usb: xhci: Clear XHCI_STATE_DYING on start
[pandora-kernel.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30
31 #include "xhci.h"
32
33 #define DRIVER_AUTHOR "Sarah Sharp"
34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35
36 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
37
38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
39 static int link_quirk;
40 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
42
43 /* TODO: copied from ehci-hcd.c - can this be refactored? */
44 /*
45  * handshake - spin reading hc until handshake completes or fails
46  * @ptr: address of hc register to be read
47  * @mask: bits to look at in result of read
48  * @done: value of those bits when handshake succeeds
49  * @usec: timeout in microseconds
50  *
51  * Returns negative errno, or zero on success
52  *
53  * Success happens when the "mask" bits have the specified value (hardware
54  * handshake done).  There are two failure modes:  "usec" have passed (major
55  * hardware flakeout), or the register reads as all-ones (hardware removed).
56  */
57 int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
58                       u32 mask, u32 done, int usec)
59 {
60         u32     result;
61
62         do {
63                 result = xhci_readl(xhci, ptr);
64                 if (result == ~(u32)0)          /* card removed */
65                         return -ENODEV;
66                 result &= mask;
67                 if (result == done)
68                         return 0;
69                 udelay(1);
70                 usec--;
71         } while (usec > 0);
72         return -ETIMEDOUT;
73 }
74
75 /*
76  * Disable interrupts and begin the xHCI halting process.
77  */
78 void xhci_quiesce(struct xhci_hcd *xhci)
79 {
80         u32 halted;
81         u32 cmd;
82         u32 mask;
83
84         mask = ~(XHCI_IRQS);
85         halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
86         if (!halted)
87                 mask &= ~CMD_RUN;
88
89         cmd = xhci_readl(xhci, &xhci->op_regs->command);
90         cmd &= mask;
91         xhci_writel(xhci, cmd, &xhci->op_regs->command);
92 }
93
94 /*
95  * Force HC into halt state.
96  *
97  * Disable any IRQs and clear the run/stop bit.
98  * HC will complete any current and actively pipelined transactions, and
99  * should halt within 16 ms of the run/stop bit being cleared.
100  * Read HC Halted bit in the status register to see when the HC is finished.
101  */
102 int xhci_halt(struct xhci_hcd *xhci)
103 {
104         int ret;
105         xhci_dbg(xhci, "// Halt the HC\n");
106         xhci_quiesce(xhci);
107
108         ret = handshake(xhci, &xhci->op_regs->status,
109                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
110         if (!ret) {
111                 xhci->xhc_state |= XHCI_STATE_HALTED;
112                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
113         } else
114                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
115                                 XHCI_MAX_HALT_USEC);
116         return ret;
117 }
118
119 /*
120  * Set the run bit and wait for the host to be running.
121  */
122 static int xhci_start(struct xhci_hcd *xhci)
123 {
124         u32 temp;
125         int ret;
126
127         temp = xhci_readl(xhci, &xhci->op_regs->command);
128         temp |= (CMD_RUN);
129         xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
130                         temp);
131         xhci_writel(xhci, temp, &xhci->op_regs->command);
132
133         /*
134          * Wait for the HCHalted Status bit to be 0 to indicate the host is
135          * running.
136          */
137         ret = handshake(xhci, &xhci->op_regs->status,
138                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
139         if (ret == -ETIMEDOUT)
140                 xhci_err(xhci, "Host took too long to start, "
141                                 "waited %u microseconds.\n",
142                                 XHCI_MAX_HALT_USEC);
143         if (!ret)
144                 xhci->xhc_state &= ~(XHCI_STATE_HALTED | XHCI_STATE_DYING);
145
146         return ret;
147 }
148
149 /*
150  * Reset a halted HC.
151  *
152  * This resets pipelines, timers, counters, state machines, etc.
153  * Transactions will be terminated immediately, and operational registers
154  * will be set to their defaults.
155  */
156 int xhci_reset(struct xhci_hcd *xhci)
157 {
158         u32 command;
159         u32 state;
160         int ret;
161
162         state = xhci_readl(xhci, &xhci->op_regs->status);
163         if ((state & STS_HALT) == 0) {
164                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
165                 return 0;
166         }
167
168         xhci_dbg(xhci, "// Reset the HC\n");
169         command = xhci_readl(xhci, &xhci->op_regs->command);
170         command |= CMD_RESET;
171         xhci_writel(xhci, command, &xhci->op_regs->command);
172
173         ret = handshake(xhci, &xhci->op_regs->command,
174                         CMD_RESET, 0, 10 * 1000 * 1000);
175         if (ret)
176                 return ret;
177
178         xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
179         /*
180          * xHCI cannot write to any doorbells or operational registers other
181          * than status until the "Controller Not Ready" flag is cleared.
182          */
183         return handshake(xhci, &xhci->op_regs->status,
184                          STS_CNR, 0, 10 * 1000 * 1000);
185 }
186
187 #ifdef CONFIG_PCI
188 static int xhci_free_msi(struct xhci_hcd *xhci)
189 {
190         int i;
191
192         if (!xhci->msix_entries)
193                 return -EINVAL;
194
195         for (i = 0; i < xhci->msix_count; i++)
196                 if (xhci->msix_entries[i].vector)
197                         free_irq(xhci->msix_entries[i].vector,
198                                         xhci_to_hcd(xhci));
199         return 0;
200 }
201
202 /*
203  * Set up MSI
204  */
205 static int xhci_setup_msi(struct xhci_hcd *xhci)
206 {
207         int ret;
208         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
209
210         ret = pci_enable_msi(pdev);
211         if (ret) {
212                 xhci_dbg(xhci, "failed to allocate MSI entry\n");
213                 return ret;
214         }
215
216         ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
217                                 0, "xhci_hcd", xhci_to_hcd(xhci));
218         if (ret) {
219                 xhci_dbg(xhci, "disable MSI interrupt\n");
220                 pci_disable_msi(pdev);
221         }
222
223         return ret;
224 }
225
226 /*
227  * Free IRQs
228  * free all IRQs request
229  */
230 static void xhci_free_irq(struct xhci_hcd *xhci)
231 {
232         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
233         int ret;
234
235         /* return if using legacy interrupt */
236         if (xhci_to_hcd(xhci)->irq >= 0)
237                 return;
238
239         ret = xhci_free_msi(xhci);
240         if (!ret)
241                 return;
242         if (pdev->irq >= 0)
243                 free_irq(pdev->irq, xhci_to_hcd(xhci));
244
245         return;
246 }
247
248 /*
249  * Set up MSI-X
250  */
251 static int xhci_setup_msix(struct xhci_hcd *xhci)
252 {
253         int i, ret = 0;
254         struct usb_hcd *hcd = xhci_to_hcd(xhci);
255         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
256
257         /*
258          * calculate number of msi-x vectors supported.
259          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
260          *   with max number of interrupters based on the xhci HCSPARAMS1.
261          * - num_online_cpus: maximum msi-x vectors per CPUs core.
262          *   Add additional 1 vector to ensure always available interrupt.
263          */
264         xhci->msix_count = min(num_online_cpus() + 1,
265                                 HCS_MAX_INTRS(xhci->hcs_params1));
266
267         xhci->msix_entries =
268                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
269                                 GFP_KERNEL);
270         if (!xhci->msix_entries) {
271                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
272                 return -ENOMEM;
273         }
274
275         for (i = 0; i < xhci->msix_count; i++) {
276                 xhci->msix_entries[i].entry = i;
277                 xhci->msix_entries[i].vector = 0;
278         }
279
280         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
281         if (ret) {
282                 xhci_dbg(xhci, "Failed to enable MSI-X\n");
283                 goto free_entries;
284         }
285
286         for (i = 0; i < xhci->msix_count; i++) {
287                 ret = request_irq(xhci->msix_entries[i].vector,
288                                 (irq_handler_t)xhci_msi_irq,
289                                 0, "xhci_hcd", xhci_to_hcd(xhci));
290                 if (ret)
291                         goto disable_msix;
292         }
293
294         hcd->msix_enabled = 1;
295         return ret;
296
297 disable_msix:
298         xhci_dbg(xhci, "disable MSI-X interrupt\n");
299         xhci_free_irq(xhci);
300         pci_disable_msix(pdev);
301 free_entries:
302         kfree(xhci->msix_entries);
303         xhci->msix_entries = NULL;
304         return ret;
305 }
306
307 /* Free any IRQs and disable MSI-X */
308 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
309 {
310         struct usb_hcd *hcd = xhci_to_hcd(xhci);
311         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
312
313         xhci_free_irq(xhci);
314
315         if (xhci->msix_entries) {
316                 pci_disable_msix(pdev);
317                 kfree(xhci->msix_entries);
318                 xhci->msix_entries = NULL;
319         } else {
320                 pci_disable_msi(pdev);
321         }
322
323         hcd->msix_enabled = 0;
324         return;
325 }
326
327 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
328 {
329         int i;
330
331         if (xhci->msix_entries) {
332                 for (i = 0; i < xhci->msix_count; i++)
333                         synchronize_irq(xhci->msix_entries[i].vector);
334         }
335 }
336
337 static int xhci_try_enable_msi(struct usb_hcd *hcd)
338 {
339         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
340         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
341         int ret;
342
343         /*
344          * Some Fresco Logic host controllers advertise MSI, but fail to
345          * generate interrupts.  Don't even try to enable MSI.
346          */
347         if (xhci->quirks & XHCI_BROKEN_MSI)
348                 goto legacy_irq;
349
350         /* unregister the legacy interrupt */
351         if (hcd->irq)
352                 free_irq(hcd->irq, hcd);
353         hcd->irq = -1;
354
355         ret = xhci_setup_msix(xhci);
356         if (ret)
357                 /* fall back to msi*/
358                 ret = xhci_setup_msi(xhci);
359
360         if (!ret)
361                 /* hcd->irq is -1, we have MSI */
362                 return 0;
363
364         if (!pdev->irq) {
365                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
366                 return -EINVAL;
367         }
368
369  legacy_irq:
370         /* fall back to legacy interrupt*/
371         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
372                         hcd->irq_descr, hcd);
373         if (ret) {
374                 xhci_err(xhci, "request interrupt %d failed\n",
375                                 pdev->irq);
376                 return ret;
377         }
378         hcd->irq = pdev->irq;
379         return 0;
380 }
381
382 #else
383
384 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
385 {
386         return 0;
387 }
388
389 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
390 {
391 }
392
393 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
394 {
395 }
396
397 #endif
398
399 static void compliance_mode_recovery(unsigned long arg)
400 {
401         struct xhci_hcd *xhci;
402         struct usb_hcd *hcd;
403         u32 temp;
404         int i;
405
406         xhci = (struct xhci_hcd *)arg;
407
408         for (i = 0; i < xhci->num_usb3_ports; i++) {
409                 temp = xhci_readl(xhci, xhci->usb3_ports[i]);
410                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
411                         /*
412                          * Compliance Mode Detected. Letting USB Core
413                          * handle the Warm Reset
414                          */
415                         xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n",
416                                         i + 1);
417                         xhci_dbg(xhci, "Attempting Recovery routine!\n");
418                         hcd = xhci->shared_hcd;
419
420                         if (hcd->state == HC_STATE_SUSPENDED)
421                                 usb_hcd_resume_root_hub(hcd);
422
423                         usb_hcd_poll_rh_status(hcd);
424                 }
425         }
426
427         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
428                 mod_timer(&xhci->comp_mode_recovery_timer,
429                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
430 }
431
432 /*
433  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
434  * that causes ports behind that hardware to enter compliance mode sometimes.
435  * The quirk creates a timer that polls every 2 seconds the link state of
436  * each host controller's port and recovers it by issuing a Warm reset
437  * if Compliance mode is detected, otherwise the port will become "dead" (no
438  * device connections or disconnections will be detected anymore). Becasue no
439  * status event is generated when entering compliance mode (per xhci spec),
440  * this quirk is needed on systems that have the failing hardware installed.
441  */
442 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
443 {
444         xhci->port_status_u0 = 0;
445         init_timer(&xhci->comp_mode_recovery_timer);
446
447         xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
448         xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
449         xhci->comp_mode_recovery_timer.expires = jiffies +
450                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
451
452         set_timer_slack(&xhci->comp_mode_recovery_timer,
453                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
454         add_timer(&xhci->comp_mode_recovery_timer);
455         xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n");
456 }
457
458 /*
459  * This function identifies the systems that have installed the SN65LVPE502CP
460  * USB3.0 re-driver and that need the Compliance Mode Quirk.
461  * Systems:
462  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
463  */
464 static bool compliance_mode_recovery_timer_quirk_check(void)
465 {
466         const char *dmi_product_name, *dmi_sys_vendor;
467
468         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
469         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
470         if (!dmi_product_name || !dmi_sys_vendor)
471                 return false;
472
473         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
474                 return false;
475
476         if (strstr(dmi_product_name, "Z420") ||
477                         strstr(dmi_product_name, "Z620") ||
478                         strstr(dmi_product_name, "Z820") ||
479                         strstr(dmi_product_name, "Z1 Workstation"))
480                 return true;
481
482         return false;
483 }
484
485 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
486 {
487         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
488 }
489
490
491 /*
492  * Initialize memory for HCD and xHC (one-time init).
493  *
494  * Program the PAGESIZE register, initialize the device context array, create
495  * device contexts (?), set up a command ring segment (or two?), create event
496  * ring (one for now).
497  */
498 int xhci_init(struct usb_hcd *hcd)
499 {
500         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
501         int retval = 0;
502
503         xhci_dbg(xhci, "xhci_init\n");
504         spin_lock_init(&xhci->lock);
505         if (xhci->hci_version == 0x95 && link_quirk) {
506                 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
507                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
508         } else {
509                 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
510         }
511         retval = xhci_mem_init(xhci, GFP_KERNEL);
512         xhci_dbg(xhci, "Finished xhci_init\n");
513
514         /* Initializing Compliance Mode Recovery Data If Needed */
515         if (compliance_mode_recovery_timer_quirk_check()) {
516                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
517                 compliance_mode_recovery_timer_init(xhci);
518         }
519
520         return retval;
521 }
522
523 /*-------------------------------------------------------------------------*/
524
525
526 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
527 static void xhci_event_ring_work(unsigned long arg)
528 {
529         unsigned long flags;
530         int temp;
531         u64 temp_64;
532         struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
533         int i, j;
534
535         xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
536
537         spin_lock_irqsave(&xhci->lock, flags);
538         temp = xhci_readl(xhci, &xhci->op_regs->status);
539         xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
540         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
541                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
542                 xhci_dbg(xhci, "HW died, polling stopped.\n");
543                 spin_unlock_irqrestore(&xhci->lock, flags);
544                 return;
545         }
546
547         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
548         xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
549         xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
550         xhci->error_bitmask = 0;
551         xhci_dbg(xhci, "Event ring:\n");
552         xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
553         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
554         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
555         temp_64 &= ~ERST_PTR_MASK;
556         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
557         xhci_dbg(xhci, "Command ring:\n");
558         xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
559         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
560         xhci_dbg_cmd_ptrs(xhci);
561         for (i = 0; i < MAX_HC_SLOTS; ++i) {
562                 if (!xhci->devs[i])
563                         continue;
564                 for (j = 0; j < 31; ++j) {
565                         xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
566                 }
567         }
568         spin_unlock_irqrestore(&xhci->lock, flags);
569
570         if (!xhci->zombie)
571                 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
572         else
573                 xhci_dbg(xhci, "Quit polling the event ring.\n");
574 }
575 #endif
576
577 static int xhci_run_finished(struct xhci_hcd *xhci)
578 {
579         if (xhci_start(xhci)) {
580                 xhci_halt(xhci);
581                 return -ENODEV;
582         }
583         xhci->shared_hcd->state = HC_STATE_RUNNING;
584         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
585
586         if (xhci->quirks & XHCI_NEC_HOST)
587                 xhci_ring_cmd_db(xhci);
588
589         xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
590         return 0;
591 }
592
593 /*
594  * Start the HC after it was halted.
595  *
596  * This function is called by the USB core when the HC driver is added.
597  * Its opposite is xhci_stop().
598  *
599  * xhci_init() must be called once before this function can be called.
600  * Reset the HC, enable device slot contexts, program DCBAAP, and
601  * set command ring pointer and event ring pointer.
602  *
603  * Setup MSI-X vectors and enable interrupts.
604  */
605 int xhci_run(struct usb_hcd *hcd)
606 {
607         u32 temp;
608         u64 temp_64;
609         int ret;
610         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
611
612         /* Start the xHCI host controller running only after the USB 2.0 roothub
613          * is setup.
614          */
615
616         hcd->uses_new_polling = 1;
617         if (!usb_hcd_is_primary_hcd(hcd))
618                 return xhci_run_finished(xhci);
619
620         xhci_dbg(xhci, "xhci_run\n");
621
622         ret = xhci_try_enable_msi(hcd);
623         if (ret)
624                 return ret;
625
626 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
627         init_timer(&xhci->event_ring_timer);
628         xhci->event_ring_timer.data = (unsigned long) xhci;
629         xhci->event_ring_timer.function = xhci_event_ring_work;
630         /* Poll the event ring */
631         xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
632         xhci->zombie = 0;
633         xhci_dbg(xhci, "Setting event ring polling timer\n");
634         add_timer(&xhci->event_ring_timer);
635 #endif
636
637         xhci_dbg(xhci, "Command ring memory map follows:\n");
638         xhci_debug_ring(xhci, xhci->cmd_ring);
639         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
640         xhci_dbg_cmd_ptrs(xhci);
641
642         xhci_dbg(xhci, "ERST memory map follows:\n");
643         xhci_dbg_erst(xhci, &xhci->erst);
644         xhci_dbg(xhci, "Event ring:\n");
645         xhci_debug_ring(xhci, xhci->event_ring);
646         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
647         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
648         temp_64 &= ~ERST_PTR_MASK;
649         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
650
651         xhci_dbg(xhci, "// Set the interrupt modulation register\n");
652         temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
653         temp &= ~ER_IRQ_INTERVAL_MASK;
654         temp |= (u32) 160;
655         xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
656
657         /* Set the HCD state before we enable the irqs */
658         temp = xhci_readl(xhci, &xhci->op_regs->command);
659         temp |= (CMD_EIE);
660         xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
661                         temp);
662         xhci_writel(xhci, temp, &xhci->op_regs->command);
663
664         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
665         xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
666                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
667         xhci_writel(xhci, ER_IRQ_ENABLE(temp),
668                         &xhci->ir_set->irq_pending);
669         xhci_print_ir_set(xhci, 0);
670
671         if (xhci->quirks & XHCI_NEC_HOST)
672                 xhci_queue_vendor_command(xhci, 0, 0, 0,
673                                 TRB_TYPE(TRB_NEC_GET_FW));
674
675         xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
676         return 0;
677 }
678
679 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
680 {
681         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
682
683         spin_lock_irq(&xhci->lock);
684         xhci_halt(xhci);
685
686         /* The shared_hcd is going to be deallocated shortly (the USB core only
687          * calls this function when allocation fails in usb_add_hcd(), or
688          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
689          */
690         xhci->shared_hcd = NULL;
691         spin_unlock_irq(&xhci->lock);
692 }
693
694 /*
695  * Stop xHCI driver.
696  *
697  * This function is called by the USB core when the HC driver is removed.
698  * Its opposite is xhci_run().
699  *
700  * Disable device contexts, disable IRQs, and quiesce the HC.
701  * Reset the HC, finish any completed transactions, and cleanup memory.
702  */
703 void xhci_stop(struct usb_hcd *hcd)
704 {
705         u32 temp;
706         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
707
708         if (!usb_hcd_is_primary_hcd(hcd)) {
709                 xhci_only_stop_hcd(xhci->shared_hcd);
710                 return;
711         }
712
713         spin_lock_irq(&xhci->lock);
714         /* Make sure the xHC is halted for a USB3 roothub
715          * (xhci_stop() could be called as part of failed init).
716          */
717         xhci_halt(xhci);
718         xhci_reset(xhci);
719         spin_unlock_irq(&xhci->lock);
720
721         xhci_cleanup_msix(xhci);
722
723 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
724         /* Tell the event ring poll function not to reschedule */
725         xhci->zombie = 1;
726         del_timer_sync(&xhci->event_ring_timer);
727 #endif
728
729         /* Deleting Compliance Mode Recovery Timer */
730         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
731                         (!(xhci_all_ports_seen_u0(xhci))))
732                 del_timer_sync(&xhci->comp_mode_recovery_timer);
733
734         if (xhci->quirks & XHCI_AMD_PLL_FIX)
735                 usb_amd_dev_put();
736
737         xhci_dbg(xhci, "// Disabling event ring interrupts\n");
738         temp = xhci_readl(xhci, &xhci->op_regs->status);
739         xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
740         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
741         xhci_writel(xhci, ER_IRQ_DISABLE(temp),
742                         &xhci->ir_set->irq_pending);
743         xhci_print_ir_set(xhci, 0);
744
745         xhci_dbg(xhci, "cleaning up memory\n");
746         xhci_mem_cleanup(xhci);
747         xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
748                     xhci_readl(xhci, &xhci->op_regs->status));
749 }
750
751 /*
752  * Shutdown HC (not bus-specific)
753  *
754  * This is called when the machine is rebooting or halting.  We assume that the
755  * machine will be powered off, and the HC's internal state will be reset.
756  * Don't bother to free memory.
757  *
758  * This will only ever be called with the main usb_hcd (the USB3 roothub).
759  */
760 void xhci_shutdown(struct usb_hcd *hcd)
761 {
762         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
763
764         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
765                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
766
767         spin_lock_irq(&xhci->lock);
768         xhci_halt(xhci);
769         /* Workaround for spurious wakeups at shutdown with HSW */
770         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
771                 xhci_reset(xhci);
772         spin_unlock_irq(&xhci->lock);
773
774         xhci_cleanup_msix(xhci);
775
776         xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
777                     xhci_readl(xhci, &xhci->op_regs->status));
778
779         /* Yet another workaround for spurious wakeups at shutdown with HSW */
780         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
781                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
782 }
783
784 #ifdef CONFIG_PM
785 static void xhci_save_registers(struct xhci_hcd *xhci)
786 {
787         xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
788         xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
789         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
790         xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
791         xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
792         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
793         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
794         xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
795         xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
796 }
797
798 static void xhci_restore_registers(struct xhci_hcd *xhci)
799 {
800         xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
801         xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
802         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
803         xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
804         xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
805         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
806         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
807         xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
808         xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
809 }
810
811 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
812 {
813         u64     val_64;
814
815         /* step 2: initialize command ring buffer */
816         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
817         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
818                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
819                                       xhci->cmd_ring->dequeue) &
820                  (u64) ~CMD_RING_RSVD_BITS) |
821                 xhci->cmd_ring->cycle_state;
822         xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
823                         (long unsigned long) val_64);
824         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
825 }
826
827 /*
828  * The whole command ring must be cleared to zero when we suspend the host.
829  *
830  * The host doesn't save the command ring pointer in the suspend well, so we
831  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
832  * aligned, because of the reserved bits in the command ring dequeue pointer
833  * register.  Therefore, we can't just set the dequeue pointer back in the
834  * middle of the ring (TRBs are 16-byte aligned).
835  */
836 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
837 {
838         struct xhci_ring *ring;
839         struct xhci_segment *seg;
840
841         ring = xhci->cmd_ring;
842         seg = ring->deq_seg;
843         do {
844                 memset(seg->trbs, 0,
845                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
846                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
847                         cpu_to_le32(~TRB_CYCLE);
848                 seg = seg->next;
849         } while (seg != ring->deq_seg);
850
851         /* Reset the software enqueue and dequeue pointers */
852         ring->deq_seg = ring->first_seg;
853         ring->dequeue = ring->first_seg->trbs;
854         ring->enq_seg = ring->deq_seg;
855         ring->enqueue = ring->dequeue;
856
857         /*
858          * Ring is now zeroed, so the HW should look for change of ownership
859          * when the cycle bit is set to 1.
860          */
861         ring->cycle_state = 1;
862
863         /*
864          * Reset the hardware dequeue pointer.
865          * Yes, this will need to be re-written after resume, but we're paranoid
866          * and want to make sure the hardware doesn't access bogus memory
867          * because, say, the BIOS or an SMI started the host without changing
868          * the command ring pointers.
869          */
870         xhci_set_cmd_ring_deq(xhci);
871 }
872
873 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
874 {
875         int port_index;
876         __le32 __iomem **port_array;
877         unsigned long flags;
878         u32 t1, t2;
879
880         spin_lock_irqsave(&xhci->lock, flags);
881
882         /* disble usb3 ports Wake bits*/
883         port_index = xhci->num_usb3_ports;
884         port_array = xhci->usb3_ports;
885         while (port_index--) {
886                 t1 = readl(port_array[port_index]);
887                 t1 = xhci_port_state_to_neutral(t1);
888                 t2 = t1 & ~PORT_WAKE_BITS;
889                 if (t1 != t2)
890                         writel(t2, port_array[port_index]);
891         }
892
893         /* disble usb2 ports Wake bits*/
894         port_index = xhci->num_usb2_ports;
895         port_array = xhci->usb2_ports;
896         while (port_index--) {
897                 t1 = readl(port_array[port_index]);
898                 t1 = xhci_port_state_to_neutral(t1);
899                 t2 = t1 & ~PORT_WAKE_BITS;
900                 if (t1 != t2)
901                         writel(t2, port_array[port_index]);
902         }
903
904         spin_unlock_irqrestore(&xhci->lock, flags);
905 }
906
907 /*
908  * Stop HC (not bus-specific)
909  *
910  * This is called when the machine transition into S3/S4 mode.
911  *
912  */
913 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
914 {
915         int                     rc = 0;
916         unsigned int            delay = XHCI_MAX_HALT_USEC;
917         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
918         u32                     command;
919
920         /* Clear root port wake on bits if wakeup not allowed. */
921         if (!do_wakeup)
922                 xhci_disable_port_wake_on_bits(xhci);
923
924         /* Don't poll the roothubs on bus suspend. */
925         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
926         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
927         del_timer_sync(&hcd->rh_timer);
928
929         spin_lock_irq(&xhci->lock);
930         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
931         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
932         /* step 1: stop endpoint */
933         /* skipped assuming that port suspend has done */
934
935         /* step 2: clear Run/Stop bit */
936         command = xhci_readl(xhci, &xhci->op_regs->command);
937         command &= ~CMD_RUN;
938         xhci_writel(xhci, command, &xhci->op_regs->command);
939
940         /* Some chips from Fresco Logic need an extraordinary delay */
941         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
942
943         if (handshake(xhci, &xhci->op_regs->status,
944                       STS_HALT, STS_HALT, delay)) {
945                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
946                 spin_unlock_irq(&xhci->lock);
947                 return -ETIMEDOUT;
948         }
949         xhci_clear_command_ring(xhci);
950
951         /* step 3: save registers */
952         xhci_save_registers(xhci);
953
954         /* step 4: set CSS flag */
955         command = xhci_readl(xhci, &xhci->op_regs->command);
956         command |= CMD_CSS;
957         xhci_writel(xhci, command, &xhci->op_regs->command);
958         if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) {
959                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
960                 spin_unlock_irq(&xhci->lock);
961                 return -ETIMEDOUT;
962         }
963         spin_unlock_irq(&xhci->lock);
964
965         /*
966          * Deleting Compliance Mode Recovery Timer because the xHCI Host
967          * is about to be suspended.
968          */
969         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
970                         (!(xhci_all_ports_seen_u0(xhci)))) {
971                 del_timer_sync(&xhci->comp_mode_recovery_timer);
972                 xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n");
973         }
974
975         /* step 5: remove core well power */
976         /* synchronize irq when using MSI-X */
977         xhci_msix_sync_irqs(xhci);
978
979         return rc;
980 }
981
982 /*
983  * start xHC (not bus-specific)
984  *
985  * This is called when the machine transition from S3/S4 mode.
986  *
987  */
988 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
989 {
990         u32                     command, temp = 0, status;
991         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
992         struct usb_hcd          *secondary_hcd;
993         int                     retval = 0;
994         bool                    comp_timer_running = false;
995
996         /* Wait a bit if either of the roothubs need to settle from the
997          * transition into bus suspend.
998          */
999         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1000                         time_before(jiffies,
1001                                 xhci->bus_state[1].next_statechange))
1002                 msleep(100);
1003
1004         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1005         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1006
1007         spin_lock_irq(&xhci->lock);
1008         if (xhci->quirks & XHCI_RESET_ON_RESUME)
1009                 hibernated = true;
1010
1011         if (!hibernated) {
1012                 /* step 1: restore register */
1013                 xhci_restore_registers(xhci);
1014                 /* step 2: initialize command ring buffer */
1015                 xhci_set_cmd_ring_deq(xhci);
1016                 /* step 3: restore state and start state*/
1017                 /* step 3: set CRS flag */
1018                 command = xhci_readl(xhci, &xhci->op_regs->command);
1019                 command |= CMD_CRS;
1020                 xhci_writel(xhci, command, &xhci->op_regs->command);
1021                 if (handshake(xhci, &xhci->op_regs->status,
1022                               STS_RESTORE, 0, 10 * 1000)) {
1023                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1024                         spin_unlock_irq(&xhci->lock);
1025                         return -ETIMEDOUT;
1026                 }
1027                 temp = xhci_readl(xhci, &xhci->op_regs->status);
1028         }
1029
1030         /* If restore operation fails, re-initialize the HC during resume */
1031         if ((temp & STS_SRE) || hibernated) {
1032
1033                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1034                                 !(xhci_all_ports_seen_u0(xhci))) {
1035                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1036                         xhci_dbg(xhci, "Compliance Mode Recovery Timer deleted!\n");
1037                 }
1038
1039                 /* Let the USB core know _both_ roothubs lost power. */
1040                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1041                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1042
1043                 xhci_dbg(xhci, "Stop HCD\n");
1044                 xhci_halt(xhci);
1045                 xhci_reset(xhci);
1046                 spin_unlock_irq(&xhci->lock);
1047                 xhci_cleanup_msix(xhci);
1048
1049 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
1050                 /* Tell the event ring poll function not to reschedule */
1051                 xhci->zombie = 1;
1052                 del_timer_sync(&xhci->event_ring_timer);
1053 #endif
1054
1055                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1056                 temp = xhci_readl(xhci, &xhci->op_regs->status);
1057                 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
1058                 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
1059                 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
1060                                 &xhci->ir_set->irq_pending);
1061                 xhci_print_ir_set(xhci, 0);
1062
1063                 xhci_dbg(xhci, "cleaning up memory\n");
1064                 xhci_mem_cleanup(xhci);
1065                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1066                             xhci_readl(xhci, &xhci->op_regs->status));
1067
1068                 /* USB core calls the PCI reinit and start functions twice:
1069                  * first with the primary HCD, and then with the secondary HCD.
1070                  * If we don't do the same, the host will never be started.
1071                  */
1072                 if (!usb_hcd_is_primary_hcd(hcd))
1073                         secondary_hcd = hcd;
1074                 else
1075                         secondary_hcd = xhci->shared_hcd;
1076
1077                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1078                 retval = xhci_init(hcd->primary_hcd);
1079                 if (retval)
1080                         return retval;
1081                 comp_timer_running = true;
1082
1083                 xhci_dbg(xhci, "Start the primary HCD\n");
1084                 retval = xhci_run(hcd->primary_hcd);
1085                 if (!retval) {
1086                         xhci_dbg(xhci, "Start the secondary HCD\n");
1087                         retval = xhci_run(secondary_hcd);
1088                 }
1089                 hcd->state = HC_STATE_SUSPENDED;
1090                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1091                 goto done;
1092         }
1093
1094         /* step 4: set Run/Stop bit */
1095         command = xhci_readl(xhci, &xhci->op_regs->command);
1096         command |= CMD_RUN;
1097         xhci_writel(xhci, command, &xhci->op_regs->command);
1098         handshake(xhci, &xhci->op_regs->status, STS_HALT,
1099                   0, 250 * 1000);
1100
1101         /* step 5: walk topology and initialize portsc,
1102          * portpmsc and portli
1103          */
1104         /* this is done in bus_resume */
1105
1106         /* step 6: restart each of the previously
1107          * Running endpoints by ringing their doorbells
1108          */
1109
1110         spin_unlock_irq(&xhci->lock);
1111
1112  done:
1113         if (retval == 0) {
1114                 /* Resume root hubs only when have pending events. */
1115                 status = readl(&xhci->op_regs->status);
1116                 if (status & STS_EINT) {
1117                         usb_hcd_resume_root_hub(hcd);
1118                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1119                 }
1120         }
1121
1122         /*
1123          * If system is subject to the Quirk, Compliance Mode Timer needs to
1124          * be re-initialized Always after a system resume. Ports are subject
1125          * to suffer the Compliance Mode issue again. It doesn't matter if
1126          * ports have entered previously to U0 before system's suspension.
1127          */
1128         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1129                 compliance_mode_recovery_timer_init(xhci);
1130
1131         /* Re-enable port polling. */
1132         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1133         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1134         usb_hcd_poll_rh_status(hcd);
1135
1136         return retval;
1137 }
1138 #endif  /* CONFIG_PM */
1139
1140 /*-------------------------------------------------------------------------*/
1141
1142 /**
1143  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1144  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1145  * value to right shift 1 for the bitmask.
1146  *
1147  * Index  = (epnum * 2) + direction - 1,
1148  * where direction = 0 for OUT, 1 for IN.
1149  * For control endpoints, the IN index is used (OUT index is unused), so
1150  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1151  */
1152 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1153 {
1154         unsigned int index;
1155         if (usb_endpoint_xfer_control(desc))
1156                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1157         else
1158                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1159                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1160         return index;
1161 }
1162
1163 /* Find the flag for this endpoint (for use in the control context).  Use the
1164  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1165  * bit 1, etc.
1166  */
1167 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1168 {
1169         return 1 << (xhci_get_endpoint_index(desc) + 1);
1170 }
1171
1172 /* Find the flag for this endpoint (for use in the control context).  Use the
1173  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1174  * bit 1, etc.
1175  */
1176 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1177 {
1178         return 1 << (ep_index + 1);
1179 }
1180
1181 /* Compute the last valid endpoint context index.  Basically, this is the
1182  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1183  * we find the most significant bit set in the added contexts flags.
1184  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1185  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1186  */
1187 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1188 {
1189         return fls(added_ctxs) - 1;
1190 }
1191
1192 /* Returns 1 if the arguments are OK;
1193  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1194  */
1195 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1196                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1197                 const char *func) {
1198         struct xhci_hcd *xhci;
1199         struct xhci_virt_device *virt_dev;
1200
1201         if (!hcd || (check_ep && !ep) || !udev) {
1202                 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1203                                 func);
1204                 return -EINVAL;
1205         }
1206         if (!udev->parent) {
1207                 printk(KERN_DEBUG "xHCI %s called for root hub\n",
1208                                 func);
1209                 return 0;
1210         }
1211
1212         xhci = hcd_to_xhci(hcd);
1213         if (check_virt_dev) {
1214                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1215                         printk(KERN_DEBUG "xHCI %s called with unaddressed "
1216                                                 "device\n", func);
1217                         return -EINVAL;
1218                 }
1219
1220                 virt_dev = xhci->devs[udev->slot_id];
1221                 if (virt_dev->udev != udev) {
1222                         printk(KERN_DEBUG "xHCI %s called with udev and "
1223                                           "virt_dev does not match\n", func);
1224                         return -EINVAL;
1225                 }
1226         }
1227
1228         if (xhci->xhc_state & XHCI_STATE_HALTED)
1229                 return -ENODEV;
1230
1231         return 1;
1232 }
1233
1234 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1235                 struct usb_device *udev, struct xhci_command *command,
1236                 bool ctx_change, bool must_succeed);
1237
1238 /*
1239  * Full speed devices may have a max packet size greater than 8 bytes, but the
1240  * USB core doesn't know that until it reads the first 8 bytes of the
1241  * descriptor.  If the usb_device's max packet size changes after that point,
1242  * we need to issue an evaluate context command and wait on it.
1243  */
1244 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1245                 unsigned int ep_index, struct urb *urb)
1246 {
1247         struct xhci_container_ctx *in_ctx;
1248         struct xhci_container_ctx *out_ctx;
1249         struct xhci_input_control_ctx *ctrl_ctx;
1250         struct xhci_ep_ctx *ep_ctx;
1251         int max_packet_size;
1252         int hw_max_packet_size;
1253         int ret = 0;
1254
1255         out_ctx = xhci->devs[slot_id]->out_ctx;
1256         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1257         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1258         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1259         if (hw_max_packet_size != max_packet_size) {
1260                 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1261                 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1262                                 max_packet_size);
1263                 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1264                                 hw_max_packet_size);
1265                 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1266
1267                 /* Set up the modified control endpoint 0 */
1268                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1269                                 xhci->devs[slot_id]->out_ctx, ep_index);
1270                 in_ctx = xhci->devs[slot_id]->in_ctx;
1271                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1272                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1273                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1274
1275                 /* Set up the input context flags for the command */
1276                 /* FIXME: This won't work if a non-default control endpoint
1277                  * changes max packet sizes.
1278                  */
1279                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1280                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1281                 ctrl_ctx->drop_flags = 0;
1282
1283                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1284                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1285                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1286                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1287
1288                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1289                                 true, false);
1290
1291                 /* Clean up the input context for later use by bandwidth
1292                  * functions.
1293                  */
1294                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1295         }
1296         return ret;
1297 }
1298
1299 /*
1300  * non-error returns are a promise to giveback() the urb later
1301  * we drop ownership so next owner (or urb unlink) can get it
1302  */
1303 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1304 {
1305         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1306         struct xhci_td *buffer;
1307         unsigned long flags;
1308         int ret = 0;
1309         unsigned int slot_id, ep_index;
1310         struct urb_priv *urb_priv;
1311         int size, i;
1312
1313         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1314                                         true, true, __func__) <= 0)
1315                 return -EINVAL;
1316
1317         slot_id = urb->dev->slot_id;
1318         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1319
1320         if (!HCD_HW_ACCESSIBLE(hcd)) {
1321                 if (!in_interrupt())
1322                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1323                 ret = -ESHUTDOWN;
1324                 goto exit;
1325         }
1326
1327         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1328                 size = urb->number_of_packets;
1329         else
1330                 size = 1;
1331
1332         urb_priv = kzalloc(sizeof(struct urb_priv) +
1333                                   size * sizeof(struct xhci_td *), mem_flags);
1334         if (!urb_priv)
1335                 return -ENOMEM;
1336
1337         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1338         if (!buffer) {
1339                 kfree(urb_priv);
1340                 return -ENOMEM;
1341         }
1342
1343         for (i = 0; i < size; i++) {
1344                 urb_priv->td[i] = buffer;
1345                 buffer++;
1346         }
1347
1348         urb_priv->length = size;
1349         urb_priv->td_cnt = 0;
1350         urb->hcpriv = urb_priv;
1351
1352         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1353                 /* Check to see if the max packet size for the default control
1354                  * endpoint changed during FS device enumeration
1355                  */
1356                 if (urb->dev->speed == USB_SPEED_FULL) {
1357                         ret = xhci_check_maxpacket(xhci, slot_id,
1358                                         ep_index, urb);
1359                         if (ret < 0) {
1360                                 xhci_urb_free_priv(xhci, urb_priv);
1361                                 urb->hcpriv = NULL;
1362                                 return ret;
1363                         }
1364                 }
1365
1366                 /* We have a spinlock and interrupts disabled, so we must pass
1367                  * atomic context to this function, which may allocate memory.
1368                  */
1369                 spin_lock_irqsave(&xhci->lock, flags);
1370                 if (xhci->xhc_state & XHCI_STATE_DYING)
1371                         goto dying;
1372                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1373                                 slot_id, ep_index);
1374                 if (ret)
1375                         goto free_priv;
1376                 spin_unlock_irqrestore(&xhci->lock, flags);
1377         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1378                 spin_lock_irqsave(&xhci->lock, flags);
1379                 if (xhci->xhc_state & XHCI_STATE_DYING)
1380                         goto dying;
1381                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1382                                 EP_GETTING_STREAMS) {
1383                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1384                                         "is transitioning to using streams.\n");
1385                         ret = -EINVAL;
1386                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1387                                 EP_GETTING_NO_STREAMS) {
1388                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1389                                         "is transitioning to "
1390                                         "not having streams.\n");
1391                         ret = -EINVAL;
1392                 } else {
1393                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1394                                         slot_id, ep_index);
1395                 }
1396                 if (ret)
1397                         goto free_priv;
1398                 spin_unlock_irqrestore(&xhci->lock, flags);
1399         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1400                 spin_lock_irqsave(&xhci->lock, flags);
1401                 if (xhci->xhc_state & XHCI_STATE_DYING)
1402                         goto dying;
1403                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1404                                 slot_id, ep_index);
1405                 if (ret)
1406                         goto free_priv;
1407                 spin_unlock_irqrestore(&xhci->lock, flags);
1408         } else {
1409                 spin_lock_irqsave(&xhci->lock, flags);
1410                 if (xhci->xhc_state & XHCI_STATE_DYING)
1411                         goto dying;
1412                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1413                                 slot_id, ep_index);
1414                 if (ret)
1415                         goto free_priv;
1416                 spin_unlock_irqrestore(&xhci->lock, flags);
1417         }
1418 exit:
1419         return ret;
1420 dying:
1421         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1422                         "non-responsive xHCI host.\n",
1423                         urb->ep->desc.bEndpointAddress, urb);
1424         ret = -ESHUTDOWN;
1425 free_priv:
1426         xhci_urb_free_priv(xhci, urb_priv);
1427         urb->hcpriv = NULL;
1428         spin_unlock_irqrestore(&xhci->lock, flags);
1429         return ret;
1430 }
1431
1432 /* Get the right ring for the given URB.
1433  * If the endpoint supports streams, boundary check the URB's stream ID.
1434  * If the endpoint doesn't support streams, return the singular endpoint ring.
1435  */
1436 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1437                 struct urb *urb)
1438 {
1439         unsigned int slot_id;
1440         unsigned int ep_index;
1441         unsigned int stream_id;
1442         struct xhci_virt_ep *ep;
1443
1444         slot_id = urb->dev->slot_id;
1445         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1446         stream_id = urb->stream_id;
1447         ep = &xhci->devs[slot_id]->eps[ep_index];
1448         /* Common case: no streams */
1449         if (!(ep->ep_state & EP_HAS_STREAMS))
1450                 return ep->ring;
1451
1452         if (stream_id == 0) {
1453                 xhci_warn(xhci,
1454                                 "WARN: Slot ID %u, ep index %u has streams, "
1455                                 "but URB has no stream ID.\n",
1456                                 slot_id, ep_index);
1457                 return NULL;
1458         }
1459
1460         if (stream_id < ep->stream_info->num_streams)
1461                 return ep->stream_info->stream_rings[stream_id];
1462
1463         xhci_warn(xhci,
1464                         "WARN: Slot ID %u, ep index %u has "
1465                         "stream IDs 1 to %u allocated, "
1466                         "but stream ID %u is requested.\n",
1467                         slot_id, ep_index,
1468                         ep->stream_info->num_streams - 1,
1469                         stream_id);
1470         return NULL;
1471 }
1472
1473 /*
1474  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1475  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1476  * should pick up where it left off in the TD, unless a Set Transfer Ring
1477  * Dequeue Pointer is issued.
1478  *
1479  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1480  * the ring.  Since the ring is a contiguous structure, they can't be physically
1481  * removed.  Instead, there are two options:
1482  *
1483  *  1) If the HC is in the middle of processing the URB to be canceled, we
1484  *     simply move the ring's dequeue pointer past those TRBs using the Set
1485  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1486  *     when drivers timeout on the last submitted URB and attempt to cancel.
1487  *
1488  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1489  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1490  *     HC will need to invalidate the any TRBs it has cached after the stop
1491  *     endpoint command, as noted in the xHCI 0.95 errata.
1492  *
1493  *  3) The TD may have completed by the time the Stop Endpoint Command
1494  *     completes, so software needs to handle that case too.
1495  *
1496  * This function should protect against the TD enqueueing code ringing the
1497  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1498  * It also needs to account for multiple cancellations on happening at the same
1499  * time for the same endpoint.
1500  *
1501  * Note that this function can be called in any context, or so says
1502  * usb_hcd_unlink_urb()
1503  */
1504 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1505 {
1506         unsigned long flags;
1507         int ret, i;
1508         u32 temp;
1509         struct xhci_hcd *xhci;
1510         struct urb_priv *urb_priv;
1511         struct xhci_td *td;
1512         unsigned int ep_index;
1513         struct xhci_ring *ep_ring;
1514         struct xhci_virt_ep *ep;
1515
1516         xhci = hcd_to_xhci(hcd);
1517         spin_lock_irqsave(&xhci->lock, flags);
1518         /* Make sure the URB hasn't completed or been unlinked already */
1519         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1520         if (ret || !urb->hcpriv)
1521                 goto done;
1522         temp = xhci_readl(xhci, &xhci->op_regs->status);
1523         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1524                 xhci_dbg(xhci, "HW died, freeing TD.\n");
1525                 urb_priv = urb->hcpriv;
1526                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1527                         td = urb_priv->td[i];
1528                         if (!list_empty(&td->td_list))
1529                                 list_del_init(&td->td_list);
1530                         if (!list_empty(&td->cancelled_td_list))
1531                                 list_del_init(&td->cancelled_td_list);
1532                 }
1533
1534                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1535                 spin_unlock_irqrestore(&xhci->lock, flags);
1536                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1537                 xhci_urb_free_priv(xhci, urb_priv);
1538                 return ret;
1539         }
1540         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1541                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1542                 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1543                                 "non-responsive xHCI host.\n",
1544                                 urb->ep->desc.bEndpointAddress, urb);
1545                 /* Let the stop endpoint command watchdog timer (which set this
1546                  * state) finish cleaning up the endpoint TD lists.  We must
1547                  * have caught it in the middle of dropping a lock and giving
1548                  * back an URB.
1549                  */
1550                 goto done;
1551         }
1552
1553         xhci_dbg(xhci, "Cancel URB %p\n", urb);
1554         xhci_dbg(xhci, "Event ring:\n");
1555         xhci_debug_ring(xhci, xhci->event_ring);
1556         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1557         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1558         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1559         if (!ep_ring) {
1560                 ret = -EINVAL;
1561                 goto done;
1562         }
1563
1564         xhci_dbg(xhci, "Endpoint ring:\n");
1565         xhci_debug_ring(xhci, ep_ring);
1566
1567         urb_priv = urb->hcpriv;
1568
1569         for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1570                 td = urb_priv->td[i];
1571                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1572         }
1573
1574         /* Queue a stop endpoint command, but only if this is
1575          * the first cancellation to be handled.
1576          */
1577         if (!(ep->ep_state & EP_HALT_PENDING)) {
1578                 ep->ep_state |= EP_HALT_PENDING;
1579                 ep->stop_cmds_pending++;
1580                 ep->stop_cmd_timer.expires = jiffies +
1581                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1582                 add_timer(&ep->stop_cmd_timer);
1583                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1584                 xhci_ring_cmd_db(xhci);
1585         }
1586 done:
1587         spin_unlock_irqrestore(&xhci->lock, flags);
1588         return ret;
1589 }
1590
1591 /* Drop an endpoint from a new bandwidth configuration for this device.
1592  * Only one call to this function is allowed per endpoint before
1593  * check_bandwidth() or reset_bandwidth() must be called.
1594  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1595  * add the endpoint to the schedule with possibly new parameters denoted by a
1596  * different endpoint descriptor in usb_host_endpoint.
1597  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1598  * not allowed.
1599  *
1600  * The USB core will not allow URBs to be queued to an endpoint that is being
1601  * disabled, so there's no need for mutual exclusion to protect
1602  * the xhci->devs[slot_id] structure.
1603  */
1604 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1605                 struct usb_host_endpoint *ep)
1606 {
1607         struct xhci_hcd *xhci;
1608         struct xhci_container_ctx *in_ctx, *out_ctx;
1609         struct xhci_input_control_ctx *ctrl_ctx;
1610         struct xhci_slot_ctx *slot_ctx;
1611         unsigned int last_ctx;
1612         unsigned int ep_index;
1613         struct xhci_ep_ctx *ep_ctx;
1614         u32 drop_flag;
1615         u32 new_add_flags, new_drop_flags, new_slot_info;
1616         int ret;
1617
1618         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1619         if (ret <= 0)
1620                 return ret;
1621         xhci = hcd_to_xhci(hcd);
1622         if (xhci->xhc_state & XHCI_STATE_DYING)
1623                 return -ENODEV;
1624
1625         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1626         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1627         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1628                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1629                                 __func__, drop_flag);
1630                 return 0;
1631         }
1632
1633         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1634         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1635         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1636         ep_index = xhci_get_endpoint_index(&ep->desc);
1637         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1638         /* If the HC already knows the endpoint is disabled,
1639          * or the HCD has noted it is disabled, ignore this request
1640          */
1641         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1642              cpu_to_le32(EP_STATE_DISABLED)) ||
1643             le32_to_cpu(ctrl_ctx->drop_flags) &
1644             xhci_get_endpoint_flag(&ep->desc)) {
1645                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1646                                 __func__, ep);
1647                 return 0;
1648         }
1649
1650         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1651         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1652
1653         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1654         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1655
1656         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1657         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1658         /* Update the last valid endpoint context, if we deleted the last one */
1659         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1660             LAST_CTX(last_ctx)) {
1661                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1662                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1663         }
1664         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1665
1666         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1667
1668         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1669                         (unsigned int) ep->desc.bEndpointAddress,
1670                         udev->slot_id,
1671                         (unsigned int) new_drop_flags,
1672                         (unsigned int) new_add_flags,
1673                         (unsigned int) new_slot_info);
1674         return 0;
1675 }
1676
1677 /* Add an endpoint to a new possible bandwidth configuration for this device.
1678  * Only one call to this function is allowed per endpoint before
1679  * check_bandwidth() or reset_bandwidth() must be called.
1680  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1681  * add the endpoint to the schedule with possibly new parameters denoted by a
1682  * different endpoint descriptor in usb_host_endpoint.
1683  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1684  * not allowed.
1685  *
1686  * The USB core will not allow URBs to be queued to an endpoint until the
1687  * configuration or alt setting is installed in the device, so there's no need
1688  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1689  */
1690 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1691                 struct usb_host_endpoint *ep)
1692 {
1693         struct xhci_hcd *xhci;
1694         struct xhci_container_ctx *in_ctx, *out_ctx;
1695         unsigned int ep_index;
1696         struct xhci_ep_ctx *ep_ctx;
1697         struct xhci_slot_ctx *slot_ctx;
1698         struct xhci_input_control_ctx *ctrl_ctx;
1699         u32 added_ctxs;
1700         unsigned int last_ctx;
1701         u32 new_add_flags, new_drop_flags, new_slot_info;
1702         struct xhci_virt_device *virt_dev;
1703         int ret = 0;
1704
1705         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1706         if (ret <= 0) {
1707                 /* So we won't queue a reset ep command for a root hub */
1708                 ep->hcpriv = NULL;
1709                 return ret;
1710         }
1711         xhci = hcd_to_xhci(hcd);
1712         if (xhci->xhc_state & XHCI_STATE_DYING)
1713                 return -ENODEV;
1714
1715         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1716         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1717         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1718                 /* FIXME when we have to issue an evaluate endpoint command to
1719                  * deal with ep0 max packet size changing once we get the
1720                  * descriptors
1721                  */
1722                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1723                                 __func__, added_ctxs);
1724                 return 0;
1725         }
1726
1727         virt_dev = xhci->devs[udev->slot_id];
1728         in_ctx = virt_dev->in_ctx;
1729         out_ctx = virt_dev->out_ctx;
1730         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1731         ep_index = xhci_get_endpoint_index(&ep->desc);
1732         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1733
1734         /* If this endpoint is already in use, and the upper layers are trying
1735          * to add it again without dropping it, reject the addition.
1736          */
1737         if (virt_dev->eps[ep_index].ring &&
1738                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1739                                 xhci_get_endpoint_flag(&ep->desc))) {
1740                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1741                                 "without dropping it.\n",
1742                                 (unsigned int) ep->desc.bEndpointAddress);
1743                 return -EINVAL;
1744         }
1745
1746         /* If the HCD has already noted the endpoint is enabled,
1747          * ignore this request.
1748          */
1749         if (le32_to_cpu(ctrl_ctx->add_flags) &
1750             xhci_get_endpoint_flag(&ep->desc)) {
1751                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1752                                 __func__, ep);
1753                 return 0;
1754         }
1755
1756         /*
1757          * Configuration and alternate setting changes must be done in
1758          * process context, not interrupt context (or so documenation
1759          * for usb_set_interface() and usb_set_configuration() claim).
1760          */
1761         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1762                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1763                                 __func__, ep->desc.bEndpointAddress);
1764                 return -ENOMEM;
1765         }
1766
1767         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1768         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1769
1770         /* If xhci_endpoint_disable() was called for this endpoint, but the
1771          * xHC hasn't been notified yet through the check_bandwidth() call,
1772          * this re-adds a new state for the endpoint from the new endpoint
1773          * descriptors.  We must drop and re-add this endpoint, so we leave the
1774          * drop flags alone.
1775          */
1776         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1777
1778         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1779         /* Update the last valid endpoint context, if we just added one past */
1780         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1781             LAST_CTX(last_ctx)) {
1782                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1783                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1784         }
1785         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1786
1787         /* Store the usb_device pointer for later use */
1788         ep->hcpriv = udev;
1789
1790         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1791                         (unsigned int) ep->desc.bEndpointAddress,
1792                         udev->slot_id,
1793                         (unsigned int) new_drop_flags,
1794                         (unsigned int) new_add_flags,
1795                         (unsigned int) new_slot_info);
1796         return 0;
1797 }
1798
1799 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1800 {
1801         struct xhci_input_control_ctx *ctrl_ctx;
1802         struct xhci_ep_ctx *ep_ctx;
1803         struct xhci_slot_ctx *slot_ctx;
1804         int i;
1805
1806         /* When a device's add flag and drop flag are zero, any subsequent
1807          * configure endpoint command will leave that endpoint's state
1808          * untouched.  Make sure we don't leave any old state in the input
1809          * endpoint contexts.
1810          */
1811         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1812         ctrl_ctx->drop_flags = 0;
1813         ctrl_ctx->add_flags = 0;
1814         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1815         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1816         /* Endpoint 0 is always valid */
1817         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1818         for (i = 1; i < 31; ++i) {
1819                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1820                 ep_ctx->ep_info = 0;
1821                 ep_ctx->ep_info2 = 0;
1822                 ep_ctx->deq = 0;
1823                 ep_ctx->tx_info = 0;
1824         }
1825 }
1826
1827 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1828                 struct usb_device *udev, u32 *cmd_status)
1829 {
1830         int ret;
1831
1832         switch (*cmd_status) {
1833         case COMP_ENOMEM:
1834                 dev_warn(&udev->dev, "Not enough host controller resources "
1835                                 "for new device state.\n");
1836                 ret = -ENOMEM;
1837                 /* FIXME: can we allocate more resources for the HC? */
1838                 break;
1839         case COMP_BW_ERR:
1840         case COMP_2ND_BW_ERR:
1841                 dev_warn(&udev->dev, "Not enough bandwidth "
1842                                 "for new device state.\n");
1843                 ret = -ENOSPC;
1844                 /* FIXME: can we go back to the old state? */
1845                 break;
1846         case COMP_TRB_ERR:
1847                 /* the HCD set up something wrong */
1848                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1849                                 "add flag = 1, "
1850                                 "and endpoint is not disabled.\n");
1851                 ret = -EINVAL;
1852                 break;
1853         case COMP_DEV_ERR:
1854                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1855                                 "configure command.\n");
1856                 ret = -ENODEV;
1857                 break;
1858         case COMP_SUCCESS:
1859                 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1860                 ret = 0;
1861                 break;
1862         default:
1863                 xhci_err(xhci, "ERROR: unexpected command completion "
1864                                 "code 0x%x.\n", *cmd_status);
1865                 ret = -EINVAL;
1866                 break;
1867         }
1868         return ret;
1869 }
1870
1871 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1872                 struct usb_device *udev, u32 *cmd_status)
1873 {
1874         int ret;
1875         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1876
1877         switch (*cmd_status) {
1878         case COMP_EINVAL:
1879                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1880                                 "context command.\n");
1881                 ret = -EINVAL;
1882                 break;
1883         case COMP_EBADSLT:
1884                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1885                                 "evaluate context command.\n");
1886         case COMP_CTX_STATE:
1887                 dev_warn(&udev->dev, "WARN: invalid context state for "
1888                                 "evaluate context command.\n");
1889                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1890                 ret = -EINVAL;
1891                 break;
1892         case COMP_DEV_ERR:
1893                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1894                                 "context command.\n");
1895                 ret = -ENODEV;
1896                 break;
1897         case COMP_MEL_ERR:
1898                 /* Max Exit Latency too large error */
1899                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1900                 ret = -EINVAL;
1901                 break;
1902         case COMP_SUCCESS:
1903                 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1904                 ret = 0;
1905                 break;
1906         default:
1907                 xhci_err(xhci, "ERROR: unexpected command completion "
1908                                 "code 0x%x.\n", *cmd_status);
1909                 ret = -EINVAL;
1910                 break;
1911         }
1912         return ret;
1913 }
1914
1915 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1916                 struct xhci_container_ctx *in_ctx)
1917 {
1918         struct xhci_input_control_ctx *ctrl_ctx;
1919         u32 valid_add_flags;
1920         u32 valid_drop_flags;
1921
1922         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1923         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1924          * (bit 1).  The default control endpoint is added during the Address
1925          * Device command and is never removed until the slot is disabled.
1926          */
1927         valid_add_flags = ctrl_ctx->add_flags >> 2;
1928         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1929
1930         /* Use hweight32 to count the number of ones in the add flags, or
1931          * number of endpoints added.  Don't count endpoints that are changed
1932          * (both added and dropped).
1933          */
1934         return hweight32(valid_add_flags) -
1935                 hweight32(valid_add_flags & valid_drop_flags);
1936 }
1937
1938 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1939                 struct xhci_container_ctx *in_ctx)
1940 {
1941         struct xhci_input_control_ctx *ctrl_ctx;
1942         u32 valid_add_flags;
1943         u32 valid_drop_flags;
1944
1945         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1946         valid_add_flags = ctrl_ctx->add_flags >> 2;
1947         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1948
1949         return hweight32(valid_drop_flags) -
1950                 hweight32(valid_add_flags & valid_drop_flags);
1951 }
1952
1953 /*
1954  * We need to reserve the new number of endpoints before the configure endpoint
1955  * command completes.  We can't subtract the dropped endpoints from the number
1956  * of active endpoints until the command completes because we can oversubscribe
1957  * the host in this case:
1958  *
1959  *  - the first configure endpoint command drops more endpoints than it adds
1960  *  - a second configure endpoint command that adds more endpoints is queued
1961  *  - the first configure endpoint command fails, so the config is unchanged
1962  *  - the second command may succeed, even though there isn't enough resources
1963  *
1964  * Must be called with xhci->lock held.
1965  */
1966 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1967                 struct xhci_container_ctx *in_ctx)
1968 {
1969         u32 added_eps;
1970
1971         added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1972         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1973                 xhci_dbg(xhci, "Not enough ep ctxs: "
1974                                 "%u active, need to add %u, limit is %u.\n",
1975                                 xhci->num_active_eps, added_eps,
1976                                 xhci->limit_active_eps);
1977                 return -ENOMEM;
1978         }
1979         xhci->num_active_eps += added_eps;
1980         xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1981                         xhci->num_active_eps);
1982         return 0;
1983 }
1984
1985 /*
1986  * The configure endpoint was failed by the xHC for some other reason, so we
1987  * need to revert the resources that failed configuration would have used.
1988  *
1989  * Must be called with xhci->lock held.
1990  */
1991 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1992                 struct xhci_container_ctx *in_ctx)
1993 {
1994         u32 num_failed_eps;
1995
1996         num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1997         xhci->num_active_eps -= num_failed_eps;
1998         xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1999                         num_failed_eps,
2000                         xhci->num_active_eps);
2001 }
2002
2003 /*
2004  * Now that the command has completed, clean up the active endpoint count by
2005  * subtracting out the endpoints that were dropped (but not changed).
2006  *
2007  * Must be called with xhci->lock held.
2008  */
2009 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2010                 struct xhci_container_ctx *in_ctx)
2011 {
2012         u32 num_dropped_eps;
2013
2014         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
2015         xhci->num_active_eps -= num_dropped_eps;
2016         if (num_dropped_eps)
2017                 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
2018                                 num_dropped_eps,
2019                                 xhci->num_active_eps);
2020 }
2021
2022 unsigned int xhci_get_block_size(struct usb_device *udev)
2023 {
2024         switch (udev->speed) {
2025         case USB_SPEED_LOW:
2026         case USB_SPEED_FULL:
2027                 return FS_BLOCK;
2028         case USB_SPEED_HIGH:
2029                 return HS_BLOCK;
2030         case USB_SPEED_SUPER:
2031                 return SS_BLOCK;
2032         case USB_SPEED_UNKNOWN:
2033         case USB_SPEED_WIRELESS:
2034         default:
2035                 /* Should never happen */
2036                 return 1;
2037         }
2038 }
2039
2040 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2041 {
2042         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2043                 return LS_OVERHEAD;
2044         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2045                 return FS_OVERHEAD;
2046         return HS_OVERHEAD;
2047 }
2048
2049 /* If we are changing a LS/FS device under a HS hub,
2050  * make sure (if we are activating a new TT) that the HS bus has enough
2051  * bandwidth for this new TT.
2052  */
2053 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2054                 struct xhci_virt_device *virt_dev,
2055                 int old_active_eps)
2056 {
2057         struct xhci_interval_bw_table *bw_table;
2058         struct xhci_tt_bw_info *tt_info;
2059
2060         /* Find the bandwidth table for the root port this TT is attached to. */
2061         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2062         tt_info = virt_dev->tt_info;
2063         /* If this TT already had active endpoints, the bandwidth for this TT
2064          * has already been added.  Removing all periodic endpoints (and thus
2065          * making the TT enactive) will only decrease the bandwidth used.
2066          */
2067         if (old_active_eps)
2068                 return 0;
2069         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2070                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2071                         return -ENOMEM;
2072                 return 0;
2073         }
2074         /* Not sure why we would have no new active endpoints...
2075          *
2076          * Maybe because of an Evaluate Context change for a hub update or a
2077          * control endpoint 0 max packet size change?
2078          * FIXME: skip the bandwidth calculation in that case.
2079          */
2080         return 0;
2081 }
2082
2083 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2084                 struct xhci_virt_device *virt_dev)
2085 {
2086         unsigned int bw_reserved;
2087
2088         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2089         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2090                 return -ENOMEM;
2091
2092         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2093         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2094                 return -ENOMEM;
2095
2096         return 0;
2097 }
2098
2099 /*
2100  * This algorithm is a very conservative estimate of the worst-case scheduling
2101  * scenario for any one interval.  The hardware dynamically schedules the
2102  * packets, so we can't tell which microframe could be the limiting factor in
2103  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2104  *
2105  * Obviously, we can't solve an NP complete problem to find the minimum worst
2106  * case scenario.  Instead, we come up with an estimate that is no less than
2107  * the worst case bandwidth used for any one microframe, but may be an
2108  * over-estimate.
2109  *
2110  * We walk the requirements for each endpoint by interval, starting with the
2111  * smallest interval, and place packets in the schedule where there is only one
2112  * possible way to schedule packets for that interval.  In order to simplify
2113  * this algorithm, we record the largest max packet size for each interval, and
2114  * assume all packets will be that size.
2115  *
2116  * For interval 0, we obviously must schedule all packets for each interval.
2117  * The bandwidth for interval 0 is just the amount of data to be transmitted
2118  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2119  * the number of packets).
2120  *
2121  * For interval 1, we have two possible microframes to schedule those packets
2122  * in.  For this algorithm, if we can schedule the same number of packets for
2123  * each possible scheduling opportunity (each microframe), we will do so.  The
2124  * remaining number of packets will be saved to be transmitted in the gaps in
2125  * the next interval's scheduling sequence.
2126  *
2127  * As we move those remaining packets to be scheduled with interval 2 packets,
2128  * we have to double the number of remaining packets to transmit.  This is
2129  * because the intervals are actually powers of 2, and we would be transmitting
2130  * the previous interval's packets twice in this interval.  We also have to be
2131  * sure that when we look at the largest max packet size for this interval, we
2132  * also look at the largest max packet size for the remaining packets and take
2133  * the greater of the two.
2134  *
2135  * The algorithm continues to evenly distribute packets in each scheduling
2136  * opportunity, and push the remaining packets out, until we get to the last
2137  * interval.  Then those packets and their associated overhead are just added
2138  * to the bandwidth used.
2139  */
2140 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2141                 struct xhci_virt_device *virt_dev,
2142                 int old_active_eps)
2143 {
2144         unsigned int bw_reserved;
2145         unsigned int max_bandwidth;
2146         unsigned int bw_used;
2147         unsigned int block_size;
2148         struct xhci_interval_bw_table *bw_table;
2149         unsigned int packet_size = 0;
2150         unsigned int overhead = 0;
2151         unsigned int packets_transmitted = 0;
2152         unsigned int packets_remaining = 0;
2153         unsigned int i;
2154
2155         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2156                 return xhci_check_ss_bw(xhci, virt_dev);
2157
2158         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2159                 max_bandwidth = HS_BW_LIMIT;
2160                 /* Convert percent of bus BW reserved to blocks reserved */
2161                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2162         } else {
2163                 max_bandwidth = FS_BW_LIMIT;
2164                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2165         }
2166
2167         bw_table = virt_dev->bw_table;
2168         /* We need to translate the max packet size and max ESIT payloads into
2169          * the units the hardware uses.
2170          */
2171         block_size = xhci_get_block_size(virt_dev->udev);
2172
2173         /* If we are manipulating a LS/FS device under a HS hub, double check
2174          * that the HS bus has enough bandwidth if we are activing a new TT.
2175          */
2176         if (virt_dev->tt_info) {
2177                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2178                                 virt_dev->real_port);
2179                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2180                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2181                                         "newly activated TT.\n");
2182                         return -ENOMEM;
2183                 }
2184                 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2185                                 virt_dev->tt_info->slot_id,
2186                                 virt_dev->tt_info->ttport);
2187         } else {
2188                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2189                                 virt_dev->real_port);
2190         }
2191
2192         /* Add in how much bandwidth will be used for interval zero, or the
2193          * rounded max ESIT payload + number of packets * largest overhead.
2194          */
2195         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2196                 bw_table->interval_bw[0].num_packets *
2197                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2198
2199         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2200                 unsigned int bw_added;
2201                 unsigned int largest_mps;
2202                 unsigned int interval_overhead;
2203
2204                 /*
2205                  * How many packets could we transmit in this interval?
2206                  * If packets didn't fit in the previous interval, we will need
2207                  * to transmit that many packets twice within this interval.
2208                  */
2209                 packets_remaining = 2 * packets_remaining +
2210                         bw_table->interval_bw[i].num_packets;
2211
2212                 /* Find the largest max packet size of this or the previous
2213                  * interval.
2214                  */
2215                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2216                         largest_mps = 0;
2217                 else {
2218                         struct xhci_virt_ep *virt_ep;
2219                         struct list_head *ep_entry;
2220
2221                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2222                         virt_ep = list_entry(ep_entry,
2223                                         struct xhci_virt_ep, bw_endpoint_list);
2224                         /* Convert to blocks, rounding up */
2225                         largest_mps = DIV_ROUND_UP(
2226                                         virt_ep->bw_info.max_packet_size,
2227                                         block_size);
2228                 }
2229                 if (largest_mps > packet_size)
2230                         packet_size = largest_mps;
2231
2232                 /* Use the larger overhead of this or the previous interval. */
2233                 interval_overhead = xhci_get_largest_overhead(
2234                                 &bw_table->interval_bw[i]);
2235                 if (interval_overhead > overhead)
2236                         overhead = interval_overhead;
2237
2238                 /* How many packets can we evenly distribute across
2239                  * (1 << (i + 1)) possible scheduling opportunities?
2240                  */
2241                 packets_transmitted = packets_remaining >> (i + 1);
2242
2243                 /* Add in the bandwidth used for those scheduled packets */
2244                 bw_added = packets_transmitted * (overhead + packet_size);
2245
2246                 /* How many packets do we have remaining to transmit? */
2247                 packets_remaining = packets_remaining % (1 << (i + 1));
2248
2249                 /* What largest max packet size should those packets have? */
2250                 /* If we've transmitted all packets, don't carry over the
2251                  * largest packet size.
2252                  */
2253                 if (packets_remaining == 0) {
2254                         packet_size = 0;
2255                         overhead = 0;
2256                 } else if (packets_transmitted > 0) {
2257                         /* Otherwise if we do have remaining packets, and we've
2258                          * scheduled some packets in this interval, take the
2259                          * largest max packet size from endpoints with this
2260                          * interval.
2261                          */
2262                         packet_size = largest_mps;
2263                         overhead = interval_overhead;
2264                 }
2265                 /* Otherwise carry over packet_size and overhead from the last
2266                  * time we had a remainder.
2267                  */
2268                 bw_used += bw_added;
2269                 if (bw_used > max_bandwidth) {
2270                         xhci_warn(xhci, "Not enough bandwidth. "
2271                                         "Proposed: %u, Max: %u\n",
2272                                 bw_used, max_bandwidth);
2273                         return -ENOMEM;
2274                 }
2275         }
2276         /*
2277          * Ok, we know we have some packets left over after even-handedly
2278          * scheduling interval 15.  We don't know which microframes they will
2279          * fit into, so we over-schedule and say they will be scheduled every
2280          * microframe.
2281          */
2282         if (packets_remaining > 0)
2283                 bw_used += overhead + packet_size;
2284
2285         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2286                 unsigned int port_index = virt_dev->real_port - 1;
2287
2288                 /* OK, we're manipulating a HS device attached to a
2289                  * root port bandwidth domain.  Include the number of active TTs
2290                  * in the bandwidth used.
2291                  */
2292                 bw_used += TT_HS_OVERHEAD *
2293                         xhci->rh_bw[port_index].num_active_tts;
2294         }
2295
2296         xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2297                 "Available: %u " "percent\n",
2298                 bw_used, max_bandwidth, bw_reserved,
2299                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2300                 max_bandwidth);
2301
2302         bw_used += bw_reserved;
2303         if (bw_used > max_bandwidth) {
2304                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2305                                 bw_used, max_bandwidth);
2306                 return -ENOMEM;
2307         }
2308
2309         bw_table->bw_used = bw_used;
2310         return 0;
2311 }
2312
2313 static bool xhci_is_async_ep(unsigned int ep_type)
2314 {
2315         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2316                                         ep_type != ISOC_IN_EP &&
2317                                         ep_type != INT_IN_EP);
2318 }
2319
2320 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2321 {
2322         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2323 }
2324
2325 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2326 {
2327         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2328
2329         if (ep_bw->ep_interval == 0)
2330                 return SS_OVERHEAD_BURST +
2331                         (ep_bw->mult * ep_bw->num_packets *
2332                                         (SS_OVERHEAD + mps));
2333         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2334                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2335                                 1 << ep_bw->ep_interval);
2336
2337 }
2338
2339 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2340                 struct xhci_bw_info *ep_bw,
2341                 struct xhci_interval_bw_table *bw_table,
2342                 struct usb_device *udev,
2343                 struct xhci_virt_ep *virt_ep,
2344                 struct xhci_tt_bw_info *tt_info)
2345 {
2346         struct xhci_interval_bw *interval_bw;
2347         int normalized_interval;
2348
2349         if (xhci_is_async_ep(ep_bw->type))
2350                 return;
2351
2352         if (udev->speed == USB_SPEED_SUPER) {
2353                 if (xhci_is_sync_in_ep(ep_bw->type))
2354                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2355                                 xhci_get_ss_bw_consumed(ep_bw);
2356                 else
2357                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2358                                 xhci_get_ss_bw_consumed(ep_bw);
2359                 return;
2360         }
2361
2362         /* SuperSpeed endpoints never get added to intervals in the table, so
2363          * this check is only valid for HS/FS/LS devices.
2364          */
2365         if (list_empty(&virt_ep->bw_endpoint_list))
2366                 return;
2367         /* For LS/FS devices, we need to translate the interval expressed in
2368          * microframes to frames.
2369          */
2370         if (udev->speed == USB_SPEED_HIGH)
2371                 normalized_interval = ep_bw->ep_interval;
2372         else
2373                 normalized_interval = ep_bw->ep_interval - 3;
2374
2375         if (normalized_interval == 0)
2376                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2377         interval_bw = &bw_table->interval_bw[normalized_interval];
2378         interval_bw->num_packets -= ep_bw->num_packets;
2379         switch (udev->speed) {
2380         case USB_SPEED_LOW:
2381                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2382                 break;
2383         case USB_SPEED_FULL:
2384                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2385                 break;
2386         case USB_SPEED_HIGH:
2387                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2388                 break;
2389         case USB_SPEED_SUPER:
2390         case USB_SPEED_UNKNOWN:
2391         case USB_SPEED_WIRELESS:
2392                 /* Should never happen because only LS/FS/HS endpoints will get
2393                  * added to the endpoint list.
2394                  */
2395                 return;
2396         }
2397         if (tt_info)
2398                 tt_info->active_eps -= 1;
2399         list_del_init(&virt_ep->bw_endpoint_list);
2400 }
2401
2402 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2403                 struct xhci_bw_info *ep_bw,
2404                 struct xhci_interval_bw_table *bw_table,
2405                 struct usb_device *udev,
2406                 struct xhci_virt_ep *virt_ep,
2407                 struct xhci_tt_bw_info *tt_info)
2408 {
2409         struct xhci_interval_bw *interval_bw;
2410         struct xhci_virt_ep *smaller_ep;
2411         int normalized_interval;
2412
2413         if (xhci_is_async_ep(ep_bw->type))
2414                 return;
2415
2416         if (udev->speed == USB_SPEED_SUPER) {
2417                 if (xhci_is_sync_in_ep(ep_bw->type))
2418                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2419                                 xhci_get_ss_bw_consumed(ep_bw);
2420                 else
2421                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2422                                 xhci_get_ss_bw_consumed(ep_bw);
2423                 return;
2424         }
2425
2426         /* For LS/FS devices, we need to translate the interval expressed in
2427          * microframes to frames.
2428          */
2429         if (udev->speed == USB_SPEED_HIGH)
2430                 normalized_interval = ep_bw->ep_interval;
2431         else
2432                 normalized_interval = ep_bw->ep_interval - 3;
2433
2434         if (normalized_interval == 0)
2435                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2436         interval_bw = &bw_table->interval_bw[normalized_interval];
2437         interval_bw->num_packets += ep_bw->num_packets;
2438         switch (udev->speed) {
2439         case USB_SPEED_LOW:
2440                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2441                 break;
2442         case USB_SPEED_FULL:
2443                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2444                 break;
2445         case USB_SPEED_HIGH:
2446                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2447                 break;
2448         case USB_SPEED_SUPER:
2449         case USB_SPEED_UNKNOWN:
2450         case USB_SPEED_WIRELESS:
2451                 /* Should never happen because only LS/FS/HS endpoints will get
2452                  * added to the endpoint list.
2453                  */
2454                 return;
2455         }
2456
2457         if (tt_info)
2458                 tt_info->active_eps += 1;
2459         /* Insert the endpoint into the list, largest max packet size first. */
2460         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2461                         bw_endpoint_list) {
2462                 if (ep_bw->max_packet_size >=
2463                                 smaller_ep->bw_info.max_packet_size) {
2464                         /* Add the new ep before the smaller endpoint */
2465                         list_add_tail(&virt_ep->bw_endpoint_list,
2466                                         &smaller_ep->bw_endpoint_list);
2467                         return;
2468                 }
2469         }
2470         /* Add the new endpoint at the end of the list. */
2471         list_add_tail(&virt_ep->bw_endpoint_list,
2472                         &interval_bw->endpoints);
2473 }
2474
2475 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2476                 struct xhci_virt_device *virt_dev,
2477                 int old_active_eps)
2478 {
2479         struct xhci_root_port_bw_info *rh_bw_info;
2480         if (!virt_dev->tt_info)
2481                 return;
2482
2483         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2484         if (old_active_eps == 0 &&
2485                                 virt_dev->tt_info->active_eps != 0) {
2486                 rh_bw_info->num_active_tts += 1;
2487                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2488         } else if (old_active_eps != 0 &&
2489                                 virt_dev->tt_info->active_eps == 0) {
2490                 rh_bw_info->num_active_tts -= 1;
2491                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2492         }
2493 }
2494
2495 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2496                 struct xhci_virt_device *virt_dev,
2497                 struct xhci_container_ctx *in_ctx)
2498 {
2499         struct xhci_bw_info ep_bw_info[31];
2500         int i;
2501         struct xhci_input_control_ctx *ctrl_ctx;
2502         int old_active_eps = 0;
2503
2504         if (virt_dev->tt_info)
2505                 old_active_eps = virt_dev->tt_info->active_eps;
2506
2507         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2508
2509         for (i = 0; i < 31; i++) {
2510                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2511                         continue;
2512
2513                 /* Make a copy of the BW info in case we need to revert this */
2514                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2515                                 sizeof(ep_bw_info[i]));
2516                 /* Drop the endpoint from the interval table if the endpoint is
2517                  * being dropped or changed.
2518                  */
2519                 if (EP_IS_DROPPED(ctrl_ctx, i))
2520                         xhci_drop_ep_from_interval_table(xhci,
2521                                         &virt_dev->eps[i].bw_info,
2522                                         virt_dev->bw_table,
2523                                         virt_dev->udev,
2524                                         &virt_dev->eps[i],
2525                                         virt_dev->tt_info);
2526         }
2527         /* Overwrite the information stored in the endpoints' bw_info */
2528         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2529         for (i = 0; i < 31; i++) {
2530                 /* Add any changed or added endpoints to the interval table */
2531                 if (EP_IS_ADDED(ctrl_ctx, i))
2532                         xhci_add_ep_to_interval_table(xhci,
2533                                         &virt_dev->eps[i].bw_info,
2534                                         virt_dev->bw_table,
2535                                         virt_dev->udev,
2536                                         &virt_dev->eps[i],
2537                                         virt_dev->tt_info);
2538         }
2539
2540         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2541                 /* Ok, this fits in the bandwidth we have.
2542                  * Update the number of active TTs.
2543                  */
2544                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2545                 return 0;
2546         }
2547
2548         /* We don't have enough bandwidth for this, revert the stored info. */
2549         for (i = 0; i < 31; i++) {
2550                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2551                         continue;
2552
2553                 /* Drop the new copies of any added or changed endpoints from
2554                  * the interval table.
2555                  */
2556                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2557                         xhci_drop_ep_from_interval_table(xhci,
2558                                         &virt_dev->eps[i].bw_info,
2559                                         virt_dev->bw_table,
2560                                         virt_dev->udev,
2561                                         &virt_dev->eps[i],
2562                                         virt_dev->tt_info);
2563                 }
2564                 /* Revert the endpoint back to its old information */
2565                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2566                                 sizeof(ep_bw_info[i]));
2567                 /* Add any changed or dropped endpoints back into the table */
2568                 if (EP_IS_DROPPED(ctrl_ctx, i))
2569                         xhci_add_ep_to_interval_table(xhci,
2570                                         &virt_dev->eps[i].bw_info,
2571                                         virt_dev->bw_table,
2572                                         virt_dev->udev,
2573                                         &virt_dev->eps[i],
2574                                         virt_dev->tt_info);
2575         }
2576         return -ENOMEM;
2577 }
2578
2579
2580 /* Issue a configure endpoint command or evaluate context command
2581  * and wait for it to finish.
2582  */
2583 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2584                 struct usb_device *udev,
2585                 struct xhci_command *command,
2586                 bool ctx_change, bool must_succeed)
2587 {
2588         int ret;
2589         int timeleft;
2590         unsigned long flags;
2591         struct xhci_container_ctx *in_ctx;
2592         struct completion *cmd_completion;
2593         u32 *cmd_status;
2594         struct xhci_virt_device *virt_dev;
2595         union xhci_trb *cmd_trb;
2596
2597         spin_lock_irqsave(&xhci->lock, flags);
2598         virt_dev = xhci->devs[udev->slot_id];
2599
2600         if (command)
2601                 in_ctx = command->in_ctx;
2602         else
2603                 in_ctx = virt_dev->in_ctx;
2604
2605         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2606                         xhci_reserve_host_resources(xhci, in_ctx)) {
2607                 spin_unlock_irqrestore(&xhci->lock, flags);
2608                 xhci_warn(xhci, "Not enough host resources, "
2609                                 "active endpoint contexts = %u\n",
2610                                 xhci->num_active_eps);
2611                 return -ENOMEM;
2612         }
2613         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2614                         xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2615                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2616                         xhci_free_host_resources(xhci, in_ctx);
2617                 spin_unlock_irqrestore(&xhci->lock, flags);
2618                 xhci_warn(xhci, "Not enough bandwidth\n");
2619                 return -ENOMEM;
2620         }
2621
2622         if (command) {
2623                 cmd_completion = command->completion;
2624                 cmd_status = &command->status;
2625                 command->command_trb = xhci->cmd_ring->enqueue;
2626
2627                 /* Enqueue pointer can be left pointing to the link TRB,
2628                  * we must handle that
2629                  */
2630                 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2631                         command->command_trb =
2632                                 xhci->cmd_ring->enq_seg->next->trbs;
2633
2634                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2635         } else {
2636                 cmd_completion = &virt_dev->cmd_completion;
2637                 cmd_status = &virt_dev->cmd_status;
2638         }
2639         init_completion(cmd_completion);
2640
2641         cmd_trb = xhci->cmd_ring->dequeue;
2642         if (!ctx_change)
2643                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2644                                 udev->slot_id, must_succeed);
2645         else
2646                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2647                                 udev->slot_id);
2648         if (ret < 0) {
2649                 if (command)
2650                         list_del(&command->cmd_list);
2651                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2652                         xhci_free_host_resources(xhci, in_ctx);
2653                 spin_unlock_irqrestore(&xhci->lock, flags);
2654                 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2655                 return -ENOMEM;
2656         }
2657         xhci_ring_cmd_db(xhci);
2658         spin_unlock_irqrestore(&xhci->lock, flags);
2659
2660         /* Wait for the configure endpoint command to complete */
2661         timeleft = wait_for_completion_interruptible_timeout(
2662                         cmd_completion,
2663                         XHCI_CMD_DEFAULT_TIMEOUT);
2664         if (timeleft <= 0) {
2665                 xhci_warn(xhci, "%s while waiting for %s command\n",
2666                                 timeleft == 0 ? "Timeout" : "Signal",
2667                                 ctx_change == 0 ?
2668                                         "configure endpoint" :
2669                                         "evaluate context");
2670                 /* cancel the configure endpoint command */
2671                 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2672                 if (ret < 0)
2673                         return ret;
2674                 return -ETIME;
2675         }
2676
2677         if (!ctx_change)
2678                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2679         else
2680                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2681
2682         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2683                 spin_lock_irqsave(&xhci->lock, flags);
2684                 /* If the command failed, remove the reserved resources.
2685                  * Otherwise, clean up the estimate to include dropped eps.
2686                  */
2687                 if (ret)
2688                         xhci_free_host_resources(xhci, in_ctx);
2689                 else
2690                         xhci_finish_resource_reservation(xhci, in_ctx);
2691                 spin_unlock_irqrestore(&xhci->lock, flags);
2692         }
2693         return ret;
2694 }
2695
2696 /* Called after one or more calls to xhci_add_endpoint() or
2697  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2698  * to call xhci_reset_bandwidth().
2699  *
2700  * Since we are in the middle of changing either configuration or
2701  * installing a new alt setting, the USB core won't allow URBs to be
2702  * enqueued for any endpoint on the old config or interface.  Nothing
2703  * else should be touching the xhci->devs[slot_id] structure, so we
2704  * don't need to take the xhci->lock for manipulating that.
2705  */
2706 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2707 {
2708         int i;
2709         int ret = 0;
2710         struct xhci_hcd *xhci;
2711         struct xhci_virt_device *virt_dev;
2712         struct xhci_input_control_ctx *ctrl_ctx;
2713         struct xhci_slot_ctx *slot_ctx;
2714
2715         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2716         if (ret <= 0)
2717                 return ret;
2718         xhci = hcd_to_xhci(hcd);
2719         if (xhci->xhc_state & XHCI_STATE_DYING)
2720                 return -ENODEV;
2721
2722         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2723         virt_dev = xhci->devs[udev->slot_id];
2724
2725         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2726         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2727         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2728         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2729         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2730
2731         /* Don't issue the command if there's no endpoints to update. */
2732         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2733                         ctrl_ctx->drop_flags == 0)
2734                 return 0;
2735
2736         xhci_dbg(xhci, "New Input Control Context:\n");
2737         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2738         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2739                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2740
2741         ret = xhci_configure_endpoint(xhci, udev, NULL,
2742                         false, false);
2743         if (ret) {
2744                 /* Callee should call reset_bandwidth() */
2745                 return ret;
2746         }
2747
2748         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2749         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2750                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2751
2752         /* Free any rings that were dropped, but not changed. */
2753         for (i = 1; i < 31; ++i) {
2754                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2755                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2756                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2757         }
2758         xhci_zero_in_ctx(xhci, virt_dev);
2759         /*
2760          * Install any rings for completely new endpoints or changed endpoints,
2761          * and free or cache any old rings from changed endpoints.
2762          */
2763         for (i = 1; i < 31; ++i) {
2764                 if (!virt_dev->eps[i].new_ring)
2765                         continue;
2766                 /* Only cache or free the old ring if it exists.
2767                  * It may not if this is the first add of an endpoint.
2768                  */
2769                 if (virt_dev->eps[i].ring) {
2770                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2771                 }
2772                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2773                 virt_dev->eps[i].new_ring = NULL;
2774         }
2775
2776         return ret;
2777 }
2778
2779 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2780 {
2781         struct xhci_hcd *xhci;
2782         struct xhci_virt_device *virt_dev;
2783         int i, ret;
2784
2785         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2786         if (ret <= 0)
2787                 return;
2788         xhci = hcd_to_xhci(hcd);
2789
2790         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2791         virt_dev = xhci->devs[udev->slot_id];
2792         /* Free any rings allocated for added endpoints */
2793         for (i = 0; i < 31; ++i) {
2794                 if (virt_dev->eps[i].new_ring) {
2795                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2796                         virt_dev->eps[i].new_ring = NULL;
2797                 }
2798         }
2799         xhci_zero_in_ctx(xhci, virt_dev);
2800 }
2801
2802 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2803                 struct xhci_container_ctx *in_ctx,
2804                 struct xhci_container_ctx *out_ctx,
2805                 u32 add_flags, u32 drop_flags)
2806 {
2807         struct xhci_input_control_ctx *ctrl_ctx;
2808         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2809         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2810         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2811         xhci_slot_copy(xhci, in_ctx, out_ctx);
2812         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2813
2814         xhci_dbg(xhci, "Input Context:\n");
2815         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2816 }
2817
2818 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2819                 unsigned int slot_id, unsigned int ep_index,
2820                 struct xhci_dequeue_state *deq_state)
2821 {
2822         struct xhci_container_ctx *in_ctx;
2823         struct xhci_ep_ctx *ep_ctx;
2824         u32 added_ctxs;
2825         dma_addr_t addr;
2826
2827         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2828                         xhci->devs[slot_id]->out_ctx, ep_index);
2829         in_ctx = xhci->devs[slot_id]->in_ctx;
2830         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2831         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2832                         deq_state->new_deq_ptr);
2833         if (addr == 0) {
2834                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2835                                 "reset ep command\n");
2836                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2837                                 deq_state->new_deq_seg,
2838                                 deq_state->new_deq_ptr);
2839                 return;
2840         }
2841         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2842
2843         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2844         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2845                         xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2846 }
2847
2848 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2849                 struct usb_device *udev, unsigned int ep_index)
2850 {
2851         struct xhci_dequeue_state deq_state;
2852         struct xhci_virt_ep *ep;
2853
2854         xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2855         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2856         /* We need to move the HW's dequeue pointer past this TD,
2857          * or it will attempt to resend it on the next doorbell ring.
2858          */
2859         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2860                         ep_index, ep->stopped_stream, ep->stopped_td,
2861                         &deq_state);
2862
2863         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2864                 return;
2865
2866         /* HW with the reset endpoint quirk will use the saved dequeue state to
2867          * issue a configure endpoint command later.
2868          */
2869         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2870                 xhci_dbg(xhci, "Queueing new dequeue state\n");
2871                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2872                                 ep_index, ep->stopped_stream, &deq_state);
2873         } else {
2874                 /* Better hope no one uses the input context between now and the
2875                  * reset endpoint completion!
2876                  * XXX: No idea how this hardware will react when stream rings
2877                  * are enabled.
2878                  */
2879                 xhci_dbg(xhci, "Setting up input context for "
2880                                 "configure endpoint command\n");
2881                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2882                                 ep_index, &deq_state);
2883         }
2884 }
2885
2886 /* Called when clearing halted device. The core should have sent the control
2887  * message to clear the device halt condition. The host side of the halt should
2888  * already be cleared with a reset endpoint command issued when the STALL tx
2889  * event was received.
2890  *
2891  * Context: in_interrupt
2892  */
2893
2894 void xhci_endpoint_reset(struct usb_hcd *hcd,
2895                 struct usb_host_endpoint *ep)
2896 {
2897         struct xhci_hcd *xhci;
2898
2899         xhci = hcd_to_xhci(hcd);
2900
2901         /*
2902          * We might need to implement the config ep cmd in xhci 4.8.1 note:
2903          * The Reset Endpoint Command may only be issued to endpoints in the
2904          * Halted state. If software wishes reset the Data Toggle or Sequence
2905          * Number of an endpoint that isn't in the Halted state, then software
2906          * may issue a Configure Endpoint Command with the Drop and Add bits set
2907          * for the target endpoint. that is in the Stopped state.
2908          */
2909
2910         /* For now just print debug to follow the situation */
2911         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2912                  ep->desc.bEndpointAddress);
2913 }
2914
2915 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2916                 struct usb_device *udev, struct usb_host_endpoint *ep,
2917                 unsigned int slot_id)
2918 {
2919         int ret;
2920         unsigned int ep_index;
2921         unsigned int ep_state;
2922
2923         if (!ep)
2924                 return -EINVAL;
2925         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2926         if (ret <= 0)
2927                 return -EINVAL;
2928         if (ep->ss_ep_comp.bmAttributes == 0) {
2929                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2930                                 " descriptor for ep 0x%x does not support streams\n",
2931                                 ep->desc.bEndpointAddress);
2932                 return -EINVAL;
2933         }
2934
2935         ep_index = xhci_get_endpoint_index(&ep->desc);
2936         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2937         if (ep_state & EP_HAS_STREAMS ||
2938                         ep_state & EP_GETTING_STREAMS) {
2939                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2940                                 "already has streams set up.\n",
2941                                 ep->desc.bEndpointAddress);
2942                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2943                                 "dynamic stream context array reallocation.\n");
2944                 return -EINVAL;
2945         }
2946         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2947                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2948                                 "endpoint 0x%x; URBs are pending.\n",
2949                                 ep->desc.bEndpointAddress);
2950                 return -EINVAL;
2951         }
2952         return 0;
2953 }
2954
2955 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2956                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2957 {
2958         unsigned int max_streams;
2959
2960         /* The stream context array size must be a power of two */
2961         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2962         /*
2963          * Find out how many primary stream array entries the host controller
2964          * supports.  Later we may use secondary stream arrays (similar to 2nd
2965          * level page entries), but that's an optional feature for xHCI host
2966          * controllers. xHCs must support at least 4 stream IDs.
2967          */
2968         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2969         if (*num_stream_ctxs > max_streams) {
2970                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2971                                 max_streams);
2972                 *num_stream_ctxs = max_streams;
2973                 *num_streams = max_streams;
2974         }
2975 }
2976
2977 /* Returns an error code if one of the endpoint already has streams.
2978  * This does not change any data structures, it only checks and gathers
2979  * information.
2980  */
2981 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2982                 struct usb_device *udev,
2983                 struct usb_host_endpoint **eps, unsigned int num_eps,
2984                 unsigned int *num_streams, u32 *changed_ep_bitmask)
2985 {
2986         unsigned int max_streams;
2987         unsigned int endpoint_flag;
2988         int i;
2989         int ret;
2990
2991         for (i = 0; i < num_eps; i++) {
2992                 ret = xhci_check_streams_endpoint(xhci, udev,
2993                                 eps[i], udev->slot_id);
2994                 if (ret < 0)
2995                         return ret;
2996
2997                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2998                 if (max_streams < (*num_streams - 1)) {
2999                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3000                                         eps[i]->desc.bEndpointAddress,
3001                                         max_streams);
3002                         *num_streams = max_streams+1;
3003                 }
3004
3005                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3006                 if (*changed_ep_bitmask & endpoint_flag)
3007                         return -EINVAL;
3008                 *changed_ep_bitmask |= endpoint_flag;
3009         }
3010         return 0;
3011 }
3012
3013 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3014                 struct usb_device *udev,
3015                 struct usb_host_endpoint **eps, unsigned int num_eps)
3016 {
3017         u32 changed_ep_bitmask = 0;
3018         unsigned int slot_id;
3019         unsigned int ep_index;
3020         unsigned int ep_state;
3021         int i;
3022
3023         slot_id = udev->slot_id;
3024         if (!xhci->devs[slot_id])
3025                 return 0;
3026
3027         for (i = 0; i < num_eps; i++) {
3028                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3029                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3030                 /* Are streams already being freed for the endpoint? */
3031                 if (ep_state & EP_GETTING_NO_STREAMS) {
3032                         xhci_warn(xhci, "WARN Can't disable streams for "
3033                                         "endpoint 0x%x\n, "
3034                                         "streams are being disabled already.",
3035                                         eps[i]->desc.bEndpointAddress);
3036                         return 0;
3037                 }
3038                 /* Are there actually any streams to free? */
3039                 if (!(ep_state & EP_HAS_STREAMS) &&
3040                                 !(ep_state & EP_GETTING_STREAMS)) {
3041                         xhci_warn(xhci, "WARN Can't disable streams for "
3042                                         "endpoint 0x%x\n, "
3043                                         "streams are already disabled!",
3044                                         eps[i]->desc.bEndpointAddress);
3045                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3046                                         "with non-streams endpoint\n");
3047                         return 0;
3048                 }
3049                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3050         }
3051         return changed_ep_bitmask;
3052 }
3053
3054 /*
3055  * The USB device drivers use this function (though the HCD interface in USB
3056  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3057  * coordinate mass storage command queueing across multiple endpoints (basically
3058  * a stream ID == a task ID).
3059  *
3060  * Setting up streams involves allocating the same size stream context array
3061  * for each endpoint and issuing a configure endpoint command for all endpoints.
3062  *
3063  * Don't allow the call to succeed if one endpoint only supports one stream
3064  * (which means it doesn't support streams at all).
3065  *
3066  * Drivers may get less stream IDs than they asked for, if the host controller
3067  * hardware or endpoints claim they can't support the number of requested
3068  * stream IDs.
3069  */
3070 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3071                 struct usb_host_endpoint **eps, unsigned int num_eps,
3072                 unsigned int num_streams, gfp_t mem_flags)
3073 {
3074         int i, ret;
3075         struct xhci_hcd *xhci;
3076         struct xhci_virt_device *vdev;
3077         struct xhci_command *config_cmd;
3078         unsigned int ep_index;
3079         unsigned int num_stream_ctxs;
3080         unsigned long flags;
3081         u32 changed_ep_bitmask = 0;
3082
3083         if (!eps)
3084                 return -EINVAL;
3085
3086         /* Add one to the number of streams requested to account for
3087          * stream 0 that is reserved for xHCI usage.
3088          */
3089         num_streams += 1;
3090         xhci = hcd_to_xhci(hcd);
3091         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3092                         num_streams);
3093
3094         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3095         if (!config_cmd) {
3096                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3097                 return -ENOMEM;
3098         }
3099
3100         /* Check to make sure all endpoints are not already configured for
3101          * streams.  While we're at it, find the maximum number of streams that
3102          * all the endpoints will support and check for duplicate endpoints.
3103          */
3104         spin_lock_irqsave(&xhci->lock, flags);
3105         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3106                         num_eps, &num_streams, &changed_ep_bitmask);
3107         if (ret < 0) {
3108                 xhci_free_command(xhci, config_cmd);
3109                 spin_unlock_irqrestore(&xhci->lock, flags);
3110                 return ret;
3111         }
3112         if (num_streams <= 1) {
3113                 xhci_warn(xhci, "WARN: endpoints can't handle "
3114                                 "more than one stream.\n");
3115                 xhci_free_command(xhci, config_cmd);
3116                 spin_unlock_irqrestore(&xhci->lock, flags);
3117                 return -EINVAL;
3118         }
3119         vdev = xhci->devs[udev->slot_id];
3120         /* Mark each endpoint as being in transition, so
3121          * xhci_urb_enqueue() will reject all URBs.
3122          */
3123         for (i = 0; i < num_eps; i++) {
3124                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3125                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3126         }
3127         spin_unlock_irqrestore(&xhci->lock, flags);
3128
3129         /* Setup internal data structures and allocate HW data structures for
3130          * streams (but don't install the HW structures in the input context
3131          * until we're sure all memory allocation succeeded).
3132          */
3133         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3134         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3135                         num_stream_ctxs, num_streams);
3136
3137         for (i = 0; i < num_eps; i++) {
3138                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3139                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3140                                 num_stream_ctxs,
3141                                 num_streams, mem_flags);
3142                 if (!vdev->eps[ep_index].stream_info)
3143                         goto cleanup;
3144                 /* Set maxPstreams in endpoint context and update deq ptr to
3145                  * point to stream context array. FIXME
3146                  */
3147         }
3148
3149         /* Set up the input context for a configure endpoint command. */
3150         for (i = 0; i < num_eps; i++) {
3151                 struct xhci_ep_ctx *ep_ctx;
3152
3153                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3154                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3155
3156                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3157                                 vdev->out_ctx, ep_index);
3158                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3159                                 vdev->eps[ep_index].stream_info);
3160         }
3161         /* Tell the HW to drop its old copy of the endpoint context info
3162          * and add the updated copy from the input context.
3163          */
3164         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3165                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3166
3167         /* Issue and wait for the configure endpoint command */
3168         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3169                         false, false);
3170
3171         /* xHC rejected the configure endpoint command for some reason, so we
3172          * leave the old ring intact and free our internal streams data
3173          * structure.
3174          */
3175         if (ret < 0)
3176                 goto cleanup;
3177
3178         spin_lock_irqsave(&xhci->lock, flags);
3179         for (i = 0; i < num_eps; i++) {
3180                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3181                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3182                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3183                          udev->slot_id, ep_index);
3184                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3185         }
3186         xhci_free_command(xhci, config_cmd);
3187         spin_unlock_irqrestore(&xhci->lock, flags);
3188
3189         /* Subtract 1 for stream 0, which drivers can't use */
3190         return num_streams - 1;
3191
3192 cleanup:
3193         /* If it didn't work, free the streams! */
3194         for (i = 0; i < num_eps; i++) {
3195                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3196                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3197                 vdev->eps[ep_index].stream_info = NULL;
3198                 /* FIXME Unset maxPstreams in endpoint context and
3199                  * update deq ptr to point to normal string ring.
3200                  */
3201                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3202                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3203                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3204         }
3205         xhci_free_command(xhci, config_cmd);
3206         return -ENOMEM;
3207 }
3208
3209 /* Transition the endpoint from using streams to being a "normal" endpoint
3210  * without streams.
3211  *
3212  * Modify the endpoint context state, submit a configure endpoint command,
3213  * and free all endpoint rings for streams if that completes successfully.
3214  */
3215 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3216                 struct usb_host_endpoint **eps, unsigned int num_eps,
3217                 gfp_t mem_flags)
3218 {
3219         int i, ret;
3220         struct xhci_hcd *xhci;
3221         struct xhci_virt_device *vdev;
3222         struct xhci_command *command;
3223         unsigned int ep_index;
3224         unsigned long flags;
3225         u32 changed_ep_bitmask;
3226
3227         xhci = hcd_to_xhci(hcd);
3228         vdev = xhci->devs[udev->slot_id];
3229
3230         /* Set up a configure endpoint command to remove the streams rings */
3231         spin_lock_irqsave(&xhci->lock, flags);
3232         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3233                         udev, eps, num_eps);
3234         if (changed_ep_bitmask == 0) {
3235                 spin_unlock_irqrestore(&xhci->lock, flags);
3236                 return -EINVAL;
3237         }
3238
3239         /* Use the xhci_command structure from the first endpoint.  We may have
3240          * allocated too many, but the driver may call xhci_free_streams() for
3241          * each endpoint it grouped into one call to xhci_alloc_streams().
3242          */
3243         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3244         command = vdev->eps[ep_index].stream_info->free_streams_command;
3245         for (i = 0; i < num_eps; i++) {
3246                 struct xhci_ep_ctx *ep_ctx;
3247
3248                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3249                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3250                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3251                         EP_GETTING_NO_STREAMS;
3252
3253                 xhci_endpoint_copy(xhci, command->in_ctx,
3254                                 vdev->out_ctx, ep_index);
3255                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3256                                 &vdev->eps[ep_index]);
3257         }
3258         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3259                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3260         spin_unlock_irqrestore(&xhci->lock, flags);
3261
3262         /* Issue and wait for the configure endpoint command,
3263          * which must succeed.
3264          */
3265         ret = xhci_configure_endpoint(xhci, udev, command,
3266                         false, true);
3267
3268         /* xHC rejected the configure endpoint command for some reason, so we
3269          * leave the streams rings intact.
3270          */
3271         if (ret < 0)
3272                 return ret;
3273
3274         spin_lock_irqsave(&xhci->lock, flags);
3275         for (i = 0; i < num_eps; i++) {
3276                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3277                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3278                 vdev->eps[ep_index].stream_info = NULL;
3279                 /* FIXME Unset maxPstreams in endpoint context and
3280                  * update deq ptr to point to normal string ring.
3281                  */
3282                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3283                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3284         }
3285         spin_unlock_irqrestore(&xhci->lock, flags);
3286
3287         return 0;
3288 }
3289
3290 /*
3291  * Deletes endpoint resources for endpoints that were active before a Reset
3292  * Device command, or a Disable Slot command.  The Reset Device command leaves
3293  * the control endpoint intact, whereas the Disable Slot command deletes it.
3294  *
3295  * Must be called with xhci->lock held.
3296  */
3297 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3298         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3299 {
3300         int i;
3301         unsigned int num_dropped_eps = 0;
3302         unsigned int drop_flags = 0;
3303
3304         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3305                 if (virt_dev->eps[i].ring) {
3306                         drop_flags |= 1 << i;
3307                         num_dropped_eps++;
3308                 }
3309         }
3310         xhci->num_active_eps -= num_dropped_eps;
3311         if (num_dropped_eps)
3312                 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3313                                 "%u now active.\n",
3314                                 num_dropped_eps, drop_flags,
3315                                 xhci->num_active_eps);
3316 }
3317
3318 /*
3319  * This submits a Reset Device Command, which will set the device state to 0,
3320  * set the device address to 0, and disable all the endpoints except the default
3321  * control endpoint.  The USB core should come back and call
3322  * xhci_address_device(), and then re-set up the configuration.  If this is
3323  * called because of a usb_reset_and_verify_device(), then the old alternate
3324  * settings will be re-installed through the normal bandwidth allocation
3325  * functions.
3326  *
3327  * Wait for the Reset Device command to finish.  Remove all structures
3328  * associated with the endpoints that were disabled.  Clear the input device
3329  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3330  *
3331  * If the virt_dev to be reset does not exist or does not match the udev,
3332  * it means the device is lost, possibly due to the xHC restore error and
3333  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3334  * re-allocate the device.
3335  */
3336 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3337 {
3338         int ret, i;
3339         unsigned long flags;
3340         struct xhci_hcd *xhci;
3341         unsigned int slot_id;
3342         struct xhci_virt_device *virt_dev;
3343         struct xhci_command *reset_device_cmd;
3344         int timeleft;
3345         int last_freed_endpoint;
3346         struct xhci_slot_ctx *slot_ctx;
3347         int old_active_eps = 0;
3348
3349         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3350         if (ret <= 0)
3351                 return ret;
3352         xhci = hcd_to_xhci(hcd);
3353         slot_id = udev->slot_id;
3354         virt_dev = xhci->devs[slot_id];
3355         if (!virt_dev) {
3356                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3357                                 "not exist. Re-allocate the device\n", slot_id);
3358                 ret = xhci_alloc_dev(hcd, udev);
3359                 if (ret == 1)
3360                         return 0;
3361                 else
3362                         return -EINVAL;
3363         }
3364
3365         if (virt_dev->tt_info)
3366                 old_active_eps = virt_dev->tt_info->active_eps;
3367
3368         if (virt_dev->udev != udev) {
3369                 /* If the virt_dev and the udev does not match, this virt_dev
3370                  * may belong to another udev.
3371                  * Re-allocate the device.
3372                  */
3373                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3374                                 "not match the udev. Re-allocate the device\n",
3375                                 slot_id);
3376                 ret = xhci_alloc_dev(hcd, udev);
3377                 if (ret == 1)
3378                         return 0;
3379                 else
3380                         return -EINVAL;
3381         }
3382
3383         /* If device is not setup, there is no point in resetting it */
3384         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3385         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3386                                                 SLOT_STATE_DISABLED)
3387                 return 0;
3388
3389         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3390         /* Allocate the command structure that holds the struct completion.
3391          * Assume we're in process context, since the normal device reset
3392          * process has to wait for the device anyway.  Storage devices are
3393          * reset as part of error handling, so use GFP_NOIO instead of
3394          * GFP_KERNEL.
3395          */
3396         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3397         if (!reset_device_cmd) {
3398                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3399                 return -ENOMEM;
3400         }
3401
3402         /* Attempt to submit the Reset Device command to the command ring */
3403         spin_lock_irqsave(&xhci->lock, flags);
3404         reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3405
3406         /* Enqueue pointer can be left pointing to the link TRB,
3407          * we must handle that
3408          */
3409         if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3410                 reset_device_cmd->command_trb =
3411                         xhci->cmd_ring->enq_seg->next->trbs;
3412
3413         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3414         ret = xhci_queue_reset_device(xhci, slot_id);
3415         if (ret) {
3416                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3417                 list_del(&reset_device_cmd->cmd_list);
3418                 spin_unlock_irqrestore(&xhci->lock, flags);
3419                 goto command_cleanup;
3420         }
3421         xhci_ring_cmd_db(xhci);
3422         spin_unlock_irqrestore(&xhci->lock, flags);
3423
3424         /* Wait for the Reset Device command to finish */
3425         timeleft = wait_for_completion_interruptible_timeout(
3426                         reset_device_cmd->completion,
3427                         USB_CTRL_SET_TIMEOUT);
3428         if (timeleft <= 0) {
3429                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3430                                 timeleft == 0 ? "Timeout" : "Signal");
3431                 spin_lock_irqsave(&xhci->lock, flags);
3432                 /* The timeout might have raced with the event ring handler, so
3433                  * only delete from the list if the item isn't poisoned.
3434                  */
3435                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3436                         list_del(&reset_device_cmd->cmd_list);
3437                 spin_unlock_irqrestore(&xhci->lock, flags);
3438                 ret = -ETIME;
3439                 goto command_cleanup;
3440         }
3441
3442         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3443          * unless we tried to reset a slot ID that wasn't enabled,
3444          * or the device wasn't in the addressed or configured state.
3445          */
3446         ret = reset_device_cmd->status;
3447         switch (ret) {
3448         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3449         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3450                 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3451                                 slot_id,
3452                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3453                 xhci_info(xhci, "Not freeing device rings.\n");
3454                 /* Don't treat this as an error.  May change my mind later. */
3455                 ret = 0;
3456                 goto command_cleanup;
3457         case COMP_SUCCESS:
3458                 xhci_dbg(xhci, "Successful reset device command.\n");
3459                 break;
3460         default:
3461                 if (xhci_is_vendor_info_code(xhci, ret))
3462                         break;
3463                 xhci_warn(xhci, "Unknown completion code %u for "
3464                                 "reset device command.\n", ret);
3465                 ret = -EINVAL;
3466                 goto command_cleanup;
3467         }
3468
3469         /* Free up host controller endpoint resources */
3470         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3471                 spin_lock_irqsave(&xhci->lock, flags);
3472                 /* Don't delete the default control endpoint resources */
3473                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3474                 spin_unlock_irqrestore(&xhci->lock, flags);
3475         }
3476
3477         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3478         last_freed_endpoint = 1;
3479         for (i = 1; i < 31; ++i) {
3480                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3481
3482                 if (ep->ep_state & EP_HAS_STREAMS) {
3483                         xhci_free_stream_info(xhci, ep->stream_info);
3484                         ep->stream_info = NULL;
3485                         ep->ep_state &= ~EP_HAS_STREAMS;
3486                 }
3487
3488                 if (ep->ring) {
3489                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3490                         last_freed_endpoint = i;
3491                 }
3492                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3493                         xhci_drop_ep_from_interval_table(xhci,
3494                                         &virt_dev->eps[i].bw_info,
3495                                         virt_dev->bw_table,
3496                                         udev,
3497                                         &virt_dev->eps[i],
3498                                         virt_dev->tt_info);
3499                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3500         }
3501         /* If necessary, update the number of active TTs on this root port */
3502         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3503
3504         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3505         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3506         ret = 0;
3507
3508 command_cleanup:
3509         xhci_free_command(xhci, reset_device_cmd);
3510         return ret;
3511 }
3512
3513 /*
3514  * At this point, the struct usb_device is about to go away, the device has
3515  * disconnected, and all traffic has been stopped and the endpoints have been
3516  * disabled.  Free any HC data structures associated with that device.
3517  */
3518 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3519 {
3520         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3521         struct xhci_virt_device *virt_dev;
3522         struct device *dev = hcd->self.controller;
3523         unsigned long flags;
3524         u32 state;
3525         int i, ret;
3526
3527 #ifndef CONFIG_USB_DEFAULT_PERSIST
3528         /*
3529          * We called pm_runtime_get_noresume when the device was attached.
3530          * Decrement the counter here to allow controller to runtime suspend
3531          * if no devices remain.
3532          */
3533         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3534                 pm_runtime_put_noidle(dev);
3535 #endif
3536
3537         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3538         /* If the host is halted due to driver unload, we still need to free the
3539          * device.
3540          */
3541         if (ret <= 0 && ret != -ENODEV)
3542                 return;
3543
3544         virt_dev = xhci->devs[udev->slot_id];
3545
3546         /* Stop any wayward timer functions (which may grab the lock) */
3547         for (i = 0; i < 31; ++i) {
3548                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3549                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3550         }
3551
3552         if (udev->usb2_hw_lpm_enabled) {
3553                 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3554                 udev->usb2_hw_lpm_enabled = 0;
3555         }
3556
3557         spin_lock_irqsave(&xhci->lock, flags);
3558         /* Don't disable the slot if the host controller is dead. */
3559         state = xhci_readl(xhci, &xhci->op_regs->status);
3560         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3561                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3562                 xhci_free_virt_device(xhci, udev->slot_id);
3563                 spin_unlock_irqrestore(&xhci->lock, flags);
3564                 return;
3565         }
3566
3567         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3568                 spin_unlock_irqrestore(&xhci->lock, flags);
3569                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3570                 return;
3571         }
3572         xhci_ring_cmd_db(xhci);
3573         spin_unlock_irqrestore(&xhci->lock, flags);
3574         /*
3575          * Event command completion handler will free any data structures
3576          * associated with the slot.  XXX Can free sleep?
3577          */
3578 }
3579
3580 /*
3581  * Checks if we have enough host controller resources for the default control
3582  * endpoint.
3583  *
3584  * Must be called with xhci->lock held.
3585  */
3586 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3587 {
3588         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3589                 xhci_dbg(xhci, "Not enough ep ctxs: "
3590                                 "%u active, need to add 1, limit is %u.\n",
3591                                 xhci->num_active_eps, xhci->limit_active_eps);
3592                 return -ENOMEM;
3593         }
3594         xhci->num_active_eps += 1;
3595         xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3596                         xhci->num_active_eps);
3597         return 0;
3598 }
3599
3600
3601 /*
3602  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3603  * timed out, or allocating memory failed.  Returns 1 on success.
3604  */
3605 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3606 {
3607         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3608         struct device *dev = hcd->self.controller;
3609         unsigned long flags;
3610         int timeleft;
3611         int ret;
3612         union xhci_trb *cmd_trb;
3613
3614         spin_lock_irqsave(&xhci->lock, flags);
3615         cmd_trb = xhci->cmd_ring->dequeue;
3616         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3617         if (ret) {
3618                 spin_unlock_irqrestore(&xhci->lock, flags);
3619                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3620                 return 0;
3621         }
3622         xhci_ring_cmd_db(xhci);
3623         spin_unlock_irqrestore(&xhci->lock, flags);
3624
3625         /* XXX: how much time for xHC slot assignment? */
3626         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3627                         XHCI_CMD_DEFAULT_TIMEOUT);
3628         if (timeleft <= 0) {
3629                 xhci_warn(xhci, "%s while waiting for a slot\n",
3630                                 timeleft == 0 ? "Timeout" : "Signal");
3631                 /* cancel the enable slot request */
3632                 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3633         }
3634
3635         if (!xhci->slot_id) {
3636                 xhci_err(xhci, "Error while assigning device slot ID\n");
3637                 return 0;
3638         }
3639
3640         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3641                 spin_lock_irqsave(&xhci->lock, flags);
3642                 ret = xhci_reserve_host_control_ep_resources(xhci);
3643                 if (ret) {
3644                         spin_unlock_irqrestore(&xhci->lock, flags);
3645                         xhci_warn(xhci, "Not enough host resources, "
3646                                         "active endpoint contexts = %u\n",
3647                                         xhci->num_active_eps);
3648                         goto disable_slot;
3649                 }
3650                 spin_unlock_irqrestore(&xhci->lock, flags);
3651         }
3652         /* Use GFP_NOIO, since this function can be called from
3653          * xhci_discover_or_reset_device(), which may be called as part of
3654          * mass storage driver error handling.
3655          */
3656         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3657                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3658                 goto disable_slot;
3659         }
3660         udev->slot_id = xhci->slot_id;
3661
3662 #ifndef CONFIG_USB_DEFAULT_PERSIST
3663         /*
3664          * If resetting upon resume, we can't put the controller into runtime
3665          * suspend if there is a device attached.
3666          */
3667         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3668                 pm_runtime_get_noresume(dev);
3669 #endif
3670
3671         /* Is this a LS or FS device under a HS hub? */
3672         /* Hub or peripherial? */
3673         return 1;
3674
3675 disable_slot:
3676         /* Disable slot, if we can do it without mem alloc */
3677         spin_lock_irqsave(&xhci->lock, flags);
3678         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3679                 xhci_ring_cmd_db(xhci);
3680         spin_unlock_irqrestore(&xhci->lock, flags);
3681         return 0;
3682 }
3683
3684 /*
3685  * Issue an Address Device command (which will issue a SetAddress request to
3686  * the device).
3687  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3688  * we should only issue and wait on one address command at the same time.
3689  *
3690  * We add one to the device address issued by the hardware because the USB core
3691  * uses address 1 for the root hubs (even though they're not really devices).
3692  */
3693 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3694 {
3695         unsigned long flags;
3696         int timeleft;
3697         struct xhci_virt_device *virt_dev;
3698         int ret = 0;
3699         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3700         struct xhci_slot_ctx *slot_ctx;
3701         struct xhci_input_control_ctx *ctrl_ctx;
3702         u64 temp_64;
3703         union xhci_trb *cmd_trb;
3704
3705         if (!udev->slot_id) {
3706                 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3707                 return -EINVAL;
3708         }
3709
3710         virt_dev = xhci->devs[udev->slot_id];
3711
3712         if (WARN_ON(!virt_dev)) {
3713                 /*
3714                  * In plug/unplug torture test with an NEC controller,
3715                  * a zero-dereference was observed once due to virt_dev = 0.
3716                  * Print useful debug rather than crash if it is observed again!
3717                  */
3718                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3719                         udev->slot_id);
3720                 return -EINVAL;
3721         }
3722
3723         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3724         /*
3725          * If this is the first Set Address since device plug-in or
3726          * virt_device realloaction after a resume with an xHCI power loss,
3727          * then set up the slot context.
3728          */
3729         if (!slot_ctx->dev_info)
3730                 xhci_setup_addressable_virt_dev(xhci, udev);
3731         /* Otherwise, update the control endpoint ring enqueue pointer. */
3732         else
3733                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3734         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3735         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3736         ctrl_ctx->drop_flags = 0;
3737
3738         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3739         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3740
3741         spin_lock_irqsave(&xhci->lock, flags);
3742         cmd_trb = xhci->cmd_ring->dequeue;
3743         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3744                                         udev->slot_id);
3745         if (ret) {
3746                 spin_unlock_irqrestore(&xhci->lock, flags);
3747                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3748                 return ret;
3749         }
3750         xhci_ring_cmd_db(xhci);
3751         spin_unlock_irqrestore(&xhci->lock, flags);
3752
3753         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3754         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3755                         XHCI_CMD_DEFAULT_TIMEOUT);
3756         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3757          * the SetAddress() "recovery interval" required by USB and aborting the
3758          * command on a timeout.
3759          */
3760         if (timeleft <= 0) {
3761                 xhci_warn(xhci, "%s while waiting for address device command\n",
3762                                 timeleft == 0 ? "Timeout" : "Signal");
3763                 /* cancel the address device command */
3764                 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3765                 if (ret < 0)
3766                         return ret;
3767                 return -ETIME;
3768         }
3769
3770         switch (virt_dev->cmd_status) {
3771         case COMP_CTX_STATE:
3772         case COMP_EBADSLT:
3773                 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3774                                 udev->slot_id);
3775                 ret = -EINVAL;
3776                 break;
3777         case COMP_TX_ERR:
3778                 dev_warn(&udev->dev, "Device not responding to set address.\n");
3779                 ret = -EPROTO;
3780                 break;
3781         case COMP_DEV_ERR:
3782                 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3783                                 "device command.\n");
3784                 ret = -ENODEV;
3785                 break;
3786         case COMP_SUCCESS:
3787                 xhci_dbg(xhci, "Successful Address Device command\n");
3788                 break;
3789         default:
3790                 xhci_err(xhci, "ERROR: unexpected command completion "
3791                                 "code 0x%x.\n", virt_dev->cmd_status);
3792                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3793                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3794                 ret = -EINVAL;
3795                 break;
3796         }
3797         if (ret) {
3798                 return ret;
3799         }
3800         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3801         xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3802         xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3803                  udev->slot_id,
3804                  &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3805                  (unsigned long long)
3806                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3807         xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3808                         (unsigned long long)virt_dev->out_ctx->dma);
3809         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3810         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3811         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3812         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3813         /*
3814          * USB core uses address 1 for the roothubs, so we add one to the
3815          * address given back to us by the HC.
3816          */
3817         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3818         /* Use kernel assigned address for devices; store xHC assigned
3819          * address locally. */
3820         virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3821                 + 1;
3822         /* Zero the input context control for later use */
3823         ctrl_ctx->add_flags = 0;
3824         ctrl_ctx->drop_flags = 0;
3825
3826         xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3827
3828         return 0;
3829 }
3830
3831 #ifdef CONFIG_USB_SUSPEND
3832
3833 /* BESL to HIRD Encoding array for USB2 LPM */
3834 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3835         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3836
3837 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3838 static int xhci_calculate_hird_besl(int u2del, bool use_besl)
3839 {
3840         int hird;
3841
3842         if (use_besl) {
3843                 for (hird = 0; hird < 16; hird++) {
3844                         if (xhci_besl_encoding[hird] >= u2del)
3845                                 break;
3846                 }
3847         } else {
3848                 if (u2del <= 50)
3849                         hird = 0;
3850                 else
3851                         hird = (u2del - 51) / 75 + 1;
3852
3853                 if (hird > 15)
3854                         hird = 15;
3855         }
3856
3857         return hird;
3858 }
3859
3860 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3861                                         struct usb_device *udev)
3862 {
3863         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3864         struct dev_info *dev_info;
3865         __le32 __iomem  **port_array;
3866         __le32 __iomem  *addr, *pm_addr;
3867         u32             temp, dev_id;
3868         unsigned int    port_num;
3869         unsigned long   flags;
3870         int             u2del, hird;
3871         int             ret;
3872
3873         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3874                         !udev->lpm_capable)
3875                 return -EINVAL;
3876
3877         /* we only support lpm for non-hub device connected to root hub yet */
3878         if (!udev->parent || udev->parent->parent ||
3879                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3880                 return -EINVAL;
3881
3882         spin_lock_irqsave(&xhci->lock, flags);
3883
3884         /* Look for devices in lpm_failed_devs list */
3885         dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3886                         le16_to_cpu(udev->descriptor.idProduct);
3887         list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3888                 if (dev_info->dev_id == dev_id) {
3889                         ret = -EINVAL;
3890                         goto finish;
3891                 }
3892         }
3893
3894         port_array = xhci->usb2_ports;
3895         port_num = udev->portnum - 1;
3896
3897         if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3898                 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3899                 ret = -EINVAL;
3900                 goto finish;
3901         }
3902
3903         /*
3904          * Test USB 2.0 software LPM.
3905          * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3906          * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3907          * in the June 2011 errata release.
3908          */
3909         xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3910         /*
3911          * Set L1 Device Slot and HIRD/BESL.
3912          * Check device's USB 2.0 extension descriptor to determine whether
3913          * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3914          */
3915         pm_addr = port_array[port_num] + 1;
3916         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3917         if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2))
3918                 hird = xhci_calculate_hird_besl(u2del, 1);
3919         else
3920                 hird = xhci_calculate_hird_besl(u2del, 0);
3921
3922         temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3923         xhci_writel(xhci, temp, pm_addr);
3924
3925         /* Set port link state to U2(L1) */
3926         addr = port_array[port_num];
3927         xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3928
3929         /* wait for ACK */
3930         spin_unlock_irqrestore(&xhci->lock, flags);
3931         msleep(10);
3932         spin_lock_irqsave(&xhci->lock, flags);
3933
3934         /* Check L1 Status */
3935         ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3936         if (ret != -ETIMEDOUT) {
3937                 /* enter L1 successfully */
3938                 temp = xhci_readl(xhci, addr);
3939                 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3940                                 port_num, temp);
3941                 ret = 0;
3942         } else {
3943                 temp = xhci_readl(xhci, pm_addr);
3944                 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3945                                 port_num, temp & PORT_L1S_MASK);
3946                 ret = -EINVAL;
3947         }
3948
3949         /* Resume the port */
3950         xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3951
3952         spin_unlock_irqrestore(&xhci->lock, flags);
3953         msleep(10);
3954         spin_lock_irqsave(&xhci->lock, flags);
3955
3956         /* Clear PLC */
3957         xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3958
3959         /* Check PORTSC to make sure the device is in the right state */
3960         if (!ret) {
3961                 temp = xhci_readl(xhci, addr);
3962                 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3963                 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3964                                 (temp & PORT_PLS_MASK) != XDEV_U0) {
3965                         xhci_dbg(xhci, "port L1 resume fail\n");
3966                         ret = -EINVAL;
3967                 }
3968         }
3969
3970         if (ret) {
3971                 /* Insert dev to lpm_failed_devs list */
3972                 xhci_warn(xhci, "device LPM test failed, may disconnect and "
3973                                 "re-enumerate\n");
3974                 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3975                 if (!dev_info) {
3976                         ret = -ENOMEM;
3977                         goto finish;
3978                 }
3979                 dev_info->dev_id = dev_id;
3980                 INIT_LIST_HEAD(&dev_info->list);
3981                 list_add(&dev_info->list, &xhci->lpm_failed_devs);
3982         } else {
3983                 xhci_ring_device(xhci, udev->slot_id);
3984         }
3985
3986 finish:
3987         spin_unlock_irqrestore(&xhci->lock, flags);
3988         return ret;
3989 }
3990
3991 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3992                         struct usb_device *udev, int enable)
3993 {
3994         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3995         __le32 __iomem  **port_array;
3996         __le32 __iomem  *pm_addr;
3997         u32             temp;
3998         unsigned int    port_num;
3999         unsigned long   flags;
4000         int             u2del, hird;
4001
4002         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4003                         !udev->lpm_capable)
4004                 return -EPERM;
4005
4006         if (!udev->parent || udev->parent->parent ||
4007                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4008                 return -EPERM;
4009
4010         if (udev->usb2_hw_lpm_capable != 1)
4011                 return -EPERM;
4012
4013         spin_lock_irqsave(&xhci->lock, flags);
4014
4015         port_array = xhci->usb2_ports;
4016         port_num = udev->portnum - 1;
4017         pm_addr = port_array[port_num] + 1;
4018         temp = xhci_readl(xhci, pm_addr);
4019
4020         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4021                         enable ? "enable" : "disable", port_num);
4022
4023         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4024         if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2))
4025                 hird = xhci_calculate_hird_besl(u2del, 1);
4026         else
4027                 hird = xhci_calculate_hird_besl(u2del, 0);
4028
4029         if (enable) {
4030                 temp &= ~PORT_HIRD_MASK;
4031                 temp |= PORT_HIRD(hird) | PORT_RWE;
4032                 xhci_writel(xhci, temp, pm_addr);
4033                 temp = xhci_readl(xhci, pm_addr);
4034                 temp |= PORT_HLE;
4035                 xhci_writel(xhci, temp, pm_addr);
4036         } else {
4037                 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
4038                 xhci_writel(xhci, temp, pm_addr);
4039         }
4040
4041         spin_unlock_irqrestore(&xhci->lock, flags);
4042         return 0;
4043 }
4044
4045 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4046 {
4047         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4048         int             ret;
4049
4050         ret = xhci_usb2_software_lpm_test(hcd, udev);
4051         if (!ret) {
4052                 xhci_dbg(xhci, "software LPM test succeed\n");
4053                 if (xhci->hw_lpm_support == 1) {
4054                         udev->usb2_hw_lpm_capable = 1;
4055                         ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
4056                         if (!ret)
4057                                 udev->usb2_hw_lpm_enabled = 1;
4058                 }
4059         }
4060
4061         return 0;
4062 }
4063
4064 #else
4065
4066 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4067                                 struct usb_device *udev, int enable)
4068 {
4069         return 0;
4070 }
4071
4072 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4073 {
4074         return 0;
4075 }
4076
4077 #endif /* CONFIG_USB_SUSPEND */
4078
4079 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4080  * internal data structures for the device.
4081  */
4082 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4083                         struct usb_tt *tt, gfp_t mem_flags)
4084 {
4085         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4086         struct xhci_virt_device *vdev;
4087         struct xhci_command *config_cmd;
4088         struct xhci_input_control_ctx *ctrl_ctx;
4089         struct xhci_slot_ctx *slot_ctx;
4090         unsigned long flags;
4091         unsigned think_time;
4092         int ret;
4093
4094         /* Ignore root hubs */
4095         if (!hdev->parent)
4096                 return 0;
4097
4098         vdev = xhci->devs[hdev->slot_id];
4099         if (!vdev) {
4100                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4101                 return -EINVAL;
4102         }
4103         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4104         if (!config_cmd) {
4105                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4106                 return -ENOMEM;
4107         }
4108
4109         spin_lock_irqsave(&xhci->lock, flags);
4110         if (hdev->speed == USB_SPEED_HIGH &&
4111                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4112                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4113                 xhci_free_command(xhci, config_cmd);
4114                 spin_unlock_irqrestore(&xhci->lock, flags);
4115                 return -ENOMEM;
4116         }
4117
4118         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4119         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4120         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4121         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4122         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4123         if (tt->multi)
4124                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4125         if (xhci->hci_version > 0x95) {
4126                 xhci_dbg(xhci, "xHCI version %x needs hub "
4127                                 "TT think time and number of ports\n",
4128                                 (unsigned int) xhci->hci_version);
4129                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4130                 /* Set TT think time - convert from ns to FS bit times.
4131                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4132                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4133                  *
4134                  * xHCI 1.0: this field shall be 0 if the device is not a
4135                  * High-spped hub.
4136                  */
4137                 think_time = tt->think_time;
4138                 if (think_time != 0)
4139                         think_time = (think_time / 666) - 1;
4140                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4141                         slot_ctx->tt_info |=
4142                                 cpu_to_le32(TT_THINK_TIME(think_time));
4143         } else {
4144                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4145                                 "TT think time or number of ports\n",
4146                                 (unsigned int) xhci->hci_version);
4147         }
4148         slot_ctx->dev_state = 0;
4149         spin_unlock_irqrestore(&xhci->lock, flags);
4150
4151         xhci_dbg(xhci, "Set up %s for hub device.\n",
4152                         (xhci->hci_version > 0x95) ?
4153                         "configure endpoint" : "evaluate context");
4154         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4155         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4156
4157         /* Issue and wait for the configure endpoint or
4158          * evaluate context command.
4159          */
4160         if (xhci->hci_version > 0x95)
4161                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4162                                 false, false);
4163         else
4164                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4165                                 true, false);
4166
4167         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4168         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4169
4170         xhci_free_command(xhci, config_cmd);
4171         return ret;
4172 }
4173
4174 int xhci_get_frame(struct usb_hcd *hcd)
4175 {
4176         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4177         /* EHCI mods by the periodic size.  Why? */
4178         return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4179 }
4180
4181 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4182 {
4183         struct xhci_hcd         *xhci;
4184         struct device           *dev = hcd->self.controller;
4185         int                     retval;
4186         u32                     temp;
4187
4188         hcd->self.sg_tablesize = TRBS_PER_SEGMENT - 2;
4189
4190         if (usb_hcd_is_primary_hcd(hcd)) {
4191                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4192                 if (!xhci)
4193                         return -ENOMEM;
4194                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4195                 xhci->main_hcd = hcd;
4196                 /* Mark the first roothub as being USB 2.0.
4197                  * The xHCI driver will register the USB 3.0 roothub.
4198                  */
4199                 hcd->speed = HCD_USB2;
4200                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4201                 /*
4202                  * USB 2.0 roothub under xHCI has an integrated TT,
4203                  * (rate matching hub) as opposed to having an OHCI/UHCI
4204                  * companion controller.
4205                  */
4206                 hcd->has_tt = 1;
4207         } else {
4208                 /* xHCI private pointer was set in xhci_pci_probe for the second
4209                  * registered roothub.
4210                  */
4211                 xhci = hcd_to_xhci(hcd);
4212                 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4213                 if (HCC_64BIT_ADDR(temp)) {
4214                         xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4215                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4216                 } else {
4217                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4218                 }
4219                 return 0;
4220         }
4221
4222         xhci->cap_regs = hcd->regs;
4223         xhci->op_regs = hcd->regs +
4224                 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4225         xhci->run_regs = hcd->regs +
4226                 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4227         /* Cache read-only capability registers */
4228         xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4229         xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4230         xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4231         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4232         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4233         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4234         xhci_print_registers(xhci);
4235
4236         get_quirks(dev, xhci);
4237
4238         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4239          * success event after a short transfer. This quirk will ignore such
4240          * spurious event.
4241          */
4242         if (xhci->hci_version > 0x96)
4243                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4244
4245         /* Make sure the HC is halted. */
4246         retval = xhci_halt(xhci);
4247         if (retval)
4248                 goto error;
4249
4250         xhci_dbg(xhci, "Resetting HCD\n");
4251         /* Reset the internal HC memory state and registers. */
4252         retval = xhci_reset(xhci);
4253         if (retval)
4254                 goto error;
4255         xhci_dbg(xhci, "Reset complete\n");
4256
4257         temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4258         if (HCC_64BIT_ADDR(temp)) {
4259                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4260                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4261         } else {
4262                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4263         }
4264
4265         xhci_dbg(xhci, "Calling HCD init\n");
4266         /* Initialize HCD and host controller data structures. */
4267         retval = xhci_init(hcd);
4268         if (retval)
4269                 goto error;
4270         xhci_dbg(xhci, "Called HCD init\n");
4271         return 0;
4272 error:
4273         kfree(xhci);
4274         return retval;
4275 }
4276
4277 MODULE_DESCRIPTION(DRIVER_DESC);
4278 MODULE_AUTHOR(DRIVER_AUTHOR);
4279 MODULE_LICENSE("GPL");
4280
4281 static int __init xhci_hcd_init(void)
4282 {
4283         int retval;
4284
4285         retval = xhci_register_pci();
4286         if (retval < 0) {
4287                 printk(KERN_DEBUG "Problem registering PCI driver.");
4288                 return retval;
4289         }
4290         /*
4291          * Check the compiler generated sizes of structures that must be laid
4292          * out in specific ways for hardware access.
4293          */
4294         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4295         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4296         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4297         /* xhci_device_control has eight fields, and also
4298          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4299          */
4300         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4301         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4302         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4303         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4304         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4305         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4306         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4307         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4308         return 0;
4309 }
4310 module_init(xhci_hcd_init);
4311
4312 static void __exit xhci_hcd_cleanup(void)
4313 {
4314         xhci_unregister_pci();
4315 }
4316 module_exit(xhci_hcd_cleanup);