xHCI: add aborting command ring function
[pandora-kernel.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30
31 #include "xhci.h"
32
33 #define DRIVER_AUTHOR "Sarah Sharp"
34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35
36 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
37 static int link_quirk;
38 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
39 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
40
41 /* TODO: copied from ehci-hcd.c - can this be refactored? */
42 /*
43  * handshake - spin reading hc until handshake completes or fails
44  * @ptr: address of hc register to be read
45  * @mask: bits to look at in result of read
46  * @done: value of those bits when handshake succeeds
47  * @usec: timeout in microseconds
48  *
49  * Returns negative errno, or zero on success
50  *
51  * Success happens when the "mask" bits have the specified value (hardware
52  * handshake done).  There are two failure modes:  "usec" have passed (major
53  * hardware flakeout), or the register reads as all-ones (hardware removed).
54  */
55 int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
56                       u32 mask, u32 done, int usec)
57 {
58         u32     result;
59
60         do {
61                 result = xhci_readl(xhci, ptr);
62                 if (result == ~(u32)0)          /* card removed */
63                         return -ENODEV;
64                 result &= mask;
65                 if (result == done)
66                         return 0;
67                 udelay(1);
68                 usec--;
69         } while (usec > 0);
70         return -ETIMEDOUT;
71 }
72
73 /*
74  * Disable interrupts and begin the xHCI halting process.
75  */
76 void xhci_quiesce(struct xhci_hcd *xhci)
77 {
78         u32 halted;
79         u32 cmd;
80         u32 mask;
81
82         mask = ~(XHCI_IRQS);
83         halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
84         if (!halted)
85                 mask &= ~CMD_RUN;
86
87         cmd = xhci_readl(xhci, &xhci->op_regs->command);
88         cmd &= mask;
89         xhci_writel(xhci, cmd, &xhci->op_regs->command);
90 }
91
92 /*
93  * Force HC into halt state.
94  *
95  * Disable any IRQs and clear the run/stop bit.
96  * HC will complete any current and actively pipelined transactions, and
97  * should halt within 16 ms of the run/stop bit being cleared.
98  * Read HC Halted bit in the status register to see when the HC is finished.
99  */
100 int xhci_halt(struct xhci_hcd *xhci)
101 {
102         int ret;
103         xhci_dbg(xhci, "// Halt the HC\n");
104         xhci_quiesce(xhci);
105
106         ret = handshake(xhci, &xhci->op_regs->status,
107                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
108         if (!ret) {
109                 xhci->xhc_state |= XHCI_STATE_HALTED;
110                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
111         } else
112                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
113                                 XHCI_MAX_HALT_USEC);
114         return ret;
115 }
116
117 /*
118  * Set the run bit and wait for the host to be running.
119  */
120 static int xhci_start(struct xhci_hcd *xhci)
121 {
122         u32 temp;
123         int ret;
124
125         temp = xhci_readl(xhci, &xhci->op_regs->command);
126         temp |= (CMD_RUN);
127         xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
128                         temp);
129         xhci_writel(xhci, temp, &xhci->op_regs->command);
130
131         /*
132          * Wait for the HCHalted Status bit to be 0 to indicate the host is
133          * running.
134          */
135         ret = handshake(xhci, &xhci->op_regs->status,
136                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
137         if (ret == -ETIMEDOUT)
138                 xhci_err(xhci, "Host took too long to start, "
139                                 "waited %u microseconds.\n",
140                                 XHCI_MAX_HALT_USEC);
141         if (!ret)
142                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
143         return ret;
144 }
145
146 /*
147  * Reset a halted HC.
148  *
149  * This resets pipelines, timers, counters, state machines, etc.
150  * Transactions will be terminated immediately, and operational registers
151  * will be set to their defaults.
152  */
153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155         u32 command;
156         u32 state;
157         int ret;
158
159         state = xhci_readl(xhci, &xhci->op_regs->status);
160         if ((state & STS_HALT) == 0) {
161                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
162                 return 0;
163         }
164
165         xhci_dbg(xhci, "// Reset the HC\n");
166         command = xhci_readl(xhci, &xhci->op_regs->command);
167         command |= CMD_RESET;
168         xhci_writel(xhci, command, &xhci->op_regs->command);
169
170         ret = handshake(xhci, &xhci->op_regs->command,
171                         CMD_RESET, 0, 10 * 1000 * 1000);
172         if (ret)
173                 return ret;
174
175         xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
176         /*
177          * xHCI cannot write to any doorbells or operational registers other
178          * than status until the "Controller Not Ready" flag is cleared.
179          */
180         return handshake(xhci, &xhci->op_regs->status,
181                          STS_CNR, 0, 10 * 1000 * 1000);
182 }
183
184 #ifdef CONFIG_PCI
185 static int xhci_free_msi(struct xhci_hcd *xhci)
186 {
187         int i;
188
189         if (!xhci->msix_entries)
190                 return -EINVAL;
191
192         for (i = 0; i < xhci->msix_count; i++)
193                 if (xhci->msix_entries[i].vector)
194                         free_irq(xhci->msix_entries[i].vector,
195                                         xhci_to_hcd(xhci));
196         return 0;
197 }
198
199 /*
200  * Set up MSI
201  */
202 static int xhci_setup_msi(struct xhci_hcd *xhci)
203 {
204         int ret;
205         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
206
207         ret = pci_enable_msi(pdev);
208         if (ret) {
209                 xhci_err(xhci, "failed to allocate MSI entry\n");
210                 return ret;
211         }
212
213         ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
214                                 0, "xhci_hcd", xhci_to_hcd(xhci));
215         if (ret) {
216                 xhci_err(xhci, "disable MSI interrupt\n");
217                 pci_disable_msi(pdev);
218         }
219
220         return ret;
221 }
222
223 /*
224  * Free IRQs
225  * free all IRQs request
226  */
227 static void xhci_free_irq(struct xhci_hcd *xhci)
228 {
229         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
230         int ret;
231
232         /* return if using legacy interrupt */
233         if (xhci_to_hcd(xhci)->irq >= 0)
234                 return;
235
236         ret = xhci_free_msi(xhci);
237         if (!ret)
238                 return;
239         if (pdev->irq >= 0)
240                 free_irq(pdev->irq, xhci_to_hcd(xhci));
241
242         return;
243 }
244
245 /*
246  * Set up MSI-X
247  */
248 static int xhci_setup_msix(struct xhci_hcd *xhci)
249 {
250         int i, ret = 0;
251         struct usb_hcd *hcd = xhci_to_hcd(xhci);
252         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
253
254         /*
255          * calculate number of msi-x vectors supported.
256          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
257          *   with max number of interrupters based on the xhci HCSPARAMS1.
258          * - num_online_cpus: maximum msi-x vectors per CPUs core.
259          *   Add additional 1 vector to ensure always available interrupt.
260          */
261         xhci->msix_count = min(num_online_cpus() + 1,
262                                 HCS_MAX_INTRS(xhci->hcs_params1));
263
264         xhci->msix_entries =
265                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
266                                 GFP_KERNEL);
267         if (!xhci->msix_entries) {
268                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
269                 return -ENOMEM;
270         }
271
272         for (i = 0; i < xhci->msix_count; i++) {
273                 xhci->msix_entries[i].entry = i;
274                 xhci->msix_entries[i].vector = 0;
275         }
276
277         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
278         if (ret) {
279                 xhci_err(xhci, "Failed to enable MSI-X\n");
280                 goto free_entries;
281         }
282
283         for (i = 0; i < xhci->msix_count; i++) {
284                 ret = request_irq(xhci->msix_entries[i].vector,
285                                 (irq_handler_t)xhci_msi_irq,
286                                 0, "xhci_hcd", xhci_to_hcd(xhci));
287                 if (ret)
288                         goto disable_msix;
289         }
290
291         hcd->msix_enabled = 1;
292         return ret;
293
294 disable_msix:
295         xhci_err(xhci, "disable MSI-X interrupt\n");
296         xhci_free_irq(xhci);
297         pci_disable_msix(pdev);
298 free_entries:
299         kfree(xhci->msix_entries);
300         xhci->msix_entries = NULL;
301         return ret;
302 }
303
304 /* Free any IRQs and disable MSI-X */
305 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
306 {
307         struct usb_hcd *hcd = xhci_to_hcd(xhci);
308         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
309
310         xhci_free_irq(xhci);
311
312         if (xhci->msix_entries) {
313                 pci_disable_msix(pdev);
314                 kfree(xhci->msix_entries);
315                 xhci->msix_entries = NULL;
316         } else {
317                 pci_disable_msi(pdev);
318         }
319
320         hcd->msix_enabled = 0;
321         return;
322 }
323
324 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
325 {
326         int i;
327
328         if (xhci->msix_entries) {
329                 for (i = 0; i < xhci->msix_count; i++)
330                         synchronize_irq(xhci->msix_entries[i].vector);
331         }
332 }
333
334 static int xhci_try_enable_msi(struct usb_hcd *hcd)
335 {
336         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
337         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
338         int ret;
339
340         /*
341          * Some Fresco Logic host controllers advertise MSI, but fail to
342          * generate interrupts.  Don't even try to enable MSI.
343          */
344         if (xhci->quirks & XHCI_BROKEN_MSI)
345                 return 0;
346
347         /* unregister the legacy interrupt */
348         if (hcd->irq)
349                 free_irq(hcd->irq, hcd);
350         hcd->irq = -1;
351
352         ret = xhci_setup_msix(xhci);
353         if (ret)
354                 /* fall back to msi*/
355                 ret = xhci_setup_msi(xhci);
356
357         if (!ret)
358                 /* hcd->irq is -1, we have MSI */
359                 return 0;
360
361         if (!pdev->irq) {
362                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
363                 return -EINVAL;
364         }
365
366         /* fall back to legacy interrupt*/
367         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
368                         hcd->irq_descr, hcd);
369         if (ret) {
370                 xhci_err(xhci, "request interrupt %d failed\n",
371                                 pdev->irq);
372                 return ret;
373         }
374         hcd->irq = pdev->irq;
375         return 0;
376 }
377
378 #else
379
380 static int xhci_try_enable_msi(struct usb_hcd *hcd)
381 {
382         return 0;
383 }
384
385 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
386 {
387 }
388
389 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
390 {
391 }
392
393 #endif
394
395 static void compliance_mode_recovery(unsigned long arg)
396 {
397         struct xhci_hcd *xhci;
398         struct usb_hcd *hcd;
399         u32 temp;
400         int i;
401
402         xhci = (struct xhci_hcd *)arg;
403
404         for (i = 0; i < xhci->num_usb3_ports; i++) {
405                 temp = xhci_readl(xhci, xhci->usb3_ports[i]);
406                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
407                         /*
408                          * Compliance Mode Detected. Letting USB Core
409                          * handle the Warm Reset
410                          */
411                         xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n",
412                                         i + 1);
413                         xhci_dbg(xhci, "Attempting Recovery routine!\n");
414                         hcd = xhci->shared_hcd;
415
416                         if (hcd->state == HC_STATE_SUSPENDED)
417                                 usb_hcd_resume_root_hub(hcd);
418
419                         usb_hcd_poll_rh_status(hcd);
420                 }
421         }
422
423         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
424                 mod_timer(&xhci->comp_mode_recovery_timer,
425                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
426 }
427
428 /*
429  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
430  * that causes ports behind that hardware to enter compliance mode sometimes.
431  * The quirk creates a timer that polls every 2 seconds the link state of
432  * each host controller's port and recovers it by issuing a Warm reset
433  * if Compliance mode is detected, otherwise the port will become "dead" (no
434  * device connections or disconnections will be detected anymore). Becasue no
435  * status event is generated when entering compliance mode (per xhci spec),
436  * this quirk is needed on systems that have the failing hardware installed.
437  */
438 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
439 {
440         xhci->port_status_u0 = 0;
441         init_timer(&xhci->comp_mode_recovery_timer);
442
443         xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
444         xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
445         xhci->comp_mode_recovery_timer.expires = jiffies +
446                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
447
448         set_timer_slack(&xhci->comp_mode_recovery_timer,
449                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
450         add_timer(&xhci->comp_mode_recovery_timer);
451         xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n");
452 }
453
454 /*
455  * This function identifies the systems that have installed the SN65LVPE502CP
456  * USB3.0 re-driver and that need the Compliance Mode Quirk.
457  * Systems:
458  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
459  */
460 static bool compliance_mode_recovery_timer_quirk_check(void)
461 {
462         const char *dmi_product_name, *dmi_sys_vendor;
463
464         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
465         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
466
467         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
468                 return false;
469
470         if (strstr(dmi_product_name, "Z420") ||
471                         strstr(dmi_product_name, "Z620") ||
472                         strstr(dmi_product_name, "Z820"))
473                 return true;
474
475         return false;
476 }
477
478 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
479 {
480         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
481 }
482
483
484 /*
485  * Initialize memory for HCD and xHC (one-time init).
486  *
487  * Program the PAGESIZE register, initialize the device context array, create
488  * device contexts (?), set up a command ring segment (or two?), create event
489  * ring (one for now).
490  */
491 int xhci_init(struct usb_hcd *hcd)
492 {
493         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
494         int retval = 0;
495
496         xhci_dbg(xhci, "xhci_init\n");
497         spin_lock_init(&xhci->lock);
498         if (xhci->hci_version == 0x95 && link_quirk) {
499                 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
500                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
501         } else {
502                 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
503         }
504         retval = xhci_mem_init(xhci, GFP_KERNEL);
505         xhci_dbg(xhci, "Finished xhci_init\n");
506
507         /* Initializing Compliance Mode Recovery Data If Needed */
508         if (compliance_mode_recovery_timer_quirk_check()) {
509                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
510                 compliance_mode_recovery_timer_init(xhci);
511         }
512
513         return retval;
514 }
515
516 /*-------------------------------------------------------------------------*/
517
518
519 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
520 static void xhci_event_ring_work(unsigned long arg)
521 {
522         unsigned long flags;
523         int temp;
524         u64 temp_64;
525         struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
526         int i, j;
527
528         xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
529
530         spin_lock_irqsave(&xhci->lock, flags);
531         temp = xhci_readl(xhci, &xhci->op_regs->status);
532         xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
533         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
534                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
535                 xhci_dbg(xhci, "HW died, polling stopped.\n");
536                 spin_unlock_irqrestore(&xhci->lock, flags);
537                 return;
538         }
539
540         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
541         xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
542         xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
543         xhci->error_bitmask = 0;
544         xhci_dbg(xhci, "Event ring:\n");
545         xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
546         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
547         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
548         temp_64 &= ~ERST_PTR_MASK;
549         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
550         xhci_dbg(xhci, "Command ring:\n");
551         xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
552         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
553         xhci_dbg_cmd_ptrs(xhci);
554         for (i = 0; i < MAX_HC_SLOTS; ++i) {
555                 if (!xhci->devs[i])
556                         continue;
557                 for (j = 0; j < 31; ++j) {
558                         xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
559                 }
560         }
561         spin_unlock_irqrestore(&xhci->lock, flags);
562
563         if (!xhci->zombie)
564                 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
565         else
566                 xhci_dbg(xhci, "Quit polling the event ring.\n");
567 }
568 #endif
569
570 static int xhci_run_finished(struct xhci_hcd *xhci)
571 {
572         if (xhci_start(xhci)) {
573                 xhci_halt(xhci);
574                 return -ENODEV;
575         }
576         xhci->shared_hcd->state = HC_STATE_RUNNING;
577         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
578
579         if (xhci->quirks & XHCI_NEC_HOST)
580                 xhci_ring_cmd_db(xhci);
581
582         xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
583         return 0;
584 }
585
586 /*
587  * Start the HC after it was halted.
588  *
589  * This function is called by the USB core when the HC driver is added.
590  * Its opposite is xhci_stop().
591  *
592  * xhci_init() must be called once before this function can be called.
593  * Reset the HC, enable device slot contexts, program DCBAAP, and
594  * set command ring pointer and event ring pointer.
595  *
596  * Setup MSI-X vectors and enable interrupts.
597  */
598 int xhci_run(struct usb_hcd *hcd)
599 {
600         u32 temp;
601         u64 temp_64;
602         int ret;
603         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
604
605         /* Start the xHCI host controller running only after the USB 2.0 roothub
606          * is setup.
607          */
608
609         hcd->uses_new_polling = 1;
610         if (!usb_hcd_is_primary_hcd(hcd))
611                 return xhci_run_finished(xhci);
612
613         xhci_dbg(xhci, "xhci_run\n");
614
615         ret = xhci_try_enable_msi(hcd);
616         if (ret)
617                 return ret;
618
619 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
620         init_timer(&xhci->event_ring_timer);
621         xhci->event_ring_timer.data = (unsigned long) xhci;
622         xhci->event_ring_timer.function = xhci_event_ring_work;
623         /* Poll the event ring */
624         xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
625         xhci->zombie = 0;
626         xhci_dbg(xhci, "Setting event ring polling timer\n");
627         add_timer(&xhci->event_ring_timer);
628 #endif
629
630         xhci_dbg(xhci, "Command ring memory map follows:\n");
631         xhci_debug_ring(xhci, xhci->cmd_ring);
632         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
633         xhci_dbg_cmd_ptrs(xhci);
634
635         xhci_dbg(xhci, "ERST memory map follows:\n");
636         xhci_dbg_erst(xhci, &xhci->erst);
637         xhci_dbg(xhci, "Event ring:\n");
638         xhci_debug_ring(xhci, xhci->event_ring);
639         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
640         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
641         temp_64 &= ~ERST_PTR_MASK;
642         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
643
644         xhci_dbg(xhci, "// Set the interrupt modulation register\n");
645         temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
646         temp &= ~ER_IRQ_INTERVAL_MASK;
647         temp |= (u32) 160;
648         xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
649
650         /* Set the HCD state before we enable the irqs */
651         temp = xhci_readl(xhci, &xhci->op_regs->command);
652         temp |= (CMD_EIE);
653         xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
654                         temp);
655         xhci_writel(xhci, temp, &xhci->op_regs->command);
656
657         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
658         xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
659                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
660         xhci_writel(xhci, ER_IRQ_ENABLE(temp),
661                         &xhci->ir_set->irq_pending);
662         xhci_print_ir_set(xhci, 0);
663
664         if (xhci->quirks & XHCI_NEC_HOST)
665                 xhci_queue_vendor_command(xhci, 0, 0, 0,
666                                 TRB_TYPE(TRB_NEC_GET_FW));
667
668         xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
669         return 0;
670 }
671
672 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
673 {
674         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
675
676         spin_lock_irq(&xhci->lock);
677         xhci_halt(xhci);
678
679         /* The shared_hcd is going to be deallocated shortly (the USB core only
680          * calls this function when allocation fails in usb_add_hcd(), or
681          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
682          */
683         xhci->shared_hcd = NULL;
684         spin_unlock_irq(&xhci->lock);
685 }
686
687 /*
688  * Stop xHCI driver.
689  *
690  * This function is called by the USB core when the HC driver is removed.
691  * Its opposite is xhci_run().
692  *
693  * Disable device contexts, disable IRQs, and quiesce the HC.
694  * Reset the HC, finish any completed transactions, and cleanup memory.
695  */
696 void xhci_stop(struct usb_hcd *hcd)
697 {
698         u32 temp;
699         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
700
701         if (!usb_hcd_is_primary_hcd(hcd)) {
702                 xhci_only_stop_hcd(xhci->shared_hcd);
703                 return;
704         }
705
706         spin_lock_irq(&xhci->lock);
707         /* Make sure the xHC is halted for a USB3 roothub
708          * (xhci_stop() could be called as part of failed init).
709          */
710         xhci_halt(xhci);
711         xhci_reset(xhci);
712         spin_unlock_irq(&xhci->lock);
713
714         xhci_cleanup_msix(xhci);
715
716 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
717         /* Tell the event ring poll function not to reschedule */
718         xhci->zombie = 1;
719         del_timer_sync(&xhci->event_ring_timer);
720 #endif
721
722         /* Deleting Compliance Mode Recovery Timer */
723         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
724                         (!(xhci_all_ports_seen_u0(xhci))))
725                 del_timer_sync(&xhci->comp_mode_recovery_timer);
726
727         if (xhci->quirks & XHCI_AMD_PLL_FIX)
728                 usb_amd_dev_put();
729
730         xhci_dbg(xhci, "// Disabling event ring interrupts\n");
731         temp = xhci_readl(xhci, &xhci->op_regs->status);
732         xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
733         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
734         xhci_writel(xhci, ER_IRQ_DISABLE(temp),
735                         &xhci->ir_set->irq_pending);
736         xhci_print_ir_set(xhci, 0);
737
738         xhci_dbg(xhci, "cleaning up memory\n");
739         xhci_mem_cleanup(xhci);
740         xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
741                     xhci_readl(xhci, &xhci->op_regs->status));
742 }
743
744 /*
745  * Shutdown HC (not bus-specific)
746  *
747  * This is called when the machine is rebooting or halting.  We assume that the
748  * machine will be powered off, and the HC's internal state will be reset.
749  * Don't bother to free memory.
750  *
751  * This will only ever be called with the main usb_hcd (the USB3 roothub).
752  */
753 void xhci_shutdown(struct usb_hcd *hcd)
754 {
755         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
756
757         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
758                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
759
760         spin_lock_irq(&xhci->lock);
761         xhci_halt(xhci);
762         spin_unlock_irq(&xhci->lock);
763
764         xhci_cleanup_msix(xhci);
765
766         xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
767                     xhci_readl(xhci, &xhci->op_regs->status));
768 }
769
770 #ifdef CONFIG_PM
771 static void xhci_save_registers(struct xhci_hcd *xhci)
772 {
773         xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
774         xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
775         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
776         xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
777         xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
778         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
779         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
780         xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
781         xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
782 }
783
784 static void xhci_restore_registers(struct xhci_hcd *xhci)
785 {
786         xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
787         xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
788         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
789         xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
790         xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
791         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
792         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
793         xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
794         xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
795 }
796
797 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
798 {
799         u64     val_64;
800
801         /* step 2: initialize command ring buffer */
802         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
803         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
804                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
805                                       xhci->cmd_ring->dequeue) &
806                  (u64) ~CMD_RING_RSVD_BITS) |
807                 xhci->cmd_ring->cycle_state;
808         xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
809                         (long unsigned long) val_64);
810         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
811 }
812
813 /*
814  * The whole command ring must be cleared to zero when we suspend the host.
815  *
816  * The host doesn't save the command ring pointer in the suspend well, so we
817  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
818  * aligned, because of the reserved bits in the command ring dequeue pointer
819  * register.  Therefore, we can't just set the dequeue pointer back in the
820  * middle of the ring (TRBs are 16-byte aligned).
821  */
822 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
823 {
824         struct xhci_ring *ring;
825         struct xhci_segment *seg;
826
827         ring = xhci->cmd_ring;
828         seg = ring->deq_seg;
829         do {
830                 memset(seg->trbs, 0,
831                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
832                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
833                         cpu_to_le32(~TRB_CYCLE);
834                 seg = seg->next;
835         } while (seg != ring->deq_seg);
836
837         /* Reset the software enqueue and dequeue pointers */
838         ring->deq_seg = ring->first_seg;
839         ring->dequeue = ring->first_seg->trbs;
840         ring->enq_seg = ring->deq_seg;
841         ring->enqueue = ring->dequeue;
842
843         /*
844          * Ring is now zeroed, so the HW should look for change of ownership
845          * when the cycle bit is set to 1.
846          */
847         ring->cycle_state = 1;
848
849         /*
850          * Reset the hardware dequeue pointer.
851          * Yes, this will need to be re-written after resume, but we're paranoid
852          * and want to make sure the hardware doesn't access bogus memory
853          * because, say, the BIOS or an SMI started the host without changing
854          * the command ring pointers.
855          */
856         xhci_set_cmd_ring_deq(xhci);
857 }
858
859 /*
860  * Stop HC (not bus-specific)
861  *
862  * This is called when the machine transition into S3/S4 mode.
863  *
864  */
865 int xhci_suspend(struct xhci_hcd *xhci)
866 {
867         int                     rc = 0;
868         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
869         u32                     command;
870
871         spin_lock_irq(&xhci->lock);
872         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
873         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
874         /* step 1: stop endpoint */
875         /* skipped assuming that port suspend has done */
876
877         /* step 2: clear Run/Stop bit */
878         command = xhci_readl(xhci, &xhci->op_regs->command);
879         command &= ~CMD_RUN;
880         xhci_writel(xhci, command, &xhci->op_regs->command);
881         if (handshake(xhci, &xhci->op_regs->status,
882                       STS_HALT, STS_HALT, 100*100)) {
883                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
884                 spin_unlock_irq(&xhci->lock);
885                 return -ETIMEDOUT;
886         }
887         xhci_clear_command_ring(xhci);
888
889         /* step 3: save registers */
890         xhci_save_registers(xhci);
891
892         /* step 4: set CSS flag */
893         command = xhci_readl(xhci, &xhci->op_regs->command);
894         command |= CMD_CSS;
895         xhci_writel(xhci, command, &xhci->op_regs->command);
896         if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) {
897                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
898                 spin_unlock_irq(&xhci->lock);
899                 return -ETIMEDOUT;
900         }
901         spin_unlock_irq(&xhci->lock);
902
903         /*
904          * Deleting Compliance Mode Recovery Timer because the xHCI Host
905          * is about to be suspended.
906          */
907         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
908                         (!(xhci_all_ports_seen_u0(xhci)))) {
909                 del_timer_sync(&xhci->comp_mode_recovery_timer);
910                 xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n");
911         }
912
913         /* step 5: remove core well power */
914         /* synchronize irq when using MSI-X */
915         xhci_msix_sync_irqs(xhci);
916
917         return rc;
918 }
919
920 /*
921  * start xHC (not bus-specific)
922  *
923  * This is called when the machine transition from S3/S4 mode.
924  *
925  */
926 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
927 {
928         u32                     command, temp = 0;
929         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
930         struct usb_hcd          *secondary_hcd;
931         int                     retval = 0;
932
933         /* Wait a bit if either of the roothubs need to settle from the
934          * transition into bus suspend.
935          */
936         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
937                         time_before(jiffies,
938                                 xhci->bus_state[1].next_statechange))
939                 msleep(100);
940
941         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
942         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
943
944         spin_lock_irq(&xhci->lock);
945         if (xhci->quirks & XHCI_RESET_ON_RESUME)
946                 hibernated = true;
947
948         if (!hibernated) {
949                 /* step 1: restore register */
950                 xhci_restore_registers(xhci);
951                 /* step 2: initialize command ring buffer */
952                 xhci_set_cmd_ring_deq(xhci);
953                 /* step 3: restore state and start state*/
954                 /* step 3: set CRS flag */
955                 command = xhci_readl(xhci, &xhci->op_regs->command);
956                 command |= CMD_CRS;
957                 xhci_writel(xhci, command, &xhci->op_regs->command);
958                 if (handshake(xhci, &xhci->op_regs->status,
959                               STS_RESTORE, 0, 10 * 1000)) {
960                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
961                         spin_unlock_irq(&xhci->lock);
962                         return -ETIMEDOUT;
963                 }
964                 temp = xhci_readl(xhci, &xhci->op_regs->status);
965         }
966
967         /* If restore operation fails, re-initialize the HC during resume */
968         if ((temp & STS_SRE) || hibernated) {
969                 /* Let the USB core know _both_ roothubs lost power. */
970                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
971                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
972
973                 xhci_dbg(xhci, "Stop HCD\n");
974                 xhci_halt(xhci);
975                 xhci_reset(xhci);
976                 spin_unlock_irq(&xhci->lock);
977                 xhci_cleanup_msix(xhci);
978
979 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
980                 /* Tell the event ring poll function not to reschedule */
981                 xhci->zombie = 1;
982                 del_timer_sync(&xhci->event_ring_timer);
983 #endif
984
985                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
986                 temp = xhci_readl(xhci, &xhci->op_regs->status);
987                 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
988                 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
989                 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
990                                 &xhci->ir_set->irq_pending);
991                 xhci_print_ir_set(xhci, 0);
992
993                 xhci_dbg(xhci, "cleaning up memory\n");
994                 xhci_mem_cleanup(xhci);
995                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
996                             xhci_readl(xhci, &xhci->op_regs->status));
997
998                 /* USB core calls the PCI reinit and start functions twice:
999                  * first with the primary HCD, and then with the secondary HCD.
1000                  * If we don't do the same, the host will never be started.
1001                  */
1002                 if (!usb_hcd_is_primary_hcd(hcd))
1003                         secondary_hcd = hcd;
1004                 else
1005                         secondary_hcd = xhci->shared_hcd;
1006
1007                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1008                 retval = xhci_init(hcd->primary_hcd);
1009                 if (retval)
1010                         return retval;
1011                 xhci_dbg(xhci, "Start the primary HCD\n");
1012                 retval = xhci_run(hcd->primary_hcd);
1013                 if (!retval) {
1014                         xhci_dbg(xhci, "Start the secondary HCD\n");
1015                         retval = xhci_run(secondary_hcd);
1016                 }
1017                 hcd->state = HC_STATE_SUSPENDED;
1018                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1019                 goto done;
1020         }
1021
1022         /* step 4: set Run/Stop bit */
1023         command = xhci_readl(xhci, &xhci->op_regs->command);
1024         command |= CMD_RUN;
1025         xhci_writel(xhci, command, &xhci->op_regs->command);
1026         handshake(xhci, &xhci->op_regs->status, STS_HALT,
1027                   0, 250 * 1000);
1028
1029         /* step 5: walk topology and initialize portsc,
1030          * portpmsc and portli
1031          */
1032         /* this is done in bus_resume */
1033
1034         /* step 6: restart each of the previously
1035          * Running endpoints by ringing their doorbells
1036          */
1037
1038         spin_unlock_irq(&xhci->lock);
1039
1040  done:
1041         if (retval == 0) {
1042                 usb_hcd_resume_root_hub(hcd);
1043                 usb_hcd_resume_root_hub(xhci->shared_hcd);
1044         }
1045
1046         /*
1047          * If system is subject to the Quirk, Compliance Mode Timer needs to
1048          * be re-initialized Always after a system resume. Ports are subject
1049          * to suffer the Compliance Mode issue again. It doesn't matter if
1050          * ports have entered previously to U0 before system's suspension.
1051          */
1052         if (xhci->quirks & XHCI_COMP_MODE_QUIRK)
1053                 compliance_mode_recovery_timer_init(xhci);
1054
1055         return retval;
1056 }
1057 #endif  /* CONFIG_PM */
1058
1059 /*-------------------------------------------------------------------------*/
1060
1061 /**
1062  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1063  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1064  * value to right shift 1 for the bitmask.
1065  *
1066  * Index  = (epnum * 2) + direction - 1,
1067  * where direction = 0 for OUT, 1 for IN.
1068  * For control endpoints, the IN index is used (OUT index is unused), so
1069  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1070  */
1071 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1072 {
1073         unsigned int index;
1074         if (usb_endpoint_xfer_control(desc))
1075                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1076         else
1077                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1078                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1079         return index;
1080 }
1081
1082 /* Find the flag for this endpoint (for use in the control context).  Use the
1083  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1084  * bit 1, etc.
1085  */
1086 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1087 {
1088         return 1 << (xhci_get_endpoint_index(desc) + 1);
1089 }
1090
1091 /* Find the flag for this endpoint (for use in the control context).  Use the
1092  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1093  * bit 1, etc.
1094  */
1095 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1096 {
1097         return 1 << (ep_index + 1);
1098 }
1099
1100 /* Compute the last valid endpoint context index.  Basically, this is the
1101  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1102  * we find the most significant bit set in the added contexts flags.
1103  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1104  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1105  */
1106 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1107 {
1108         return fls(added_ctxs) - 1;
1109 }
1110
1111 /* Returns 1 if the arguments are OK;
1112  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1113  */
1114 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1115                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1116                 const char *func) {
1117         struct xhci_hcd *xhci;
1118         struct xhci_virt_device *virt_dev;
1119
1120         if (!hcd || (check_ep && !ep) || !udev) {
1121                 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1122                                 func);
1123                 return -EINVAL;
1124         }
1125         if (!udev->parent) {
1126                 printk(KERN_DEBUG "xHCI %s called for root hub\n",
1127                                 func);
1128                 return 0;
1129         }
1130
1131         xhci = hcd_to_xhci(hcd);
1132         if (xhci->xhc_state & XHCI_STATE_HALTED)
1133                 return -ENODEV;
1134
1135         if (check_virt_dev) {
1136                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1137                         printk(KERN_DEBUG "xHCI %s called with unaddressed "
1138                                                 "device\n", func);
1139                         return -EINVAL;
1140                 }
1141
1142                 virt_dev = xhci->devs[udev->slot_id];
1143                 if (virt_dev->udev != udev) {
1144                         printk(KERN_DEBUG "xHCI %s called with udev and "
1145                                           "virt_dev does not match\n", func);
1146                         return -EINVAL;
1147                 }
1148         }
1149
1150         return 1;
1151 }
1152
1153 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1154                 struct usb_device *udev, struct xhci_command *command,
1155                 bool ctx_change, bool must_succeed);
1156
1157 /*
1158  * Full speed devices may have a max packet size greater than 8 bytes, but the
1159  * USB core doesn't know that until it reads the first 8 bytes of the
1160  * descriptor.  If the usb_device's max packet size changes after that point,
1161  * we need to issue an evaluate context command and wait on it.
1162  */
1163 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1164                 unsigned int ep_index, struct urb *urb)
1165 {
1166         struct xhci_container_ctx *in_ctx;
1167         struct xhci_container_ctx *out_ctx;
1168         struct xhci_input_control_ctx *ctrl_ctx;
1169         struct xhci_ep_ctx *ep_ctx;
1170         int max_packet_size;
1171         int hw_max_packet_size;
1172         int ret = 0;
1173
1174         out_ctx = xhci->devs[slot_id]->out_ctx;
1175         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1176         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1177         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1178         if (hw_max_packet_size != max_packet_size) {
1179                 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1180                 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1181                                 max_packet_size);
1182                 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1183                                 hw_max_packet_size);
1184                 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1185
1186                 /* Set up the modified control endpoint 0 */
1187                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1188                                 xhci->devs[slot_id]->out_ctx, ep_index);
1189                 in_ctx = xhci->devs[slot_id]->in_ctx;
1190                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1191                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1192                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1193
1194                 /* Set up the input context flags for the command */
1195                 /* FIXME: This won't work if a non-default control endpoint
1196                  * changes max packet sizes.
1197                  */
1198                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1199                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1200                 ctrl_ctx->drop_flags = 0;
1201
1202                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1203                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1204                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1205                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1206
1207                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1208                                 true, false);
1209
1210                 /* Clean up the input context for later use by bandwidth
1211                  * functions.
1212                  */
1213                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1214         }
1215         return ret;
1216 }
1217
1218 /*
1219  * non-error returns are a promise to giveback() the urb later
1220  * we drop ownership so next owner (or urb unlink) can get it
1221  */
1222 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1223 {
1224         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1225         struct xhci_td *buffer;
1226         unsigned long flags;
1227         int ret = 0;
1228         unsigned int slot_id, ep_index;
1229         struct urb_priv *urb_priv;
1230         int size, i;
1231
1232         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1233                                         true, true, __func__) <= 0)
1234                 return -EINVAL;
1235
1236         slot_id = urb->dev->slot_id;
1237         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1238
1239         if (!HCD_HW_ACCESSIBLE(hcd)) {
1240                 if (!in_interrupt())
1241                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1242                 ret = -ESHUTDOWN;
1243                 goto exit;
1244         }
1245
1246         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1247                 size = urb->number_of_packets;
1248         else
1249                 size = 1;
1250
1251         urb_priv = kzalloc(sizeof(struct urb_priv) +
1252                                   size * sizeof(struct xhci_td *), mem_flags);
1253         if (!urb_priv)
1254                 return -ENOMEM;
1255
1256         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1257         if (!buffer) {
1258                 kfree(urb_priv);
1259                 return -ENOMEM;
1260         }
1261
1262         for (i = 0; i < size; i++) {
1263                 urb_priv->td[i] = buffer;
1264                 buffer++;
1265         }
1266
1267         urb_priv->length = size;
1268         urb_priv->td_cnt = 0;
1269         urb->hcpriv = urb_priv;
1270
1271         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1272                 /* Check to see if the max packet size for the default control
1273                  * endpoint changed during FS device enumeration
1274                  */
1275                 if (urb->dev->speed == USB_SPEED_FULL) {
1276                         ret = xhci_check_maxpacket(xhci, slot_id,
1277                                         ep_index, urb);
1278                         if (ret < 0) {
1279                                 xhci_urb_free_priv(xhci, urb_priv);
1280                                 urb->hcpriv = NULL;
1281                                 return ret;
1282                         }
1283                 }
1284
1285                 /* We have a spinlock and interrupts disabled, so we must pass
1286                  * atomic context to this function, which may allocate memory.
1287                  */
1288                 spin_lock_irqsave(&xhci->lock, flags);
1289                 if (xhci->xhc_state & XHCI_STATE_DYING)
1290                         goto dying;
1291                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1292                                 slot_id, ep_index);
1293                 if (ret)
1294                         goto free_priv;
1295                 spin_unlock_irqrestore(&xhci->lock, flags);
1296         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1297                 spin_lock_irqsave(&xhci->lock, flags);
1298                 if (xhci->xhc_state & XHCI_STATE_DYING)
1299                         goto dying;
1300                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1301                                 EP_GETTING_STREAMS) {
1302                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1303                                         "is transitioning to using streams.\n");
1304                         ret = -EINVAL;
1305                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1306                                 EP_GETTING_NO_STREAMS) {
1307                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1308                                         "is transitioning to "
1309                                         "not having streams.\n");
1310                         ret = -EINVAL;
1311                 } else {
1312                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1313                                         slot_id, ep_index);
1314                 }
1315                 if (ret)
1316                         goto free_priv;
1317                 spin_unlock_irqrestore(&xhci->lock, flags);
1318         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1319                 spin_lock_irqsave(&xhci->lock, flags);
1320                 if (xhci->xhc_state & XHCI_STATE_DYING)
1321                         goto dying;
1322                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1323                                 slot_id, ep_index);
1324                 if (ret)
1325                         goto free_priv;
1326                 spin_unlock_irqrestore(&xhci->lock, flags);
1327         } else {
1328                 spin_lock_irqsave(&xhci->lock, flags);
1329                 if (xhci->xhc_state & XHCI_STATE_DYING)
1330                         goto dying;
1331                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1332                                 slot_id, ep_index);
1333                 if (ret)
1334                         goto free_priv;
1335                 spin_unlock_irqrestore(&xhci->lock, flags);
1336         }
1337 exit:
1338         return ret;
1339 dying:
1340         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1341                         "non-responsive xHCI host.\n",
1342                         urb->ep->desc.bEndpointAddress, urb);
1343         ret = -ESHUTDOWN;
1344 free_priv:
1345         xhci_urb_free_priv(xhci, urb_priv);
1346         urb->hcpriv = NULL;
1347         spin_unlock_irqrestore(&xhci->lock, flags);
1348         return ret;
1349 }
1350
1351 /* Get the right ring for the given URB.
1352  * If the endpoint supports streams, boundary check the URB's stream ID.
1353  * If the endpoint doesn't support streams, return the singular endpoint ring.
1354  */
1355 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1356                 struct urb *urb)
1357 {
1358         unsigned int slot_id;
1359         unsigned int ep_index;
1360         unsigned int stream_id;
1361         struct xhci_virt_ep *ep;
1362
1363         slot_id = urb->dev->slot_id;
1364         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1365         stream_id = urb->stream_id;
1366         ep = &xhci->devs[slot_id]->eps[ep_index];
1367         /* Common case: no streams */
1368         if (!(ep->ep_state & EP_HAS_STREAMS))
1369                 return ep->ring;
1370
1371         if (stream_id == 0) {
1372                 xhci_warn(xhci,
1373                                 "WARN: Slot ID %u, ep index %u has streams, "
1374                                 "but URB has no stream ID.\n",
1375                                 slot_id, ep_index);
1376                 return NULL;
1377         }
1378
1379         if (stream_id < ep->stream_info->num_streams)
1380                 return ep->stream_info->stream_rings[stream_id];
1381
1382         xhci_warn(xhci,
1383                         "WARN: Slot ID %u, ep index %u has "
1384                         "stream IDs 1 to %u allocated, "
1385                         "but stream ID %u is requested.\n",
1386                         slot_id, ep_index,
1387                         ep->stream_info->num_streams - 1,
1388                         stream_id);
1389         return NULL;
1390 }
1391
1392 /*
1393  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1394  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1395  * should pick up where it left off in the TD, unless a Set Transfer Ring
1396  * Dequeue Pointer is issued.
1397  *
1398  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1399  * the ring.  Since the ring is a contiguous structure, they can't be physically
1400  * removed.  Instead, there are two options:
1401  *
1402  *  1) If the HC is in the middle of processing the URB to be canceled, we
1403  *     simply move the ring's dequeue pointer past those TRBs using the Set
1404  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1405  *     when drivers timeout on the last submitted URB and attempt to cancel.
1406  *
1407  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1408  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1409  *     HC will need to invalidate the any TRBs it has cached after the stop
1410  *     endpoint command, as noted in the xHCI 0.95 errata.
1411  *
1412  *  3) The TD may have completed by the time the Stop Endpoint Command
1413  *     completes, so software needs to handle that case too.
1414  *
1415  * This function should protect against the TD enqueueing code ringing the
1416  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1417  * It also needs to account for multiple cancellations on happening at the same
1418  * time for the same endpoint.
1419  *
1420  * Note that this function can be called in any context, or so says
1421  * usb_hcd_unlink_urb()
1422  */
1423 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1424 {
1425         unsigned long flags;
1426         int ret, i;
1427         u32 temp;
1428         struct xhci_hcd *xhci;
1429         struct urb_priv *urb_priv;
1430         struct xhci_td *td;
1431         unsigned int ep_index;
1432         struct xhci_ring *ep_ring;
1433         struct xhci_virt_ep *ep;
1434
1435         xhci = hcd_to_xhci(hcd);
1436         spin_lock_irqsave(&xhci->lock, flags);
1437         /* Make sure the URB hasn't completed or been unlinked already */
1438         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1439         if (ret || !urb->hcpriv)
1440                 goto done;
1441         temp = xhci_readl(xhci, &xhci->op_regs->status);
1442         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1443                 xhci_dbg(xhci, "HW died, freeing TD.\n");
1444                 urb_priv = urb->hcpriv;
1445                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1446                         td = urb_priv->td[i];
1447                         if (!list_empty(&td->td_list))
1448                                 list_del_init(&td->td_list);
1449                         if (!list_empty(&td->cancelled_td_list))
1450                                 list_del_init(&td->cancelled_td_list);
1451                 }
1452
1453                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1454                 spin_unlock_irqrestore(&xhci->lock, flags);
1455                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1456                 xhci_urb_free_priv(xhci, urb_priv);
1457                 return ret;
1458         }
1459         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1460                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1461                 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1462                                 "non-responsive xHCI host.\n",
1463                                 urb->ep->desc.bEndpointAddress, urb);
1464                 /* Let the stop endpoint command watchdog timer (which set this
1465                  * state) finish cleaning up the endpoint TD lists.  We must
1466                  * have caught it in the middle of dropping a lock and giving
1467                  * back an URB.
1468                  */
1469                 goto done;
1470         }
1471
1472         xhci_dbg(xhci, "Cancel URB %p\n", urb);
1473         xhci_dbg(xhci, "Event ring:\n");
1474         xhci_debug_ring(xhci, xhci->event_ring);
1475         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1476         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1477         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1478         if (!ep_ring) {
1479                 ret = -EINVAL;
1480                 goto done;
1481         }
1482
1483         xhci_dbg(xhci, "Endpoint ring:\n");
1484         xhci_debug_ring(xhci, ep_ring);
1485
1486         urb_priv = urb->hcpriv;
1487
1488         for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1489                 td = urb_priv->td[i];
1490                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1491         }
1492
1493         /* Queue a stop endpoint command, but only if this is
1494          * the first cancellation to be handled.
1495          */
1496         if (!(ep->ep_state & EP_HALT_PENDING)) {
1497                 ep->ep_state |= EP_HALT_PENDING;
1498                 ep->stop_cmds_pending++;
1499                 ep->stop_cmd_timer.expires = jiffies +
1500                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1501                 add_timer(&ep->stop_cmd_timer);
1502                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1503                 xhci_ring_cmd_db(xhci);
1504         }
1505 done:
1506         spin_unlock_irqrestore(&xhci->lock, flags);
1507         return ret;
1508 }
1509
1510 /* Drop an endpoint from a new bandwidth configuration for this device.
1511  * Only one call to this function is allowed per endpoint before
1512  * check_bandwidth() or reset_bandwidth() must be called.
1513  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1514  * add the endpoint to the schedule with possibly new parameters denoted by a
1515  * different endpoint descriptor in usb_host_endpoint.
1516  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1517  * not allowed.
1518  *
1519  * The USB core will not allow URBs to be queued to an endpoint that is being
1520  * disabled, so there's no need for mutual exclusion to protect
1521  * the xhci->devs[slot_id] structure.
1522  */
1523 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1524                 struct usb_host_endpoint *ep)
1525 {
1526         struct xhci_hcd *xhci;
1527         struct xhci_container_ctx *in_ctx, *out_ctx;
1528         struct xhci_input_control_ctx *ctrl_ctx;
1529         struct xhci_slot_ctx *slot_ctx;
1530         unsigned int last_ctx;
1531         unsigned int ep_index;
1532         struct xhci_ep_ctx *ep_ctx;
1533         u32 drop_flag;
1534         u32 new_add_flags, new_drop_flags, new_slot_info;
1535         int ret;
1536
1537         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1538         if (ret <= 0)
1539                 return ret;
1540         xhci = hcd_to_xhci(hcd);
1541         if (xhci->xhc_state & XHCI_STATE_DYING)
1542                 return -ENODEV;
1543
1544         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1545         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1546         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1547                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1548                                 __func__, drop_flag);
1549                 return 0;
1550         }
1551
1552         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1553         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1554         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1555         ep_index = xhci_get_endpoint_index(&ep->desc);
1556         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1557         /* If the HC already knows the endpoint is disabled,
1558          * or the HCD has noted it is disabled, ignore this request
1559          */
1560         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1561              cpu_to_le32(EP_STATE_DISABLED)) ||
1562             le32_to_cpu(ctrl_ctx->drop_flags) &
1563             xhci_get_endpoint_flag(&ep->desc)) {
1564                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1565                                 __func__, ep);
1566                 return 0;
1567         }
1568
1569         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1570         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1571
1572         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1573         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1574
1575         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1576         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1577         /* Update the last valid endpoint context, if we deleted the last one */
1578         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1579             LAST_CTX(last_ctx)) {
1580                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1581                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1582         }
1583         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1584
1585         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1586
1587         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1588                         (unsigned int) ep->desc.bEndpointAddress,
1589                         udev->slot_id,
1590                         (unsigned int) new_drop_flags,
1591                         (unsigned int) new_add_flags,
1592                         (unsigned int) new_slot_info);
1593         return 0;
1594 }
1595
1596 /* Add an endpoint to a new possible bandwidth configuration for this device.
1597  * Only one call to this function is allowed per endpoint before
1598  * check_bandwidth() or reset_bandwidth() must be called.
1599  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1600  * add the endpoint to the schedule with possibly new parameters denoted by a
1601  * different endpoint descriptor in usb_host_endpoint.
1602  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1603  * not allowed.
1604  *
1605  * The USB core will not allow URBs to be queued to an endpoint until the
1606  * configuration or alt setting is installed in the device, so there's no need
1607  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1608  */
1609 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1610                 struct usb_host_endpoint *ep)
1611 {
1612         struct xhci_hcd *xhci;
1613         struct xhci_container_ctx *in_ctx, *out_ctx;
1614         unsigned int ep_index;
1615         struct xhci_ep_ctx *ep_ctx;
1616         struct xhci_slot_ctx *slot_ctx;
1617         struct xhci_input_control_ctx *ctrl_ctx;
1618         u32 added_ctxs;
1619         unsigned int last_ctx;
1620         u32 new_add_flags, new_drop_flags, new_slot_info;
1621         struct xhci_virt_device *virt_dev;
1622         int ret = 0;
1623
1624         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1625         if (ret <= 0) {
1626                 /* So we won't queue a reset ep command for a root hub */
1627                 ep->hcpriv = NULL;
1628                 return ret;
1629         }
1630         xhci = hcd_to_xhci(hcd);
1631         if (xhci->xhc_state & XHCI_STATE_DYING)
1632                 return -ENODEV;
1633
1634         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1635         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1636         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1637                 /* FIXME when we have to issue an evaluate endpoint command to
1638                  * deal with ep0 max packet size changing once we get the
1639                  * descriptors
1640                  */
1641                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1642                                 __func__, added_ctxs);
1643                 return 0;
1644         }
1645
1646         virt_dev = xhci->devs[udev->slot_id];
1647         in_ctx = virt_dev->in_ctx;
1648         out_ctx = virt_dev->out_ctx;
1649         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1650         ep_index = xhci_get_endpoint_index(&ep->desc);
1651         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1652
1653         /* If this endpoint is already in use, and the upper layers are trying
1654          * to add it again without dropping it, reject the addition.
1655          */
1656         if (virt_dev->eps[ep_index].ring &&
1657                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1658                                 xhci_get_endpoint_flag(&ep->desc))) {
1659                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1660                                 "without dropping it.\n",
1661                                 (unsigned int) ep->desc.bEndpointAddress);
1662                 return -EINVAL;
1663         }
1664
1665         /* If the HCD has already noted the endpoint is enabled,
1666          * ignore this request.
1667          */
1668         if (le32_to_cpu(ctrl_ctx->add_flags) &
1669             xhci_get_endpoint_flag(&ep->desc)) {
1670                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1671                                 __func__, ep);
1672                 return 0;
1673         }
1674
1675         /*
1676          * Configuration and alternate setting changes must be done in
1677          * process context, not interrupt context (or so documenation
1678          * for usb_set_interface() and usb_set_configuration() claim).
1679          */
1680         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1681                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1682                                 __func__, ep->desc.bEndpointAddress);
1683                 return -ENOMEM;
1684         }
1685
1686         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1687         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1688
1689         /* If xhci_endpoint_disable() was called for this endpoint, but the
1690          * xHC hasn't been notified yet through the check_bandwidth() call,
1691          * this re-adds a new state for the endpoint from the new endpoint
1692          * descriptors.  We must drop and re-add this endpoint, so we leave the
1693          * drop flags alone.
1694          */
1695         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1696
1697         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1698         /* Update the last valid endpoint context, if we just added one past */
1699         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1700             LAST_CTX(last_ctx)) {
1701                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1702                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1703         }
1704         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1705
1706         /* Store the usb_device pointer for later use */
1707         ep->hcpriv = udev;
1708
1709         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1710                         (unsigned int) ep->desc.bEndpointAddress,
1711                         udev->slot_id,
1712                         (unsigned int) new_drop_flags,
1713                         (unsigned int) new_add_flags,
1714                         (unsigned int) new_slot_info);
1715         return 0;
1716 }
1717
1718 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1719 {
1720         struct xhci_input_control_ctx *ctrl_ctx;
1721         struct xhci_ep_ctx *ep_ctx;
1722         struct xhci_slot_ctx *slot_ctx;
1723         int i;
1724
1725         /* When a device's add flag and drop flag are zero, any subsequent
1726          * configure endpoint command will leave that endpoint's state
1727          * untouched.  Make sure we don't leave any old state in the input
1728          * endpoint contexts.
1729          */
1730         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1731         ctrl_ctx->drop_flags = 0;
1732         ctrl_ctx->add_flags = 0;
1733         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1734         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1735         /* Endpoint 0 is always valid */
1736         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1737         for (i = 1; i < 31; ++i) {
1738                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1739                 ep_ctx->ep_info = 0;
1740                 ep_ctx->ep_info2 = 0;
1741                 ep_ctx->deq = 0;
1742                 ep_ctx->tx_info = 0;
1743         }
1744 }
1745
1746 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1747                 struct usb_device *udev, u32 *cmd_status)
1748 {
1749         int ret;
1750
1751         switch (*cmd_status) {
1752         case COMP_ENOMEM:
1753                 dev_warn(&udev->dev, "Not enough host controller resources "
1754                                 "for new device state.\n");
1755                 ret = -ENOMEM;
1756                 /* FIXME: can we allocate more resources for the HC? */
1757                 break;
1758         case COMP_BW_ERR:
1759         case COMP_2ND_BW_ERR:
1760                 dev_warn(&udev->dev, "Not enough bandwidth "
1761                                 "for new device state.\n");
1762                 ret = -ENOSPC;
1763                 /* FIXME: can we go back to the old state? */
1764                 break;
1765         case COMP_TRB_ERR:
1766                 /* the HCD set up something wrong */
1767                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1768                                 "add flag = 1, "
1769                                 "and endpoint is not disabled.\n");
1770                 ret = -EINVAL;
1771                 break;
1772         case COMP_DEV_ERR:
1773                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1774                                 "configure command.\n");
1775                 ret = -ENODEV;
1776                 break;
1777         case COMP_SUCCESS:
1778                 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1779                 ret = 0;
1780                 break;
1781         default:
1782                 xhci_err(xhci, "ERROR: unexpected command completion "
1783                                 "code 0x%x.\n", *cmd_status);
1784                 ret = -EINVAL;
1785                 break;
1786         }
1787         return ret;
1788 }
1789
1790 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1791                 struct usb_device *udev, u32 *cmd_status)
1792 {
1793         int ret;
1794         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1795
1796         switch (*cmd_status) {
1797         case COMP_EINVAL:
1798                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1799                                 "context command.\n");
1800                 ret = -EINVAL;
1801                 break;
1802         case COMP_EBADSLT:
1803                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1804                                 "evaluate context command.\n");
1805         case COMP_CTX_STATE:
1806                 dev_warn(&udev->dev, "WARN: invalid context state for "
1807                                 "evaluate context command.\n");
1808                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1809                 ret = -EINVAL;
1810                 break;
1811         case COMP_DEV_ERR:
1812                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1813                                 "context command.\n");
1814                 ret = -ENODEV;
1815                 break;
1816         case COMP_MEL_ERR:
1817                 /* Max Exit Latency too large error */
1818                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1819                 ret = -EINVAL;
1820                 break;
1821         case COMP_SUCCESS:
1822                 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1823                 ret = 0;
1824                 break;
1825         default:
1826                 xhci_err(xhci, "ERROR: unexpected command completion "
1827                                 "code 0x%x.\n", *cmd_status);
1828                 ret = -EINVAL;
1829                 break;
1830         }
1831         return ret;
1832 }
1833
1834 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1835                 struct xhci_container_ctx *in_ctx)
1836 {
1837         struct xhci_input_control_ctx *ctrl_ctx;
1838         u32 valid_add_flags;
1839         u32 valid_drop_flags;
1840
1841         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1842         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1843          * (bit 1).  The default control endpoint is added during the Address
1844          * Device command and is never removed until the slot is disabled.
1845          */
1846         valid_add_flags = ctrl_ctx->add_flags >> 2;
1847         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1848
1849         /* Use hweight32 to count the number of ones in the add flags, or
1850          * number of endpoints added.  Don't count endpoints that are changed
1851          * (both added and dropped).
1852          */
1853         return hweight32(valid_add_flags) -
1854                 hweight32(valid_add_flags & valid_drop_flags);
1855 }
1856
1857 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1858                 struct xhci_container_ctx *in_ctx)
1859 {
1860         struct xhci_input_control_ctx *ctrl_ctx;
1861         u32 valid_add_flags;
1862         u32 valid_drop_flags;
1863
1864         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1865         valid_add_flags = ctrl_ctx->add_flags >> 2;
1866         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1867
1868         return hweight32(valid_drop_flags) -
1869                 hweight32(valid_add_flags & valid_drop_flags);
1870 }
1871
1872 /*
1873  * We need to reserve the new number of endpoints before the configure endpoint
1874  * command completes.  We can't subtract the dropped endpoints from the number
1875  * of active endpoints until the command completes because we can oversubscribe
1876  * the host in this case:
1877  *
1878  *  - the first configure endpoint command drops more endpoints than it adds
1879  *  - a second configure endpoint command that adds more endpoints is queued
1880  *  - the first configure endpoint command fails, so the config is unchanged
1881  *  - the second command may succeed, even though there isn't enough resources
1882  *
1883  * Must be called with xhci->lock held.
1884  */
1885 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1886                 struct xhci_container_ctx *in_ctx)
1887 {
1888         u32 added_eps;
1889
1890         added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1891         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1892                 xhci_dbg(xhci, "Not enough ep ctxs: "
1893                                 "%u active, need to add %u, limit is %u.\n",
1894                                 xhci->num_active_eps, added_eps,
1895                                 xhci->limit_active_eps);
1896                 return -ENOMEM;
1897         }
1898         xhci->num_active_eps += added_eps;
1899         xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1900                         xhci->num_active_eps);
1901         return 0;
1902 }
1903
1904 /*
1905  * The configure endpoint was failed by the xHC for some other reason, so we
1906  * need to revert the resources that failed configuration would have used.
1907  *
1908  * Must be called with xhci->lock held.
1909  */
1910 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1911                 struct xhci_container_ctx *in_ctx)
1912 {
1913         u32 num_failed_eps;
1914
1915         num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1916         xhci->num_active_eps -= num_failed_eps;
1917         xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1918                         num_failed_eps,
1919                         xhci->num_active_eps);
1920 }
1921
1922 /*
1923  * Now that the command has completed, clean up the active endpoint count by
1924  * subtracting out the endpoints that were dropped (but not changed).
1925  *
1926  * Must be called with xhci->lock held.
1927  */
1928 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1929                 struct xhci_container_ctx *in_ctx)
1930 {
1931         u32 num_dropped_eps;
1932
1933         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1934         xhci->num_active_eps -= num_dropped_eps;
1935         if (num_dropped_eps)
1936                 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1937                                 num_dropped_eps,
1938                                 xhci->num_active_eps);
1939 }
1940
1941 unsigned int xhci_get_block_size(struct usb_device *udev)
1942 {
1943         switch (udev->speed) {
1944         case USB_SPEED_LOW:
1945         case USB_SPEED_FULL:
1946                 return FS_BLOCK;
1947         case USB_SPEED_HIGH:
1948                 return HS_BLOCK;
1949         case USB_SPEED_SUPER:
1950                 return SS_BLOCK;
1951         case USB_SPEED_UNKNOWN:
1952         case USB_SPEED_WIRELESS:
1953         default:
1954                 /* Should never happen */
1955                 return 1;
1956         }
1957 }
1958
1959 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1960 {
1961         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1962                 return LS_OVERHEAD;
1963         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1964                 return FS_OVERHEAD;
1965         return HS_OVERHEAD;
1966 }
1967
1968 /* If we are changing a LS/FS device under a HS hub,
1969  * make sure (if we are activating a new TT) that the HS bus has enough
1970  * bandwidth for this new TT.
1971  */
1972 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1973                 struct xhci_virt_device *virt_dev,
1974                 int old_active_eps)
1975 {
1976         struct xhci_interval_bw_table *bw_table;
1977         struct xhci_tt_bw_info *tt_info;
1978
1979         /* Find the bandwidth table for the root port this TT is attached to. */
1980         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1981         tt_info = virt_dev->tt_info;
1982         /* If this TT already had active endpoints, the bandwidth for this TT
1983          * has already been added.  Removing all periodic endpoints (and thus
1984          * making the TT enactive) will only decrease the bandwidth used.
1985          */
1986         if (old_active_eps)
1987                 return 0;
1988         if (old_active_eps == 0 && tt_info->active_eps != 0) {
1989                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
1990                         return -ENOMEM;
1991                 return 0;
1992         }
1993         /* Not sure why we would have no new active endpoints...
1994          *
1995          * Maybe because of an Evaluate Context change for a hub update or a
1996          * control endpoint 0 max packet size change?
1997          * FIXME: skip the bandwidth calculation in that case.
1998          */
1999         return 0;
2000 }
2001
2002 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2003                 struct xhci_virt_device *virt_dev)
2004 {
2005         unsigned int bw_reserved;
2006
2007         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2008         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2009                 return -ENOMEM;
2010
2011         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2012         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2013                 return -ENOMEM;
2014
2015         return 0;
2016 }
2017
2018 /*
2019  * This algorithm is a very conservative estimate of the worst-case scheduling
2020  * scenario for any one interval.  The hardware dynamically schedules the
2021  * packets, so we can't tell which microframe could be the limiting factor in
2022  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2023  *
2024  * Obviously, we can't solve an NP complete problem to find the minimum worst
2025  * case scenario.  Instead, we come up with an estimate that is no less than
2026  * the worst case bandwidth used for any one microframe, but may be an
2027  * over-estimate.
2028  *
2029  * We walk the requirements for each endpoint by interval, starting with the
2030  * smallest interval, and place packets in the schedule where there is only one
2031  * possible way to schedule packets for that interval.  In order to simplify
2032  * this algorithm, we record the largest max packet size for each interval, and
2033  * assume all packets will be that size.
2034  *
2035  * For interval 0, we obviously must schedule all packets for each interval.
2036  * The bandwidth for interval 0 is just the amount of data to be transmitted
2037  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2038  * the number of packets).
2039  *
2040  * For interval 1, we have two possible microframes to schedule those packets
2041  * in.  For this algorithm, if we can schedule the same number of packets for
2042  * each possible scheduling opportunity (each microframe), we will do so.  The
2043  * remaining number of packets will be saved to be transmitted in the gaps in
2044  * the next interval's scheduling sequence.
2045  *
2046  * As we move those remaining packets to be scheduled with interval 2 packets,
2047  * we have to double the number of remaining packets to transmit.  This is
2048  * because the intervals are actually powers of 2, and we would be transmitting
2049  * the previous interval's packets twice in this interval.  We also have to be
2050  * sure that when we look at the largest max packet size for this interval, we
2051  * also look at the largest max packet size for the remaining packets and take
2052  * the greater of the two.
2053  *
2054  * The algorithm continues to evenly distribute packets in each scheduling
2055  * opportunity, and push the remaining packets out, until we get to the last
2056  * interval.  Then those packets and their associated overhead are just added
2057  * to the bandwidth used.
2058  */
2059 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2060                 struct xhci_virt_device *virt_dev,
2061                 int old_active_eps)
2062 {
2063         unsigned int bw_reserved;
2064         unsigned int max_bandwidth;
2065         unsigned int bw_used;
2066         unsigned int block_size;
2067         struct xhci_interval_bw_table *bw_table;
2068         unsigned int packet_size = 0;
2069         unsigned int overhead = 0;
2070         unsigned int packets_transmitted = 0;
2071         unsigned int packets_remaining = 0;
2072         unsigned int i;
2073
2074         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2075                 return xhci_check_ss_bw(xhci, virt_dev);
2076
2077         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2078                 max_bandwidth = HS_BW_LIMIT;
2079                 /* Convert percent of bus BW reserved to blocks reserved */
2080                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2081         } else {
2082                 max_bandwidth = FS_BW_LIMIT;
2083                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2084         }
2085
2086         bw_table = virt_dev->bw_table;
2087         /* We need to translate the max packet size and max ESIT payloads into
2088          * the units the hardware uses.
2089          */
2090         block_size = xhci_get_block_size(virt_dev->udev);
2091
2092         /* If we are manipulating a LS/FS device under a HS hub, double check
2093          * that the HS bus has enough bandwidth if we are activing a new TT.
2094          */
2095         if (virt_dev->tt_info) {
2096                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2097                                 virt_dev->real_port);
2098                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2099                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2100                                         "newly activated TT.\n");
2101                         return -ENOMEM;
2102                 }
2103                 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2104                                 virt_dev->tt_info->slot_id,
2105                                 virt_dev->tt_info->ttport);
2106         } else {
2107                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2108                                 virt_dev->real_port);
2109         }
2110
2111         /* Add in how much bandwidth will be used for interval zero, or the
2112          * rounded max ESIT payload + number of packets * largest overhead.
2113          */
2114         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2115                 bw_table->interval_bw[0].num_packets *
2116                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2117
2118         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2119                 unsigned int bw_added;
2120                 unsigned int largest_mps;
2121                 unsigned int interval_overhead;
2122
2123                 /*
2124                  * How many packets could we transmit in this interval?
2125                  * If packets didn't fit in the previous interval, we will need
2126                  * to transmit that many packets twice within this interval.
2127                  */
2128                 packets_remaining = 2 * packets_remaining +
2129                         bw_table->interval_bw[i].num_packets;
2130
2131                 /* Find the largest max packet size of this or the previous
2132                  * interval.
2133                  */
2134                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2135                         largest_mps = 0;
2136                 else {
2137                         struct xhci_virt_ep *virt_ep;
2138                         struct list_head *ep_entry;
2139
2140                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2141                         virt_ep = list_entry(ep_entry,
2142                                         struct xhci_virt_ep, bw_endpoint_list);
2143                         /* Convert to blocks, rounding up */
2144                         largest_mps = DIV_ROUND_UP(
2145                                         virt_ep->bw_info.max_packet_size,
2146                                         block_size);
2147                 }
2148                 if (largest_mps > packet_size)
2149                         packet_size = largest_mps;
2150
2151                 /* Use the larger overhead of this or the previous interval. */
2152                 interval_overhead = xhci_get_largest_overhead(
2153                                 &bw_table->interval_bw[i]);
2154                 if (interval_overhead > overhead)
2155                         overhead = interval_overhead;
2156
2157                 /* How many packets can we evenly distribute across
2158                  * (1 << (i + 1)) possible scheduling opportunities?
2159                  */
2160                 packets_transmitted = packets_remaining >> (i + 1);
2161
2162                 /* Add in the bandwidth used for those scheduled packets */
2163                 bw_added = packets_transmitted * (overhead + packet_size);
2164
2165                 /* How many packets do we have remaining to transmit? */
2166                 packets_remaining = packets_remaining % (1 << (i + 1));
2167
2168                 /* What largest max packet size should those packets have? */
2169                 /* If we've transmitted all packets, don't carry over the
2170                  * largest packet size.
2171                  */
2172                 if (packets_remaining == 0) {
2173                         packet_size = 0;
2174                         overhead = 0;
2175                 } else if (packets_transmitted > 0) {
2176                         /* Otherwise if we do have remaining packets, and we've
2177                          * scheduled some packets in this interval, take the
2178                          * largest max packet size from endpoints with this
2179                          * interval.
2180                          */
2181                         packet_size = largest_mps;
2182                         overhead = interval_overhead;
2183                 }
2184                 /* Otherwise carry over packet_size and overhead from the last
2185                  * time we had a remainder.
2186                  */
2187                 bw_used += bw_added;
2188                 if (bw_used > max_bandwidth) {
2189                         xhci_warn(xhci, "Not enough bandwidth. "
2190                                         "Proposed: %u, Max: %u\n",
2191                                 bw_used, max_bandwidth);
2192                         return -ENOMEM;
2193                 }
2194         }
2195         /*
2196          * Ok, we know we have some packets left over after even-handedly
2197          * scheduling interval 15.  We don't know which microframes they will
2198          * fit into, so we over-schedule and say they will be scheduled every
2199          * microframe.
2200          */
2201         if (packets_remaining > 0)
2202                 bw_used += overhead + packet_size;
2203
2204         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2205                 unsigned int port_index = virt_dev->real_port - 1;
2206
2207                 /* OK, we're manipulating a HS device attached to a
2208                  * root port bandwidth domain.  Include the number of active TTs
2209                  * in the bandwidth used.
2210                  */
2211                 bw_used += TT_HS_OVERHEAD *
2212                         xhci->rh_bw[port_index].num_active_tts;
2213         }
2214
2215         xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2216                 "Available: %u " "percent\n",
2217                 bw_used, max_bandwidth, bw_reserved,
2218                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2219                 max_bandwidth);
2220
2221         bw_used += bw_reserved;
2222         if (bw_used > max_bandwidth) {
2223                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2224                                 bw_used, max_bandwidth);
2225                 return -ENOMEM;
2226         }
2227
2228         bw_table->bw_used = bw_used;
2229         return 0;
2230 }
2231
2232 static bool xhci_is_async_ep(unsigned int ep_type)
2233 {
2234         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2235                                         ep_type != ISOC_IN_EP &&
2236                                         ep_type != INT_IN_EP);
2237 }
2238
2239 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2240 {
2241         return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2242 }
2243
2244 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2245 {
2246         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2247
2248         if (ep_bw->ep_interval == 0)
2249                 return SS_OVERHEAD_BURST +
2250                         (ep_bw->mult * ep_bw->num_packets *
2251                                         (SS_OVERHEAD + mps));
2252         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2253                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2254                                 1 << ep_bw->ep_interval);
2255
2256 }
2257
2258 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2259                 struct xhci_bw_info *ep_bw,
2260                 struct xhci_interval_bw_table *bw_table,
2261                 struct usb_device *udev,
2262                 struct xhci_virt_ep *virt_ep,
2263                 struct xhci_tt_bw_info *tt_info)
2264 {
2265         struct xhci_interval_bw *interval_bw;
2266         int normalized_interval;
2267
2268         if (xhci_is_async_ep(ep_bw->type))
2269                 return;
2270
2271         if (udev->speed == USB_SPEED_SUPER) {
2272                 if (xhci_is_sync_in_ep(ep_bw->type))
2273                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2274                                 xhci_get_ss_bw_consumed(ep_bw);
2275                 else
2276                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2277                                 xhci_get_ss_bw_consumed(ep_bw);
2278                 return;
2279         }
2280
2281         /* SuperSpeed endpoints never get added to intervals in the table, so
2282          * this check is only valid for HS/FS/LS devices.
2283          */
2284         if (list_empty(&virt_ep->bw_endpoint_list))
2285                 return;
2286         /* For LS/FS devices, we need to translate the interval expressed in
2287          * microframes to frames.
2288          */
2289         if (udev->speed == USB_SPEED_HIGH)
2290                 normalized_interval = ep_bw->ep_interval;
2291         else
2292                 normalized_interval = ep_bw->ep_interval - 3;
2293
2294         if (normalized_interval == 0)
2295                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2296         interval_bw = &bw_table->interval_bw[normalized_interval];
2297         interval_bw->num_packets -= ep_bw->num_packets;
2298         switch (udev->speed) {
2299         case USB_SPEED_LOW:
2300                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2301                 break;
2302         case USB_SPEED_FULL:
2303                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2304                 break;
2305         case USB_SPEED_HIGH:
2306                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2307                 break;
2308         case USB_SPEED_SUPER:
2309         case USB_SPEED_UNKNOWN:
2310         case USB_SPEED_WIRELESS:
2311                 /* Should never happen because only LS/FS/HS endpoints will get
2312                  * added to the endpoint list.
2313                  */
2314                 return;
2315         }
2316         if (tt_info)
2317                 tt_info->active_eps -= 1;
2318         list_del_init(&virt_ep->bw_endpoint_list);
2319 }
2320
2321 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2322                 struct xhci_bw_info *ep_bw,
2323                 struct xhci_interval_bw_table *bw_table,
2324                 struct usb_device *udev,
2325                 struct xhci_virt_ep *virt_ep,
2326                 struct xhci_tt_bw_info *tt_info)
2327 {
2328         struct xhci_interval_bw *interval_bw;
2329         struct xhci_virt_ep *smaller_ep;
2330         int normalized_interval;
2331
2332         if (xhci_is_async_ep(ep_bw->type))
2333                 return;
2334
2335         if (udev->speed == USB_SPEED_SUPER) {
2336                 if (xhci_is_sync_in_ep(ep_bw->type))
2337                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2338                                 xhci_get_ss_bw_consumed(ep_bw);
2339                 else
2340                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2341                                 xhci_get_ss_bw_consumed(ep_bw);
2342                 return;
2343         }
2344
2345         /* For LS/FS devices, we need to translate the interval expressed in
2346          * microframes to frames.
2347          */
2348         if (udev->speed == USB_SPEED_HIGH)
2349                 normalized_interval = ep_bw->ep_interval;
2350         else
2351                 normalized_interval = ep_bw->ep_interval - 3;
2352
2353         if (normalized_interval == 0)
2354                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2355         interval_bw = &bw_table->interval_bw[normalized_interval];
2356         interval_bw->num_packets += ep_bw->num_packets;
2357         switch (udev->speed) {
2358         case USB_SPEED_LOW:
2359                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2360                 break;
2361         case USB_SPEED_FULL:
2362                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2363                 break;
2364         case USB_SPEED_HIGH:
2365                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2366                 break;
2367         case USB_SPEED_SUPER:
2368         case USB_SPEED_UNKNOWN:
2369         case USB_SPEED_WIRELESS:
2370                 /* Should never happen because only LS/FS/HS endpoints will get
2371                  * added to the endpoint list.
2372                  */
2373                 return;
2374         }
2375
2376         if (tt_info)
2377                 tt_info->active_eps += 1;
2378         /* Insert the endpoint into the list, largest max packet size first. */
2379         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2380                         bw_endpoint_list) {
2381                 if (ep_bw->max_packet_size >=
2382                                 smaller_ep->bw_info.max_packet_size) {
2383                         /* Add the new ep before the smaller endpoint */
2384                         list_add_tail(&virt_ep->bw_endpoint_list,
2385                                         &smaller_ep->bw_endpoint_list);
2386                         return;
2387                 }
2388         }
2389         /* Add the new endpoint at the end of the list. */
2390         list_add_tail(&virt_ep->bw_endpoint_list,
2391                         &interval_bw->endpoints);
2392 }
2393
2394 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2395                 struct xhci_virt_device *virt_dev,
2396                 int old_active_eps)
2397 {
2398         struct xhci_root_port_bw_info *rh_bw_info;
2399         if (!virt_dev->tt_info)
2400                 return;
2401
2402         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2403         if (old_active_eps == 0 &&
2404                                 virt_dev->tt_info->active_eps != 0) {
2405                 rh_bw_info->num_active_tts += 1;
2406                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2407         } else if (old_active_eps != 0 &&
2408                                 virt_dev->tt_info->active_eps == 0) {
2409                 rh_bw_info->num_active_tts -= 1;
2410                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2411         }
2412 }
2413
2414 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2415                 struct xhci_virt_device *virt_dev,
2416                 struct xhci_container_ctx *in_ctx)
2417 {
2418         struct xhci_bw_info ep_bw_info[31];
2419         int i;
2420         struct xhci_input_control_ctx *ctrl_ctx;
2421         int old_active_eps = 0;
2422
2423         if (virt_dev->tt_info)
2424                 old_active_eps = virt_dev->tt_info->active_eps;
2425
2426         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2427
2428         for (i = 0; i < 31; i++) {
2429                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2430                         continue;
2431
2432                 /* Make a copy of the BW info in case we need to revert this */
2433                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2434                                 sizeof(ep_bw_info[i]));
2435                 /* Drop the endpoint from the interval table if the endpoint is
2436                  * being dropped or changed.
2437                  */
2438                 if (EP_IS_DROPPED(ctrl_ctx, i))
2439                         xhci_drop_ep_from_interval_table(xhci,
2440                                         &virt_dev->eps[i].bw_info,
2441                                         virt_dev->bw_table,
2442                                         virt_dev->udev,
2443                                         &virt_dev->eps[i],
2444                                         virt_dev->tt_info);
2445         }
2446         /* Overwrite the information stored in the endpoints' bw_info */
2447         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2448         for (i = 0; i < 31; i++) {
2449                 /* Add any changed or added endpoints to the interval table */
2450                 if (EP_IS_ADDED(ctrl_ctx, i))
2451                         xhci_add_ep_to_interval_table(xhci,
2452                                         &virt_dev->eps[i].bw_info,
2453                                         virt_dev->bw_table,
2454                                         virt_dev->udev,
2455                                         &virt_dev->eps[i],
2456                                         virt_dev->tt_info);
2457         }
2458
2459         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2460                 /* Ok, this fits in the bandwidth we have.
2461                  * Update the number of active TTs.
2462                  */
2463                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2464                 return 0;
2465         }
2466
2467         /* We don't have enough bandwidth for this, revert the stored info. */
2468         for (i = 0; i < 31; i++) {
2469                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2470                         continue;
2471
2472                 /* Drop the new copies of any added or changed endpoints from
2473                  * the interval table.
2474                  */
2475                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2476                         xhci_drop_ep_from_interval_table(xhci,
2477                                         &virt_dev->eps[i].bw_info,
2478                                         virt_dev->bw_table,
2479                                         virt_dev->udev,
2480                                         &virt_dev->eps[i],
2481                                         virt_dev->tt_info);
2482                 }
2483                 /* Revert the endpoint back to its old information */
2484                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2485                                 sizeof(ep_bw_info[i]));
2486                 /* Add any changed or dropped endpoints back into the table */
2487                 if (EP_IS_DROPPED(ctrl_ctx, i))
2488                         xhci_add_ep_to_interval_table(xhci,
2489                                         &virt_dev->eps[i].bw_info,
2490                                         virt_dev->bw_table,
2491                                         virt_dev->udev,
2492                                         &virt_dev->eps[i],
2493                                         virt_dev->tt_info);
2494         }
2495         return -ENOMEM;
2496 }
2497
2498
2499 /* Issue a configure endpoint command or evaluate context command
2500  * and wait for it to finish.
2501  */
2502 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2503                 struct usb_device *udev,
2504                 struct xhci_command *command,
2505                 bool ctx_change, bool must_succeed)
2506 {
2507         int ret;
2508         int timeleft;
2509         unsigned long flags;
2510         struct xhci_container_ctx *in_ctx;
2511         struct completion *cmd_completion;
2512         u32 *cmd_status;
2513         struct xhci_virt_device *virt_dev;
2514
2515         spin_lock_irqsave(&xhci->lock, flags);
2516         virt_dev = xhci->devs[udev->slot_id];
2517
2518         if (command)
2519                 in_ctx = command->in_ctx;
2520         else
2521                 in_ctx = virt_dev->in_ctx;
2522
2523         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2524                         xhci_reserve_host_resources(xhci, in_ctx)) {
2525                 spin_unlock_irqrestore(&xhci->lock, flags);
2526                 xhci_warn(xhci, "Not enough host resources, "
2527                                 "active endpoint contexts = %u\n",
2528                                 xhci->num_active_eps);
2529                 return -ENOMEM;
2530         }
2531         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2532                         xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2533                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2534                         xhci_free_host_resources(xhci, in_ctx);
2535                 spin_unlock_irqrestore(&xhci->lock, flags);
2536                 xhci_warn(xhci, "Not enough bandwidth\n");
2537                 return -ENOMEM;
2538         }
2539
2540         if (command) {
2541                 cmd_completion = command->completion;
2542                 cmd_status = &command->status;
2543                 command->command_trb = xhci->cmd_ring->enqueue;
2544
2545                 /* Enqueue pointer can be left pointing to the link TRB,
2546                  * we must handle that
2547                  */
2548                 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2549                         command->command_trb =
2550                                 xhci->cmd_ring->enq_seg->next->trbs;
2551
2552                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2553         } else {
2554                 cmd_completion = &virt_dev->cmd_completion;
2555                 cmd_status = &virt_dev->cmd_status;
2556         }
2557         init_completion(cmd_completion);
2558
2559         if (!ctx_change)
2560                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2561                                 udev->slot_id, must_succeed);
2562         else
2563                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2564                                 udev->slot_id);
2565         if (ret < 0) {
2566                 if (command)
2567                         list_del(&command->cmd_list);
2568                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2569                         xhci_free_host_resources(xhci, in_ctx);
2570                 spin_unlock_irqrestore(&xhci->lock, flags);
2571                 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2572                 return -ENOMEM;
2573         }
2574         xhci_ring_cmd_db(xhci);
2575         spin_unlock_irqrestore(&xhci->lock, flags);
2576
2577         /* Wait for the configure endpoint command to complete */
2578         timeleft = wait_for_completion_interruptible_timeout(
2579                         cmd_completion,
2580                         USB_CTRL_SET_TIMEOUT);
2581         if (timeleft <= 0) {
2582                 xhci_warn(xhci, "%s while waiting for %s command\n",
2583                                 timeleft == 0 ? "Timeout" : "Signal",
2584                                 ctx_change == 0 ?
2585                                         "configure endpoint" :
2586                                         "evaluate context");
2587                 /* FIXME cancel the configure endpoint command */
2588                 return -ETIME;
2589         }
2590
2591         if (!ctx_change)
2592                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2593         else
2594                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2595
2596         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2597                 spin_lock_irqsave(&xhci->lock, flags);
2598                 /* If the command failed, remove the reserved resources.
2599                  * Otherwise, clean up the estimate to include dropped eps.
2600                  */
2601                 if (ret)
2602                         xhci_free_host_resources(xhci, in_ctx);
2603                 else
2604                         xhci_finish_resource_reservation(xhci, in_ctx);
2605                 spin_unlock_irqrestore(&xhci->lock, flags);
2606         }
2607         return ret;
2608 }
2609
2610 /* Called after one or more calls to xhci_add_endpoint() or
2611  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2612  * to call xhci_reset_bandwidth().
2613  *
2614  * Since we are in the middle of changing either configuration or
2615  * installing a new alt setting, the USB core won't allow URBs to be
2616  * enqueued for any endpoint on the old config or interface.  Nothing
2617  * else should be touching the xhci->devs[slot_id] structure, so we
2618  * don't need to take the xhci->lock for manipulating that.
2619  */
2620 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2621 {
2622         int i;
2623         int ret = 0;
2624         struct xhci_hcd *xhci;
2625         struct xhci_virt_device *virt_dev;
2626         struct xhci_input_control_ctx *ctrl_ctx;
2627         struct xhci_slot_ctx *slot_ctx;
2628
2629         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2630         if (ret <= 0)
2631                 return ret;
2632         xhci = hcd_to_xhci(hcd);
2633         if (xhci->xhc_state & XHCI_STATE_DYING)
2634                 return -ENODEV;
2635
2636         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2637         virt_dev = xhci->devs[udev->slot_id];
2638
2639         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2640         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2641         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2642         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2643         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2644
2645         /* Don't issue the command if there's no endpoints to update. */
2646         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2647                         ctrl_ctx->drop_flags == 0)
2648                 return 0;
2649
2650         xhci_dbg(xhci, "New Input Control Context:\n");
2651         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2652         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2653                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2654
2655         ret = xhci_configure_endpoint(xhci, udev, NULL,
2656                         false, false);
2657         if (ret) {
2658                 /* Callee should call reset_bandwidth() */
2659                 return ret;
2660         }
2661
2662         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2663         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2664                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2665
2666         /* Free any rings that were dropped, but not changed. */
2667         for (i = 1; i < 31; ++i) {
2668                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2669                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2670                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2671         }
2672         xhci_zero_in_ctx(xhci, virt_dev);
2673         /*
2674          * Install any rings for completely new endpoints or changed endpoints,
2675          * and free or cache any old rings from changed endpoints.
2676          */
2677         for (i = 1; i < 31; ++i) {
2678                 if (!virt_dev->eps[i].new_ring)
2679                         continue;
2680                 /* Only cache or free the old ring if it exists.
2681                  * It may not if this is the first add of an endpoint.
2682                  */
2683                 if (virt_dev->eps[i].ring) {
2684                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2685                 }
2686                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2687                 virt_dev->eps[i].new_ring = NULL;
2688         }
2689
2690         return ret;
2691 }
2692
2693 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2694 {
2695         struct xhci_hcd *xhci;
2696         struct xhci_virt_device *virt_dev;
2697         int i, ret;
2698
2699         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2700         if (ret <= 0)
2701                 return;
2702         xhci = hcd_to_xhci(hcd);
2703
2704         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2705         virt_dev = xhci->devs[udev->slot_id];
2706         /* Free any rings allocated for added endpoints */
2707         for (i = 0; i < 31; ++i) {
2708                 if (virt_dev->eps[i].new_ring) {
2709                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2710                         virt_dev->eps[i].new_ring = NULL;
2711                 }
2712         }
2713         xhci_zero_in_ctx(xhci, virt_dev);
2714 }
2715
2716 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2717                 struct xhci_container_ctx *in_ctx,
2718                 struct xhci_container_ctx *out_ctx,
2719                 u32 add_flags, u32 drop_flags)
2720 {
2721         struct xhci_input_control_ctx *ctrl_ctx;
2722         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2723         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2724         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2725         xhci_slot_copy(xhci, in_ctx, out_ctx);
2726         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2727
2728         xhci_dbg(xhci, "Input Context:\n");
2729         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2730 }
2731
2732 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2733                 unsigned int slot_id, unsigned int ep_index,
2734                 struct xhci_dequeue_state *deq_state)
2735 {
2736         struct xhci_container_ctx *in_ctx;
2737         struct xhci_ep_ctx *ep_ctx;
2738         u32 added_ctxs;
2739         dma_addr_t addr;
2740
2741         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2742                         xhci->devs[slot_id]->out_ctx, ep_index);
2743         in_ctx = xhci->devs[slot_id]->in_ctx;
2744         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2745         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2746                         deq_state->new_deq_ptr);
2747         if (addr == 0) {
2748                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2749                                 "reset ep command\n");
2750                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2751                                 deq_state->new_deq_seg,
2752                                 deq_state->new_deq_ptr);
2753                 return;
2754         }
2755         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2756
2757         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2758         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2759                         xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2760 }
2761
2762 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2763                 struct usb_device *udev, unsigned int ep_index)
2764 {
2765         struct xhci_dequeue_state deq_state;
2766         struct xhci_virt_ep *ep;
2767
2768         xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2769         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2770         /* We need to move the HW's dequeue pointer past this TD,
2771          * or it will attempt to resend it on the next doorbell ring.
2772          */
2773         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2774                         ep_index, ep->stopped_stream, ep->stopped_td,
2775                         &deq_state);
2776
2777         /* HW with the reset endpoint quirk will use the saved dequeue state to
2778          * issue a configure endpoint command later.
2779          */
2780         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2781                 xhci_dbg(xhci, "Queueing new dequeue state\n");
2782                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2783                                 ep_index, ep->stopped_stream, &deq_state);
2784         } else {
2785                 /* Better hope no one uses the input context between now and the
2786                  * reset endpoint completion!
2787                  * XXX: No idea how this hardware will react when stream rings
2788                  * are enabled.
2789                  */
2790                 xhci_dbg(xhci, "Setting up input context for "
2791                                 "configure endpoint command\n");
2792                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2793                                 ep_index, &deq_state);
2794         }
2795 }
2796
2797 /* Deal with stalled endpoints.  The core should have sent the control message
2798  * to clear the halt condition.  However, we need to make the xHCI hardware
2799  * reset its sequence number, since a device will expect a sequence number of
2800  * zero after the halt condition is cleared.
2801  * Context: in_interrupt
2802  */
2803 void xhci_endpoint_reset(struct usb_hcd *hcd,
2804                 struct usb_host_endpoint *ep)
2805 {
2806         struct xhci_hcd *xhci;
2807         struct usb_device *udev;
2808         unsigned int ep_index;
2809         unsigned long flags;
2810         int ret;
2811         struct xhci_virt_ep *virt_ep;
2812
2813         xhci = hcd_to_xhci(hcd);
2814         udev = (struct usb_device *) ep->hcpriv;
2815         /* Called with a root hub endpoint (or an endpoint that wasn't added
2816          * with xhci_add_endpoint()
2817          */
2818         if (!ep->hcpriv)
2819                 return;
2820         ep_index = xhci_get_endpoint_index(&ep->desc);
2821         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2822         if (!virt_ep->stopped_td) {
2823                 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2824                                 ep->desc.bEndpointAddress);
2825                 return;
2826         }
2827         if (usb_endpoint_xfer_control(&ep->desc)) {
2828                 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2829                 return;
2830         }
2831
2832         xhci_dbg(xhci, "Queueing reset endpoint command\n");
2833         spin_lock_irqsave(&xhci->lock, flags);
2834         ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2835         /*
2836          * Can't change the ring dequeue pointer until it's transitioned to the
2837          * stopped state, which is only upon a successful reset endpoint
2838          * command.  Better hope that last command worked!
2839          */
2840         if (!ret) {
2841                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2842                 kfree(virt_ep->stopped_td);
2843                 xhci_ring_cmd_db(xhci);
2844         }
2845         virt_ep->stopped_td = NULL;
2846         virt_ep->stopped_trb = NULL;
2847         virt_ep->stopped_stream = 0;
2848         spin_unlock_irqrestore(&xhci->lock, flags);
2849
2850         if (ret)
2851                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2852 }
2853
2854 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2855                 struct usb_device *udev, struct usb_host_endpoint *ep,
2856                 unsigned int slot_id)
2857 {
2858         int ret;
2859         unsigned int ep_index;
2860         unsigned int ep_state;
2861
2862         if (!ep)
2863                 return -EINVAL;
2864         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2865         if (ret <= 0)
2866                 return -EINVAL;
2867         if (ep->ss_ep_comp.bmAttributes == 0) {
2868                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2869                                 " descriptor for ep 0x%x does not support streams\n",
2870                                 ep->desc.bEndpointAddress);
2871                 return -EINVAL;
2872         }
2873
2874         ep_index = xhci_get_endpoint_index(&ep->desc);
2875         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2876         if (ep_state & EP_HAS_STREAMS ||
2877                         ep_state & EP_GETTING_STREAMS) {
2878                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2879                                 "already has streams set up.\n",
2880                                 ep->desc.bEndpointAddress);
2881                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2882                                 "dynamic stream context array reallocation.\n");
2883                 return -EINVAL;
2884         }
2885         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2886                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2887                                 "endpoint 0x%x; URBs are pending.\n",
2888                                 ep->desc.bEndpointAddress);
2889                 return -EINVAL;
2890         }
2891         return 0;
2892 }
2893
2894 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2895                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2896 {
2897         unsigned int max_streams;
2898
2899         /* The stream context array size must be a power of two */
2900         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2901         /*
2902          * Find out how many primary stream array entries the host controller
2903          * supports.  Later we may use secondary stream arrays (similar to 2nd
2904          * level page entries), but that's an optional feature for xHCI host
2905          * controllers. xHCs must support at least 4 stream IDs.
2906          */
2907         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2908         if (*num_stream_ctxs > max_streams) {
2909                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2910                                 max_streams);
2911                 *num_stream_ctxs = max_streams;
2912                 *num_streams = max_streams;
2913         }
2914 }
2915
2916 /* Returns an error code if one of the endpoint already has streams.
2917  * This does not change any data structures, it only checks and gathers
2918  * information.
2919  */
2920 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2921                 struct usb_device *udev,
2922                 struct usb_host_endpoint **eps, unsigned int num_eps,
2923                 unsigned int *num_streams, u32 *changed_ep_bitmask)
2924 {
2925         unsigned int max_streams;
2926         unsigned int endpoint_flag;
2927         int i;
2928         int ret;
2929
2930         for (i = 0; i < num_eps; i++) {
2931                 ret = xhci_check_streams_endpoint(xhci, udev,
2932                                 eps[i], udev->slot_id);
2933                 if (ret < 0)
2934                         return ret;
2935
2936                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2937                 if (max_streams < (*num_streams - 1)) {
2938                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2939                                         eps[i]->desc.bEndpointAddress,
2940                                         max_streams);
2941                         *num_streams = max_streams+1;
2942                 }
2943
2944                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2945                 if (*changed_ep_bitmask & endpoint_flag)
2946                         return -EINVAL;
2947                 *changed_ep_bitmask |= endpoint_flag;
2948         }
2949         return 0;
2950 }
2951
2952 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2953                 struct usb_device *udev,
2954                 struct usb_host_endpoint **eps, unsigned int num_eps)
2955 {
2956         u32 changed_ep_bitmask = 0;
2957         unsigned int slot_id;
2958         unsigned int ep_index;
2959         unsigned int ep_state;
2960         int i;
2961
2962         slot_id = udev->slot_id;
2963         if (!xhci->devs[slot_id])
2964                 return 0;
2965
2966         for (i = 0; i < num_eps; i++) {
2967                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2968                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2969                 /* Are streams already being freed for the endpoint? */
2970                 if (ep_state & EP_GETTING_NO_STREAMS) {
2971                         xhci_warn(xhci, "WARN Can't disable streams for "
2972                                         "endpoint 0x%x\n, "
2973                                         "streams are being disabled already.",
2974                                         eps[i]->desc.bEndpointAddress);
2975                         return 0;
2976                 }
2977                 /* Are there actually any streams to free? */
2978                 if (!(ep_state & EP_HAS_STREAMS) &&
2979                                 !(ep_state & EP_GETTING_STREAMS)) {
2980                         xhci_warn(xhci, "WARN Can't disable streams for "
2981                                         "endpoint 0x%x\n, "
2982                                         "streams are already disabled!",
2983                                         eps[i]->desc.bEndpointAddress);
2984                         xhci_warn(xhci, "WARN xhci_free_streams() called "
2985                                         "with non-streams endpoint\n");
2986                         return 0;
2987                 }
2988                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2989         }
2990         return changed_ep_bitmask;
2991 }
2992
2993 /*
2994  * The USB device drivers use this function (though the HCD interface in USB
2995  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
2996  * coordinate mass storage command queueing across multiple endpoints (basically
2997  * a stream ID == a task ID).
2998  *
2999  * Setting up streams involves allocating the same size stream context array
3000  * for each endpoint and issuing a configure endpoint command for all endpoints.
3001  *
3002  * Don't allow the call to succeed if one endpoint only supports one stream
3003  * (which means it doesn't support streams at all).
3004  *
3005  * Drivers may get less stream IDs than they asked for, if the host controller
3006  * hardware or endpoints claim they can't support the number of requested
3007  * stream IDs.
3008  */
3009 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3010                 struct usb_host_endpoint **eps, unsigned int num_eps,
3011                 unsigned int num_streams, gfp_t mem_flags)
3012 {
3013         int i, ret;
3014         struct xhci_hcd *xhci;
3015         struct xhci_virt_device *vdev;
3016         struct xhci_command *config_cmd;
3017         unsigned int ep_index;
3018         unsigned int num_stream_ctxs;
3019         unsigned long flags;
3020         u32 changed_ep_bitmask = 0;
3021
3022         if (!eps)
3023                 return -EINVAL;
3024
3025         /* Add one to the number of streams requested to account for
3026          * stream 0 that is reserved for xHCI usage.
3027          */
3028         num_streams += 1;
3029         xhci = hcd_to_xhci(hcd);
3030         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3031                         num_streams);
3032
3033         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3034         if (!config_cmd) {
3035                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3036                 return -ENOMEM;
3037         }
3038
3039         /* Check to make sure all endpoints are not already configured for
3040          * streams.  While we're at it, find the maximum number of streams that
3041          * all the endpoints will support and check for duplicate endpoints.
3042          */
3043         spin_lock_irqsave(&xhci->lock, flags);
3044         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3045                         num_eps, &num_streams, &changed_ep_bitmask);
3046         if (ret < 0) {
3047                 xhci_free_command(xhci, config_cmd);
3048                 spin_unlock_irqrestore(&xhci->lock, flags);
3049                 return ret;
3050         }
3051         if (num_streams <= 1) {
3052                 xhci_warn(xhci, "WARN: endpoints can't handle "
3053                                 "more than one stream.\n");
3054                 xhci_free_command(xhci, config_cmd);
3055                 spin_unlock_irqrestore(&xhci->lock, flags);
3056                 return -EINVAL;
3057         }
3058         vdev = xhci->devs[udev->slot_id];
3059         /* Mark each endpoint as being in transition, so
3060          * xhci_urb_enqueue() will reject all URBs.
3061          */
3062         for (i = 0; i < num_eps; i++) {
3063                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3064                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3065         }
3066         spin_unlock_irqrestore(&xhci->lock, flags);
3067
3068         /* Setup internal data structures and allocate HW data structures for
3069          * streams (but don't install the HW structures in the input context
3070          * until we're sure all memory allocation succeeded).
3071          */
3072         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3073         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3074                         num_stream_ctxs, num_streams);
3075
3076         for (i = 0; i < num_eps; i++) {
3077                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3078                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3079                                 num_stream_ctxs,
3080                                 num_streams, mem_flags);
3081                 if (!vdev->eps[ep_index].stream_info)
3082                         goto cleanup;
3083                 /* Set maxPstreams in endpoint context and update deq ptr to
3084                  * point to stream context array. FIXME
3085                  */
3086         }
3087
3088         /* Set up the input context for a configure endpoint command. */
3089         for (i = 0; i < num_eps; i++) {
3090                 struct xhci_ep_ctx *ep_ctx;
3091
3092                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3093                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3094
3095                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3096                                 vdev->out_ctx, ep_index);
3097                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3098                                 vdev->eps[ep_index].stream_info);
3099         }
3100         /* Tell the HW to drop its old copy of the endpoint context info
3101          * and add the updated copy from the input context.
3102          */
3103         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3104                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3105
3106         /* Issue and wait for the configure endpoint command */
3107         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3108                         false, false);
3109
3110         /* xHC rejected the configure endpoint command for some reason, so we
3111          * leave the old ring intact and free our internal streams data
3112          * structure.
3113          */
3114         if (ret < 0)
3115                 goto cleanup;
3116
3117         spin_lock_irqsave(&xhci->lock, flags);
3118         for (i = 0; i < num_eps; i++) {
3119                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3120                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3121                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3122                          udev->slot_id, ep_index);
3123                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3124         }
3125         xhci_free_command(xhci, config_cmd);
3126         spin_unlock_irqrestore(&xhci->lock, flags);
3127
3128         /* Subtract 1 for stream 0, which drivers can't use */
3129         return num_streams - 1;
3130
3131 cleanup:
3132         /* If it didn't work, free the streams! */
3133         for (i = 0; i < num_eps; i++) {
3134                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3135                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3136                 vdev->eps[ep_index].stream_info = NULL;
3137                 /* FIXME Unset maxPstreams in endpoint context and
3138                  * update deq ptr to point to normal string ring.
3139                  */
3140                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3141                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3142                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3143         }
3144         xhci_free_command(xhci, config_cmd);
3145         return -ENOMEM;
3146 }
3147
3148 /* Transition the endpoint from using streams to being a "normal" endpoint
3149  * without streams.
3150  *
3151  * Modify the endpoint context state, submit a configure endpoint command,
3152  * and free all endpoint rings for streams if that completes successfully.
3153  */
3154 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3155                 struct usb_host_endpoint **eps, unsigned int num_eps,
3156                 gfp_t mem_flags)
3157 {
3158         int i, ret;
3159         struct xhci_hcd *xhci;
3160         struct xhci_virt_device *vdev;
3161         struct xhci_command *command;
3162         unsigned int ep_index;
3163         unsigned long flags;
3164         u32 changed_ep_bitmask;
3165
3166         xhci = hcd_to_xhci(hcd);
3167         vdev = xhci->devs[udev->slot_id];
3168
3169         /* Set up a configure endpoint command to remove the streams rings */
3170         spin_lock_irqsave(&xhci->lock, flags);
3171         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3172                         udev, eps, num_eps);
3173         if (changed_ep_bitmask == 0) {
3174                 spin_unlock_irqrestore(&xhci->lock, flags);
3175                 return -EINVAL;
3176         }
3177
3178         /* Use the xhci_command structure from the first endpoint.  We may have
3179          * allocated too many, but the driver may call xhci_free_streams() for
3180          * each endpoint it grouped into one call to xhci_alloc_streams().
3181          */
3182         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3183         command = vdev->eps[ep_index].stream_info->free_streams_command;
3184         for (i = 0; i < num_eps; i++) {
3185                 struct xhci_ep_ctx *ep_ctx;
3186
3187                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3188                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3189                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3190                         EP_GETTING_NO_STREAMS;
3191
3192                 xhci_endpoint_copy(xhci, command->in_ctx,
3193                                 vdev->out_ctx, ep_index);
3194                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3195                                 &vdev->eps[ep_index]);
3196         }
3197         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3198                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3199         spin_unlock_irqrestore(&xhci->lock, flags);
3200
3201         /* Issue and wait for the configure endpoint command,
3202          * which must succeed.
3203          */
3204         ret = xhci_configure_endpoint(xhci, udev, command,
3205                         false, true);
3206
3207         /* xHC rejected the configure endpoint command for some reason, so we
3208          * leave the streams rings intact.
3209          */
3210         if (ret < 0)
3211                 return ret;
3212
3213         spin_lock_irqsave(&xhci->lock, flags);
3214         for (i = 0; i < num_eps; i++) {
3215                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3216                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3217                 vdev->eps[ep_index].stream_info = NULL;
3218                 /* FIXME Unset maxPstreams in endpoint context and
3219                  * update deq ptr to point to normal string ring.
3220                  */
3221                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3222                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3223         }
3224         spin_unlock_irqrestore(&xhci->lock, flags);
3225
3226         return 0;
3227 }
3228
3229 /*
3230  * Deletes endpoint resources for endpoints that were active before a Reset
3231  * Device command, or a Disable Slot command.  The Reset Device command leaves
3232  * the control endpoint intact, whereas the Disable Slot command deletes it.
3233  *
3234  * Must be called with xhci->lock held.
3235  */
3236 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3237         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3238 {
3239         int i;
3240         unsigned int num_dropped_eps = 0;
3241         unsigned int drop_flags = 0;
3242
3243         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3244                 if (virt_dev->eps[i].ring) {
3245                         drop_flags |= 1 << i;
3246                         num_dropped_eps++;
3247                 }
3248         }
3249         xhci->num_active_eps -= num_dropped_eps;
3250         if (num_dropped_eps)
3251                 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3252                                 "%u now active.\n",
3253                                 num_dropped_eps, drop_flags,
3254                                 xhci->num_active_eps);
3255 }
3256
3257 /*
3258  * This submits a Reset Device Command, which will set the device state to 0,
3259  * set the device address to 0, and disable all the endpoints except the default
3260  * control endpoint.  The USB core should come back and call
3261  * xhci_address_device(), and then re-set up the configuration.  If this is
3262  * called because of a usb_reset_and_verify_device(), then the old alternate
3263  * settings will be re-installed through the normal bandwidth allocation
3264  * functions.
3265  *
3266  * Wait for the Reset Device command to finish.  Remove all structures
3267  * associated with the endpoints that were disabled.  Clear the input device
3268  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3269  *
3270  * If the virt_dev to be reset does not exist or does not match the udev,
3271  * it means the device is lost, possibly due to the xHC restore error and
3272  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3273  * re-allocate the device.
3274  */
3275 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3276 {
3277         int ret, i;
3278         unsigned long flags;
3279         struct xhci_hcd *xhci;
3280         unsigned int slot_id;
3281         struct xhci_virt_device *virt_dev;
3282         struct xhci_command *reset_device_cmd;
3283         int timeleft;
3284         int last_freed_endpoint;
3285         struct xhci_slot_ctx *slot_ctx;
3286         int old_active_eps = 0;
3287
3288         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3289         if (ret <= 0)
3290                 return ret;
3291         xhci = hcd_to_xhci(hcd);
3292         slot_id = udev->slot_id;
3293         virt_dev = xhci->devs[slot_id];
3294         if (!virt_dev) {
3295                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3296                                 "not exist. Re-allocate the device\n", slot_id);
3297                 ret = xhci_alloc_dev(hcd, udev);
3298                 if (ret == 1)
3299                         return 0;
3300                 else
3301                         return -EINVAL;
3302         }
3303
3304         if (virt_dev->udev != udev) {
3305                 /* If the virt_dev and the udev does not match, this virt_dev
3306                  * may belong to another udev.
3307                  * Re-allocate the device.
3308                  */
3309                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3310                                 "not match the udev. Re-allocate the device\n",
3311                                 slot_id);
3312                 ret = xhci_alloc_dev(hcd, udev);
3313                 if (ret == 1)
3314                         return 0;
3315                 else
3316                         return -EINVAL;
3317         }
3318
3319         /* If device is not setup, there is no point in resetting it */
3320         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3321         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3322                                                 SLOT_STATE_DISABLED)
3323                 return 0;
3324
3325         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3326         /* Allocate the command structure that holds the struct completion.
3327          * Assume we're in process context, since the normal device reset
3328          * process has to wait for the device anyway.  Storage devices are
3329          * reset as part of error handling, so use GFP_NOIO instead of
3330          * GFP_KERNEL.
3331          */
3332         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3333         if (!reset_device_cmd) {
3334                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3335                 return -ENOMEM;
3336         }
3337
3338         /* Attempt to submit the Reset Device command to the command ring */
3339         spin_lock_irqsave(&xhci->lock, flags);
3340         reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3341
3342         /* Enqueue pointer can be left pointing to the link TRB,
3343          * we must handle that
3344          */
3345         if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3346                 reset_device_cmd->command_trb =
3347                         xhci->cmd_ring->enq_seg->next->trbs;
3348
3349         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3350         ret = xhci_queue_reset_device(xhci, slot_id);
3351         if (ret) {
3352                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3353                 list_del(&reset_device_cmd->cmd_list);
3354                 spin_unlock_irqrestore(&xhci->lock, flags);
3355                 goto command_cleanup;
3356         }
3357         xhci_ring_cmd_db(xhci);
3358         spin_unlock_irqrestore(&xhci->lock, flags);
3359
3360         /* Wait for the Reset Device command to finish */
3361         timeleft = wait_for_completion_interruptible_timeout(
3362                         reset_device_cmd->completion,
3363                         USB_CTRL_SET_TIMEOUT);
3364         if (timeleft <= 0) {
3365                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3366                                 timeleft == 0 ? "Timeout" : "Signal");
3367                 spin_lock_irqsave(&xhci->lock, flags);
3368                 /* The timeout might have raced with the event ring handler, so
3369                  * only delete from the list if the item isn't poisoned.
3370                  */
3371                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3372                         list_del(&reset_device_cmd->cmd_list);
3373                 spin_unlock_irqrestore(&xhci->lock, flags);
3374                 ret = -ETIME;
3375                 goto command_cleanup;
3376         }
3377
3378         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3379          * unless we tried to reset a slot ID that wasn't enabled,
3380          * or the device wasn't in the addressed or configured state.
3381          */
3382         ret = reset_device_cmd->status;
3383         switch (ret) {
3384         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3385         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3386                 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3387                                 slot_id,
3388                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3389                 xhci_info(xhci, "Not freeing device rings.\n");
3390                 /* Don't treat this as an error.  May change my mind later. */
3391                 ret = 0;
3392                 goto command_cleanup;
3393         case COMP_SUCCESS:
3394                 xhci_dbg(xhci, "Successful reset device command.\n");
3395                 break;
3396         default:
3397                 if (xhci_is_vendor_info_code(xhci, ret))
3398                         break;
3399                 xhci_warn(xhci, "Unknown completion code %u for "
3400                                 "reset device command.\n", ret);
3401                 ret = -EINVAL;
3402                 goto command_cleanup;
3403         }
3404
3405         /* Free up host controller endpoint resources */
3406         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3407                 spin_lock_irqsave(&xhci->lock, flags);
3408                 /* Don't delete the default control endpoint resources */
3409                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3410                 spin_unlock_irqrestore(&xhci->lock, flags);
3411         }
3412
3413         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3414         last_freed_endpoint = 1;
3415         for (i = 1; i < 31; ++i) {
3416                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3417
3418                 if (ep->ep_state & EP_HAS_STREAMS) {
3419                         xhci_free_stream_info(xhci, ep->stream_info);
3420                         ep->stream_info = NULL;
3421                         ep->ep_state &= ~EP_HAS_STREAMS;
3422                 }
3423
3424                 if (ep->ring) {
3425                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3426                         last_freed_endpoint = i;
3427                 }
3428                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3429                         xhci_drop_ep_from_interval_table(xhci,
3430                                         &virt_dev->eps[i].bw_info,
3431                                         virt_dev->bw_table,
3432                                         udev,
3433                                         &virt_dev->eps[i],
3434                                         virt_dev->tt_info);
3435                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3436         }
3437         /* If necessary, update the number of active TTs on this root port */
3438         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3439
3440         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3441         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3442         ret = 0;
3443
3444 command_cleanup:
3445         xhci_free_command(xhci, reset_device_cmd);
3446         return ret;
3447 }
3448
3449 /*
3450  * At this point, the struct usb_device is about to go away, the device has
3451  * disconnected, and all traffic has been stopped and the endpoints have been
3452  * disabled.  Free any HC data structures associated with that device.
3453  */
3454 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3455 {
3456         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3457         struct xhci_virt_device *virt_dev;
3458         unsigned long flags;
3459         u32 state;
3460         int i, ret;
3461
3462         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3463         /* If the host is halted due to driver unload, we still need to free the
3464          * device.
3465          */
3466         if (ret <= 0 && ret != -ENODEV)
3467                 return;
3468
3469         virt_dev = xhci->devs[udev->slot_id];
3470
3471         /* Stop any wayward timer functions (which may grab the lock) */
3472         for (i = 0; i < 31; ++i) {
3473                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3474                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3475         }
3476
3477         if (udev->usb2_hw_lpm_enabled) {
3478                 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3479                 udev->usb2_hw_lpm_enabled = 0;
3480         }
3481
3482         spin_lock_irqsave(&xhci->lock, flags);
3483         /* Don't disable the slot if the host controller is dead. */
3484         state = xhci_readl(xhci, &xhci->op_regs->status);
3485         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3486                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3487                 xhci_free_virt_device(xhci, udev->slot_id);
3488                 spin_unlock_irqrestore(&xhci->lock, flags);
3489                 return;
3490         }
3491
3492         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3493                 spin_unlock_irqrestore(&xhci->lock, flags);
3494                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3495                 return;
3496         }
3497         xhci_ring_cmd_db(xhci);
3498         spin_unlock_irqrestore(&xhci->lock, flags);
3499         /*
3500          * Event command completion handler will free any data structures
3501          * associated with the slot.  XXX Can free sleep?
3502          */
3503 }
3504
3505 /*
3506  * Checks if we have enough host controller resources for the default control
3507  * endpoint.
3508  *
3509  * Must be called with xhci->lock held.
3510  */
3511 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3512 {
3513         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3514                 xhci_dbg(xhci, "Not enough ep ctxs: "
3515                                 "%u active, need to add 1, limit is %u.\n",
3516                                 xhci->num_active_eps, xhci->limit_active_eps);
3517                 return -ENOMEM;
3518         }
3519         xhci->num_active_eps += 1;
3520         xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3521                         xhci->num_active_eps);
3522         return 0;
3523 }
3524
3525
3526 /*
3527  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3528  * timed out, or allocating memory failed.  Returns 1 on success.
3529  */
3530 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3531 {
3532         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3533         unsigned long flags;
3534         int timeleft;
3535         int ret;
3536
3537         spin_lock_irqsave(&xhci->lock, flags);
3538         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3539         if (ret) {
3540                 spin_unlock_irqrestore(&xhci->lock, flags);
3541                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3542                 return 0;
3543         }
3544         xhci_ring_cmd_db(xhci);
3545         spin_unlock_irqrestore(&xhci->lock, flags);
3546
3547         /* XXX: how much time for xHC slot assignment? */
3548         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3549                         USB_CTRL_SET_TIMEOUT);
3550         if (timeleft <= 0) {
3551                 xhci_warn(xhci, "%s while waiting for a slot\n",
3552                                 timeleft == 0 ? "Timeout" : "Signal");
3553                 /* FIXME cancel the enable slot request */
3554                 return 0;
3555         }
3556
3557         if (!xhci->slot_id) {
3558                 xhci_err(xhci, "Error while assigning device slot ID\n");
3559                 return 0;
3560         }
3561
3562         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3563                 spin_lock_irqsave(&xhci->lock, flags);
3564                 ret = xhci_reserve_host_control_ep_resources(xhci);
3565                 if (ret) {
3566                         spin_unlock_irqrestore(&xhci->lock, flags);
3567                         xhci_warn(xhci, "Not enough host resources, "
3568                                         "active endpoint contexts = %u\n",
3569                                         xhci->num_active_eps);
3570                         goto disable_slot;
3571                 }
3572                 spin_unlock_irqrestore(&xhci->lock, flags);
3573         }
3574         /* Use GFP_NOIO, since this function can be called from
3575          * xhci_discover_or_reset_device(), which may be called as part of
3576          * mass storage driver error handling.
3577          */
3578         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3579                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3580                 goto disable_slot;
3581         }
3582         udev->slot_id = xhci->slot_id;
3583         /* Is this a LS or FS device under a HS hub? */
3584         /* Hub or peripherial? */
3585         return 1;
3586
3587 disable_slot:
3588         /* Disable slot, if we can do it without mem alloc */
3589         spin_lock_irqsave(&xhci->lock, flags);
3590         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3591                 xhci_ring_cmd_db(xhci);
3592         spin_unlock_irqrestore(&xhci->lock, flags);
3593         return 0;
3594 }
3595
3596 /*
3597  * Issue an Address Device command (which will issue a SetAddress request to
3598  * the device).
3599  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3600  * we should only issue and wait on one address command at the same time.
3601  *
3602  * We add one to the device address issued by the hardware because the USB core
3603  * uses address 1 for the root hubs (even though they're not really devices).
3604  */
3605 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3606 {
3607         unsigned long flags;
3608         int timeleft;
3609         struct xhci_virt_device *virt_dev;
3610         int ret = 0;
3611         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3612         struct xhci_slot_ctx *slot_ctx;
3613         struct xhci_input_control_ctx *ctrl_ctx;
3614         u64 temp_64;
3615
3616         if (!udev->slot_id) {
3617                 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3618                 return -EINVAL;
3619         }
3620
3621         virt_dev = xhci->devs[udev->slot_id];
3622
3623         if (WARN_ON(!virt_dev)) {
3624                 /*
3625                  * In plug/unplug torture test with an NEC controller,
3626                  * a zero-dereference was observed once due to virt_dev = 0.
3627                  * Print useful debug rather than crash if it is observed again!
3628                  */
3629                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3630                         udev->slot_id);
3631                 return -EINVAL;
3632         }
3633
3634         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3635         /*
3636          * If this is the first Set Address since device plug-in or
3637          * virt_device realloaction after a resume with an xHCI power loss,
3638          * then set up the slot context.
3639          */
3640         if (!slot_ctx->dev_info)
3641                 xhci_setup_addressable_virt_dev(xhci, udev);
3642         /* Otherwise, update the control endpoint ring enqueue pointer. */
3643         else
3644                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3645         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3646         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3647         ctrl_ctx->drop_flags = 0;
3648
3649         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3650         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3651
3652         spin_lock_irqsave(&xhci->lock, flags);
3653         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3654                                         udev->slot_id);
3655         if (ret) {
3656                 spin_unlock_irqrestore(&xhci->lock, flags);
3657                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3658                 return ret;
3659         }
3660         xhci_ring_cmd_db(xhci);
3661         spin_unlock_irqrestore(&xhci->lock, flags);
3662
3663         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3664         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3665                         USB_CTRL_SET_TIMEOUT);
3666         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3667          * the SetAddress() "recovery interval" required by USB and aborting the
3668          * command on a timeout.
3669          */
3670         if (timeleft <= 0) {
3671                 xhci_warn(xhci, "%s while waiting for address device command\n",
3672                                 timeleft == 0 ? "Timeout" : "Signal");
3673                 /* FIXME cancel the address device command */
3674                 return -ETIME;
3675         }
3676
3677         switch (virt_dev->cmd_status) {
3678         case COMP_CTX_STATE:
3679         case COMP_EBADSLT:
3680                 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3681                                 udev->slot_id);
3682                 ret = -EINVAL;
3683                 break;
3684         case COMP_TX_ERR:
3685                 dev_warn(&udev->dev, "Device not responding to set address.\n");
3686                 ret = -EPROTO;
3687                 break;
3688         case COMP_DEV_ERR:
3689                 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3690                                 "device command.\n");
3691                 ret = -ENODEV;
3692                 break;
3693         case COMP_SUCCESS:
3694                 xhci_dbg(xhci, "Successful Address Device command\n");
3695                 break;
3696         default:
3697                 xhci_err(xhci, "ERROR: unexpected command completion "
3698                                 "code 0x%x.\n", virt_dev->cmd_status);
3699                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3700                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3701                 ret = -EINVAL;
3702                 break;
3703         }
3704         if (ret) {
3705                 return ret;
3706         }
3707         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3708         xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3709         xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3710                  udev->slot_id,
3711                  &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3712                  (unsigned long long)
3713                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3714         xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3715                         (unsigned long long)virt_dev->out_ctx->dma);
3716         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3717         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3718         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3719         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3720         /*
3721          * USB core uses address 1 for the roothubs, so we add one to the
3722          * address given back to us by the HC.
3723          */
3724         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3725         /* Use kernel assigned address for devices; store xHC assigned
3726          * address locally. */
3727         virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3728                 + 1;
3729         /* Zero the input context control for later use */
3730         ctrl_ctx->add_flags = 0;
3731         ctrl_ctx->drop_flags = 0;
3732
3733         xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3734
3735         return 0;
3736 }
3737
3738 #ifdef CONFIG_USB_SUSPEND
3739
3740 /* BESL to HIRD Encoding array for USB2 LPM */
3741 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3742         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3743
3744 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3745 static int xhci_calculate_hird_besl(int u2del, bool use_besl)
3746 {
3747         int hird;
3748
3749         if (use_besl) {
3750                 for (hird = 0; hird < 16; hird++) {
3751                         if (xhci_besl_encoding[hird] >= u2del)
3752                                 break;
3753                 }
3754         } else {
3755                 if (u2del <= 50)
3756                         hird = 0;
3757                 else
3758                         hird = (u2del - 51) / 75 + 1;
3759
3760                 if (hird > 15)
3761                         hird = 15;
3762         }
3763
3764         return hird;
3765 }
3766
3767 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3768                                         struct usb_device *udev)
3769 {
3770         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3771         struct dev_info *dev_info;
3772         __le32 __iomem  **port_array;
3773         __le32 __iomem  *addr, *pm_addr;
3774         u32             temp, dev_id;
3775         unsigned int    port_num;
3776         unsigned long   flags;
3777         int             u2del, hird;
3778         int             ret;
3779
3780         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3781                         !udev->lpm_capable)
3782                 return -EINVAL;
3783
3784         /* we only support lpm for non-hub device connected to root hub yet */
3785         if (!udev->parent || udev->parent->parent ||
3786                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3787                 return -EINVAL;
3788
3789         spin_lock_irqsave(&xhci->lock, flags);
3790
3791         /* Look for devices in lpm_failed_devs list */
3792         dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3793                         le16_to_cpu(udev->descriptor.idProduct);
3794         list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3795                 if (dev_info->dev_id == dev_id) {
3796                         ret = -EINVAL;
3797                         goto finish;
3798                 }
3799         }
3800
3801         port_array = xhci->usb2_ports;
3802         port_num = udev->portnum - 1;
3803
3804         if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3805                 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3806                 ret = -EINVAL;
3807                 goto finish;
3808         }
3809
3810         /*
3811          * Test USB 2.0 software LPM.
3812          * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3813          * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3814          * in the June 2011 errata release.
3815          */
3816         xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3817         /*
3818          * Set L1 Device Slot and HIRD/BESL.
3819          * Check device's USB 2.0 extension descriptor to determine whether
3820          * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3821          */
3822         pm_addr = port_array[port_num] + 1;
3823         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3824         if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2))
3825                 hird = xhci_calculate_hird_besl(u2del, 1);
3826         else
3827                 hird = xhci_calculate_hird_besl(u2del, 0);
3828
3829         temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3830         xhci_writel(xhci, temp, pm_addr);
3831
3832         /* Set port link state to U2(L1) */
3833         addr = port_array[port_num];
3834         xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3835
3836         /* wait for ACK */
3837         spin_unlock_irqrestore(&xhci->lock, flags);
3838         msleep(10);
3839         spin_lock_irqsave(&xhci->lock, flags);
3840
3841         /* Check L1 Status */
3842         ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3843         if (ret != -ETIMEDOUT) {
3844                 /* enter L1 successfully */
3845                 temp = xhci_readl(xhci, addr);
3846                 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3847                                 port_num, temp);
3848                 ret = 0;
3849         } else {
3850                 temp = xhci_readl(xhci, pm_addr);
3851                 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3852                                 port_num, temp & PORT_L1S_MASK);
3853                 ret = -EINVAL;
3854         }
3855
3856         /* Resume the port */
3857         xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3858
3859         spin_unlock_irqrestore(&xhci->lock, flags);
3860         msleep(10);
3861         spin_lock_irqsave(&xhci->lock, flags);
3862
3863         /* Clear PLC */
3864         xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3865
3866         /* Check PORTSC to make sure the device is in the right state */
3867         if (!ret) {
3868                 temp = xhci_readl(xhci, addr);
3869                 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3870                 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3871                                 (temp & PORT_PLS_MASK) != XDEV_U0) {
3872                         xhci_dbg(xhci, "port L1 resume fail\n");
3873                         ret = -EINVAL;
3874                 }
3875         }
3876
3877         if (ret) {
3878                 /* Insert dev to lpm_failed_devs list */
3879                 xhci_warn(xhci, "device LPM test failed, may disconnect and "
3880                                 "re-enumerate\n");
3881                 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3882                 if (!dev_info) {
3883                         ret = -ENOMEM;
3884                         goto finish;
3885                 }
3886                 dev_info->dev_id = dev_id;
3887                 INIT_LIST_HEAD(&dev_info->list);
3888                 list_add(&dev_info->list, &xhci->lpm_failed_devs);
3889         } else {
3890                 xhci_ring_device(xhci, udev->slot_id);
3891         }
3892
3893 finish:
3894         spin_unlock_irqrestore(&xhci->lock, flags);
3895         return ret;
3896 }
3897
3898 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3899                         struct usb_device *udev, int enable)
3900 {
3901         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3902         __le32 __iomem  **port_array;
3903         __le32 __iomem  *pm_addr;
3904         u32             temp;
3905         unsigned int    port_num;
3906         unsigned long   flags;
3907         int             u2del, hird;
3908
3909         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3910                         !udev->lpm_capable)
3911                 return -EPERM;
3912
3913         if (!udev->parent || udev->parent->parent ||
3914                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3915                 return -EPERM;
3916
3917         if (udev->usb2_hw_lpm_capable != 1)
3918                 return -EPERM;
3919
3920         spin_lock_irqsave(&xhci->lock, flags);
3921
3922         port_array = xhci->usb2_ports;
3923         port_num = udev->portnum - 1;
3924         pm_addr = port_array[port_num] + 1;
3925         temp = xhci_readl(xhci, pm_addr);
3926
3927         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3928                         enable ? "enable" : "disable", port_num);
3929
3930         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3931         if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2))
3932                 hird = xhci_calculate_hird_besl(u2del, 1);
3933         else
3934                 hird = xhci_calculate_hird_besl(u2del, 0);
3935
3936         if (enable) {
3937                 temp &= ~PORT_HIRD_MASK;
3938                 temp |= PORT_HIRD(hird) | PORT_RWE;
3939                 xhci_writel(xhci, temp, pm_addr);
3940                 temp = xhci_readl(xhci, pm_addr);
3941                 temp |= PORT_HLE;
3942                 xhci_writel(xhci, temp, pm_addr);
3943         } else {
3944                 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3945                 xhci_writel(xhci, temp, pm_addr);
3946         }
3947
3948         spin_unlock_irqrestore(&xhci->lock, flags);
3949         return 0;
3950 }
3951
3952 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3953 {
3954         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3955         int             ret;
3956
3957         ret = xhci_usb2_software_lpm_test(hcd, udev);
3958         if (!ret) {
3959                 xhci_dbg(xhci, "software LPM test succeed\n");
3960                 if (xhci->hw_lpm_support == 1) {
3961                         udev->usb2_hw_lpm_capable = 1;
3962                         ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3963                         if (!ret)
3964                                 udev->usb2_hw_lpm_enabled = 1;
3965                 }
3966         }
3967
3968         return 0;
3969 }
3970
3971 #else
3972
3973 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3974                                 struct usb_device *udev, int enable)
3975 {
3976         return 0;
3977 }
3978
3979 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3980 {
3981         return 0;
3982 }
3983
3984 #endif /* CONFIG_USB_SUSPEND */
3985
3986 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
3987  * internal data structures for the device.
3988  */
3989 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
3990                         struct usb_tt *tt, gfp_t mem_flags)
3991 {
3992         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3993         struct xhci_virt_device *vdev;
3994         struct xhci_command *config_cmd;
3995         struct xhci_input_control_ctx *ctrl_ctx;
3996         struct xhci_slot_ctx *slot_ctx;
3997         unsigned long flags;
3998         unsigned think_time;
3999         int ret;
4000
4001         /* Ignore root hubs */
4002         if (!hdev->parent)
4003                 return 0;
4004
4005         vdev = xhci->devs[hdev->slot_id];
4006         if (!vdev) {
4007                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4008                 return -EINVAL;
4009         }
4010         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4011         if (!config_cmd) {
4012                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4013                 return -ENOMEM;
4014         }
4015
4016         spin_lock_irqsave(&xhci->lock, flags);
4017         if (hdev->speed == USB_SPEED_HIGH &&
4018                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4019                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4020                 xhci_free_command(xhci, config_cmd);
4021                 spin_unlock_irqrestore(&xhci->lock, flags);
4022                 return -ENOMEM;
4023         }
4024
4025         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4026         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4027         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4028         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4029         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4030         if (tt->multi)
4031                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4032         if (xhci->hci_version > 0x95) {
4033                 xhci_dbg(xhci, "xHCI version %x needs hub "
4034                                 "TT think time and number of ports\n",
4035                                 (unsigned int) xhci->hci_version);
4036                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4037                 /* Set TT think time - convert from ns to FS bit times.
4038                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4039                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4040                  *
4041                  * xHCI 1.0: this field shall be 0 if the device is not a
4042                  * High-spped hub.
4043                  */
4044                 think_time = tt->think_time;
4045                 if (think_time != 0)
4046                         think_time = (think_time / 666) - 1;
4047                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4048                         slot_ctx->tt_info |=
4049                                 cpu_to_le32(TT_THINK_TIME(think_time));
4050         } else {
4051                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4052                                 "TT think time or number of ports\n",
4053                                 (unsigned int) xhci->hci_version);
4054         }
4055         slot_ctx->dev_state = 0;
4056         spin_unlock_irqrestore(&xhci->lock, flags);
4057
4058         xhci_dbg(xhci, "Set up %s for hub device.\n",
4059                         (xhci->hci_version > 0x95) ?
4060                         "configure endpoint" : "evaluate context");
4061         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4062         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4063
4064         /* Issue and wait for the configure endpoint or
4065          * evaluate context command.
4066          */
4067         if (xhci->hci_version > 0x95)
4068                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4069                                 false, false);
4070         else
4071                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4072                                 true, false);
4073
4074         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4075         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4076
4077         xhci_free_command(xhci, config_cmd);
4078         return ret;
4079 }
4080
4081 int xhci_get_frame(struct usb_hcd *hcd)
4082 {
4083         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4084         /* EHCI mods by the periodic size.  Why? */
4085         return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4086 }
4087
4088 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4089 {
4090         struct xhci_hcd         *xhci;
4091         struct device           *dev = hcd->self.controller;
4092         int                     retval;
4093         u32                     temp;
4094
4095         hcd->self.sg_tablesize = TRBS_PER_SEGMENT - 2;
4096
4097         if (usb_hcd_is_primary_hcd(hcd)) {
4098                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4099                 if (!xhci)
4100                         return -ENOMEM;
4101                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4102                 xhci->main_hcd = hcd;
4103                 /* Mark the first roothub as being USB 2.0.
4104                  * The xHCI driver will register the USB 3.0 roothub.
4105                  */
4106                 hcd->speed = HCD_USB2;
4107                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4108                 /*
4109                  * USB 2.0 roothub under xHCI has an integrated TT,
4110                  * (rate matching hub) as opposed to having an OHCI/UHCI
4111                  * companion controller.
4112                  */
4113                 hcd->has_tt = 1;
4114         } else {
4115                 /* xHCI private pointer was set in xhci_pci_probe for the second
4116                  * registered roothub.
4117                  */
4118                 xhci = hcd_to_xhci(hcd);
4119                 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4120                 if (HCC_64BIT_ADDR(temp)) {
4121                         xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4122                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4123                 } else {
4124                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4125                 }
4126                 return 0;
4127         }
4128
4129         xhci->cap_regs = hcd->regs;
4130         xhci->op_regs = hcd->regs +
4131                 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4132         xhci->run_regs = hcd->regs +
4133                 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4134         /* Cache read-only capability registers */
4135         xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4136         xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4137         xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4138         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4139         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4140         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4141         xhci_print_registers(xhci);
4142
4143         get_quirks(dev, xhci);
4144
4145         /* Make sure the HC is halted. */
4146         retval = xhci_halt(xhci);
4147         if (retval)
4148                 goto error;
4149
4150         xhci_dbg(xhci, "Resetting HCD\n");
4151         /* Reset the internal HC memory state and registers. */
4152         retval = xhci_reset(xhci);
4153         if (retval)
4154                 goto error;
4155         xhci_dbg(xhci, "Reset complete\n");
4156
4157         temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4158         if (HCC_64BIT_ADDR(temp)) {
4159                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4160                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4161         } else {
4162                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4163         }
4164
4165         xhci_dbg(xhci, "Calling HCD init\n");
4166         /* Initialize HCD and host controller data structures. */
4167         retval = xhci_init(hcd);
4168         if (retval)
4169                 goto error;
4170         xhci_dbg(xhci, "Called HCD init\n");
4171         return 0;
4172 error:
4173         kfree(xhci);
4174         return retval;
4175 }
4176
4177 MODULE_DESCRIPTION(DRIVER_DESC);
4178 MODULE_AUTHOR(DRIVER_AUTHOR);
4179 MODULE_LICENSE("GPL");
4180
4181 static int __init xhci_hcd_init(void)
4182 {
4183         int retval;
4184
4185         retval = xhci_register_pci();
4186         if (retval < 0) {
4187                 printk(KERN_DEBUG "Problem registering PCI driver.");
4188                 return retval;
4189         }
4190         /*
4191          * Check the compiler generated sizes of structures that must be laid
4192          * out in specific ways for hardware access.
4193          */
4194         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4195         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4196         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4197         /* xhci_device_control has eight fields, and also
4198          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4199          */
4200         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4201         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4202         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4203         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4204         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4205         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4206         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4207         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4208         return 0;
4209 }
4210 module_init(xhci_hcd_init);
4211
4212 static void __exit xhci_hcd_cleanup(void)
4213 {
4214         xhci_unregister_pci();
4215 }
4216 module_exit(xhci_hcd_cleanup);