USB: xhci: correctly enable interrupts
[pandora-kernel.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30
31 #include "xhci.h"
32
33 #define DRIVER_AUTHOR "Sarah Sharp"
34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35
36 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
37 static int link_quirk;
38 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
39 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
40
41 /* TODO: copied from ehci-hcd.c - can this be refactored? */
42 /*
43  * handshake - spin reading hc until handshake completes or fails
44  * @ptr: address of hc register to be read
45  * @mask: bits to look at in result of read
46  * @done: value of those bits when handshake succeeds
47  * @usec: timeout in microseconds
48  *
49  * Returns negative errno, or zero on success
50  *
51  * Success happens when the "mask" bits have the specified value (hardware
52  * handshake done).  There are two failure modes:  "usec" have passed (major
53  * hardware flakeout), or the register reads as all-ones (hardware removed).
54  */
55 int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
56                       u32 mask, u32 done, int usec)
57 {
58         u32     result;
59
60         do {
61                 result = xhci_readl(xhci, ptr);
62                 if (result == ~(u32)0)          /* card removed */
63                         return -ENODEV;
64                 result &= mask;
65                 if (result == done)
66                         return 0;
67                 udelay(1);
68                 usec--;
69         } while (usec > 0);
70         return -ETIMEDOUT;
71 }
72
73 /*
74  * Disable interrupts and begin the xHCI halting process.
75  */
76 void xhci_quiesce(struct xhci_hcd *xhci)
77 {
78         u32 halted;
79         u32 cmd;
80         u32 mask;
81
82         mask = ~(XHCI_IRQS);
83         halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
84         if (!halted)
85                 mask &= ~CMD_RUN;
86
87         cmd = xhci_readl(xhci, &xhci->op_regs->command);
88         cmd &= mask;
89         xhci_writel(xhci, cmd, &xhci->op_regs->command);
90 }
91
92 /*
93  * Force HC into halt state.
94  *
95  * Disable any IRQs and clear the run/stop bit.
96  * HC will complete any current and actively pipelined transactions, and
97  * should halt within 16 ms of the run/stop bit being cleared.
98  * Read HC Halted bit in the status register to see when the HC is finished.
99  */
100 int xhci_halt(struct xhci_hcd *xhci)
101 {
102         int ret;
103         xhci_dbg(xhci, "// Halt the HC\n");
104         xhci_quiesce(xhci);
105
106         ret = handshake(xhci, &xhci->op_regs->status,
107                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
108         if (!ret) {
109                 xhci->xhc_state |= XHCI_STATE_HALTED;
110                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
111         } else
112                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
113                                 XHCI_MAX_HALT_USEC);
114         return ret;
115 }
116
117 /*
118  * Set the run bit and wait for the host to be running.
119  */
120 static int xhci_start(struct xhci_hcd *xhci)
121 {
122         u32 temp;
123         int ret;
124
125         temp = xhci_readl(xhci, &xhci->op_regs->command);
126         temp |= (CMD_RUN);
127         xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
128                         temp);
129         xhci_writel(xhci, temp, &xhci->op_regs->command);
130
131         /*
132          * Wait for the HCHalted Status bit to be 0 to indicate the host is
133          * running.
134          */
135         ret = handshake(xhci, &xhci->op_regs->status,
136                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
137         if (ret == -ETIMEDOUT)
138                 xhci_err(xhci, "Host took too long to start, "
139                                 "waited %u microseconds.\n",
140                                 XHCI_MAX_HALT_USEC);
141         if (!ret)
142                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
143         return ret;
144 }
145
146 /*
147  * Reset a halted HC.
148  *
149  * This resets pipelines, timers, counters, state machines, etc.
150  * Transactions will be terminated immediately, and operational registers
151  * will be set to their defaults.
152  */
153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155         u32 command;
156         u32 state;
157         int ret;
158
159         state = xhci_readl(xhci, &xhci->op_regs->status);
160         if ((state & STS_HALT) == 0) {
161                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
162                 return 0;
163         }
164
165         xhci_dbg(xhci, "// Reset the HC\n");
166         command = xhci_readl(xhci, &xhci->op_regs->command);
167         command |= CMD_RESET;
168         xhci_writel(xhci, command, &xhci->op_regs->command);
169
170         ret = handshake(xhci, &xhci->op_regs->command,
171                         CMD_RESET, 0, 10 * 1000 * 1000);
172         if (ret)
173                 return ret;
174
175         xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
176         /*
177          * xHCI cannot write to any doorbells or operational registers other
178          * than status until the "Controller Not Ready" flag is cleared.
179          */
180         return handshake(xhci, &xhci->op_regs->status,
181                          STS_CNR, 0, 10 * 1000 * 1000);
182 }
183
184 #ifdef CONFIG_PCI
185 static int xhci_free_msi(struct xhci_hcd *xhci)
186 {
187         int i;
188
189         if (!xhci->msix_entries)
190                 return -EINVAL;
191
192         for (i = 0; i < xhci->msix_count; i++)
193                 if (xhci->msix_entries[i].vector)
194                         free_irq(xhci->msix_entries[i].vector,
195                                         xhci_to_hcd(xhci));
196         return 0;
197 }
198
199 /*
200  * Set up MSI
201  */
202 static int xhci_setup_msi(struct xhci_hcd *xhci)
203 {
204         int ret;
205         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
206
207         ret = pci_enable_msi(pdev);
208         if (ret) {
209                 xhci_dbg(xhci, "failed to allocate MSI entry\n");
210                 return ret;
211         }
212
213         ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
214                                 0, "xhci_hcd", xhci_to_hcd(xhci));
215         if (ret) {
216                 xhci_dbg(xhci, "disable MSI interrupt\n");
217                 pci_disable_msi(pdev);
218         }
219
220         return ret;
221 }
222
223 /*
224  * Free IRQs
225  * free all IRQs request
226  */
227 static void xhci_free_irq(struct xhci_hcd *xhci)
228 {
229         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
230         int ret;
231
232         /* return if using legacy interrupt */
233         if (xhci_to_hcd(xhci)->irq >= 0)
234                 return;
235
236         ret = xhci_free_msi(xhci);
237         if (!ret)
238                 return;
239         if (pdev->irq >= 0)
240                 free_irq(pdev->irq, xhci_to_hcd(xhci));
241
242         return;
243 }
244
245 /*
246  * Set up MSI-X
247  */
248 static int xhci_setup_msix(struct xhci_hcd *xhci)
249 {
250         int i, ret = 0;
251         struct usb_hcd *hcd = xhci_to_hcd(xhci);
252         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
253
254         /*
255          * calculate number of msi-x vectors supported.
256          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
257          *   with max number of interrupters based on the xhci HCSPARAMS1.
258          * - num_online_cpus: maximum msi-x vectors per CPUs core.
259          *   Add additional 1 vector to ensure always available interrupt.
260          */
261         xhci->msix_count = min(num_online_cpus() + 1,
262                                 HCS_MAX_INTRS(xhci->hcs_params1));
263
264         xhci->msix_entries =
265                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
266                                 GFP_KERNEL);
267         if (!xhci->msix_entries) {
268                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
269                 return -ENOMEM;
270         }
271
272         for (i = 0; i < xhci->msix_count; i++) {
273                 xhci->msix_entries[i].entry = i;
274                 xhci->msix_entries[i].vector = 0;
275         }
276
277         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
278         if (ret) {
279                 xhci_dbg(xhci, "Failed to enable MSI-X\n");
280                 goto free_entries;
281         }
282
283         for (i = 0; i < xhci->msix_count; i++) {
284                 ret = request_irq(xhci->msix_entries[i].vector,
285                                 (irq_handler_t)xhci_msi_irq,
286                                 0, "xhci_hcd", xhci_to_hcd(xhci));
287                 if (ret)
288                         goto disable_msix;
289         }
290
291         hcd->msix_enabled = 1;
292         return ret;
293
294 disable_msix:
295         xhci_dbg(xhci, "disable MSI-X interrupt\n");
296         xhci_free_irq(xhci);
297         pci_disable_msix(pdev);
298 free_entries:
299         kfree(xhci->msix_entries);
300         xhci->msix_entries = NULL;
301         return ret;
302 }
303
304 /* Free any IRQs and disable MSI-X */
305 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
306 {
307         struct usb_hcd *hcd = xhci_to_hcd(xhci);
308         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
309
310         xhci_free_irq(xhci);
311
312         if (xhci->msix_entries) {
313                 pci_disable_msix(pdev);
314                 kfree(xhci->msix_entries);
315                 xhci->msix_entries = NULL;
316         } else {
317                 pci_disable_msi(pdev);
318         }
319
320         hcd->msix_enabled = 0;
321         return;
322 }
323
324 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
325 {
326         int i;
327
328         if (xhci->msix_entries) {
329                 for (i = 0; i < xhci->msix_count; i++)
330                         synchronize_irq(xhci->msix_entries[i].vector);
331         }
332 }
333
334 static int xhci_try_enable_msi(struct usb_hcd *hcd)
335 {
336         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
337         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
338         int ret;
339
340         /*
341          * Some Fresco Logic host controllers advertise MSI, but fail to
342          * generate interrupts.  Don't even try to enable MSI.
343          */
344         if (xhci->quirks & XHCI_BROKEN_MSI)
345                 goto legacy_irq;
346
347         /* unregister the legacy interrupt */
348         if (hcd->irq)
349                 free_irq(hcd->irq, hcd);
350         hcd->irq = -1;
351
352         ret = xhci_setup_msix(xhci);
353         if (ret)
354                 /* fall back to msi*/
355                 ret = xhci_setup_msi(xhci);
356
357         if (!ret)
358                 /* hcd->irq is -1, we have MSI */
359                 return 0;
360
361         if (!pdev->irq) {
362                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
363                 return -EINVAL;
364         }
365
366  legacy_irq:
367         /* fall back to legacy interrupt*/
368         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
369                         hcd->irq_descr, hcd);
370         if (ret) {
371                 xhci_err(xhci, "request interrupt %d failed\n",
372                                 pdev->irq);
373                 return ret;
374         }
375         hcd->irq = pdev->irq;
376         return 0;
377 }
378
379 #else
380
381 static int xhci_try_enable_msi(struct usb_hcd *hcd)
382 {
383         return 0;
384 }
385
386 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
387 {
388 }
389
390 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
391 {
392 }
393
394 #endif
395
396 static void compliance_mode_recovery(unsigned long arg)
397 {
398         struct xhci_hcd *xhci;
399         struct usb_hcd *hcd;
400         u32 temp;
401         int i;
402
403         xhci = (struct xhci_hcd *)arg;
404
405         for (i = 0; i < xhci->num_usb3_ports; i++) {
406                 temp = xhci_readl(xhci, xhci->usb3_ports[i]);
407                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
408                         /*
409                          * Compliance Mode Detected. Letting USB Core
410                          * handle the Warm Reset
411                          */
412                         xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n",
413                                         i + 1);
414                         xhci_dbg(xhci, "Attempting Recovery routine!\n");
415                         hcd = xhci->shared_hcd;
416
417                         if (hcd->state == HC_STATE_SUSPENDED)
418                                 usb_hcd_resume_root_hub(hcd);
419
420                         usb_hcd_poll_rh_status(hcd);
421                 }
422         }
423
424         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
425                 mod_timer(&xhci->comp_mode_recovery_timer,
426                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
427 }
428
429 /*
430  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
431  * that causes ports behind that hardware to enter compliance mode sometimes.
432  * The quirk creates a timer that polls every 2 seconds the link state of
433  * each host controller's port and recovers it by issuing a Warm reset
434  * if Compliance mode is detected, otherwise the port will become "dead" (no
435  * device connections or disconnections will be detected anymore). Becasue no
436  * status event is generated when entering compliance mode (per xhci spec),
437  * this quirk is needed on systems that have the failing hardware installed.
438  */
439 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
440 {
441         xhci->port_status_u0 = 0;
442         init_timer(&xhci->comp_mode_recovery_timer);
443
444         xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
445         xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
446         xhci->comp_mode_recovery_timer.expires = jiffies +
447                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
448
449         set_timer_slack(&xhci->comp_mode_recovery_timer,
450                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
451         add_timer(&xhci->comp_mode_recovery_timer);
452         xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n");
453 }
454
455 /*
456  * This function identifies the systems that have installed the SN65LVPE502CP
457  * USB3.0 re-driver and that need the Compliance Mode Quirk.
458  * Systems:
459  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
460  */
461 static bool compliance_mode_recovery_timer_quirk_check(void)
462 {
463         const char *dmi_product_name, *dmi_sys_vendor;
464
465         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
466         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
467         if (!dmi_product_name || !dmi_sys_vendor)
468                 return false;
469
470         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
471                 return false;
472
473         if (strstr(dmi_product_name, "Z420") ||
474                         strstr(dmi_product_name, "Z620") ||
475                         strstr(dmi_product_name, "Z820") ||
476                         strstr(dmi_product_name, "Z1 Workstation"))
477                 return true;
478
479         return false;
480 }
481
482 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
483 {
484         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
485 }
486
487
488 /*
489  * Initialize memory for HCD and xHC (one-time init).
490  *
491  * Program the PAGESIZE register, initialize the device context array, create
492  * device contexts (?), set up a command ring segment (or two?), create event
493  * ring (one for now).
494  */
495 int xhci_init(struct usb_hcd *hcd)
496 {
497         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
498         int retval = 0;
499
500         xhci_dbg(xhci, "xhci_init\n");
501         spin_lock_init(&xhci->lock);
502         if (xhci->hci_version == 0x95 && link_quirk) {
503                 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
504                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
505         } else {
506                 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
507         }
508         retval = xhci_mem_init(xhci, GFP_KERNEL);
509         xhci_dbg(xhci, "Finished xhci_init\n");
510
511         /* Initializing Compliance Mode Recovery Data If Needed */
512         if (compliance_mode_recovery_timer_quirk_check()) {
513                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
514                 compliance_mode_recovery_timer_init(xhci);
515         }
516
517         return retval;
518 }
519
520 /*-------------------------------------------------------------------------*/
521
522
523 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
524 static void xhci_event_ring_work(unsigned long arg)
525 {
526         unsigned long flags;
527         int temp;
528         u64 temp_64;
529         struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
530         int i, j;
531
532         xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
533
534         spin_lock_irqsave(&xhci->lock, flags);
535         temp = xhci_readl(xhci, &xhci->op_regs->status);
536         xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
537         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
538                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
539                 xhci_dbg(xhci, "HW died, polling stopped.\n");
540                 spin_unlock_irqrestore(&xhci->lock, flags);
541                 return;
542         }
543
544         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
545         xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
546         xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
547         xhci->error_bitmask = 0;
548         xhci_dbg(xhci, "Event ring:\n");
549         xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
550         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
551         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
552         temp_64 &= ~ERST_PTR_MASK;
553         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
554         xhci_dbg(xhci, "Command ring:\n");
555         xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
556         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
557         xhci_dbg_cmd_ptrs(xhci);
558         for (i = 0; i < MAX_HC_SLOTS; ++i) {
559                 if (!xhci->devs[i])
560                         continue;
561                 for (j = 0; j < 31; ++j) {
562                         xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
563                 }
564         }
565         spin_unlock_irqrestore(&xhci->lock, flags);
566
567         if (!xhci->zombie)
568                 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
569         else
570                 xhci_dbg(xhci, "Quit polling the event ring.\n");
571 }
572 #endif
573
574 static int xhci_run_finished(struct xhci_hcd *xhci)
575 {
576         if (xhci_start(xhci)) {
577                 xhci_halt(xhci);
578                 return -ENODEV;
579         }
580         xhci->shared_hcd->state = HC_STATE_RUNNING;
581         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
582
583         if (xhci->quirks & XHCI_NEC_HOST)
584                 xhci_ring_cmd_db(xhci);
585
586         xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
587         return 0;
588 }
589
590 /*
591  * Start the HC after it was halted.
592  *
593  * This function is called by the USB core when the HC driver is added.
594  * Its opposite is xhci_stop().
595  *
596  * xhci_init() must be called once before this function can be called.
597  * Reset the HC, enable device slot contexts, program DCBAAP, and
598  * set command ring pointer and event ring pointer.
599  *
600  * Setup MSI-X vectors and enable interrupts.
601  */
602 int xhci_run(struct usb_hcd *hcd)
603 {
604         u32 temp;
605         u64 temp_64;
606         int ret;
607         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
608
609         /* Start the xHCI host controller running only after the USB 2.0 roothub
610          * is setup.
611          */
612
613         hcd->uses_new_polling = 1;
614         if (!usb_hcd_is_primary_hcd(hcd))
615                 return xhci_run_finished(xhci);
616
617         xhci_dbg(xhci, "xhci_run\n");
618
619         ret = xhci_try_enable_msi(hcd);
620         if (ret)
621                 return ret;
622
623 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
624         init_timer(&xhci->event_ring_timer);
625         xhci->event_ring_timer.data = (unsigned long) xhci;
626         xhci->event_ring_timer.function = xhci_event_ring_work;
627         /* Poll the event ring */
628         xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
629         xhci->zombie = 0;
630         xhci_dbg(xhci, "Setting event ring polling timer\n");
631         add_timer(&xhci->event_ring_timer);
632 #endif
633
634         xhci_dbg(xhci, "Command ring memory map follows:\n");
635         xhci_debug_ring(xhci, xhci->cmd_ring);
636         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
637         xhci_dbg_cmd_ptrs(xhci);
638
639         xhci_dbg(xhci, "ERST memory map follows:\n");
640         xhci_dbg_erst(xhci, &xhci->erst);
641         xhci_dbg(xhci, "Event ring:\n");
642         xhci_debug_ring(xhci, xhci->event_ring);
643         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
644         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
645         temp_64 &= ~ERST_PTR_MASK;
646         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
647
648         xhci_dbg(xhci, "// Set the interrupt modulation register\n");
649         temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
650         temp &= ~ER_IRQ_INTERVAL_MASK;
651         temp |= (u32) 160;
652         xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
653
654         /* Set the HCD state before we enable the irqs */
655         temp = xhci_readl(xhci, &xhci->op_regs->command);
656         temp |= (CMD_EIE);
657         xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
658                         temp);
659         xhci_writel(xhci, temp, &xhci->op_regs->command);
660
661         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
662         xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
663                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
664         xhci_writel(xhci, ER_IRQ_ENABLE(temp),
665                         &xhci->ir_set->irq_pending);
666         xhci_print_ir_set(xhci, 0);
667
668         if (xhci->quirks & XHCI_NEC_HOST)
669                 xhci_queue_vendor_command(xhci, 0, 0, 0,
670                                 TRB_TYPE(TRB_NEC_GET_FW));
671
672         xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
673         return 0;
674 }
675
676 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
677 {
678         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
679
680         spin_lock_irq(&xhci->lock);
681         xhci_halt(xhci);
682
683         /* The shared_hcd is going to be deallocated shortly (the USB core only
684          * calls this function when allocation fails in usb_add_hcd(), or
685          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
686          */
687         xhci->shared_hcd = NULL;
688         spin_unlock_irq(&xhci->lock);
689 }
690
691 /*
692  * Stop xHCI driver.
693  *
694  * This function is called by the USB core when the HC driver is removed.
695  * Its opposite is xhci_run().
696  *
697  * Disable device contexts, disable IRQs, and quiesce the HC.
698  * Reset the HC, finish any completed transactions, and cleanup memory.
699  */
700 void xhci_stop(struct usb_hcd *hcd)
701 {
702         u32 temp;
703         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
704
705         if (!usb_hcd_is_primary_hcd(hcd)) {
706                 xhci_only_stop_hcd(xhci->shared_hcd);
707                 return;
708         }
709
710         spin_lock_irq(&xhci->lock);
711         /* Make sure the xHC is halted for a USB3 roothub
712          * (xhci_stop() could be called as part of failed init).
713          */
714         xhci_halt(xhci);
715         xhci_reset(xhci);
716         spin_unlock_irq(&xhci->lock);
717
718         xhci_cleanup_msix(xhci);
719
720 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
721         /* Tell the event ring poll function not to reschedule */
722         xhci->zombie = 1;
723         del_timer_sync(&xhci->event_ring_timer);
724 #endif
725
726         /* Deleting Compliance Mode Recovery Timer */
727         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
728                         (!(xhci_all_ports_seen_u0(xhci))))
729                 del_timer_sync(&xhci->comp_mode_recovery_timer);
730
731         if (xhci->quirks & XHCI_AMD_PLL_FIX)
732                 usb_amd_dev_put();
733
734         xhci_dbg(xhci, "// Disabling event ring interrupts\n");
735         temp = xhci_readl(xhci, &xhci->op_regs->status);
736         xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
737         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
738         xhci_writel(xhci, ER_IRQ_DISABLE(temp),
739                         &xhci->ir_set->irq_pending);
740         xhci_print_ir_set(xhci, 0);
741
742         xhci_dbg(xhci, "cleaning up memory\n");
743         xhci_mem_cleanup(xhci);
744         xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
745                     xhci_readl(xhci, &xhci->op_regs->status));
746 }
747
748 /*
749  * Shutdown HC (not bus-specific)
750  *
751  * This is called when the machine is rebooting or halting.  We assume that the
752  * machine will be powered off, and the HC's internal state will be reset.
753  * Don't bother to free memory.
754  *
755  * This will only ever be called with the main usb_hcd (the USB3 roothub).
756  */
757 void xhci_shutdown(struct usb_hcd *hcd)
758 {
759         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
760
761         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
762                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
763
764         spin_lock_irq(&xhci->lock);
765         xhci_halt(xhci);
766         spin_unlock_irq(&xhci->lock);
767
768         xhci_cleanup_msix(xhci);
769
770         xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
771                     xhci_readl(xhci, &xhci->op_regs->status));
772 }
773
774 #ifdef CONFIG_PM
775 static void xhci_save_registers(struct xhci_hcd *xhci)
776 {
777         xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
778         xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
779         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
780         xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
781         xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
782         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
783         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
784         xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
785         xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
786 }
787
788 static void xhci_restore_registers(struct xhci_hcd *xhci)
789 {
790         xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
791         xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
792         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
793         xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
794         xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
795         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
796         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
797         xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
798         xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
799 }
800
801 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
802 {
803         u64     val_64;
804
805         /* step 2: initialize command ring buffer */
806         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
807         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
808                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
809                                       xhci->cmd_ring->dequeue) &
810                  (u64) ~CMD_RING_RSVD_BITS) |
811                 xhci->cmd_ring->cycle_state;
812         xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
813                         (long unsigned long) val_64);
814         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
815 }
816
817 /*
818  * The whole command ring must be cleared to zero when we suspend the host.
819  *
820  * The host doesn't save the command ring pointer in the suspend well, so we
821  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
822  * aligned, because of the reserved bits in the command ring dequeue pointer
823  * register.  Therefore, we can't just set the dequeue pointer back in the
824  * middle of the ring (TRBs are 16-byte aligned).
825  */
826 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
827 {
828         struct xhci_ring *ring;
829         struct xhci_segment *seg;
830
831         ring = xhci->cmd_ring;
832         seg = ring->deq_seg;
833         do {
834                 memset(seg->trbs, 0,
835                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
836                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
837                         cpu_to_le32(~TRB_CYCLE);
838                 seg = seg->next;
839         } while (seg != ring->deq_seg);
840
841         /* Reset the software enqueue and dequeue pointers */
842         ring->deq_seg = ring->first_seg;
843         ring->dequeue = ring->first_seg->trbs;
844         ring->enq_seg = ring->deq_seg;
845         ring->enqueue = ring->dequeue;
846
847         /*
848          * Ring is now zeroed, so the HW should look for change of ownership
849          * when the cycle bit is set to 1.
850          */
851         ring->cycle_state = 1;
852
853         /*
854          * Reset the hardware dequeue pointer.
855          * Yes, this will need to be re-written after resume, but we're paranoid
856          * and want to make sure the hardware doesn't access bogus memory
857          * because, say, the BIOS or an SMI started the host without changing
858          * the command ring pointers.
859          */
860         xhci_set_cmd_ring_deq(xhci);
861 }
862
863 /*
864  * Stop HC (not bus-specific)
865  *
866  * This is called when the machine transition into S3/S4 mode.
867  *
868  */
869 int xhci_suspend(struct xhci_hcd *xhci)
870 {
871         int                     rc = 0;
872         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
873         u32                     command;
874
875         /* Don't poll the roothubs on bus suspend. */
876         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
877         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
878         del_timer_sync(&hcd->rh_timer);
879
880         spin_lock_irq(&xhci->lock);
881         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
882         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
883         /* step 1: stop endpoint */
884         /* skipped assuming that port suspend has done */
885
886         /* step 2: clear Run/Stop bit */
887         command = xhci_readl(xhci, &xhci->op_regs->command);
888         command &= ~CMD_RUN;
889         xhci_writel(xhci, command, &xhci->op_regs->command);
890         if (handshake(xhci, &xhci->op_regs->status,
891                       STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
892                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
893                 spin_unlock_irq(&xhci->lock);
894                 return -ETIMEDOUT;
895         }
896         xhci_clear_command_ring(xhci);
897
898         /* step 3: save registers */
899         xhci_save_registers(xhci);
900
901         /* step 4: set CSS flag */
902         command = xhci_readl(xhci, &xhci->op_regs->command);
903         command |= CMD_CSS;
904         xhci_writel(xhci, command, &xhci->op_regs->command);
905         if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) {
906                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
907                 spin_unlock_irq(&xhci->lock);
908                 return -ETIMEDOUT;
909         }
910         spin_unlock_irq(&xhci->lock);
911
912         /*
913          * Deleting Compliance Mode Recovery Timer because the xHCI Host
914          * is about to be suspended.
915          */
916         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
917                         (!(xhci_all_ports_seen_u0(xhci)))) {
918                 del_timer_sync(&xhci->comp_mode_recovery_timer);
919                 xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n");
920         }
921
922         /* step 5: remove core well power */
923         /* synchronize irq when using MSI-X */
924         xhci_msix_sync_irqs(xhci);
925
926         return rc;
927 }
928
929 /*
930  * start xHC (not bus-specific)
931  *
932  * This is called when the machine transition from S3/S4 mode.
933  *
934  */
935 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
936 {
937         u32                     command, temp = 0;
938         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
939         struct usb_hcd          *secondary_hcd;
940         int                     retval = 0;
941
942         /* Wait a bit if either of the roothubs need to settle from the
943          * transition into bus suspend.
944          */
945         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
946                         time_before(jiffies,
947                                 xhci->bus_state[1].next_statechange))
948                 msleep(100);
949
950         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
951         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
952
953         spin_lock_irq(&xhci->lock);
954         if (xhci->quirks & XHCI_RESET_ON_RESUME)
955                 hibernated = true;
956
957         if (!hibernated) {
958                 /* step 1: restore register */
959                 xhci_restore_registers(xhci);
960                 /* step 2: initialize command ring buffer */
961                 xhci_set_cmd_ring_deq(xhci);
962                 /* step 3: restore state and start state*/
963                 /* step 3: set CRS flag */
964                 command = xhci_readl(xhci, &xhci->op_regs->command);
965                 command |= CMD_CRS;
966                 xhci_writel(xhci, command, &xhci->op_regs->command);
967                 if (handshake(xhci, &xhci->op_regs->status,
968                               STS_RESTORE, 0, 10 * 1000)) {
969                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
970                         spin_unlock_irq(&xhci->lock);
971                         return -ETIMEDOUT;
972                 }
973                 temp = xhci_readl(xhci, &xhci->op_regs->status);
974         }
975
976         /* If restore operation fails, re-initialize the HC during resume */
977         if ((temp & STS_SRE) || hibernated) {
978                 /* Let the USB core know _both_ roothubs lost power. */
979                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
980                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
981
982                 xhci_dbg(xhci, "Stop HCD\n");
983                 xhci_halt(xhci);
984                 xhci_reset(xhci);
985                 spin_unlock_irq(&xhci->lock);
986                 xhci_cleanup_msix(xhci);
987
988 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
989                 /* Tell the event ring poll function not to reschedule */
990                 xhci->zombie = 1;
991                 del_timer_sync(&xhci->event_ring_timer);
992 #endif
993
994                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
995                 temp = xhci_readl(xhci, &xhci->op_regs->status);
996                 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
997                 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
998                 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
999                                 &xhci->ir_set->irq_pending);
1000                 xhci_print_ir_set(xhci, 0);
1001
1002                 xhci_dbg(xhci, "cleaning up memory\n");
1003                 xhci_mem_cleanup(xhci);
1004                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1005                             xhci_readl(xhci, &xhci->op_regs->status));
1006
1007                 /* USB core calls the PCI reinit and start functions twice:
1008                  * first with the primary HCD, and then with the secondary HCD.
1009                  * If we don't do the same, the host will never be started.
1010                  */
1011                 if (!usb_hcd_is_primary_hcd(hcd))
1012                         secondary_hcd = hcd;
1013                 else
1014                         secondary_hcd = xhci->shared_hcd;
1015
1016                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1017                 retval = xhci_init(hcd->primary_hcd);
1018                 if (retval)
1019                         return retval;
1020                 xhci_dbg(xhci, "Start the primary HCD\n");
1021                 retval = xhci_run(hcd->primary_hcd);
1022                 if (!retval) {
1023                         xhci_dbg(xhci, "Start the secondary HCD\n");
1024                         retval = xhci_run(secondary_hcd);
1025                 }
1026                 hcd->state = HC_STATE_SUSPENDED;
1027                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1028                 goto done;
1029         }
1030
1031         /* step 4: set Run/Stop bit */
1032         command = xhci_readl(xhci, &xhci->op_regs->command);
1033         command |= CMD_RUN;
1034         xhci_writel(xhci, command, &xhci->op_regs->command);
1035         handshake(xhci, &xhci->op_regs->status, STS_HALT,
1036                   0, 250 * 1000);
1037
1038         /* step 5: walk topology and initialize portsc,
1039          * portpmsc and portli
1040          */
1041         /* this is done in bus_resume */
1042
1043         /* step 6: restart each of the previously
1044          * Running endpoints by ringing their doorbells
1045          */
1046
1047         spin_unlock_irq(&xhci->lock);
1048
1049  done:
1050         if (retval == 0) {
1051                 usb_hcd_resume_root_hub(hcd);
1052                 usb_hcd_resume_root_hub(xhci->shared_hcd);
1053         }
1054
1055         /*
1056          * If system is subject to the Quirk, Compliance Mode Timer needs to
1057          * be re-initialized Always after a system resume. Ports are subject
1058          * to suffer the Compliance Mode issue again. It doesn't matter if
1059          * ports have entered previously to U0 before system's suspension.
1060          */
1061         if (xhci->quirks & XHCI_COMP_MODE_QUIRK)
1062                 compliance_mode_recovery_timer_init(xhci);
1063
1064         /* Re-enable port polling. */
1065         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1066         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1067         usb_hcd_poll_rh_status(hcd);
1068
1069         return retval;
1070 }
1071 #endif  /* CONFIG_PM */
1072
1073 /*-------------------------------------------------------------------------*/
1074
1075 /**
1076  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1077  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1078  * value to right shift 1 for the bitmask.
1079  *
1080  * Index  = (epnum * 2) + direction - 1,
1081  * where direction = 0 for OUT, 1 for IN.
1082  * For control endpoints, the IN index is used (OUT index is unused), so
1083  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1084  */
1085 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1086 {
1087         unsigned int index;
1088         if (usb_endpoint_xfer_control(desc))
1089                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1090         else
1091                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1092                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1093         return index;
1094 }
1095
1096 /* Find the flag for this endpoint (for use in the control context).  Use the
1097  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1098  * bit 1, etc.
1099  */
1100 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1101 {
1102         return 1 << (xhci_get_endpoint_index(desc) + 1);
1103 }
1104
1105 /* Find the flag for this endpoint (for use in the control context).  Use the
1106  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1107  * bit 1, etc.
1108  */
1109 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1110 {
1111         return 1 << (ep_index + 1);
1112 }
1113
1114 /* Compute the last valid endpoint context index.  Basically, this is the
1115  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1116  * we find the most significant bit set in the added contexts flags.
1117  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1118  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1119  */
1120 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1121 {
1122         return fls(added_ctxs) - 1;
1123 }
1124
1125 /* Returns 1 if the arguments are OK;
1126  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1127  */
1128 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1129                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1130                 const char *func) {
1131         struct xhci_hcd *xhci;
1132         struct xhci_virt_device *virt_dev;
1133
1134         if (!hcd || (check_ep && !ep) || !udev) {
1135                 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1136                                 func);
1137                 return -EINVAL;
1138         }
1139         if (!udev->parent) {
1140                 printk(KERN_DEBUG "xHCI %s called for root hub\n",
1141                                 func);
1142                 return 0;
1143         }
1144
1145         xhci = hcd_to_xhci(hcd);
1146         if (xhci->xhc_state & XHCI_STATE_HALTED)
1147                 return -ENODEV;
1148
1149         if (check_virt_dev) {
1150                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1151                         printk(KERN_DEBUG "xHCI %s called with unaddressed "
1152                                                 "device\n", func);
1153                         return -EINVAL;
1154                 }
1155
1156                 virt_dev = xhci->devs[udev->slot_id];
1157                 if (virt_dev->udev != udev) {
1158                         printk(KERN_DEBUG "xHCI %s called with udev and "
1159                                           "virt_dev does not match\n", func);
1160                         return -EINVAL;
1161                 }
1162         }
1163
1164         return 1;
1165 }
1166
1167 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1168                 struct usb_device *udev, struct xhci_command *command,
1169                 bool ctx_change, bool must_succeed);
1170
1171 /*
1172  * Full speed devices may have a max packet size greater than 8 bytes, but the
1173  * USB core doesn't know that until it reads the first 8 bytes of the
1174  * descriptor.  If the usb_device's max packet size changes after that point,
1175  * we need to issue an evaluate context command and wait on it.
1176  */
1177 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1178                 unsigned int ep_index, struct urb *urb)
1179 {
1180         struct xhci_container_ctx *in_ctx;
1181         struct xhci_container_ctx *out_ctx;
1182         struct xhci_input_control_ctx *ctrl_ctx;
1183         struct xhci_ep_ctx *ep_ctx;
1184         int max_packet_size;
1185         int hw_max_packet_size;
1186         int ret = 0;
1187
1188         out_ctx = xhci->devs[slot_id]->out_ctx;
1189         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1190         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1191         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1192         if (hw_max_packet_size != max_packet_size) {
1193                 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1194                 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1195                                 max_packet_size);
1196                 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1197                                 hw_max_packet_size);
1198                 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1199
1200                 /* Set up the modified control endpoint 0 */
1201                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1202                                 xhci->devs[slot_id]->out_ctx, ep_index);
1203                 in_ctx = xhci->devs[slot_id]->in_ctx;
1204                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1205                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1206                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1207
1208                 /* Set up the input context flags for the command */
1209                 /* FIXME: This won't work if a non-default control endpoint
1210                  * changes max packet sizes.
1211                  */
1212                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1213                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1214                 ctrl_ctx->drop_flags = 0;
1215
1216                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1217                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1218                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1219                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1220
1221                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1222                                 true, false);
1223
1224                 /* Clean up the input context for later use by bandwidth
1225                  * functions.
1226                  */
1227                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1228         }
1229         return ret;
1230 }
1231
1232 /*
1233  * non-error returns are a promise to giveback() the urb later
1234  * we drop ownership so next owner (or urb unlink) can get it
1235  */
1236 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1237 {
1238         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1239         struct xhci_td *buffer;
1240         unsigned long flags;
1241         int ret = 0;
1242         unsigned int slot_id, ep_index;
1243         struct urb_priv *urb_priv;
1244         int size, i;
1245
1246         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1247                                         true, true, __func__) <= 0)
1248                 return -EINVAL;
1249
1250         slot_id = urb->dev->slot_id;
1251         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1252
1253         if (!HCD_HW_ACCESSIBLE(hcd)) {
1254                 if (!in_interrupt())
1255                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1256                 ret = -ESHUTDOWN;
1257                 goto exit;
1258         }
1259
1260         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1261                 size = urb->number_of_packets;
1262         else
1263                 size = 1;
1264
1265         urb_priv = kzalloc(sizeof(struct urb_priv) +
1266                                   size * sizeof(struct xhci_td *), mem_flags);
1267         if (!urb_priv)
1268                 return -ENOMEM;
1269
1270         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1271         if (!buffer) {
1272                 kfree(urb_priv);
1273                 return -ENOMEM;
1274         }
1275
1276         for (i = 0; i < size; i++) {
1277                 urb_priv->td[i] = buffer;
1278                 buffer++;
1279         }
1280
1281         urb_priv->length = size;
1282         urb_priv->td_cnt = 0;
1283         urb->hcpriv = urb_priv;
1284
1285         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1286                 /* Check to see if the max packet size for the default control
1287                  * endpoint changed during FS device enumeration
1288                  */
1289                 if (urb->dev->speed == USB_SPEED_FULL) {
1290                         ret = xhci_check_maxpacket(xhci, slot_id,
1291                                         ep_index, urb);
1292                         if (ret < 0) {
1293                                 xhci_urb_free_priv(xhci, urb_priv);
1294                                 urb->hcpriv = NULL;
1295                                 return ret;
1296                         }
1297                 }
1298
1299                 /* We have a spinlock and interrupts disabled, so we must pass
1300                  * atomic context to this function, which may allocate memory.
1301                  */
1302                 spin_lock_irqsave(&xhci->lock, flags);
1303                 if (xhci->xhc_state & XHCI_STATE_DYING)
1304                         goto dying;
1305                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1306                                 slot_id, ep_index);
1307                 if (ret)
1308                         goto free_priv;
1309                 spin_unlock_irqrestore(&xhci->lock, flags);
1310         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1311                 spin_lock_irqsave(&xhci->lock, flags);
1312                 if (xhci->xhc_state & XHCI_STATE_DYING)
1313                         goto dying;
1314                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1315                                 EP_GETTING_STREAMS) {
1316                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1317                                         "is transitioning to using streams.\n");
1318                         ret = -EINVAL;
1319                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1320                                 EP_GETTING_NO_STREAMS) {
1321                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1322                                         "is transitioning to "
1323                                         "not having streams.\n");
1324                         ret = -EINVAL;
1325                 } else {
1326                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1327                                         slot_id, ep_index);
1328                 }
1329                 if (ret)
1330                         goto free_priv;
1331                 spin_unlock_irqrestore(&xhci->lock, flags);
1332         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1333                 spin_lock_irqsave(&xhci->lock, flags);
1334                 if (xhci->xhc_state & XHCI_STATE_DYING)
1335                         goto dying;
1336                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1337                                 slot_id, ep_index);
1338                 if (ret)
1339                         goto free_priv;
1340                 spin_unlock_irqrestore(&xhci->lock, flags);
1341         } else {
1342                 spin_lock_irqsave(&xhci->lock, flags);
1343                 if (xhci->xhc_state & XHCI_STATE_DYING)
1344                         goto dying;
1345                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1346                                 slot_id, ep_index);
1347                 if (ret)
1348                         goto free_priv;
1349                 spin_unlock_irqrestore(&xhci->lock, flags);
1350         }
1351 exit:
1352         return ret;
1353 dying:
1354         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1355                         "non-responsive xHCI host.\n",
1356                         urb->ep->desc.bEndpointAddress, urb);
1357         ret = -ESHUTDOWN;
1358 free_priv:
1359         xhci_urb_free_priv(xhci, urb_priv);
1360         urb->hcpriv = NULL;
1361         spin_unlock_irqrestore(&xhci->lock, flags);
1362         return ret;
1363 }
1364
1365 /* Get the right ring for the given URB.
1366  * If the endpoint supports streams, boundary check the URB's stream ID.
1367  * If the endpoint doesn't support streams, return the singular endpoint ring.
1368  */
1369 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1370                 struct urb *urb)
1371 {
1372         unsigned int slot_id;
1373         unsigned int ep_index;
1374         unsigned int stream_id;
1375         struct xhci_virt_ep *ep;
1376
1377         slot_id = urb->dev->slot_id;
1378         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1379         stream_id = urb->stream_id;
1380         ep = &xhci->devs[slot_id]->eps[ep_index];
1381         /* Common case: no streams */
1382         if (!(ep->ep_state & EP_HAS_STREAMS))
1383                 return ep->ring;
1384
1385         if (stream_id == 0) {
1386                 xhci_warn(xhci,
1387                                 "WARN: Slot ID %u, ep index %u has streams, "
1388                                 "but URB has no stream ID.\n",
1389                                 slot_id, ep_index);
1390                 return NULL;
1391         }
1392
1393         if (stream_id < ep->stream_info->num_streams)
1394                 return ep->stream_info->stream_rings[stream_id];
1395
1396         xhci_warn(xhci,
1397                         "WARN: Slot ID %u, ep index %u has "
1398                         "stream IDs 1 to %u allocated, "
1399                         "but stream ID %u is requested.\n",
1400                         slot_id, ep_index,
1401                         ep->stream_info->num_streams - 1,
1402                         stream_id);
1403         return NULL;
1404 }
1405
1406 /*
1407  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1408  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1409  * should pick up where it left off in the TD, unless a Set Transfer Ring
1410  * Dequeue Pointer is issued.
1411  *
1412  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1413  * the ring.  Since the ring is a contiguous structure, they can't be physically
1414  * removed.  Instead, there are two options:
1415  *
1416  *  1) If the HC is in the middle of processing the URB to be canceled, we
1417  *     simply move the ring's dequeue pointer past those TRBs using the Set
1418  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1419  *     when drivers timeout on the last submitted URB and attempt to cancel.
1420  *
1421  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1422  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1423  *     HC will need to invalidate the any TRBs it has cached after the stop
1424  *     endpoint command, as noted in the xHCI 0.95 errata.
1425  *
1426  *  3) The TD may have completed by the time the Stop Endpoint Command
1427  *     completes, so software needs to handle that case too.
1428  *
1429  * This function should protect against the TD enqueueing code ringing the
1430  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1431  * It also needs to account for multiple cancellations on happening at the same
1432  * time for the same endpoint.
1433  *
1434  * Note that this function can be called in any context, or so says
1435  * usb_hcd_unlink_urb()
1436  */
1437 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1438 {
1439         unsigned long flags;
1440         int ret, i;
1441         u32 temp;
1442         struct xhci_hcd *xhci;
1443         struct urb_priv *urb_priv;
1444         struct xhci_td *td;
1445         unsigned int ep_index;
1446         struct xhci_ring *ep_ring;
1447         struct xhci_virt_ep *ep;
1448
1449         xhci = hcd_to_xhci(hcd);
1450         spin_lock_irqsave(&xhci->lock, flags);
1451         /* Make sure the URB hasn't completed or been unlinked already */
1452         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1453         if (ret || !urb->hcpriv)
1454                 goto done;
1455         temp = xhci_readl(xhci, &xhci->op_regs->status);
1456         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1457                 xhci_dbg(xhci, "HW died, freeing TD.\n");
1458                 urb_priv = urb->hcpriv;
1459                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1460                         td = urb_priv->td[i];
1461                         if (!list_empty(&td->td_list))
1462                                 list_del_init(&td->td_list);
1463                         if (!list_empty(&td->cancelled_td_list))
1464                                 list_del_init(&td->cancelled_td_list);
1465                 }
1466
1467                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1468                 spin_unlock_irqrestore(&xhci->lock, flags);
1469                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1470                 xhci_urb_free_priv(xhci, urb_priv);
1471                 return ret;
1472         }
1473         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1474                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1475                 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1476                                 "non-responsive xHCI host.\n",
1477                                 urb->ep->desc.bEndpointAddress, urb);
1478                 /* Let the stop endpoint command watchdog timer (which set this
1479                  * state) finish cleaning up the endpoint TD lists.  We must
1480                  * have caught it in the middle of dropping a lock and giving
1481                  * back an URB.
1482                  */
1483                 goto done;
1484         }
1485
1486         xhci_dbg(xhci, "Cancel URB %p\n", urb);
1487         xhci_dbg(xhci, "Event ring:\n");
1488         xhci_debug_ring(xhci, xhci->event_ring);
1489         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1490         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1491         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1492         if (!ep_ring) {
1493                 ret = -EINVAL;
1494                 goto done;
1495         }
1496
1497         xhci_dbg(xhci, "Endpoint ring:\n");
1498         xhci_debug_ring(xhci, ep_ring);
1499
1500         urb_priv = urb->hcpriv;
1501
1502         for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1503                 td = urb_priv->td[i];
1504                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1505         }
1506
1507         /* Queue a stop endpoint command, but only if this is
1508          * the first cancellation to be handled.
1509          */
1510         if (!(ep->ep_state & EP_HALT_PENDING)) {
1511                 ep->ep_state |= EP_HALT_PENDING;
1512                 ep->stop_cmds_pending++;
1513                 ep->stop_cmd_timer.expires = jiffies +
1514                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1515                 add_timer(&ep->stop_cmd_timer);
1516                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1517                 xhci_ring_cmd_db(xhci);
1518         }
1519 done:
1520         spin_unlock_irqrestore(&xhci->lock, flags);
1521         return ret;
1522 }
1523
1524 /* Drop an endpoint from a new bandwidth configuration for this device.
1525  * Only one call to this function is allowed per endpoint before
1526  * check_bandwidth() or reset_bandwidth() must be called.
1527  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1528  * add the endpoint to the schedule with possibly new parameters denoted by a
1529  * different endpoint descriptor in usb_host_endpoint.
1530  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1531  * not allowed.
1532  *
1533  * The USB core will not allow URBs to be queued to an endpoint that is being
1534  * disabled, so there's no need for mutual exclusion to protect
1535  * the xhci->devs[slot_id] structure.
1536  */
1537 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1538                 struct usb_host_endpoint *ep)
1539 {
1540         struct xhci_hcd *xhci;
1541         struct xhci_container_ctx *in_ctx, *out_ctx;
1542         struct xhci_input_control_ctx *ctrl_ctx;
1543         struct xhci_slot_ctx *slot_ctx;
1544         unsigned int last_ctx;
1545         unsigned int ep_index;
1546         struct xhci_ep_ctx *ep_ctx;
1547         u32 drop_flag;
1548         u32 new_add_flags, new_drop_flags, new_slot_info;
1549         int ret;
1550
1551         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1552         if (ret <= 0)
1553                 return ret;
1554         xhci = hcd_to_xhci(hcd);
1555         if (xhci->xhc_state & XHCI_STATE_DYING)
1556                 return -ENODEV;
1557
1558         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1559         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1560         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1561                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1562                                 __func__, drop_flag);
1563                 return 0;
1564         }
1565
1566         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1567         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1568         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1569         ep_index = xhci_get_endpoint_index(&ep->desc);
1570         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1571         /* If the HC already knows the endpoint is disabled,
1572          * or the HCD has noted it is disabled, ignore this request
1573          */
1574         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1575              cpu_to_le32(EP_STATE_DISABLED)) ||
1576             le32_to_cpu(ctrl_ctx->drop_flags) &
1577             xhci_get_endpoint_flag(&ep->desc)) {
1578                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1579                                 __func__, ep);
1580                 return 0;
1581         }
1582
1583         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1584         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1585
1586         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1587         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1588
1589         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1590         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1591         /* Update the last valid endpoint context, if we deleted the last one */
1592         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1593             LAST_CTX(last_ctx)) {
1594                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1595                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1596         }
1597         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1598
1599         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1600
1601         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1602                         (unsigned int) ep->desc.bEndpointAddress,
1603                         udev->slot_id,
1604                         (unsigned int) new_drop_flags,
1605                         (unsigned int) new_add_flags,
1606                         (unsigned int) new_slot_info);
1607         return 0;
1608 }
1609
1610 /* Add an endpoint to a new possible bandwidth configuration for this device.
1611  * Only one call to this function is allowed per endpoint before
1612  * check_bandwidth() or reset_bandwidth() must be called.
1613  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1614  * add the endpoint to the schedule with possibly new parameters denoted by a
1615  * different endpoint descriptor in usb_host_endpoint.
1616  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1617  * not allowed.
1618  *
1619  * The USB core will not allow URBs to be queued to an endpoint until the
1620  * configuration or alt setting is installed in the device, so there's no need
1621  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1622  */
1623 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1624                 struct usb_host_endpoint *ep)
1625 {
1626         struct xhci_hcd *xhci;
1627         struct xhci_container_ctx *in_ctx, *out_ctx;
1628         unsigned int ep_index;
1629         struct xhci_ep_ctx *ep_ctx;
1630         struct xhci_slot_ctx *slot_ctx;
1631         struct xhci_input_control_ctx *ctrl_ctx;
1632         u32 added_ctxs;
1633         unsigned int last_ctx;
1634         u32 new_add_flags, new_drop_flags, new_slot_info;
1635         struct xhci_virt_device *virt_dev;
1636         int ret = 0;
1637
1638         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1639         if (ret <= 0) {
1640                 /* So we won't queue a reset ep command for a root hub */
1641                 ep->hcpriv = NULL;
1642                 return ret;
1643         }
1644         xhci = hcd_to_xhci(hcd);
1645         if (xhci->xhc_state & XHCI_STATE_DYING)
1646                 return -ENODEV;
1647
1648         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1649         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1650         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1651                 /* FIXME when we have to issue an evaluate endpoint command to
1652                  * deal with ep0 max packet size changing once we get the
1653                  * descriptors
1654                  */
1655                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1656                                 __func__, added_ctxs);
1657                 return 0;
1658         }
1659
1660         virt_dev = xhci->devs[udev->slot_id];
1661         in_ctx = virt_dev->in_ctx;
1662         out_ctx = virt_dev->out_ctx;
1663         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1664         ep_index = xhci_get_endpoint_index(&ep->desc);
1665         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1666
1667         /* If this endpoint is already in use, and the upper layers are trying
1668          * to add it again without dropping it, reject the addition.
1669          */
1670         if (virt_dev->eps[ep_index].ring &&
1671                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1672                                 xhci_get_endpoint_flag(&ep->desc))) {
1673                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1674                                 "without dropping it.\n",
1675                                 (unsigned int) ep->desc.bEndpointAddress);
1676                 return -EINVAL;
1677         }
1678
1679         /* If the HCD has already noted the endpoint is enabled,
1680          * ignore this request.
1681          */
1682         if (le32_to_cpu(ctrl_ctx->add_flags) &
1683             xhci_get_endpoint_flag(&ep->desc)) {
1684                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1685                                 __func__, ep);
1686                 return 0;
1687         }
1688
1689         /*
1690          * Configuration and alternate setting changes must be done in
1691          * process context, not interrupt context (or so documenation
1692          * for usb_set_interface() and usb_set_configuration() claim).
1693          */
1694         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1695                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1696                                 __func__, ep->desc.bEndpointAddress);
1697                 return -ENOMEM;
1698         }
1699
1700         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1701         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1702
1703         /* If xhci_endpoint_disable() was called for this endpoint, but the
1704          * xHC hasn't been notified yet through the check_bandwidth() call,
1705          * this re-adds a new state for the endpoint from the new endpoint
1706          * descriptors.  We must drop and re-add this endpoint, so we leave the
1707          * drop flags alone.
1708          */
1709         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1710
1711         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1712         /* Update the last valid endpoint context, if we just added one past */
1713         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1714             LAST_CTX(last_ctx)) {
1715                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1716                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1717         }
1718         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1719
1720         /* Store the usb_device pointer for later use */
1721         ep->hcpriv = udev;
1722
1723         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1724                         (unsigned int) ep->desc.bEndpointAddress,
1725                         udev->slot_id,
1726                         (unsigned int) new_drop_flags,
1727                         (unsigned int) new_add_flags,
1728                         (unsigned int) new_slot_info);
1729         return 0;
1730 }
1731
1732 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1733 {
1734         struct xhci_input_control_ctx *ctrl_ctx;
1735         struct xhci_ep_ctx *ep_ctx;
1736         struct xhci_slot_ctx *slot_ctx;
1737         int i;
1738
1739         /* When a device's add flag and drop flag are zero, any subsequent
1740          * configure endpoint command will leave that endpoint's state
1741          * untouched.  Make sure we don't leave any old state in the input
1742          * endpoint contexts.
1743          */
1744         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1745         ctrl_ctx->drop_flags = 0;
1746         ctrl_ctx->add_flags = 0;
1747         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1748         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1749         /* Endpoint 0 is always valid */
1750         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1751         for (i = 1; i < 31; ++i) {
1752                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1753                 ep_ctx->ep_info = 0;
1754                 ep_ctx->ep_info2 = 0;
1755                 ep_ctx->deq = 0;
1756                 ep_ctx->tx_info = 0;
1757         }
1758 }
1759
1760 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1761                 struct usb_device *udev, u32 *cmd_status)
1762 {
1763         int ret;
1764
1765         switch (*cmd_status) {
1766         case COMP_ENOMEM:
1767                 dev_warn(&udev->dev, "Not enough host controller resources "
1768                                 "for new device state.\n");
1769                 ret = -ENOMEM;
1770                 /* FIXME: can we allocate more resources for the HC? */
1771                 break;
1772         case COMP_BW_ERR:
1773         case COMP_2ND_BW_ERR:
1774                 dev_warn(&udev->dev, "Not enough bandwidth "
1775                                 "for new device state.\n");
1776                 ret = -ENOSPC;
1777                 /* FIXME: can we go back to the old state? */
1778                 break;
1779         case COMP_TRB_ERR:
1780                 /* the HCD set up something wrong */
1781                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1782                                 "add flag = 1, "
1783                                 "and endpoint is not disabled.\n");
1784                 ret = -EINVAL;
1785                 break;
1786         case COMP_DEV_ERR:
1787                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1788                                 "configure command.\n");
1789                 ret = -ENODEV;
1790                 break;
1791         case COMP_SUCCESS:
1792                 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1793                 ret = 0;
1794                 break;
1795         default:
1796                 xhci_err(xhci, "ERROR: unexpected command completion "
1797                                 "code 0x%x.\n", *cmd_status);
1798                 ret = -EINVAL;
1799                 break;
1800         }
1801         return ret;
1802 }
1803
1804 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1805                 struct usb_device *udev, u32 *cmd_status)
1806 {
1807         int ret;
1808         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1809
1810         switch (*cmd_status) {
1811         case COMP_EINVAL:
1812                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1813                                 "context command.\n");
1814                 ret = -EINVAL;
1815                 break;
1816         case COMP_EBADSLT:
1817                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1818                                 "evaluate context command.\n");
1819         case COMP_CTX_STATE:
1820                 dev_warn(&udev->dev, "WARN: invalid context state for "
1821                                 "evaluate context command.\n");
1822                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1823                 ret = -EINVAL;
1824                 break;
1825         case COMP_DEV_ERR:
1826                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1827                                 "context command.\n");
1828                 ret = -ENODEV;
1829                 break;
1830         case COMP_MEL_ERR:
1831                 /* Max Exit Latency too large error */
1832                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1833                 ret = -EINVAL;
1834                 break;
1835         case COMP_SUCCESS:
1836                 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1837                 ret = 0;
1838                 break;
1839         default:
1840                 xhci_err(xhci, "ERROR: unexpected command completion "
1841                                 "code 0x%x.\n", *cmd_status);
1842                 ret = -EINVAL;
1843                 break;
1844         }
1845         return ret;
1846 }
1847
1848 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1849                 struct xhci_container_ctx *in_ctx)
1850 {
1851         struct xhci_input_control_ctx *ctrl_ctx;
1852         u32 valid_add_flags;
1853         u32 valid_drop_flags;
1854
1855         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1856         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1857          * (bit 1).  The default control endpoint is added during the Address
1858          * Device command and is never removed until the slot is disabled.
1859          */
1860         valid_add_flags = ctrl_ctx->add_flags >> 2;
1861         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1862
1863         /* Use hweight32 to count the number of ones in the add flags, or
1864          * number of endpoints added.  Don't count endpoints that are changed
1865          * (both added and dropped).
1866          */
1867         return hweight32(valid_add_flags) -
1868                 hweight32(valid_add_flags & valid_drop_flags);
1869 }
1870
1871 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1872                 struct xhci_container_ctx *in_ctx)
1873 {
1874         struct xhci_input_control_ctx *ctrl_ctx;
1875         u32 valid_add_flags;
1876         u32 valid_drop_flags;
1877
1878         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1879         valid_add_flags = ctrl_ctx->add_flags >> 2;
1880         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1881
1882         return hweight32(valid_drop_flags) -
1883                 hweight32(valid_add_flags & valid_drop_flags);
1884 }
1885
1886 /*
1887  * We need to reserve the new number of endpoints before the configure endpoint
1888  * command completes.  We can't subtract the dropped endpoints from the number
1889  * of active endpoints until the command completes because we can oversubscribe
1890  * the host in this case:
1891  *
1892  *  - the first configure endpoint command drops more endpoints than it adds
1893  *  - a second configure endpoint command that adds more endpoints is queued
1894  *  - the first configure endpoint command fails, so the config is unchanged
1895  *  - the second command may succeed, even though there isn't enough resources
1896  *
1897  * Must be called with xhci->lock held.
1898  */
1899 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1900                 struct xhci_container_ctx *in_ctx)
1901 {
1902         u32 added_eps;
1903
1904         added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1905         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1906                 xhci_dbg(xhci, "Not enough ep ctxs: "
1907                                 "%u active, need to add %u, limit is %u.\n",
1908                                 xhci->num_active_eps, added_eps,
1909                                 xhci->limit_active_eps);
1910                 return -ENOMEM;
1911         }
1912         xhci->num_active_eps += added_eps;
1913         xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1914                         xhci->num_active_eps);
1915         return 0;
1916 }
1917
1918 /*
1919  * The configure endpoint was failed by the xHC for some other reason, so we
1920  * need to revert the resources that failed configuration would have used.
1921  *
1922  * Must be called with xhci->lock held.
1923  */
1924 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1925                 struct xhci_container_ctx *in_ctx)
1926 {
1927         u32 num_failed_eps;
1928
1929         num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1930         xhci->num_active_eps -= num_failed_eps;
1931         xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1932                         num_failed_eps,
1933                         xhci->num_active_eps);
1934 }
1935
1936 /*
1937  * Now that the command has completed, clean up the active endpoint count by
1938  * subtracting out the endpoints that were dropped (but not changed).
1939  *
1940  * Must be called with xhci->lock held.
1941  */
1942 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1943                 struct xhci_container_ctx *in_ctx)
1944 {
1945         u32 num_dropped_eps;
1946
1947         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1948         xhci->num_active_eps -= num_dropped_eps;
1949         if (num_dropped_eps)
1950                 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1951                                 num_dropped_eps,
1952                                 xhci->num_active_eps);
1953 }
1954
1955 unsigned int xhci_get_block_size(struct usb_device *udev)
1956 {
1957         switch (udev->speed) {
1958         case USB_SPEED_LOW:
1959         case USB_SPEED_FULL:
1960                 return FS_BLOCK;
1961         case USB_SPEED_HIGH:
1962                 return HS_BLOCK;
1963         case USB_SPEED_SUPER:
1964                 return SS_BLOCK;
1965         case USB_SPEED_UNKNOWN:
1966         case USB_SPEED_WIRELESS:
1967         default:
1968                 /* Should never happen */
1969                 return 1;
1970         }
1971 }
1972
1973 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1974 {
1975         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1976                 return LS_OVERHEAD;
1977         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1978                 return FS_OVERHEAD;
1979         return HS_OVERHEAD;
1980 }
1981
1982 /* If we are changing a LS/FS device under a HS hub,
1983  * make sure (if we are activating a new TT) that the HS bus has enough
1984  * bandwidth for this new TT.
1985  */
1986 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1987                 struct xhci_virt_device *virt_dev,
1988                 int old_active_eps)
1989 {
1990         struct xhci_interval_bw_table *bw_table;
1991         struct xhci_tt_bw_info *tt_info;
1992
1993         /* Find the bandwidth table for the root port this TT is attached to. */
1994         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1995         tt_info = virt_dev->tt_info;
1996         /* If this TT already had active endpoints, the bandwidth for this TT
1997          * has already been added.  Removing all periodic endpoints (and thus
1998          * making the TT enactive) will only decrease the bandwidth used.
1999          */
2000         if (old_active_eps)
2001                 return 0;
2002         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2003                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2004                         return -ENOMEM;
2005                 return 0;
2006         }
2007         /* Not sure why we would have no new active endpoints...
2008          *
2009          * Maybe because of an Evaluate Context change for a hub update or a
2010          * control endpoint 0 max packet size change?
2011          * FIXME: skip the bandwidth calculation in that case.
2012          */
2013         return 0;
2014 }
2015
2016 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2017                 struct xhci_virt_device *virt_dev)
2018 {
2019         unsigned int bw_reserved;
2020
2021         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2022         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2023                 return -ENOMEM;
2024
2025         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2026         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2027                 return -ENOMEM;
2028
2029         return 0;
2030 }
2031
2032 /*
2033  * This algorithm is a very conservative estimate of the worst-case scheduling
2034  * scenario for any one interval.  The hardware dynamically schedules the
2035  * packets, so we can't tell which microframe could be the limiting factor in
2036  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2037  *
2038  * Obviously, we can't solve an NP complete problem to find the minimum worst
2039  * case scenario.  Instead, we come up with an estimate that is no less than
2040  * the worst case bandwidth used for any one microframe, but may be an
2041  * over-estimate.
2042  *
2043  * We walk the requirements for each endpoint by interval, starting with the
2044  * smallest interval, and place packets in the schedule where there is only one
2045  * possible way to schedule packets for that interval.  In order to simplify
2046  * this algorithm, we record the largest max packet size for each interval, and
2047  * assume all packets will be that size.
2048  *
2049  * For interval 0, we obviously must schedule all packets for each interval.
2050  * The bandwidth for interval 0 is just the amount of data to be transmitted
2051  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2052  * the number of packets).
2053  *
2054  * For interval 1, we have two possible microframes to schedule those packets
2055  * in.  For this algorithm, if we can schedule the same number of packets for
2056  * each possible scheduling opportunity (each microframe), we will do so.  The
2057  * remaining number of packets will be saved to be transmitted in the gaps in
2058  * the next interval's scheduling sequence.
2059  *
2060  * As we move those remaining packets to be scheduled with interval 2 packets,
2061  * we have to double the number of remaining packets to transmit.  This is
2062  * because the intervals are actually powers of 2, and we would be transmitting
2063  * the previous interval's packets twice in this interval.  We also have to be
2064  * sure that when we look at the largest max packet size for this interval, we
2065  * also look at the largest max packet size for the remaining packets and take
2066  * the greater of the two.
2067  *
2068  * The algorithm continues to evenly distribute packets in each scheduling
2069  * opportunity, and push the remaining packets out, until we get to the last
2070  * interval.  Then those packets and their associated overhead are just added
2071  * to the bandwidth used.
2072  */
2073 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2074                 struct xhci_virt_device *virt_dev,
2075                 int old_active_eps)
2076 {
2077         unsigned int bw_reserved;
2078         unsigned int max_bandwidth;
2079         unsigned int bw_used;
2080         unsigned int block_size;
2081         struct xhci_interval_bw_table *bw_table;
2082         unsigned int packet_size = 0;
2083         unsigned int overhead = 0;
2084         unsigned int packets_transmitted = 0;
2085         unsigned int packets_remaining = 0;
2086         unsigned int i;
2087
2088         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2089                 return xhci_check_ss_bw(xhci, virt_dev);
2090
2091         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2092                 max_bandwidth = HS_BW_LIMIT;
2093                 /* Convert percent of bus BW reserved to blocks reserved */
2094                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2095         } else {
2096                 max_bandwidth = FS_BW_LIMIT;
2097                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2098         }
2099
2100         bw_table = virt_dev->bw_table;
2101         /* We need to translate the max packet size and max ESIT payloads into
2102          * the units the hardware uses.
2103          */
2104         block_size = xhci_get_block_size(virt_dev->udev);
2105
2106         /* If we are manipulating a LS/FS device under a HS hub, double check
2107          * that the HS bus has enough bandwidth if we are activing a new TT.
2108          */
2109         if (virt_dev->tt_info) {
2110                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2111                                 virt_dev->real_port);
2112                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2113                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2114                                         "newly activated TT.\n");
2115                         return -ENOMEM;
2116                 }
2117                 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2118                                 virt_dev->tt_info->slot_id,
2119                                 virt_dev->tt_info->ttport);
2120         } else {
2121                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2122                                 virt_dev->real_port);
2123         }
2124
2125         /* Add in how much bandwidth will be used for interval zero, or the
2126          * rounded max ESIT payload + number of packets * largest overhead.
2127          */
2128         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2129                 bw_table->interval_bw[0].num_packets *
2130                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2131
2132         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2133                 unsigned int bw_added;
2134                 unsigned int largest_mps;
2135                 unsigned int interval_overhead;
2136
2137                 /*
2138                  * How many packets could we transmit in this interval?
2139                  * If packets didn't fit in the previous interval, we will need
2140                  * to transmit that many packets twice within this interval.
2141                  */
2142                 packets_remaining = 2 * packets_remaining +
2143                         bw_table->interval_bw[i].num_packets;
2144
2145                 /* Find the largest max packet size of this or the previous
2146                  * interval.
2147                  */
2148                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2149                         largest_mps = 0;
2150                 else {
2151                         struct xhci_virt_ep *virt_ep;
2152                         struct list_head *ep_entry;
2153
2154                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2155                         virt_ep = list_entry(ep_entry,
2156                                         struct xhci_virt_ep, bw_endpoint_list);
2157                         /* Convert to blocks, rounding up */
2158                         largest_mps = DIV_ROUND_UP(
2159                                         virt_ep->bw_info.max_packet_size,
2160                                         block_size);
2161                 }
2162                 if (largest_mps > packet_size)
2163                         packet_size = largest_mps;
2164
2165                 /* Use the larger overhead of this or the previous interval. */
2166                 interval_overhead = xhci_get_largest_overhead(
2167                                 &bw_table->interval_bw[i]);
2168                 if (interval_overhead > overhead)
2169                         overhead = interval_overhead;
2170
2171                 /* How many packets can we evenly distribute across
2172                  * (1 << (i + 1)) possible scheduling opportunities?
2173                  */
2174                 packets_transmitted = packets_remaining >> (i + 1);
2175
2176                 /* Add in the bandwidth used for those scheduled packets */
2177                 bw_added = packets_transmitted * (overhead + packet_size);
2178
2179                 /* How many packets do we have remaining to transmit? */
2180                 packets_remaining = packets_remaining % (1 << (i + 1));
2181
2182                 /* What largest max packet size should those packets have? */
2183                 /* If we've transmitted all packets, don't carry over the
2184                  * largest packet size.
2185                  */
2186                 if (packets_remaining == 0) {
2187                         packet_size = 0;
2188                         overhead = 0;
2189                 } else if (packets_transmitted > 0) {
2190                         /* Otherwise if we do have remaining packets, and we've
2191                          * scheduled some packets in this interval, take the
2192                          * largest max packet size from endpoints with this
2193                          * interval.
2194                          */
2195                         packet_size = largest_mps;
2196                         overhead = interval_overhead;
2197                 }
2198                 /* Otherwise carry over packet_size and overhead from the last
2199                  * time we had a remainder.
2200                  */
2201                 bw_used += bw_added;
2202                 if (bw_used > max_bandwidth) {
2203                         xhci_warn(xhci, "Not enough bandwidth. "
2204                                         "Proposed: %u, Max: %u\n",
2205                                 bw_used, max_bandwidth);
2206                         return -ENOMEM;
2207                 }
2208         }
2209         /*
2210          * Ok, we know we have some packets left over after even-handedly
2211          * scheduling interval 15.  We don't know which microframes they will
2212          * fit into, so we over-schedule and say they will be scheduled every
2213          * microframe.
2214          */
2215         if (packets_remaining > 0)
2216                 bw_used += overhead + packet_size;
2217
2218         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2219                 unsigned int port_index = virt_dev->real_port - 1;
2220
2221                 /* OK, we're manipulating a HS device attached to a
2222                  * root port bandwidth domain.  Include the number of active TTs
2223                  * in the bandwidth used.
2224                  */
2225                 bw_used += TT_HS_OVERHEAD *
2226                         xhci->rh_bw[port_index].num_active_tts;
2227         }
2228
2229         xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2230                 "Available: %u " "percent\n",
2231                 bw_used, max_bandwidth, bw_reserved,
2232                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2233                 max_bandwidth);
2234
2235         bw_used += bw_reserved;
2236         if (bw_used > max_bandwidth) {
2237                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2238                                 bw_used, max_bandwidth);
2239                 return -ENOMEM;
2240         }
2241
2242         bw_table->bw_used = bw_used;
2243         return 0;
2244 }
2245
2246 static bool xhci_is_async_ep(unsigned int ep_type)
2247 {
2248         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2249                                         ep_type != ISOC_IN_EP &&
2250                                         ep_type != INT_IN_EP);
2251 }
2252
2253 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2254 {
2255         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2256 }
2257
2258 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2259 {
2260         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2261
2262         if (ep_bw->ep_interval == 0)
2263                 return SS_OVERHEAD_BURST +
2264                         (ep_bw->mult * ep_bw->num_packets *
2265                                         (SS_OVERHEAD + mps));
2266         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2267                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2268                                 1 << ep_bw->ep_interval);
2269
2270 }
2271
2272 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2273                 struct xhci_bw_info *ep_bw,
2274                 struct xhci_interval_bw_table *bw_table,
2275                 struct usb_device *udev,
2276                 struct xhci_virt_ep *virt_ep,
2277                 struct xhci_tt_bw_info *tt_info)
2278 {
2279         struct xhci_interval_bw *interval_bw;
2280         int normalized_interval;
2281
2282         if (xhci_is_async_ep(ep_bw->type))
2283                 return;
2284
2285         if (udev->speed == USB_SPEED_SUPER) {
2286                 if (xhci_is_sync_in_ep(ep_bw->type))
2287                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2288                                 xhci_get_ss_bw_consumed(ep_bw);
2289                 else
2290                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2291                                 xhci_get_ss_bw_consumed(ep_bw);
2292                 return;
2293         }
2294
2295         /* SuperSpeed endpoints never get added to intervals in the table, so
2296          * this check is only valid for HS/FS/LS devices.
2297          */
2298         if (list_empty(&virt_ep->bw_endpoint_list))
2299                 return;
2300         /* For LS/FS devices, we need to translate the interval expressed in
2301          * microframes to frames.
2302          */
2303         if (udev->speed == USB_SPEED_HIGH)
2304                 normalized_interval = ep_bw->ep_interval;
2305         else
2306                 normalized_interval = ep_bw->ep_interval - 3;
2307
2308         if (normalized_interval == 0)
2309                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2310         interval_bw = &bw_table->interval_bw[normalized_interval];
2311         interval_bw->num_packets -= ep_bw->num_packets;
2312         switch (udev->speed) {
2313         case USB_SPEED_LOW:
2314                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2315                 break;
2316         case USB_SPEED_FULL:
2317                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2318                 break;
2319         case USB_SPEED_HIGH:
2320                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2321                 break;
2322         case USB_SPEED_SUPER:
2323         case USB_SPEED_UNKNOWN:
2324         case USB_SPEED_WIRELESS:
2325                 /* Should never happen because only LS/FS/HS endpoints will get
2326                  * added to the endpoint list.
2327                  */
2328                 return;
2329         }
2330         if (tt_info)
2331                 tt_info->active_eps -= 1;
2332         list_del_init(&virt_ep->bw_endpoint_list);
2333 }
2334
2335 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2336                 struct xhci_bw_info *ep_bw,
2337                 struct xhci_interval_bw_table *bw_table,
2338                 struct usb_device *udev,
2339                 struct xhci_virt_ep *virt_ep,
2340                 struct xhci_tt_bw_info *tt_info)
2341 {
2342         struct xhci_interval_bw *interval_bw;
2343         struct xhci_virt_ep *smaller_ep;
2344         int normalized_interval;
2345
2346         if (xhci_is_async_ep(ep_bw->type))
2347                 return;
2348
2349         if (udev->speed == USB_SPEED_SUPER) {
2350                 if (xhci_is_sync_in_ep(ep_bw->type))
2351                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2352                                 xhci_get_ss_bw_consumed(ep_bw);
2353                 else
2354                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2355                                 xhci_get_ss_bw_consumed(ep_bw);
2356                 return;
2357         }
2358
2359         /* For LS/FS devices, we need to translate the interval expressed in
2360          * microframes to frames.
2361          */
2362         if (udev->speed == USB_SPEED_HIGH)
2363                 normalized_interval = ep_bw->ep_interval;
2364         else
2365                 normalized_interval = ep_bw->ep_interval - 3;
2366
2367         if (normalized_interval == 0)
2368                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2369         interval_bw = &bw_table->interval_bw[normalized_interval];
2370         interval_bw->num_packets += ep_bw->num_packets;
2371         switch (udev->speed) {
2372         case USB_SPEED_LOW:
2373                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2374                 break;
2375         case USB_SPEED_FULL:
2376                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2377                 break;
2378         case USB_SPEED_HIGH:
2379                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2380                 break;
2381         case USB_SPEED_SUPER:
2382         case USB_SPEED_UNKNOWN:
2383         case USB_SPEED_WIRELESS:
2384                 /* Should never happen because only LS/FS/HS endpoints will get
2385                  * added to the endpoint list.
2386                  */
2387                 return;
2388         }
2389
2390         if (tt_info)
2391                 tt_info->active_eps += 1;
2392         /* Insert the endpoint into the list, largest max packet size first. */
2393         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2394                         bw_endpoint_list) {
2395                 if (ep_bw->max_packet_size >=
2396                                 smaller_ep->bw_info.max_packet_size) {
2397                         /* Add the new ep before the smaller endpoint */
2398                         list_add_tail(&virt_ep->bw_endpoint_list,
2399                                         &smaller_ep->bw_endpoint_list);
2400                         return;
2401                 }
2402         }
2403         /* Add the new endpoint at the end of the list. */
2404         list_add_tail(&virt_ep->bw_endpoint_list,
2405                         &interval_bw->endpoints);
2406 }
2407
2408 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2409                 struct xhci_virt_device *virt_dev,
2410                 int old_active_eps)
2411 {
2412         struct xhci_root_port_bw_info *rh_bw_info;
2413         if (!virt_dev->tt_info)
2414                 return;
2415
2416         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2417         if (old_active_eps == 0 &&
2418                                 virt_dev->tt_info->active_eps != 0) {
2419                 rh_bw_info->num_active_tts += 1;
2420                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2421         } else if (old_active_eps != 0 &&
2422                                 virt_dev->tt_info->active_eps == 0) {
2423                 rh_bw_info->num_active_tts -= 1;
2424                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2425         }
2426 }
2427
2428 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2429                 struct xhci_virt_device *virt_dev,
2430                 struct xhci_container_ctx *in_ctx)
2431 {
2432         struct xhci_bw_info ep_bw_info[31];
2433         int i;
2434         struct xhci_input_control_ctx *ctrl_ctx;
2435         int old_active_eps = 0;
2436
2437         if (virt_dev->tt_info)
2438                 old_active_eps = virt_dev->tt_info->active_eps;
2439
2440         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2441
2442         for (i = 0; i < 31; i++) {
2443                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2444                         continue;
2445
2446                 /* Make a copy of the BW info in case we need to revert this */
2447                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2448                                 sizeof(ep_bw_info[i]));
2449                 /* Drop the endpoint from the interval table if the endpoint is
2450                  * being dropped or changed.
2451                  */
2452                 if (EP_IS_DROPPED(ctrl_ctx, i))
2453                         xhci_drop_ep_from_interval_table(xhci,
2454                                         &virt_dev->eps[i].bw_info,
2455                                         virt_dev->bw_table,
2456                                         virt_dev->udev,
2457                                         &virt_dev->eps[i],
2458                                         virt_dev->tt_info);
2459         }
2460         /* Overwrite the information stored in the endpoints' bw_info */
2461         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2462         for (i = 0; i < 31; i++) {
2463                 /* Add any changed or added endpoints to the interval table */
2464                 if (EP_IS_ADDED(ctrl_ctx, i))
2465                         xhci_add_ep_to_interval_table(xhci,
2466                                         &virt_dev->eps[i].bw_info,
2467                                         virt_dev->bw_table,
2468                                         virt_dev->udev,
2469                                         &virt_dev->eps[i],
2470                                         virt_dev->tt_info);
2471         }
2472
2473         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2474                 /* Ok, this fits in the bandwidth we have.
2475                  * Update the number of active TTs.
2476                  */
2477                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2478                 return 0;
2479         }
2480
2481         /* We don't have enough bandwidth for this, revert the stored info. */
2482         for (i = 0; i < 31; i++) {
2483                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2484                         continue;
2485
2486                 /* Drop the new copies of any added or changed endpoints from
2487                  * the interval table.
2488                  */
2489                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2490                         xhci_drop_ep_from_interval_table(xhci,
2491                                         &virt_dev->eps[i].bw_info,
2492                                         virt_dev->bw_table,
2493                                         virt_dev->udev,
2494                                         &virt_dev->eps[i],
2495                                         virt_dev->tt_info);
2496                 }
2497                 /* Revert the endpoint back to its old information */
2498                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2499                                 sizeof(ep_bw_info[i]));
2500                 /* Add any changed or dropped endpoints back into the table */
2501                 if (EP_IS_DROPPED(ctrl_ctx, i))
2502                         xhci_add_ep_to_interval_table(xhci,
2503                                         &virt_dev->eps[i].bw_info,
2504                                         virt_dev->bw_table,
2505                                         virt_dev->udev,
2506                                         &virt_dev->eps[i],
2507                                         virt_dev->tt_info);
2508         }
2509         return -ENOMEM;
2510 }
2511
2512
2513 /* Issue a configure endpoint command or evaluate context command
2514  * and wait for it to finish.
2515  */
2516 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2517                 struct usb_device *udev,
2518                 struct xhci_command *command,
2519                 bool ctx_change, bool must_succeed)
2520 {
2521         int ret;
2522         int timeleft;
2523         unsigned long flags;
2524         struct xhci_container_ctx *in_ctx;
2525         struct completion *cmd_completion;
2526         u32 *cmd_status;
2527         struct xhci_virt_device *virt_dev;
2528         union xhci_trb *cmd_trb;
2529
2530         spin_lock_irqsave(&xhci->lock, flags);
2531         virt_dev = xhci->devs[udev->slot_id];
2532
2533         if (command)
2534                 in_ctx = command->in_ctx;
2535         else
2536                 in_ctx = virt_dev->in_ctx;
2537
2538         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2539                         xhci_reserve_host_resources(xhci, in_ctx)) {
2540                 spin_unlock_irqrestore(&xhci->lock, flags);
2541                 xhci_warn(xhci, "Not enough host resources, "
2542                                 "active endpoint contexts = %u\n",
2543                                 xhci->num_active_eps);
2544                 return -ENOMEM;
2545         }
2546         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2547                         xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2548                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2549                         xhci_free_host_resources(xhci, in_ctx);
2550                 spin_unlock_irqrestore(&xhci->lock, flags);
2551                 xhci_warn(xhci, "Not enough bandwidth\n");
2552                 return -ENOMEM;
2553         }
2554
2555         if (command) {
2556                 cmd_completion = command->completion;
2557                 cmd_status = &command->status;
2558                 command->command_trb = xhci->cmd_ring->enqueue;
2559
2560                 /* Enqueue pointer can be left pointing to the link TRB,
2561                  * we must handle that
2562                  */
2563                 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2564                         command->command_trb =
2565                                 xhci->cmd_ring->enq_seg->next->trbs;
2566
2567                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2568         } else {
2569                 cmd_completion = &virt_dev->cmd_completion;
2570                 cmd_status = &virt_dev->cmd_status;
2571         }
2572         init_completion(cmd_completion);
2573
2574         cmd_trb = xhci->cmd_ring->dequeue;
2575         if (!ctx_change)
2576                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2577                                 udev->slot_id, must_succeed);
2578         else
2579                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2580                                 udev->slot_id);
2581         if (ret < 0) {
2582                 if (command)
2583                         list_del(&command->cmd_list);
2584                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2585                         xhci_free_host_resources(xhci, in_ctx);
2586                 spin_unlock_irqrestore(&xhci->lock, flags);
2587                 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2588                 return -ENOMEM;
2589         }
2590         xhci_ring_cmd_db(xhci);
2591         spin_unlock_irqrestore(&xhci->lock, flags);
2592
2593         /* Wait for the configure endpoint command to complete */
2594         timeleft = wait_for_completion_interruptible_timeout(
2595                         cmd_completion,
2596                         XHCI_CMD_DEFAULT_TIMEOUT);
2597         if (timeleft <= 0) {
2598                 xhci_warn(xhci, "%s while waiting for %s command\n",
2599                                 timeleft == 0 ? "Timeout" : "Signal",
2600                                 ctx_change == 0 ?
2601                                         "configure endpoint" :
2602                                         "evaluate context");
2603                 /* cancel the configure endpoint command */
2604                 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2605                 if (ret < 0)
2606                         return ret;
2607                 return -ETIME;
2608         }
2609
2610         if (!ctx_change)
2611                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2612         else
2613                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2614
2615         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2616                 spin_lock_irqsave(&xhci->lock, flags);
2617                 /* If the command failed, remove the reserved resources.
2618                  * Otherwise, clean up the estimate to include dropped eps.
2619                  */
2620                 if (ret)
2621                         xhci_free_host_resources(xhci, in_ctx);
2622                 else
2623                         xhci_finish_resource_reservation(xhci, in_ctx);
2624                 spin_unlock_irqrestore(&xhci->lock, flags);
2625         }
2626         return ret;
2627 }
2628
2629 /* Called after one or more calls to xhci_add_endpoint() or
2630  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2631  * to call xhci_reset_bandwidth().
2632  *
2633  * Since we are in the middle of changing either configuration or
2634  * installing a new alt setting, the USB core won't allow URBs to be
2635  * enqueued for any endpoint on the old config or interface.  Nothing
2636  * else should be touching the xhci->devs[slot_id] structure, so we
2637  * don't need to take the xhci->lock for manipulating that.
2638  */
2639 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2640 {
2641         int i;
2642         int ret = 0;
2643         struct xhci_hcd *xhci;
2644         struct xhci_virt_device *virt_dev;
2645         struct xhci_input_control_ctx *ctrl_ctx;
2646         struct xhci_slot_ctx *slot_ctx;
2647
2648         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2649         if (ret <= 0)
2650                 return ret;
2651         xhci = hcd_to_xhci(hcd);
2652         if (xhci->xhc_state & XHCI_STATE_DYING)
2653                 return -ENODEV;
2654
2655         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2656         virt_dev = xhci->devs[udev->slot_id];
2657
2658         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2659         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2660         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2661         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2662         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2663
2664         /* Don't issue the command if there's no endpoints to update. */
2665         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2666                         ctrl_ctx->drop_flags == 0)
2667                 return 0;
2668
2669         xhci_dbg(xhci, "New Input Control Context:\n");
2670         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2671         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2672                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2673
2674         ret = xhci_configure_endpoint(xhci, udev, NULL,
2675                         false, false);
2676         if (ret) {
2677                 /* Callee should call reset_bandwidth() */
2678                 return ret;
2679         }
2680
2681         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2682         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2683                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2684
2685         /* Free any rings that were dropped, but not changed. */
2686         for (i = 1; i < 31; ++i) {
2687                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2688                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2689                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2690         }
2691         xhci_zero_in_ctx(xhci, virt_dev);
2692         /*
2693          * Install any rings for completely new endpoints or changed endpoints,
2694          * and free or cache any old rings from changed endpoints.
2695          */
2696         for (i = 1; i < 31; ++i) {
2697                 if (!virt_dev->eps[i].new_ring)
2698                         continue;
2699                 /* Only cache or free the old ring if it exists.
2700                  * It may not if this is the first add of an endpoint.
2701                  */
2702                 if (virt_dev->eps[i].ring) {
2703                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2704                 }
2705                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2706                 virt_dev->eps[i].new_ring = NULL;
2707         }
2708
2709         return ret;
2710 }
2711
2712 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2713 {
2714         struct xhci_hcd *xhci;
2715         struct xhci_virt_device *virt_dev;
2716         int i, ret;
2717
2718         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2719         if (ret <= 0)
2720                 return;
2721         xhci = hcd_to_xhci(hcd);
2722
2723         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2724         virt_dev = xhci->devs[udev->slot_id];
2725         /* Free any rings allocated for added endpoints */
2726         for (i = 0; i < 31; ++i) {
2727                 if (virt_dev->eps[i].new_ring) {
2728                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2729                         virt_dev->eps[i].new_ring = NULL;
2730                 }
2731         }
2732         xhci_zero_in_ctx(xhci, virt_dev);
2733 }
2734
2735 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2736                 struct xhci_container_ctx *in_ctx,
2737                 struct xhci_container_ctx *out_ctx,
2738                 u32 add_flags, u32 drop_flags)
2739 {
2740         struct xhci_input_control_ctx *ctrl_ctx;
2741         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2742         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2743         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2744         xhci_slot_copy(xhci, in_ctx, out_ctx);
2745         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2746
2747         xhci_dbg(xhci, "Input Context:\n");
2748         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2749 }
2750
2751 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2752                 unsigned int slot_id, unsigned int ep_index,
2753                 struct xhci_dequeue_state *deq_state)
2754 {
2755         struct xhci_container_ctx *in_ctx;
2756         struct xhci_ep_ctx *ep_ctx;
2757         u32 added_ctxs;
2758         dma_addr_t addr;
2759
2760         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2761                         xhci->devs[slot_id]->out_ctx, ep_index);
2762         in_ctx = xhci->devs[slot_id]->in_ctx;
2763         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2764         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2765                         deq_state->new_deq_ptr);
2766         if (addr == 0) {
2767                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2768                                 "reset ep command\n");
2769                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2770                                 deq_state->new_deq_seg,
2771                                 deq_state->new_deq_ptr);
2772                 return;
2773         }
2774         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2775
2776         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2777         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2778                         xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2779 }
2780
2781 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2782                 struct usb_device *udev, unsigned int ep_index)
2783 {
2784         struct xhci_dequeue_state deq_state;
2785         struct xhci_virt_ep *ep;
2786
2787         xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2788         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2789         /* We need to move the HW's dequeue pointer past this TD,
2790          * or it will attempt to resend it on the next doorbell ring.
2791          */
2792         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2793                         ep_index, ep->stopped_stream, ep->stopped_td,
2794                         &deq_state);
2795
2796         /* HW with the reset endpoint quirk will use the saved dequeue state to
2797          * issue a configure endpoint command later.
2798          */
2799         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2800                 xhci_dbg(xhci, "Queueing new dequeue state\n");
2801                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2802                                 ep_index, ep->stopped_stream, &deq_state);
2803         } else {
2804                 /* Better hope no one uses the input context between now and the
2805                  * reset endpoint completion!
2806                  * XXX: No idea how this hardware will react when stream rings
2807                  * are enabled.
2808                  */
2809                 xhci_dbg(xhci, "Setting up input context for "
2810                                 "configure endpoint command\n");
2811                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2812                                 ep_index, &deq_state);
2813         }
2814 }
2815
2816 /* Deal with stalled endpoints.  The core should have sent the control message
2817  * to clear the halt condition.  However, we need to make the xHCI hardware
2818  * reset its sequence number, since a device will expect a sequence number of
2819  * zero after the halt condition is cleared.
2820  * Context: in_interrupt
2821  */
2822 void xhci_endpoint_reset(struct usb_hcd *hcd,
2823                 struct usb_host_endpoint *ep)
2824 {
2825         struct xhci_hcd *xhci;
2826         struct usb_device *udev;
2827         unsigned int ep_index;
2828         unsigned long flags;
2829         int ret;
2830         struct xhci_virt_ep *virt_ep;
2831
2832         xhci = hcd_to_xhci(hcd);
2833         udev = (struct usb_device *) ep->hcpriv;
2834         /* Called with a root hub endpoint (or an endpoint that wasn't added
2835          * with xhci_add_endpoint()
2836          */
2837         if (!ep->hcpriv)
2838                 return;
2839         ep_index = xhci_get_endpoint_index(&ep->desc);
2840         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2841         if (!virt_ep->stopped_td) {
2842                 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2843                                 ep->desc.bEndpointAddress);
2844                 return;
2845         }
2846         if (usb_endpoint_xfer_control(&ep->desc)) {
2847                 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2848                 return;
2849         }
2850
2851         xhci_dbg(xhci, "Queueing reset endpoint command\n");
2852         spin_lock_irqsave(&xhci->lock, flags);
2853         ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2854         /*
2855          * Can't change the ring dequeue pointer until it's transitioned to the
2856          * stopped state, which is only upon a successful reset endpoint
2857          * command.  Better hope that last command worked!
2858          */
2859         if (!ret) {
2860                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2861                 kfree(virt_ep->stopped_td);
2862                 xhci_ring_cmd_db(xhci);
2863         }
2864         virt_ep->stopped_td = NULL;
2865         virt_ep->stopped_trb = NULL;
2866         virt_ep->stopped_stream = 0;
2867         spin_unlock_irqrestore(&xhci->lock, flags);
2868
2869         if (ret)
2870                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2871 }
2872
2873 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2874                 struct usb_device *udev, struct usb_host_endpoint *ep,
2875                 unsigned int slot_id)
2876 {
2877         int ret;
2878         unsigned int ep_index;
2879         unsigned int ep_state;
2880
2881         if (!ep)
2882                 return -EINVAL;
2883         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2884         if (ret <= 0)
2885                 return -EINVAL;
2886         if (ep->ss_ep_comp.bmAttributes == 0) {
2887                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2888                                 " descriptor for ep 0x%x does not support streams\n",
2889                                 ep->desc.bEndpointAddress);
2890                 return -EINVAL;
2891         }
2892
2893         ep_index = xhci_get_endpoint_index(&ep->desc);
2894         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2895         if (ep_state & EP_HAS_STREAMS ||
2896                         ep_state & EP_GETTING_STREAMS) {
2897                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2898                                 "already has streams set up.\n",
2899                                 ep->desc.bEndpointAddress);
2900                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2901                                 "dynamic stream context array reallocation.\n");
2902                 return -EINVAL;
2903         }
2904         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2905                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2906                                 "endpoint 0x%x; URBs are pending.\n",
2907                                 ep->desc.bEndpointAddress);
2908                 return -EINVAL;
2909         }
2910         return 0;
2911 }
2912
2913 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2914                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2915 {
2916         unsigned int max_streams;
2917
2918         /* The stream context array size must be a power of two */
2919         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2920         /*
2921          * Find out how many primary stream array entries the host controller
2922          * supports.  Later we may use secondary stream arrays (similar to 2nd
2923          * level page entries), but that's an optional feature for xHCI host
2924          * controllers. xHCs must support at least 4 stream IDs.
2925          */
2926         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2927         if (*num_stream_ctxs > max_streams) {
2928                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2929                                 max_streams);
2930                 *num_stream_ctxs = max_streams;
2931                 *num_streams = max_streams;
2932         }
2933 }
2934
2935 /* Returns an error code if one of the endpoint already has streams.
2936  * This does not change any data structures, it only checks and gathers
2937  * information.
2938  */
2939 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2940                 struct usb_device *udev,
2941                 struct usb_host_endpoint **eps, unsigned int num_eps,
2942                 unsigned int *num_streams, u32 *changed_ep_bitmask)
2943 {
2944         unsigned int max_streams;
2945         unsigned int endpoint_flag;
2946         int i;
2947         int ret;
2948
2949         for (i = 0; i < num_eps; i++) {
2950                 ret = xhci_check_streams_endpoint(xhci, udev,
2951                                 eps[i], udev->slot_id);
2952                 if (ret < 0)
2953                         return ret;
2954
2955                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2956                 if (max_streams < (*num_streams - 1)) {
2957                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2958                                         eps[i]->desc.bEndpointAddress,
2959                                         max_streams);
2960                         *num_streams = max_streams+1;
2961                 }
2962
2963                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2964                 if (*changed_ep_bitmask & endpoint_flag)
2965                         return -EINVAL;
2966                 *changed_ep_bitmask |= endpoint_flag;
2967         }
2968         return 0;
2969 }
2970
2971 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2972                 struct usb_device *udev,
2973                 struct usb_host_endpoint **eps, unsigned int num_eps)
2974 {
2975         u32 changed_ep_bitmask = 0;
2976         unsigned int slot_id;
2977         unsigned int ep_index;
2978         unsigned int ep_state;
2979         int i;
2980
2981         slot_id = udev->slot_id;
2982         if (!xhci->devs[slot_id])
2983                 return 0;
2984
2985         for (i = 0; i < num_eps; i++) {
2986                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2987                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2988                 /* Are streams already being freed for the endpoint? */
2989                 if (ep_state & EP_GETTING_NO_STREAMS) {
2990                         xhci_warn(xhci, "WARN Can't disable streams for "
2991                                         "endpoint 0x%x\n, "
2992                                         "streams are being disabled already.",
2993                                         eps[i]->desc.bEndpointAddress);
2994                         return 0;
2995                 }
2996                 /* Are there actually any streams to free? */
2997                 if (!(ep_state & EP_HAS_STREAMS) &&
2998                                 !(ep_state & EP_GETTING_STREAMS)) {
2999                         xhci_warn(xhci, "WARN Can't disable streams for "
3000                                         "endpoint 0x%x\n, "
3001                                         "streams are already disabled!",
3002                                         eps[i]->desc.bEndpointAddress);
3003                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3004                                         "with non-streams endpoint\n");
3005                         return 0;
3006                 }
3007                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3008         }
3009         return changed_ep_bitmask;
3010 }
3011
3012 /*
3013  * The USB device drivers use this function (though the HCD interface in USB
3014  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3015  * coordinate mass storage command queueing across multiple endpoints (basically
3016  * a stream ID == a task ID).
3017  *
3018  * Setting up streams involves allocating the same size stream context array
3019  * for each endpoint and issuing a configure endpoint command for all endpoints.
3020  *
3021  * Don't allow the call to succeed if one endpoint only supports one stream
3022  * (which means it doesn't support streams at all).
3023  *
3024  * Drivers may get less stream IDs than they asked for, if the host controller
3025  * hardware or endpoints claim they can't support the number of requested
3026  * stream IDs.
3027  */
3028 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3029                 struct usb_host_endpoint **eps, unsigned int num_eps,
3030                 unsigned int num_streams, gfp_t mem_flags)
3031 {
3032         int i, ret;
3033         struct xhci_hcd *xhci;
3034         struct xhci_virt_device *vdev;
3035         struct xhci_command *config_cmd;
3036         unsigned int ep_index;
3037         unsigned int num_stream_ctxs;
3038         unsigned long flags;
3039         u32 changed_ep_bitmask = 0;
3040
3041         if (!eps)
3042                 return -EINVAL;
3043
3044         /* Add one to the number of streams requested to account for
3045          * stream 0 that is reserved for xHCI usage.
3046          */
3047         num_streams += 1;
3048         xhci = hcd_to_xhci(hcd);
3049         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3050                         num_streams);
3051
3052         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3053         if (!config_cmd) {
3054                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3055                 return -ENOMEM;
3056         }
3057
3058         /* Check to make sure all endpoints are not already configured for
3059          * streams.  While we're at it, find the maximum number of streams that
3060          * all the endpoints will support and check for duplicate endpoints.
3061          */
3062         spin_lock_irqsave(&xhci->lock, flags);
3063         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3064                         num_eps, &num_streams, &changed_ep_bitmask);
3065         if (ret < 0) {
3066                 xhci_free_command(xhci, config_cmd);
3067                 spin_unlock_irqrestore(&xhci->lock, flags);
3068                 return ret;
3069         }
3070         if (num_streams <= 1) {
3071                 xhci_warn(xhci, "WARN: endpoints can't handle "
3072                                 "more than one stream.\n");
3073                 xhci_free_command(xhci, config_cmd);
3074                 spin_unlock_irqrestore(&xhci->lock, flags);
3075                 return -EINVAL;
3076         }
3077         vdev = xhci->devs[udev->slot_id];
3078         /* Mark each endpoint as being in transition, so
3079          * xhci_urb_enqueue() will reject all URBs.
3080          */
3081         for (i = 0; i < num_eps; i++) {
3082                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3083                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3084         }
3085         spin_unlock_irqrestore(&xhci->lock, flags);
3086
3087         /* Setup internal data structures and allocate HW data structures for
3088          * streams (but don't install the HW structures in the input context
3089          * until we're sure all memory allocation succeeded).
3090          */
3091         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3092         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3093                         num_stream_ctxs, num_streams);
3094
3095         for (i = 0; i < num_eps; i++) {
3096                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3097                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3098                                 num_stream_ctxs,
3099                                 num_streams, mem_flags);
3100                 if (!vdev->eps[ep_index].stream_info)
3101                         goto cleanup;
3102                 /* Set maxPstreams in endpoint context and update deq ptr to
3103                  * point to stream context array. FIXME
3104                  */
3105         }
3106
3107         /* Set up the input context for a configure endpoint command. */
3108         for (i = 0; i < num_eps; i++) {
3109                 struct xhci_ep_ctx *ep_ctx;
3110
3111                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3112                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3113
3114                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3115                                 vdev->out_ctx, ep_index);
3116                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3117                                 vdev->eps[ep_index].stream_info);
3118         }
3119         /* Tell the HW to drop its old copy of the endpoint context info
3120          * and add the updated copy from the input context.
3121          */
3122         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3123                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3124
3125         /* Issue and wait for the configure endpoint command */
3126         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3127                         false, false);
3128
3129         /* xHC rejected the configure endpoint command for some reason, so we
3130          * leave the old ring intact and free our internal streams data
3131          * structure.
3132          */
3133         if (ret < 0)
3134                 goto cleanup;
3135
3136         spin_lock_irqsave(&xhci->lock, flags);
3137         for (i = 0; i < num_eps; i++) {
3138                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3139                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3140                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3141                          udev->slot_id, ep_index);
3142                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3143         }
3144         xhci_free_command(xhci, config_cmd);
3145         spin_unlock_irqrestore(&xhci->lock, flags);
3146
3147         /* Subtract 1 for stream 0, which drivers can't use */
3148         return num_streams - 1;
3149
3150 cleanup:
3151         /* If it didn't work, free the streams! */
3152         for (i = 0; i < num_eps; i++) {
3153                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3154                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3155                 vdev->eps[ep_index].stream_info = NULL;
3156                 /* FIXME Unset maxPstreams in endpoint context and
3157                  * update deq ptr to point to normal string ring.
3158                  */
3159                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3160                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3161                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3162         }
3163         xhci_free_command(xhci, config_cmd);
3164         return -ENOMEM;
3165 }
3166
3167 /* Transition the endpoint from using streams to being a "normal" endpoint
3168  * without streams.
3169  *
3170  * Modify the endpoint context state, submit a configure endpoint command,
3171  * and free all endpoint rings for streams if that completes successfully.
3172  */
3173 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3174                 struct usb_host_endpoint **eps, unsigned int num_eps,
3175                 gfp_t mem_flags)
3176 {
3177         int i, ret;
3178         struct xhci_hcd *xhci;
3179         struct xhci_virt_device *vdev;
3180         struct xhci_command *command;
3181         unsigned int ep_index;
3182         unsigned long flags;
3183         u32 changed_ep_bitmask;
3184
3185         xhci = hcd_to_xhci(hcd);
3186         vdev = xhci->devs[udev->slot_id];
3187
3188         /* Set up a configure endpoint command to remove the streams rings */
3189         spin_lock_irqsave(&xhci->lock, flags);
3190         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3191                         udev, eps, num_eps);
3192         if (changed_ep_bitmask == 0) {
3193                 spin_unlock_irqrestore(&xhci->lock, flags);
3194                 return -EINVAL;
3195         }
3196
3197         /* Use the xhci_command structure from the first endpoint.  We may have
3198          * allocated too many, but the driver may call xhci_free_streams() for
3199          * each endpoint it grouped into one call to xhci_alloc_streams().
3200          */
3201         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3202         command = vdev->eps[ep_index].stream_info->free_streams_command;
3203         for (i = 0; i < num_eps; i++) {
3204                 struct xhci_ep_ctx *ep_ctx;
3205
3206                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3207                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3208                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3209                         EP_GETTING_NO_STREAMS;
3210
3211                 xhci_endpoint_copy(xhci, command->in_ctx,
3212                                 vdev->out_ctx, ep_index);
3213                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3214                                 &vdev->eps[ep_index]);
3215         }
3216         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3217                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3218         spin_unlock_irqrestore(&xhci->lock, flags);
3219
3220         /* Issue and wait for the configure endpoint command,
3221          * which must succeed.
3222          */
3223         ret = xhci_configure_endpoint(xhci, udev, command,
3224                         false, true);
3225
3226         /* xHC rejected the configure endpoint command for some reason, so we
3227          * leave the streams rings intact.
3228          */
3229         if (ret < 0)
3230                 return ret;
3231
3232         spin_lock_irqsave(&xhci->lock, flags);
3233         for (i = 0; i < num_eps; i++) {
3234                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3235                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3236                 vdev->eps[ep_index].stream_info = NULL;
3237                 /* FIXME Unset maxPstreams in endpoint context and
3238                  * update deq ptr to point to normal string ring.
3239                  */
3240                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3241                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3242         }
3243         spin_unlock_irqrestore(&xhci->lock, flags);
3244
3245         return 0;
3246 }
3247
3248 /*
3249  * Deletes endpoint resources for endpoints that were active before a Reset
3250  * Device command, or a Disable Slot command.  The Reset Device command leaves
3251  * the control endpoint intact, whereas the Disable Slot command deletes it.
3252  *
3253  * Must be called with xhci->lock held.
3254  */
3255 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3256         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3257 {
3258         int i;
3259         unsigned int num_dropped_eps = 0;
3260         unsigned int drop_flags = 0;
3261
3262         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3263                 if (virt_dev->eps[i].ring) {
3264                         drop_flags |= 1 << i;
3265                         num_dropped_eps++;
3266                 }
3267         }
3268         xhci->num_active_eps -= num_dropped_eps;
3269         if (num_dropped_eps)
3270                 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3271                                 "%u now active.\n",
3272                                 num_dropped_eps, drop_flags,
3273                                 xhci->num_active_eps);
3274 }
3275
3276 /*
3277  * This submits a Reset Device Command, which will set the device state to 0,
3278  * set the device address to 0, and disable all the endpoints except the default
3279  * control endpoint.  The USB core should come back and call
3280  * xhci_address_device(), and then re-set up the configuration.  If this is
3281  * called because of a usb_reset_and_verify_device(), then the old alternate
3282  * settings will be re-installed through the normal bandwidth allocation
3283  * functions.
3284  *
3285  * Wait for the Reset Device command to finish.  Remove all structures
3286  * associated with the endpoints that were disabled.  Clear the input device
3287  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3288  *
3289  * If the virt_dev to be reset does not exist or does not match the udev,
3290  * it means the device is lost, possibly due to the xHC restore error and
3291  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3292  * re-allocate the device.
3293  */
3294 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3295 {
3296         int ret, i;
3297         unsigned long flags;
3298         struct xhci_hcd *xhci;
3299         unsigned int slot_id;
3300         struct xhci_virt_device *virt_dev;
3301         struct xhci_command *reset_device_cmd;
3302         int timeleft;
3303         int last_freed_endpoint;
3304         struct xhci_slot_ctx *slot_ctx;
3305         int old_active_eps = 0;
3306
3307         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3308         if (ret <= 0)
3309                 return ret;
3310         xhci = hcd_to_xhci(hcd);
3311         slot_id = udev->slot_id;
3312         virt_dev = xhci->devs[slot_id];
3313         if (!virt_dev) {
3314                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3315                                 "not exist. Re-allocate the device\n", slot_id);
3316                 ret = xhci_alloc_dev(hcd, udev);
3317                 if (ret == 1)
3318                         return 0;
3319                 else
3320                         return -EINVAL;
3321         }
3322
3323         if (virt_dev->udev != udev) {
3324                 /* If the virt_dev and the udev does not match, this virt_dev
3325                  * may belong to another udev.
3326                  * Re-allocate the device.
3327                  */
3328                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3329                                 "not match the udev. Re-allocate the device\n",
3330                                 slot_id);
3331                 ret = xhci_alloc_dev(hcd, udev);
3332                 if (ret == 1)
3333                         return 0;
3334                 else
3335                         return -EINVAL;
3336         }
3337
3338         /* If device is not setup, there is no point in resetting it */
3339         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3340         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3341                                                 SLOT_STATE_DISABLED)
3342                 return 0;
3343
3344         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3345         /* Allocate the command structure that holds the struct completion.
3346          * Assume we're in process context, since the normal device reset
3347          * process has to wait for the device anyway.  Storage devices are
3348          * reset as part of error handling, so use GFP_NOIO instead of
3349          * GFP_KERNEL.
3350          */
3351         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3352         if (!reset_device_cmd) {
3353                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3354                 return -ENOMEM;
3355         }
3356
3357         /* Attempt to submit the Reset Device command to the command ring */
3358         spin_lock_irqsave(&xhci->lock, flags);
3359         reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3360
3361         /* Enqueue pointer can be left pointing to the link TRB,
3362          * we must handle that
3363          */
3364         if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3365                 reset_device_cmd->command_trb =
3366                         xhci->cmd_ring->enq_seg->next->trbs;
3367
3368         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3369         ret = xhci_queue_reset_device(xhci, slot_id);
3370         if (ret) {
3371                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3372                 list_del(&reset_device_cmd->cmd_list);
3373                 spin_unlock_irqrestore(&xhci->lock, flags);
3374                 goto command_cleanup;
3375         }
3376         xhci_ring_cmd_db(xhci);
3377         spin_unlock_irqrestore(&xhci->lock, flags);
3378
3379         /* Wait for the Reset Device command to finish */
3380         timeleft = wait_for_completion_interruptible_timeout(
3381                         reset_device_cmd->completion,
3382                         USB_CTRL_SET_TIMEOUT);
3383         if (timeleft <= 0) {
3384                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3385                                 timeleft == 0 ? "Timeout" : "Signal");
3386                 spin_lock_irqsave(&xhci->lock, flags);
3387                 /* The timeout might have raced with the event ring handler, so
3388                  * only delete from the list if the item isn't poisoned.
3389                  */
3390                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3391                         list_del(&reset_device_cmd->cmd_list);
3392                 spin_unlock_irqrestore(&xhci->lock, flags);
3393                 ret = -ETIME;
3394                 goto command_cleanup;
3395         }
3396
3397         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3398          * unless we tried to reset a slot ID that wasn't enabled,
3399          * or the device wasn't in the addressed or configured state.
3400          */
3401         ret = reset_device_cmd->status;
3402         switch (ret) {
3403         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3404         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3405                 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3406                                 slot_id,
3407                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3408                 xhci_info(xhci, "Not freeing device rings.\n");
3409                 /* Don't treat this as an error.  May change my mind later. */
3410                 ret = 0;
3411                 goto command_cleanup;
3412         case COMP_SUCCESS:
3413                 xhci_dbg(xhci, "Successful reset device command.\n");
3414                 break;
3415         default:
3416                 if (xhci_is_vendor_info_code(xhci, ret))
3417                         break;
3418                 xhci_warn(xhci, "Unknown completion code %u for "
3419                                 "reset device command.\n", ret);
3420                 ret = -EINVAL;
3421                 goto command_cleanup;
3422         }
3423
3424         /* Free up host controller endpoint resources */
3425         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3426                 spin_lock_irqsave(&xhci->lock, flags);
3427                 /* Don't delete the default control endpoint resources */
3428                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3429                 spin_unlock_irqrestore(&xhci->lock, flags);
3430         }
3431
3432         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3433         last_freed_endpoint = 1;
3434         for (i = 1; i < 31; ++i) {
3435                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3436
3437                 if (ep->ep_state & EP_HAS_STREAMS) {
3438                         xhci_free_stream_info(xhci, ep->stream_info);
3439                         ep->stream_info = NULL;
3440                         ep->ep_state &= ~EP_HAS_STREAMS;
3441                 }
3442
3443                 if (ep->ring) {
3444                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3445                         last_freed_endpoint = i;
3446                 }
3447                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3448                         xhci_drop_ep_from_interval_table(xhci,
3449                                         &virt_dev->eps[i].bw_info,
3450                                         virt_dev->bw_table,
3451                                         udev,
3452                                         &virt_dev->eps[i],
3453                                         virt_dev->tt_info);
3454                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3455         }
3456         /* If necessary, update the number of active TTs on this root port */
3457         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3458
3459         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3460         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3461         ret = 0;
3462
3463 command_cleanup:
3464         xhci_free_command(xhci, reset_device_cmd);
3465         return ret;
3466 }
3467
3468 /*
3469  * At this point, the struct usb_device is about to go away, the device has
3470  * disconnected, and all traffic has been stopped and the endpoints have been
3471  * disabled.  Free any HC data structures associated with that device.
3472  */
3473 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3474 {
3475         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3476         struct xhci_virt_device *virt_dev;
3477         unsigned long flags;
3478         u32 state;
3479         int i, ret;
3480
3481         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3482         /* If the host is halted due to driver unload, we still need to free the
3483          * device.
3484          */
3485         if (ret <= 0 && ret != -ENODEV)
3486                 return;
3487
3488         virt_dev = xhci->devs[udev->slot_id];
3489
3490         /* Stop any wayward timer functions (which may grab the lock) */
3491         for (i = 0; i < 31; ++i) {
3492                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3493                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3494         }
3495
3496         if (udev->usb2_hw_lpm_enabled) {
3497                 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3498                 udev->usb2_hw_lpm_enabled = 0;
3499         }
3500
3501         spin_lock_irqsave(&xhci->lock, flags);
3502         /* Don't disable the slot if the host controller is dead. */
3503         state = xhci_readl(xhci, &xhci->op_regs->status);
3504         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3505                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3506                 xhci_free_virt_device(xhci, udev->slot_id);
3507                 spin_unlock_irqrestore(&xhci->lock, flags);
3508                 return;
3509         }
3510
3511         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3512                 spin_unlock_irqrestore(&xhci->lock, flags);
3513                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3514                 return;
3515         }
3516         xhci_ring_cmd_db(xhci);
3517         spin_unlock_irqrestore(&xhci->lock, flags);
3518         /*
3519          * Event command completion handler will free any data structures
3520          * associated with the slot.  XXX Can free sleep?
3521          */
3522 }
3523
3524 /*
3525  * Checks if we have enough host controller resources for the default control
3526  * endpoint.
3527  *
3528  * Must be called with xhci->lock held.
3529  */
3530 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3531 {
3532         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3533                 xhci_dbg(xhci, "Not enough ep ctxs: "
3534                                 "%u active, need to add 1, limit is %u.\n",
3535                                 xhci->num_active_eps, xhci->limit_active_eps);
3536                 return -ENOMEM;
3537         }
3538         xhci->num_active_eps += 1;
3539         xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3540                         xhci->num_active_eps);
3541         return 0;
3542 }
3543
3544
3545 /*
3546  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3547  * timed out, or allocating memory failed.  Returns 1 on success.
3548  */
3549 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3550 {
3551         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3552         unsigned long flags;
3553         int timeleft;
3554         int ret;
3555         union xhci_trb *cmd_trb;
3556
3557         spin_lock_irqsave(&xhci->lock, flags);
3558         cmd_trb = xhci->cmd_ring->dequeue;
3559         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3560         if (ret) {
3561                 spin_unlock_irqrestore(&xhci->lock, flags);
3562                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3563                 return 0;
3564         }
3565         xhci_ring_cmd_db(xhci);
3566         spin_unlock_irqrestore(&xhci->lock, flags);
3567
3568         /* XXX: how much time for xHC slot assignment? */
3569         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3570                         XHCI_CMD_DEFAULT_TIMEOUT);
3571         if (timeleft <= 0) {
3572                 xhci_warn(xhci, "%s while waiting for a slot\n",
3573                                 timeleft == 0 ? "Timeout" : "Signal");
3574                 /* cancel the enable slot request */
3575                 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3576         }
3577
3578         if (!xhci->slot_id) {
3579                 xhci_err(xhci, "Error while assigning device slot ID\n");
3580                 return 0;
3581         }
3582
3583         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3584                 spin_lock_irqsave(&xhci->lock, flags);
3585                 ret = xhci_reserve_host_control_ep_resources(xhci);
3586                 if (ret) {
3587                         spin_unlock_irqrestore(&xhci->lock, flags);
3588                         xhci_warn(xhci, "Not enough host resources, "
3589                                         "active endpoint contexts = %u\n",
3590                                         xhci->num_active_eps);
3591                         goto disable_slot;
3592                 }
3593                 spin_unlock_irqrestore(&xhci->lock, flags);
3594         }
3595         /* Use GFP_NOIO, since this function can be called from
3596          * xhci_discover_or_reset_device(), which may be called as part of
3597          * mass storage driver error handling.
3598          */
3599         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3600                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3601                 goto disable_slot;
3602         }
3603         udev->slot_id = xhci->slot_id;
3604         /* Is this a LS or FS device under a HS hub? */
3605         /* Hub or peripherial? */
3606         return 1;
3607
3608 disable_slot:
3609         /* Disable slot, if we can do it without mem alloc */
3610         spin_lock_irqsave(&xhci->lock, flags);
3611         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3612                 xhci_ring_cmd_db(xhci);
3613         spin_unlock_irqrestore(&xhci->lock, flags);
3614         return 0;
3615 }
3616
3617 /*
3618  * Issue an Address Device command (which will issue a SetAddress request to
3619  * the device).
3620  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3621  * we should only issue and wait on one address command at the same time.
3622  *
3623  * We add one to the device address issued by the hardware because the USB core
3624  * uses address 1 for the root hubs (even though they're not really devices).
3625  */
3626 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3627 {
3628         unsigned long flags;
3629         int timeleft;
3630         struct xhci_virt_device *virt_dev;
3631         int ret = 0;
3632         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3633         struct xhci_slot_ctx *slot_ctx;
3634         struct xhci_input_control_ctx *ctrl_ctx;
3635         u64 temp_64;
3636         union xhci_trb *cmd_trb;
3637
3638         if (!udev->slot_id) {
3639                 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3640                 return -EINVAL;
3641         }
3642
3643         virt_dev = xhci->devs[udev->slot_id];
3644
3645         if (WARN_ON(!virt_dev)) {
3646                 /*
3647                  * In plug/unplug torture test with an NEC controller,
3648                  * a zero-dereference was observed once due to virt_dev = 0.
3649                  * Print useful debug rather than crash if it is observed again!
3650                  */
3651                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3652                         udev->slot_id);
3653                 return -EINVAL;
3654         }
3655
3656         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3657         /*
3658          * If this is the first Set Address since device plug-in or
3659          * virt_device realloaction after a resume with an xHCI power loss,
3660          * then set up the slot context.
3661          */
3662         if (!slot_ctx->dev_info)
3663                 xhci_setup_addressable_virt_dev(xhci, udev);
3664         /* Otherwise, update the control endpoint ring enqueue pointer. */
3665         else
3666                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3667         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3668         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3669         ctrl_ctx->drop_flags = 0;
3670
3671         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3672         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3673
3674         spin_lock_irqsave(&xhci->lock, flags);
3675         cmd_trb = xhci->cmd_ring->dequeue;
3676         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3677                                         udev->slot_id);
3678         if (ret) {
3679                 spin_unlock_irqrestore(&xhci->lock, flags);
3680                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3681                 return ret;
3682         }
3683         xhci_ring_cmd_db(xhci);
3684         spin_unlock_irqrestore(&xhci->lock, flags);
3685
3686         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3687         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3688                         XHCI_CMD_DEFAULT_TIMEOUT);
3689         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3690          * the SetAddress() "recovery interval" required by USB and aborting the
3691          * command on a timeout.
3692          */
3693         if (timeleft <= 0) {
3694                 xhci_warn(xhci, "%s while waiting for address device command\n",
3695                                 timeleft == 0 ? "Timeout" : "Signal");
3696                 /* cancel the address device command */
3697                 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3698                 if (ret < 0)
3699                         return ret;
3700                 return -ETIME;
3701         }
3702
3703         switch (virt_dev->cmd_status) {
3704         case COMP_CTX_STATE:
3705         case COMP_EBADSLT:
3706                 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3707                                 udev->slot_id);
3708                 ret = -EINVAL;
3709                 break;
3710         case COMP_TX_ERR:
3711                 dev_warn(&udev->dev, "Device not responding to set address.\n");
3712                 ret = -EPROTO;
3713                 break;
3714         case COMP_DEV_ERR:
3715                 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3716                                 "device command.\n");
3717                 ret = -ENODEV;
3718                 break;
3719         case COMP_SUCCESS:
3720                 xhci_dbg(xhci, "Successful Address Device command\n");
3721                 break;
3722         default:
3723                 xhci_err(xhci, "ERROR: unexpected command completion "
3724                                 "code 0x%x.\n", virt_dev->cmd_status);
3725                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3726                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3727                 ret = -EINVAL;
3728                 break;
3729         }
3730         if (ret) {
3731                 return ret;
3732         }
3733         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3734         xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3735         xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3736                  udev->slot_id,
3737                  &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3738                  (unsigned long long)
3739                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3740         xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3741                         (unsigned long long)virt_dev->out_ctx->dma);
3742         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3743         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3744         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3745         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3746         /*
3747          * USB core uses address 1 for the roothubs, so we add one to the
3748          * address given back to us by the HC.
3749          */
3750         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3751         /* Use kernel assigned address for devices; store xHC assigned
3752          * address locally. */
3753         virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3754                 + 1;
3755         /* Zero the input context control for later use */
3756         ctrl_ctx->add_flags = 0;
3757         ctrl_ctx->drop_flags = 0;
3758
3759         xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3760
3761         return 0;
3762 }
3763
3764 #ifdef CONFIG_USB_SUSPEND
3765
3766 /* BESL to HIRD Encoding array for USB2 LPM */
3767 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3768         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3769
3770 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3771 static int xhci_calculate_hird_besl(int u2del, bool use_besl)
3772 {
3773         int hird;
3774
3775         if (use_besl) {
3776                 for (hird = 0; hird < 16; hird++) {
3777                         if (xhci_besl_encoding[hird] >= u2del)
3778                                 break;
3779                 }
3780         } else {
3781                 if (u2del <= 50)
3782                         hird = 0;
3783                 else
3784                         hird = (u2del - 51) / 75 + 1;
3785
3786                 if (hird > 15)
3787                         hird = 15;
3788         }
3789
3790         return hird;
3791 }
3792
3793 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3794                                         struct usb_device *udev)
3795 {
3796         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3797         struct dev_info *dev_info;
3798         __le32 __iomem  **port_array;
3799         __le32 __iomem  *addr, *pm_addr;
3800         u32             temp, dev_id;
3801         unsigned int    port_num;
3802         unsigned long   flags;
3803         int             u2del, hird;
3804         int             ret;
3805
3806         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3807                         !udev->lpm_capable)
3808                 return -EINVAL;
3809
3810         /* we only support lpm for non-hub device connected to root hub yet */
3811         if (!udev->parent || udev->parent->parent ||
3812                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3813                 return -EINVAL;
3814
3815         spin_lock_irqsave(&xhci->lock, flags);
3816
3817         /* Look for devices in lpm_failed_devs list */
3818         dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3819                         le16_to_cpu(udev->descriptor.idProduct);
3820         list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3821                 if (dev_info->dev_id == dev_id) {
3822                         ret = -EINVAL;
3823                         goto finish;
3824                 }
3825         }
3826
3827         port_array = xhci->usb2_ports;
3828         port_num = udev->portnum - 1;
3829
3830         if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3831                 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3832                 ret = -EINVAL;
3833                 goto finish;
3834         }
3835
3836         /*
3837          * Test USB 2.0 software LPM.
3838          * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3839          * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3840          * in the June 2011 errata release.
3841          */
3842         xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3843         /*
3844          * Set L1 Device Slot and HIRD/BESL.
3845          * Check device's USB 2.0 extension descriptor to determine whether
3846          * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3847          */
3848         pm_addr = port_array[port_num] + 1;
3849         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3850         if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2))
3851                 hird = xhci_calculate_hird_besl(u2del, 1);
3852         else
3853                 hird = xhci_calculate_hird_besl(u2del, 0);
3854
3855         temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3856         xhci_writel(xhci, temp, pm_addr);
3857
3858         /* Set port link state to U2(L1) */
3859         addr = port_array[port_num];
3860         xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3861
3862         /* wait for ACK */
3863         spin_unlock_irqrestore(&xhci->lock, flags);
3864         msleep(10);
3865         spin_lock_irqsave(&xhci->lock, flags);
3866
3867         /* Check L1 Status */
3868         ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3869         if (ret != -ETIMEDOUT) {
3870                 /* enter L1 successfully */
3871                 temp = xhci_readl(xhci, addr);
3872                 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3873                                 port_num, temp);
3874                 ret = 0;
3875         } else {
3876                 temp = xhci_readl(xhci, pm_addr);
3877                 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3878                                 port_num, temp & PORT_L1S_MASK);
3879                 ret = -EINVAL;
3880         }
3881
3882         /* Resume the port */
3883         xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3884
3885         spin_unlock_irqrestore(&xhci->lock, flags);
3886         msleep(10);
3887         spin_lock_irqsave(&xhci->lock, flags);
3888
3889         /* Clear PLC */
3890         xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3891
3892         /* Check PORTSC to make sure the device is in the right state */
3893         if (!ret) {
3894                 temp = xhci_readl(xhci, addr);
3895                 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3896                 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3897                                 (temp & PORT_PLS_MASK) != XDEV_U0) {
3898                         xhci_dbg(xhci, "port L1 resume fail\n");
3899                         ret = -EINVAL;
3900                 }
3901         }
3902
3903         if (ret) {
3904                 /* Insert dev to lpm_failed_devs list */
3905                 xhci_warn(xhci, "device LPM test failed, may disconnect and "
3906                                 "re-enumerate\n");
3907                 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3908                 if (!dev_info) {
3909                         ret = -ENOMEM;
3910                         goto finish;
3911                 }
3912                 dev_info->dev_id = dev_id;
3913                 INIT_LIST_HEAD(&dev_info->list);
3914                 list_add(&dev_info->list, &xhci->lpm_failed_devs);
3915         } else {
3916                 xhci_ring_device(xhci, udev->slot_id);
3917         }
3918
3919 finish:
3920         spin_unlock_irqrestore(&xhci->lock, flags);
3921         return ret;
3922 }
3923
3924 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3925                         struct usb_device *udev, int enable)
3926 {
3927         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3928         __le32 __iomem  **port_array;
3929         __le32 __iomem  *pm_addr;
3930         u32             temp;
3931         unsigned int    port_num;
3932         unsigned long   flags;
3933         int             u2del, hird;
3934
3935         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3936                         !udev->lpm_capable)
3937                 return -EPERM;
3938
3939         if (!udev->parent || udev->parent->parent ||
3940                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3941                 return -EPERM;
3942
3943         if (udev->usb2_hw_lpm_capable != 1)
3944                 return -EPERM;
3945
3946         spin_lock_irqsave(&xhci->lock, flags);
3947
3948         port_array = xhci->usb2_ports;
3949         port_num = udev->portnum - 1;
3950         pm_addr = port_array[port_num] + 1;
3951         temp = xhci_readl(xhci, pm_addr);
3952
3953         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3954                         enable ? "enable" : "disable", port_num);
3955
3956         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3957         if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2))
3958                 hird = xhci_calculate_hird_besl(u2del, 1);
3959         else
3960                 hird = xhci_calculate_hird_besl(u2del, 0);
3961
3962         if (enable) {
3963                 temp &= ~PORT_HIRD_MASK;
3964                 temp |= PORT_HIRD(hird) | PORT_RWE;
3965                 xhci_writel(xhci, temp, pm_addr);
3966                 temp = xhci_readl(xhci, pm_addr);
3967                 temp |= PORT_HLE;
3968                 xhci_writel(xhci, temp, pm_addr);
3969         } else {
3970                 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3971                 xhci_writel(xhci, temp, pm_addr);
3972         }
3973
3974         spin_unlock_irqrestore(&xhci->lock, flags);
3975         return 0;
3976 }
3977
3978 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3979 {
3980         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3981         int             ret;
3982
3983         ret = xhci_usb2_software_lpm_test(hcd, udev);
3984         if (!ret) {
3985                 xhci_dbg(xhci, "software LPM test succeed\n");
3986                 if (xhci->hw_lpm_support == 1) {
3987                         udev->usb2_hw_lpm_capable = 1;
3988                         ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3989                         if (!ret)
3990                                 udev->usb2_hw_lpm_enabled = 1;
3991                 }
3992         }
3993
3994         return 0;
3995 }
3996
3997 #else
3998
3999 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4000                                 struct usb_device *udev, int enable)
4001 {
4002         return 0;
4003 }
4004
4005 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4006 {
4007         return 0;
4008 }
4009
4010 #endif /* CONFIG_USB_SUSPEND */
4011
4012 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4013  * internal data structures for the device.
4014  */
4015 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4016                         struct usb_tt *tt, gfp_t mem_flags)
4017 {
4018         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4019         struct xhci_virt_device *vdev;
4020         struct xhci_command *config_cmd;
4021         struct xhci_input_control_ctx *ctrl_ctx;
4022         struct xhci_slot_ctx *slot_ctx;
4023         unsigned long flags;
4024         unsigned think_time;
4025         int ret;
4026
4027         /* Ignore root hubs */
4028         if (!hdev->parent)
4029                 return 0;
4030
4031         vdev = xhci->devs[hdev->slot_id];
4032         if (!vdev) {
4033                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4034                 return -EINVAL;
4035         }
4036         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4037         if (!config_cmd) {
4038                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4039                 return -ENOMEM;
4040         }
4041
4042         spin_lock_irqsave(&xhci->lock, flags);
4043         if (hdev->speed == USB_SPEED_HIGH &&
4044                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4045                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4046                 xhci_free_command(xhci, config_cmd);
4047                 spin_unlock_irqrestore(&xhci->lock, flags);
4048                 return -ENOMEM;
4049         }
4050
4051         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4052         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4053         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4054         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4055         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4056         if (tt->multi)
4057                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4058         if (xhci->hci_version > 0x95) {
4059                 xhci_dbg(xhci, "xHCI version %x needs hub "
4060                                 "TT think time and number of ports\n",
4061                                 (unsigned int) xhci->hci_version);
4062                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4063                 /* Set TT think time - convert from ns to FS bit times.
4064                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4065                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4066                  *
4067                  * xHCI 1.0: this field shall be 0 if the device is not a
4068                  * High-spped hub.
4069                  */
4070                 think_time = tt->think_time;
4071                 if (think_time != 0)
4072                         think_time = (think_time / 666) - 1;
4073                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4074                         slot_ctx->tt_info |=
4075                                 cpu_to_le32(TT_THINK_TIME(think_time));
4076         } else {
4077                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4078                                 "TT think time or number of ports\n",
4079                                 (unsigned int) xhci->hci_version);
4080         }
4081         slot_ctx->dev_state = 0;
4082         spin_unlock_irqrestore(&xhci->lock, flags);
4083
4084         xhci_dbg(xhci, "Set up %s for hub device.\n",
4085                         (xhci->hci_version > 0x95) ?
4086                         "configure endpoint" : "evaluate context");
4087         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4088         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4089
4090         /* Issue and wait for the configure endpoint or
4091          * evaluate context command.
4092          */
4093         if (xhci->hci_version > 0x95)
4094                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4095                                 false, false);
4096         else
4097                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4098                                 true, false);
4099
4100         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4101         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4102
4103         xhci_free_command(xhci, config_cmd);
4104         return ret;
4105 }
4106
4107 int xhci_get_frame(struct usb_hcd *hcd)
4108 {
4109         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4110         /* EHCI mods by the periodic size.  Why? */
4111         return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4112 }
4113
4114 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4115 {
4116         struct xhci_hcd         *xhci;
4117         struct device           *dev = hcd->self.controller;
4118         int                     retval;
4119         u32                     temp;
4120
4121         hcd->self.sg_tablesize = TRBS_PER_SEGMENT - 2;
4122
4123         if (usb_hcd_is_primary_hcd(hcd)) {
4124                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4125                 if (!xhci)
4126                         return -ENOMEM;
4127                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4128                 xhci->main_hcd = hcd;
4129                 /* Mark the first roothub as being USB 2.0.
4130                  * The xHCI driver will register the USB 3.0 roothub.
4131                  */
4132                 hcd->speed = HCD_USB2;
4133                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4134                 /*
4135                  * USB 2.0 roothub under xHCI has an integrated TT,
4136                  * (rate matching hub) as opposed to having an OHCI/UHCI
4137                  * companion controller.
4138                  */
4139                 hcd->has_tt = 1;
4140         } else {
4141                 /* xHCI private pointer was set in xhci_pci_probe for the second
4142                  * registered roothub.
4143                  */
4144                 xhci = hcd_to_xhci(hcd);
4145                 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4146                 if (HCC_64BIT_ADDR(temp)) {
4147                         xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4148                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4149                 } else {
4150                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4151                 }
4152                 return 0;
4153         }
4154
4155         xhci->cap_regs = hcd->regs;
4156         xhci->op_regs = hcd->regs +
4157                 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4158         xhci->run_regs = hcd->regs +
4159                 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4160         /* Cache read-only capability registers */
4161         xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4162         xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4163         xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4164         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4165         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4166         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4167         xhci_print_registers(xhci);
4168
4169         get_quirks(dev, xhci);
4170
4171         /* Make sure the HC is halted. */
4172         retval = xhci_halt(xhci);
4173         if (retval)
4174                 goto error;
4175
4176         xhci_dbg(xhci, "Resetting HCD\n");
4177         /* Reset the internal HC memory state and registers. */
4178         retval = xhci_reset(xhci);
4179         if (retval)
4180                 goto error;
4181         xhci_dbg(xhci, "Reset complete\n");
4182
4183         temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4184         if (HCC_64BIT_ADDR(temp)) {
4185                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4186                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4187         } else {
4188                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4189         }
4190
4191         xhci_dbg(xhci, "Calling HCD init\n");
4192         /* Initialize HCD and host controller data structures. */
4193         retval = xhci_init(hcd);
4194         if (retval)
4195                 goto error;
4196         xhci_dbg(xhci, "Called HCD init\n");
4197         return 0;
4198 error:
4199         kfree(xhci);
4200         return retval;
4201 }
4202
4203 MODULE_DESCRIPTION(DRIVER_DESC);
4204 MODULE_AUTHOR(DRIVER_AUTHOR);
4205 MODULE_LICENSE("GPL");
4206
4207 static int __init xhci_hcd_init(void)
4208 {
4209         int retval;
4210
4211         retval = xhci_register_pci();
4212         if (retval < 0) {
4213                 printk(KERN_DEBUG "Problem registering PCI driver.");
4214                 return retval;
4215         }
4216         /*
4217          * Check the compiler generated sizes of structures that must be laid
4218          * out in specific ways for hardware access.
4219          */
4220         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4221         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4222         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4223         /* xhci_device_control has eight fields, and also
4224          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4225          */
4226         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4227         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4228         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4229         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4230         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4231         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4232         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4233         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4234         return 0;
4235 }
4236 module_init(xhci_hcd_init);
4237
4238 static void __exit xhci_hcd_cleanup(void)
4239 {
4240         xhci_unregister_pci();
4241 }
4242 module_exit(xhci_hcd_cleanup);