Merge branch 'for-1111' of git://gitorious.org/smack-next/kernel into for-linus
[pandora-kernel.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29
30 #include "xhci.h"
31
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
34
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42  * handshake - spin reading hc until handshake completes or fails
43  * @ptr: address of hc register to be read
44  * @mask: bits to look at in result of read
45  * @done: value of those bits when handshake succeeds
46  * @usec: timeout in microseconds
47  *
48  * Returns negative errno, or zero on success
49  *
50  * Success happens when the "mask" bits have the specified value (hardware
51  * handshake done).  There are two failure modes:  "usec" have passed (major
52  * hardware flakeout), or the register reads as all-ones (hardware removed).
53  */
54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55                       u32 mask, u32 done, int usec)
56 {
57         u32     result;
58
59         do {
60                 result = xhci_readl(xhci, ptr);
61                 if (result == ~(u32)0)          /* card removed */
62                         return -ENODEV;
63                 result &= mask;
64                 if (result == done)
65                         return 0;
66                 udelay(1);
67                 usec--;
68         } while (usec > 0);
69         return -ETIMEDOUT;
70 }
71
72 /*
73  * Disable interrupts and begin the xHCI halting process.
74  */
75 void xhci_quiesce(struct xhci_hcd *xhci)
76 {
77         u32 halted;
78         u32 cmd;
79         u32 mask;
80
81         mask = ~(XHCI_IRQS);
82         halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83         if (!halted)
84                 mask &= ~CMD_RUN;
85
86         cmd = xhci_readl(xhci, &xhci->op_regs->command);
87         cmd &= mask;
88         xhci_writel(xhci, cmd, &xhci->op_regs->command);
89 }
90
91 /*
92  * Force HC into halt state.
93  *
94  * Disable any IRQs and clear the run/stop bit.
95  * HC will complete any current and actively pipelined transactions, and
96  * should halt within 16 ms of the run/stop bit being cleared.
97  * Read HC Halted bit in the status register to see when the HC is finished.
98  */
99 int xhci_halt(struct xhci_hcd *xhci)
100 {
101         int ret;
102         xhci_dbg(xhci, "// Halt the HC\n");
103         xhci_quiesce(xhci);
104
105         ret = handshake(xhci, &xhci->op_regs->status,
106                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107         if (!ret)
108                 xhci->xhc_state |= XHCI_STATE_HALTED;
109         return ret;
110 }
111
112 /*
113  * Set the run bit and wait for the host to be running.
114  */
115 static int xhci_start(struct xhci_hcd *xhci)
116 {
117         u32 temp;
118         int ret;
119
120         temp = xhci_readl(xhci, &xhci->op_regs->command);
121         temp |= (CMD_RUN);
122         xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
123                         temp);
124         xhci_writel(xhci, temp, &xhci->op_regs->command);
125
126         /*
127          * Wait for the HCHalted Status bit to be 0 to indicate the host is
128          * running.
129          */
130         ret = handshake(xhci, &xhci->op_regs->status,
131                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
132         if (ret == -ETIMEDOUT)
133                 xhci_err(xhci, "Host took too long to start, "
134                                 "waited %u microseconds.\n",
135                                 XHCI_MAX_HALT_USEC);
136         if (!ret)
137                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
138         return ret;
139 }
140
141 /*
142  * Reset a halted HC.
143  *
144  * This resets pipelines, timers, counters, state machines, etc.
145  * Transactions will be terminated immediately, and operational registers
146  * will be set to their defaults.
147  */
148 int xhci_reset(struct xhci_hcd *xhci)
149 {
150         u32 command;
151         u32 state;
152         int ret;
153
154         state = xhci_readl(xhci, &xhci->op_regs->status);
155         if ((state & STS_HALT) == 0) {
156                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
157                 return 0;
158         }
159
160         xhci_dbg(xhci, "// Reset the HC\n");
161         command = xhci_readl(xhci, &xhci->op_regs->command);
162         command |= CMD_RESET;
163         xhci_writel(xhci, command, &xhci->op_regs->command);
164
165         ret = handshake(xhci, &xhci->op_regs->command,
166                         CMD_RESET, 0, 250 * 1000);
167         if (ret)
168                 return ret;
169
170         xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
171         /*
172          * xHCI cannot write to any doorbells or operational registers other
173          * than status until the "Controller Not Ready" flag is cleared.
174          */
175         return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
176 }
177
178 #ifdef CONFIG_PCI
179 static int xhci_free_msi(struct xhci_hcd *xhci)
180 {
181         int i;
182
183         if (!xhci->msix_entries)
184                 return -EINVAL;
185
186         for (i = 0; i < xhci->msix_count; i++)
187                 if (xhci->msix_entries[i].vector)
188                         free_irq(xhci->msix_entries[i].vector,
189                                         xhci_to_hcd(xhci));
190         return 0;
191 }
192
193 /*
194  * Set up MSI
195  */
196 static int xhci_setup_msi(struct xhci_hcd *xhci)
197 {
198         int ret;
199         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
200
201         ret = pci_enable_msi(pdev);
202         if (ret) {
203                 xhci_err(xhci, "failed to allocate MSI entry\n");
204                 return ret;
205         }
206
207         ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
208                                 0, "xhci_hcd", xhci_to_hcd(xhci));
209         if (ret) {
210                 xhci_err(xhci, "disable MSI interrupt\n");
211                 pci_disable_msi(pdev);
212         }
213
214         return ret;
215 }
216
217 /*
218  * Free IRQs
219  * free all IRQs request
220  */
221 static void xhci_free_irq(struct xhci_hcd *xhci)
222 {
223         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
224         int ret;
225
226         /* return if using legacy interrupt */
227         if (xhci_to_hcd(xhci)->irq >= 0)
228                 return;
229
230         ret = xhci_free_msi(xhci);
231         if (!ret)
232                 return;
233         if (pdev->irq >= 0)
234                 free_irq(pdev->irq, xhci_to_hcd(xhci));
235
236         return;
237 }
238
239 /*
240  * Set up MSI-X
241  */
242 static int xhci_setup_msix(struct xhci_hcd *xhci)
243 {
244         int i, ret = 0;
245         struct usb_hcd *hcd = xhci_to_hcd(xhci);
246         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
247
248         /*
249          * calculate number of msi-x vectors supported.
250          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
251          *   with max number of interrupters based on the xhci HCSPARAMS1.
252          * - num_online_cpus: maximum msi-x vectors per CPUs core.
253          *   Add additional 1 vector to ensure always available interrupt.
254          */
255         xhci->msix_count = min(num_online_cpus() + 1,
256                                 HCS_MAX_INTRS(xhci->hcs_params1));
257
258         xhci->msix_entries =
259                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
260                                 GFP_KERNEL);
261         if (!xhci->msix_entries) {
262                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
263                 return -ENOMEM;
264         }
265
266         for (i = 0; i < xhci->msix_count; i++) {
267                 xhci->msix_entries[i].entry = i;
268                 xhci->msix_entries[i].vector = 0;
269         }
270
271         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
272         if (ret) {
273                 xhci_err(xhci, "Failed to enable MSI-X\n");
274                 goto free_entries;
275         }
276
277         for (i = 0; i < xhci->msix_count; i++) {
278                 ret = request_irq(xhci->msix_entries[i].vector,
279                                 (irq_handler_t)xhci_msi_irq,
280                                 0, "xhci_hcd", xhci_to_hcd(xhci));
281                 if (ret)
282                         goto disable_msix;
283         }
284
285         hcd->msix_enabled = 1;
286         return ret;
287
288 disable_msix:
289         xhci_err(xhci, "disable MSI-X interrupt\n");
290         xhci_free_irq(xhci);
291         pci_disable_msix(pdev);
292 free_entries:
293         kfree(xhci->msix_entries);
294         xhci->msix_entries = NULL;
295         return ret;
296 }
297
298 /* Free any IRQs and disable MSI-X */
299 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
300 {
301         struct usb_hcd *hcd = xhci_to_hcd(xhci);
302         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
303
304         xhci_free_irq(xhci);
305
306         if (xhci->msix_entries) {
307                 pci_disable_msix(pdev);
308                 kfree(xhci->msix_entries);
309                 xhci->msix_entries = NULL;
310         } else {
311                 pci_disable_msi(pdev);
312         }
313
314         hcd->msix_enabled = 0;
315         return;
316 }
317
318 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
319 {
320         int i;
321
322         if (xhci->msix_entries) {
323                 for (i = 0; i < xhci->msix_count; i++)
324                         synchronize_irq(xhci->msix_entries[i].vector);
325         }
326 }
327
328 static int xhci_try_enable_msi(struct usb_hcd *hcd)
329 {
330         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
331         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
332         int ret;
333
334         /*
335          * Some Fresco Logic host controllers advertise MSI, but fail to
336          * generate interrupts.  Don't even try to enable MSI.
337          */
338         if (xhci->quirks & XHCI_BROKEN_MSI)
339                 return 0;
340
341         /* unregister the legacy interrupt */
342         if (hcd->irq)
343                 free_irq(hcd->irq, hcd);
344         hcd->irq = -1;
345
346         ret = xhci_setup_msix(xhci);
347         if (ret)
348                 /* fall back to msi*/
349                 ret = xhci_setup_msi(xhci);
350
351         if (!ret)
352                 /* hcd->irq is -1, we have MSI */
353                 return 0;
354
355         /* fall back to legacy interrupt*/
356         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
357                         hcd->irq_descr, hcd);
358         if (ret) {
359                 xhci_err(xhci, "request interrupt %d failed\n",
360                                 pdev->irq);
361                 return ret;
362         }
363         hcd->irq = pdev->irq;
364         return 0;
365 }
366
367 #else
368
369 static int xhci_try_enable_msi(struct usb_hcd *hcd)
370 {
371         return 0;
372 }
373
374 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
375 {
376 }
377
378 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
379 {
380 }
381
382 #endif
383
384 /*
385  * Initialize memory for HCD and xHC (one-time init).
386  *
387  * Program the PAGESIZE register, initialize the device context array, create
388  * device contexts (?), set up a command ring segment (or two?), create event
389  * ring (one for now).
390  */
391 int xhci_init(struct usb_hcd *hcd)
392 {
393         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
394         int retval = 0;
395
396         xhci_dbg(xhci, "xhci_init\n");
397         spin_lock_init(&xhci->lock);
398         if (xhci->hci_version == 0x95 && link_quirk) {
399                 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
400                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
401         } else {
402                 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
403         }
404         retval = xhci_mem_init(xhci, GFP_KERNEL);
405         xhci_dbg(xhci, "Finished xhci_init\n");
406
407         return retval;
408 }
409
410 /*-------------------------------------------------------------------------*/
411
412
413 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
414 static void xhci_event_ring_work(unsigned long arg)
415 {
416         unsigned long flags;
417         int temp;
418         u64 temp_64;
419         struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
420         int i, j;
421
422         xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
423
424         spin_lock_irqsave(&xhci->lock, flags);
425         temp = xhci_readl(xhci, &xhci->op_regs->status);
426         xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
427         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
428                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
429                 xhci_dbg(xhci, "HW died, polling stopped.\n");
430                 spin_unlock_irqrestore(&xhci->lock, flags);
431                 return;
432         }
433
434         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
435         xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
436         xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
437         xhci->error_bitmask = 0;
438         xhci_dbg(xhci, "Event ring:\n");
439         xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
440         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
441         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
442         temp_64 &= ~ERST_PTR_MASK;
443         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
444         xhci_dbg(xhci, "Command ring:\n");
445         xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
446         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
447         xhci_dbg_cmd_ptrs(xhci);
448         for (i = 0; i < MAX_HC_SLOTS; ++i) {
449                 if (!xhci->devs[i])
450                         continue;
451                 for (j = 0; j < 31; ++j) {
452                         xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
453                 }
454         }
455         spin_unlock_irqrestore(&xhci->lock, flags);
456
457         if (!xhci->zombie)
458                 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
459         else
460                 xhci_dbg(xhci, "Quit polling the event ring.\n");
461 }
462 #endif
463
464 static int xhci_run_finished(struct xhci_hcd *xhci)
465 {
466         if (xhci_start(xhci)) {
467                 xhci_halt(xhci);
468                 return -ENODEV;
469         }
470         xhci->shared_hcd->state = HC_STATE_RUNNING;
471
472         if (xhci->quirks & XHCI_NEC_HOST)
473                 xhci_ring_cmd_db(xhci);
474
475         xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
476         return 0;
477 }
478
479 /*
480  * Start the HC after it was halted.
481  *
482  * This function is called by the USB core when the HC driver is added.
483  * Its opposite is xhci_stop().
484  *
485  * xhci_init() must be called once before this function can be called.
486  * Reset the HC, enable device slot contexts, program DCBAAP, and
487  * set command ring pointer and event ring pointer.
488  *
489  * Setup MSI-X vectors and enable interrupts.
490  */
491 int xhci_run(struct usb_hcd *hcd)
492 {
493         u32 temp;
494         u64 temp_64;
495         int ret;
496         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
497
498         /* Start the xHCI host controller running only after the USB 2.0 roothub
499          * is setup.
500          */
501
502         hcd->uses_new_polling = 1;
503         if (!usb_hcd_is_primary_hcd(hcd))
504                 return xhci_run_finished(xhci);
505
506         xhci_dbg(xhci, "xhci_run\n");
507
508         ret = xhci_try_enable_msi(hcd);
509         if (ret)
510                 return ret;
511
512 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
513         init_timer(&xhci->event_ring_timer);
514         xhci->event_ring_timer.data = (unsigned long) xhci;
515         xhci->event_ring_timer.function = xhci_event_ring_work;
516         /* Poll the event ring */
517         xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
518         xhci->zombie = 0;
519         xhci_dbg(xhci, "Setting event ring polling timer\n");
520         add_timer(&xhci->event_ring_timer);
521 #endif
522
523         xhci_dbg(xhci, "Command ring memory map follows:\n");
524         xhci_debug_ring(xhci, xhci->cmd_ring);
525         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
526         xhci_dbg_cmd_ptrs(xhci);
527
528         xhci_dbg(xhci, "ERST memory map follows:\n");
529         xhci_dbg_erst(xhci, &xhci->erst);
530         xhci_dbg(xhci, "Event ring:\n");
531         xhci_debug_ring(xhci, xhci->event_ring);
532         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
533         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
534         temp_64 &= ~ERST_PTR_MASK;
535         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
536
537         xhci_dbg(xhci, "// Set the interrupt modulation register\n");
538         temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
539         temp &= ~ER_IRQ_INTERVAL_MASK;
540         temp |= (u32) 160;
541         xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
542
543         /* Set the HCD state before we enable the irqs */
544         temp = xhci_readl(xhci, &xhci->op_regs->command);
545         temp |= (CMD_EIE);
546         xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
547                         temp);
548         xhci_writel(xhci, temp, &xhci->op_regs->command);
549
550         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
551         xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
552                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
553         xhci_writel(xhci, ER_IRQ_ENABLE(temp),
554                         &xhci->ir_set->irq_pending);
555         xhci_print_ir_set(xhci, 0);
556
557         if (xhci->quirks & XHCI_NEC_HOST)
558                 xhci_queue_vendor_command(xhci, 0, 0, 0,
559                                 TRB_TYPE(TRB_NEC_GET_FW));
560
561         xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
562         return 0;
563 }
564
565 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
566 {
567         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
568
569         spin_lock_irq(&xhci->lock);
570         xhci_halt(xhci);
571
572         /* The shared_hcd is going to be deallocated shortly (the USB core only
573          * calls this function when allocation fails in usb_add_hcd(), or
574          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
575          */
576         xhci->shared_hcd = NULL;
577         spin_unlock_irq(&xhci->lock);
578 }
579
580 /*
581  * Stop xHCI driver.
582  *
583  * This function is called by the USB core when the HC driver is removed.
584  * Its opposite is xhci_run().
585  *
586  * Disable device contexts, disable IRQs, and quiesce the HC.
587  * Reset the HC, finish any completed transactions, and cleanup memory.
588  */
589 void xhci_stop(struct usb_hcd *hcd)
590 {
591         u32 temp;
592         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
593
594         if (!usb_hcd_is_primary_hcd(hcd)) {
595                 xhci_only_stop_hcd(xhci->shared_hcd);
596                 return;
597         }
598
599         spin_lock_irq(&xhci->lock);
600         /* Make sure the xHC is halted for a USB3 roothub
601          * (xhci_stop() could be called as part of failed init).
602          */
603         xhci_halt(xhci);
604         xhci_reset(xhci);
605         spin_unlock_irq(&xhci->lock);
606
607         xhci_cleanup_msix(xhci);
608
609 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
610         /* Tell the event ring poll function not to reschedule */
611         xhci->zombie = 1;
612         del_timer_sync(&xhci->event_ring_timer);
613 #endif
614
615         if (xhci->quirks & XHCI_AMD_PLL_FIX)
616                 usb_amd_dev_put();
617
618         xhci_dbg(xhci, "// Disabling event ring interrupts\n");
619         temp = xhci_readl(xhci, &xhci->op_regs->status);
620         xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
621         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
622         xhci_writel(xhci, ER_IRQ_DISABLE(temp),
623                         &xhci->ir_set->irq_pending);
624         xhci_print_ir_set(xhci, 0);
625
626         xhci_dbg(xhci, "cleaning up memory\n");
627         xhci_mem_cleanup(xhci);
628         xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
629                     xhci_readl(xhci, &xhci->op_regs->status));
630 }
631
632 /*
633  * Shutdown HC (not bus-specific)
634  *
635  * This is called when the machine is rebooting or halting.  We assume that the
636  * machine will be powered off, and the HC's internal state will be reset.
637  * Don't bother to free memory.
638  *
639  * This will only ever be called with the main usb_hcd (the USB3 roothub).
640  */
641 void xhci_shutdown(struct usb_hcd *hcd)
642 {
643         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
644
645         spin_lock_irq(&xhci->lock);
646         xhci_halt(xhci);
647         spin_unlock_irq(&xhci->lock);
648
649         xhci_cleanup_msix(xhci);
650
651         xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
652                     xhci_readl(xhci, &xhci->op_regs->status));
653 }
654
655 #ifdef CONFIG_PM
656 static void xhci_save_registers(struct xhci_hcd *xhci)
657 {
658         xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
659         xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
660         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
661         xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
662         xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
663         xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
664         xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
665         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
666         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
667 }
668
669 static void xhci_restore_registers(struct xhci_hcd *xhci)
670 {
671         xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
672         xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
673         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
674         xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
675         xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
676         xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
677         xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
678         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
679 }
680
681 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
682 {
683         u64     val_64;
684
685         /* step 2: initialize command ring buffer */
686         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
687         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
688                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
689                                       xhci->cmd_ring->dequeue) &
690                  (u64) ~CMD_RING_RSVD_BITS) |
691                 xhci->cmd_ring->cycle_state;
692         xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
693                         (long unsigned long) val_64);
694         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
695 }
696
697 /*
698  * The whole command ring must be cleared to zero when we suspend the host.
699  *
700  * The host doesn't save the command ring pointer in the suspend well, so we
701  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
702  * aligned, because of the reserved bits in the command ring dequeue pointer
703  * register.  Therefore, we can't just set the dequeue pointer back in the
704  * middle of the ring (TRBs are 16-byte aligned).
705  */
706 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
707 {
708         struct xhci_ring *ring;
709         struct xhci_segment *seg;
710
711         ring = xhci->cmd_ring;
712         seg = ring->deq_seg;
713         do {
714                 memset(seg->trbs, 0, SEGMENT_SIZE);
715                 seg = seg->next;
716         } while (seg != ring->deq_seg);
717
718         /* Reset the software enqueue and dequeue pointers */
719         ring->deq_seg = ring->first_seg;
720         ring->dequeue = ring->first_seg->trbs;
721         ring->enq_seg = ring->deq_seg;
722         ring->enqueue = ring->dequeue;
723
724         /*
725          * Ring is now zeroed, so the HW should look for change of ownership
726          * when the cycle bit is set to 1.
727          */
728         ring->cycle_state = 1;
729
730         /*
731          * Reset the hardware dequeue pointer.
732          * Yes, this will need to be re-written after resume, but we're paranoid
733          * and want to make sure the hardware doesn't access bogus memory
734          * because, say, the BIOS or an SMI started the host without changing
735          * the command ring pointers.
736          */
737         xhci_set_cmd_ring_deq(xhci);
738 }
739
740 /*
741  * Stop HC (not bus-specific)
742  *
743  * This is called when the machine transition into S3/S4 mode.
744  *
745  */
746 int xhci_suspend(struct xhci_hcd *xhci)
747 {
748         int                     rc = 0;
749         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
750         u32                     command;
751
752         spin_lock_irq(&xhci->lock);
753         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
754         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
755         /* step 1: stop endpoint */
756         /* skipped assuming that port suspend has done */
757
758         /* step 2: clear Run/Stop bit */
759         command = xhci_readl(xhci, &xhci->op_regs->command);
760         command &= ~CMD_RUN;
761         xhci_writel(xhci, command, &xhci->op_regs->command);
762         if (handshake(xhci, &xhci->op_regs->status,
763                       STS_HALT, STS_HALT, 100*100)) {
764                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
765                 spin_unlock_irq(&xhci->lock);
766                 return -ETIMEDOUT;
767         }
768         xhci_clear_command_ring(xhci);
769
770         /* step 3: save registers */
771         xhci_save_registers(xhci);
772
773         /* step 4: set CSS flag */
774         command = xhci_readl(xhci, &xhci->op_regs->command);
775         command |= CMD_CSS;
776         xhci_writel(xhci, command, &xhci->op_regs->command);
777         if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) {
778                 xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n");
779                 spin_unlock_irq(&xhci->lock);
780                 return -ETIMEDOUT;
781         }
782         spin_unlock_irq(&xhci->lock);
783
784         /* step 5: remove core well power */
785         /* synchronize irq when using MSI-X */
786         xhci_msix_sync_irqs(xhci);
787
788         return rc;
789 }
790
791 /*
792  * start xHC (not bus-specific)
793  *
794  * This is called when the machine transition from S3/S4 mode.
795  *
796  */
797 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
798 {
799         u32                     command, temp = 0;
800         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
801         struct usb_hcd          *secondary_hcd;
802         int                     retval;
803
804         /* Wait a bit if either of the roothubs need to settle from the
805          * transition into bus suspend.
806          */
807         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
808                         time_before(jiffies,
809                                 xhci->bus_state[1].next_statechange))
810                 msleep(100);
811
812         spin_lock_irq(&xhci->lock);
813         if (xhci->quirks & XHCI_RESET_ON_RESUME)
814                 hibernated = true;
815
816         if (!hibernated) {
817                 /* step 1: restore register */
818                 xhci_restore_registers(xhci);
819                 /* step 2: initialize command ring buffer */
820                 xhci_set_cmd_ring_deq(xhci);
821                 /* step 3: restore state and start state*/
822                 /* step 3: set CRS flag */
823                 command = xhci_readl(xhci, &xhci->op_regs->command);
824                 command |= CMD_CRS;
825                 xhci_writel(xhci, command, &xhci->op_regs->command);
826                 if (handshake(xhci, &xhci->op_regs->status,
827                               STS_RESTORE, 0, 10*100)) {
828                         xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n");
829                         spin_unlock_irq(&xhci->lock);
830                         return -ETIMEDOUT;
831                 }
832                 temp = xhci_readl(xhci, &xhci->op_regs->status);
833         }
834
835         /* If restore operation fails, re-initialize the HC during resume */
836         if ((temp & STS_SRE) || hibernated) {
837                 /* Let the USB core know _both_ roothubs lost power. */
838                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
839                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
840
841                 xhci_dbg(xhci, "Stop HCD\n");
842                 xhci_halt(xhci);
843                 xhci_reset(xhci);
844                 spin_unlock_irq(&xhci->lock);
845                 xhci_cleanup_msix(xhci);
846
847 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
848                 /* Tell the event ring poll function not to reschedule */
849                 xhci->zombie = 1;
850                 del_timer_sync(&xhci->event_ring_timer);
851 #endif
852
853                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
854                 temp = xhci_readl(xhci, &xhci->op_regs->status);
855                 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
856                 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
857                 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
858                                 &xhci->ir_set->irq_pending);
859                 xhci_print_ir_set(xhci, 0);
860
861                 xhci_dbg(xhci, "cleaning up memory\n");
862                 xhci_mem_cleanup(xhci);
863                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
864                             xhci_readl(xhci, &xhci->op_regs->status));
865
866                 /* USB core calls the PCI reinit and start functions twice:
867                  * first with the primary HCD, and then with the secondary HCD.
868                  * If we don't do the same, the host will never be started.
869                  */
870                 if (!usb_hcd_is_primary_hcd(hcd))
871                         secondary_hcd = hcd;
872                 else
873                         secondary_hcd = xhci->shared_hcd;
874
875                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
876                 retval = xhci_init(hcd->primary_hcd);
877                 if (retval)
878                         return retval;
879                 xhci_dbg(xhci, "Start the primary HCD\n");
880                 retval = xhci_run(hcd->primary_hcd);
881                 if (retval)
882                         goto failed_restart;
883
884                 xhci_dbg(xhci, "Start the secondary HCD\n");
885                 retval = xhci_run(secondary_hcd);
886                 if (!retval) {
887                         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
888                         set_bit(HCD_FLAG_HW_ACCESSIBLE,
889                                         &xhci->shared_hcd->flags);
890                 }
891 failed_restart:
892                 hcd->state = HC_STATE_SUSPENDED;
893                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
894                 return retval;
895         }
896
897         /* step 4: set Run/Stop bit */
898         command = xhci_readl(xhci, &xhci->op_regs->command);
899         command |= CMD_RUN;
900         xhci_writel(xhci, command, &xhci->op_regs->command);
901         handshake(xhci, &xhci->op_regs->status, STS_HALT,
902                   0, 250 * 1000);
903
904         /* step 5: walk topology and initialize portsc,
905          * portpmsc and portli
906          */
907         /* this is done in bus_resume */
908
909         /* step 6: restart each of the previously
910          * Running endpoints by ringing their doorbells
911          */
912
913         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
914         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
915
916         spin_unlock_irq(&xhci->lock);
917         return 0;
918 }
919 #endif  /* CONFIG_PM */
920
921 /*-------------------------------------------------------------------------*/
922
923 /**
924  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
925  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
926  * value to right shift 1 for the bitmask.
927  *
928  * Index  = (epnum * 2) + direction - 1,
929  * where direction = 0 for OUT, 1 for IN.
930  * For control endpoints, the IN index is used (OUT index is unused), so
931  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
932  */
933 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
934 {
935         unsigned int index;
936         if (usb_endpoint_xfer_control(desc))
937                 index = (unsigned int) (usb_endpoint_num(desc)*2);
938         else
939                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
940                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
941         return index;
942 }
943
944 /* Find the flag for this endpoint (for use in the control context).  Use the
945  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
946  * bit 1, etc.
947  */
948 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
949 {
950         return 1 << (xhci_get_endpoint_index(desc) + 1);
951 }
952
953 /* Find the flag for this endpoint (for use in the control context).  Use the
954  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
955  * bit 1, etc.
956  */
957 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
958 {
959         return 1 << (ep_index + 1);
960 }
961
962 /* Compute the last valid endpoint context index.  Basically, this is the
963  * endpoint index plus one.  For slot contexts with more than valid endpoint,
964  * we find the most significant bit set in the added contexts flags.
965  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
966  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
967  */
968 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
969 {
970         return fls(added_ctxs) - 1;
971 }
972
973 /* Returns 1 if the arguments are OK;
974  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
975  */
976 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
977                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
978                 const char *func) {
979         struct xhci_hcd *xhci;
980         struct xhci_virt_device *virt_dev;
981
982         if (!hcd || (check_ep && !ep) || !udev) {
983                 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
984                                 func);
985                 return -EINVAL;
986         }
987         if (!udev->parent) {
988                 printk(KERN_DEBUG "xHCI %s called for root hub\n",
989                                 func);
990                 return 0;
991         }
992
993         xhci = hcd_to_xhci(hcd);
994         if (xhci->xhc_state & XHCI_STATE_HALTED)
995                 return -ENODEV;
996
997         if (check_virt_dev) {
998                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
999                         printk(KERN_DEBUG "xHCI %s called with unaddressed "
1000                                                 "device\n", func);
1001                         return -EINVAL;
1002                 }
1003
1004                 virt_dev = xhci->devs[udev->slot_id];
1005                 if (virt_dev->udev != udev) {
1006                         printk(KERN_DEBUG "xHCI %s called with udev and "
1007                                           "virt_dev does not match\n", func);
1008                         return -EINVAL;
1009                 }
1010         }
1011
1012         return 1;
1013 }
1014
1015 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1016                 struct usb_device *udev, struct xhci_command *command,
1017                 bool ctx_change, bool must_succeed);
1018
1019 /*
1020  * Full speed devices may have a max packet size greater than 8 bytes, but the
1021  * USB core doesn't know that until it reads the first 8 bytes of the
1022  * descriptor.  If the usb_device's max packet size changes after that point,
1023  * we need to issue an evaluate context command and wait on it.
1024  */
1025 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1026                 unsigned int ep_index, struct urb *urb)
1027 {
1028         struct xhci_container_ctx *in_ctx;
1029         struct xhci_container_ctx *out_ctx;
1030         struct xhci_input_control_ctx *ctrl_ctx;
1031         struct xhci_ep_ctx *ep_ctx;
1032         int max_packet_size;
1033         int hw_max_packet_size;
1034         int ret = 0;
1035
1036         out_ctx = xhci->devs[slot_id]->out_ctx;
1037         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1038         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1039         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1040         if (hw_max_packet_size != max_packet_size) {
1041                 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1042                 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1043                                 max_packet_size);
1044                 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1045                                 hw_max_packet_size);
1046                 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1047
1048                 /* Set up the modified control endpoint 0 */
1049                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1050                                 xhci->devs[slot_id]->out_ctx, ep_index);
1051                 in_ctx = xhci->devs[slot_id]->in_ctx;
1052                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1053                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1054                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1055
1056                 /* Set up the input context flags for the command */
1057                 /* FIXME: This won't work if a non-default control endpoint
1058                  * changes max packet sizes.
1059                  */
1060                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1061                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1062                 ctrl_ctx->drop_flags = 0;
1063
1064                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1065                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1066                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1067                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1068
1069                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1070                                 true, false);
1071
1072                 /* Clean up the input context for later use by bandwidth
1073                  * functions.
1074                  */
1075                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1076         }
1077         return ret;
1078 }
1079
1080 /*
1081  * non-error returns are a promise to giveback() the urb later
1082  * we drop ownership so next owner (or urb unlink) can get it
1083  */
1084 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1085 {
1086         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1087         struct xhci_td *buffer;
1088         unsigned long flags;
1089         int ret = 0;
1090         unsigned int slot_id, ep_index;
1091         struct urb_priv *urb_priv;
1092         int size, i;
1093
1094         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1095                                         true, true, __func__) <= 0)
1096                 return -EINVAL;
1097
1098         slot_id = urb->dev->slot_id;
1099         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1100
1101         if (!HCD_HW_ACCESSIBLE(hcd)) {
1102                 if (!in_interrupt())
1103                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1104                 ret = -ESHUTDOWN;
1105                 goto exit;
1106         }
1107
1108         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1109                 size = urb->number_of_packets;
1110         else
1111                 size = 1;
1112
1113         urb_priv = kzalloc(sizeof(struct urb_priv) +
1114                                   size * sizeof(struct xhci_td *), mem_flags);
1115         if (!urb_priv)
1116                 return -ENOMEM;
1117
1118         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1119         if (!buffer) {
1120                 kfree(urb_priv);
1121                 return -ENOMEM;
1122         }
1123
1124         for (i = 0; i < size; i++) {
1125                 urb_priv->td[i] = buffer;
1126                 buffer++;
1127         }
1128
1129         urb_priv->length = size;
1130         urb_priv->td_cnt = 0;
1131         urb->hcpriv = urb_priv;
1132
1133         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1134                 /* Check to see if the max packet size for the default control
1135                  * endpoint changed during FS device enumeration
1136                  */
1137                 if (urb->dev->speed == USB_SPEED_FULL) {
1138                         ret = xhci_check_maxpacket(xhci, slot_id,
1139                                         ep_index, urb);
1140                         if (ret < 0) {
1141                                 xhci_urb_free_priv(xhci, urb_priv);
1142                                 urb->hcpriv = NULL;
1143                                 return ret;
1144                         }
1145                 }
1146
1147                 /* We have a spinlock and interrupts disabled, so we must pass
1148                  * atomic context to this function, which may allocate memory.
1149                  */
1150                 spin_lock_irqsave(&xhci->lock, flags);
1151                 if (xhci->xhc_state & XHCI_STATE_DYING)
1152                         goto dying;
1153                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1154                                 slot_id, ep_index);
1155                 if (ret)
1156                         goto free_priv;
1157                 spin_unlock_irqrestore(&xhci->lock, flags);
1158         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1159                 spin_lock_irqsave(&xhci->lock, flags);
1160                 if (xhci->xhc_state & XHCI_STATE_DYING)
1161                         goto dying;
1162                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1163                                 EP_GETTING_STREAMS) {
1164                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1165                                         "is transitioning to using streams.\n");
1166                         ret = -EINVAL;
1167                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1168                                 EP_GETTING_NO_STREAMS) {
1169                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1170                                         "is transitioning to "
1171                                         "not having streams.\n");
1172                         ret = -EINVAL;
1173                 } else {
1174                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1175                                         slot_id, ep_index);
1176                 }
1177                 if (ret)
1178                         goto free_priv;
1179                 spin_unlock_irqrestore(&xhci->lock, flags);
1180         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1181                 spin_lock_irqsave(&xhci->lock, flags);
1182                 if (xhci->xhc_state & XHCI_STATE_DYING)
1183                         goto dying;
1184                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1185                                 slot_id, ep_index);
1186                 if (ret)
1187                         goto free_priv;
1188                 spin_unlock_irqrestore(&xhci->lock, flags);
1189         } else {
1190                 spin_lock_irqsave(&xhci->lock, flags);
1191                 if (xhci->xhc_state & XHCI_STATE_DYING)
1192                         goto dying;
1193                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1194                                 slot_id, ep_index);
1195                 if (ret)
1196                         goto free_priv;
1197                 spin_unlock_irqrestore(&xhci->lock, flags);
1198         }
1199 exit:
1200         return ret;
1201 dying:
1202         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1203                         "non-responsive xHCI host.\n",
1204                         urb->ep->desc.bEndpointAddress, urb);
1205         ret = -ESHUTDOWN;
1206 free_priv:
1207         xhci_urb_free_priv(xhci, urb_priv);
1208         urb->hcpriv = NULL;
1209         spin_unlock_irqrestore(&xhci->lock, flags);
1210         return ret;
1211 }
1212
1213 /* Get the right ring for the given URB.
1214  * If the endpoint supports streams, boundary check the URB's stream ID.
1215  * If the endpoint doesn't support streams, return the singular endpoint ring.
1216  */
1217 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1218                 struct urb *urb)
1219 {
1220         unsigned int slot_id;
1221         unsigned int ep_index;
1222         unsigned int stream_id;
1223         struct xhci_virt_ep *ep;
1224
1225         slot_id = urb->dev->slot_id;
1226         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1227         stream_id = urb->stream_id;
1228         ep = &xhci->devs[slot_id]->eps[ep_index];
1229         /* Common case: no streams */
1230         if (!(ep->ep_state & EP_HAS_STREAMS))
1231                 return ep->ring;
1232
1233         if (stream_id == 0) {
1234                 xhci_warn(xhci,
1235                                 "WARN: Slot ID %u, ep index %u has streams, "
1236                                 "but URB has no stream ID.\n",
1237                                 slot_id, ep_index);
1238                 return NULL;
1239         }
1240
1241         if (stream_id < ep->stream_info->num_streams)
1242                 return ep->stream_info->stream_rings[stream_id];
1243
1244         xhci_warn(xhci,
1245                         "WARN: Slot ID %u, ep index %u has "
1246                         "stream IDs 1 to %u allocated, "
1247                         "but stream ID %u is requested.\n",
1248                         slot_id, ep_index,
1249                         ep->stream_info->num_streams - 1,
1250                         stream_id);
1251         return NULL;
1252 }
1253
1254 /*
1255  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1256  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1257  * should pick up where it left off in the TD, unless a Set Transfer Ring
1258  * Dequeue Pointer is issued.
1259  *
1260  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1261  * the ring.  Since the ring is a contiguous structure, they can't be physically
1262  * removed.  Instead, there are two options:
1263  *
1264  *  1) If the HC is in the middle of processing the URB to be canceled, we
1265  *     simply move the ring's dequeue pointer past those TRBs using the Set
1266  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1267  *     when drivers timeout on the last submitted URB and attempt to cancel.
1268  *
1269  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1270  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1271  *     HC will need to invalidate the any TRBs it has cached after the stop
1272  *     endpoint command, as noted in the xHCI 0.95 errata.
1273  *
1274  *  3) The TD may have completed by the time the Stop Endpoint Command
1275  *     completes, so software needs to handle that case too.
1276  *
1277  * This function should protect against the TD enqueueing code ringing the
1278  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1279  * It also needs to account for multiple cancellations on happening at the same
1280  * time for the same endpoint.
1281  *
1282  * Note that this function can be called in any context, or so says
1283  * usb_hcd_unlink_urb()
1284  */
1285 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1286 {
1287         unsigned long flags;
1288         int ret, i;
1289         u32 temp;
1290         struct xhci_hcd *xhci;
1291         struct urb_priv *urb_priv;
1292         struct xhci_td *td;
1293         unsigned int ep_index;
1294         struct xhci_ring *ep_ring;
1295         struct xhci_virt_ep *ep;
1296
1297         xhci = hcd_to_xhci(hcd);
1298         spin_lock_irqsave(&xhci->lock, flags);
1299         /* Make sure the URB hasn't completed or been unlinked already */
1300         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1301         if (ret || !urb->hcpriv)
1302                 goto done;
1303         temp = xhci_readl(xhci, &xhci->op_regs->status);
1304         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1305                 xhci_dbg(xhci, "HW died, freeing TD.\n");
1306                 urb_priv = urb->hcpriv;
1307                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1308                         td = urb_priv->td[i];
1309                         if (!list_empty(&td->td_list))
1310                                 list_del_init(&td->td_list);
1311                         if (!list_empty(&td->cancelled_td_list))
1312                                 list_del_init(&td->cancelled_td_list);
1313                 }
1314
1315                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1316                 spin_unlock_irqrestore(&xhci->lock, flags);
1317                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1318                 xhci_urb_free_priv(xhci, urb_priv);
1319                 return ret;
1320         }
1321         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1322                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1323                 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1324                                 "non-responsive xHCI host.\n",
1325                                 urb->ep->desc.bEndpointAddress, urb);
1326                 /* Let the stop endpoint command watchdog timer (which set this
1327                  * state) finish cleaning up the endpoint TD lists.  We must
1328                  * have caught it in the middle of dropping a lock and giving
1329                  * back an URB.
1330                  */
1331                 goto done;
1332         }
1333
1334         xhci_dbg(xhci, "Cancel URB %p\n", urb);
1335         xhci_dbg(xhci, "Event ring:\n");
1336         xhci_debug_ring(xhci, xhci->event_ring);
1337         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1338         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1339         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1340         if (!ep_ring) {
1341                 ret = -EINVAL;
1342                 goto done;
1343         }
1344
1345         xhci_dbg(xhci, "Endpoint ring:\n");
1346         xhci_debug_ring(xhci, ep_ring);
1347
1348         urb_priv = urb->hcpriv;
1349
1350         for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1351                 td = urb_priv->td[i];
1352                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1353         }
1354
1355         /* Queue a stop endpoint command, but only if this is
1356          * the first cancellation to be handled.
1357          */
1358         if (!(ep->ep_state & EP_HALT_PENDING)) {
1359                 ep->ep_state |= EP_HALT_PENDING;
1360                 ep->stop_cmds_pending++;
1361                 ep->stop_cmd_timer.expires = jiffies +
1362                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1363                 add_timer(&ep->stop_cmd_timer);
1364                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1365                 xhci_ring_cmd_db(xhci);
1366         }
1367 done:
1368         spin_unlock_irqrestore(&xhci->lock, flags);
1369         return ret;
1370 }
1371
1372 /* Drop an endpoint from a new bandwidth configuration for this device.
1373  * Only one call to this function is allowed per endpoint before
1374  * check_bandwidth() or reset_bandwidth() must be called.
1375  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1376  * add the endpoint to the schedule with possibly new parameters denoted by a
1377  * different endpoint descriptor in usb_host_endpoint.
1378  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1379  * not allowed.
1380  *
1381  * The USB core will not allow URBs to be queued to an endpoint that is being
1382  * disabled, so there's no need for mutual exclusion to protect
1383  * the xhci->devs[slot_id] structure.
1384  */
1385 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1386                 struct usb_host_endpoint *ep)
1387 {
1388         struct xhci_hcd *xhci;
1389         struct xhci_container_ctx *in_ctx, *out_ctx;
1390         struct xhci_input_control_ctx *ctrl_ctx;
1391         struct xhci_slot_ctx *slot_ctx;
1392         unsigned int last_ctx;
1393         unsigned int ep_index;
1394         struct xhci_ep_ctx *ep_ctx;
1395         u32 drop_flag;
1396         u32 new_add_flags, new_drop_flags, new_slot_info;
1397         int ret;
1398
1399         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1400         if (ret <= 0)
1401                 return ret;
1402         xhci = hcd_to_xhci(hcd);
1403         if (xhci->xhc_state & XHCI_STATE_DYING)
1404                 return -ENODEV;
1405
1406         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1407         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1408         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1409                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1410                                 __func__, drop_flag);
1411                 return 0;
1412         }
1413
1414         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1415         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1416         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1417         ep_index = xhci_get_endpoint_index(&ep->desc);
1418         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1419         /* If the HC already knows the endpoint is disabled,
1420          * or the HCD has noted it is disabled, ignore this request
1421          */
1422         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1423              cpu_to_le32(EP_STATE_DISABLED)) ||
1424             le32_to_cpu(ctrl_ctx->drop_flags) &
1425             xhci_get_endpoint_flag(&ep->desc)) {
1426                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1427                                 __func__, ep);
1428                 return 0;
1429         }
1430
1431         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1432         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1433
1434         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1435         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1436
1437         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1438         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1439         /* Update the last valid endpoint context, if we deleted the last one */
1440         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1441             LAST_CTX(last_ctx)) {
1442                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1443                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1444         }
1445         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1446
1447         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1448
1449         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1450                         (unsigned int) ep->desc.bEndpointAddress,
1451                         udev->slot_id,
1452                         (unsigned int) new_drop_flags,
1453                         (unsigned int) new_add_flags,
1454                         (unsigned int) new_slot_info);
1455         return 0;
1456 }
1457
1458 /* Add an endpoint to a new possible bandwidth configuration for this device.
1459  * Only one call to this function is allowed per endpoint before
1460  * check_bandwidth() or reset_bandwidth() must be called.
1461  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1462  * add the endpoint to the schedule with possibly new parameters denoted by a
1463  * different endpoint descriptor in usb_host_endpoint.
1464  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1465  * not allowed.
1466  *
1467  * The USB core will not allow URBs to be queued to an endpoint until the
1468  * configuration or alt setting is installed in the device, so there's no need
1469  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1470  */
1471 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1472                 struct usb_host_endpoint *ep)
1473 {
1474         struct xhci_hcd *xhci;
1475         struct xhci_container_ctx *in_ctx, *out_ctx;
1476         unsigned int ep_index;
1477         struct xhci_ep_ctx *ep_ctx;
1478         struct xhci_slot_ctx *slot_ctx;
1479         struct xhci_input_control_ctx *ctrl_ctx;
1480         u32 added_ctxs;
1481         unsigned int last_ctx;
1482         u32 new_add_flags, new_drop_flags, new_slot_info;
1483         struct xhci_virt_device *virt_dev;
1484         int ret = 0;
1485
1486         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1487         if (ret <= 0) {
1488                 /* So we won't queue a reset ep command for a root hub */
1489                 ep->hcpriv = NULL;
1490                 return ret;
1491         }
1492         xhci = hcd_to_xhci(hcd);
1493         if (xhci->xhc_state & XHCI_STATE_DYING)
1494                 return -ENODEV;
1495
1496         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1497         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1498         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1499                 /* FIXME when we have to issue an evaluate endpoint command to
1500                  * deal with ep0 max packet size changing once we get the
1501                  * descriptors
1502                  */
1503                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1504                                 __func__, added_ctxs);
1505                 return 0;
1506         }
1507
1508         virt_dev = xhci->devs[udev->slot_id];
1509         in_ctx = virt_dev->in_ctx;
1510         out_ctx = virt_dev->out_ctx;
1511         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1512         ep_index = xhci_get_endpoint_index(&ep->desc);
1513         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1514
1515         /* If this endpoint is already in use, and the upper layers are trying
1516          * to add it again without dropping it, reject the addition.
1517          */
1518         if (virt_dev->eps[ep_index].ring &&
1519                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1520                                 xhci_get_endpoint_flag(&ep->desc))) {
1521                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1522                                 "without dropping it.\n",
1523                                 (unsigned int) ep->desc.bEndpointAddress);
1524                 return -EINVAL;
1525         }
1526
1527         /* If the HCD has already noted the endpoint is enabled,
1528          * ignore this request.
1529          */
1530         if (le32_to_cpu(ctrl_ctx->add_flags) &
1531             xhci_get_endpoint_flag(&ep->desc)) {
1532                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1533                                 __func__, ep);
1534                 return 0;
1535         }
1536
1537         /*
1538          * Configuration and alternate setting changes must be done in
1539          * process context, not interrupt context (or so documenation
1540          * for usb_set_interface() and usb_set_configuration() claim).
1541          */
1542         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1543                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1544                                 __func__, ep->desc.bEndpointAddress);
1545                 return -ENOMEM;
1546         }
1547
1548         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1549         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1550
1551         /* If xhci_endpoint_disable() was called for this endpoint, but the
1552          * xHC hasn't been notified yet through the check_bandwidth() call,
1553          * this re-adds a new state for the endpoint from the new endpoint
1554          * descriptors.  We must drop and re-add this endpoint, so we leave the
1555          * drop flags alone.
1556          */
1557         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1558
1559         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1560         /* Update the last valid endpoint context, if we just added one past */
1561         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1562             LAST_CTX(last_ctx)) {
1563                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1564                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1565         }
1566         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1567
1568         /* Store the usb_device pointer for later use */
1569         ep->hcpriv = udev;
1570
1571         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1572                         (unsigned int) ep->desc.bEndpointAddress,
1573                         udev->slot_id,
1574                         (unsigned int) new_drop_flags,
1575                         (unsigned int) new_add_flags,
1576                         (unsigned int) new_slot_info);
1577         return 0;
1578 }
1579
1580 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1581 {
1582         struct xhci_input_control_ctx *ctrl_ctx;
1583         struct xhci_ep_ctx *ep_ctx;
1584         struct xhci_slot_ctx *slot_ctx;
1585         int i;
1586
1587         /* When a device's add flag and drop flag are zero, any subsequent
1588          * configure endpoint command will leave that endpoint's state
1589          * untouched.  Make sure we don't leave any old state in the input
1590          * endpoint contexts.
1591          */
1592         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1593         ctrl_ctx->drop_flags = 0;
1594         ctrl_ctx->add_flags = 0;
1595         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1596         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1597         /* Endpoint 0 is always valid */
1598         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1599         for (i = 1; i < 31; ++i) {
1600                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1601                 ep_ctx->ep_info = 0;
1602                 ep_ctx->ep_info2 = 0;
1603                 ep_ctx->deq = 0;
1604                 ep_ctx->tx_info = 0;
1605         }
1606 }
1607
1608 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1609                 struct usb_device *udev, u32 *cmd_status)
1610 {
1611         int ret;
1612
1613         switch (*cmd_status) {
1614         case COMP_ENOMEM:
1615                 dev_warn(&udev->dev, "Not enough host controller resources "
1616                                 "for new device state.\n");
1617                 ret = -ENOMEM;
1618                 /* FIXME: can we allocate more resources for the HC? */
1619                 break;
1620         case COMP_BW_ERR:
1621                 dev_warn(&udev->dev, "Not enough bandwidth "
1622                                 "for new device state.\n");
1623                 ret = -ENOSPC;
1624                 /* FIXME: can we go back to the old state? */
1625                 break;
1626         case COMP_TRB_ERR:
1627                 /* the HCD set up something wrong */
1628                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1629                                 "add flag = 1, "
1630                                 "and endpoint is not disabled.\n");
1631                 ret = -EINVAL;
1632                 break;
1633         case COMP_DEV_ERR:
1634                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1635                                 "configure command.\n");
1636                 ret = -ENODEV;
1637                 break;
1638         case COMP_SUCCESS:
1639                 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1640                 ret = 0;
1641                 break;
1642         default:
1643                 xhci_err(xhci, "ERROR: unexpected command completion "
1644                                 "code 0x%x.\n", *cmd_status);
1645                 ret = -EINVAL;
1646                 break;
1647         }
1648         return ret;
1649 }
1650
1651 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1652                 struct usb_device *udev, u32 *cmd_status)
1653 {
1654         int ret;
1655         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1656
1657         switch (*cmd_status) {
1658         case COMP_EINVAL:
1659                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1660                                 "context command.\n");
1661                 ret = -EINVAL;
1662                 break;
1663         case COMP_EBADSLT:
1664                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1665                                 "evaluate context command.\n");
1666         case COMP_CTX_STATE:
1667                 dev_warn(&udev->dev, "WARN: invalid context state for "
1668                                 "evaluate context command.\n");
1669                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1670                 ret = -EINVAL;
1671                 break;
1672         case COMP_DEV_ERR:
1673                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1674                                 "context command.\n");
1675                 ret = -ENODEV;
1676                 break;
1677         case COMP_MEL_ERR:
1678                 /* Max Exit Latency too large error */
1679                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1680                 ret = -EINVAL;
1681                 break;
1682         case COMP_SUCCESS:
1683                 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1684                 ret = 0;
1685                 break;
1686         default:
1687                 xhci_err(xhci, "ERROR: unexpected command completion "
1688                                 "code 0x%x.\n", *cmd_status);
1689                 ret = -EINVAL;
1690                 break;
1691         }
1692         return ret;
1693 }
1694
1695 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1696                 struct xhci_container_ctx *in_ctx)
1697 {
1698         struct xhci_input_control_ctx *ctrl_ctx;
1699         u32 valid_add_flags;
1700         u32 valid_drop_flags;
1701
1702         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1703         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1704          * (bit 1).  The default control endpoint is added during the Address
1705          * Device command and is never removed until the slot is disabled.
1706          */
1707         valid_add_flags = ctrl_ctx->add_flags >> 2;
1708         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1709
1710         /* Use hweight32 to count the number of ones in the add flags, or
1711          * number of endpoints added.  Don't count endpoints that are changed
1712          * (both added and dropped).
1713          */
1714         return hweight32(valid_add_flags) -
1715                 hweight32(valid_add_flags & valid_drop_flags);
1716 }
1717
1718 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1719                 struct xhci_container_ctx *in_ctx)
1720 {
1721         struct xhci_input_control_ctx *ctrl_ctx;
1722         u32 valid_add_flags;
1723         u32 valid_drop_flags;
1724
1725         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1726         valid_add_flags = ctrl_ctx->add_flags >> 2;
1727         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1728
1729         return hweight32(valid_drop_flags) -
1730                 hweight32(valid_add_flags & valid_drop_flags);
1731 }
1732
1733 /*
1734  * We need to reserve the new number of endpoints before the configure endpoint
1735  * command completes.  We can't subtract the dropped endpoints from the number
1736  * of active endpoints until the command completes because we can oversubscribe
1737  * the host in this case:
1738  *
1739  *  - the first configure endpoint command drops more endpoints than it adds
1740  *  - a second configure endpoint command that adds more endpoints is queued
1741  *  - the first configure endpoint command fails, so the config is unchanged
1742  *  - the second command may succeed, even though there isn't enough resources
1743  *
1744  * Must be called with xhci->lock held.
1745  */
1746 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1747                 struct xhci_container_ctx *in_ctx)
1748 {
1749         u32 added_eps;
1750
1751         added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1752         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1753                 xhci_dbg(xhci, "Not enough ep ctxs: "
1754                                 "%u active, need to add %u, limit is %u.\n",
1755                                 xhci->num_active_eps, added_eps,
1756                                 xhci->limit_active_eps);
1757                 return -ENOMEM;
1758         }
1759         xhci->num_active_eps += added_eps;
1760         xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1761                         xhci->num_active_eps);
1762         return 0;
1763 }
1764
1765 /*
1766  * The configure endpoint was failed by the xHC for some other reason, so we
1767  * need to revert the resources that failed configuration would have used.
1768  *
1769  * Must be called with xhci->lock held.
1770  */
1771 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1772                 struct xhci_container_ctx *in_ctx)
1773 {
1774         u32 num_failed_eps;
1775
1776         num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1777         xhci->num_active_eps -= num_failed_eps;
1778         xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1779                         num_failed_eps,
1780                         xhci->num_active_eps);
1781 }
1782
1783 /*
1784  * Now that the command has completed, clean up the active endpoint count by
1785  * subtracting out the endpoints that were dropped (but not changed).
1786  *
1787  * Must be called with xhci->lock held.
1788  */
1789 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1790                 struct xhci_container_ctx *in_ctx)
1791 {
1792         u32 num_dropped_eps;
1793
1794         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1795         xhci->num_active_eps -= num_dropped_eps;
1796         if (num_dropped_eps)
1797                 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1798                                 num_dropped_eps,
1799                                 xhci->num_active_eps);
1800 }
1801
1802 unsigned int xhci_get_block_size(struct usb_device *udev)
1803 {
1804         switch (udev->speed) {
1805         case USB_SPEED_LOW:
1806         case USB_SPEED_FULL:
1807                 return FS_BLOCK;
1808         case USB_SPEED_HIGH:
1809                 return HS_BLOCK;
1810         case USB_SPEED_SUPER:
1811                 return SS_BLOCK;
1812         case USB_SPEED_UNKNOWN:
1813         case USB_SPEED_WIRELESS:
1814         default:
1815                 /* Should never happen */
1816                 return 1;
1817         }
1818 }
1819
1820 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1821 {
1822         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1823                 return LS_OVERHEAD;
1824         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1825                 return FS_OVERHEAD;
1826         return HS_OVERHEAD;
1827 }
1828
1829 /* If we are changing a LS/FS device under a HS hub,
1830  * make sure (if we are activating a new TT) that the HS bus has enough
1831  * bandwidth for this new TT.
1832  */
1833 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1834                 struct xhci_virt_device *virt_dev,
1835                 int old_active_eps)
1836 {
1837         struct xhci_interval_bw_table *bw_table;
1838         struct xhci_tt_bw_info *tt_info;
1839
1840         /* Find the bandwidth table for the root port this TT is attached to. */
1841         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1842         tt_info = virt_dev->tt_info;
1843         /* If this TT already had active endpoints, the bandwidth for this TT
1844          * has already been added.  Removing all periodic endpoints (and thus
1845          * making the TT enactive) will only decrease the bandwidth used.
1846          */
1847         if (old_active_eps)
1848                 return 0;
1849         if (old_active_eps == 0 && tt_info->active_eps != 0) {
1850                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
1851                         return -ENOMEM;
1852                 return 0;
1853         }
1854         /* Not sure why we would have no new active endpoints...
1855          *
1856          * Maybe because of an Evaluate Context change for a hub update or a
1857          * control endpoint 0 max packet size change?
1858          * FIXME: skip the bandwidth calculation in that case.
1859          */
1860         return 0;
1861 }
1862
1863 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
1864                 struct xhci_virt_device *virt_dev)
1865 {
1866         unsigned int bw_reserved;
1867
1868         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
1869         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
1870                 return -ENOMEM;
1871
1872         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
1873         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
1874                 return -ENOMEM;
1875
1876         return 0;
1877 }
1878
1879 /*
1880  * This algorithm is a very conservative estimate of the worst-case scheduling
1881  * scenario for any one interval.  The hardware dynamically schedules the
1882  * packets, so we can't tell which microframe could be the limiting factor in
1883  * the bandwidth scheduling.  This only takes into account periodic endpoints.
1884  *
1885  * Obviously, we can't solve an NP complete problem to find the minimum worst
1886  * case scenario.  Instead, we come up with an estimate that is no less than
1887  * the worst case bandwidth used for any one microframe, but may be an
1888  * over-estimate.
1889  *
1890  * We walk the requirements for each endpoint by interval, starting with the
1891  * smallest interval, and place packets in the schedule where there is only one
1892  * possible way to schedule packets for that interval.  In order to simplify
1893  * this algorithm, we record the largest max packet size for each interval, and
1894  * assume all packets will be that size.
1895  *
1896  * For interval 0, we obviously must schedule all packets for each interval.
1897  * The bandwidth for interval 0 is just the amount of data to be transmitted
1898  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
1899  * the number of packets).
1900  *
1901  * For interval 1, we have two possible microframes to schedule those packets
1902  * in.  For this algorithm, if we can schedule the same number of packets for
1903  * each possible scheduling opportunity (each microframe), we will do so.  The
1904  * remaining number of packets will be saved to be transmitted in the gaps in
1905  * the next interval's scheduling sequence.
1906  *
1907  * As we move those remaining packets to be scheduled with interval 2 packets,
1908  * we have to double the number of remaining packets to transmit.  This is
1909  * because the intervals are actually powers of 2, and we would be transmitting
1910  * the previous interval's packets twice in this interval.  We also have to be
1911  * sure that when we look at the largest max packet size for this interval, we
1912  * also look at the largest max packet size for the remaining packets and take
1913  * the greater of the two.
1914  *
1915  * The algorithm continues to evenly distribute packets in each scheduling
1916  * opportunity, and push the remaining packets out, until we get to the last
1917  * interval.  Then those packets and their associated overhead are just added
1918  * to the bandwidth used.
1919  */
1920 static int xhci_check_bw_table(struct xhci_hcd *xhci,
1921                 struct xhci_virt_device *virt_dev,
1922                 int old_active_eps)
1923 {
1924         unsigned int bw_reserved;
1925         unsigned int max_bandwidth;
1926         unsigned int bw_used;
1927         unsigned int block_size;
1928         struct xhci_interval_bw_table *bw_table;
1929         unsigned int packet_size = 0;
1930         unsigned int overhead = 0;
1931         unsigned int packets_transmitted = 0;
1932         unsigned int packets_remaining = 0;
1933         unsigned int i;
1934
1935         if (virt_dev->udev->speed == USB_SPEED_SUPER)
1936                 return xhci_check_ss_bw(xhci, virt_dev);
1937
1938         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
1939                 max_bandwidth = HS_BW_LIMIT;
1940                 /* Convert percent of bus BW reserved to blocks reserved */
1941                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
1942         } else {
1943                 max_bandwidth = FS_BW_LIMIT;
1944                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
1945         }
1946
1947         bw_table = virt_dev->bw_table;
1948         /* We need to translate the max packet size and max ESIT payloads into
1949          * the units the hardware uses.
1950          */
1951         block_size = xhci_get_block_size(virt_dev->udev);
1952
1953         /* If we are manipulating a LS/FS device under a HS hub, double check
1954          * that the HS bus has enough bandwidth if we are activing a new TT.
1955          */
1956         if (virt_dev->tt_info) {
1957                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1958                                 virt_dev->real_port);
1959                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
1960                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
1961                                         "newly activated TT.\n");
1962                         return -ENOMEM;
1963                 }
1964                 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
1965                                 virt_dev->tt_info->slot_id,
1966                                 virt_dev->tt_info->ttport);
1967         } else {
1968                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1969                                 virt_dev->real_port);
1970         }
1971
1972         /* Add in how much bandwidth will be used for interval zero, or the
1973          * rounded max ESIT payload + number of packets * largest overhead.
1974          */
1975         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
1976                 bw_table->interval_bw[0].num_packets *
1977                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
1978
1979         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
1980                 unsigned int bw_added;
1981                 unsigned int largest_mps;
1982                 unsigned int interval_overhead;
1983
1984                 /*
1985                  * How many packets could we transmit in this interval?
1986                  * If packets didn't fit in the previous interval, we will need
1987                  * to transmit that many packets twice within this interval.
1988                  */
1989                 packets_remaining = 2 * packets_remaining +
1990                         bw_table->interval_bw[i].num_packets;
1991
1992                 /* Find the largest max packet size of this or the previous
1993                  * interval.
1994                  */
1995                 if (list_empty(&bw_table->interval_bw[i].endpoints))
1996                         largest_mps = 0;
1997                 else {
1998                         struct xhci_virt_ep *virt_ep;
1999                         struct list_head *ep_entry;
2000
2001                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2002                         virt_ep = list_entry(ep_entry,
2003                                         struct xhci_virt_ep, bw_endpoint_list);
2004                         /* Convert to blocks, rounding up */
2005                         largest_mps = DIV_ROUND_UP(
2006                                         virt_ep->bw_info.max_packet_size,
2007                                         block_size);
2008                 }
2009                 if (largest_mps > packet_size)
2010                         packet_size = largest_mps;
2011
2012                 /* Use the larger overhead of this or the previous interval. */
2013                 interval_overhead = xhci_get_largest_overhead(
2014                                 &bw_table->interval_bw[i]);
2015                 if (interval_overhead > overhead)
2016                         overhead = interval_overhead;
2017
2018                 /* How many packets can we evenly distribute across
2019                  * (1 << (i + 1)) possible scheduling opportunities?
2020                  */
2021                 packets_transmitted = packets_remaining >> (i + 1);
2022
2023                 /* Add in the bandwidth used for those scheduled packets */
2024                 bw_added = packets_transmitted * (overhead + packet_size);
2025
2026                 /* How many packets do we have remaining to transmit? */
2027                 packets_remaining = packets_remaining % (1 << (i + 1));
2028
2029                 /* What largest max packet size should those packets have? */
2030                 /* If we've transmitted all packets, don't carry over the
2031                  * largest packet size.
2032                  */
2033                 if (packets_remaining == 0) {
2034                         packet_size = 0;
2035                         overhead = 0;
2036                 } else if (packets_transmitted > 0) {
2037                         /* Otherwise if we do have remaining packets, and we've
2038                          * scheduled some packets in this interval, take the
2039                          * largest max packet size from endpoints with this
2040                          * interval.
2041                          */
2042                         packet_size = largest_mps;
2043                         overhead = interval_overhead;
2044                 }
2045                 /* Otherwise carry over packet_size and overhead from the last
2046                  * time we had a remainder.
2047                  */
2048                 bw_used += bw_added;
2049                 if (bw_used > max_bandwidth) {
2050                         xhci_warn(xhci, "Not enough bandwidth. "
2051                                         "Proposed: %u, Max: %u\n",
2052                                 bw_used, max_bandwidth);
2053                         return -ENOMEM;
2054                 }
2055         }
2056         /*
2057          * Ok, we know we have some packets left over after even-handedly
2058          * scheduling interval 15.  We don't know which microframes they will
2059          * fit into, so we over-schedule and say they will be scheduled every
2060          * microframe.
2061          */
2062         if (packets_remaining > 0)
2063                 bw_used += overhead + packet_size;
2064
2065         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2066                 unsigned int port_index = virt_dev->real_port - 1;
2067
2068                 /* OK, we're manipulating a HS device attached to a
2069                  * root port bandwidth domain.  Include the number of active TTs
2070                  * in the bandwidth used.
2071                  */
2072                 bw_used += TT_HS_OVERHEAD *
2073                         xhci->rh_bw[port_index].num_active_tts;
2074         }
2075
2076         xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2077                 "Available: %u " "percent\n",
2078                 bw_used, max_bandwidth, bw_reserved,
2079                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2080                 max_bandwidth);
2081
2082         bw_used += bw_reserved;
2083         if (bw_used > max_bandwidth) {
2084                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2085                                 bw_used, max_bandwidth);
2086                 return -ENOMEM;
2087         }
2088
2089         bw_table->bw_used = bw_used;
2090         return 0;
2091 }
2092
2093 static bool xhci_is_async_ep(unsigned int ep_type)
2094 {
2095         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2096                                         ep_type != ISOC_IN_EP &&
2097                                         ep_type != INT_IN_EP);
2098 }
2099
2100 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2101 {
2102         return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2103 }
2104
2105 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2106 {
2107         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2108
2109         if (ep_bw->ep_interval == 0)
2110                 return SS_OVERHEAD_BURST +
2111                         (ep_bw->mult * ep_bw->num_packets *
2112                                         (SS_OVERHEAD + mps));
2113         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2114                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2115                                 1 << ep_bw->ep_interval);
2116
2117 }
2118
2119 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2120                 struct xhci_bw_info *ep_bw,
2121                 struct xhci_interval_bw_table *bw_table,
2122                 struct usb_device *udev,
2123                 struct xhci_virt_ep *virt_ep,
2124                 struct xhci_tt_bw_info *tt_info)
2125 {
2126         struct xhci_interval_bw *interval_bw;
2127         int normalized_interval;
2128
2129         if (xhci_is_async_ep(ep_bw->type))
2130                 return;
2131
2132         if (udev->speed == USB_SPEED_SUPER) {
2133                 if (xhci_is_sync_in_ep(ep_bw->type))
2134                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2135                                 xhci_get_ss_bw_consumed(ep_bw);
2136                 else
2137                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2138                                 xhci_get_ss_bw_consumed(ep_bw);
2139                 return;
2140         }
2141
2142         /* SuperSpeed endpoints never get added to intervals in the table, so
2143          * this check is only valid for HS/FS/LS devices.
2144          */
2145         if (list_empty(&virt_ep->bw_endpoint_list))
2146                 return;
2147         /* For LS/FS devices, we need to translate the interval expressed in
2148          * microframes to frames.
2149          */
2150         if (udev->speed == USB_SPEED_HIGH)
2151                 normalized_interval = ep_bw->ep_interval;
2152         else
2153                 normalized_interval = ep_bw->ep_interval - 3;
2154
2155         if (normalized_interval == 0)
2156                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2157         interval_bw = &bw_table->interval_bw[normalized_interval];
2158         interval_bw->num_packets -= ep_bw->num_packets;
2159         switch (udev->speed) {
2160         case USB_SPEED_LOW:
2161                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2162                 break;
2163         case USB_SPEED_FULL:
2164                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2165                 break;
2166         case USB_SPEED_HIGH:
2167                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2168                 break;
2169         case USB_SPEED_SUPER:
2170         case USB_SPEED_UNKNOWN:
2171         case USB_SPEED_WIRELESS:
2172                 /* Should never happen because only LS/FS/HS endpoints will get
2173                  * added to the endpoint list.
2174                  */
2175                 return;
2176         }
2177         if (tt_info)
2178                 tt_info->active_eps -= 1;
2179         list_del_init(&virt_ep->bw_endpoint_list);
2180 }
2181
2182 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2183                 struct xhci_bw_info *ep_bw,
2184                 struct xhci_interval_bw_table *bw_table,
2185                 struct usb_device *udev,
2186                 struct xhci_virt_ep *virt_ep,
2187                 struct xhci_tt_bw_info *tt_info)
2188 {
2189         struct xhci_interval_bw *interval_bw;
2190         struct xhci_virt_ep *smaller_ep;
2191         int normalized_interval;
2192
2193         if (xhci_is_async_ep(ep_bw->type))
2194                 return;
2195
2196         if (udev->speed == USB_SPEED_SUPER) {
2197                 if (xhci_is_sync_in_ep(ep_bw->type))
2198                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2199                                 xhci_get_ss_bw_consumed(ep_bw);
2200                 else
2201                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2202                                 xhci_get_ss_bw_consumed(ep_bw);
2203                 return;
2204         }
2205
2206         /* For LS/FS devices, we need to translate the interval expressed in
2207          * microframes to frames.
2208          */
2209         if (udev->speed == USB_SPEED_HIGH)
2210                 normalized_interval = ep_bw->ep_interval;
2211         else
2212                 normalized_interval = ep_bw->ep_interval - 3;
2213
2214         if (normalized_interval == 0)
2215                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2216         interval_bw = &bw_table->interval_bw[normalized_interval];
2217         interval_bw->num_packets += ep_bw->num_packets;
2218         switch (udev->speed) {
2219         case USB_SPEED_LOW:
2220                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2221                 break;
2222         case USB_SPEED_FULL:
2223                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2224                 break;
2225         case USB_SPEED_HIGH:
2226                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2227                 break;
2228         case USB_SPEED_SUPER:
2229         case USB_SPEED_UNKNOWN:
2230         case USB_SPEED_WIRELESS:
2231                 /* Should never happen because only LS/FS/HS endpoints will get
2232                  * added to the endpoint list.
2233                  */
2234                 return;
2235         }
2236
2237         if (tt_info)
2238                 tt_info->active_eps += 1;
2239         /* Insert the endpoint into the list, largest max packet size first. */
2240         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2241                         bw_endpoint_list) {
2242                 if (ep_bw->max_packet_size >=
2243                                 smaller_ep->bw_info.max_packet_size) {
2244                         /* Add the new ep before the smaller endpoint */
2245                         list_add_tail(&virt_ep->bw_endpoint_list,
2246                                         &smaller_ep->bw_endpoint_list);
2247                         return;
2248                 }
2249         }
2250         /* Add the new endpoint at the end of the list. */
2251         list_add_tail(&virt_ep->bw_endpoint_list,
2252                         &interval_bw->endpoints);
2253 }
2254
2255 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2256                 struct xhci_virt_device *virt_dev,
2257                 int old_active_eps)
2258 {
2259         struct xhci_root_port_bw_info *rh_bw_info;
2260         if (!virt_dev->tt_info)
2261                 return;
2262
2263         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2264         if (old_active_eps == 0 &&
2265                                 virt_dev->tt_info->active_eps != 0) {
2266                 rh_bw_info->num_active_tts += 1;
2267                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2268         } else if (old_active_eps != 0 &&
2269                                 virt_dev->tt_info->active_eps == 0) {
2270                 rh_bw_info->num_active_tts -= 1;
2271                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2272         }
2273 }
2274
2275 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2276                 struct xhci_virt_device *virt_dev,
2277                 struct xhci_container_ctx *in_ctx)
2278 {
2279         struct xhci_bw_info ep_bw_info[31];
2280         int i;
2281         struct xhci_input_control_ctx *ctrl_ctx;
2282         int old_active_eps = 0;
2283
2284         if (virt_dev->tt_info)
2285                 old_active_eps = virt_dev->tt_info->active_eps;
2286
2287         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2288
2289         for (i = 0; i < 31; i++) {
2290                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2291                         continue;
2292
2293                 /* Make a copy of the BW info in case we need to revert this */
2294                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2295                                 sizeof(ep_bw_info[i]));
2296                 /* Drop the endpoint from the interval table if the endpoint is
2297                  * being dropped or changed.
2298                  */
2299                 if (EP_IS_DROPPED(ctrl_ctx, i))
2300                         xhci_drop_ep_from_interval_table(xhci,
2301                                         &virt_dev->eps[i].bw_info,
2302                                         virt_dev->bw_table,
2303                                         virt_dev->udev,
2304                                         &virt_dev->eps[i],
2305                                         virt_dev->tt_info);
2306         }
2307         /* Overwrite the information stored in the endpoints' bw_info */
2308         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2309         for (i = 0; i < 31; i++) {
2310                 /* Add any changed or added endpoints to the interval table */
2311                 if (EP_IS_ADDED(ctrl_ctx, i))
2312                         xhci_add_ep_to_interval_table(xhci,
2313                                         &virt_dev->eps[i].bw_info,
2314                                         virt_dev->bw_table,
2315                                         virt_dev->udev,
2316                                         &virt_dev->eps[i],
2317                                         virt_dev->tt_info);
2318         }
2319
2320         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2321                 /* Ok, this fits in the bandwidth we have.
2322                  * Update the number of active TTs.
2323                  */
2324                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2325                 return 0;
2326         }
2327
2328         /* We don't have enough bandwidth for this, revert the stored info. */
2329         for (i = 0; i < 31; i++) {
2330                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2331                         continue;
2332
2333                 /* Drop the new copies of any added or changed endpoints from
2334                  * the interval table.
2335                  */
2336                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2337                         xhci_drop_ep_from_interval_table(xhci,
2338                                         &virt_dev->eps[i].bw_info,
2339                                         virt_dev->bw_table,
2340                                         virt_dev->udev,
2341                                         &virt_dev->eps[i],
2342                                         virt_dev->tt_info);
2343                 }
2344                 /* Revert the endpoint back to its old information */
2345                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2346                                 sizeof(ep_bw_info[i]));
2347                 /* Add any changed or dropped endpoints back into the table */
2348                 if (EP_IS_DROPPED(ctrl_ctx, i))
2349                         xhci_add_ep_to_interval_table(xhci,
2350                                         &virt_dev->eps[i].bw_info,
2351                                         virt_dev->bw_table,
2352                                         virt_dev->udev,
2353                                         &virt_dev->eps[i],
2354                                         virt_dev->tt_info);
2355         }
2356         return -ENOMEM;
2357 }
2358
2359
2360 /* Issue a configure endpoint command or evaluate context command
2361  * and wait for it to finish.
2362  */
2363 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2364                 struct usb_device *udev,
2365                 struct xhci_command *command,
2366                 bool ctx_change, bool must_succeed)
2367 {
2368         int ret;
2369         int timeleft;
2370         unsigned long flags;
2371         struct xhci_container_ctx *in_ctx;
2372         struct completion *cmd_completion;
2373         u32 *cmd_status;
2374         struct xhci_virt_device *virt_dev;
2375
2376         spin_lock_irqsave(&xhci->lock, flags);
2377         virt_dev = xhci->devs[udev->slot_id];
2378
2379         if (command)
2380                 in_ctx = command->in_ctx;
2381         else
2382                 in_ctx = virt_dev->in_ctx;
2383
2384         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2385                         xhci_reserve_host_resources(xhci, in_ctx)) {
2386                 spin_unlock_irqrestore(&xhci->lock, flags);
2387                 xhci_warn(xhci, "Not enough host resources, "
2388                                 "active endpoint contexts = %u\n",
2389                                 xhci->num_active_eps);
2390                 return -ENOMEM;
2391         }
2392         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2393                         xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2394                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2395                         xhci_free_host_resources(xhci, in_ctx);
2396                 spin_unlock_irqrestore(&xhci->lock, flags);
2397                 xhci_warn(xhci, "Not enough bandwidth\n");
2398                 return -ENOMEM;
2399         }
2400
2401         if (command) {
2402                 cmd_completion = command->completion;
2403                 cmd_status = &command->status;
2404                 command->command_trb = xhci->cmd_ring->enqueue;
2405
2406                 /* Enqueue pointer can be left pointing to the link TRB,
2407                  * we must handle that
2408                  */
2409                 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2410                         command->command_trb =
2411                                 xhci->cmd_ring->enq_seg->next->trbs;
2412
2413                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2414         } else {
2415                 cmd_completion = &virt_dev->cmd_completion;
2416                 cmd_status = &virt_dev->cmd_status;
2417         }
2418         init_completion(cmd_completion);
2419
2420         if (!ctx_change)
2421                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2422                                 udev->slot_id, must_succeed);
2423         else
2424                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2425                                 udev->slot_id);
2426         if (ret < 0) {
2427                 if (command)
2428                         list_del(&command->cmd_list);
2429                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2430                         xhci_free_host_resources(xhci, in_ctx);
2431                 spin_unlock_irqrestore(&xhci->lock, flags);
2432                 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2433                 return -ENOMEM;
2434         }
2435         xhci_ring_cmd_db(xhci);
2436         spin_unlock_irqrestore(&xhci->lock, flags);
2437
2438         /* Wait for the configure endpoint command to complete */
2439         timeleft = wait_for_completion_interruptible_timeout(
2440                         cmd_completion,
2441                         USB_CTRL_SET_TIMEOUT);
2442         if (timeleft <= 0) {
2443                 xhci_warn(xhci, "%s while waiting for %s command\n",
2444                                 timeleft == 0 ? "Timeout" : "Signal",
2445                                 ctx_change == 0 ?
2446                                         "configure endpoint" :
2447                                         "evaluate context");
2448                 /* FIXME cancel the configure endpoint command */
2449                 return -ETIME;
2450         }
2451
2452         if (!ctx_change)
2453                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2454         else
2455                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2456
2457         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2458                 spin_lock_irqsave(&xhci->lock, flags);
2459                 /* If the command failed, remove the reserved resources.
2460                  * Otherwise, clean up the estimate to include dropped eps.
2461                  */
2462                 if (ret)
2463                         xhci_free_host_resources(xhci, in_ctx);
2464                 else
2465                         xhci_finish_resource_reservation(xhci, in_ctx);
2466                 spin_unlock_irqrestore(&xhci->lock, flags);
2467         }
2468         return ret;
2469 }
2470
2471 /* Called after one or more calls to xhci_add_endpoint() or
2472  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2473  * to call xhci_reset_bandwidth().
2474  *
2475  * Since we are in the middle of changing either configuration or
2476  * installing a new alt setting, the USB core won't allow URBs to be
2477  * enqueued for any endpoint on the old config or interface.  Nothing
2478  * else should be touching the xhci->devs[slot_id] structure, so we
2479  * don't need to take the xhci->lock for manipulating that.
2480  */
2481 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2482 {
2483         int i;
2484         int ret = 0;
2485         struct xhci_hcd *xhci;
2486         struct xhci_virt_device *virt_dev;
2487         struct xhci_input_control_ctx *ctrl_ctx;
2488         struct xhci_slot_ctx *slot_ctx;
2489
2490         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2491         if (ret <= 0)
2492                 return ret;
2493         xhci = hcd_to_xhci(hcd);
2494         if (xhci->xhc_state & XHCI_STATE_DYING)
2495                 return -ENODEV;
2496
2497         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2498         virt_dev = xhci->devs[udev->slot_id];
2499
2500         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2501         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2502         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2503         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2504         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2505
2506         /* Don't issue the command if there's no endpoints to update. */
2507         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2508                         ctrl_ctx->drop_flags == 0)
2509                 return 0;
2510
2511         xhci_dbg(xhci, "New Input Control Context:\n");
2512         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2513         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2514                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2515
2516         ret = xhci_configure_endpoint(xhci, udev, NULL,
2517                         false, false);
2518         if (ret) {
2519                 /* Callee should call reset_bandwidth() */
2520                 return ret;
2521         }
2522
2523         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2524         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2525                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2526
2527         /* Free any rings that were dropped, but not changed. */
2528         for (i = 1; i < 31; ++i) {
2529                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2530                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2531                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2532         }
2533         xhci_zero_in_ctx(xhci, virt_dev);
2534         /*
2535          * Install any rings for completely new endpoints or changed endpoints,
2536          * and free or cache any old rings from changed endpoints.
2537          */
2538         for (i = 1; i < 31; ++i) {
2539                 if (!virt_dev->eps[i].new_ring)
2540                         continue;
2541                 /* Only cache or free the old ring if it exists.
2542                  * It may not if this is the first add of an endpoint.
2543                  */
2544                 if (virt_dev->eps[i].ring) {
2545                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2546                 }
2547                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2548                 virt_dev->eps[i].new_ring = NULL;
2549         }
2550
2551         return ret;
2552 }
2553
2554 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2555 {
2556         struct xhci_hcd *xhci;
2557         struct xhci_virt_device *virt_dev;
2558         int i, ret;
2559
2560         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2561         if (ret <= 0)
2562                 return;
2563         xhci = hcd_to_xhci(hcd);
2564
2565         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2566         virt_dev = xhci->devs[udev->slot_id];
2567         /* Free any rings allocated for added endpoints */
2568         for (i = 0; i < 31; ++i) {
2569                 if (virt_dev->eps[i].new_ring) {
2570                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2571                         virt_dev->eps[i].new_ring = NULL;
2572                 }
2573         }
2574         xhci_zero_in_ctx(xhci, virt_dev);
2575 }
2576
2577 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2578                 struct xhci_container_ctx *in_ctx,
2579                 struct xhci_container_ctx *out_ctx,
2580                 u32 add_flags, u32 drop_flags)
2581 {
2582         struct xhci_input_control_ctx *ctrl_ctx;
2583         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2584         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2585         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2586         xhci_slot_copy(xhci, in_ctx, out_ctx);
2587         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2588
2589         xhci_dbg(xhci, "Input Context:\n");
2590         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2591 }
2592
2593 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2594                 unsigned int slot_id, unsigned int ep_index,
2595                 struct xhci_dequeue_state *deq_state)
2596 {
2597         struct xhci_container_ctx *in_ctx;
2598         struct xhci_ep_ctx *ep_ctx;
2599         u32 added_ctxs;
2600         dma_addr_t addr;
2601
2602         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2603                         xhci->devs[slot_id]->out_ctx, ep_index);
2604         in_ctx = xhci->devs[slot_id]->in_ctx;
2605         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2606         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2607                         deq_state->new_deq_ptr);
2608         if (addr == 0) {
2609                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2610                                 "reset ep command\n");
2611                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2612                                 deq_state->new_deq_seg,
2613                                 deq_state->new_deq_ptr);
2614                 return;
2615         }
2616         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2617
2618         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2619         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2620                         xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2621 }
2622
2623 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2624                 struct usb_device *udev, unsigned int ep_index)
2625 {
2626         struct xhci_dequeue_state deq_state;
2627         struct xhci_virt_ep *ep;
2628
2629         xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2630         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2631         /* We need to move the HW's dequeue pointer past this TD,
2632          * or it will attempt to resend it on the next doorbell ring.
2633          */
2634         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2635                         ep_index, ep->stopped_stream, ep->stopped_td,
2636                         &deq_state);
2637
2638         /* HW with the reset endpoint quirk will use the saved dequeue state to
2639          * issue a configure endpoint command later.
2640          */
2641         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2642                 xhci_dbg(xhci, "Queueing new dequeue state\n");
2643                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2644                                 ep_index, ep->stopped_stream, &deq_state);
2645         } else {
2646                 /* Better hope no one uses the input context between now and the
2647                  * reset endpoint completion!
2648                  * XXX: No idea how this hardware will react when stream rings
2649                  * are enabled.
2650                  */
2651                 xhci_dbg(xhci, "Setting up input context for "
2652                                 "configure endpoint command\n");
2653                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2654                                 ep_index, &deq_state);
2655         }
2656 }
2657
2658 /* Deal with stalled endpoints.  The core should have sent the control message
2659  * to clear the halt condition.  However, we need to make the xHCI hardware
2660  * reset its sequence number, since a device will expect a sequence number of
2661  * zero after the halt condition is cleared.
2662  * Context: in_interrupt
2663  */
2664 void xhci_endpoint_reset(struct usb_hcd *hcd,
2665                 struct usb_host_endpoint *ep)
2666 {
2667         struct xhci_hcd *xhci;
2668         struct usb_device *udev;
2669         unsigned int ep_index;
2670         unsigned long flags;
2671         int ret;
2672         struct xhci_virt_ep *virt_ep;
2673
2674         xhci = hcd_to_xhci(hcd);
2675         udev = (struct usb_device *) ep->hcpriv;
2676         /* Called with a root hub endpoint (or an endpoint that wasn't added
2677          * with xhci_add_endpoint()
2678          */
2679         if (!ep->hcpriv)
2680                 return;
2681         ep_index = xhci_get_endpoint_index(&ep->desc);
2682         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2683         if (!virt_ep->stopped_td) {
2684                 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2685                                 ep->desc.bEndpointAddress);
2686                 return;
2687         }
2688         if (usb_endpoint_xfer_control(&ep->desc)) {
2689                 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2690                 return;
2691         }
2692
2693         xhci_dbg(xhci, "Queueing reset endpoint command\n");
2694         spin_lock_irqsave(&xhci->lock, flags);
2695         ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2696         /*
2697          * Can't change the ring dequeue pointer until it's transitioned to the
2698          * stopped state, which is only upon a successful reset endpoint
2699          * command.  Better hope that last command worked!
2700          */
2701         if (!ret) {
2702                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2703                 kfree(virt_ep->stopped_td);
2704                 xhci_ring_cmd_db(xhci);
2705         }
2706         virt_ep->stopped_td = NULL;
2707         virt_ep->stopped_trb = NULL;
2708         virt_ep->stopped_stream = 0;
2709         spin_unlock_irqrestore(&xhci->lock, flags);
2710
2711         if (ret)
2712                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2713 }
2714
2715 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2716                 struct usb_device *udev, struct usb_host_endpoint *ep,
2717                 unsigned int slot_id)
2718 {
2719         int ret;
2720         unsigned int ep_index;
2721         unsigned int ep_state;
2722
2723         if (!ep)
2724                 return -EINVAL;
2725         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2726         if (ret <= 0)
2727                 return -EINVAL;
2728         if (ep->ss_ep_comp.bmAttributes == 0) {
2729                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2730                                 " descriptor for ep 0x%x does not support streams\n",
2731                                 ep->desc.bEndpointAddress);
2732                 return -EINVAL;
2733         }
2734
2735         ep_index = xhci_get_endpoint_index(&ep->desc);
2736         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2737         if (ep_state & EP_HAS_STREAMS ||
2738                         ep_state & EP_GETTING_STREAMS) {
2739                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2740                                 "already has streams set up.\n",
2741                                 ep->desc.bEndpointAddress);
2742                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2743                                 "dynamic stream context array reallocation.\n");
2744                 return -EINVAL;
2745         }
2746         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2747                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2748                                 "endpoint 0x%x; URBs are pending.\n",
2749                                 ep->desc.bEndpointAddress);
2750                 return -EINVAL;
2751         }
2752         return 0;
2753 }
2754
2755 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2756                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2757 {
2758         unsigned int max_streams;
2759
2760         /* The stream context array size must be a power of two */
2761         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2762         /*
2763          * Find out how many primary stream array entries the host controller
2764          * supports.  Later we may use secondary stream arrays (similar to 2nd
2765          * level page entries), but that's an optional feature for xHCI host
2766          * controllers. xHCs must support at least 4 stream IDs.
2767          */
2768         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2769         if (*num_stream_ctxs > max_streams) {
2770                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2771                                 max_streams);
2772                 *num_stream_ctxs = max_streams;
2773                 *num_streams = max_streams;
2774         }
2775 }
2776
2777 /* Returns an error code if one of the endpoint already has streams.
2778  * This does not change any data structures, it only checks and gathers
2779  * information.
2780  */
2781 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2782                 struct usb_device *udev,
2783                 struct usb_host_endpoint **eps, unsigned int num_eps,
2784                 unsigned int *num_streams, u32 *changed_ep_bitmask)
2785 {
2786         unsigned int max_streams;
2787         unsigned int endpoint_flag;
2788         int i;
2789         int ret;
2790
2791         for (i = 0; i < num_eps; i++) {
2792                 ret = xhci_check_streams_endpoint(xhci, udev,
2793                                 eps[i], udev->slot_id);
2794                 if (ret < 0)
2795                         return ret;
2796
2797                 max_streams = USB_SS_MAX_STREAMS(
2798                                 eps[i]->ss_ep_comp.bmAttributes);
2799                 if (max_streams < (*num_streams - 1)) {
2800                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2801                                         eps[i]->desc.bEndpointAddress,
2802                                         max_streams);
2803                         *num_streams = max_streams+1;
2804                 }
2805
2806                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2807                 if (*changed_ep_bitmask & endpoint_flag)
2808                         return -EINVAL;
2809                 *changed_ep_bitmask |= endpoint_flag;
2810         }
2811         return 0;
2812 }
2813
2814 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2815                 struct usb_device *udev,
2816                 struct usb_host_endpoint **eps, unsigned int num_eps)
2817 {
2818         u32 changed_ep_bitmask = 0;
2819         unsigned int slot_id;
2820         unsigned int ep_index;
2821         unsigned int ep_state;
2822         int i;
2823
2824         slot_id = udev->slot_id;
2825         if (!xhci->devs[slot_id])
2826                 return 0;
2827
2828         for (i = 0; i < num_eps; i++) {
2829                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2830                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2831                 /* Are streams already being freed for the endpoint? */
2832                 if (ep_state & EP_GETTING_NO_STREAMS) {
2833                         xhci_warn(xhci, "WARN Can't disable streams for "
2834                                         "endpoint 0x%x\n, "
2835                                         "streams are being disabled already.",
2836                                         eps[i]->desc.bEndpointAddress);
2837                         return 0;
2838                 }
2839                 /* Are there actually any streams to free? */
2840                 if (!(ep_state & EP_HAS_STREAMS) &&
2841                                 !(ep_state & EP_GETTING_STREAMS)) {
2842                         xhci_warn(xhci, "WARN Can't disable streams for "
2843                                         "endpoint 0x%x\n, "
2844                                         "streams are already disabled!",
2845                                         eps[i]->desc.bEndpointAddress);
2846                         xhci_warn(xhci, "WARN xhci_free_streams() called "
2847                                         "with non-streams endpoint\n");
2848                         return 0;
2849                 }
2850                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2851         }
2852         return changed_ep_bitmask;
2853 }
2854
2855 /*
2856  * The USB device drivers use this function (though the HCD interface in USB
2857  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
2858  * coordinate mass storage command queueing across multiple endpoints (basically
2859  * a stream ID == a task ID).
2860  *
2861  * Setting up streams involves allocating the same size stream context array
2862  * for each endpoint and issuing a configure endpoint command for all endpoints.
2863  *
2864  * Don't allow the call to succeed if one endpoint only supports one stream
2865  * (which means it doesn't support streams at all).
2866  *
2867  * Drivers may get less stream IDs than they asked for, if the host controller
2868  * hardware or endpoints claim they can't support the number of requested
2869  * stream IDs.
2870  */
2871 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
2872                 struct usb_host_endpoint **eps, unsigned int num_eps,
2873                 unsigned int num_streams, gfp_t mem_flags)
2874 {
2875         int i, ret;
2876         struct xhci_hcd *xhci;
2877         struct xhci_virt_device *vdev;
2878         struct xhci_command *config_cmd;
2879         unsigned int ep_index;
2880         unsigned int num_stream_ctxs;
2881         unsigned long flags;
2882         u32 changed_ep_bitmask = 0;
2883
2884         if (!eps)
2885                 return -EINVAL;
2886
2887         /* Add one to the number of streams requested to account for
2888          * stream 0 that is reserved for xHCI usage.
2889          */
2890         num_streams += 1;
2891         xhci = hcd_to_xhci(hcd);
2892         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2893                         num_streams);
2894
2895         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2896         if (!config_cmd) {
2897                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2898                 return -ENOMEM;
2899         }
2900
2901         /* Check to make sure all endpoints are not already configured for
2902          * streams.  While we're at it, find the maximum number of streams that
2903          * all the endpoints will support and check for duplicate endpoints.
2904          */
2905         spin_lock_irqsave(&xhci->lock, flags);
2906         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2907                         num_eps, &num_streams, &changed_ep_bitmask);
2908         if (ret < 0) {
2909                 xhci_free_command(xhci, config_cmd);
2910                 spin_unlock_irqrestore(&xhci->lock, flags);
2911                 return ret;
2912         }
2913         if (num_streams <= 1) {
2914                 xhci_warn(xhci, "WARN: endpoints can't handle "
2915                                 "more than one stream.\n");
2916                 xhci_free_command(xhci, config_cmd);
2917                 spin_unlock_irqrestore(&xhci->lock, flags);
2918                 return -EINVAL;
2919         }
2920         vdev = xhci->devs[udev->slot_id];
2921         /* Mark each endpoint as being in transition, so
2922          * xhci_urb_enqueue() will reject all URBs.
2923          */
2924         for (i = 0; i < num_eps; i++) {
2925                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2926                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2927         }
2928         spin_unlock_irqrestore(&xhci->lock, flags);
2929
2930         /* Setup internal data structures and allocate HW data structures for
2931          * streams (but don't install the HW structures in the input context
2932          * until we're sure all memory allocation succeeded).
2933          */
2934         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2935         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2936                         num_stream_ctxs, num_streams);
2937
2938         for (i = 0; i < num_eps; i++) {
2939                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2940                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2941                                 num_stream_ctxs,
2942                                 num_streams, mem_flags);
2943                 if (!vdev->eps[ep_index].stream_info)
2944                         goto cleanup;
2945                 /* Set maxPstreams in endpoint context and update deq ptr to
2946                  * point to stream context array. FIXME
2947                  */
2948         }
2949
2950         /* Set up the input context for a configure endpoint command. */
2951         for (i = 0; i < num_eps; i++) {
2952                 struct xhci_ep_ctx *ep_ctx;
2953
2954                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2955                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2956
2957                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2958                                 vdev->out_ctx, ep_index);
2959                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2960                                 vdev->eps[ep_index].stream_info);
2961         }
2962         /* Tell the HW to drop its old copy of the endpoint context info
2963          * and add the updated copy from the input context.
2964          */
2965         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2966                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2967
2968         /* Issue and wait for the configure endpoint command */
2969         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2970                         false, false);
2971
2972         /* xHC rejected the configure endpoint command for some reason, so we
2973          * leave the old ring intact and free our internal streams data
2974          * structure.
2975          */
2976         if (ret < 0)
2977                 goto cleanup;
2978
2979         spin_lock_irqsave(&xhci->lock, flags);
2980         for (i = 0; i < num_eps; i++) {
2981                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2982                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2983                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
2984                          udev->slot_id, ep_index);
2985                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
2986         }
2987         xhci_free_command(xhci, config_cmd);
2988         spin_unlock_irqrestore(&xhci->lock, flags);
2989
2990         /* Subtract 1 for stream 0, which drivers can't use */
2991         return num_streams - 1;
2992
2993 cleanup:
2994         /* If it didn't work, free the streams! */
2995         for (i = 0; i < num_eps; i++) {
2996                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2997                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2998                 vdev->eps[ep_index].stream_info = NULL;
2999                 /* FIXME Unset maxPstreams in endpoint context and
3000                  * update deq ptr to point to normal string ring.
3001                  */
3002                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3003                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3004                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3005         }
3006         xhci_free_command(xhci, config_cmd);
3007         return -ENOMEM;
3008 }
3009
3010 /* Transition the endpoint from using streams to being a "normal" endpoint
3011  * without streams.
3012  *
3013  * Modify the endpoint context state, submit a configure endpoint command,
3014  * and free all endpoint rings for streams if that completes successfully.
3015  */
3016 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3017                 struct usb_host_endpoint **eps, unsigned int num_eps,
3018                 gfp_t mem_flags)
3019 {
3020         int i, ret;
3021         struct xhci_hcd *xhci;
3022         struct xhci_virt_device *vdev;
3023         struct xhci_command *command;
3024         unsigned int ep_index;
3025         unsigned long flags;
3026         u32 changed_ep_bitmask;
3027
3028         xhci = hcd_to_xhci(hcd);
3029         vdev = xhci->devs[udev->slot_id];
3030
3031         /* Set up a configure endpoint command to remove the streams rings */
3032         spin_lock_irqsave(&xhci->lock, flags);
3033         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3034                         udev, eps, num_eps);
3035         if (changed_ep_bitmask == 0) {
3036                 spin_unlock_irqrestore(&xhci->lock, flags);
3037                 return -EINVAL;
3038         }
3039
3040         /* Use the xhci_command structure from the first endpoint.  We may have
3041          * allocated too many, but the driver may call xhci_free_streams() for
3042          * each endpoint it grouped into one call to xhci_alloc_streams().
3043          */
3044         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3045         command = vdev->eps[ep_index].stream_info->free_streams_command;
3046         for (i = 0; i < num_eps; i++) {
3047                 struct xhci_ep_ctx *ep_ctx;
3048
3049                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3050                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3051                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3052                         EP_GETTING_NO_STREAMS;
3053
3054                 xhci_endpoint_copy(xhci, command->in_ctx,
3055                                 vdev->out_ctx, ep_index);
3056                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3057                                 &vdev->eps[ep_index]);
3058         }
3059         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3060                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3061         spin_unlock_irqrestore(&xhci->lock, flags);
3062
3063         /* Issue and wait for the configure endpoint command,
3064          * which must succeed.
3065          */
3066         ret = xhci_configure_endpoint(xhci, udev, command,
3067                         false, true);
3068
3069         /* xHC rejected the configure endpoint command for some reason, so we
3070          * leave the streams rings intact.
3071          */
3072         if (ret < 0)
3073                 return ret;
3074
3075         spin_lock_irqsave(&xhci->lock, flags);
3076         for (i = 0; i < num_eps; i++) {
3077                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3078                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3079                 vdev->eps[ep_index].stream_info = NULL;
3080                 /* FIXME Unset maxPstreams in endpoint context and
3081                  * update deq ptr to point to normal string ring.
3082                  */
3083                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3084                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3085         }
3086         spin_unlock_irqrestore(&xhci->lock, flags);
3087
3088         return 0;
3089 }
3090
3091 /*
3092  * Deletes endpoint resources for endpoints that were active before a Reset
3093  * Device command, or a Disable Slot command.  The Reset Device command leaves
3094  * the control endpoint intact, whereas the Disable Slot command deletes it.
3095  *
3096  * Must be called with xhci->lock held.
3097  */
3098 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3099         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3100 {
3101         int i;
3102         unsigned int num_dropped_eps = 0;
3103         unsigned int drop_flags = 0;
3104
3105         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3106                 if (virt_dev->eps[i].ring) {
3107                         drop_flags |= 1 << i;
3108                         num_dropped_eps++;
3109                 }
3110         }
3111         xhci->num_active_eps -= num_dropped_eps;
3112         if (num_dropped_eps)
3113                 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3114                                 "%u now active.\n",
3115                                 num_dropped_eps, drop_flags,
3116                                 xhci->num_active_eps);
3117 }
3118
3119 /*
3120  * This submits a Reset Device Command, which will set the device state to 0,
3121  * set the device address to 0, and disable all the endpoints except the default
3122  * control endpoint.  The USB core should come back and call
3123  * xhci_address_device(), and then re-set up the configuration.  If this is
3124  * called because of a usb_reset_and_verify_device(), then the old alternate
3125  * settings will be re-installed through the normal bandwidth allocation
3126  * functions.
3127  *
3128  * Wait for the Reset Device command to finish.  Remove all structures
3129  * associated with the endpoints that were disabled.  Clear the input device
3130  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3131  *
3132  * If the virt_dev to be reset does not exist or does not match the udev,
3133  * it means the device is lost, possibly due to the xHC restore error and
3134  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3135  * re-allocate the device.
3136  */
3137 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3138 {
3139         int ret, i;
3140         unsigned long flags;
3141         struct xhci_hcd *xhci;
3142         unsigned int slot_id;
3143         struct xhci_virt_device *virt_dev;
3144         struct xhci_command *reset_device_cmd;
3145         int timeleft;
3146         int last_freed_endpoint;
3147         struct xhci_slot_ctx *slot_ctx;
3148         int old_active_eps = 0;
3149
3150         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3151         if (ret <= 0)
3152                 return ret;
3153         xhci = hcd_to_xhci(hcd);
3154         slot_id = udev->slot_id;
3155         virt_dev = xhci->devs[slot_id];
3156         if (!virt_dev) {
3157                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3158                                 "not exist. Re-allocate the device\n", slot_id);
3159                 ret = xhci_alloc_dev(hcd, udev);
3160                 if (ret == 1)
3161                         return 0;
3162                 else
3163                         return -EINVAL;
3164         }
3165
3166         if (virt_dev->udev != udev) {
3167                 /* If the virt_dev and the udev does not match, this virt_dev
3168                  * may belong to another udev.
3169                  * Re-allocate the device.
3170                  */
3171                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3172                                 "not match the udev. Re-allocate the device\n",
3173                                 slot_id);
3174                 ret = xhci_alloc_dev(hcd, udev);
3175                 if (ret == 1)
3176                         return 0;
3177                 else
3178                         return -EINVAL;
3179         }
3180
3181         /* If device is not setup, there is no point in resetting it */
3182         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3183         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3184                                                 SLOT_STATE_DISABLED)
3185                 return 0;
3186
3187         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3188         /* Allocate the command structure that holds the struct completion.
3189          * Assume we're in process context, since the normal device reset
3190          * process has to wait for the device anyway.  Storage devices are
3191          * reset as part of error handling, so use GFP_NOIO instead of
3192          * GFP_KERNEL.
3193          */
3194         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3195         if (!reset_device_cmd) {
3196                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3197                 return -ENOMEM;
3198         }
3199
3200         /* Attempt to submit the Reset Device command to the command ring */
3201         spin_lock_irqsave(&xhci->lock, flags);
3202         reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3203
3204         /* Enqueue pointer can be left pointing to the link TRB,
3205          * we must handle that
3206          */
3207         if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3208                 reset_device_cmd->command_trb =
3209                         xhci->cmd_ring->enq_seg->next->trbs;
3210
3211         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3212         ret = xhci_queue_reset_device(xhci, slot_id);
3213         if (ret) {
3214                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3215                 list_del(&reset_device_cmd->cmd_list);
3216                 spin_unlock_irqrestore(&xhci->lock, flags);
3217                 goto command_cleanup;
3218         }
3219         xhci_ring_cmd_db(xhci);
3220         spin_unlock_irqrestore(&xhci->lock, flags);
3221
3222         /* Wait for the Reset Device command to finish */
3223         timeleft = wait_for_completion_interruptible_timeout(
3224                         reset_device_cmd->completion,
3225                         USB_CTRL_SET_TIMEOUT);
3226         if (timeleft <= 0) {
3227                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3228                                 timeleft == 0 ? "Timeout" : "Signal");
3229                 spin_lock_irqsave(&xhci->lock, flags);
3230                 /* The timeout might have raced with the event ring handler, so
3231                  * only delete from the list if the item isn't poisoned.
3232                  */
3233                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3234                         list_del(&reset_device_cmd->cmd_list);
3235                 spin_unlock_irqrestore(&xhci->lock, flags);
3236                 ret = -ETIME;
3237                 goto command_cleanup;
3238         }
3239
3240         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3241          * unless we tried to reset a slot ID that wasn't enabled,
3242          * or the device wasn't in the addressed or configured state.
3243          */
3244         ret = reset_device_cmd->status;
3245         switch (ret) {
3246         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3247         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3248                 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3249                                 slot_id,
3250                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3251                 xhci_info(xhci, "Not freeing device rings.\n");
3252                 /* Don't treat this as an error.  May change my mind later. */
3253                 ret = 0;
3254                 goto command_cleanup;
3255         case COMP_SUCCESS:
3256                 xhci_dbg(xhci, "Successful reset device command.\n");
3257                 break;
3258         default:
3259                 if (xhci_is_vendor_info_code(xhci, ret))
3260                         break;
3261                 xhci_warn(xhci, "Unknown completion code %u for "
3262                                 "reset device command.\n", ret);
3263                 ret = -EINVAL;
3264                 goto command_cleanup;
3265         }
3266
3267         /* Free up host controller endpoint resources */
3268         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3269                 spin_lock_irqsave(&xhci->lock, flags);
3270                 /* Don't delete the default control endpoint resources */
3271                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3272                 spin_unlock_irqrestore(&xhci->lock, flags);
3273         }
3274
3275         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3276         last_freed_endpoint = 1;
3277         for (i = 1; i < 31; ++i) {
3278                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3279
3280                 if (ep->ep_state & EP_HAS_STREAMS) {
3281                         xhci_free_stream_info(xhci, ep->stream_info);
3282                         ep->stream_info = NULL;
3283                         ep->ep_state &= ~EP_HAS_STREAMS;
3284                 }
3285
3286                 if (ep->ring) {
3287                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3288                         last_freed_endpoint = i;
3289                 }
3290                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3291                         xhci_drop_ep_from_interval_table(xhci,
3292                                         &virt_dev->eps[i].bw_info,
3293                                         virt_dev->bw_table,
3294                                         udev,
3295                                         &virt_dev->eps[i],
3296                                         virt_dev->tt_info);
3297                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3298         }
3299         /* If necessary, update the number of active TTs on this root port */
3300         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3301
3302         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3303         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3304         ret = 0;
3305
3306 command_cleanup:
3307         xhci_free_command(xhci, reset_device_cmd);
3308         return ret;
3309 }
3310
3311 /*
3312  * At this point, the struct usb_device is about to go away, the device has
3313  * disconnected, and all traffic has been stopped and the endpoints have been
3314  * disabled.  Free any HC data structures associated with that device.
3315  */
3316 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3317 {
3318         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3319         struct xhci_virt_device *virt_dev;
3320         unsigned long flags;
3321         u32 state;
3322         int i, ret;
3323
3324         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3325         /* If the host is halted due to driver unload, we still need to free the
3326          * device.
3327          */
3328         if (ret <= 0 && ret != -ENODEV)
3329                 return;
3330
3331         virt_dev = xhci->devs[udev->slot_id];
3332
3333         /* Stop any wayward timer functions (which may grab the lock) */
3334         for (i = 0; i < 31; ++i) {
3335                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3336                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3337         }
3338
3339         if (udev->usb2_hw_lpm_enabled) {
3340                 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3341                 udev->usb2_hw_lpm_enabled = 0;
3342         }
3343
3344         spin_lock_irqsave(&xhci->lock, flags);
3345         /* Don't disable the slot if the host controller is dead. */
3346         state = xhci_readl(xhci, &xhci->op_regs->status);
3347         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3348                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3349                 xhci_free_virt_device(xhci, udev->slot_id);
3350                 spin_unlock_irqrestore(&xhci->lock, flags);
3351                 return;
3352         }
3353
3354         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3355                 spin_unlock_irqrestore(&xhci->lock, flags);
3356                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3357                 return;
3358         }
3359         xhci_ring_cmd_db(xhci);
3360         spin_unlock_irqrestore(&xhci->lock, flags);
3361         /*
3362          * Event command completion handler will free any data structures
3363          * associated with the slot.  XXX Can free sleep?
3364          */
3365 }
3366
3367 /*
3368  * Checks if we have enough host controller resources for the default control
3369  * endpoint.
3370  *
3371  * Must be called with xhci->lock held.
3372  */
3373 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3374 {
3375         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3376                 xhci_dbg(xhci, "Not enough ep ctxs: "
3377                                 "%u active, need to add 1, limit is %u.\n",
3378                                 xhci->num_active_eps, xhci->limit_active_eps);
3379                 return -ENOMEM;
3380         }
3381         xhci->num_active_eps += 1;
3382         xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3383                         xhci->num_active_eps);
3384         return 0;
3385 }
3386
3387
3388 /*
3389  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3390  * timed out, or allocating memory failed.  Returns 1 on success.
3391  */
3392 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3393 {
3394         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3395         unsigned long flags;
3396         int timeleft;
3397         int ret;
3398
3399         spin_lock_irqsave(&xhci->lock, flags);
3400         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3401         if (ret) {
3402                 spin_unlock_irqrestore(&xhci->lock, flags);
3403                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3404                 return 0;
3405         }
3406         xhci_ring_cmd_db(xhci);
3407         spin_unlock_irqrestore(&xhci->lock, flags);
3408
3409         /* XXX: how much time for xHC slot assignment? */
3410         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3411                         USB_CTRL_SET_TIMEOUT);
3412         if (timeleft <= 0) {
3413                 xhci_warn(xhci, "%s while waiting for a slot\n",
3414                                 timeleft == 0 ? "Timeout" : "Signal");
3415                 /* FIXME cancel the enable slot request */
3416                 return 0;
3417         }
3418
3419         if (!xhci->slot_id) {
3420                 xhci_err(xhci, "Error while assigning device slot ID\n");
3421                 return 0;
3422         }
3423
3424         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3425                 spin_lock_irqsave(&xhci->lock, flags);
3426                 ret = xhci_reserve_host_control_ep_resources(xhci);
3427                 if (ret) {
3428                         spin_unlock_irqrestore(&xhci->lock, flags);
3429                         xhci_warn(xhci, "Not enough host resources, "
3430                                         "active endpoint contexts = %u\n",
3431                                         xhci->num_active_eps);
3432                         goto disable_slot;
3433                 }
3434                 spin_unlock_irqrestore(&xhci->lock, flags);
3435         }
3436         /* Use GFP_NOIO, since this function can be called from
3437          * xhci_discover_or_reset_device(), which may be called as part of
3438          * mass storage driver error handling.
3439          */
3440         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3441                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3442                 goto disable_slot;
3443         }
3444         udev->slot_id = xhci->slot_id;
3445         /* Is this a LS or FS device under a HS hub? */
3446         /* Hub or peripherial? */
3447         return 1;
3448
3449 disable_slot:
3450         /* Disable slot, if we can do it without mem alloc */
3451         spin_lock_irqsave(&xhci->lock, flags);
3452         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3453                 xhci_ring_cmd_db(xhci);
3454         spin_unlock_irqrestore(&xhci->lock, flags);
3455         return 0;
3456 }
3457
3458 /*
3459  * Issue an Address Device command (which will issue a SetAddress request to
3460  * the device).
3461  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3462  * we should only issue and wait on one address command at the same time.
3463  *
3464  * We add one to the device address issued by the hardware because the USB core
3465  * uses address 1 for the root hubs (even though they're not really devices).
3466  */
3467 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3468 {
3469         unsigned long flags;
3470         int timeleft;
3471         struct xhci_virt_device *virt_dev;
3472         int ret = 0;
3473         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3474         struct xhci_slot_ctx *slot_ctx;
3475         struct xhci_input_control_ctx *ctrl_ctx;
3476         u64 temp_64;
3477
3478         if (!udev->slot_id) {
3479                 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3480                 return -EINVAL;
3481         }
3482
3483         virt_dev = xhci->devs[udev->slot_id];
3484
3485         if (WARN_ON(!virt_dev)) {
3486                 /*
3487                  * In plug/unplug torture test with an NEC controller,
3488                  * a zero-dereference was observed once due to virt_dev = 0.
3489                  * Print useful debug rather than crash if it is observed again!
3490                  */
3491                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3492                         udev->slot_id);
3493                 return -EINVAL;
3494         }
3495
3496         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3497         /*
3498          * If this is the first Set Address since device plug-in or
3499          * virt_device realloaction after a resume with an xHCI power loss,
3500          * then set up the slot context.
3501          */
3502         if (!slot_ctx->dev_info)
3503                 xhci_setup_addressable_virt_dev(xhci, udev);
3504         /* Otherwise, update the control endpoint ring enqueue pointer. */
3505         else
3506                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3507         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3508         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3509
3510         spin_lock_irqsave(&xhci->lock, flags);
3511         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3512                                         udev->slot_id);
3513         if (ret) {
3514                 spin_unlock_irqrestore(&xhci->lock, flags);
3515                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3516                 return ret;
3517         }
3518         xhci_ring_cmd_db(xhci);
3519         spin_unlock_irqrestore(&xhci->lock, flags);
3520
3521         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3522         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3523                         USB_CTRL_SET_TIMEOUT);
3524         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3525          * the SetAddress() "recovery interval" required by USB and aborting the
3526          * command on a timeout.
3527          */
3528         if (timeleft <= 0) {
3529                 xhci_warn(xhci, "%s while waiting for address device command\n",
3530                                 timeleft == 0 ? "Timeout" : "Signal");
3531                 /* FIXME cancel the address device command */
3532                 return -ETIME;
3533         }
3534
3535         switch (virt_dev->cmd_status) {
3536         case COMP_CTX_STATE:
3537         case COMP_EBADSLT:
3538                 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3539                                 udev->slot_id);
3540                 ret = -EINVAL;
3541                 break;
3542         case COMP_TX_ERR:
3543                 dev_warn(&udev->dev, "Device not responding to set address.\n");
3544                 ret = -EPROTO;
3545                 break;
3546         case COMP_DEV_ERR:
3547                 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3548                                 "device command.\n");
3549                 ret = -ENODEV;
3550                 break;
3551         case COMP_SUCCESS:
3552                 xhci_dbg(xhci, "Successful Address Device command\n");
3553                 break;
3554         default:
3555                 xhci_err(xhci, "ERROR: unexpected command completion "
3556                                 "code 0x%x.\n", virt_dev->cmd_status);
3557                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3558                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3559                 ret = -EINVAL;
3560                 break;
3561         }
3562         if (ret) {
3563                 return ret;
3564         }
3565         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3566         xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3567         xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3568                  udev->slot_id,
3569                  &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3570                  (unsigned long long)
3571                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3572         xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3573                         (unsigned long long)virt_dev->out_ctx->dma);
3574         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3575         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3576         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3577         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3578         /*
3579          * USB core uses address 1 for the roothubs, so we add one to the
3580          * address given back to us by the HC.
3581          */
3582         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3583         /* Use kernel assigned address for devices; store xHC assigned
3584          * address locally. */
3585         virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3586                 + 1;
3587         /* Zero the input context control for later use */
3588         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3589         ctrl_ctx->add_flags = 0;
3590         ctrl_ctx->drop_flags = 0;
3591
3592         xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3593
3594         return 0;
3595 }
3596
3597 #ifdef CONFIG_USB_SUSPEND
3598
3599 /* BESL to HIRD Encoding array for USB2 LPM */
3600 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3601         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3602
3603 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3604 static int xhci_calculate_hird_besl(int u2del, bool use_besl)
3605 {
3606         int hird;
3607
3608         if (use_besl) {
3609                 for (hird = 0; hird < 16; hird++) {
3610                         if (xhci_besl_encoding[hird] >= u2del)
3611                                 break;
3612                 }
3613         } else {
3614                 if (u2del <= 50)
3615                         hird = 0;
3616                 else
3617                         hird = (u2del - 51) / 75 + 1;
3618
3619                 if (hird > 15)
3620                         hird = 15;
3621         }
3622
3623         return hird;
3624 }
3625
3626 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3627                                         struct usb_device *udev)
3628 {
3629         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3630         struct dev_info *dev_info;
3631         __le32 __iomem  **port_array;
3632         __le32 __iomem  *addr, *pm_addr;
3633         u32             temp, dev_id;
3634         unsigned int    port_num;
3635         unsigned long   flags;
3636         int             u2del, hird;
3637         int             ret;
3638
3639         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3640                         !udev->lpm_capable)
3641                 return -EINVAL;
3642
3643         /* we only support lpm for non-hub device connected to root hub yet */
3644         if (!udev->parent || udev->parent->parent ||
3645                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3646                 return -EINVAL;
3647
3648         spin_lock_irqsave(&xhci->lock, flags);
3649
3650         /* Look for devices in lpm_failed_devs list */
3651         dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3652                         le16_to_cpu(udev->descriptor.idProduct);
3653         list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3654                 if (dev_info->dev_id == dev_id) {
3655                         ret = -EINVAL;
3656                         goto finish;
3657                 }
3658         }
3659
3660         port_array = xhci->usb2_ports;
3661         port_num = udev->portnum - 1;
3662
3663         if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3664                 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3665                 ret = -EINVAL;
3666                 goto finish;
3667         }
3668
3669         /*
3670          * Test USB 2.0 software LPM.
3671          * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3672          * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3673          * in the June 2011 errata release.
3674          */
3675         xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3676         /*
3677          * Set L1 Device Slot and HIRD/BESL.
3678          * Check device's USB 2.0 extension descriptor to determine whether
3679          * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3680          */
3681         pm_addr = port_array[port_num] + 1;
3682         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3683         if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2))
3684                 hird = xhci_calculate_hird_besl(u2del, 1);
3685         else
3686                 hird = xhci_calculate_hird_besl(u2del, 0);
3687
3688         temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3689         xhci_writel(xhci, temp, pm_addr);
3690
3691         /* Set port link state to U2(L1) */
3692         addr = port_array[port_num];
3693         xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3694
3695         /* wait for ACK */
3696         spin_unlock_irqrestore(&xhci->lock, flags);
3697         msleep(10);
3698         spin_lock_irqsave(&xhci->lock, flags);
3699
3700         /* Check L1 Status */
3701         ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3702         if (ret != -ETIMEDOUT) {
3703                 /* enter L1 successfully */
3704                 temp = xhci_readl(xhci, addr);
3705                 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3706                                 port_num, temp);
3707                 ret = 0;
3708         } else {
3709                 temp = xhci_readl(xhci, pm_addr);
3710                 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3711                                 port_num, temp & PORT_L1S_MASK);
3712                 ret = -EINVAL;
3713         }
3714
3715         /* Resume the port */
3716         xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3717
3718         spin_unlock_irqrestore(&xhci->lock, flags);
3719         msleep(10);
3720         spin_lock_irqsave(&xhci->lock, flags);
3721
3722         /* Clear PLC */
3723         xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3724
3725         /* Check PORTSC to make sure the device is in the right state */
3726         if (!ret) {
3727                 temp = xhci_readl(xhci, addr);
3728                 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3729                 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3730                                 (temp & PORT_PLS_MASK) != XDEV_U0) {
3731                         xhci_dbg(xhci, "port L1 resume fail\n");
3732                         ret = -EINVAL;
3733                 }
3734         }
3735
3736         if (ret) {
3737                 /* Insert dev to lpm_failed_devs list */
3738                 xhci_warn(xhci, "device LPM test failed, may disconnect and "
3739                                 "re-enumerate\n");
3740                 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3741                 if (!dev_info) {
3742                         ret = -ENOMEM;
3743                         goto finish;
3744                 }
3745                 dev_info->dev_id = dev_id;
3746                 INIT_LIST_HEAD(&dev_info->list);
3747                 list_add(&dev_info->list, &xhci->lpm_failed_devs);
3748         } else {
3749                 xhci_ring_device(xhci, udev->slot_id);
3750         }
3751
3752 finish:
3753         spin_unlock_irqrestore(&xhci->lock, flags);
3754         return ret;
3755 }
3756
3757 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3758                         struct usb_device *udev, int enable)
3759 {
3760         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3761         __le32 __iomem  **port_array;
3762         __le32 __iomem  *pm_addr;
3763         u32             temp;
3764         unsigned int    port_num;
3765         unsigned long   flags;
3766         int             u2del, hird;
3767
3768         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3769                         !udev->lpm_capable)
3770                 return -EPERM;
3771
3772         if (!udev->parent || udev->parent->parent ||
3773                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3774                 return -EPERM;
3775
3776         if (udev->usb2_hw_lpm_capable != 1)
3777                 return -EPERM;
3778
3779         spin_lock_irqsave(&xhci->lock, flags);
3780
3781         port_array = xhci->usb2_ports;
3782         port_num = udev->portnum - 1;
3783         pm_addr = port_array[port_num] + 1;
3784         temp = xhci_readl(xhci, pm_addr);
3785
3786         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3787                         enable ? "enable" : "disable", port_num);
3788
3789         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3790         if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2))
3791                 hird = xhci_calculate_hird_besl(u2del, 1);
3792         else
3793                 hird = xhci_calculate_hird_besl(u2del, 0);
3794
3795         if (enable) {
3796                 temp &= ~PORT_HIRD_MASK;
3797                 temp |= PORT_HIRD(hird) | PORT_RWE;
3798                 xhci_writel(xhci, temp, pm_addr);
3799                 temp = xhci_readl(xhci, pm_addr);
3800                 temp |= PORT_HLE;
3801                 xhci_writel(xhci, temp, pm_addr);
3802         } else {
3803                 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3804                 xhci_writel(xhci, temp, pm_addr);
3805         }
3806
3807         spin_unlock_irqrestore(&xhci->lock, flags);
3808         return 0;
3809 }
3810
3811 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3812 {
3813         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3814         int             ret;
3815
3816         ret = xhci_usb2_software_lpm_test(hcd, udev);
3817         if (!ret) {
3818                 xhci_dbg(xhci, "software LPM test succeed\n");
3819                 if (xhci->hw_lpm_support == 1) {
3820                         udev->usb2_hw_lpm_capable = 1;
3821                         ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3822                         if (!ret)
3823                                 udev->usb2_hw_lpm_enabled = 1;
3824                 }
3825         }
3826
3827         return 0;
3828 }
3829
3830 #else
3831
3832 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3833                                 struct usb_device *udev, int enable)
3834 {
3835         return 0;
3836 }
3837
3838 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3839 {
3840         return 0;
3841 }
3842
3843 #endif /* CONFIG_USB_SUSPEND */
3844
3845 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
3846  * internal data structures for the device.
3847  */
3848 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
3849                         struct usb_tt *tt, gfp_t mem_flags)
3850 {
3851         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3852         struct xhci_virt_device *vdev;
3853         struct xhci_command *config_cmd;
3854         struct xhci_input_control_ctx *ctrl_ctx;
3855         struct xhci_slot_ctx *slot_ctx;
3856         unsigned long flags;
3857         unsigned think_time;
3858         int ret;
3859
3860         /* Ignore root hubs */
3861         if (!hdev->parent)
3862                 return 0;
3863
3864         vdev = xhci->devs[hdev->slot_id];
3865         if (!vdev) {
3866                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
3867                 return -EINVAL;
3868         }
3869         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3870         if (!config_cmd) {
3871                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3872                 return -ENOMEM;
3873         }
3874
3875         spin_lock_irqsave(&xhci->lock, flags);
3876         if (hdev->speed == USB_SPEED_HIGH &&
3877                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
3878                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
3879                 xhci_free_command(xhci, config_cmd);
3880                 spin_unlock_irqrestore(&xhci->lock, flags);
3881                 return -ENOMEM;
3882         }
3883
3884         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
3885         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3886         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3887         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
3888         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
3889         if (tt->multi)
3890                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
3891         if (xhci->hci_version > 0x95) {
3892                 xhci_dbg(xhci, "xHCI version %x needs hub "
3893                                 "TT think time and number of ports\n",
3894                                 (unsigned int) xhci->hci_version);
3895                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
3896                 /* Set TT think time - convert from ns to FS bit times.
3897                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
3898                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
3899                  *
3900                  * xHCI 1.0: this field shall be 0 if the device is not a
3901                  * High-spped hub.
3902                  */
3903                 think_time = tt->think_time;
3904                 if (think_time != 0)
3905                         think_time = (think_time / 666) - 1;
3906                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
3907                         slot_ctx->tt_info |=
3908                                 cpu_to_le32(TT_THINK_TIME(think_time));
3909         } else {
3910                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
3911                                 "TT think time or number of ports\n",
3912                                 (unsigned int) xhci->hci_version);
3913         }
3914         slot_ctx->dev_state = 0;
3915         spin_unlock_irqrestore(&xhci->lock, flags);
3916
3917         xhci_dbg(xhci, "Set up %s for hub device.\n",
3918                         (xhci->hci_version > 0x95) ?
3919                         "configure endpoint" : "evaluate context");
3920         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
3921         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
3922
3923         /* Issue and wait for the configure endpoint or
3924          * evaluate context command.
3925          */
3926         if (xhci->hci_version > 0x95)
3927                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3928                                 false, false);
3929         else
3930                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3931                                 true, false);
3932
3933         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
3934         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
3935
3936         xhci_free_command(xhci, config_cmd);
3937         return ret;
3938 }
3939
3940 int xhci_get_frame(struct usb_hcd *hcd)
3941 {
3942         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3943         /* EHCI mods by the periodic size.  Why? */
3944         return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
3945 }
3946
3947 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
3948 {
3949         struct xhci_hcd         *xhci;
3950         struct device           *dev = hcd->self.controller;
3951         int                     retval;
3952         u32                     temp;
3953
3954         hcd->self.sg_tablesize = TRBS_PER_SEGMENT - 2;
3955
3956         if (usb_hcd_is_primary_hcd(hcd)) {
3957                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
3958                 if (!xhci)
3959                         return -ENOMEM;
3960                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
3961                 xhci->main_hcd = hcd;
3962                 /* Mark the first roothub as being USB 2.0.
3963                  * The xHCI driver will register the USB 3.0 roothub.
3964                  */
3965                 hcd->speed = HCD_USB2;
3966                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
3967                 /*
3968                  * USB 2.0 roothub under xHCI has an integrated TT,
3969                  * (rate matching hub) as opposed to having an OHCI/UHCI
3970                  * companion controller.
3971                  */
3972                 hcd->has_tt = 1;
3973         } else {
3974                 /* xHCI private pointer was set in xhci_pci_probe for the second
3975                  * registered roothub.
3976                  */
3977                 xhci = hcd_to_xhci(hcd);
3978                 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
3979                 if (HCC_64BIT_ADDR(temp)) {
3980                         xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
3981                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
3982                 } else {
3983                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
3984                 }
3985                 return 0;
3986         }
3987
3988         xhci->cap_regs = hcd->regs;
3989         xhci->op_regs = hcd->regs +
3990                 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
3991         xhci->run_regs = hcd->regs +
3992                 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
3993         /* Cache read-only capability registers */
3994         xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
3995         xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
3996         xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
3997         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
3998         xhci->hci_version = HC_VERSION(xhci->hcc_params);
3999         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4000         xhci_print_registers(xhci);
4001
4002         get_quirks(dev, xhci);
4003
4004         /* Make sure the HC is halted. */
4005         retval = xhci_halt(xhci);
4006         if (retval)
4007                 goto error;
4008
4009         xhci_dbg(xhci, "Resetting HCD\n");
4010         /* Reset the internal HC memory state and registers. */
4011         retval = xhci_reset(xhci);
4012         if (retval)
4013                 goto error;
4014         xhci_dbg(xhci, "Reset complete\n");
4015
4016         temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4017         if (HCC_64BIT_ADDR(temp)) {
4018                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4019                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4020         } else {
4021                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4022         }
4023
4024         xhci_dbg(xhci, "Calling HCD init\n");
4025         /* Initialize HCD and host controller data structures. */
4026         retval = xhci_init(hcd);
4027         if (retval)
4028                 goto error;
4029         xhci_dbg(xhci, "Called HCD init\n");
4030         return 0;
4031 error:
4032         kfree(xhci);
4033         return retval;
4034 }
4035
4036 MODULE_DESCRIPTION(DRIVER_DESC);
4037 MODULE_AUTHOR(DRIVER_AUTHOR);
4038 MODULE_LICENSE("GPL");
4039
4040 static int __init xhci_hcd_init(void)
4041 {
4042         int retval;
4043
4044         retval = xhci_register_pci();
4045         if (retval < 0) {
4046                 printk(KERN_DEBUG "Problem registering PCI driver.");
4047                 return retval;
4048         }
4049         /*
4050          * Check the compiler generated sizes of structures that must be laid
4051          * out in specific ways for hardware access.
4052          */
4053         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4054         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4055         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4056         /* xhci_device_control has eight fields, and also
4057          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4058          */
4059         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4060         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4061         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4062         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4063         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4064         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4065         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4066         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4067         return 0;
4068 }
4069 module_init(xhci_hcd_init);
4070
4071 static void __exit xhci_hcd_cleanup(void)
4072 {
4073         xhci_unregister_pci();
4074 }
4075 module_exit(xhci_hcd_cleanup);