usb: xhci: stop everything on the first call to xhci_stop
[pandora-kernel.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37
38 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
39
40 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
41 static int link_quirk;
42 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
43 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
44
45 static unsigned int quirks;
46 module_param(quirks, uint, S_IRUGO);
47 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
48
49 /* TODO: copied from ehci-hcd.c - can this be refactored? */
50 /*
51  * xhci_handshake - spin reading hc until handshake completes or fails
52  * @ptr: address of hc register to be read
53  * @mask: bits to look at in result of read
54  * @done: value of those bits when handshake succeeds
55  * @usec: timeout in microseconds
56  *
57  * Returns negative errno, or zero on success
58  *
59  * Success happens when the "mask" bits have the specified value (hardware
60  * handshake done).  There are two failure modes:  "usec" have passed (major
61  * hardware flakeout), or the register reads as all-ones (hardware removed).
62  */
63 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
64 {
65         u32     result;
66
67         do {
68                 result = readl(ptr);
69                 if (result == ~(u32)0)          /* card removed */
70                         return -ENODEV;
71                 result &= mask;
72                 if (result == done)
73                         return 0;
74                 udelay(1);
75                 usec--;
76         } while (usec > 0);
77         return -ETIMEDOUT;
78 }
79
80 /*
81  * Disable interrupts and begin the xHCI halting process.
82  */
83 void xhci_quiesce(struct xhci_hcd *xhci)
84 {
85         u32 halted;
86         u32 cmd;
87         u32 mask;
88
89         mask = ~(XHCI_IRQS);
90         halted = readl(&xhci->op_regs->status) & STS_HALT;
91         if (!halted)
92                 mask &= ~CMD_RUN;
93
94         cmd = readl(&xhci->op_regs->command);
95         cmd &= mask;
96         writel(cmd, &xhci->op_regs->command);
97 }
98
99 /*
100  * Force HC into halt state.
101  *
102  * Disable any IRQs and clear the run/stop bit.
103  * HC will complete any current and actively pipelined transactions, and
104  * should halt within 16 ms of the run/stop bit being cleared.
105  * Read HC Halted bit in the status register to see when the HC is finished.
106  */
107 int xhci_halt(struct xhci_hcd *xhci)
108 {
109         int ret;
110         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
111         xhci_quiesce(xhci);
112
113         ret = xhci_handshake(&xhci->op_regs->status,
114                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
115         if (!ret) {
116                 xhci->xhc_state |= XHCI_STATE_HALTED;
117                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
118         } else
119                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
120                                 XHCI_MAX_HALT_USEC);
121         return ret;
122 }
123
124 /*
125  * Set the run bit and wait for the host to be running.
126  */
127 static int xhci_start(struct xhci_hcd *xhci)
128 {
129         u32 temp;
130         int ret;
131
132         temp = readl(&xhci->op_regs->command);
133         temp |= (CMD_RUN);
134         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
135                         temp);
136         writel(temp, &xhci->op_regs->command);
137
138         /*
139          * Wait for the HCHalted Status bit to be 0 to indicate the host is
140          * running.
141          */
142         ret = xhci_handshake(&xhci->op_regs->status,
143                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
144         if (ret == -ETIMEDOUT)
145                 xhci_err(xhci, "Host took too long to start, "
146                                 "waited %u microseconds.\n",
147                                 XHCI_MAX_HALT_USEC);
148         if (!ret)
149                 xhci->xhc_state &= ~(XHCI_STATE_HALTED | XHCI_STATE_DYING);
150
151         return ret;
152 }
153
154 /*
155  * Reset a halted HC.
156  *
157  * This resets pipelines, timers, counters, state machines, etc.
158  * Transactions will be terminated immediately, and operational registers
159  * will be set to their defaults.
160  */
161 int xhci_reset(struct xhci_hcd *xhci)
162 {
163         u32 command;
164         u32 state;
165         int ret, i;
166
167         state = readl(&xhci->op_regs->status);
168         if ((state & STS_HALT) == 0) {
169                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
170                 return 0;
171         }
172
173         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
174         command = readl(&xhci->op_regs->command);
175         command |= CMD_RESET;
176         writel(command, &xhci->op_regs->command);
177
178         ret = xhci_handshake(&xhci->op_regs->command,
179                         CMD_RESET, 0, 10 * 1000 * 1000);
180         if (ret)
181                 return ret;
182
183         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
184                          "Wait for controller to be ready for doorbell rings");
185         /*
186          * xHCI cannot write to any doorbells or operational registers other
187          * than status until the "Controller Not Ready" flag is cleared.
188          */
189         ret = xhci_handshake(&xhci->op_regs->status,
190                         STS_CNR, 0, 10 * 1000 * 1000);
191
192         for (i = 0; i < 2; ++i) {
193                 xhci->bus_state[i].port_c_suspend = 0;
194                 xhci->bus_state[i].suspended_ports = 0;
195                 xhci->bus_state[i].resuming_ports = 0;
196         }
197
198         return ret;
199 }
200
201 #ifdef CONFIG_PCI
202 static int xhci_free_msi(struct xhci_hcd *xhci)
203 {
204         int i;
205
206         if (!xhci->msix_entries)
207                 return -EINVAL;
208
209         for (i = 0; i < xhci->msix_count; i++)
210                 if (xhci->msix_entries[i].vector)
211                         free_irq(xhci->msix_entries[i].vector,
212                                         xhci_to_hcd(xhci));
213         return 0;
214 }
215
216 /*
217  * Set up MSI
218  */
219 static int xhci_setup_msi(struct xhci_hcd *xhci)
220 {
221         int ret;
222         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
223
224         ret = pci_enable_msi(pdev);
225         if (ret) {
226                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
227                                 "failed to allocate MSI entry");
228                 return ret;
229         }
230
231         ret = request_irq(pdev->irq, xhci_msi_irq,
232                                 0, "xhci_hcd", xhci_to_hcd(xhci));
233         if (ret) {
234                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
235                                 "disable MSI interrupt");
236                 pci_disable_msi(pdev);
237         }
238
239         return ret;
240 }
241
242 /*
243  * Free IRQs
244  * free all IRQs request
245  */
246 static void xhci_free_irq(struct xhci_hcd *xhci)
247 {
248         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
249         int ret;
250
251         /* return if using legacy interrupt */
252         if (xhci_to_hcd(xhci)->irq > 0)
253                 return;
254
255         ret = xhci_free_msi(xhci);
256         if (!ret)
257                 return;
258         if (pdev->irq > 0)
259                 free_irq(pdev->irq, xhci_to_hcd(xhci));
260
261         return;
262 }
263
264 /*
265  * Set up MSI-X
266  */
267 static int xhci_setup_msix(struct xhci_hcd *xhci)
268 {
269         int i, ret = 0;
270         struct usb_hcd *hcd = xhci_to_hcd(xhci);
271         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
272
273         /*
274          * calculate number of msi-x vectors supported.
275          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
276          *   with max number of interrupters based on the xhci HCSPARAMS1.
277          * - num_online_cpus: maximum msi-x vectors per CPUs core.
278          *   Add additional 1 vector to ensure always available interrupt.
279          */
280         xhci->msix_count = min(num_online_cpus() + 1,
281                                 HCS_MAX_INTRS(xhci->hcs_params1));
282
283         xhci->msix_entries =
284                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
285                                 GFP_KERNEL);
286         if (!xhci->msix_entries) {
287                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
288                 return -ENOMEM;
289         }
290
291         for (i = 0; i < xhci->msix_count; i++) {
292                 xhci->msix_entries[i].entry = i;
293                 xhci->msix_entries[i].vector = 0;
294         }
295
296         ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
297         if (ret) {
298                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
299                                 "Failed to enable MSI-X");
300                 goto free_entries;
301         }
302
303         for (i = 0; i < xhci->msix_count; i++) {
304                 ret = request_irq(xhci->msix_entries[i].vector,
305                                 xhci_msi_irq,
306                                 0, "xhci_hcd", xhci_to_hcd(xhci));
307                 if (ret)
308                         goto disable_msix;
309         }
310
311         hcd->msix_enabled = 1;
312         return ret;
313
314 disable_msix:
315         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
316         xhci_free_irq(xhci);
317         pci_disable_msix(pdev);
318 free_entries:
319         kfree(xhci->msix_entries);
320         xhci->msix_entries = NULL;
321         return ret;
322 }
323
324 /* Free any IRQs and disable MSI-X */
325 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
326 {
327         struct usb_hcd *hcd = xhci_to_hcd(xhci);
328         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
329
330         if (xhci->quirks & XHCI_PLAT)
331                 return;
332
333         xhci_free_irq(xhci);
334
335         if (xhci->msix_entries) {
336                 pci_disable_msix(pdev);
337                 kfree(xhci->msix_entries);
338                 xhci->msix_entries = NULL;
339         } else {
340                 pci_disable_msi(pdev);
341         }
342
343         hcd->msix_enabled = 0;
344         return;
345 }
346
347 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
348 {
349         int i;
350
351         if (xhci->msix_entries) {
352                 for (i = 0; i < xhci->msix_count; i++)
353                         synchronize_irq(xhci->msix_entries[i].vector);
354         }
355 }
356
357 static int xhci_try_enable_msi(struct usb_hcd *hcd)
358 {
359         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
360         struct pci_dev  *pdev;
361         int ret;
362
363         /* The xhci platform device has set up IRQs through usb_add_hcd. */
364         if (xhci->quirks & XHCI_PLAT)
365                 return 0;
366
367         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
368         /*
369          * Some Fresco Logic host controllers advertise MSI, but fail to
370          * generate interrupts.  Don't even try to enable MSI.
371          */
372         if (xhci->quirks & XHCI_BROKEN_MSI)
373                 goto legacy_irq;
374
375         /* unregister the legacy interrupt */
376         if (hcd->irq)
377                 free_irq(hcd->irq, hcd);
378         hcd->irq = 0;
379
380         ret = xhci_setup_msix(xhci);
381         if (ret)
382                 /* fall back to msi*/
383                 ret = xhci_setup_msi(xhci);
384
385         if (!ret)
386                 /* hcd->irq is 0, we have MSI */
387                 return 0;
388
389         if (!pdev->irq) {
390                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
391                 return -EINVAL;
392         }
393
394  legacy_irq:
395         if (!strlen(hcd->irq_descr))
396                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
397                          hcd->driver->description, hcd->self.busnum);
398
399         /* fall back to legacy interrupt*/
400         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
401                         hcd->irq_descr, hcd);
402         if (ret) {
403                 xhci_err(xhci, "request interrupt %d failed\n",
404                                 pdev->irq);
405                 return ret;
406         }
407         hcd->irq = pdev->irq;
408         return 0;
409 }
410
411 #else
412
413 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
414 {
415         return 0;
416 }
417
418 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
419 {
420 }
421
422 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
423 {
424 }
425
426 #endif
427
428 static void compliance_mode_recovery(unsigned long arg)
429 {
430         struct xhci_hcd *xhci;
431         struct usb_hcd *hcd;
432         u32 temp;
433         int i;
434
435         xhci = (struct xhci_hcd *)arg;
436
437         for (i = 0; i < xhci->num_usb3_ports; i++) {
438                 temp = readl(xhci->usb3_ports[i]);
439                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
440                         /*
441                          * Compliance Mode Detected. Letting USB Core
442                          * handle the Warm Reset
443                          */
444                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
445                                         "Compliance mode detected->port %d",
446                                         i + 1);
447                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
448                                         "Attempting compliance mode recovery");
449                         hcd = xhci->shared_hcd;
450
451                         if (hcd->state == HC_STATE_SUSPENDED)
452                                 usb_hcd_resume_root_hub(hcd);
453
454                         usb_hcd_poll_rh_status(hcd);
455                 }
456         }
457
458         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
459                 mod_timer(&xhci->comp_mode_recovery_timer,
460                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
461 }
462
463 /*
464  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
465  * that causes ports behind that hardware to enter compliance mode sometimes.
466  * The quirk creates a timer that polls every 2 seconds the link state of
467  * each host controller's port and recovers it by issuing a Warm reset
468  * if Compliance mode is detected, otherwise the port will become "dead" (no
469  * device connections or disconnections will be detected anymore). Becasue no
470  * status event is generated when entering compliance mode (per xhci spec),
471  * this quirk is needed on systems that have the failing hardware installed.
472  */
473 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
474 {
475         xhci->port_status_u0 = 0;
476         setup_timer(&xhci->comp_mode_recovery_timer,
477                     compliance_mode_recovery, (unsigned long)xhci);
478         xhci->comp_mode_recovery_timer.expires = jiffies +
479                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
480
481         set_timer_slack(&xhci->comp_mode_recovery_timer,
482                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
483         add_timer(&xhci->comp_mode_recovery_timer);
484         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
485                         "Compliance mode recovery timer initialized");
486 }
487
488 /*
489  * This function identifies the systems that have installed the SN65LVPE502CP
490  * USB3.0 re-driver and that need the Compliance Mode Quirk.
491  * Systems:
492  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
493  */
494 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
495 {
496         const char *dmi_product_name, *dmi_sys_vendor;
497
498         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
499         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
500         if (!dmi_product_name || !dmi_sys_vendor)
501                 return false;
502
503         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
504                 return false;
505
506         if (strstr(dmi_product_name, "Z420") ||
507                         strstr(dmi_product_name, "Z620") ||
508                         strstr(dmi_product_name, "Z820") ||
509                         strstr(dmi_product_name, "Z1 Workstation"))
510                 return true;
511
512         return false;
513 }
514
515 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
516 {
517         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
518 }
519
520
521 /*
522  * Initialize memory for HCD and xHC (one-time init).
523  *
524  * Program the PAGESIZE register, initialize the device context array, create
525  * device contexts (?), set up a command ring segment (or two?), create event
526  * ring (one for now).
527  */
528 int xhci_init(struct usb_hcd *hcd)
529 {
530         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
531         int retval = 0;
532
533         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
534         spin_lock_init(&xhci->lock);
535         if (xhci->hci_version == 0x95 && link_quirk) {
536                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
537                                 "QUIRK: Not clearing Link TRB chain bits.");
538                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
539         } else {
540                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
541                                 "xHCI doesn't need link TRB QUIRK");
542         }
543         retval = xhci_mem_init(xhci, GFP_KERNEL);
544         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
545
546         /* Initializing Compliance Mode Recovery Data If Needed */
547         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
548                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
549                 compliance_mode_recovery_timer_init(xhci);
550         }
551
552         return retval;
553 }
554
555 /*-------------------------------------------------------------------------*/
556
557
558 static int xhci_run_finished(struct xhci_hcd *xhci)
559 {
560         if (xhci_start(xhci)) {
561                 xhci_halt(xhci);
562                 return -ENODEV;
563         }
564         xhci->shared_hcd->state = HC_STATE_RUNNING;
565         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
566
567         if (xhci->quirks & XHCI_NEC_HOST)
568                 xhci_ring_cmd_db(xhci);
569
570         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
571                         "Finished xhci_run for USB3 roothub");
572         return 0;
573 }
574
575 /*
576  * Start the HC after it was halted.
577  *
578  * This function is called by the USB core when the HC driver is added.
579  * Its opposite is xhci_stop().
580  *
581  * xhci_init() must be called once before this function can be called.
582  * Reset the HC, enable device slot contexts, program DCBAAP, and
583  * set command ring pointer and event ring pointer.
584  *
585  * Setup MSI-X vectors and enable interrupts.
586  */
587 int xhci_run(struct usb_hcd *hcd)
588 {
589         u32 temp;
590         u64 temp_64;
591         int ret;
592         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
593
594         /* Start the xHCI host controller running only after the USB 2.0 roothub
595          * is setup.
596          */
597
598         hcd->uses_new_polling = 1;
599         if (!usb_hcd_is_primary_hcd(hcd))
600                 return xhci_run_finished(xhci);
601
602         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
603
604         ret = xhci_try_enable_msi(hcd);
605         if (ret)
606                 return ret;
607
608         xhci_dbg(xhci, "Command ring memory map follows:\n");
609         xhci_debug_ring(xhci, xhci->cmd_ring);
610         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
611         xhci_dbg_cmd_ptrs(xhci);
612
613         xhci_dbg(xhci, "ERST memory map follows:\n");
614         xhci_dbg_erst(xhci, &xhci->erst);
615         xhci_dbg(xhci, "Event ring:\n");
616         xhci_debug_ring(xhci, xhci->event_ring);
617         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
618         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
619         temp_64 &= ~ERST_PTR_MASK;
620         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
621                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
622
623         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
624                         "// Set the interrupt modulation register");
625         temp = readl(&xhci->ir_set->irq_control);
626         temp &= ~ER_IRQ_INTERVAL_MASK;
627         temp |= (u32) 160;
628         writel(temp, &xhci->ir_set->irq_control);
629
630         /* Set the HCD state before we enable the irqs */
631         temp = readl(&xhci->op_regs->command);
632         temp |= (CMD_EIE);
633         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
634                         "// Enable interrupts, cmd = 0x%x.", temp);
635         writel(temp, &xhci->op_regs->command);
636
637         temp = readl(&xhci->ir_set->irq_pending);
638         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
639                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
640                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
641         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
642         xhci_print_ir_set(xhci, 0);
643
644         if (xhci->quirks & XHCI_NEC_HOST) {
645                 struct xhci_command *command;
646                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
647                 if (!command)
648                         return -ENOMEM;
649                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
650                                 TRB_TYPE(TRB_NEC_GET_FW));
651         }
652         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
653                         "Finished xhci_run for USB2 roothub");
654         return 0;
655 }
656 EXPORT_SYMBOL_GPL(xhci_run);
657
658 /*
659  * Stop xHCI driver.
660  *
661  * This function is called by the USB core when the HC driver is removed.
662  * Its opposite is xhci_run().
663  *
664  * Disable device contexts, disable IRQs, and quiesce the HC.
665  * Reset the HC, finish any completed transactions, and cleanup memory.
666  */
667 void xhci_stop(struct usb_hcd *hcd)
668 {
669         u32 temp;
670         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
671
672         if (xhci->xhc_state & XHCI_STATE_HALTED)
673                 return;
674
675         mutex_lock(&xhci->mutex);
676         spin_lock_irq(&xhci->lock);
677         xhci->xhc_state |= XHCI_STATE_HALTED;
678         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
679
680         /* Make sure the xHC is halted for a USB3 roothub
681          * (xhci_stop() could be called as part of failed init).
682          */
683         xhci_halt(xhci);
684         xhci_reset(xhci);
685         spin_unlock_irq(&xhci->lock);
686
687         xhci_cleanup_msix(xhci);
688
689         /* Deleting Compliance Mode Recovery Timer */
690         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
691                         (!(xhci_all_ports_seen_u0(xhci)))) {
692                 del_timer_sync(&xhci->comp_mode_recovery_timer);
693                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
694                                 "%s: compliance mode recovery timer deleted",
695                                 __func__);
696         }
697
698         if (xhci->quirks & XHCI_AMD_PLL_FIX)
699                 usb_amd_dev_put();
700
701         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
702                         "// Disabling event ring interrupts");
703         temp = readl(&xhci->op_regs->status);
704         writel(temp & ~STS_EINT, &xhci->op_regs->status);
705         temp = readl(&xhci->ir_set->irq_pending);
706         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
707         xhci_print_ir_set(xhci, 0);
708
709         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
710         xhci_mem_cleanup(xhci);
711         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
712                         "xhci_stop completed - status = %x",
713                         readl(&xhci->op_regs->status));
714         mutex_unlock(&xhci->mutex);
715 }
716
717 /*
718  * Shutdown HC (not bus-specific)
719  *
720  * This is called when the machine is rebooting or halting.  We assume that the
721  * machine will be powered off, and the HC's internal state will be reset.
722  * Don't bother to free memory.
723  *
724  * This will only ever be called with the main usb_hcd (the USB3 roothub).
725  */
726 void xhci_shutdown(struct usb_hcd *hcd)
727 {
728         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
729
730         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
731                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
732
733         spin_lock_irq(&xhci->lock);
734         xhci_halt(xhci);
735         /* Workaround for spurious wakeups at shutdown with HSW */
736         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
737                 xhci_reset(xhci);
738         spin_unlock_irq(&xhci->lock);
739
740         xhci_cleanup_msix(xhci);
741
742         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
743                         "xhci_shutdown completed - status = %x",
744                         readl(&xhci->op_regs->status));
745
746         /* Yet another workaround for spurious wakeups at shutdown with HSW */
747         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
748                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
749 }
750
751 #ifdef CONFIG_PM
752 static void xhci_save_registers(struct xhci_hcd *xhci)
753 {
754         xhci->s3.command = readl(&xhci->op_regs->command);
755         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
756         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
757         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
758         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
759         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
760         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
761         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
762         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
763 }
764
765 static void xhci_restore_registers(struct xhci_hcd *xhci)
766 {
767         writel(xhci->s3.command, &xhci->op_regs->command);
768         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
769         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
770         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
771         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
772         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
773         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
774         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
775         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
776 }
777
778 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
779 {
780         u64     val_64;
781
782         /* step 2: initialize command ring buffer */
783         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
784         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
785                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
786                                       xhci->cmd_ring->dequeue) &
787                  (u64) ~CMD_RING_RSVD_BITS) |
788                 xhci->cmd_ring->cycle_state;
789         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
790                         "// Setting command ring address to 0x%llx",
791                         (long unsigned long) val_64);
792         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
793 }
794
795 /*
796  * The whole command ring must be cleared to zero when we suspend the host.
797  *
798  * The host doesn't save the command ring pointer in the suspend well, so we
799  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
800  * aligned, because of the reserved bits in the command ring dequeue pointer
801  * register.  Therefore, we can't just set the dequeue pointer back in the
802  * middle of the ring (TRBs are 16-byte aligned).
803  */
804 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
805 {
806         struct xhci_ring *ring;
807         struct xhci_segment *seg;
808
809         ring = xhci->cmd_ring;
810         seg = ring->deq_seg;
811         do {
812                 memset(seg->trbs, 0,
813                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
814                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
815                         cpu_to_le32(~TRB_CYCLE);
816                 seg = seg->next;
817         } while (seg != ring->deq_seg);
818
819         /* Reset the software enqueue and dequeue pointers */
820         ring->deq_seg = ring->first_seg;
821         ring->dequeue = ring->first_seg->trbs;
822         ring->enq_seg = ring->deq_seg;
823         ring->enqueue = ring->dequeue;
824
825         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
826         /*
827          * Ring is now zeroed, so the HW should look for change of ownership
828          * when the cycle bit is set to 1.
829          */
830         ring->cycle_state = 1;
831
832         /*
833          * Reset the hardware dequeue pointer.
834          * Yes, this will need to be re-written after resume, but we're paranoid
835          * and want to make sure the hardware doesn't access bogus memory
836          * because, say, the BIOS or an SMI started the host without changing
837          * the command ring pointers.
838          */
839         xhci_set_cmd_ring_deq(xhci);
840 }
841
842 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
843 {
844         int port_index;
845         __le32 __iomem **port_array;
846         unsigned long flags;
847         u32 t1, t2;
848
849         spin_lock_irqsave(&xhci->lock, flags);
850
851         /* disble usb3 ports Wake bits*/
852         port_index = xhci->num_usb3_ports;
853         port_array = xhci->usb3_ports;
854         while (port_index--) {
855                 t1 = readl(port_array[port_index]);
856                 t1 = xhci_port_state_to_neutral(t1);
857                 t2 = t1 & ~PORT_WAKE_BITS;
858                 if (t1 != t2)
859                         writel(t2, port_array[port_index]);
860         }
861
862         /* disble usb2 ports Wake bits*/
863         port_index = xhci->num_usb2_ports;
864         port_array = xhci->usb2_ports;
865         while (port_index--) {
866                 t1 = readl(port_array[port_index]);
867                 t1 = xhci_port_state_to_neutral(t1);
868                 t2 = t1 & ~PORT_WAKE_BITS;
869                 if (t1 != t2)
870                         writel(t2, port_array[port_index]);
871         }
872
873         spin_unlock_irqrestore(&xhci->lock, flags);
874 }
875
876 /*
877  * Stop HC (not bus-specific)
878  *
879  * This is called when the machine transition into S3/S4 mode.
880  *
881  */
882 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
883 {
884         int                     rc = 0;
885         unsigned int            delay = XHCI_MAX_HALT_USEC;
886         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
887         u32                     command;
888
889         if (!hcd->state)
890                 return 0;
891
892         if (hcd->state != HC_STATE_SUSPENDED ||
893                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
894                 return -EINVAL;
895
896         /* Clear root port wake on bits if wakeup not allowed. */
897         if (!do_wakeup)
898                 xhci_disable_port_wake_on_bits(xhci);
899
900         /* Don't poll the roothubs on bus suspend. */
901         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
902         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
903         del_timer_sync(&hcd->rh_timer);
904         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
905         del_timer_sync(&xhci->shared_hcd->rh_timer);
906
907         spin_lock_irq(&xhci->lock);
908         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
909         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
910         /* step 1: stop endpoint */
911         /* skipped assuming that port suspend has done */
912
913         /* step 2: clear Run/Stop bit */
914         command = readl(&xhci->op_regs->command);
915         command &= ~CMD_RUN;
916         writel(command, &xhci->op_regs->command);
917
918         /* Some chips from Fresco Logic need an extraordinary delay */
919         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
920
921         if (xhci_handshake(&xhci->op_regs->status,
922                       STS_HALT, STS_HALT, delay)) {
923                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
924                 spin_unlock_irq(&xhci->lock);
925                 return -ETIMEDOUT;
926         }
927         xhci_clear_command_ring(xhci);
928
929         /* step 3: save registers */
930         xhci_save_registers(xhci);
931
932         /* step 4: set CSS flag */
933         command = readl(&xhci->op_regs->command);
934         command |= CMD_CSS;
935         writel(command, &xhci->op_regs->command);
936         if (xhci_handshake(&xhci->op_regs->status,
937                                 STS_SAVE, 0, 10 * 1000)) {
938                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
939                 spin_unlock_irq(&xhci->lock);
940                 return -ETIMEDOUT;
941         }
942         spin_unlock_irq(&xhci->lock);
943
944         /*
945          * Deleting Compliance Mode Recovery Timer because the xHCI Host
946          * is about to be suspended.
947          */
948         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
949                         (!(xhci_all_ports_seen_u0(xhci)))) {
950                 del_timer_sync(&xhci->comp_mode_recovery_timer);
951                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
952                                 "%s: compliance mode recovery timer deleted",
953                                 __func__);
954         }
955
956         /* step 5: remove core well power */
957         /* synchronize irq when using MSI-X */
958         xhci_msix_sync_irqs(xhci);
959
960         return rc;
961 }
962 EXPORT_SYMBOL_GPL(xhci_suspend);
963
964 /*
965  * start xHC (not bus-specific)
966  *
967  * This is called when the machine transition from S3/S4 mode.
968  *
969  */
970 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
971 {
972         u32                     command, temp = 0, status;
973         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
974         struct usb_hcd          *secondary_hcd;
975         int                     retval = 0;
976         bool                    comp_timer_running = false;
977
978         if (!hcd->state)
979                 return 0;
980
981         /* Wait a bit if either of the roothubs need to settle from the
982          * transition into bus suspend.
983          */
984         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
985                         time_before(jiffies,
986                                 xhci->bus_state[1].next_statechange))
987                 msleep(100);
988
989         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
990         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
991
992         spin_lock_irq(&xhci->lock);
993         if (xhci->quirks & XHCI_RESET_ON_RESUME)
994                 hibernated = true;
995
996         if (!hibernated) {
997                 /* step 1: restore register */
998                 xhci_restore_registers(xhci);
999                 /* step 2: initialize command ring buffer */
1000                 xhci_set_cmd_ring_deq(xhci);
1001                 /* step 3: restore state and start state*/
1002                 /* step 3: set CRS flag */
1003                 command = readl(&xhci->op_regs->command);
1004                 command |= CMD_CRS;
1005                 writel(command, &xhci->op_regs->command);
1006                 if (xhci_handshake(&xhci->op_regs->status,
1007                               STS_RESTORE, 0, 10 * 1000)) {
1008                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1009                         spin_unlock_irq(&xhci->lock);
1010                         return -ETIMEDOUT;
1011                 }
1012                 temp = readl(&xhci->op_regs->status);
1013         }
1014
1015         /* If restore operation fails, re-initialize the HC during resume */
1016         if ((temp & STS_SRE) || hibernated) {
1017
1018                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1019                                 !(xhci_all_ports_seen_u0(xhci))) {
1020                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1021                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1022                                 "Compliance Mode Recovery Timer deleted!");
1023                 }
1024
1025                 /* Let the USB core know _both_ roothubs lost power. */
1026                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1027                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1028
1029                 xhci_dbg(xhci, "Stop HCD\n");
1030                 xhci_halt(xhci);
1031                 xhci_reset(xhci);
1032                 spin_unlock_irq(&xhci->lock);
1033                 xhci_cleanup_msix(xhci);
1034
1035                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1036                 temp = readl(&xhci->op_regs->status);
1037                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1038                 temp = readl(&xhci->ir_set->irq_pending);
1039                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1040                 xhci_print_ir_set(xhci, 0);
1041
1042                 xhci_dbg(xhci, "cleaning up memory\n");
1043                 xhci_mem_cleanup(xhci);
1044                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1045                             readl(&xhci->op_regs->status));
1046
1047                 /* USB core calls the PCI reinit and start functions twice:
1048                  * first with the primary HCD, and then with the secondary HCD.
1049                  * If we don't do the same, the host will never be started.
1050                  */
1051                 if (!usb_hcd_is_primary_hcd(hcd))
1052                         secondary_hcd = hcd;
1053                 else
1054                         secondary_hcd = xhci->shared_hcd;
1055
1056                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1057                 retval = xhci_init(hcd->primary_hcd);
1058                 if (retval)
1059                         return retval;
1060                 comp_timer_running = true;
1061
1062                 xhci_dbg(xhci, "Start the primary HCD\n");
1063                 retval = xhci_run(hcd->primary_hcd);
1064                 if (!retval) {
1065                         xhci_dbg(xhci, "Start the secondary HCD\n");
1066                         retval = xhci_run(secondary_hcd);
1067                 }
1068                 hcd->state = HC_STATE_SUSPENDED;
1069                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1070                 goto done;
1071         }
1072
1073         /* step 4: set Run/Stop bit */
1074         command = readl(&xhci->op_regs->command);
1075         command |= CMD_RUN;
1076         writel(command, &xhci->op_regs->command);
1077         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1078                   0, 250 * 1000);
1079
1080         /* step 5: walk topology and initialize portsc,
1081          * portpmsc and portli
1082          */
1083         /* this is done in bus_resume */
1084
1085         /* step 6: restart each of the previously
1086          * Running endpoints by ringing their doorbells
1087          */
1088
1089         spin_unlock_irq(&xhci->lock);
1090
1091  done:
1092         if (retval == 0) {
1093                 /* Resume root hubs only when have pending events. */
1094                 status = readl(&xhci->op_regs->status);
1095                 if (status & STS_EINT) {
1096                         usb_hcd_resume_root_hub(hcd);
1097                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1098                 }
1099         }
1100
1101         /*
1102          * If system is subject to the Quirk, Compliance Mode Timer needs to
1103          * be re-initialized Always after a system resume. Ports are subject
1104          * to suffer the Compliance Mode issue again. It doesn't matter if
1105          * ports have entered previously to U0 before system's suspension.
1106          */
1107         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1108                 compliance_mode_recovery_timer_init(xhci);
1109
1110         /* Re-enable port polling. */
1111         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1112         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1113         usb_hcd_poll_rh_status(hcd);
1114         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1115         usb_hcd_poll_rh_status(xhci->shared_hcd);
1116
1117         return retval;
1118 }
1119 EXPORT_SYMBOL_GPL(xhci_resume);
1120 #endif  /* CONFIG_PM */
1121
1122 /*-------------------------------------------------------------------------*/
1123
1124 /**
1125  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1126  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1127  * value to right shift 1 for the bitmask.
1128  *
1129  * Index  = (epnum * 2) + direction - 1,
1130  * where direction = 0 for OUT, 1 for IN.
1131  * For control endpoints, the IN index is used (OUT index is unused), so
1132  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1133  */
1134 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1135 {
1136         unsigned int index;
1137         if (usb_endpoint_xfer_control(desc))
1138                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1139         else
1140                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1141                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1142         return index;
1143 }
1144
1145 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1146  * address from the XHCI endpoint index.
1147  */
1148 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1149 {
1150         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1151         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1152         return direction | number;
1153 }
1154
1155 /* Find the flag for this endpoint (for use in the control context).  Use the
1156  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1157  * bit 1, etc.
1158  */
1159 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1160 {
1161         return 1 << (xhci_get_endpoint_index(desc) + 1);
1162 }
1163
1164 /* Find the flag for this endpoint (for use in the control context).  Use the
1165  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1166  * bit 1, etc.
1167  */
1168 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1169 {
1170         return 1 << (ep_index + 1);
1171 }
1172
1173 /* Compute the last valid endpoint context index.  Basically, this is the
1174  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1175  * we find the most significant bit set in the added contexts flags.
1176  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1177  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1178  */
1179 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1180 {
1181         return fls(added_ctxs) - 1;
1182 }
1183
1184 /* Returns 1 if the arguments are OK;
1185  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1186  */
1187 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1188                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1189                 const char *func) {
1190         struct xhci_hcd *xhci;
1191         struct xhci_virt_device *virt_dev;
1192
1193         if (!hcd || (check_ep && !ep) || !udev) {
1194                 pr_debug("xHCI %s called with invalid args\n", func);
1195                 return -EINVAL;
1196         }
1197         if (!udev->parent) {
1198                 pr_debug("xHCI %s called for root hub\n", func);
1199                 return 0;
1200         }
1201
1202         xhci = hcd_to_xhci(hcd);
1203         if (check_virt_dev) {
1204                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1205                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1206                                         func);
1207                         return -EINVAL;
1208                 }
1209
1210                 virt_dev = xhci->devs[udev->slot_id];
1211                 if (virt_dev->udev != udev) {
1212                         xhci_dbg(xhci, "xHCI %s called with udev and "
1213                                           "virt_dev does not match\n", func);
1214                         return -EINVAL;
1215                 }
1216         }
1217
1218         if (xhci->xhc_state & XHCI_STATE_HALTED)
1219                 return -ENODEV;
1220
1221         return 1;
1222 }
1223
1224 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1225                 struct usb_device *udev, struct xhci_command *command,
1226                 bool ctx_change, bool must_succeed);
1227
1228 /*
1229  * Full speed devices may have a max packet size greater than 8 bytes, but the
1230  * USB core doesn't know that until it reads the first 8 bytes of the
1231  * descriptor.  If the usb_device's max packet size changes after that point,
1232  * we need to issue an evaluate context command and wait on it.
1233  */
1234 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1235                 unsigned int ep_index, struct urb *urb)
1236 {
1237         struct xhci_container_ctx *out_ctx;
1238         struct xhci_input_control_ctx *ctrl_ctx;
1239         struct xhci_ep_ctx *ep_ctx;
1240         struct xhci_command *command;
1241         int max_packet_size;
1242         int hw_max_packet_size;
1243         int ret = 0;
1244
1245         out_ctx = xhci->devs[slot_id]->out_ctx;
1246         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1247         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1248         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1249         if (hw_max_packet_size != max_packet_size) {
1250                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1251                                 "Max Packet Size for ep 0 changed.");
1252                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1253                                 "Max packet size in usb_device = %d",
1254                                 max_packet_size);
1255                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1256                                 "Max packet size in xHCI HW = %d",
1257                                 hw_max_packet_size);
1258                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1259                                 "Issuing evaluate context command.");
1260
1261                 /* Set up the input context flags for the command */
1262                 /* FIXME: This won't work if a non-default control endpoint
1263                  * changes max packet sizes.
1264                  */
1265
1266                 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1267                 if (!command)
1268                         return -ENOMEM;
1269
1270                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1271                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1272                 if (!ctrl_ctx) {
1273                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1274                                         __func__);
1275                         ret = -ENOMEM;
1276                         goto command_cleanup;
1277                 }
1278                 /* Set up the modified control endpoint 0 */
1279                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1280                                 xhci->devs[slot_id]->out_ctx, ep_index);
1281
1282                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1283                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1284                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1285
1286                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1287                 ctrl_ctx->drop_flags = 0;
1288
1289                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1290                 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1291                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1292                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1293
1294                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1295                                 true, false);
1296
1297                 /* Clean up the input context for later use by bandwidth
1298                  * functions.
1299                  */
1300                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1301 command_cleanup:
1302                 kfree(command->completion);
1303                 kfree(command);
1304         }
1305         return ret;
1306 }
1307
1308 /*
1309  * non-error returns are a promise to giveback() the urb later
1310  * we drop ownership so next owner (or urb unlink) can get it
1311  */
1312 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1313 {
1314         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1315         struct xhci_td *buffer;
1316         unsigned long flags;
1317         int ret = 0;
1318         unsigned int slot_id, ep_index;
1319         struct urb_priv *urb_priv;
1320         int size, i;
1321
1322         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1323                                         true, true, __func__) <= 0)
1324                 return -EINVAL;
1325
1326         slot_id = urb->dev->slot_id;
1327         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1328
1329         if (!HCD_HW_ACCESSIBLE(hcd)) {
1330                 if (!in_interrupt())
1331                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1332                 ret = -ESHUTDOWN;
1333                 goto exit;
1334         }
1335
1336         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1337                 size = urb->number_of_packets;
1338         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1339             urb->transfer_buffer_length > 0 &&
1340             urb->transfer_flags & URB_ZERO_PACKET &&
1341             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1342                 size = 2;
1343         else
1344                 size = 1;
1345
1346         urb_priv = kzalloc(sizeof(struct urb_priv) +
1347                                   size * sizeof(struct xhci_td *), mem_flags);
1348         if (!urb_priv)
1349                 return -ENOMEM;
1350
1351         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1352         if (!buffer) {
1353                 kfree(urb_priv);
1354                 return -ENOMEM;
1355         }
1356
1357         for (i = 0; i < size; i++) {
1358                 urb_priv->td[i] = buffer;
1359                 buffer++;
1360         }
1361
1362         urb_priv->length = size;
1363         urb_priv->td_cnt = 0;
1364         urb->hcpriv = urb_priv;
1365
1366         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1367                 /* Check to see if the max packet size for the default control
1368                  * endpoint changed during FS device enumeration
1369                  */
1370                 if (urb->dev->speed == USB_SPEED_FULL) {
1371                         ret = xhci_check_maxpacket(xhci, slot_id,
1372                                         ep_index, urb);
1373                         if (ret < 0) {
1374                                 xhci_urb_free_priv(urb_priv);
1375                                 urb->hcpriv = NULL;
1376                                 return ret;
1377                         }
1378                 }
1379
1380                 /* We have a spinlock and interrupts disabled, so we must pass
1381                  * atomic context to this function, which may allocate memory.
1382                  */
1383                 spin_lock_irqsave(&xhci->lock, flags);
1384                 if (xhci->xhc_state & XHCI_STATE_DYING)
1385                         goto dying;
1386                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1387                                 slot_id, ep_index);
1388                 if (ret)
1389                         goto free_priv;
1390                 spin_unlock_irqrestore(&xhci->lock, flags);
1391         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1392                 spin_lock_irqsave(&xhci->lock, flags);
1393                 if (xhci->xhc_state & XHCI_STATE_DYING)
1394                         goto dying;
1395                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1396                                 EP_GETTING_STREAMS) {
1397                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1398                                         "is transitioning to using streams.\n");
1399                         ret = -EINVAL;
1400                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1401                                 EP_GETTING_NO_STREAMS) {
1402                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1403                                         "is transitioning to "
1404                                         "not having streams.\n");
1405                         ret = -EINVAL;
1406                 } else {
1407                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1408                                         slot_id, ep_index);
1409                 }
1410                 if (ret)
1411                         goto free_priv;
1412                 spin_unlock_irqrestore(&xhci->lock, flags);
1413         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1414                 spin_lock_irqsave(&xhci->lock, flags);
1415                 if (xhci->xhc_state & XHCI_STATE_DYING)
1416                         goto dying;
1417                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1418                                 slot_id, ep_index);
1419                 if (ret)
1420                         goto free_priv;
1421                 spin_unlock_irqrestore(&xhci->lock, flags);
1422         } else {
1423                 spin_lock_irqsave(&xhci->lock, flags);
1424                 if (xhci->xhc_state & XHCI_STATE_DYING)
1425                         goto dying;
1426                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1427                                 slot_id, ep_index);
1428                 if (ret)
1429                         goto free_priv;
1430                 spin_unlock_irqrestore(&xhci->lock, flags);
1431         }
1432 exit:
1433         return ret;
1434 dying:
1435         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1436                         "non-responsive xHCI host.\n",
1437                         urb->ep->desc.bEndpointAddress, urb);
1438         ret = -ESHUTDOWN;
1439 free_priv:
1440         xhci_urb_free_priv(urb_priv);
1441         urb->hcpriv = NULL;
1442         spin_unlock_irqrestore(&xhci->lock, flags);
1443         return ret;
1444 }
1445
1446 /* Get the right ring for the given URB.
1447  * If the endpoint supports streams, boundary check the URB's stream ID.
1448  * If the endpoint doesn't support streams, return the singular endpoint ring.
1449  */
1450 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1451                 struct urb *urb)
1452 {
1453         unsigned int slot_id;
1454         unsigned int ep_index;
1455         unsigned int stream_id;
1456         struct xhci_virt_ep *ep;
1457
1458         slot_id = urb->dev->slot_id;
1459         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1460         stream_id = urb->stream_id;
1461         ep = &xhci->devs[slot_id]->eps[ep_index];
1462         /* Common case: no streams */
1463         if (!(ep->ep_state & EP_HAS_STREAMS))
1464                 return ep->ring;
1465
1466         if (stream_id == 0) {
1467                 xhci_warn(xhci,
1468                                 "WARN: Slot ID %u, ep index %u has streams, "
1469                                 "but URB has no stream ID.\n",
1470                                 slot_id, ep_index);
1471                 return NULL;
1472         }
1473
1474         if (stream_id < ep->stream_info->num_streams)
1475                 return ep->stream_info->stream_rings[stream_id];
1476
1477         xhci_warn(xhci,
1478                         "WARN: Slot ID %u, ep index %u has "
1479                         "stream IDs 1 to %u allocated, "
1480                         "but stream ID %u is requested.\n",
1481                         slot_id, ep_index,
1482                         ep->stream_info->num_streams - 1,
1483                         stream_id);
1484         return NULL;
1485 }
1486
1487 /*
1488  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1489  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1490  * should pick up where it left off in the TD, unless a Set Transfer Ring
1491  * Dequeue Pointer is issued.
1492  *
1493  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1494  * the ring.  Since the ring is a contiguous structure, they can't be physically
1495  * removed.  Instead, there are two options:
1496  *
1497  *  1) If the HC is in the middle of processing the URB to be canceled, we
1498  *     simply move the ring's dequeue pointer past those TRBs using the Set
1499  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1500  *     when drivers timeout on the last submitted URB and attempt to cancel.
1501  *
1502  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1503  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1504  *     HC will need to invalidate the any TRBs it has cached after the stop
1505  *     endpoint command, as noted in the xHCI 0.95 errata.
1506  *
1507  *  3) The TD may have completed by the time the Stop Endpoint Command
1508  *     completes, so software needs to handle that case too.
1509  *
1510  * This function should protect against the TD enqueueing code ringing the
1511  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1512  * It also needs to account for multiple cancellations on happening at the same
1513  * time for the same endpoint.
1514  *
1515  * Note that this function can be called in any context, or so says
1516  * usb_hcd_unlink_urb()
1517  */
1518 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1519 {
1520         unsigned long flags;
1521         int ret, i;
1522         u32 temp;
1523         struct xhci_hcd *xhci;
1524         struct urb_priv *urb_priv;
1525         struct xhci_td *td;
1526         unsigned int ep_index;
1527         struct xhci_ring *ep_ring;
1528         struct xhci_virt_ep *ep;
1529         struct xhci_command *command;
1530
1531         xhci = hcd_to_xhci(hcd);
1532         spin_lock_irqsave(&xhci->lock, flags);
1533         /* Make sure the URB hasn't completed or been unlinked already */
1534         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1535         if (ret || !urb->hcpriv)
1536                 goto done;
1537         temp = readl(&xhci->op_regs->status);
1538         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1539                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1540                                 "HW died, freeing TD.");
1541                 urb_priv = urb->hcpriv;
1542                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1543                         td = urb_priv->td[i];
1544                         if (!list_empty(&td->td_list))
1545                                 list_del_init(&td->td_list);
1546                         if (!list_empty(&td->cancelled_td_list))
1547                                 list_del_init(&td->cancelled_td_list);
1548                 }
1549
1550                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1551                 spin_unlock_irqrestore(&xhci->lock, flags);
1552                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1553                 xhci_urb_free_priv(urb_priv);
1554                 return ret;
1555         }
1556         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1557                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1558                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1559                                 "Ep 0x%x: URB %p to be canceled on "
1560                                 "non-responsive xHCI host.",
1561                                 urb->ep->desc.bEndpointAddress, urb);
1562                 /* Let the stop endpoint command watchdog timer (which set this
1563                  * state) finish cleaning up the endpoint TD lists.  We must
1564                  * have caught it in the middle of dropping a lock and giving
1565                  * back an URB.
1566                  */
1567                 goto done;
1568         }
1569
1570         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1571         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1572         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1573         if (!ep_ring) {
1574                 ret = -EINVAL;
1575                 goto done;
1576         }
1577
1578         urb_priv = urb->hcpriv;
1579         i = urb_priv->td_cnt;
1580         if (i < urb_priv->length)
1581                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1582                                 "Cancel URB %p, dev %s, ep 0x%x, "
1583                                 "starting at offset 0x%llx",
1584                                 urb, urb->dev->devpath,
1585                                 urb->ep->desc.bEndpointAddress,
1586                                 (unsigned long long) xhci_trb_virt_to_dma(
1587                                         urb_priv->td[i]->start_seg,
1588                                         urb_priv->td[i]->first_trb));
1589
1590         for (; i < urb_priv->length; i++) {
1591                 td = urb_priv->td[i];
1592                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1593         }
1594
1595         /* Queue a stop endpoint command, but only if this is
1596          * the first cancellation to be handled.
1597          */
1598         if (!(ep->ep_state & EP_HALT_PENDING)) {
1599                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1600                 if (!command) {
1601                         ret = -ENOMEM;
1602                         goto done;
1603                 }
1604                 ep->ep_state |= EP_HALT_PENDING;
1605                 ep->stop_cmds_pending++;
1606                 ep->stop_cmd_timer.expires = jiffies +
1607                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1608                 add_timer(&ep->stop_cmd_timer);
1609                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1610                                          ep_index, 0);
1611                 xhci_ring_cmd_db(xhci);
1612         }
1613 done:
1614         spin_unlock_irqrestore(&xhci->lock, flags);
1615         return ret;
1616 }
1617
1618 /* Drop an endpoint from a new bandwidth configuration for this device.
1619  * Only one call to this function is allowed per endpoint before
1620  * check_bandwidth() or reset_bandwidth() must be called.
1621  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1622  * add the endpoint to the schedule with possibly new parameters denoted by a
1623  * different endpoint descriptor in usb_host_endpoint.
1624  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1625  * not allowed.
1626  *
1627  * The USB core will not allow URBs to be queued to an endpoint that is being
1628  * disabled, so there's no need for mutual exclusion to protect
1629  * the xhci->devs[slot_id] structure.
1630  */
1631 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1632                 struct usb_host_endpoint *ep)
1633 {
1634         struct xhci_hcd *xhci;
1635         struct xhci_container_ctx *in_ctx, *out_ctx;
1636         struct xhci_input_control_ctx *ctrl_ctx;
1637         unsigned int ep_index;
1638         struct xhci_ep_ctx *ep_ctx;
1639         u32 drop_flag;
1640         u32 new_add_flags, new_drop_flags;
1641         int ret;
1642
1643         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1644         if (ret <= 0)
1645                 return ret;
1646         xhci = hcd_to_xhci(hcd);
1647         if (xhci->xhc_state & XHCI_STATE_DYING)
1648                 return -ENODEV;
1649
1650         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1651         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1652         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1653                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1654                                 __func__, drop_flag);
1655                 return 0;
1656         }
1657
1658         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1659         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1660         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1661         if (!ctrl_ctx) {
1662                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1663                                 __func__);
1664                 return 0;
1665         }
1666
1667         ep_index = xhci_get_endpoint_index(&ep->desc);
1668         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1669         /* If the HC already knows the endpoint is disabled,
1670          * or the HCD has noted it is disabled, ignore this request
1671          */
1672         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1673              cpu_to_le32(EP_STATE_DISABLED)) ||
1674             le32_to_cpu(ctrl_ctx->drop_flags) &
1675             xhci_get_endpoint_flag(&ep->desc)) {
1676                 /* Do not warn when called after a usb_device_reset */
1677                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1678                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1679                                   __func__, ep);
1680                 return 0;
1681         }
1682
1683         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1684         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1685
1686         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1687         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1688
1689         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1690
1691         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1692                         (unsigned int) ep->desc.bEndpointAddress,
1693                         udev->slot_id,
1694                         (unsigned int) new_drop_flags,
1695                         (unsigned int) new_add_flags);
1696         return 0;
1697 }
1698
1699 /* Add an endpoint to a new possible bandwidth configuration for this device.
1700  * Only one call to this function is allowed per endpoint before
1701  * check_bandwidth() or reset_bandwidth() must be called.
1702  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1703  * add the endpoint to the schedule with possibly new parameters denoted by a
1704  * different endpoint descriptor in usb_host_endpoint.
1705  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1706  * not allowed.
1707  *
1708  * The USB core will not allow URBs to be queued to an endpoint until the
1709  * configuration or alt setting is installed in the device, so there's no need
1710  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1711  */
1712 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1713                 struct usb_host_endpoint *ep)
1714 {
1715         struct xhci_hcd *xhci;
1716         struct xhci_container_ctx *in_ctx;
1717         unsigned int ep_index;
1718         struct xhci_input_control_ctx *ctrl_ctx;
1719         u32 added_ctxs;
1720         u32 new_add_flags, new_drop_flags;
1721         struct xhci_virt_device *virt_dev;
1722         int ret = 0;
1723
1724         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1725         if (ret <= 0) {
1726                 /* So we won't queue a reset ep command for a root hub */
1727                 ep->hcpriv = NULL;
1728                 return ret;
1729         }
1730         xhci = hcd_to_xhci(hcd);
1731         if (xhci->xhc_state & XHCI_STATE_DYING)
1732                 return -ENODEV;
1733
1734         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1735         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1736                 /* FIXME when we have to issue an evaluate endpoint command to
1737                  * deal with ep0 max packet size changing once we get the
1738                  * descriptors
1739                  */
1740                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1741                                 __func__, added_ctxs);
1742                 return 0;
1743         }
1744
1745         virt_dev = xhci->devs[udev->slot_id];
1746         in_ctx = virt_dev->in_ctx;
1747         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1748         if (!ctrl_ctx) {
1749                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1750                                 __func__);
1751                 return 0;
1752         }
1753
1754         ep_index = xhci_get_endpoint_index(&ep->desc);
1755         /* If this endpoint is already in use, and the upper layers are trying
1756          * to add it again without dropping it, reject the addition.
1757          */
1758         if (virt_dev->eps[ep_index].ring &&
1759                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1760                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1761                                 "without dropping it.\n",
1762                                 (unsigned int) ep->desc.bEndpointAddress);
1763                 return -EINVAL;
1764         }
1765
1766         /* If the HCD has already noted the endpoint is enabled,
1767          * ignore this request.
1768          */
1769         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1770                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1771                                 __func__, ep);
1772                 return 0;
1773         }
1774
1775         /*
1776          * Configuration and alternate setting changes must be done in
1777          * process context, not interrupt context (or so documenation
1778          * for usb_set_interface() and usb_set_configuration() claim).
1779          */
1780         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1781                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1782                                 __func__, ep->desc.bEndpointAddress);
1783                 return -ENOMEM;
1784         }
1785
1786         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1787         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1788
1789         /* If xhci_endpoint_disable() was called for this endpoint, but the
1790          * xHC hasn't been notified yet through the check_bandwidth() call,
1791          * this re-adds a new state for the endpoint from the new endpoint
1792          * descriptors.  We must drop and re-add this endpoint, so we leave the
1793          * drop flags alone.
1794          */
1795         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1796
1797         /* Store the usb_device pointer for later use */
1798         ep->hcpriv = udev;
1799
1800         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1801                         (unsigned int) ep->desc.bEndpointAddress,
1802                         udev->slot_id,
1803                         (unsigned int) new_drop_flags,
1804                         (unsigned int) new_add_flags);
1805         return 0;
1806 }
1807
1808 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1809 {
1810         struct xhci_input_control_ctx *ctrl_ctx;
1811         struct xhci_ep_ctx *ep_ctx;
1812         struct xhci_slot_ctx *slot_ctx;
1813         int i;
1814
1815         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1816         if (!ctrl_ctx) {
1817                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1818                                 __func__);
1819                 return;
1820         }
1821
1822         /* When a device's add flag and drop flag are zero, any subsequent
1823          * configure endpoint command will leave that endpoint's state
1824          * untouched.  Make sure we don't leave any old state in the input
1825          * endpoint contexts.
1826          */
1827         ctrl_ctx->drop_flags = 0;
1828         ctrl_ctx->add_flags = 0;
1829         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1830         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1831         /* Endpoint 0 is always valid */
1832         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1833         for (i = 1; i < 31; ++i) {
1834                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1835                 ep_ctx->ep_info = 0;
1836                 ep_ctx->ep_info2 = 0;
1837                 ep_ctx->deq = 0;
1838                 ep_ctx->tx_info = 0;
1839         }
1840 }
1841
1842 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1843                 struct usb_device *udev, u32 *cmd_status)
1844 {
1845         int ret;
1846
1847         switch (*cmd_status) {
1848         case COMP_CMD_ABORT:
1849         case COMP_CMD_STOP:
1850                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1851                 ret = -ETIME;
1852                 break;
1853         case COMP_ENOMEM:
1854                 dev_warn(&udev->dev,
1855                          "Not enough host controller resources for new device state.\n");
1856                 ret = -ENOMEM;
1857                 /* FIXME: can we allocate more resources for the HC? */
1858                 break;
1859         case COMP_BW_ERR:
1860         case COMP_2ND_BW_ERR:
1861                 dev_warn(&udev->dev,
1862                          "Not enough bandwidth for new device state.\n");
1863                 ret = -ENOSPC;
1864                 /* FIXME: can we go back to the old state? */
1865                 break;
1866         case COMP_TRB_ERR:
1867                 /* the HCD set up something wrong */
1868                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1869                                 "add flag = 1, "
1870                                 "and endpoint is not disabled.\n");
1871                 ret = -EINVAL;
1872                 break;
1873         case COMP_DEV_ERR:
1874                 dev_warn(&udev->dev,
1875                          "ERROR: Incompatible device for endpoint configure command.\n");
1876                 ret = -ENODEV;
1877                 break;
1878         case COMP_SUCCESS:
1879                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1880                                 "Successful Endpoint Configure command");
1881                 ret = 0;
1882                 break;
1883         default:
1884                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1885                                 *cmd_status);
1886                 ret = -EINVAL;
1887                 break;
1888         }
1889         return ret;
1890 }
1891
1892 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1893                 struct usb_device *udev, u32 *cmd_status)
1894 {
1895         int ret;
1896         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1897
1898         switch (*cmd_status) {
1899         case COMP_CMD_ABORT:
1900         case COMP_CMD_STOP:
1901                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1902                 ret = -ETIME;
1903                 break;
1904         case COMP_EINVAL:
1905                 dev_warn(&udev->dev,
1906                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1907                 ret = -EINVAL;
1908                 break;
1909         case COMP_EBADSLT:
1910                 dev_warn(&udev->dev,
1911                         "WARN: slot not enabled for evaluate context command.\n");
1912                 ret = -EINVAL;
1913                 break;
1914         case COMP_CTX_STATE:
1915                 dev_warn(&udev->dev,
1916                         "WARN: invalid context state for evaluate context command.\n");
1917                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1918                 ret = -EINVAL;
1919                 break;
1920         case COMP_DEV_ERR:
1921                 dev_warn(&udev->dev,
1922                         "ERROR: Incompatible device for evaluate context command.\n");
1923                 ret = -ENODEV;
1924                 break;
1925         case COMP_MEL_ERR:
1926                 /* Max Exit Latency too large error */
1927                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1928                 ret = -EINVAL;
1929                 break;
1930         case COMP_SUCCESS:
1931                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1932                                 "Successful evaluate context command");
1933                 ret = 0;
1934                 break;
1935         default:
1936                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1937                         *cmd_status);
1938                 ret = -EINVAL;
1939                 break;
1940         }
1941         return ret;
1942 }
1943
1944 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1945                 struct xhci_input_control_ctx *ctrl_ctx)
1946 {
1947         u32 valid_add_flags;
1948         u32 valid_drop_flags;
1949
1950         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1951          * (bit 1).  The default control endpoint is added during the Address
1952          * Device command and is never removed until the slot is disabled.
1953          */
1954         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1955         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1956
1957         /* Use hweight32 to count the number of ones in the add flags, or
1958          * number of endpoints added.  Don't count endpoints that are changed
1959          * (both added and dropped).
1960          */
1961         return hweight32(valid_add_flags) -
1962                 hweight32(valid_add_flags & valid_drop_flags);
1963 }
1964
1965 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1966                 struct xhci_input_control_ctx *ctrl_ctx)
1967 {
1968         u32 valid_add_flags;
1969         u32 valid_drop_flags;
1970
1971         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1972         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1973
1974         return hweight32(valid_drop_flags) -
1975                 hweight32(valid_add_flags & valid_drop_flags);
1976 }
1977
1978 /*
1979  * We need to reserve the new number of endpoints before the configure endpoint
1980  * command completes.  We can't subtract the dropped endpoints from the number
1981  * of active endpoints until the command completes because we can oversubscribe
1982  * the host in this case:
1983  *
1984  *  - the first configure endpoint command drops more endpoints than it adds
1985  *  - a second configure endpoint command that adds more endpoints is queued
1986  *  - the first configure endpoint command fails, so the config is unchanged
1987  *  - the second command may succeed, even though there isn't enough resources
1988  *
1989  * Must be called with xhci->lock held.
1990  */
1991 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1992                 struct xhci_input_control_ctx *ctrl_ctx)
1993 {
1994         u32 added_eps;
1995
1996         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1997         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1998                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1999                                 "Not enough ep ctxs: "
2000                                 "%u active, need to add %u, limit is %u.",
2001                                 xhci->num_active_eps, added_eps,
2002                                 xhci->limit_active_eps);
2003                 return -ENOMEM;
2004         }
2005         xhci->num_active_eps += added_eps;
2006         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2007                         "Adding %u ep ctxs, %u now active.", added_eps,
2008                         xhci->num_active_eps);
2009         return 0;
2010 }
2011
2012 /*
2013  * The configure endpoint was failed by the xHC for some other reason, so we
2014  * need to revert the resources that failed configuration would have used.
2015  *
2016  * Must be called with xhci->lock held.
2017  */
2018 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2019                 struct xhci_input_control_ctx *ctrl_ctx)
2020 {
2021         u32 num_failed_eps;
2022
2023         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2024         xhci->num_active_eps -= num_failed_eps;
2025         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2026                         "Removing %u failed ep ctxs, %u now active.",
2027                         num_failed_eps,
2028                         xhci->num_active_eps);
2029 }
2030
2031 /*
2032  * Now that the command has completed, clean up the active endpoint count by
2033  * subtracting out the endpoints that were dropped (but not changed).
2034  *
2035  * Must be called with xhci->lock held.
2036  */
2037 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2038                 struct xhci_input_control_ctx *ctrl_ctx)
2039 {
2040         u32 num_dropped_eps;
2041
2042         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2043         xhci->num_active_eps -= num_dropped_eps;
2044         if (num_dropped_eps)
2045                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2046                                 "Removing %u dropped ep ctxs, %u now active.",
2047                                 num_dropped_eps,
2048                                 xhci->num_active_eps);
2049 }
2050
2051 static unsigned int xhci_get_block_size(struct usb_device *udev)
2052 {
2053         switch (udev->speed) {
2054         case USB_SPEED_LOW:
2055         case USB_SPEED_FULL:
2056                 return FS_BLOCK;
2057         case USB_SPEED_HIGH:
2058                 return HS_BLOCK;
2059         case USB_SPEED_SUPER:
2060                 return SS_BLOCK;
2061         case USB_SPEED_UNKNOWN:
2062         case USB_SPEED_WIRELESS:
2063         default:
2064                 /* Should never happen */
2065                 return 1;
2066         }
2067 }
2068
2069 static unsigned int
2070 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2071 {
2072         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2073                 return LS_OVERHEAD;
2074         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2075                 return FS_OVERHEAD;
2076         return HS_OVERHEAD;
2077 }
2078
2079 /* If we are changing a LS/FS device under a HS hub,
2080  * make sure (if we are activating a new TT) that the HS bus has enough
2081  * bandwidth for this new TT.
2082  */
2083 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2084                 struct xhci_virt_device *virt_dev,
2085                 int old_active_eps)
2086 {
2087         struct xhci_interval_bw_table *bw_table;
2088         struct xhci_tt_bw_info *tt_info;
2089
2090         /* Find the bandwidth table for the root port this TT is attached to. */
2091         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2092         tt_info = virt_dev->tt_info;
2093         /* If this TT already had active endpoints, the bandwidth for this TT
2094          * has already been added.  Removing all periodic endpoints (and thus
2095          * making the TT enactive) will only decrease the bandwidth used.
2096          */
2097         if (old_active_eps)
2098                 return 0;
2099         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2100                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2101                         return -ENOMEM;
2102                 return 0;
2103         }
2104         /* Not sure why we would have no new active endpoints...
2105          *
2106          * Maybe because of an Evaluate Context change for a hub update or a
2107          * control endpoint 0 max packet size change?
2108          * FIXME: skip the bandwidth calculation in that case.
2109          */
2110         return 0;
2111 }
2112
2113 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2114                 struct xhci_virt_device *virt_dev)
2115 {
2116         unsigned int bw_reserved;
2117
2118         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2119         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2120                 return -ENOMEM;
2121
2122         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2123         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2124                 return -ENOMEM;
2125
2126         return 0;
2127 }
2128
2129 /*
2130  * This algorithm is a very conservative estimate of the worst-case scheduling
2131  * scenario for any one interval.  The hardware dynamically schedules the
2132  * packets, so we can't tell which microframe could be the limiting factor in
2133  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2134  *
2135  * Obviously, we can't solve an NP complete problem to find the minimum worst
2136  * case scenario.  Instead, we come up with an estimate that is no less than
2137  * the worst case bandwidth used for any one microframe, but may be an
2138  * over-estimate.
2139  *
2140  * We walk the requirements for each endpoint by interval, starting with the
2141  * smallest interval, and place packets in the schedule where there is only one
2142  * possible way to schedule packets for that interval.  In order to simplify
2143  * this algorithm, we record the largest max packet size for each interval, and
2144  * assume all packets will be that size.
2145  *
2146  * For interval 0, we obviously must schedule all packets for each interval.
2147  * The bandwidth for interval 0 is just the amount of data to be transmitted
2148  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2149  * the number of packets).
2150  *
2151  * For interval 1, we have two possible microframes to schedule those packets
2152  * in.  For this algorithm, if we can schedule the same number of packets for
2153  * each possible scheduling opportunity (each microframe), we will do so.  The
2154  * remaining number of packets will be saved to be transmitted in the gaps in
2155  * the next interval's scheduling sequence.
2156  *
2157  * As we move those remaining packets to be scheduled with interval 2 packets,
2158  * we have to double the number of remaining packets to transmit.  This is
2159  * because the intervals are actually powers of 2, and we would be transmitting
2160  * the previous interval's packets twice in this interval.  We also have to be
2161  * sure that when we look at the largest max packet size for this interval, we
2162  * also look at the largest max packet size for the remaining packets and take
2163  * the greater of the two.
2164  *
2165  * The algorithm continues to evenly distribute packets in each scheduling
2166  * opportunity, and push the remaining packets out, until we get to the last
2167  * interval.  Then those packets and their associated overhead are just added
2168  * to the bandwidth used.
2169  */
2170 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2171                 struct xhci_virt_device *virt_dev,
2172                 int old_active_eps)
2173 {
2174         unsigned int bw_reserved;
2175         unsigned int max_bandwidth;
2176         unsigned int bw_used;
2177         unsigned int block_size;
2178         struct xhci_interval_bw_table *bw_table;
2179         unsigned int packet_size = 0;
2180         unsigned int overhead = 0;
2181         unsigned int packets_transmitted = 0;
2182         unsigned int packets_remaining = 0;
2183         unsigned int i;
2184
2185         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2186                 return xhci_check_ss_bw(xhci, virt_dev);
2187
2188         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2189                 max_bandwidth = HS_BW_LIMIT;
2190                 /* Convert percent of bus BW reserved to blocks reserved */
2191                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2192         } else {
2193                 max_bandwidth = FS_BW_LIMIT;
2194                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2195         }
2196
2197         bw_table = virt_dev->bw_table;
2198         /* We need to translate the max packet size and max ESIT payloads into
2199          * the units the hardware uses.
2200          */
2201         block_size = xhci_get_block_size(virt_dev->udev);
2202
2203         /* If we are manipulating a LS/FS device under a HS hub, double check
2204          * that the HS bus has enough bandwidth if we are activing a new TT.
2205          */
2206         if (virt_dev->tt_info) {
2207                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2208                                 "Recalculating BW for rootport %u",
2209                                 virt_dev->real_port);
2210                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2211                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2212                                         "newly activated TT.\n");
2213                         return -ENOMEM;
2214                 }
2215                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2216                                 "Recalculating BW for TT slot %u port %u",
2217                                 virt_dev->tt_info->slot_id,
2218                                 virt_dev->tt_info->ttport);
2219         } else {
2220                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2221                                 "Recalculating BW for rootport %u",
2222                                 virt_dev->real_port);
2223         }
2224
2225         /* Add in how much bandwidth will be used for interval zero, or the
2226          * rounded max ESIT payload + number of packets * largest overhead.
2227          */
2228         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2229                 bw_table->interval_bw[0].num_packets *
2230                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2231
2232         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2233                 unsigned int bw_added;
2234                 unsigned int largest_mps;
2235                 unsigned int interval_overhead;
2236
2237                 /*
2238                  * How many packets could we transmit in this interval?
2239                  * If packets didn't fit in the previous interval, we will need
2240                  * to transmit that many packets twice within this interval.
2241                  */
2242                 packets_remaining = 2 * packets_remaining +
2243                         bw_table->interval_bw[i].num_packets;
2244
2245                 /* Find the largest max packet size of this or the previous
2246                  * interval.
2247                  */
2248                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2249                         largest_mps = 0;
2250                 else {
2251                         struct xhci_virt_ep *virt_ep;
2252                         struct list_head *ep_entry;
2253
2254                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2255                         virt_ep = list_entry(ep_entry,
2256                                         struct xhci_virt_ep, bw_endpoint_list);
2257                         /* Convert to blocks, rounding up */
2258                         largest_mps = DIV_ROUND_UP(
2259                                         virt_ep->bw_info.max_packet_size,
2260                                         block_size);
2261                 }
2262                 if (largest_mps > packet_size)
2263                         packet_size = largest_mps;
2264
2265                 /* Use the larger overhead of this or the previous interval. */
2266                 interval_overhead = xhci_get_largest_overhead(
2267                                 &bw_table->interval_bw[i]);
2268                 if (interval_overhead > overhead)
2269                         overhead = interval_overhead;
2270
2271                 /* How many packets can we evenly distribute across
2272                  * (1 << (i + 1)) possible scheduling opportunities?
2273                  */
2274                 packets_transmitted = packets_remaining >> (i + 1);
2275
2276                 /* Add in the bandwidth used for those scheduled packets */
2277                 bw_added = packets_transmitted * (overhead + packet_size);
2278
2279                 /* How many packets do we have remaining to transmit? */
2280                 packets_remaining = packets_remaining % (1 << (i + 1));
2281
2282                 /* What largest max packet size should those packets have? */
2283                 /* If we've transmitted all packets, don't carry over the
2284                  * largest packet size.
2285                  */
2286                 if (packets_remaining == 0) {
2287                         packet_size = 0;
2288                         overhead = 0;
2289                 } else if (packets_transmitted > 0) {
2290                         /* Otherwise if we do have remaining packets, and we've
2291                          * scheduled some packets in this interval, take the
2292                          * largest max packet size from endpoints with this
2293                          * interval.
2294                          */
2295                         packet_size = largest_mps;
2296                         overhead = interval_overhead;
2297                 }
2298                 /* Otherwise carry over packet_size and overhead from the last
2299                  * time we had a remainder.
2300                  */
2301                 bw_used += bw_added;
2302                 if (bw_used > max_bandwidth) {
2303                         xhci_warn(xhci, "Not enough bandwidth. "
2304                                         "Proposed: %u, Max: %u\n",
2305                                 bw_used, max_bandwidth);
2306                         return -ENOMEM;
2307                 }
2308         }
2309         /*
2310          * Ok, we know we have some packets left over after even-handedly
2311          * scheduling interval 15.  We don't know which microframes they will
2312          * fit into, so we over-schedule and say they will be scheduled every
2313          * microframe.
2314          */
2315         if (packets_remaining > 0)
2316                 bw_used += overhead + packet_size;
2317
2318         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2319                 unsigned int port_index = virt_dev->real_port - 1;
2320
2321                 /* OK, we're manipulating a HS device attached to a
2322                  * root port bandwidth domain.  Include the number of active TTs
2323                  * in the bandwidth used.
2324                  */
2325                 bw_used += TT_HS_OVERHEAD *
2326                         xhci->rh_bw[port_index].num_active_tts;
2327         }
2328
2329         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2330                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2331                 "Available: %u " "percent",
2332                 bw_used, max_bandwidth, bw_reserved,
2333                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2334                 max_bandwidth);
2335
2336         bw_used += bw_reserved;
2337         if (bw_used > max_bandwidth) {
2338                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2339                                 bw_used, max_bandwidth);
2340                 return -ENOMEM;
2341         }
2342
2343         bw_table->bw_used = bw_used;
2344         return 0;
2345 }
2346
2347 static bool xhci_is_async_ep(unsigned int ep_type)
2348 {
2349         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2350                                         ep_type != ISOC_IN_EP &&
2351                                         ep_type != INT_IN_EP);
2352 }
2353
2354 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2355 {
2356         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2357 }
2358
2359 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2360 {
2361         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2362
2363         if (ep_bw->ep_interval == 0)
2364                 return SS_OVERHEAD_BURST +
2365                         (ep_bw->mult * ep_bw->num_packets *
2366                                         (SS_OVERHEAD + mps));
2367         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2368                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2369                                 1 << ep_bw->ep_interval);
2370
2371 }
2372
2373 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2374                 struct xhci_bw_info *ep_bw,
2375                 struct xhci_interval_bw_table *bw_table,
2376                 struct usb_device *udev,
2377                 struct xhci_virt_ep *virt_ep,
2378                 struct xhci_tt_bw_info *tt_info)
2379 {
2380         struct xhci_interval_bw *interval_bw;
2381         int normalized_interval;
2382
2383         if (xhci_is_async_ep(ep_bw->type))
2384                 return;
2385
2386         if (udev->speed == USB_SPEED_SUPER) {
2387                 if (xhci_is_sync_in_ep(ep_bw->type))
2388                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2389                                 xhci_get_ss_bw_consumed(ep_bw);
2390                 else
2391                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2392                                 xhci_get_ss_bw_consumed(ep_bw);
2393                 return;
2394         }
2395
2396         /* SuperSpeed endpoints never get added to intervals in the table, so
2397          * this check is only valid for HS/FS/LS devices.
2398          */
2399         if (list_empty(&virt_ep->bw_endpoint_list))
2400                 return;
2401         /* For LS/FS devices, we need to translate the interval expressed in
2402          * microframes to frames.
2403          */
2404         if (udev->speed == USB_SPEED_HIGH)
2405                 normalized_interval = ep_bw->ep_interval;
2406         else
2407                 normalized_interval = ep_bw->ep_interval - 3;
2408
2409         if (normalized_interval == 0)
2410                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2411         interval_bw = &bw_table->interval_bw[normalized_interval];
2412         interval_bw->num_packets -= ep_bw->num_packets;
2413         switch (udev->speed) {
2414         case USB_SPEED_LOW:
2415                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2416                 break;
2417         case USB_SPEED_FULL:
2418                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2419                 break;
2420         case USB_SPEED_HIGH:
2421                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2422                 break;
2423         case USB_SPEED_SUPER:
2424         case USB_SPEED_UNKNOWN:
2425         case USB_SPEED_WIRELESS:
2426                 /* Should never happen because only LS/FS/HS endpoints will get
2427                  * added to the endpoint list.
2428                  */
2429                 return;
2430         }
2431         if (tt_info)
2432                 tt_info->active_eps -= 1;
2433         list_del_init(&virt_ep->bw_endpoint_list);
2434 }
2435
2436 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2437                 struct xhci_bw_info *ep_bw,
2438                 struct xhci_interval_bw_table *bw_table,
2439                 struct usb_device *udev,
2440                 struct xhci_virt_ep *virt_ep,
2441                 struct xhci_tt_bw_info *tt_info)
2442 {
2443         struct xhci_interval_bw *interval_bw;
2444         struct xhci_virt_ep *smaller_ep;
2445         int normalized_interval;
2446
2447         if (xhci_is_async_ep(ep_bw->type))
2448                 return;
2449
2450         if (udev->speed == USB_SPEED_SUPER) {
2451                 if (xhci_is_sync_in_ep(ep_bw->type))
2452                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2453                                 xhci_get_ss_bw_consumed(ep_bw);
2454                 else
2455                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2456                                 xhci_get_ss_bw_consumed(ep_bw);
2457                 return;
2458         }
2459
2460         /* For LS/FS devices, we need to translate the interval expressed in
2461          * microframes to frames.
2462          */
2463         if (udev->speed == USB_SPEED_HIGH)
2464                 normalized_interval = ep_bw->ep_interval;
2465         else
2466                 normalized_interval = ep_bw->ep_interval - 3;
2467
2468         if (normalized_interval == 0)
2469                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2470         interval_bw = &bw_table->interval_bw[normalized_interval];
2471         interval_bw->num_packets += ep_bw->num_packets;
2472         switch (udev->speed) {
2473         case USB_SPEED_LOW:
2474                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2475                 break;
2476         case USB_SPEED_FULL:
2477                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2478                 break;
2479         case USB_SPEED_HIGH:
2480                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2481                 break;
2482         case USB_SPEED_SUPER:
2483         case USB_SPEED_UNKNOWN:
2484         case USB_SPEED_WIRELESS:
2485                 /* Should never happen because only LS/FS/HS endpoints will get
2486                  * added to the endpoint list.
2487                  */
2488                 return;
2489         }
2490
2491         if (tt_info)
2492                 tt_info->active_eps += 1;
2493         /* Insert the endpoint into the list, largest max packet size first. */
2494         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2495                         bw_endpoint_list) {
2496                 if (ep_bw->max_packet_size >=
2497                                 smaller_ep->bw_info.max_packet_size) {
2498                         /* Add the new ep before the smaller endpoint */
2499                         list_add_tail(&virt_ep->bw_endpoint_list,
2500                                         &smaller_ep->bw_endpoint_list);
2501                         return;
2502                 }
2503         }
2504         /* Add the new endpoint at the end of the list. */
2505         list_add_tail(&virt_ep->bw_endpoint_list,
2506                         &interval_bw->endpoints);
2507 }
2508
2509 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2510                 struct xhci_virt_device *virt_dev,
2511                 int old_active_eps)
2512 {
2513         struct xhci_root_port_bw_info *rh_bw_info;
2514         if (!virt_dev->tt_info)
2515                 return;
2516
2517         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2518         if (old_active_eps == 0 &&
2519                                 virt_dev->tt_info->active_eps != 0) {
2520                 rh_bw_info->num_active_tts += 1;
2521                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2522         } else if (old_active_eps != 0 &&
2523                                 virt_dev->tt_info->active_eps == 0) {
2524                 rh_bw_info->num_active_tts -= 1;
2525                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2526         }
2527 }
2528
2529 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2530                 struct xhci_virt_device *virt_dev,
2531                 struct xhci_container_ctx *in_ctx)
2532 {
2533         struct xhci_bw_info ep_bw_info[31];
2534         int i;
2535         struct xhci_input_control_ctx *ctrl_ctx;
2536         int old_active_eps = 0;
2537
2538         if (virt_dev->tt_info)
2539                 old_active_eps = virt_dev->tt_info->active_eps;
2540
2541         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2542         if (!ctrl_ctx) {
2543                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2544                                 __func__);
2545                 return -ENOMEM;
2546         }
2547
2548         for (i = 0; i < 31; i++) {
2549                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2550                         continue;
2551
2552                 /* Make a copy of the BW info in case we need to revert this */
2553                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2554                                 sizeof(ep_bw_info[i]));
2555                 /* Drop the endpoint from the interval table if the endpoint is
2556                  * being dropped or changed.
2557                  */
2558                 if (EP_IS_DROPPED(ctrl_ctx, i))
2559                         xhci_drop_ep_from_interval_table(xhci,
2560                                         &virt_dev->eps[i].bw_info,
2561                                         virt_dev->bw_table,
2562                                         virt_dev->udev,
2563                                         &virt_dev->eps[i],
2564                                         virt_dev->tt_info);
2565         }
2566         /* Overwrite the information stored in the endpoints' bw_info */
2567         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2568         for (i = 0; i < 31; i++) {
2569                 /* Add any changed or added endpoints to the interval table */
2570                 if (EP_IS_ADDED(ctrl_ctx, i))
2571                         xhci_add_ep_to_interval_table(xhci,
2572                                         &virt_dev->eps[i].bw_info,
2573                                         virt_dev->bw_table,
2574                                         virt_dev->udev,
2575                                         &virt_dev->eps[i],
2576                                         virt_dev->tt_info);
2577         }
2578
2579         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2580                 /* Ok, this fits in the bandwidth we have.
2581                  * Update the number of active TTs.
2582                  */
2583                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2584                 return 0;
2585         }
2586
2587         /* We don't have enough bandwidth for this, revert the stored info. */
2588         for (i = 0; i < 31; i++) {
2589                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2590                         continue;
2591
2592                 /* Drop the new copies of any added or changed endpoints from
2593                  * the interval table.
2594                  */
2595                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2596                         xhci_drop_ep_from_interval_table(xhci,
2597                                         &virt_dev->eps[i].bw_info,
2598                                         virt_dev->bw_table,
2599                                         virt_dev->udev,
2600                                         &virt_dev->eps[i],
2601                                         virt_dev->tt_info);
2602                 }
2603                 /* Revert the endpoint back to its old information */
2604                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2605                                 sizeof(ep_bw_info[i]));
2606                 /* Add any changed or dropped endpoints back into the table */
2607                 if (EP_IS_DROPPED(ctrl_ctx, i))
2608                         xhci_add_ep_to_interval_table(xhci,
2609                                         &virt_dev->eps[i].bw_info,
2610                                         virt_dev->bw_table,
2611                                         virt_dev->udev,
2612                                         &virt_dev->eps[i],
2613                                         virt_dev->tt_info);
2614         }
2615         return -ENOMEM;
2616 }
2617
2618
2619 /* Issue a configure endpoint command or evaluate context command
2620  * and wait for it to finish.
2621  */
2622 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2623                 struct usb_device *udev,
2624                 struct xhci_command *command,
2625                 bool ctx_change, bool must_succeed)
2626 {
2627         int ret;
2628         unsigned long flags;
2629         struct xhci_input_control_ctx *ctrl_ctx;
2630         struct xhci_virt_device *virt_dev;
2631
2632         if (!command)
2633                 return -EINVAL;
2634
2635         spin_lock_irqsave(&xhci->lock, flags);
2636         virt_dev = xhci->devs[udev->slot_id];
2637
2638         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2639         if (!ctrl_ctx) {
2640                 spin_unlock_irqrestore(&xhci->lock, flags);
2641                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2642                                 __func__);
2643                 return -ENOMEM;
2644         }
2645
2646         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2647                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2648                 spin_unlock_irqrestore(&xhci->lock, flags);
2649                 xhci_warn(xhci, "Not enough host resources, "
2650                                 "active endpoint contexts = %u\n",
2651                                 xhci->num_active_eps);
2652                 return -ENOMEM;
2653         }
2654         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2655             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2656                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2657                         xhci_free_host_resources(xhci, ctrl_ctx);
2658                 spin_unlock_irqrestore(&xhci->lock, flags);
2659                 xhci_warn(xhci, "Not enough bandwidth\n");
2660                 return -ENOMEM;
2661         }
2662
2663         if (!ctx_change)
2664                 ret = xhci_queue_configure_endpoint(xhci, command,
2665                                 command->in_ctx->dma,
2666                                 udev->slot_id, must_succeed);
2667         else
2668                 ret = xhci_queue_evaluate_context(xhci, command,
2669                                 command->in_ctx->dma,
2670                                 udev->slot_id, must_succeed);
2671         if (ret < 0) {
2672                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2673                         xhci_free_host_resources(xhci, ctrl_ctx);
2674                 spin_unlock_irqrestore(&xhci->lock, flags);
2675                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2676                                 "FIXME allocate a new ring segment");
2677                 return -ENOMEM;
2678         }
2679         xhci_ring_cmd_db(xhci);
2680         spin_unlock_irqrestore(&xhci->lock, flags);
2681
2682         /* Wait for the configure endpoint command to complete */
2683         wait_for_completion(command->completion);
2684
2685         if (!ctx_change)
2686                 ret = xhci_configure_endpoint_result(xhci, udev,
2687                                                      &command->status);
2688         else
2689                 ret = xhci_evaluate_context_result(xhci, udev,
2690                                                    &command->status);
2691
2692         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2693                 spin_lock_irqsave(&xhci->lock, flags);
2694                 /* If the command failed, remove the reserved resources.
2695                  * Otherwise, clean up the estimate to include dropped eps.
2696                  */
2697                 if (ret)
2698                         xhci_free_host_resources(xhci, ctrl_ctx);
2699                 else
2700                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2701                 spin_unlock_irqrestore(&xhci->lock, flags);
2702         }
2703         return ret;
2704 }
2705
2706 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2707         struct xhci_virt_device *vdev, int i)
2708 {
2709         struct xhci_virt_ep *ep = &vdev->eps[i];
2710
2711         if (ep->ep_state & EP_HAS_STREAMS) {
2712                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2713                                 xhci_get_endpoint_address(i));
2714                 xhci_free_stream_info(xhci, ep->stream_info);
2715                 ep->stream_info = NULL;
2716                 ep->ep_state &= ~EP_HAS_STREAMS;
2717         }
2718 }
2719
2720 /* Called after one or more calls to xhci_add_endpoint() or
2721  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2722  * to call xhci_reset_bandwidth().
2723  *
2724  * Since we are in the middle of changing either configuration or
2725  * installing a new alt setting, the USB core won't allow URBs to be
2726  * enqueued for any endpoint on the old config or interface.  Nothing
2727  * else should be touching the xhci->devs[slot_id] structure, so we
2728  * don't need to take the xhci->lock for manipulating that.
2729  */
2730 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2731 {
2732         int i;
2733         int ret = 0;
2734         struct xhci_hcd *xhci;
2735         struct xhci_virt_device *virt_dev;
2736         struct xhci_input_control_ctx *ctrl_ctx;
2737         struct xhci_slot_ctx *slot_ctx;
2738         struct xhci_command *command;
2739
2740         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2741         if (ret <= 0)
2742                 return ret;
2743         xhci = hcd_to_xhci(hcd);
2744         if (xhci->xhc_state & XHCI_STATE_DYING)
2745                 return -ENODEV;
2746
2747         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2748         virt_dev = xhci->devs[udev->slot_id];
2749
2750         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2751         if (!command)
2752                 return -ENOMEM;
2753
2754         command->in_ctx = virt_dev->in_ctx;
2755
2756         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2757         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2758         if (!ctrl_ctx) {
2759                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2760                                 __func__);
2761                 ret = -ENOMEM;
2762                 goto command_cleanup;
2763         }
2764         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2765         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2766         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2767
2768         /* Don't issue the command if there's no endpoints to update. */
2769         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2770             ctrl_ctx->drop_flags == 0) {
2771                 ret = 0;
2772                 goto command_cleanup;
2773         }
2774         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2775         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2776         for (i = 31; i >= 1; i--) {
2777                 __le32 le32 = cpu_to_le32(BIT(i));
2778
2779                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2780                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2781                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2782                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2783                         break;
2784                 }
2785         }
2786         xhci_dbg(xhci, "New Input Control Context:\n");
2787         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2788                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2789
2790         ret = xhci_configure_endpoint(xhci, udev, command,
2791                         false, false);
2792         if (ret)
2793                 /* Callee should call reset_bandwidth() */
2794                 goto command_cleanup;
2795
2796         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2797         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2798                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2799
2800         /* Free any rings that were dropped, but not changed. */
2801         for (i = 1; i < 31; ++i) {
2802                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2803                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2804                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2805                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2806                 }
2807         }
2808         xhci_zero_in_ctx(xhci, virt_dev);
2809         /*
2810          * Install any rings for completely new endpoints or changed endpoints,
2811          * and free or cache any old rings from changed endpoints.
2812          */
2813         for (i = 1; i < 31; ++i) {
2814                 if (!virt_dev->eps[i].new_ring)
2815                         continue;
2816                 /* Only cache or free the old ring if it exists.
2817                  * It may not if this is the first add of an endpoint.
2818                  */
2819                 if (virt_dev->eps[i].ring) {
2820                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2821                 }
2822                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2823                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2824                 virt_dev->eps[i].new_ring = NULL;
2825         }
2826 command_cleanup:
2827         kfree(command->completion);
2828         kfree(command);
2829
2830         return ret;
2831 }
2832
2833 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2834 {
2835         struct xhci_hcd *xhci;
2836         struct xhci_virt_device *virt_dev;
2837         int i, ret;
2838
2839         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2840         if (ret <= 0)
2841                 return;
2842         xhci = hcd_to_xhci(hcd);
2843
2844         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2845         virt_dev = xhci->devs[udev->slot_id];
2846         /* Free any rings allocated for added endpoints */
2847         for (i = 0; i < 31; ++i) {
2848                 if (virt_dev->eps[i].new_ring) {
2849                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2850                         virt_dev->eps[i].new_ring = NULL;
2851                 }
2852         }
2853         xhci_zero_in_ctx(xhci, virt_dev);
2854 }
2855
2856 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2857                 struct xhci_container_ctx *in_ctx,
2858                 struct xhci_container_ctx *out_ctx,
2859                 struct xhci_input_control_ctx *ctrl_ctx,
2860                 u32 add_flags, u32 drop_flags)
2861 {
2862         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2863         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2864         xhci_slot_copy(xhci, in_ctx, out_ctx);
2865         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2866
2867         xhci_dbg(xhci, "Input Context:\n");
2868         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2869 }
2870
2871 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2872                 unsigned int slot_id, unsigned int ep_index,
2873                 struct xhci_dequeue_state *deq_state)
2874 {
2875         struct xhci_input_control_ctx *ctrl_ctx;
2876         struct xhci_container_ctx *in_ctx;
2877         struct xhci_ep_ctx *ep_ctx;
2878         u32 added_ctxs;
2879         dma_addr_t addr;
2880
2881         in_ctx = xhci->devs[slot_id]->in_ctx;
2882         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2883         if (!ctrl_ctx) {
2884                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2885                                 __func__);
2886                 return;
2887         }
2888
2889         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2890                         xhci->devs[slot_id]->out_ctx, ep_index);
2891         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2892         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2893                         deq_state->new_deq_ptr);
2894         if (addr == 0) {
2895                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2896                                 "reset ep command\n");
2897                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2898                                 deq_state->new_deq_seg,
2899                                 deq_state->new_deq_ptr);
2900                 return;
2901         }
2902         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2903
2904         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2905         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2906                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2907                         added_ctxs, added_ctxs);
2908 }
2909
2910 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2911                         unsigned int ep_index, struct xhci_td *td)
2912 {
2913         struct xhci_dequeue_state deq_state;
2914         struct xhci_virt_ep *ep;
2915         struct usb_device *udev = td->urb->dev;
2916
2917         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2918                         "Cleaning up stalled endpoint ring");
2919         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2920         /* We need to move the HW's dequeue pointer past this TD,
2921          * or it will attempt to resend it on the next doorbell ring.
2922          */
2923         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2924                         ep_index, ep->stopped_stream, td, &deq_state);
2925
2926         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2927                 return;
2928
2929         /* HW with the reset endpoint quirk will use the saved dequeue state to
2930          * issue a configure endpoint command later.
2931          */
2932         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2933                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2934                                 "Queueing new dequeue state");
2935                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2936                                 ep_index, ep->stopped_stream, &deq_state);
2937         } else {
2938                 /* Better hope no one uses the input context between now and the
2939                  * reset endpoint completion!
2940                  * XXX: No idea how this hardware will react when stream rings
2941                  * are enabled.
2942                  */
2943                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2944                                 "Setting up input context for "
2945                                 "configure endpoint command");
2946                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2947                                 ep_index, &deq_state);
2948         }
2949 }
2950
2951 /* Called when clearing halted device. The core should have sent the control
2952  * message to clear the device halt condition. The host side of the halt should
2953  * already be cleared with a reset endpoint command issued when the STALL tx
2954  * event was received.
2955  *
2956  * Context: in_interrupt
2957  */
2958
2959 void xhci_endpoint_reset(struct usb_hcd *hcd,
2960                 struct usb_host_endpoint *ep)
2961 {
2962         struct xhci_hcd *xhci;
2963
2964         xhci = hcd_to_xhci(hcd);
2965
2966         /*
2967          * We might need to implement the config ep cmd in xhci 4.8.1 note:
2968          * The Reset Endpoint Command may only be issued to endpoints in the
2969          * Halted state. If software wishes reset the Data Toggle or Sequence
2970          * Number of an endpoint that isn't in the Halted state, then software
2971          * may issue a Configure Endpoint Command with the Drop and Add bits set
2972          * for the target endpoint. that is in the Stopped state.
2973          */
2974
2975         /* For now just print debug to follow the situation */
2976         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2977                  ep->desc.bEndpointAddress);
2978 }
2979
2980 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2981                 struct usb_device *udev, struct usb_host_endpoint *ep,
2982                 unsigned int slot_id)
2983 {
2984         int ret;
2985         unsigned int ep_index;
2986         unsigned int ep_state;
2987
2988         if (!ep)
2989                 return -EINVAL;
2990         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2991         if (ret <= 0)
2992                 return -EINVAL;
2993         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2994                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2995                                 " descriptor for ep 0x%x does not support streams\n",
2996                                 ep->desc.bEndpointAddress);
2997                 return -EINVAL;
2998         }
2999
3000         ep_index = xhci_get_endpoint_index(&ep->desc);
3001         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3002         if (ep_state & EP_HAS_STREAMS ||
3003                         ep_state & EP_GETTING_STREAMS) {
3004                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3005                                 "already has streams set up.\n",
3006                                 ep->desc.bEndpointAddress);
3007                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3008                                 "dynamic stream context array reallocation.\n");
3009                 return -EINVAL;
3010         }
3011         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3012                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3013                                 "endpoint 0x%x; URBs are pending.\n",
3014                                 ep->desc.bEndpointAddress);
3015                 return -EINVAL;
3016         }
3017         return 0;
3018 }
3019
3020 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3021                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3022 {
3023         unsigned int max_streams;
3024
3025         /* The stream context array size must be a power of two */
3026         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3027         /*
3028          * Find out how many primary stream array entries the host controller
3029          * supports.  Later we may use secondary stream arrays (similar to 2nd
3030          * level page entries), but that's an optional feature for xHCI host
3031          * controllers. xHCs must support at least 4 stream IDs.
3032          */
3033         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3034         if (*num_stream_ctxs > max_streams) {
3035                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3036                                 max_streams);
3037                 *num_stream_ctxs = max_streams;
3038                 *num_streams = max_streams;
3039         }
3040 }
3041
3042 /* Returns an error code if one of the endpoint already has streams.
3043  * This does not change any data structures, it only checks and gathers
3044  * information.
3045  */
3046 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3047                 struct usb_device *udev,
3048                 struct usb_host_endpoint **eps, unsigned int num_eps,
3049                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3050 {
3051         unsigned int max_streams;
3052         unsigned int endpoint_flag;
3053         int i;
3054         int ret;
3055
3056         for (i = 0; i < num_eps; i++) {
3057                 ret = xhci_check_streams_endpoint(xhci, udev,
3058                                 eps[i], udev->slot_id);
3059                 if (ret < 0)
3060                         return ret;
3061
3062                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3063                 if (max_streams < (*num_streams - 1)) {
3064                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3065                                         eps[i]->desc.bEndpointAddress,
3066                                         max_streams);
3067                         *num_streams = max_streams+1;
3068                 }
3069
3070                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3071                 if (*changed_ep_bitmask & endpoint_flag)
3072                         return -EINVAL;
3073                 *changed_ep_bitmask |= endpoint_flag;
3074         }
3075         return 0;
3076 }
3077
3078 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3079                 struct usb_device *udev,
3080                 struct usb_host_endpoint **eps, unsigned int num_eps)
3081 {
3082         u32 changed_ep_bitmask = 0;
3083         unsigned int slot_id;
3084         unsigned int ep_index;
3085         unsigned int ep_state;
3086         int i;
3087
3088         slot_id = udev->slot_id;
3089         if (!xhci->devs[slot_id])
3090                 return 0;
3091
3092         for (i = 0; i < num_eps; i++) {
3093                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3094                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3095                 /* Are streams already being freed for the endpoint? */
3096                 if (ep_state & EP_GETTING_NO_STREAMS) {
3097                         xhci_warn(xhci, "WARN Can't disable streams for "
3098                                         "endpoint 0x%x, "
3099                                         "streams are being disabled already\n",
3100                                         eps[i]->desc.bEndpointAddress);
3101                         return 0;
3102                 }
3103                 /* Are there actually any streams to free? */
3104                 if (!(ep_state & EP_HAS_STREAMS) &&
3105                                 !(ep_state & EP_GETTING_STREAMS)) {
3106                         xhci_warn(xhci, "WARN Can't disable streams for "
3107                                         "endpoint 0x%x, "
3108                                         "streams are already disabled!\n",
3109                                         eps[i]->desc.bEndpointAddress);
3110                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3111                                         "with non-streams endpoint\n");
3112                         return 0;
3113                 }
3114                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3115         }
3116         return changed_ep_bitmask;
3117 }
3118
3119 /*
3120  * The USB device drivers use this function (through the HCD interface in USB
3121  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3122  * coordinate mass storage command queueing across multiple endpoints (basically
3123  * a stream ID == a task ID).
3124  *
3125  * Setting up streams involves allocating the same size stream context array
3126  * for each endpoint and issuing a configure endpoint command for all endpoints.
3127  *
3128  * Don't allow the call to succeed if one endpoint only supports one stream
3129  * (which means it doesn't support streams at all).
3130  *
3131  * Drivers may get less stream IDs than they asked for, if the host controller
3132  * hardware or endpoints claim they can't support the number of requested
3133  * stream IDs.
3134  */
3135 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3136                 struct usb_host_endpoint **eps, unsigned int num_eps,
3137                 unsigned int num_streams, gfp_t mem_flags)
3138 {
3139         int i, ret;
3140         struct xhci_hcd *xhci;
3141         struct xhci_virt_device *vdev;
3142         struct xhci_command *config_cmd;
3143         struct xhci_input_control_ctx *ctrl_ctx;
3144         unsigned int ep_index;
3145         unsigned int num_stream_ctxs;
3146         unsigned long flags;
3147         u32 changed_ep_bitmask = 0;
3148
3149         if (!eps)
3150                 return -EINVAL;
3151
3152         /* Add one to the number of streams requested to account for
3153          * stream 0 that is reserved for xHCI usage.
3154          */
3155         num_streams += 1;
3156         xhci = hcd_to_xhci(hcd);
3157         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3158                         num_streams);
3159
3160         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3161         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3162                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3163                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3164                 return -ENOSYS;
3165         }
3166
3167         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3168         if (!config_cmd) {
3169                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3170                 return -ENOMEM;
3171         }
3172         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3173         if (!ctrl_ctx) {
3174                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3175                                 __func__);
3176                 xhci_free_command(xhci, config_cmd);
3177                 return -ENOMEM;
3178         }
3179
3180         /* Check to make sure all endpoints are not already configured for
3181          * streams.  While we're at it, find the maximum number of streams that
3182          * all the endpoints will support and check for duplicate endpoints.
3183          */
3184         spin_lock_irqsave(&xhci->lock, flags);
3185         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3186                         num_eps, &num_streams, &changed_ep_bitmask);
3187         if (ret < 0) {
3188                 xhci_free_command(xhci, config_cmd);
3189                 spin_unlock_irqrestore(&xhci->lock, flags);
3190                 return ret;
3191         }
3192         if (num_streams <= 1) {
3193                 xhci_warn(xhci, "WARN: endpoints can't handle "
3194                                 "more than one stream.\n");
3195                 xhci_free_command(xhci, config_cmd);
3196                 spin_unlock_irqrestore(&xhci->lock, flags);
3197                 return -EINVAL;
3198         }
3199         vdev = xhci->devs[udev->slot_id];
3200         /* Mark each endpoint as being in transition, so
3201          * xhci_urb_enqueue() will reject all URBs.
3202          */
3203         for (i = 0; i < num_eps; i++) {
3204                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3205                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3206         }
3207         spin_unlock_irqrestore(&xhci->lock, flags);
3208
3209         /* Setup internal data structures and allocate HW data structures for
3210          * streams (but don't install the HW structures in the input context
3211          * until we're sure all memory allocation succeeded).
3212          */
3213         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3214         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3215                         num_stream_ctxs, num_streams);
3216
3217         for (i = 0; i < num_eps; i++) {
3218                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3219                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3220                                 num_stream_ctxs,
3221                                 num_streams, mem_flags);
3222                 if (!vdev->eps[ep_index].stream_info)
3223                         goto cleanup;
3224                 /* Set maxPstreams in endpoint context and update deq ptr to
3225                  * point to stream context array. FIXME
3226                  */
3227         }
3228
3229         /* Set up the input context for a configure endpoint command. */
3230         for (i = 0; i < num_eps; i++) {
3231                 struct xhci_ep_ctx *ep_ctx;
3232
3233                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3234                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3235
3236                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3237                                 vdev->out_ctx, ep_index);
3238                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3239                                 vdev->eps[ep_index].stream_info);
3240         }
3241         /* Tell the HW to drop its old copy of the endpoint context info
3242          * and add the updated copy from the input context.
3243          */
3244         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3245                         vdev->out_ctx, ctrl_ctx,
3246                         changed_ep_bitmask, changed_ep_bitmask);
3247
3248         /* Issue and wait for the configure endpoint command */
3249         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3250                         false, false);
3251
3252         /* xHC rejected the configure endpoint command for some reason, so we
3253          * leave the old ring intact and free our internal streams data
3254          * structure.
3255          */
3256         if (ret < 0)
3257                 goto cleanup;
3258
3259         spin_lock_irqsave(&xhci->lock, flags);
3260         for (i = 0; i < num_eps; i++) {
3261                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3262                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3263                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3264                          udev->slot_id, ep_index);
3265                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3266         }
3267         xhci_free_command(xhci, config_cmd);
3268         spin_unlock_irqrestore(&xhci->lock, flags);
3269
3270         /* Subtract 1 for stream 0, which drivers can't use */
3271         return num_streams - 1;
3272
3273 cleanup:
3274         /* If it didn't work, free the streams! */
3275         for (i = 0; i < num_eps; i++) {
3276                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3277                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3278                 vdev->eps[ep_index].stream_info = NULL;
3279                 /* FIXME Unset maxPstreams in endpoint context and
3280                  * update deq ptr to point to normal string ring.
3281                  */
3282                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3283                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3284                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3285         }
3286         xhci_free_command(xhci, config_cmd);
3287         return -ENOMEM;
3288 }
3289
3290 /* Transition the endpoint from using streams to being a "normal" endpoint
3291  * without streams.
3292  *
3293  * Modify the endpoint context state, submit a configure endpoint command,
3294  * and free all endpoint rings for streams if that completes successfully.
3295  */
3296 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3297                 struct usb_host_endpoint **eps, unsigned int num_eps,
3298                 gfp_t mem_flags)
3299 {
3300         int i, ret;
3301         struct xhci_hcd *xhci;
3302         struct xhci_virt_device *vdev;
3303         struct xhci_command *command;
3304         struct xhci_input_control_ctx *ctrl_ctx;
3305         unsigned int ep_index;
3306         unsigned long flags;
3307         u32 changed_ep_bitmask;
3308
3309         xhci = hcd_to_xhci(hcd);
3310         vdev = xhci->devs[udev->slot_id];
3311
3312         /* Set up a configure endpoint command to remove the streams rings */
3313         spin_lock_irqsave(&xhci->lock, flags);
3314         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3315                         udev, eps, num_eps);
3316         if (changed_ep_bitmask == 0) {
3317                 spin_unlock_irqrestore(&xhci->lock, flags);
3318                 return -EINVAL;
3319         }
3320
3321         /* Use the xhci_command structure from the first endpoint.  We may have
3322          * allocated too many, but the driver may call xhci_free_streams() for
3323          * each endpoint it grouped into one call to xhci_alloc_streams().
3324          */
3325         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3326         command = vdev->eps[ep_index].stream_info->free_streams_command;
3327         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3328         if (!ctrl_ctx) {
3329                 spin_unlock_irqrestore(&xhci->lock, flags);
3330                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3331                                 __func__);
3332                 return -EINVAL;
3333         }
3334
3335         for (i = 0; i < num_eps; i++) {
3336                 struct xhci_ep_ctx *ep_ctx;
3337
3338                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3339                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3340                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3341                         EP_GETTING_NO_STREAMS;
3342
3343                 xhci_endpoint_copy(xhci, command->in_ctx,
3344                                 vdev->out_ctx, ep_index);
3345                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3346                                 &vdev->eps[ep_index]);
3347         }
3348         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3349                         vdev->out_ctx, ctrl_ctx,
3350                         changed_ep_bitmask, changed_ep_bitmask);
3351         spin_unlock_irqrestore(&xhci->lock, flags);
3352
3353         /* Issue and wait for the configure endpoint command,
3354          * which must succeed.
3355          */
3356         ret = xhci_configure_endpoint(xhci, udev, command,
3357                         false, true);
3358
3359         /* xHC rejected the configure endpoint command for some reason, so we
3360          * leave the streams rings intact.
3361          */
3362         if (ret < 0)
3363                 return ret;
3364
3365         spin_lock_irqsave(&xhci->lock, flags);
3366         for (i = 0; i < num_eps; i++) {
3367                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3368                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3369                 vdev->eps[ep_index].stream_info = NULL;
3370                 /* FIXME Unset maxPstreams in endpoint context and
3371                  * update deq ptr to point to normal string ring.
3372                  */
3373                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3374                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3375         }
3376         spin_unlock_irqrestore(&xhci->lock, flags);
3377
3378         return 0;
3379 }
3380
3381 /*
3382  * Deletes endpoint resources for endpoints that were active before a Reset
3383  * Device command, or a Disable Slot command.  The Reset Device command leaves
3384  * the control endpoint intact, whereas the Disable Slot command deletes it.
3385  *
3386  * Must be called with xhci->lock held.
3387  */
3388 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3389         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3390 {
3391         int i;
3392         unsigned int num_dropped_eps = 0;
3393         unsigned int drop_flags = 0;
3394
3395         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3396                 if (virt_dev->eps[i].ring) {
3397                         drop_flags |= 1 << i;
3398                         num_dropped_eps++;
3399                 }
3400         }
3401         xhci->num_active_eps -= num_dropped_eps;
3402         if (num_dropped_eps)
3403                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3404                                 "Dropped %u ep ctxs, flags = 0x%x, "
3405                                 "%u now active.",
3406                                 num_dropped_eps, drop_flags,
3407                                 xhci->num_active_eps);
3408 }
3409
3410 /*
3411  * This submits a Reset Device Command, which will set the device state to 0,
3412  * set the device address to 0, and disable all the endpoints except the default
3413  * control endpoint.  The USB core should come back and call
3414  * xhci_address_device(), and then re-set up the configuration.  If this is
3415  * called because of a usb_reset_and_verify_device(), then the old alternate
3416  * settings will be re-installed through the normal bandwidth allocation
3417  * functions.
3418  *
3419  * Wait for the Reset Device command to finish.  Remove all structures
3420  * associated with the endpoints that were disabled.  Clear the input device
3421  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3422  *
3423  * If the virt_dev to be reset does not exist or does not match the udev,
3424  * it means the device is lost, possibly due to the xHC restore error and
3425  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3426  * re-allocate the device.
3427  */
3428 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3429 {
3430         int ret, i;
3431         unsigned long flags;
3432         struct xhci_hcd *xhci;
3433         unsigned int slot_id;
3434         struct xhci_virt_device *virt_dev;
3435         struct xhci_command *reset_device_cmd;
3436         int last_freed_endpoint;
3437         struct xhci_slot_ctx *slot_ctx;
3438         int old_active_eps = 0;
3439
3440         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3441         if (ret <= 0)
3442                 return ret;
3443         xhci = hcd_to_xhci(hcd);
3444         slot_id = udev->slot_id;
3445         virt_dev = xhci->devs[slot_id];
3446         if (!virt_dev) {
3447                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3448                                 "not exist. Re-allocate the device\n", slot_id);
3449                 ret = xhci_alloc_dev(hcd, udev);
3450                 if (ret == 1)
3451                         return 0;
3452                 else
3453                         return -EINVAL;
3454         }
3455
3456         if (virt_dev->tt_info)
3457                 old_active_eps = virt_dev->tt_info->active_eps;
3458
3459         if (virt_dev->udev != udev) {
3460                 /* If the virt_dev and the udev does not match, this virt_dev
3461                  * may belong to another udev.
3462                  * Re-allocate the device.
3463                  */
3464                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3465                                 "not match the udev. Re-allocate the device\n",
3466                                 slot_id);
3467                 ret = xhci_alloc_dev(hcd, udev);
3468                 if (ret == 1)
3469                         return 0;
3470                 else
3471                         return -EINVAL;
3472         }
3473
3474         /* If device is not setup, there is no point in resetting it */
3475         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3476         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3477                                                 SLOT_STATE_DISABLED)
3478                 return 0;
3479
3480         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3481         /* Allocate the command structure that holds the struct completion.
3482          * Assume we're in process context, since the normal device reset
3483          * process has to wait for the device anyway.  Storage devices are
3484          * reset as part of error handling, so use GFP_NOIO instead of
3485          * GFP_KERNEL.
3486          */
3487         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3488         if (!reset_device_cmd) {
3489                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3490                 return -ENOMEM;
3491         }
3492
3493         /* Attempt to submit the Reset Device command to the command ring */
3494         spin_lock_irqsave(&xhci->lock, flags);
3495
3496         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3497         if (ret) {
3498                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3499                 spin_unlock_irqrestore(&xhci->lock, flags);
3500                 goto command_cleanup;
3501         }
3502         xhci_ring_cmd_db(xhci);
3503         spin_unlock_irqrestore(&xhci->lock, flags);
3504
3505         /* Wait for the Reset Device command to finish */
3506         wait_for_completion(reset_device_cmd->completion);
3507
3508         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3509          * unless we tried to reset a slot ID that wasn't enabled,
3510          * or the device wasn't in the addressed or configured state.
3511          */
3512         ret = reset_device_cmd->status;
3513         switch (ret) {
3514         case COMP_CMD_ABORT:
3515         case COMP_CMD_STOP:
3516                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3517                 ret = -ETIME;
3518                 goto command_cleanup;
3519         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3520         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3521                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3522                                 slot_id,
3523                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3524                 xhci_dbg(xhci, "Not freeing device rings.\n");
3525                 /* Don't treat this as an error.  May change my mind later. */
3526                 ret = 0;
3527                 goto command_cleanup;
3528         case COMP_SUCCESS:
3529                 xhci_dbg(xhci, "Successful reset device command.\n");
3530                 break;
3531         default:
3532                 if (xhci_is_vendor_info_code(xhci, ret))
3533                         break;
3534                 xhci_warn(xhci, "Unknown completion code %u for "
3535                                 "reset device command.\n", ret);
3536                 ret = -EINVAL;
3537                 goto command_cleanup;
3538         }
3539
3540         /* Free up host controller endpoint resources */
3541         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3542                 spin_lock_irqsave(&xhci->lock, flags);
3543                 /* Don't delete the default control endpoint resources */
3544                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3545                 spin_unlock_irqrestore(&xhci->lock, flags);
3546         }
3547
3548         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3549         last_freed_endpoint = 1;
3550         for (i = 1; i < 31; ++i) {
3551                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3552
3553                 if (ep->ep_state & EP_HAS_STREAMS) {
3554                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3555                                         xhci_get_endpoint_address(i));
3556                         xhci_free_stream_info(xhci, ep->stream_info);
3557                         ep->stream_info = NULL;
3558                         ep->ep_state &= ~EP_HAS_STREAMS;
3559                 }
3560
3561                 if (ep->ring) {
3562                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3563                         last_freed_endpoint = i;
3564                 }
3565                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3566                         xhci_drop_ep_from_interval_table(xhci,
3567                                         &virt_dev->eps[i].bw_info,
3568                                         virt_dev->bw_table,
3569                                         udev,
3570                                         &virt_dev->eps[i],
3571                                         virt_dev->tt_info);
3572                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3573         }
3574         /* If necessary, update the number of active TTs on this root port */
3575         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3576
3577         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3578         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3579         ret = 0;
3580
3581 command_cleanup:
3582         xhci_free_command(xhci, reset_device_cmd);
3583         return ret;
3584 }
3585
3586 /*
3587  * At this point, the struct usb_device is about to go away, the device has
3588  * disconnected, and all traffic has been stopped and the endpoints have been
3589  * disabled.  Free any HC data structures associated with that device.
3590  */
3591 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3592 {
3593         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3594         struct xhci_virt_device *virt_dev;
3595         unsigned long flags;
3596         u32 state;
3597         int i, ret;
3598         struct xhci_command *command;
3599
3600         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3601         if (!command)
3602                 return;
3603
3604 #ifndef CONFIG_USB_DEFAULT_PERSIST
3605         /*
3606          * We called pm_runtime_get_noresume when the device was attached.
3607          * Decrement the counter here to allow controller to runtime suspend
3608          * if no devices remain.
3609          */
3610         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3611                 pm_runtime_put_noidle(hcd->self.controller);
3612 #endif
3613
3614         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3615         /* If the host is halted due to driver unload, we still need to free the
3616          * device.
3617          */
3618         if (ret <= 0 && ret != -ENODEV) {
3619                 kfree(command);
3620                 return;
3621         }
3622
3623         virt_dev = xhci->devs[udev->slot_id];
3624
3625         /* Stop any wayward timer functions (which may grab the lock) */
3626         for (i = 0; i < 31; ++i) {
3627                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3628                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3629         }
3630
3631         spin_lock_irqsave(&xhci->lock, flags);
3632         /* Don't disable the slot if the host controller is dead. */
3633         state = readl(&xhci->op_regs->status);
3634         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3635                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3636                 xhci_free_virt_device(xhci, udev->slot_id);
3637                 spin_unlock_irqrestore(&xhci->lock, flags);
3638                 kfree(command);
3639                 return;
3640         }
3641
3642         if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3643                                     udev->slot_id)) {
3644                 spin_unlock_irqrestore(&xhci->lock, flags);
3645                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3646                 return;
3647         }
3648         xhci_ring_cmd_db(xhci);
3649         spin_unlock_irqrestore(&xhci->lock, flags);
3650
3651         /*
3652          * Event command completion handler will free any data structures
3653          * associated with the slot.  XXX Can free sleep?
3654          */
3655 }
3656
3657 /*
3658  * Checks if we have enough host controller resources for the default control
3659  * endpoint.
3660  *
3661  * Must be called with xhci->lock held.
3662  */
3663 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3664 {
3665         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3666                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3667                                 "Not enough ep ctxs: "
3668                                 "%u active, need to add 1, limit is %u.",
3669                                 xhci->num_active_eps, xhci->limit_active_eps);
3670                 return -ENOMEM;
3671         }
3672         xhci->num_active_eps += 1;
3673         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3674                         "Adding 1 ep ctx, %u now active.",
3675                         xhci->num_active_eps);
3676         return 0;
3677 }
3678
3679
3680 /*
3681  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3682  * timed out, or allocating memory failed.  Returns 1 on success.
3683  */
3684 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3685 {
3686         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3687         unsigned long flags;
3688         int ret, slot_id;
3689         struct xhci_command *command;
3690
3691         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3692         if (!command)
3693                 return 0;
3694
3695         /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3696         mutex_lock(&xhci->mutex);
3697         spin_lock_irqsave(&xhci->lock, flags);
3698         command->completion = &xhci->addr_dev;
3699         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3700         if (ret) {
3701                 spin_unlock_irqrestore(&xhci->lock, flags);
3702                 mutex_unlock(&xhci->mutex);
3703                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3704                 kfree(command);
3705                 return 0;
3706         }
3707         xhci_ring_cmd_db(xhci);
3708         spin_unlock_irqrestore(&xhci->lock, flags);
3709
3710         wait_for_completion(command->completion);
3711         slot_id = xhci->slot_id;
3712         mutex_unlock(&xhci->mutex);
3713
3714         if (!slot_id || command->status != COMP_SUCCESS) {
3715                 xhci_err(xhci, "Error while assigning device slot ID\n");
3716                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3717                                 HCS_MAX_SLOTS(
3718                                         readl(&xhci->cap_regs->hcs_params1)));
3719                 kfree(command);
3720                 return 0;
3721         }
3722
3723         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3724                 spin_lock_irqsave(&xhci->lock, flags);
3725                 ret = xhci_reserve_host_control_ep_resources(xhci);
3726                 if (ret) {
3727                         spin_unlock_irqrestore(&xhci->lock, flags);
3728                         xhci_warn(xhci, "Not enough host resources, "
3729                                         "active endpoint contexts = %u\n",
3730                                         xhci->num_active_eps);
3731                         goto disable_slot;
3732                 }
3733                 spin_unlock_irqrestore(&xhci->lock, flags);
3734         }
3735         /* Use GFP_NOIO, since this function can be called from
3736          * xhci_discover_or_reset_device(), which may be called as part of
3737          * mass storage driver error handling.
3738          */
3739         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3740                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3741                 goto disable_slot;
3742         }
3743         udev->slot_id = slot_id;
3744
3745 #ifndef CONFIG_USB_DEFAULT_PERSIST
3746         /*
3747          * If resetting upon resume, we can't put the controller into runtime
3748          * suspend if there is a device attached.
3749          */
3750         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3751                 pm_runtime_get_noresume(hcd->self.controller);
3752 #endif
3753
3754
3755         kfree(command);
3756         /* Is this a LS or FS device under a HS hub? */
3757         /* Hub or peripherial? */
3758         return 1;
3759
3760 disable_slot:
3761         /* Disable slot, if we can do it without mem alloc */
3762         spin_lock_irqsave(&xhci->lock, flags);
3763         command->completion = NULL;
3764         command->status = 0;
3765         if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3766                                      udev->slot_id))
3767                 xhci_ring_cmd_db(xhci);
3768         spin_unlock_irqrestore(&xhci->lock, flags);
3769         return 0;
3770 }
3771
3772 /*
3773  * Issue an Address Device command and optionally send a corresponding
3774  * SetAddress request to the device.
3775  */
3776 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3777                              enum xhci_setup_dev setup)
3778 {
3779         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3780         unsigned long flags;
3781         struct xhci_virt_device *virt_dev;
3782         int ret = 0;
3783         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3784         struct xhci_slot_ctx *slot_ctx;
3785         struct xhci_input_control_ctx *ctrl_ctx;
3786         u64 temp_64;
3787         struct xhci_command *command = NULL;
3788
3789         mutex_lock(&xhci->mutex);
3790
3791         if (!udev->slot_id) {
3792                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3793                                 "Bad Slot ID %d", udev->slot_id);
3794                 ret = -EINVAL;
3795                 goto out;
3796         }
3797
3798         virt_dev = xhci->devs[udev->slot_id];
3799
3800         if (WARN_ON(!virt_dev)) {
3801                 /*
3802                  * In plug/unplug torture test with an NEC controller,
3803                  * a zero-dereference was observed once due to virt_dev = 0.
3804                  * Print useful debug rather than crash if it is observed again!
3805                  */
3806                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3807                         udev->slot_id);
3808                 ret = -EINVAL;
3809                 goto out;
3810         }
3811
3812         if (setup == SETUP_CONTEXT_ONLY) {
3813                 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3814                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3815                     SLOT_STATE_DEFAULT) {
3816                         xhci_dbg(xhci, "Slot already in default state\n");
3817                         goto out;
3818                 }
3819         }
3820
3821         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3822         if (!command) {
3823                 ret = -ENOMEM;
3824                 goto out;
3825         }
3826
3827         command->in_ctx = virt_dev->in_ctx;
3828         command->completion = &xhci->addr_dev;
3829
3830         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3831         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3832         if (!ctrl_ctx) {
3833                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3834                                 __func__);
3835                 ret = -EINVAL;
3836                 goto out;
3837         }
3838         /*
3839          * If this is the first Set Address since device plug-in or
3840          * virt_device realloaction after a resume with an xHCI power loss,
3841          * then set up the slot context.
3842          */
3843         if (!slot_ctx->dev_info)
3844                 xhci_setup_addressable_virt_dev(xhci, udev);
3845         /* Otherwise, update the control endpoint ring enqueue pointer. */
3846         else
3847                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3848         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3849         ctrl_ctx->drop_flags = 0;
3850
3851         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3852         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3853         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3854                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3855
3856         spin_lock_irqsave(&xhci->lock, flags);
3857         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3858                                         udev->slot_id, setup);
3859         if (ret) {
3860                 spin_unlock_irqrestore(&xhci->lock, flags);
3861                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3862                                 "FIXME: allocate a command ring segment");
3863                 goto out;
3864         }
3865         xhci_ring_cmd_db(xhci);
3866         spin_unlock_irqrestore(&xhci->lock, flags);
3867
3868         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3869         wait_for_completion(command->completion);
3870
3871         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3872          * the SetAddress() "recovery interval" required by USB and aborting the
3873          * command on a timeout.
3874          */
3875         switch (command->status) {
3876         case COMP_CMD_ABORT:
3877         case COMP_CMD_STOP:
3878                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3879                 ret = -ETIME;
3880                 break;
3881         case COMP_CTX_STATE:
3882         case COMP_EBADSLT:
3883                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3884                          act, udev->slot_id);
3885                 ret = -EINVAL;
3886                 break;
3887         case COMP_TX_ERR:
3888                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3889                 ret = -EPROTO;
3890                 break;
3891         case COMP_DEV_ERR:
3892                 dev_warn(&udev->dev,
3893                          "ERROR: Incompatible device for setup %s command\n", act);
3894                 ret = -ENODEV;
3895                 break;
3896         case COMP_SUCCESS:
3897                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3898                                "Successful setup %s command", act);
3899                 break;
3900         default:
3901                 xhci_err(xhci,
3902                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3903                          act, command->status);
3904                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3905                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3906                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3907                 ret = -EINVAL;
3908                 break;
3909         }
3910         if (ret)
3911                 goto out;
3912         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3913         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3914                         "Op regs DCBAA ptr = %#016llx", temp_64);
3915         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3916                 "Slot ID %d dcbaa entry @%p = %#016llx",
3917                 udev->slot_id,
3918                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3919                 (unsigned long long)
3920                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3921         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3922                         "Output Context DMA address = %#08llx",
3923                         (unsigned long long)virt_dev->out_ctx->dma);
3924         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3925         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3926         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3927                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3928         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3929         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3930         /*
3931          * USB core uses address 1 for the roothubs, so we add one to the
3932          * address given back to us by the HC.
3933          */
3934         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3935         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3936                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3937         /* Zero the input context control for later use */
3938         ctrl_ctx->add_flags = 0;
3939         ctrl_ctx->drop_flags = 0;
3940
3941         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3942                        "Internal device address = %d",
3943                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3944 out:
3945         mutex_unlock(&xhci->mutex);
3946         kfree(command);
3947         return ret;
3948 }
3949
3950 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3951 {
3952         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3953 }
3954
3955 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3956 {
3957         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3958 }
3959
3960 /*
3961  * Transfer the port index into real index in the HW port status
3962  * registers. Caculate offset between the port's PORTSC register
3963  * and port status base. Divide the number of per port register
3964  * to get the real index. The raw port number bases 1.
3965  */
3966 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3967 {
3968         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3969         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3970         __le32 __iomem *addr;
3971         int raw_port;
3972
3973         if (hcd->speed != HCD_USB3)
3974                 addr = xhci->usb2_ports[port1 - 1];
3975         else
3976                 addr = xhci->usb3_ports[port1 - 1];
3977
3978         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3979         return raw_port;
3980 }
3981
3982 /*
3983  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3984  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3985  */
3986 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3987                         struct usb_device *udev, u16 max_exit_latency)
3988 {
3989         struct xhci_virt_device *virt_dev;
3990         struct xhci_command *command;
3991         struct xhci_input_control_ctx *ctrl_ctx;
3992         struct xhci_slot_ctx *slot_ctx;
3993         unsigned long flags;
3994         int ret;
3995
3996         spin_lock_irqsave(&xhci->lock, flags);
3997
3998         virt_dev = xhci->devs[udev->slot_id];
3999
4000         /*
4001          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4002          * xHC was re-initialized. Exit latency will be set later after
4003          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4004          */
4005
4006         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4007                 spin_unlock_irqrestore(&xhci->lock, flags);
4008                 return 0;
4009         }
4010
4011         /* Attempt to issue an Evaluate Context command to change the MEL. */
4012         command = xhci->lpm_command;
4013         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4014         if (!ctrl_ctx) {
4015                 spin_unlock_irqrestore(&xhci->lock, flags);
4016                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4017                                 __func__);
4018                 return -ENOMEM;
4019         }
4020
4021         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4022         spin_unlock_irqrestore(&xhci->lock, flags);
4023
4024         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4025         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4026         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4027         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4028         slot_ctx->dev_state = 0;
4029
4030         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4031                         "Set up evaluate context for LPM MEL change.");
4032         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4033         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4034
4035         /* Issue and wait for the evaluate context command. */
4036         ret = xhci_configure_endpoint(xhci, udev, command,
4037                         true, true);
4038         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4039         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4040
4041         if (!ret) {
4042                 spin_lock_irqsave(&xhci->lock, flags);
4043                 virt_dev->current_mel = max_exit_latency;
4044                 spin_unlock_irqrestore(&xhci->lock, flags);
4045         }
4046         return ret;
4047 }
4048
4049 #ifdef CONFIG_PM
4050
4051 /* BESL to HIRD Encoding array for USB2 LPM */
4052 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4053         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4054
4055 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4056 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4057                                         struct usb_device *udev)
4058 {
4059         int u2del, besl, besl_host;
4060         int besl_device = 0;
4061         u32 field;
4062
4063         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4064         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4065
4066         if (field & USB_BESL_SUPPORT) {
4067                 for (besl_host = 0; besl_host < 16; besl_host++) {
4068                         if (xhci_besl_encoding[besl_host] >= u2del)
4069                                 break;
4070                 }
4071                 /* Use baseline BESL value as default */
4072                 if (field & USB_BESL_BASELINE_VALID)
4073                         besl_device = USB_GET_BESL_BASELINE(field);
4074                 else if (field & USB_BESL_DEEP_VALID)
4075                         besl_device = USB_GET_BESL_DEEP(field);
4076         } else {
4077                 if (u2del <= 50)
4078                         besl_host = 0;
4079                 else
4080                         besl_host = (u2del - 51) / 75 + 1;
4081         }
4082
4083         besl = besl_host + besl_device;
4084         if (besl > 15)
4085                 besl = 15;
4086
4087         return besl;
4088 }
4089
4090 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4091 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4092 {
4093         u32 field;
4094         int l1;
4095         int besld = 0;
4096         int hirdm = 0;
4097
4098         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4099
4100         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4101         l1 = udev->l1_params.timeout / 256;
4102
4103         /* device has preferred BESLD */
4104         if (field & USB_BESL_DEEP_VALID) {
4105                 besld = USB_GET_BESL_DEEP(field);
4106                 hirdm = 1;
4107         }
4108
4109         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4110 }
4111
4112 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4113                         struct usb_device *udev, int enable)
4114 {
4115         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4116         __le32 __iomem  **port_array;
4117         __le32 __iomem  *pm_addr, *hlpm_addr;
4118         u32             pm_val, hlpm_val, field;
4119         unsigned int    port_num;
4120         unsigned long   flags;
4121         int             hird, exit_latency;
4122         int             ret;
4123
4124         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4125                         !udev->lpm_capable)
4126                 return -EPERM;
4127
4128         if (!udev->parent || udev->parent->parent ||
4129                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4130                 return -EPERM;
4131
4132         if (udev->usb2_hw_lpm_capable != 1)
4133                 return -EPERM;
4134
4135         spin_lock_irqsave(&xhci->lock, flags);
4136
4137         port_array = xhci->usb2_ports;
4138         port_num = udev->portnum - 1;
4139         pm_addr = port_array[port_num] + PORTPMSC;
4140         pm_val = readl(pm_addr);
4141         hlpm_addr = port_array[port_num] + PORTHLPMC;
4142         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4143
4144         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4145                         enable ? "enable" : "disable", port_num + 1);
4146
4147         if (enable) {
4148                 /* Host supports BESL timeout instead of HIRD */
4149                 if (udev->usb2_hw_lpm_besl_capable) {
4150                         /* if device doesn't have a preferred BESL value use a
4151                          * default one which works with mixed HIRD and BESL
4152                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4153                          */
4154                         if ((field & USB_BESL_SUPPORT) &&
4155                             (field & USB_BESL_BASELINE_VALID))
4156                                 hird = USB_GET_BESL_BASELINE(field);
4157                         else
4158                                 hird = udev->l1_params.besl;
4159
4160                         exit_latency = xhci_besl_encoding[hird];
4161                         spin_unlock_irqrestore(&xhci->lock, flags);
4162
4163                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4164                          * input context for link powermanagement evaluate
4165                          * context commands. It is protected by hcd->bandwidth
4166                          * mutex and is shared by all devices. We need to set
4167                          * the max ext latency in USB 2 BESL LPM as well, so
4168                          * use the same mutex and xhci_change_max_exit_latency()
4169                          */
4170                         mutex_lock(hcd->bandwidth_mutex);
4171                         ret = xhci_change_max_exit_latency(xhci, udev,
4172                                                            exit_latency);
4173                         mutex_unlock(hcd->bandwidth_mutex);
4174
4175                         if (ret < 0)
4176                                 return ret;
4177                         spin_lock_irqsave(&xhci->lock, flags);
4178
4179                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4180                         writel(hlpm_val, hlpm_addr);
4181                         /* flush write */
4182                         readl(hlpm_addr);
4183                 } else {
4184                         hird = xhci_calculate_hird_besl(xhci, udev);
4185                 }
4186
4187                 pm_val &= ~PORT_HIRD_MASK;
4188                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4189                 writel(pm_val, pm_addr);
4190                 pm_val = readl(pm_addr);
4191                 pm_val |= PORT_HLE;
4192                 writel(pm_val, pm_addr);
4193                 /* flush write */
4194                 readl(pm_addr);
4195         } else {
4196                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4197                 writel(pm_val, pm_addr);
4198                 /* flush write */
4199                 readl(pm_addr);
4200                 if (udev->usb2_hw_lpm_besl_capable) {
4201                         spin_unlock_irqrestore(&xhci->lock, flags);
4202                         mutex_lock(hcd->bandwidth_mutex);
4203                         xhci_change_max_exit_latency(xhci, udev, 0);
4204                         mutex_unlock(hcd->bandwidth_mutex);
4205                         return 0;
4206                 }
4207         }
4208
4209         spin_unlock_irqrestore(&xhci->lock, flags);
4210         return 0;
4211 }
4212
4213 /* check if a usb2 port supports a given extened capability protocol
4214  * only USB2 ports extended protocol capability values are cached.
4215  * Return 1 if capability is supported
4216  */
4217 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4218                                            unsigned capability)
4219 {
4220         u32 port_offset, port_count;
4221         int i;
4222
4223         for (i = 0; i < xhci->num_ext_caps; i++) {
4224                 if (xhci->ext_caps[i] & capability) {
4225                         /* port offsets starts at 1 */
4226                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4227                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4228                         if (port >= port_offset &&
4229                             port < port_offset + port_count)
4230                                 return 1;
4231                 }
4232         }
4233         return 0;
4234 }
4235
4236 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4237 {
4238         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4239         int             portnum = udev->portnum - 1;
4240
4241         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4242                         !udev->lpm_capable)
4243                 return 0;
4244
4245         /* we only support lpm for non-hub device connected to root hub yet */
4246         if (!udev->parent || udev->parent->parent ||
4247                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4248                 return 0;
4249
4250         if (xhci->hw_lpm_support == 1 &&
4251                         xhci_check_usb2_port_capability(
4252                                 xhci, portnum, XHCI_HLC)) {
4253                 udev->usb2_hw_lpm_capable = 1;
4254                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4255                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4256                 if (xhci_check_usb2_port_capability(xhci, portnum,
4257                                         XHCI_BLC))
4258                         udev->usb2_hw_lpm_besl_capable = 1;
4259         }
4260
4261         return 0;
4262 }
4263
4264 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4265
4266 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4267 static unsigned long long xhci_service_interval_to_ns(
4268                 struct usb_endpoint_descriptor *desc)
4269 {
4270         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4271 }
4272
4273 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4274                 enum usb3_link_state state)
4275 {
4276         unsigned long long sel;
4277         unsigned long long pel;
4278         unsigned int max_sel_pel;
4279         char *state_name;
4280
4281         switch (state) {
4282         case USB3_LPM_U1:
4283                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4284                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4285                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4286                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4287                 state_name = "U1";
4288                 break;
4289         case USB3_LPM_U2:
4290                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4291                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4292                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4293                 state_name = "U2";
4294                 break;
4295         default:
4296                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4297                                 __func__);
4298                 return USB3_LPM_DISABLED;
4299         }
4300
4301         if (sel <= max_sel_pel && pel <= max_sel_pel)
4302                 return USB3_LPM_DEVICE_INITIATED;
4303
4304         if (sel > max_sel_pel)
4305                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4306                                 "due to long SEL %llu ms\n",
4307                                 state_name, sel);
4308         else
4309                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4310                                 "due to long PEL %llu ms\n",
4311                                 state_name, pel);
4312         return USB3_LPM_DISABLED;
4313 }
4314
4315 /* The U1 timeout should be the maximum of the following values:
4316  *  - For control endpoints, U1 system exit latency (SEL) * 3
4317  *  - For bulk endpoints, U1 SEL * 5
4318  *  - For interrupt endpoints:
4319  *    - Notification EPs, U1 SEL * 3
4320  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4321  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4322  */
4323 static unsigned long long xhci_calculate_intel_u1_timeout(
4324                 struct usb_device *udev,
4325                 struct usb_endpoint_descriptor *desc)
4326 {
4327         unsigned long long timeout_ns;
4328         int ep_type;
4329         int intr_type;
4330
4331         ep_type = usb_endpoint_type(desc);
4332         switch (ep_type) {
4333         case USB_ENDPOINT_XFER_CONTROL:
4334                 timeout_ns = udev->u1_params.sel * 3;
4335                 break;
4336         case USB_ENDPOINT_XFER_BULK:
4337                 timeout_ns = udev->u1_params.sel * 5;
4338                 break;
4339         case USB_ENDPOINT_XFER_INT:
4340                 intr_type = usb_endpoint_interrupt_type(desc);
4341                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4342                         timeout_ns = udev->u1_params.sel * 3;
4343                         break;
4344                 }
4345                 /* Otherwise the calculation is the same as isoc eps */
4346         case USB_ENDPOINT_XFER_ISOC:
4347                 timeout_ns = xhci_service_interval_to_ns(desc);
4348                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4349                 if (timeout_ns < udev->u1_params.sel * 2)
4350                         timeout_ns = udev->u1_params.sel * 2;
4351                 break;
4352         default:
4353                 return 0;
4354         }
4355
4356         return timeout_ns;
4357 }
4358
4359 /* Returns the hub-encoded U1 timeout value. */
4360 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4361                 struct usb_device *udev,
4362                 struct usb_endpoint_descriptor *desc)
4363 {
4364         unsigned long long timeout_ns;
4365
4366         if (xhci->quirks & XHCI_INTEL_HOST)
4367                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4368         else
4369                 timeout_ns = udev->u1_params.sel;
4370
4371         /* The U1 timeout is encoded in 1us intervals.
4372          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4373          */
4374         if (timeout_ns == USB3_LPM_DISABLED)
4375                 timeout_ns = 1;
4376         else
4377                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4378
4379         /* If the necessary timeout value is bigger than what we can set in the
4380          * USB 3.0 hub, we have to disable hub-initiated U1.
4381          */
4382         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4383                 return timeout_ns;
4384         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4385                         "due to long timeout %llu ms\n", timeout_ns);
4386         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4387 }
4388
4389 /* The U2 timeout should be the maximum of:
4390  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4391  *  - largest bInterval of any active periodic endpoint (to avoid going
4392  *    into lower power link states between intervals).
4393  *  - the U2 Exit Latency of the device
4394  */
4395 static unsigned long long xhci_calculate_intel_u2_timeout(
4396                 struct usb_device *udev,
4397                 struct usb_endpoint_descriptor *desc)
4398 {
4399         unsigned long long timeout_ns;
4400         unsigned long long u2_del_ns;
4401
4402         timeout_ns = 10 * 1000 * 1000;
4403
4404         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4405                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4406                 timeout_ns = xhci_service_interval_to_ns(desc);
4407
4408         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4409         if (u2_del_ns > timeout_ns)
4410                 timeout_ns = u2_del_ns;
4411
4412         return timeout_ns;
4413 }
4414
4415 /* Returns the hub-encoded U2 timeout value. */
4416 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4417                 struct usb_device *udev,
4418                 struct usb_endpoint_descriptor *desc)
4419 {
4420         unsigned long long timeout_ns;
4421
4422         if (xhci->quirks & XHCI_INTEL_HOST)
4423                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4424         else
4425                 timeout_ns = udev->u2_params.sel;
4426
4427         /* The U2 timeout is encoded in 256us intervals */
4428         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4429         /* If the necessary timeout value is bigger than what we can set in the
4430          * USB 3.0 hub, we have to disable hub-initiated U2.
4431          */
4432         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4433                 return timeout_ns;
4434         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4435                         "due to long timeout %llu ms\n", timeout_ns);
4436         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4437 }
4438
4439 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4440                 struct usb_device *udev,
4441                 struct usb_endpoint_descriptor *desc,
4442                 enum usb3_link_state state,
4443                 u16 *timeout)
4444 {
4445         if (state == USB3_LPM_U1)
4446                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4447         else if (state == USB3_LPM_U2)
4448                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4449
4450         return USB3_LPM_DISABLED;
4451 }
4452
4453 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4454                 struct usb_device *udev,
4455                 struct usb_endpoint_descriptor *desc,
4456                 enum usb3_link_state state,
4457                 u16 *timeout)
4458 {
4459         u16 alt_timeout;
4460
4461         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4462                 desc, state, timeout);
4463
4464         /* If we found we can't enable hub-initiated LPM, or
4465          * the U1 or U2 exit latency was too high to allow
4466          * device-initiated LPM as well, just stop searching.
4467          */
4468         if (alt_timeout == USB3_LPM_DISABLED ||
4469                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4470                 *timeout = alt_timeout;
4471                 return -E2BIG;
4472         }
4473         if (alt_timeout > *timeout)
4474                 *timeout = alt_timeout;
4475         return 0;
4476 }
4477
4478 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4479                 struct usb_device *udev,
4480                 struct usb_host_interface *alt,
4481                 enum usb3_link_state state,
4482                 u16 *timeout)
4483 {
4484         int j;
4485
4486         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4487                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4488                                         &alt->endpoint[j].desc, state, timeout))
4489                         return -E2BIG;
4490                 continue;
4491         }
4492         return 0;
4493 }
4494
4495 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4496                 enum usb3_link_state state)
4497 {
4498         struct usb_device *parent;
4499         unsigned int num_hubs;
4500
4501         if (state == USB3_LPM_U2)
4502                 return 0;
4503
4504         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4505         for (parent = udev->parent, num_hubs = 0; parent->parent;
4506                         parent = parent->parent)
4507                 num_hubs++;
4508
4509         if (num_hubs < 2)
4510                 return 0;
4511
4512         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4513                         " below second-tier hub.\n");
4514         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4515                         "to decrease power consumption.\n");
4516         return -E2BIG;
4517 }
4518
4519 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4520                 struct usb_device *udev,
4521                 enum usb3_link_state state)
4522 {
4523         if (xhci->quirks & XHCI_INTEL_HOST)
4524                 return xhci_check_intel_tier_policy(udev, state);
4525         else
4526                 return 0;
4527 }
4528
4529 /* Returns the U1 or U2 timeout that should be enabled.
4530  * If the tier check or timeout setting functions return with a non-zero exit
4531  * code, that means the timeout value has been finalized and we shouldn't look
4532  * at any more endpoints.
4533  */
4534 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4535                         struct usb_device *udev, enum usb3_link_state state)
4536 {
4537         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4538         struct usb_host_config *config;
4539         char *state_name;
4540         int i;
4541         u16 timeout = USB3_LPM_DISABLED;
4542
4543         if (state == USB3_LPM_U1)
4544                 state_name = "U1";
4545         else if (state == USB3_LPM_U2)
4546                 state_name = "U2";
4547         else {
4548                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4549                                 state);
4550                 return timeout;
4551         }
4552
4553         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4554                 return timeout;
4555
4556         /* Gather some information about the currently installed configuration
4557          * and alternate interface settings.
4558          */
4559         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4560                         state, &timeout))
4561                 return timeout;
4562
4563         config = udev->actconfig;
4564         if (!config)
4565                 return timeout;
4566
4567         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4568                 struct usb_driver *driver;
4569                 struct usb_interface *intf = config->interface[i];
4570
4571                 if (!intf)
4572                         continue;
4573
4574                 /* Check if any currently bound drivers want hub-initiated LPM
4575                  * disabled.
4576                  */
4577                 if (intf->dev.driver) {
4578                         driver = to_usb_driver(intf->dev.driver);
4579                         if (driver && driver->disable_hub_initiated_lpm) {
4580                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4581                                                 "at request of driver %s\n",
4582                                                 state_name, driver->name);
4583                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4584                         }
4585                 }
4586
4587                 /* Not sure how this could happen... */
4588                 if (!intf->cur_altsetting)
4589                         continue;
4590
4591                 if (xhci_update_timeout_for_interface(xhci, udev,
4592                                         intf->cur_altsetting,
4593                                         state, &timeout))
4594                         return timeout;
4595         }
4596         return timeout;
4597 }
4598
4599 static int calculate_max_exit_latency(struct usb_device *udev,
4600                 enum usb3_link_state state_changed,
4601                 u16 hub_encoded_timeout)
4602 {
4603         unsigned long long u1_mel_us = 0;
4604         unsigned long long u2_mel_us = 0;
4605         unsigned long long mel_us = 0;
4606         bool disabling_u1;
4607         bool disabling_u2;
4608         bool enabling_u1;
4609         bool enabling_u2;
4610
4611         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4612                         hub_encoded_timeout == USB3_LPM_DISABLED);
4613         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4614                         hub_encoded_timeout == USB3_LPM_DISABLED);
4615
4616         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4617                         hub_encoded_timeout != USB3_LPM_DISABLED);
4618         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4619                         hub_encoded_timeout != USB3_LPM_DISABLED);
4620
4621         /* If U1 was already enabled and we're not disabling it,
4622          * or we're going to enable U1, account for the U1 max exit latency.
4623          */
4624         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4625                         enabling_u1)
4626                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4627         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4628                         enabling_u2)
4629                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4630
4631         if (u1_mel_us > u2_mel_us)
4632                 mel_us = u1_mel_us;
4633         else
4634                 mel_us = u2_mel_us;
4635         /* xHCI host controller max exit latency field is only 16 bits wide. */
4636         if (mel_us > MAX_EXIT) {
4637                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4638                                 "is too big.\n", mel_us);
4639                 return -E2BIG;
4640         }
4641         return mel_us;
4642 }
4643
4644 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4645 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4646                         struct usb_device *udev, enum usb3_link_state state)
4647 {
4648         struct xhci_hcd *xhci;
4649         u16 hub_encoded_timeout;
4650         int mel;
4651         int ret;
4652
4653         xhci = hcd_to_xhci(hcd);
4654         /* The LPM timeout values are pretty host-controller specific, so don't
4655          * enable hub-initiated timeouts unless the vendor has provided
4656          * information about their timeout algorithm.
4657          */
4658         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4659                         !xhci->devs[udev->slot_id])
4660                 return USB3_LPM_DISABLED;
4661
4662         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4663         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4664         if (mel < 0) {
4665                 /* Max Exit Latency is too big, disable LPM. */
4666                 hub_encoded_timeout = USB3_LPM_DISABLED;
4667                 mel = 0;
4668         }
4669
4670         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4671         if (ret)
4672                 return ret;
4673         return hub_encoded_timeout;
4674 }
4675
4676 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4677                         struct usb_device *udev, enum usb3_link_state state)
4678 {
4679         struct xhci_hcd *xhci;
4680         u16 mel;
4681
4682         xhci = hcd_to_xhci(hcd);
4683         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4684                         !xhci->devs[udev->slot_id])
4685                 return 0;
4686
4687         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4688         return xhci_change_max_exit_latency(xhci, udev, mel);
4689 }
4690 #else /* CONFIG_PM */
4691
4692 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4693                                 struct usb_device *udev, int enable)
4694 {
4695         return 0;
4696 }
4697
4698 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4699 {
4700         return 0;
4701 }
4702
4703 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4704                         struct usb_device *udev, enum usb3_link_state state)
4705 {
4706         return USB3_LPM_DISABLED;
4707 }
4708
4709 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4710                         struct usb_device *udev, enum usb3_link_state state)
4711 {
4712         return 0;
4713 }
4714 #endif  /* CONFIG_PM */
4715
4716 /*-------------------------------------------------------------------------*/
4717
4718 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4719  * internal data structures for the device.
4720  */
4721 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4722                         struct usb_tt *tt, gfp_t mem_flags)
4723 {
4724         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4725         struct xhci_virt_device *vdev;
4726         struct xhci_command *config_cmd;
4727         struct xhci_input_control_ctx *ctrl_ctx;
4728         struct xhci_slot_ctx *slot_ctx;
4729         unsigned long flags;
4730         unsigned think_time;
4731         int ret;
4732
4733         /* Ignore root hubs */
4734         if (!hdev->parent)
4735                 return 0;
4736
4737         vdev = xhci->devs[hdev->slot_id];
4738         if (!vdev) {
4739                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4740                 return -EINVAL;
4741         }
4742         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4743         if (!config_cmd) {
4744                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4745                 return -ENOMEM;
4746         }
4747         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4748         if (!ctrl_ctx) {
4749                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4750                                 __func__);
4751                 xhci_free_command(xhci, config_cmd);
4752                 return -ENOMEM;
4753         }
4754
4755         spin_lock_irqsave(&xhci->lock, flags);
4756         if (hdev->speed == USB_SPEED_HIGH &&
4757                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4758                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4759                 xhci_free_command(xhci, config_cmd);
4760                 spin_unlock_irqrestore(&xhci->lock, flags);
4761                 return -ENOMEM;
4762         }
4763
4764         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4765         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4766         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4767         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4768         if (tt->multi)
4769                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4770         if (xhci->hci_version > 0x95) {
4771                 xhci_dbg(xhci, "xHCI version %x needs hub "
4772                                 "TT think time and number of ports\n",
4773                                 (unsigned int) xhci->hci_version);
4774                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4775                 /* Set TT think time - convert from ns to FS bit times.
4776                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4777                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4778                  *
4779                  * xHCI 1.0: this field shall be 0 if the device is not a
4780                  * High-spped hub.
4781                  */
4782                 think_time = tt->think_time;
4783                 if (think_time != 0)
4784                         think_time = (think_time / 666) - 1;
4785                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4786                         slot_ctx->tt_info |=
4787                                 cpu_to_le32(TT_THINK_TIME(think_time));
4788         } else {
4789                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4790                                 "TT think time or number of ports\n",
4791                                 (unsigned int) xhci->hci_version);
4792         }
4793         slot_ctx->dev_state = 0;
4794         spin_unlock_irqrestore(&xhci->lock, flags);
4795
4796         xhci_dbg(xhci, "Set up %s for hub device.\n",
4797                         (xhci->hci_version > 0x95) ?
4798                         "configure endpoint" : "evaluate context");
4799         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4800         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4801
4802         /* Issue and wait for the configure endpoint or
4803          * evaluate context command.
4804          */
4805         if (xhci->hci_version > 0x95)
4806                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4807                                 false, false);
4808         else
4809                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4810                                 true, false);
4811
4812         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4813         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4814
4815         xhci_free_command(xhci, config_cmd);
4816         return ret;
4817 }
4818
4819 int xhci_get_frame(struct usb_hcd *hcd)
4820 {
4821         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4822         /* EHCI mods by the periodic size.  Why? */
4823         return readl(&xhci->run_regs->microframe_index) >> 3;
4824 }
4825
4826 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4827 {
4828         struct xhci_hcd         *xhci;
4829         struct device           *dev = hcd->self.controller;
4830         int                     retval;
4831
4832         /* Accept arbitrarily long scatter-gather lists */
4833         hcd->self.sg_tablesize = ~0;
4834
4835         /* support to build packet from discontinuous buffers */
4836         hcd->self.no_sg_constraint = 1;
4837
4838         /* XHCI controllers don't stop the ep queue on short packets :| */
4839         hcd->self.no_stop_on_short = 1;
4840
4841         if (usb_hcd_is_primary_hcd(hcd)) {
4842                 xhci = hcd_to_xhci(hcd);
4843                 xhci->main_hcd = hcd;
4844                 /* Mark the first roothub as being USB 2.0.
4845                  * The xHCI driver will register the USB 3.0 roothub.
4846                  */
4847                 hcd->speed = HCD_USB2;
4848                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4849                 /*
4850                  * USB 2.0 roothub under xHCI has an integrated TT,
4851                  * (rate matching hub) as opposed to having an OHCI/UHCI
4852                  * companion controller.
4853                  */
4854                 hcd->has_tt = 1;
4855         } else {
4856                 /* xHCI private pointer was set in xhci_pci_probe for the second
4857                  * registered roothub.
4858                  */
4859                 return 0;
4860         }
4861
4862         mutex_init(&xhci->mutex);
4863         xhci->cap_regs = hcd->regs;
4864         xhci->op_regs = hcd->regs +
4865                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4866         xhci->run_regs = hcd->regs +
4867                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4868         /* Cache read-only capability registers */
4869         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4870         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4871         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4872         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4873         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4874         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4875         xhci_print_registers(xhci);
4876
4877         xhci->quirks = quirks;
4878
4879         get_quirks(dev, xhci);
4880
4881         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4882          * success event after a short transfer. This quirk will ignore such
4883          * spurious event.
4884          */
4885         if (xhci->hci_version > 0x96)
4886                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4887
4888         /* Make sure the HC is halted. */
4889         retval = xhci_halt(xhci);
4890         if (retval)
4891                 return retval;
4892
4893         xhci_dbg(xhci, "Resetting HCD\n");
4894         /* Reset the internal HC memory state and registers. */
4895         retval = xhci_reset(xhci);
4896         if (retval)
4897                 return retval;
4898         xhci_dbg(xhci, "Reset complete\n");
4899
4900         /* Set dma_mask and coherent_dma_mask to 64-bits,
4901          * if xHC supports 64-bit addressing */
4902         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4903                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4904                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4905                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4906         }
4907
4908         xhci_dbg(xhci, "Calling HCD init\n");
4909         /* Initialize HCD and host controller data structures. */
4910         retval = xhci_init(hcd);
4911         if (retval)
4912                 return retval;
4913         xhci_dbg(xhci, "Called HCD init\n");
4914
4915         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4916                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
4917
4918         return 0;
4919 }
4920 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4921
4922 static const struct hc_driver xhci_hc_driver = {
4923         .description =          "xhci-hcd",
4924         .product_desc =         "xHCI Host Controller",
4925         .hcd_priv_size =        sizeof(struct xhci_hcd *),
4926
4927         /*
4928          * generic hardware linkage
4929          */
4930         .irq =                  xhci_irq,
4931         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4932
4933         /*
4934          * basic lifecycle operations
4935          */
4936         .reset =                NULL, /* set in xhci_init_driver() */
4937         .start =                xhci_run,
4938         .stop =                 xhci_stop,
4939         .shutdown =             xhci_shutdown,
4940
4941         /*
4942          * managing i/o requests and associated device resources
4943          */
4944         .urb_enqueue =          xhci_urb_enqueue,
4945         .urb_dequeue =          xhci_urb_dequeue,
4946         .alloc_dev =            xhci_alloc_dev,
4947         .free_dev =             xhci_free_dev,
4948         .alloc_streams =        xhci_alloc_streams,
4949         .free_streams =         xhci_free_streams,
4950         .add_endpoint =         xhci_add_endpoint,
4951         .drop_endpoint =        xhci_drop_endpoint,
4952         .endpoint_reset =       xhci_endpoint_reset,
4953         .check_bandwidth =      xhci_check_bandwidth,
4954         .reset_bandwidth =      xhci_reset_bandwidth,
4955         .address_device =       xhci_address_device,
4956         .enable_device =        xhci_enable_device,
4957         .update_hub_device =    xhci_update_hub_device,
4958         .reset_device =         xhci_discover_or_reset_device,
4959
4960         /*
4961          * scheduling support
4962          */
4963         .get_frame_number =     xhci_get_frame,
4964
4965         /*
4966          * root hub support
4967          */
4968         .hub_control =          xhci_hub_control,
4969         .hub_status_data =      xhci_hub_status_data,
4970         .bus_suspend =          xhci_bus_suspend,
4971         .bus_resume =           xhci_bus_resume,
4972
4973         /*
4974          * call back when device connected and addressed
4975          */
4976         .update_device =        xhci_update_device,
4977         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
4978         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
4979         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
4980         .find_raw_port_number = xhci_find_raw_port_number,
4981 };
4982
4983 void xhci_init_driver(struct hc_driver *drv,
4984                       const struct xhci_driver_overrides *over)
4985 {
4986         BUG_ON(!over);
4987
4988         /* Copy the generic table to drv then apply the overrides */
4989         *drv = xhci_hc_driver;
4990
4991         if (over) {
4992                 drv->hcd_priv_size += over->extra_priv_size;
4993                 if (over->reset)
4994                         drv->reset = over->reset;
4995                 if (over->start)
4996                         drv->start = over->start;
4997         }
4998 }
4999 EXPORT_SYMBOL_GPL(xhci_init_driver);
5000
5001 MODULE_DESCRIPTION(DRIVER_DESC);
5002 MODULE_AUTHOR(DRIVER_AUTHOR);
5003 MODULE_LICENSE("GPL");
5004
5005 static int __init xhci_hcd_init(void)
5006 {
5007         /*
5008          * Check the compiler generated sizes of structures that must be laid
5009          * out in specific ways for hardware access.
5010          */
5011         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5012         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5013         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5014         /* xhci_device_control has eight fields, and also
5015          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5016          */
5017         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5018         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5019         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5020         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
5021         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5022         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5023         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5024         return 0;
5025 }
5026
5027 /*
5028  * If an init function is provided, an exit function must also be provided
5029  * to allow module unload.
5030  */
5031 static void __exit xhci_hcd_fini(void) { }
5032
5033 module_init(xhci_hcd_init);
5034 module_exit(xhci_hcd_fini);