk("        SWF1%d                  0x%08x\n", i,
790                         hw->swf1x[i]);
791         }
792         for (i = 0; i < 3; i++) {
793                 printk("        SWF3%d                  0x%08x\n", i,
794                        hw->swf3x[i]);
795         }
796         for (i = 0; i < 8; i++)
797                 printk("        FENCE%d                 0x%08x\n", i,
798                        hw->fence[i]);
799
800         printk("        INSTPM                  0x%08x\n", hw->instpm);
801         printk("        MEM_MODE                0x%08x\n", hw->mem_mode);
802         printk("        FW_BLC_0                0x%08x\n", hw->fw_blc_0);
803         printk("        FW_BLC_1                0x%08x\n", hw->fw_blc_1);
804
805         printk("        HWSTAM                  0x%04x\n", hw->hwstam);
806         printk("        IER                     0x%04x\n", hw->ier);
807         printk("        IIR                     0x%04x\n", hw->iir);
808         printk("        IMR                     0x%04x\n", hw->imr);
809         printk("hw state dump end\n");
810 #endif
811 }
812
813
814
815 /* Split the M parameter into M1 and M2. */
816 static int
817 splitm(int index, unsigned int m, unsigned int *retm1, unsigned int *retm2)
818 {
819         int m1, m2;
820         int testm;
821         struct pll_min_max *pll = &plls[index];
822
823         /* no point optimising too much - brute force m */
824         for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
825                 for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
826                         testm = (5 * (m1 + 2)) + (m2 + 2);
827                         if (testm == m) {
828                                 *retm1 = (unsigned int)m1;
829                                 *retm2 = (unsigned int)m2;
830                                 return 0;
831                         }
832                 }
833         }
834         return 1;
835 }
836
837 /* Split the P parameter into P1 and P2. */
838 static int
839 splitp(int index, unsigned int p, unsigned int *retp1, unsigned int *retp2)
840 {
841         int p1, p2;
842         struct pll_min_max *pll = &plls[index];
843
844         if (index == PLLS_I9xx) {
845                 p2 = (p % 10) ? 1 : 0;
846
847                 p1 = p / (p2 ? 5 : 10);
848
849                 *retp1 = (unsigned int)p1;
850                 *retp2 = (unsigned int)p2;
851                 return 0;
852         }
853
854         if (p % 4 == 0)
855                 p2 = 1;
856         else
857                 p2 = 0;
858         p1 = (p / (1 << (p2 + 1))) - 2;
859         if (p % 4 == 0 && p1 < pll->min_p1) {
860                 p2 = 0;
861                 p1 = (p / (1 << (p2 + 1))) - 2;
862         }
863         if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
864             (p1 + 2) * (1 << (p2 + 1)) != p) {
865                 return 1;
866         } else {
867                 *retp1 = (unsigned int)p1;
868                 *retp2 = (unsigned int)p2;
869                 return 0;
870         }
871 }
872
873 static int
874 calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
875                 u32 *retp2, u32 *retclock)
876 {
877         u32 m1, m2, n, p1, p2, n1, testm;
878         u32 f_vco, p, p_best = 0, m, f_out = 0;
879         u32 err_max, err_target, err_best = 10000000;
880         u32 n_best = 0, m_best = 0, f_best, f_err;
881         u32 p_min, p_max, p_inc, div_max;
882         struct pll_min_max *pll = &plls[index];
883
884         /* Accept 0.5% difference, but aim for 0.1% */
885         err_max = 5 * clock / 1000;
886         err_target = clock / 1000;
887
888         DBG_MSG("Clock is %d\n", clock);
889
890         div_max = pll->max_vco / clock;
891
892         p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
893         p_min = p_inc;
894         p_max = ROUND_DOWN_TO(div_max, p_inc);
895         if (p_min < pll->min_p)
896                 p_min = pll->min_p;
897         if (p_max > pll->max_p)
898                 p_max = pll->max_p;
899
900         DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
901
902         p = p_min;
903         do {
904                 if (splitp(index, p, &p1, &p2)) {
905                         WRN_MSG("cannot split p = %d\n", p);
906                         p += p_inc;
907                         continue;
908                 }
909                 n = pll->min_n;
910                 f_vco = clock * p;
911
912                 do {
913                         m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
914                         if (m < pll->min_m)
915                                 m = pll->min_m + 1;
916                         if (m > pll->max_m)
917                                 m = pll->max_m - 1;
918                         for (testm = m - 1; testm <= m; testm++) {
919                                 f_out = calc_vclock3(index, m, n, p);
920                                 if (splitm(index, testm, &m1, &m2)) {
921                                         WRN_MSG("cannot split m = %d\n", m);
922                                         n++;
923                                         continue;
924                                 }
925                                 if (clock > f_out)
926                                         f_err = clock - f_out;
927                                 else/* slightly bias the error for bigger clocks */
928                                         f_err = f_out - clock + 1;
929
930                                 if (f_err < err_best) {
931                                         m_best = testm;
932                                         n_best = n;
933                                         p_best = p;
934                                         f_best = f_out;
935                                         err_best = f_err;
936                                 }
937                         }
938                         n++;
939                 } while ((n <= pll->max_n) && (f_out >= clock));
940                 p += p_inc;
941         } while ((p <= p_max));
942
943         if (!m_best) {
944                 WRN_MSG("cannot find parameters for clock %d\n", clock);
945                 return 1;
946         }
947         m = m_best;
948         n = n_best;
949         p = p_best;
950         splitm(index, m, &m1, &m2);
951         splitp(index, p, &p1, &p2);
952         n1 = n - 2;
953
954         DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
955                 "f: %d (%d), VCO: %d\n",
956                 m, m1, m2, n, n1, p, p1, p2,
957                 calc_vclock3(index, m, n, p),
958                 calc_vclock(index, m1, m2, n1, p1, p2, 0),
959                 calc_vclock3(index, m, n, p) * p);
960         *retm1 = m1;
961         *retm2 = m2;
962         *retn = n1;
963         *retp1 = p1;
964         *retp2 = p2;
965         *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
966
967         return 0;
968 }
969
970 static __inline__ int
971 check_overflow(u32 value, u32 limit, const char *description)
972 {
973         if (value > limit) {
974                 WRN_MSG("%s value %d exceeds limit %d\n",
975                         description, value, limit);
976                 return 1;
977         }
978         return 0;
979 }
980
981 /* It is assumed that hw is filled in with the initial state information. */
982 int
983 intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
984                      struct fb_var_screeninfo *var)
985 {
986         int pipe = PIPE_A;
987         u32 *dpll, *fp0, *fp1;
988         u32 m1, m2, n, p1, p2, clock_target, clock;
989         u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
990         u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
991         u32 vsync_pol, hsync_pol;
992         u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
993         u32 stride_alignment;
994
995         DBG_MSG("intelfbhw_mode_to_hw\n");
996
997         /* Disable VGA */
998         hw->vgacntrl |= VGA_DISABLE;
999
1000         /* Check whether pipe A or pipe B is enabled. */
1001         if (hw->pipe_a_conf & PIPECONF_ENABLE)
1002                 pipe = PIPE_A;
1003         else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1004                 pipe = PIPE_B;
1005
1006         /* Set which pipe's registers will be set. */
1007         if (pipe == PIPE_B) {
1008                 dpll = &hw->dpll_b;
1009                 fp0 = &hw->fpb0;
1010                 fp1 = &hw->fpb1;
1011                 hs = &hw->hsync_b;
1012                 hb = &hw->hblank_b;
1013                 ht = &hw->htotal_b;
1014                 vs = &hw->vsync_b;
1015                 vb = &hw->vblank_b;
1016                 vt = &hw->vtotal_b;
1017                 ss = &hw->src_size_b;
1018                 pipe_conf = &hw->pipe_b_conf;
1019         } else {
1020                 dpll = &hw->dpll_a;
1021                 fp0 = &hw->fpa0;
1022                 fp1 = &hw->fpa1;
1023                 hs = &hw->hsync_a;
1024                 hb = &hw->hblank_a;
1025                 ht = &hw->htotal_a;
1026                 vs = &hw->vsync_a;
1027                 vb = &hw->vblank_a;
1028                 vt = &hw->vtotal_a;
1029                 ss = &hw->src_size_a;
1030                 pipe_conf = &hw->pipe_a_conf;
1031         }
1032
1033         /* Use ADPA register for sync control. */
1034         hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
1035
1036         /* sync polarity */
1037         hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
1038                         ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1039         vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
1040                         ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1041         hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
1042                       (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
1043         hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
1044                     (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
1045
1046         /* Connect correct pipe to the analog port DAC */
1047         hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
1048         hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
1049
1050         /* Set DPMS state to D0 (on) */
1051         hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
1052         hw->adpa |= ADPA_DPMS_D0;
1053
1054         hw->adpa |= ADPA_DAC_ENABLE;
1055
1056         *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
1057         *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
1058         *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
1059
1060         /* Desired clock in kHz */
1061         clock_target = 1000000000 / var->pixclock;
1062
1063         if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
1064                             &n, &p1, &p2, &clock)) {
1065                 WRN_MSG("calc_pll_params failed\n");
1066                 return 1;
1067         }
1068
1069         /* Check for overflow. */
1070         if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1071                 return 1;
1072         if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1073                 return 1;
1074         if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1075                 return 1;
1076         if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1077                 return 1;
1078         if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1079                 return 1;
1080
1081         *dpll &= ~DPLL_P1_FORCE_DIV2;
1082         *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1083                    (DPLL_P1_MASK << DPLL_P1_SHIFT));
1084
1085         if (IS_I9XX(dinfo)) {
1086                 *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
1087                 *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
1088         } else {
1089                 *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1090         }
1091
1092         *fp0 = (n << FP_N_DIVISOR_SHIFT) |
1093                (m1 << FP_M1_DIVISOR_SHIFT) |
1094                (m2 << FP_M2_DIVISOR_SHIFT);
1095         *fp1 = *fp0;
1096
1097         hw->dvob &= ~PORT_ENABLE;
1098         hw->dvoc &= ~PORT_ENABLE;
1099
1100         /* Use display plane A. */
1101         hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1102         hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1103         hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1104         switch (intelfb_var_to_depth(var)) {
1105         case 8:
1106                 hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1107                 break;
1108         case 15:
1109                 hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1110                 break;
1111         case 16:
1112                 hw->disp_a_ctrl |= DISPPLANE_16BPP;
1113                 break;
1114         case 24:
1115                 hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1116                 break;
1117         }
1118         hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1119         hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1120
1121         /* Set CRTC registers. */
1122         hactive = var->xres;
1123         hsync_start = hactive + var->right_margin;
1124         hsync_end = hsync_start + var->hsync_len;
1125         htotal = hsync_end + var->left_margin;
1126         hblank_start = hactive;
1127         hblank_end = htotal;
1128
1129         DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1130                 hactive, hsync_start, hsync_end, htotal, hblank_start,
1131                 hblank_end);
1132
1133         vactive = var->yres;
1134         vsync_start = vactive + var->lower_margin;
1135         vsync_end = vsync_start + var->vsync_len;
1136         vtotal = vsync_end + var->upper_margin;
1137         vblank_start = vactive;
1138         vblank_end = vtotal;
1139         vblank_end = vsync_end + 1;
1140
1141         DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1142                 vactive, vsync_start, vsync_end, vtotal, vblank_start,
1143                 vblank_end);
1144
1145         /* Adjust for register values, and check for overflow. */
1146         hactive--;
1147         if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1148                 return 1;
1149         hsync_start--;
1150         if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1151                 return 1;
1152         hsync_end--;
1153         if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1154                 return 1;
1155         htotal--;
1156         if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1157                 return 1;
1158         hblank_start--;
1159         if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1160                 return 1;
1161         hblank_end--;
1162         if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1163                 return 1;
1164
1165         vactive--;
1166         if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1167                 return 1;
1168         vsync_start--;
1169         if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1170                 return 1;
1171         vsync_end--;
1172         if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1173                 return 1;
1174         vtotal--;
1175         if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1176                 return 1;
1177         vblank_start--;
1178         if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1179                 return 1;
1180         vblank_end--;
1181         if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1182                 return 1;
1183
1184         *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1185         *hb = (hblank_start << HBLANKSTART_SHIFT) |
1186               (hblank_end << HSYNCEND_SHIFT);
1187         *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1188
1189         *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1190         *vb = (vblank_start << VBLANKSTART_SHIFT) |
1191               (vblank_end << VSYNCEND_SHIFT);
1192         *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1193         *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1194               (vactive << SRC_SIZE_VERT_SHIFT);
1195
1196         hw->disp_a_stride = dinfo->pitch;
1197         DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1198
1199         hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1200                           var->xoffset * var->bits_per_pixel / 8;
1201
1202         hw->disp_a_base += dinfo->fb.offset << 12;
1203
1204         /* Check stride alignment. */
1205         stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
1206                                             STRIDE_ALIGNMENT;
1207         if (hw->disp_a_stride % stride_alignment != 0) {
1208                 WRN_MSG("display stride %d has bad alignment %d\n",
1209                         hw->disp_a_stride, stride_alignment);
1210                 return 1;
1211         }
1212
1213         /* Set the palette to 8-bit mode. */
1214         *pipe_conf &= ~PIPECONF_GAMMA;
1215         return 0;
1216 }
1217
1218 /* Program a (non-VGA) video mode. */
1219 int
1220 intelfbhw_program_mode(struct intelfb_info *dinfo,
1221                      const struct intelfb_hwstate *hw, int blank)
1222 {
1223         int pipe = PIPE_A;
1224         u32 tmp;
1225         const u32 *dpll, *fp0, *fp1, *pipe_conf;
1226         const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1227         u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
1228         u32 hsync_reg, htotal_reg, hblank_reg;
1229         u32 vsync_reg, vtotal_reg, vblank_reg;
1230         u32 src_size_reg;
1231         u32 count, tmp_val[3];
1232
1233         /* Assume single pipe, display plane A, analog CRT. */
1234
1235 #if VERBOSE > 0
1236         DBG_MSG("intelfbhw_program_mode\n");
1237 #endif
1238
1239         /* Disable VGA */
1240         tmp = INREG(VGACNTRL);
1241         tmp |= VGA_DISABLE;
1242         OUTREG(VGACNTRL, tmp);
1243
1244         /* Check whether pipe A or pipe B is enabled. */
1245         if (hw->pipe_a_conf & PIPECONF_ENABLE)
1246                 pipe = PIPE_A;
1247         else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1248                 pipe = PIPE_B;
1249
1250         dinfo->pipe = pipe;
1251
1252         if (pipe == PIPE_B) {
1253                 dpll = &hw->dpll_b;
1254                 fp0 = &hw->fpb0;
1255                 fp1 = &hw->fpb1;
1256                 pipe_conf = &hw->pipe_b_conf;
1257                 hs = &hw->hsync_b;
1258                 hb = &hw->hblank_b;
1259                 ht = &hw->htotal_b;
1260                 vs = &hw->vsync_b;
1261                 vb = &hw->vblank_b;
1262                 vt = &hw->vtotal_b;
1263                 ss = &hw->src_size_b;
1264                 dpll_reg = DPLL_B;
1265                 fp0_reg = FPB0;
1266                 fp1_reg = FPB1;
1267                 pipe_conf_reg = PIPEBCONF;
1268                 hsync_reg = HSYNC_B;
1269                 htotal_reg = HTOTAL_B;
1270                 hblank_reg = HBLANK_B;
1271                 vsync_reg = VSYNC_B;
1272                 vtotal_reg = VTOTAL_B;
1273                 vblank_reg = VBLANK_B;
1274                 src_size_reg = SRC_SIZE_B;
1275         } else {
1276                 dpll = &hw->dpll_a;
1277                 fp0 = &hw->fpa0;
1278                 fp1 = &hw->fpa1;
1279                 pipe_conf = &hw->pipe_a_conf;
1280                 hs = &hw->hsync_a;
1281                 hb = &hw->hblank_a;
1282                 ht = &hw->htotal_a;
1283                 vs = &hw->vsync_a;
1284                 vb = &hw->vblank_a;
1285                 vt = &hw->vtotal_a;
1286                 ss = &hw->src_size_a;
1287                 dpll_reg = DPLL_A;
1288                 fp0_reg = FPA0;
1289                 fp1_reg = FPA1;
1290                 pipe_conf_reg = PIPEACONF;
1291                 hsync_reg = HSYNC_A;
1292                 htotal_reg = HTOTAL_A;
1293                 hblank_reg = HBLANK_A;
1294                 vsync_reg = VSYNC_A;
1295                 vtotal_reg = VTOTAL_A;
1296                 vblank_reg = VBLANK_A;
1297                 src_size_reg = SRC_SIZE_A;
1298         }
1299
1300         /* turn off pipe */
1301         tmp = INREG(pipe_conf_reg);
1302         tmp &= ~PIPECONF_ENABLE;
1303         OUTREG(pipe_conf_reg, tmp);
1304
1305         count = 0;
1306         do {
1307                 tmp_val[count%3] = INREG(0x70000);
1308                 if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1]==tmp_val[2]))
1309                         break;
1310                 count++;
1311                 udelay(1);
1312                 if (count % 200 == 0) {
1313                         tmp = INREG(pipe_conf_reg);
1314                         tmp &= ~PIPECONF_ENABLE;
1315                         OUTREG(pipe_conf_reg, tmp);
1316                 }
1317         } while(count < 2000);
1318
1319         OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1320
1321         /* Disable planes A and B. */
1322         tmp = INREG(DSPACNTR);
1323         tmp &= ~DISPPLANE_PLANE_ENABLE;
1324         OUTREG(DSPACNTR, tmp);
1325         tmp = INREG(DSPBCNTR);
1326         tmp &= ~DISPPLANE_PLANE_ENABLE;
1327         OUTREG(DSPBCNTR, tmp);
1328
1329         /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1330         mdelay(20);
1331
1332         OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
1333         OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
1334         OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1335
1336         /* Disable Sync */
1337         tmp = INREG(ADPA);
1338         tmp &= ~ADPA_DPMS_CONTROL_MASK;
1339         tmp |= ADPA_DPMS_D3;
1340         OUTREG(ADPA, tmp);
1341
1342         /* do some funky magic - xyzzy */
1343         OUTREG(0x61204, 0xabcd0000);
1344
1345         /* turn off PLL */
1346         tmp = INREG(dpll_reg);
1347         dpll_reg &= ~DPLL_VCO_ENABLE;
1348         OUTREG(dpll_reg, tmp);
1349
1350         /* Set PLL parameters */
1351         OUTREG(fp0_reg, *fp0);
1352         OUTREG(fp1_reg, *fp1);
1353
1354         /* Enable PLL */
1355         OUTREG(dpll_reg, *dpll);
1356
1357         /* Set DVOs B/C */
1358         OUTREG(DVOB, hw->dvob);
1359         OUTREG(DVOC, hw->dvoc);
1360
1361         /* undo funky magic */
1362         OUTREG(0x61204, 0x00000000);
1363
1364         /* Set ADPA */
1365         OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
1366         OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1367
1368         /* Set pipe parameters */
1369         OUTREG(hsync_reg, *hs);
1370         OUTREG(hblank_reg, *hb);
1371         OUTREG(htotal_reg, *ht);
1372         OUTREG(vsync_reg, *vs);
1373         OUTREG(vblank_reg, *vb);
1374         OUTREG(vtotal_reg, *vt);
1375         OUTREG(src_size_reg, *ss);
1376
1377         /* Enable pipe */
1378         OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1379
1380         /* Enable sync */
1381         tmp = INREG(ADPA);
1382         tmp &= ~ADPA_DPMS_CONTROL_MASK;
1383         tmp |= ADPA_DPMS_D0;
1384         OUTREG(ADPA, tmp);
1385
1386         /* setup display plane */
1387         if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1388                 /*
1389                  *      i830M errata: the display plane must be enabled
1390                  *      to allow writes to the other bits in the plane
1391                  *      control register.
1392                  */
1393                 tmp = INREG(DSPACNTR);
1394                 if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1395                         tmp |= DISPPLANE_PLANE_ENABLE;
1396                         OUTREG(DSPACNTR, tmp);
1397                         OUTREG(DSPACNTR,
1398                                hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1399                         mdelay(1);
1400                 }
1401         }
1402
1403         OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1404         OUTREG(DSPASTRIDE, hw->disp_a_stride);
1405         OUTREG(DSPABASE, hw->disp_a_base);
1406
1407         /* Enable plane */
1408         if (!blank) {
1409                 tmp = INREG(DSPACNTR);
1410                 tmp |= DISPPLANE_PLANE_ENABLE;
1411                 OUTREG(DSPACNTR, tmp);
1412                 OUTREG(DSPABASE, hw->disp_a_base);
1413         }
1414
1415         return 0;
1416 }
1417
1418 /* forward declarations */
1419 static void refresh_ring(struct intelfb_info *dinfo);
1420 static void reset_state(struct intelfb_info *dinfo);
1421 static void do_flush(struct intelfb_info *dinfo);
1422
1423 static int
1424 wait_ring(struct intelfb_info *dinfo, int n)
1425 {
1426         int i = 0;
1427         unsigned long end;
1428         u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1429
1430 #if VERBOSE > 0
1431         DBG_MSG("wait_ring: %d\n", n);
1432 #endif
1433
1434         end = jiffies + (HZ * 3);
1435         while (dinfo->ring_space < n) {
1436                 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1437                 if (dinfo->ring_tail + RING_MIN_FREE < dinfo->ring_head)
1438                         dinfo->ring_space = dinfo->ring_head
1439                                 - (dinfo->ring_tail + RING_MIN_FREE);
1440                 else
1441                         dinfo->ring_space = (dinfo->ring.size +
1442                                              dinfo->ring_head)
1443                                 - (dinfo->ring_tail + RING_MIN_FREE);
1444                 if (dinfo->ring_head != last_head) {
1445                         end = jiffies + (HZ * 3);
1446                         last_head = dinfo->ring_head;
1447                 }
1448                 i++;
1449                 if (time_before(end, jiffies)) {
1450                         if (!i) {
1451                                 /* Try again */
1452                                 reset_state(dinfo);
1453                                 refresh_ring(dinfo);
1454                                 do_flush(dinfo);
1455                                 end = jiffies + (HZ * 3);
1456                                 i = 1;
1457                         } else {
1458                                 WRN_MSG("ring buffer : space: %d wanted %d\n",
1459                                         dinfo->ring_space, n);
1460                                 WRN_MSG("lockup - turning off hardware "
1461                                         "acceleration\n");
1462                                 dinfo->ring_lockup = 1;
1463                                 break;
1464                         }
1465                 }
1466                 udelay(1);
1467         }
1468         return i;
1469 }
1470
1471 static void
1472 do_flush(struct intelfb_info *dinfo) {
1473         START_RING(2);
1474         OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1475         OUT_RING(MI_NOOP);
1476         ADVANCE_RING();
1477 }
1478
1479 void
1480 intelfbhw_do_sync(struct intelfb_info *dinfo)
1481 {
1482 #if VERBOSE > 0
1483         DBG_MSG("intelfbhw_do_sync\n");
1484 #endif
1485
1486         if (!dinfo->accel)
1487                 return;
1488
1489         /*
1490          * Send a flush, then wait until the ring is empty.  This is what
1491          * the XFree86 driver does, and actually it doesn't seem a lot worse
1492          * than the recommended method (both have problems).
1493          */
1494         do_flush(dinfo);
1495         wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1496         dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1497 }
1498
1499 static void
1500 refresh_ring(struct intelfb_info *dinfo)
1501 {
1502 #if VERBOSE > 0
1503         DBG_MSG("refresh_ring\n");
1504 #endif
1505
1506         dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1507         dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1508         if (dinfo->ring_tail + RING_MIN_FREE < dinfo->ring_head)
1509                 dinfo->ring_space = dinfo->ring_head
1510                         - (dinfo->ring_tail + RING_MIN_FREE);
1511         else
1512                 dinfo->ring_space = (dinfo->ring.size + dinfo->ring_head)
1513                         - (dinfo->ring_tail + RING_MIN_FREE);
1514 }
1515
1516 static void
1517 reset_state(struct intelfb_info *dinfo)
1518 {
1519         int i;
1520         u32 tmp;
1521
1522 #if VERBOSE > 0
1523         DBG_MSG("reset_state\n");
1524 #endif
1525
1526         for (i = 0; i < FENCE_NUM; i++)
1527                 OUTREG(FENCE + (i << 2), 0);
1528
1529         /* Flush the ring buffer if it's enabled. */
1530         tmp = INREG(PRI_RING_LENGTH);
1531         if (tmp & RING_ENABLE) {
1532 #if VERBOSE > 0
1533                 DBG_MSG("reset_state: ring was enabled\n");
1534 #endif
1535                 refresh_ring(dinfo);
1536                 intelfbhw_do_sync(dinfo);
1537                 DO_RING_IDLE();
1538         }
1539
1540         OUTREG(PRI_RING_LENGTH, 0);
1541         OUTREG(PRI_RING_HEAD, 0);
1542         OUTREG(PRI_RING_TAIL, 0);
1543         OUTREG(PRI_RING_START, 0);
1544 }
1545
1546 /* Stop the 2D engine, and turn off the ring buffer. */
1547 void
1548 intelfbhw_2d_stop(struct intelfb_info *dinfo)
1549 {
1550 #if VERBOSE > 0
1551         DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
1552                 dinfo->ring_active);
1553 #endif
1554
1555         if (!dinfo->accel)
1556                 return;
1557
1558         dinfo->ring_active = 0;
1559         reset_state(dinfo);
1560 }
1561
1562 /*
1563  * Enable the ring buffer, and initialise the 2D engine.
1564  * It is assumed that the graphics engine has been stopped by previously
1565  * calling intelfb_2d_stop().
1566  */
1567 void
1568 intelfbhw_2d_start(struct intelfb_info *dinfo)
1569 {
1570 #if VERBOSE > 0
1571         DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1572                 dinfo->accel, dinfo->ring_active);
1573 #endif
1574
1575         if (!dinfo->accel)
1576                 return;
1577
1578         /* Initialise the primary ring buffer. */
1579         OUTREG(PRI_RING_LENGTH, 0);
1580         OUTREG(PRI_RING_TAIL, 0);
1581         OUTREG(PRI_RING_HEAD, 0);
1582
1583         OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1584         OUTREG(PRI_RING_LENGTH,
1585                 ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1586                 RING_NO_REPORT | RING_ENABLE);
1587         refresh_ring(dinfo);
1588         dinfo->ring_active = 1;
1589 }
1590
1591 /* 2D fillrect (solid fill or invert) */
1592 void
1593 intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
1594                       u32 color, u32 pitch, u32 bpp, u32 rop)
1595 {
1596         u32 br00, br09, br13, br14, br16;
1597
1598 #if VERBOSE > 0
1599         DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1600                 "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1601 #endif
1602
1603         br00 = COLOR_BLT_CMD;
1604         br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1605         br13 = (rop << ROP_SHIFT) | pitch;
1606         br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1607         br16 = color;
1608
1609         switch (bpp) {
1610         case 8:
1611                 br13 |= COLOR_DEPTH_8;
1612                 break;
1613         case 16:
1614                 br13 |= COLOR_DEPTH_16;
1615                 break;
1616         case 32:
1617                 br13 |= COLOR_DEPTH_32;
1618                 br00 |= WRITE_ALPHA | WRITE_RGB;
1619                 break;
1620         }
1621
1622         START_RING(6);
1623         OUT_RING(br00);
1624         OUT_RING(br13);
1625         OUT_RING(br14);
1626         OUT_RING(br09);
1627         OUT_RING(br16);
1628         OUT_RING(MI_NOOP);
1629         ADVANCE_RING();
1630
1631 #if VERBOSE > 0
1632         DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1633                 dinfo->ring_tail, dinfo->ring_space);
1634 #endif
1635 }
1636
1637 void
1638 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1639                     u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1640 {
1641         u32 br00, br09, br11, br12, br13, br22, br23, br26;
1642
1643 #if VERBOSE > 0
1644         DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1645                 curx, cury, dstx, dsty, w, h, pitch, bpp);
1646 #endif
1647
1648         br00 = XY_SRC_COPY_BLT_CMD;
1649         br09 = dinfo->fb_start;
1650         br11 = (pitch << PITCH_SHIFT);
1651         br12 = dinfo->fb_start;
1652         br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1653         br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1654         br23 = ((dstx + w) << WIDTH_SHIFT) |
1655                ((dsty + h) << HEIGHT_SHIFT);
1656         br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1657
1658         switch (bpp) {
1659         case 8:
1660                 br13 |= COLOR_DEPTH_8;
1661                 break;
1662         case 16:
1663                 br13 |= COLOR_DEPTH_16;
1664                 break;
1665         case 32:
1666                 br13 |= COLOR_DEPTH_32;
1667                 br00 |= WRITE_ALPHA | WRITE_RGB;
1668                 break;
1669         }
1670
1671         START_RING(8);
1672         OUT_RING(br00);
1673         OUT_RING(br13);
1674         OUT_RING(br22);
1675         OUT_RING(br23);
1676         OUT_RING(br09);
1677         OUT_RING(br26);
1678         OUT_RING(br11);
1679         OUT_RING(br12);
1680         ADVANCE_RING();
1681 }
1682
1683 int
1684 intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1685                        u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
1686 {
1687         int nbytes, ndwords, pad, tmp;
1688         u32 br00, br09, br13, br18, br19, br22, br23;
1689         int dat, ix, iy, iw;
1690         int i, j;
1691
1692 #if VERBOSE > 0
1693         DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1694 #endif
1695
1696         /* size in bytes of a padded scanline */
1697         nbytes = ROUND_UP_TO(w, 16) / 8;
1698
1699         /* Total bytes of padded scanline data to write out. */
1700         nbytes = nbytes * h;
1701
1702         /*
1703          * Check if the glyph data exceeds the immediate mode limit.
1704          * It would take a large font (1K pixels) to hit this limit.
1705          */
1706         if (nbytes > MAX_MONO_IMM_SIZE)
1707                 return 0;
1708
1709         /* Src data is packaged a dword (32-bit) at a time. */
1710         ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1711
1712         /*
1713          * Ring has to be padded to a quad word. But because the command starts
1714            with 7 bytes, pad only if there is an even number of ndwords
1715          */
1716         pad = !(ndwords % 2);
1717
1718         tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1719         br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1720         br09 = dinfo->fb_start;
1721         br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1722         br18 = bg;
1723         br19 = fg;
1724         br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1725         br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1726
1727         switch (bpp) {
1728         case 8:
1729                 br13 |= COLOR_DEPTH_8;
1730                 break;
1731         case 16:
1732                 br13 |= COLOR_DEPTH_16;
1733                 break;
1734         case 32:
1735                 br13 |= COLOR_DEPTH_32;
1736                 br00 |= WRITE_ALPHA | WRITE_RGB;
1737                 break;
1738         }
1739
1740         START_RING(8 + ndwords);
1741         OUT_RING(br00);
1742         OUT_RING(br13);
1743         OUT_RING(br22);
1744         OUT_RING(br23);
1745         OUT_RING(br09);
1746         OUT_RING(br18);
1747         OUT_RING(br19);
1748         ix = iy = 0;
1749         iw = ROUND_UP_TO(w, 8) / 8;
1750         while (ndwords--) {
1751                 dat = 0;
1752                 for (j = 0; j < 2; ++j) {
1753                         for (i = 0; i < 2; ++i) {
1754                                 if (ix != iw || i == 0)
1755                                         dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1756                         }
1757                         if (ix == iw && iy != (h-1)) {
1758                                 ix = 0;
1759                                 ++iy;
1760                         }
1761                 }
1762                 OUT_RING(dat);
1763         }
1764         if (pad)
1765                 OUT_RING(MI_NOOP);
1766         ADVANCE_RING();
1767
1768         return 1;
1769 }
1770
1771 /* HW cursor functions. */
1772 void
1773 intelfbhw_cursor_init(struct intelfb_info *dinfo)
1774 {
1775         u32 tmp;
1776
1777 #if VERBOSE > 0
1778         DBG_MSG("intelfbhw_cursor_init\n");
1779 #endif
1780
1781         if (dinfo->mobile || IS_I9XX(dinfo)) {
1782                 if (!dinfo->cursor.physical)
1783                         return;
1784                 tmp = INREG(CURSOR_A_CONTROL);
1785                 tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1786                          CURSOR_MEM_TYPE_LOCAL |
1787                          (1 << CURSOR_PIPE_SELECT_SHIFT));
1788                 tmp |= CURSOR_MODE_DISABLE;
1789                 OUTREG(CURSOR_A_CONTROL, tmp);
1790                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1791         } else {
1792                 tmp = INREG(CURSOR_CONTROL);
1793                 tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1794                          CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1795                 tmp = CURSOR_FORMAT_3C;
1796                 OUTREG(CURSOR_CONTROL, tmp);
1797                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1798                 tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1799                       (64 << CURSOR_SIZE_V_SHIFT);
1800                 OUTREG(CURSOR_SIZE, tmp);
1801         }
1802 }
1803
1804 void
1805 intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1806 {
1807         u32 tmp;
1808
1809 #if VERBOSE > 0
1810         DBG_MSG("intelfbhw_cursor_hide\n");
1811 #endif
1812
1813         dinfo->cursor_on = 0;
1814         if (dinfo->mobile || IS_I9XX(dinfo)) {
1815                 if (!dinfo->cursor.physical)
1816                         return;
1817                 tmp = INREG(CURSOR_A_CONTROL);
1818                 tmp &= ~CURSOR_MODE_MASK;
1819                 tmp |= CURSOR_MODE_DISABLE;
1820                 OUTREG(CURSOR_A_CONTROL, tmp);
1821                 /* Flush changes */
1822                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1823         } else {
1824                 tmp = INREG(CURSOR_CONTROL);
1825                 tmp &= ~CURSOR_ENABLE;
1826                 OUTREG(CURSOR_CONTROL, tmp);
1827         }
1828 }
1829
1830 void
1831 intelfbhw_cursor_show(struct intelfb_info *dinfo)
1832 {
1833         u32 tmp;
1834
1835 #if VERBOSE > 0
1836         DBG_MSG("intelfbhw_cursor_show\n");
1837 #endif
1838
1839         dinfo->cursor_on = 1;
1840
1841         if (dinfo->cursor_blanked)
1842                 return;
1843
1844         if (dinfo->mobile || IS_I9XX(dinfo)) {
1845                 if (!dinfo->cursor.physical)
1846                         return;
1847                 tmp = INREG(CURSOR_A_CONTROL);
1848                 tmp &= ~CURSOR_MODE_MASK;
1849                 tmp |= CURSOR_MODE_64_4C_AX;
1850                 OUTREG(CURSOR_A_CONTROL, tmp);
1851                 /* Flush changes */
1852                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1853         } else {
1854                 tmp = INREG(CURSOR_CONTROL);
1855                 tmp |= CURSOR_ENABLE;
1856                 OUTREG(CURSOR_CONTROL, tmp);
1857         }
1858 }
1859
1860 void
1861 intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1862 {
1863         u32 tmp;
1864
1865 #if VERBOSE > 0
1866         DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1867 #endif
1868
1869         /*
1870          * Sets the position. The coordinates are assumed to already
1871          * have any offset adjusted. Assume that the cursor is never
1872          * completely off-screen, and that x, y are always >= 0.
1873          */
1874
1875         tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1876               ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1877         OUTREG(CURSOR_A_POSITION, tmp);
1878
1879         if (IS_I9XX(dinfo)) {
1880                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1881         }
1882 }
1883
1884 void
1885 intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1886 {
1887 #if VERBOSE > 0
1888         DBG_MSG("intelfbhw_cursor_setcolor\n");
1889 #endif
1890
1891         OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1892         OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1893         OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1894         OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1895 }
1896
1897 void
1898 intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1899                       u8 *data)
1900 {
1901         u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1902         int i, j, w = width / 8;
1903         int mod = width % 8, t_mask, d_mask;
1904
1905 #if VERBOSE > 0
1906         DBG_MSG("intelfbhw_cursor_load\n");
1907 #endif
1908
1909         if (!dinfo->cursor.virtual)
1910                 return;
1911
1912         t_mask = 0xff >> mod;
1913         d_mask = ~(0xff >> mod);
1914         for (i = height; i--; ) {
1915                 for (j = 0; j < w; j++) {
1916                         writeb(0x00, addr + j);
1917                         writeb(*(data++), addr + j+8);
1918                 }
1919                 if (mod) {
1920                         writeb(t_mask, addr + j);
1921                         writeb(*(data++) & d_mask, addr + j+8);
1922                 }
1923                 addr += 16;
1924         }
1925 }
1926
1927 void
1928 intelfbhw_cursor_reset(struct intelfb_info *dinfo) {
1929         u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1930         int i, j;
1931
1932 #if VERBOSE > 0
1933         DBG_MSG("intelfbhw_cursor_reset\n");
1934 #endif
1935
1936         if (!dinfo->cursor.virtual)
1937                 return;
1938
1939         for (i = 64; i--; ) {
1940                 for (j = 0; j < 8; j++) {
1941                         writeb(0xff, addr + j+0);
1942                         writeb(0x00, addr + j+8);
1943                 }
1944                 addr += 16;
1945         }
1946 }
1947
1948 static irqreturn_t
1949 intelfbhw_irq(int irq, void *dev_id, struct pt_regs *fp) {
1950         int handled = 0;
1951         u16 tmp;
1952         struct intelfb_info *dinfo = (struct intelfb_info *)dev_id;
1953
1954         spin_lock(&dinfo->int_lock);
1955
1956         tmp = INREG16(IIR);
1957         tmp &= VSYNC_PIPE_A_INTERRUPT;
1958
1959         if (tmp == 0) {
1960                 spin_unlock(&dinfo->int_lock);
1961                 return IRQ_RETVAL(handled);
1962         }
1963
1964         OUTREG16(IIR, tmp);
1965
1966         if (tmp & VSYNC_PIPE_A_INTERRUPT) {
1967                 dinfo->vsync.count++;
1968                 wake_up_interruptible(&dinfo->vsync.wait);
1969                 handled = 1;
1970         }
1971
1972         spin_unlock(&dinfo->int_lock);
1973
1974         return IRQ_RETVAL(handled);
1975 }
1976
1977 int
1978 intelfbhw_enable_irq(struct intelfb_info *dinfo, int reenable) {
1979
1980         if (!test_and_set_bit(0, &dinfo->irq_flags)) {
1981                 if (request_irq(dinfo->pdev->irq, intelfbhw_irq, SA_SHIRQ, "intelfb", dinfo)) {
1982                         clear_bit(0, &dinfo->irq_flags);
1983                         return -EINVAL;
1984                 }
1985
1986                 spin_lock_irq(&dinfo->int_lock);
1987                 OUTREG16(HWSTAM, 0xfffe);
1988                 OUTREG16(IMR, 0x0);
1989                 OUTREG16(IER, VSYNC_PIPE_A_INTERRUPT);
1990                 spin_unlock_irq(&dinfo->int_lock);
1991         } else if (reenable) {
1992                 u16 ier;
1993
1994                 spin_lock_irq(&dinfo->int_lock);
1995                 ier = INREG16(IER);
1996                 if ((ier & VSYNC_PIPE_A_INTERRUPT)) {
1997                         DBG_MSG("someone disabled the IRQ [%08X]\n", ier);
1998                         OUTREG(IER, VSYNC_PIPE_A_INTERRUPT);
1999                 }
2000                 spin_unlock_irq(&dinfo->int_lock);
2001         }
2002         return 0;
2003 }
2004
2005 void
2006 intelfbhw_disable_irq(struct intelfb_info *dinfo) {
2007         u16 tmp;
2008
2009         if (test_and_clear_bit(0, &dinfo->irq_flags)) {
2010                 spin_lock_irq(&dinfo->int_lock);
2011                 OUTREG16(HWSTAM, 0xffff);
2012                 OUTREG16(IMR, 0xffff);
2013                 OUTREG16(IER, 0x0);
2014
2015                 tmp = INREG16(IIR);
2016                 OUTREG16(IIR, tmp);
2017                 spin_unlock_irq(&dinfo->int_lock);
2018
2019                 free_irq(dinfo->pdev->irq, dinfo);
2020         }
2021 }
2022
2023 int
2024 intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe) {
2025         struct intelfb_vsync *vsync;
2026         unsigned int count;
2027         int ret;
2028
2029         switch (pipe) {
2030                 case 0:
2031                         vsync = &dinfo->vsync;
2032                         break;
2033                 default:
2034                         return -ENODEV;
2035         }
2036
2037         ret = intelfbhw_enable_irq(dinfo, 0);
2038         if (ret) {
2039                 return ret;
2040         }
2041
2042         count = vsync->count;
2043         ret = wait_event_interruptible_timeout(vsync->wait, count != vsync->count, HZ/10);
2044         if (ret < 0) {
2045                 return ret;
2046         }
2047         if (ret == 0) {
2048                 intelfbhw_enable_irq(dinfo, 1);
2049                 DBG_MSG("wait_for_vsync timed out!\n");
2050                 return -ETIMEDOUT;
2051         }
2052
2053         return 0;
2054 }