cfd5d3a6d34d32745d4090b13825bb23c837e9d2
[pandora-kernel.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30
31 #include "xhci.h"
32
33 #define DRIVER_AUTHOR "Sarah Sharp"
34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35
36 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
37
38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
39 static int link_quirk;
40 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
42
43 /* TODO: copied from ehci-hcd.c - can this be refactored? */
44 /*
45  * handshake - spin reading hc until handshake completes or fails
46  * @ptr: address of hc register to be read
47  * @mask: bits to look at in result of read
48  * @done: value of those bits when handshake succeeds
49  * @usec: timeout in microseconds
50  *
51  * Returns negative errno, or zero on success
52  *
53  * Success happens when the "mask" bits have the specified value (hardware
54  * handshake done).  There are two failure modes:  "usec" have passed (major
55  * hardware flakeout), or the register reads as all-ones (hardware removed).
56  */
57 int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
58                       u32 mask, u32 done, int usec)
59 {
60         u32     result;
61
62         do {
63                 result = xhci_readl(xhci, ptr);
64                 if (result == ~(u32)0)          /* card removed */
65                         return -ENODEV;
66                 result &= mask;
67                 if (result == done)
68                         return 0;
69                 udelay(1);
70                 usec--;
71         } while (usec > 0);
72         return -ETIMEDOUT;
73 }
74
75 /*
76  * Disable interrupts and begin the xHCI halting process.
77  */
78 void xhci_quiesce(struct xhci_hcd *xhci)
79 {
80         u32 halted;
81         u32 cmd;
82         u32 mask;
83
84         mask = ~(XHCI_IRQS);
85         halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
86         if (!halted)
87                 mask &= ~CMD_RUN;
88
89         cmd = xhci_readl(xhci, &xhci->op_regs->command);
90         cmd &= mask;
91         xhci_writel(xhci, cmd, &xhci->op_regs->command);
92 }
93
94 /*
95  * Force HC into halt state.
96  *
97  * Disable any IRQs and clear the run/stop bit.
98  * HC will complete any current and actively pipelined transactions, and
99  * should halt within 16 ms of the run/stop bit being cleared.
100  * Read HC Halted bit in the status register to see when the HC is finished.
101  */
102 int xhci_halt(struct xhci_hcd *xhci)
103 {
104         int ret;
105         xhci_dbg(xhci, "// Halt the HC\n");
106         xhci_quiesce(xhci);
107
108         ret = handshake(xhci, &xhci->op_regs->status,
109                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
110         if (!ret) {
111                 xhci->xhc_state |= XHCI_STATE_HALTED;
112                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
113         } else
114                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
115                                 XHCI_MAX_HALT_USEC);
116         return ret;
117 }
118
119 /*
120  * Set the run bit and wait for the host to be running.
121  */
122 static int xhci_start(struct xhci_hcd *xhci)
123 {
124         u32 temp;
125         int ret;
126
127         temp = xhci_readl(xhci, &xhci->op_regs->command);
128         temp |= (CMD_RUN);
129         xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
130                         temp);
131         xhci_writel(xhci, temp, &xhci->op_regs->command);
132
133         /*
134          * Wait for the HCHalted Status bit to be 0 to indicate the host is
135          * running.
136          */
137         ret = handshake(xhci, &xhci->op_regs->status,
138                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
139         if (ret == -ETIMEDOUT)
140                 xhci_err(xhci, "Host took too long to start, "
141                                 "waited %u microseconds.\n",
142                                 XHCI_MAX_HALT_USEC);
143         if (!ret)
144                 xhci->xhc_state &= ~(XHCI_STATE_HALTED | XHCI_STATE_DYING);
145
146         return ret;
147 }
148
149 /*
150  * Reset a halted HC.
151  *
152  * This resets pipelines, timers, counters, state machines, etc.
153  * Transactions will be terminated immediately, and operational registers
154  * will be set to their defaults.
155  */
156 int xhci_reset(struct xhci_hcd *xhci)
157 {
158         u32 command;
159         u32 state;
160         int ret;
161
162         state = xhci_readl(xhci, &xhci->op_regs->status);
163         if ((state & STS_HALT) == 0) {
164                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
165                 return 0;
166         }
167
168         xhci_dbg(xhci, "// Reset the HC\n");
169         command = xhci_readl(xhci, &xhci->op_regs->command);
170         command |= CMD_RESET;
171         xhci_writel(xhci, command, &xhci->op_regs->command);
172
173         /* Existing Intel xHCI controllers require a delay of 1 mS,
174          * after setting the CMD_RESET bit, and before accessing any
175          * HC registers. This allows the HC to complete the
176          * reset operation and be ready for HC register access.
177          * Without this delay, the subsequent HC register access,
178          * may result in a system hang very rarely.
179          */
180         if (xhci->quirks & XHCI_INTEL_HOST)
181                 udelay(1000);
182
183         ret = handshake(xhci, &xhci->op_regs->command,
184                         CMD_RESET, 0, 10 * 1000 * 1000);
185         if (ret)
186                 return ret;
187
188         xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
189         /*
190          * xHCI cannot write to any doorbells or operational registers other
191          * than status until the "Controller Not Ready" flag is cleared.
192          */
193         return handshake(xhci, &xhci->op_regs->status,
194                          STS_CNR, 0, 10 * 1000 * 1000);
195 }
196
197 #ifdef CONFIG_PCI
198 static int xhci_free_msi(struct xhci_hcd *xhci)
199 {
200         int i;
201
202         if (!xhci->msix_entries)
203                 return -EINVAL;
204
205         for (i = 0; i < xhci->msix_count; i++)
206                 if (xhci->msix_entries[i].vector)
207                         free_irq(xhci->msix_entries[i].vector,
208                                         xhci_to_hcd(xhci));
209         return 0;
210 }
211
212 /*
213  * Set up MSI
214  */
215 static int xhci_setup_msi(struct xhci_hcd *xhci)
216 {
217         int ret;
218         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
219
220         ret = pci_enable_msi(pdev);
221         if (ret) {
222                 xhci_dbg(xhci, "failed to allocate MSI entry\n");
223                 return ret;
224         }
225
226         ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
227                                 0, "xhci_hcd", xhci_to_hcd(xhci));
228         if (ret) {
229                 xhci_dbg(xhci, "disable MSI interrupt\n");
230                 pci_disable_msi(pdev);
231         }
232
233         return ret;
234 }
235
236 /*
237  * Free IRQs
238  * free all IRQs request
239  */
240 static void xhci_free_irq(struct xhci_hcd *xhci)
241 {
242         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
243         int ret;
244
245         /* return if using legacy interrupt */
246         if (xhci_to_hcd(xhci)->irq >= 0)
247                 return;
248
249         ret = xhci_free_msi(xhci);
250         if (!ret)
251                 return;
252         if (pdev->irq >= 0)
253                 free_irq(pdev->irq, xhci_to_hcd(xhci));
254
255         return;
256 }
257
258 /*
259  * Set up MSI-X
260  */
261 static int xhci_setup_msix(struct xhci_hcd *xhci)
262 {
263         int i, ret = 0;
264         struct usb_hcd *hcd = xhci_to_hcd(xhci);
265         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
266
267         /*
268          * calculate number of msi-x vectors supported.
269          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
270          *   with max number of interrupters based on the xhci HCSPARAMS1.
271          * - num_online_cpus: maximum msi-x vectors per CPUs core.
272          *   Add additional 1 vector to ensure always available interrupt.
273          */
274         xhci->msix_count = min(num_online_cpus() + 1,
275                                 HCS_MAX_INTRS(xhci->hcs_params1));
276
277         xhci->msix_entries =
278                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
279                                 GFP_KERNEL);
280         if (!xhci->msix_entries) {
281                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
282                 return -ENOMEM;
283         }
284
285         for (i = 0; i < xhci->msix_count; i++) {
286                 xhci->msix_entries[i].entry = i;
287                 xhci->msix_entries[i].vector = 0;
288         }
289
290         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
291         if (ret) {
292                 xhci_dbg(xhci, "Failed to enable MSI-X\n");
293                 goto free_entries;
294         }
295
296         for (i = 0; i < xhci->msix_count; i++) {
297                 ret = request_irq(xhci->msix_entries[i].vector,
298                                 (irq_handler_t)xhci_msi_irq,
299                                 0, "xhci_hcd", xhci_to_hcd(xhci));
300                 if (ret)
301                         goto disable_msix;
302         }
303
304         hcd->msix_enabled = 1;
305         return ret;
306
307 disable_msix:
308         xhci_dbg(xhci, "disable MSI-X interrupt\n");
309         xhci_free_irq(xhci);
310         pci_disable_msix(pdev);
311 free_entries:
312         kfree(xhci->msix_entries);
313         xhci->msix_entries = NULL;
314         return ret;
315 }
316
317 /* Free any IRQs and disable MSI-X */
318 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
319 {
320         struct usb_hcd *hcd = xhci_to_hcd(xhci);
321         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
322
323         xhci_free_irq(xhci);
324
325         if (xhci->msix_entries) {
326                 pci_disable_msix(pdev);
327                 kfree(xhci->msix_entries);
328                 xhci->msix_entries = NULL;
329         } else {
330                 pci_disable_msi(pdev);
331         }
332
333         hcd->msix_enabled = 0;
334         return;
335 }
336
337 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
338 {
339         int i;
340
341         if (xhci->msix_entries) {
342                 for (i = 0; i < xhci->msix_count; i++)
343                         synchronize_irq(xhci->msix_entries[i].vector);
344         }
345 }
346
347 static int xhci_try_enable_msi(struct usb_hcd *hcd)
348 {
349         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
350         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
351         int ret;
352
353         /*
354          * Some Fresco Logic host controllers advertise MSI, but fail to
355          * generate interrupts.  Don't even try to enable MSI.
356          */
357         if (xhci->quirks & XHCI_BROKEN_MSI)
358                 goto legacy_irq;
359
360         /* unregister the legacy interrupt */
361         if (hcd->irq)
362                 free_irq(hcd->irq, hcd);
363         hcd->irq = -1;
364
365         ret = xhci_setup_msix(xhci);
366         if (ret)
367                 /* fall back to msi*/
368                 ret = xhci_setup_msi(xhci);
369
370         if (!ret)
371                 /* hcd->irq is -1, we have MSI */
372                 return 0;
373
374         if (!pdev->irq) {
375                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
376                 return -EINVAL;
377         }
378
379  legacy_irq:
380         /* fall back to legacy interrupt*/
381         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
382                         hcd->irq_descr, hcd);
383         if (ret) {
384                 xhci_err(xhci, "request interrupt %d failed\n",
385                                 pdev->irq);
386                 return ret;
387         }
388         hcd->irq = pdev->irq;
389         return 0;
390 }
391
392 #else
393
394 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
395 {
396         return 0;
397 }
398
399 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
400 {
401 }
402
403 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
404 {
405 }
406
407 #endif
408
409 static void compliance_mode_recovery(unsigned long arg)
410 {
411         struct xhci_hcd *xhci;
412         struct usb_hcd *hcd;
413         u32 temp;
414         int i;
415
416         xhci = (struct xhci_hcd *)arg;
417
418         for (i = 0; i < xhci->num_usb3_ports; i++) {
419                 temp = xhci_readl(xhci, xhci->usb3_ports[i]);
420                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
421                         /*
422                          * Compliance Mode Detected. Letting USB Core
423                          * handle the Warm Reset
424                          */
425                         xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n",
426                                         i + 1);
427                         xhci_dbg(xhci, "Attempting Recovery routine!\n");
428                         hcd = xhci->shared_hcd;
429
430                         if (hcd->state == HC_STATE_SUSPENDED)
431                                 usb_hcd_resume_root_hub(hcd);
432
433                         usb_hcd_poll_rh_status(hcd);
434                 }
435         }
436
437         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
438                 mod_timer(&xhci->comp_mode_recovery_timer,
439                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
440 }
441
442 /*
443  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
444  * that causes ports behind that hardware to enter compliance mode sometimes.
445  * The quirk creates a timer that polls every 2 seconds the link state of
446  * each host controller's port and recovers it by issuing a Warm reset
447  * if Compliance mode is detected, otherwise the port will become "dead" (no
448  * device connections or disconnections will be detected anymore). Becasue no
449  * status event is generated when entering compliance mode (per xhci spec),
450  * this quirk is needed on systems that have the failing hardware installed.
451  */
452 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
453 {
454         xhci->port_status_u0 = 0;
455         init_timer(&xhci->comp_mode_recovery_timer);
456
457         xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
458         xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
459         xhci->comp_mode_recovery_timer.expires = jiffies +
460                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
461
462         set_timer_slack(&xhci->comp_mode_recovery_timer,
463                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
464         add_timer(&xhci->comp_mode_recovery_timer);
465         xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n");
466 }
467
468 /*
469  * This function identifies the systems that have installed the SN65LVPE502CP
470  * USB3.0 re-driver and that need the Compliance Mode Quirk.
471  * Systems:
472  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
473  */
474 static bool compliance_mode_recovery_timer_quirk_check(void)
475 {
476         const char *dmi_product_name, *dmi_sys_vendor;
477
478         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
479         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
480         if (!dmi_product_name || !dmi_sys_vendor)
481                 return false;
482
483         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
484                 return false;
485
486         if (strstr(dmi_product_name, "Z420") ||
487                         strstr(dmi_product_name, "Z620") ||
488                         strstr(dmi_product_name, "Z820") ||
489                         strstr(dmi_product_name, "Z1 Workstation"))
490                 return true;
491
492         return false;
493 }
494
495 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
496 {
497         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
498 }
499
500
501 /*
502  * Initialize memory for HCD and xHC (one-time init).
503  *
504  * Program the PAGESIZE register, initialize the device context array, create
505  * device contexts (?), set up a command ring segment (or two?), create event
506  * ring (one for now).
507  */
508 int xhci_init(struct usb_hcd *hcd)
509 {
510         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
511         int retval = 0;
512
513         xhci_dbg(xhci, "xhci_init\n");
514         spin_lock_init(&xhci->lock);
515         if (xhci->hci_version == 0x95 && link_quirk) {
516                 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
517                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
518         } else {
519                 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
520         }
521         retval = xhci_mem_init(xhci, GFP_KERNEL);
522         xhci_dbg(xhci, "Finished xhci_init\n");
523
524         /* Initializing Compliance Mode Recovery Data If Needed */
525         if (compliance_mode_recovery_timer_quirk_check()) {
526                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
527                 compliance_mode_recovery_timer_init(xhci);
528         }
529
530         return retval;
531 }
532
533 /*-------------------------------------------------------------------------*/
534
535
536 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
537 static void xhci_event_ring_work(unsigned long arg)
538 {
539         unsigned long flags;
540         int temp;
541         u64 temp_64;
542         struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
543         int i, j;
544
545         xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
546
547         spin_lock_irqsave(&xhci->lock, flags);
548         temp = xhci_readl(xhci, &xhci->op_regs->status);
549         xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
550         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
551                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
552                 xhci_dbg(xhci, "HW died, polling stopped.\n");
553                 spin_unlock_irqrestore(&xhci->lock, flags);
554                 return;
555         }
556
557         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
558         xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
559         xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
560         xhci->error_bitmask = 0;
561         xhci_dbg(xhci, "Event ring:\n");
562         xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
563         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
564         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
565         temp_64 &= ~ERST_PTR_MASK;
566         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
567         xhci_dbg(xhci, "Command ring:\n");
568         xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
569         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
570         xhci_dbg_cmd_ptrs(xhci);
571         for (i = 0; i < MAX_HC_SLOTS; ++i) {
572                 if (!xhci->devs[i])
573                         continue;
574                 for (j = 0; j < 31; ++j) {
575                         xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
576                 }
577         }
578         spin_unlock_irqrestore(&xhci->lock, flags);
579
580         if (!xhci->zombie)
581                 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
582         else
583                 xhci_dbg(xhci, "Quit polling the event ring.\n");
584 }
585 #endif
586
587 static int xhci_run_finished(struct xhci_hcd *xhci)
588 {
589         if (xhci_start(xhci)) {
590                 xhci_halt(xhci);
591                 return -ENODEV;
592         }
593         xhci->shared_hcd->state = HC_STATE_RUNNING;
594         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
595
596         if (xhci->quirks & XHCI_NEC_HOST)
597                 xhci_ring_cmd_db(xhci);
598
599         xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
600         return 0;
601 }
602
603 /*
604  * Start the HC after it was halted.
605  *
606  * This function is called by the USB core when the HC driver is added.
607  * Its opposite is xhci_stop().
608  *
609  * xhci_init() must be called once before this function can be called.
610  * Reset the HC, enable device slot contexts, program DCBAAP, and
611  * set command ring pointer and event ring pointer.
612  *
613  * Setup MSI-X vectors and enable interrupts.
614  */
615 int xhci_run(struct usb_hcd *hcd)
616 {
617         u32 temp;
618         u64 temp_64;
619         int ret;
620         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
621
622         /* Start the xHCI host controller running only after the USB 2.0 roothub
623          * is setup.
624          */
625
626         hcd->uses_new_polling = 1;
627         if (!usb_hcd_is_primary_hcd(hcd))
628                 return xhci_run_finished(xhci);
629
630         xhci_dbg(xhci, "xhci_run\n");
631
632         ret = xhci_try_enable_msi(hcd);
633         if (ret)
634                 return ret;
635
636 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
637         init_timer(&xhci->event_ring_timer);
638         xhci->event_ring_timer.data = (unsigned long) xhci;
639         xhci->event_ring_timer.function = xhci_event_ring_work;
640         /* Poll the event ring */
641         xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
642         xhci->zombie = 0;
643         xhci_dbg(xhci, "Setting event ring polling timer\n");
644         add_timer(&xhci->event_ring_timer);
645 #endif
646
647         xhci_dbg(xhci, "Command ring memory map follows:\n");
648         xhci_debug_ring(xhci, xhci->cmd_ring);
649         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
650         xhci_dbg_cmd_ptrs(xhci);
651
652         xhci_dbg(xhci, "ERST memory map follows:\n");
653         xhci_dbg_erst(xhci, &xhci->erst);
654         xhci_dbg(xhci, "Event ring:\n");
655         xhci_debug_ring(xhci, xhci->event_ring);
656         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
657         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
658         temp_64 &= ~ERST_PTR_MASK;
659         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
660
661         xhci_dbg(xhci, "// Set the interrupt modulation register\n");
662         temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
663         temp &= ~ER_IRQ_INTERVAL_MASK;
664         temp |= (u32) 160;
665         xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
666
667         /* Set the HCD state before we enable the irqs */
668         temp = xhci_readl(xhci, &xhci->op_regs->command);
669         temp |= (CMD_EIE);
670         xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
671                         temp);
672         xhci_writel(xhci, temp, &xhci->op_regs->command);
673
674         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
675         xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
676                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
677         xhci_writel(xhci, ER_IRQ_ENABLE(temp),
678                         &xhci->ir_set->irq_pending);
679         xhci_print_ir_set(xhci, 0);
680
681         if (xhci->quirks & XHCI_NEC_HOST)
682                 xhci_queue_vendor_command(xhci, 0, 0, 0,
683                                 TRB_TYPE(TRB_NEC_GET_FW));
684
685         xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
686         return 0;
687 }
688
689 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
690 {
691         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
692
693         spin_lock_irq(&xhci->lock);
694         xhci_halt(xhci);
695
696         /* The shared_hcd is going to be deallocated shortly (the USB core only
697          * calls this function when allocation fails in usb_add_hcd(), or
698          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
699          */
700         xhci->shared_hcd = NULL;
701         spin_unlock_irq(&xhci->lock);
702 }
703
704 /*
705  * Stop xHCI driver.
706  *
707  * This function is called by the USB core when the HC driver is removed.
708  * Its opposite is xhci_run().
709  *
710  * Disable device contexts, disable IRQs, and quiesce the HC.
711  * Reset the HC, finish any completed transactions, and cleanup memory.
712  */
713 void xhci_stop(struct usb_hcd *hcd)
714 {
715         u32 temp;
716         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
717
718         if (!usb_hcd_is_primary_hcd(hcd)) {
719                 xhci_only_stop_hcd(xhci->shared_hcd);
720                 return;
721         }
722
723         spin_lock_irq(&xhci->lock);
724         /* Make sure the xHC is halted for a USB3 roothub
725          * (xhci_stop() could be called as part of failed init).
726          */
727         xhci_halt(xhci);
728         xhci_reset(xhci);
729         spin_unlock_irq(&xhci->lock);
730
731         xhci_cleanup_msix(xhci);
732
733 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
734         /* Tell the event ring poll function not to reschedule */
735         xhci->zombie = 1;
736         del_timer_sync(&xhci->event_ring_timer);
737 #endif
738
739         /* Deleting Compliance Mode Recovery Timer */
740         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
741                         (!(xhci_all_ports_seen_u0(xhci))))
742                 del_timer_sync(&xhci->comp_mode_recovery_timer);
743
744         if (xhci->quirks & XHCI_AMD_PLL_FIX)
745                 usb_amd_dev_put();
746
747         xhci_dbg(xhci, "// Disabling event ring interrupts\n");
748         temp = xhci_readl(xhci, &xhci->op_regs->status);
749         xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
750         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
751         xhci_writel(xhci, ER_IRQ_DISABLE(temp),
752                         &xhci->ir_set->irq_pending);
753         xhci_print_ir_set(xhci, 0);
754
755         xhci_dbg(xhci, "cleaning up memory\n");
756         xhci_mem_cleanup(xhci);
757         xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
758                     xhci_readl(xhci, &xhci->op_regs->status));
759 }
760
761 /*
762  * Shutdown HC (not bus-specific)
763  *
764  * This is called when the machine is rebooting or halting.  We assume that the
765  * machine will be powered off, and the HC's internal state will be reset.
766  * Don't bother to free memory.
767  *
768  * This will only ever be called with the main usb_hcd (the USB3 roothub).
769  */
770 void xhci_shutdown(struct usb_hcd *hcd)
771 {
772         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
773
774         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
775                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
776
777         spin_lock_irq(&xhci->lock);
778         xhci_halt(xhci);
779         /* Workaround for spurious wakeups at shutdown with HSW */
780         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
781                 xhci_reset(xhci);
782         spin_unlock_irq(&xhci->lock);
783
784         xhci_cleanup_msix(xhci);
785
786         xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
787                     xhci_readl(xhci, &xhci->op_regs->status));
788
789         /* Yet another workaround for spurious wakeups at shutdown with HSW */
790         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
791                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
792 }
793
794 #ifdef CONFIG_PM
795 static void xhci_save_registers(struct xhci_hcd *xhci)
796 {
797         xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
798         xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
799         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
800         xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
801         xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
802         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
803         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
804         xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
805         xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
806 }
807
808 static void xhci_restore_registers(struct xhci_hcd *xhci)
809 {
810         xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
811         xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
812         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
813         xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
814         xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
815         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
816         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
817         xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
818         xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
819 }
820
821 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
822 {
823         u64     val_64;
824
825         /* step 2: initialize command ring buffer */
826         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
827         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
828                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
829                                       xhci->cmd_ring->dequeue) &
830                  (u64) ~CMD_RING_RSVD_BITS) |
831                 xhci->cmd_ring->cycle_state;
832         xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
833                         (long unsigned long) val_64);
834         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
835 }
836
837 /*
838  * The whole command ring must be cleared to zero when we suspend the host.
839  *
840  * The host doesn't save the command ring pointer in the suspend well, so we
841  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
842  * aligned, because of the reserved bits in the command ring dequeue pointer
843  * register.  Therefore, we can't just set the dequeue pointer back in the
844  * middle of the ring (TRBs are 16-byte aligned).
845  */
846 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
847 {
848         struct xhci_ring *ring;
849         struct xhci_segment *seg;
850
851         ring = xhci->cmd_ring;
852         seg = ring->deq_seg;
853         do {
854                 memset(seg->trbs, 0,
855                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
856                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
857                         cpu_to_le32(~TRB_CYCLE);
858                 seg = seg->next;
859         } while (seg != ring->deq_seg);
860
861         /* Reset the software enqueue and dequeue pointers */
862         ring->deq_seg = ring->first_seg;
863         ring->dequeue = ring->first_seg->trbs;
864         ring->enq_seg = ring->deq_seg;
865         ring->enqueue = ring->dequeue;
866
867         /*
868          * Ring is now zeroed, so the HW should look for change of ownership
869          * when the cycle bit is set to 1.
870          */
871         ring->cycle_state = 1;
872
873         /*
874          * Reset the hardware dequeue pointer.
875          * Yes, this will need to be re-written after resume, but we're paranoid
876          * and want to make sure the hardware doesn't access bogus memory
877          * because, say, the BIOS or an SMI started the host without changing
878          * the command ring pointers.
879          */
880         xhci_set_cmd_ring_deq(xhci);
881 }
882
883 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
884 {
885         int port_index;
886         __le32 __iomem **port_array;
887         unsigned long flags;
888         u32 t1, t2;
889
890         spin_lock_irqsave(&xhci->lock, flags);
891
892         /* disble usb3 ports Wake bits*/
893         port_index = xhci->num_usb3_ports;
894         port_array = xhci->usb3_ports;
895         while (port_index--) {
896                 t1 = readl(port_array[port_index]);
897                 t1 = xhci_port_state_to_neutral(t1);
898                 t2 = t1 & ~PORT_WAKE_BITS;
899                 if (t1 != t2)
900                         writel(t2, port_array[port_index]);
901         }
902
903         /* disble usb2 ports Wake bits*/
904         port_index = xhci->num_usb2_ports;
905         port_array = xhci->usb2_ports;
906         while (port_index--) {
907                 t1 = readl(port_array[port_index]);
908                 t1 = xhci_port_state_to_neutral(t1);
909                 t2 = t1 & ~PORT_WAKE_BITS;
910                 if (t1 != t2)
911                         writel(t2, port_array[port_index]);
912         }
913
914         spin_unlock_irqrestore(&xhci->lock, flags);
915 }
916
917 /*
918  * Stop HC (not bus-specific)
919  *
920  * This is called when the machine transition into S3/S4 mode.
921  *
922  */
923 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
924 {
925         int                     rc = 0;
926         unsigned int            delay = XHCI_MAX_HALT_USEC;
927         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
928         u32                     command;
929
930         /* Clear root port wake on bits if wakeup not allowed. */
931         if (!do_wakeup)
932                 xhci_disable_port_wake_on_bits(xhci);
933
934         /* Don't poll the roothubs on bus suspend. */
935         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
936         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
937         del_timer_sync(&hcd->rh_timer);
938
939         spin_lock_irq(&xhci->lock);
940         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
941         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
942         /* step 1: stop endpoint */
943         /* skipped assuming that port suspend has done */
944
945         /* step 2: clear Run/Stop bit */
946         command = xhci_readl(xhci, &xhci->op_regs->command);
947         command &= ~CMD_RUN;
948         xhci_writel(xhci, command, &xhci->op_regs->command);
949
950         /* Some chips from Fresco Logic need an extraordinary delay */
951         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
952
953         if (handshake(xhci, &xhci->op_regs->status,
954                       STS_HALT, STS_HALT, delay)) {
955                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
956                 spin_unlock_irq(&xhci->lock);
957                 return -ETIMEDOUT;
958         }
959         xhci_clear_command_ring(xhci);
960
961         /* step 3: save registers */
962         xhci_save_registers(xhci);
963
964         /* step 4: set CSS flag */
965         command = xhci_readl(xhci, &xhci->op_regs->command);
966         command |= CMD_CSS;
967         xhci_writel(xhci, command, &xhci->op_regs->command);
968         if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) {
969                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
970                 spin_unlock_irq(&xhci->lock);
971                 return -ETIMEDOUT;
972         }
973         spin_unlock_irq(&xhci->lock);
974
975         /*
976          * Deleting Compliance Mode Recovery Timer because the xHCI Host
977          * is about to be suspended.
978          */
979         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
980                         (!(xhci_all_ports_seen_u0(xhci)))) {
981                 del_timer_sync(&xhci->comp_mode_recovery_timer);
982                 xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n");
983         }
984
985         /* step 5: remove core well power */
986         /* synchronize irq when using MSI-X */
987         xhci_msix_sync_irqs(xhci);
988
989         return rc;
990 }
991
992 /*
993  * start xHC (not bus-specific)
994  *
995  * This is called when the machine transition from S3/S4 mode.
996  *
997  */
998 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
999 {
1000         u32                     command, temp = 0, status;
1001         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1002         struct usb_hcd          *secondary_hcd;
1003         int                     retval = 0;
1004         bool                    comp_timer_running = false;
1005
1006         /* Wait a bit if either of the roothubs need to settle from the
1007          * transition into bus suspend.
1008          */
1009         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1010                         time_before(jiffies,
1011                                 xhci->bus_state[1].next_statechange))
1012                 msleep(100);
1013
1014         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1015         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1016
1017         spin_lock_irq(&xhci->lock);
1018         if (xhci->quirks & XHCI_RESET_ON_RESUME)
1019                 hibernated = true;
1020
1021         if (!hibernated) {
1022                 /* step 1: restore register */
1023                 xhci_restore_registers(xhci);
1024                 /* step 2: initialize command ring buffer */
1025                 xhci_set_cmd_ring_deq(xhci);
1026                 /* step 3: restore state and start state*/
1027                 /* step 3: set CRS flag */
1028                 command = xhci_readl(xhci, &xhci->op_regs->command);
1029                 command |= CMD_CRS;
1030                 xhci_writel(xhci, command, &xhci->op_regs->command);
1031                 if (handshake(xhci, &xhci->op_regs->status,
1032                               STS_RESTORE, 0, 10 * 1000)) {
1033                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1034                         spin_unlock_irq(&xhci->lock);
1035                         return -ETIMEDOUT;
1036                 }
1037                 temp = xhci_readl(xhci, &xhci->op_regs->status);
1038         }
1039
1040         /* If restore operation fails, re-initialize the HC during resume */
1041         if ((temp & STS_SRE) || hibernated) {
1042
1043                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1044                                 !(xhci_all_ports_seen_u0(xhci))) {
1045                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1046                         xhci_dbg(xhci, "Compliance Mode Recovery Timer deleted!\n");
1047                 }
1048
1049                 /* Let the USB core know _both_ roothubs lost power. */
1050                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1051                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1052
1053                 xhci_dbg(xhci, "Stop HCD\n");
1054                 xhci_halt(xhci);
1055                 xhci_reset(xhci);
1056                 spin_unlock_irq(&xhci->lock);
1057                 xhci_cleanup_msix(xhci);
1058
1059 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
1060                 /* Tell the event ring poll function not to reschedule */
1061                 xhci->zombie = 1;
1062                 del_timer_sync(&xhci->event_ring_timer);
1063 #endif
1064
1065                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1066                 temp = xhci_readl(xhci, &xhci->op_regs->status);
1067                 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
1068                 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
1069                 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
1070                                 &xhci->ir_set->irq_pending);
1071                 xhci_print_ir_set(xhci, 0);
1072
1073                 xhci_dbg(xhci, "cleaning up memory\n");
1074                 xhci_mem_cleanup(xhci);
1075                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1076                             xhci_readl(xhci, &xhci->op_regs->status));
1077
1078                 /* USB core calls the PCI reinit and start functions twice:
1079                  * first with the primary HCD, and then with the secondary HCD.
1080                  * If we don't do the same, the host will never be started.
1081                  */
1082                 if (!usb_hcd_is_primary_hcd(hcd))
1083                         secondary_hcd = hcd;
1084                 else
1085                         secondary_hcd = xhci->shared_hcd;
1086
1087                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1088                 retval = xhci_init(hcd->primary_hcd);
1089                 if (retval)
1090                         return retval;
1091                 comp_timer_running = true;
1092
1093                 xhci_dbg(xhci, "Start the primary HCD\n");
1094                 retval = xhci_run(hcd->primary_hcd);
1095                 if (!retval) {
1096                         xhci_dbg(xhci, "Start the secondary HCD\n");
1097                         retval = xhci_run(secondary_hcd);
1098                 }
1099                 hcd->state = HC_STATE_SUSPENDED;
1100                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1101                 goto done;
1102         }
1103
1104         /* step 4: set Run/Stop bit */
1105         command = xhci_readl(xhci, &xhci->op_regs->command);
1106         command |= CMD_RUN;
1107         xhci_writel(xhci, command, &xhci->op_regs->command);
1108         handshake(xhci, &xhci->op_regs->status, STS_HALT,
1109                   0, 250 * 1000);
1110
1111         /* step 5: walk topology and initialize portsc,
1112          * portpmsc and portli
1113          */
1114         /* this is done in bus_resume */
1115
1116         /* step 6: restart each of the previously
1117          * Running endpoints by ringing their doorbells
1118          */
1119
1120         spin_unlock_irq(&xhci->lock);
1121
1122  done:
1123         if (retval == 0) {
1124                 /* Resume root hubs only when have pending events. */
1125                 status = readl(&xhci->op_regs->status);
1126                 if (status & STS_EINT) {
1127                         usb_hcd_resume_root_hub(hcd);
1128                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1129                 }
1130         }
1131
1132         /*
1133          * If system is subject to the Quirk, Compliance Mode Timer needs to
1134          * be re-initialized Always after a system resume. Ports are subject
1135          * to suffer the Compliance Mode issue again. It doesn't matter if
1136          * ports have entered previously to U0 before system's suspension.
1137          */
1138         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1139                 compliance_mode_recovery_timer_init(xhci);
1140
1141         /* Re-enable port polling. */
1142         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1143         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1144         usb_hcd_poll_rh_status(hcd);
1145
1146         return retval;
1147 }
1148 #endif  /* CONFIG_PM */
1149
1150 /*-------------------------------------------------------------------------*/
1151
1152 /**
1153  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1154  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1155  * value to right shift 1 for the bitmask.
1156  *
1157  * Index  = (epnum * 2) + direction - 1,
1158  * where direction = 0 for OUT, 1 for IN.
1159  * For control endpoints, the IN index is used (OUT index is unused), so
1160  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1161  */
1162 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1163 {
1164         unsigned int index;
1165         if (usb_endpoint_xfer_control(desc))
1166                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1167         else
1168                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1169                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1170         return index;
1171 }
1172
1173 /* Find the flag for this endpoint (for use in the control context).  Use the
1174  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1175  * bit 1, etc.
1176  */
1177 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1178 {
1179         return 1 << (xhci_get_endpoint_index(desc) + 1);
1180 }
1181
1182 /* Find the flag for this endpoint (for use in the control context).  Use the
1183  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1184  * bit 1, etc.
1185  */
1186 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1187 {
1188         return 1 << (ep_index + 1);
1189 }
1190
1191 /* Compute the last valid endpoint context index.  Basically, this is the
1192  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1193  * we find the most significant bit set in the added contexts flags.
1194  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1195  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1196  */
1197 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1198 {
1199         return fls(added_ctxs) - 1;
1200 }
1201
1202 /* Returns 1 if the arguments are OK;
1203  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1204  */
1205 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1206                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1207                 const char *func) {
1208         struct xhci_hcd *xhci;
1209         struct xhci_virt_device *virt_dev;
1210
1211         if (!hcd || (check_ep && !ep) || !udev) {
1212                 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1213                                 func);
1214                 return -EINVAL;
1215         }
1216         if (!udev->parent) {
1217                 printk(KERN_DEBUG "xHCI %s called for root hub\n",
1218                                 func);
1219                 return 0;
1220         }
1221
1222         xhci = hcd_to_xhci(hcd);
1223         if (check_virt_dev) {
1224                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1225                         printk(KERN_DEBUG "xHCI %s called with unaddressed "
1226                                                 "device\n", func);
1227                         return -EINVAL;
1228                 }
1229
1230                 virt_dev = xhci->devs[udev->slot_id];
1231                 if (virt_dev->udev != udev) {
1232                         printk(KERN_DEBUG "xHCI %s called with udev and "
1233                                           "virt_dev does not match\n", func);
1234                         return -EINVAL;
1235                 }
1236         }
1237
1238         if (xhci->xhc_state & XHCI_STATE_HALTED)
1239                 return -ENODEV;
1240
1241         return 1;
1242 }
1243
1244 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1245                 struct usb_device *udev, struct xhci_command *command,
1246                 bool ctx_change, bool must_succeed);
1247
1248 /*
1249  * Full speed devices may have a max packet size greater than 8 bytes, but the
1250  * USB core doesn't know that until it reads the first 8 bytes of the
1251  * descriptor.  If the usb_device's max packet size changes after that point,
1252  * we need to issue an evaluate context command and wait on it.
1253  */
1254 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1255                 unsigned int ep_index, struct urb *urb)
1256 {
1257         struct xhci_container_ctx *in_ctx;
1258         struct xhci_container_ctx *out_ctx;
1259         struct xhci_input_control_ctx *ctrl_ctx;
1260         struct xhci_ep_ctx *ep_ctx;
1261         int max_packet_size;
1262         int hw_max_packet_size;
1263         int ret = 0;
1264
1265         out_ctx = xhci->devs[slot_id]->out_ctx;
1266         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1267         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1268         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1269         if (hw_max_packet_size != max_packet_size) {
1270                 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1271                 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1272                                 max_packet_size);
1273                 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1274                                 hw_max_packet_size);
1275                 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1276
1277                 /* Set up the modified control endpoint 0 */
1278                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1279                                 xhci->devs[slot_id]->out_ctx, ep_index);
1280                 in_ctx = xhci->devs[slot_id]->in_ctx;
1281                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1282                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1283                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1284
1285                 /* Set up the input context flags for the command */
1286                 /* FIXME: This won't work if a non-default control endpoint
1287                  * changes max packet sizes.
1288                  */
1289                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1290                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1291                 ctrl_ctx->drop_flags = 0;
1292
1293                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1294                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1295                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1296                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1297
1298                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1299                                 true, false);
1300
1301                 /* Clean up the input context for later use by bandwidth
1302                  * functions.
1303                  */
1304                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1305         }
1306         return ret;
1307 }
1308
1309 /*
1310  * non-error returns are a promise to giveback() the urb later
1311  * we drop ownership so next owner (or urb unlink) can get it
1312  */
1313 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1314 {
1315         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1316         struct xhci_td *buffer;
1317         unsigned long flags;
1318         int ret = 0;
1319         unsigned int slot_id, ep_index;
1320         struct urb_priv *urb_priv;
1321         int size, i;
1322
1323         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1324                                         true, true, __func__) <= 0)
1325                 return -EINVAL;
1326
1327         slot_id = urb->dev->slot_id;
1328         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1329
1330         if (!HCD_HW_ACCESSIBLE(hcd)) {
1331                 if (!in_interrupt())
1332                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1333                 ret = -ESHUTDOWN;
1334                 goto exit;
1335         }
1336
1337         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1338                 size = urb->number_of_packets;
1339         else
1340                 size = 1;
1341
1342         urb_priv = kzalloc(sizeof(struct urb_priv) +
1343                                   size * sizeof(struct xhci_td *), mem_flags);
1344         if (!urb_priv)
1345                 return -ENOMEM;
1346
1347         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1348         if (!buffer) {
1349                 kfree(urb_priv);
1350                 return -ENOMEM;
1351         }
1352
1353         for (i = 0; i < size; i++) {
1354                 urb_priv->td[i] = buffer;
1355                 buffer++;
1356         }
1357
1358         urb_priv->length = size;
1359         urb_priv->td_cnt = 0;
1360         urb->hcpriv = urb_priv;
1361
1362         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1363                 /* Check to see if the max packet size for the default control
1364                  * endpoint changed during FS device enumeration
1365                  */
1366                 if (urb->dev->speed == USB_SPEED_FULL) {
1367                         ret = xhci_check_maxpacket(xhci, slot_id,
1368                                         ep_index, urb);
1369                         if (ret < 0) {
1370                                 xhci_urb_free_priv(xhci, urb_priv);
1371                                 urb->hcpriv = NULL;
1372                                 return ret;
1373                         }
1374                 }
1375
1376                 /* We have a spinlock and interrupts disabled, so we must pass
1377                  * atomic context to this function, which may allocate memory.
1378                  */
1379                 spin_lock_irqsave(&xhci->lock, flags);
1380                 if (xhci->xhc_state & XHCI_STATE_DYING)
1381                         goto dying;
1382                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1383                                 slot_id, ep_index);
1384                 if (ret)
1385                         goto free_priv;
1386                 spin_unlock_irqrestore(&xhci->lock, flags);
1387         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1388                 spin_lock_irqsave(&xhci->lock, flags);
1389                 if (xhci->xhc_state & XHCI_STATE_DYING)
1390                         goto dying;
1391                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1392                                 EP_GETTING_STREAMS) {
1393                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1394                                         "is transitioning to using streams.\n");
1395                         ret = -EINVAL;
1396                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1397                                 EP_GETTING_NO_STREAMS) {
1398                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1399                                         "is transitioning to "
1400                                         "not having streams.\n");
1401                         ret = -EINVAL;
1402                 } else {
1403                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1404                                         slot_id, ep_index);
1405                 }
1406                 if (ret)
1407                         goto free_priv;
1408                 spin_unlock_irqrestore(&xhci->lock, flags);
1409         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1410                 spin_lock_irqsave(&xhci->lock, flags);
1411                 if (xhci->xhc_state & XHCI_STATE_DYING)
1412                         goto dying;
1413                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1414                                 slot_id, ep_index);
1415                 if (ret)
1416                         goto free_priv;
1417                 spin_unlock_irqrestore(&xhci->lock, flags);
1418         } else {
1419                 spin_lock_irqsave(&xhci->lock, flags);
1420                 if (xhci->xhc_state & XHCI_STATE_DYING)
1421                         goto dying;
1422                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1423                                 slot_id, ep_index);
1424                 if (ret)
1425                         goto free_priv;
1426                 spin_unlock_irqrestore(&xhci->lock, flags);
1427         }
1428 exit:
1429         return ret;
1430 dying:
1431         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1432                         "non-responsive xHCI host.\n",
1433                         urb->ep->desc.bEndpointAddress, urb);
1434         ret = -ESHUTDOWN;
1435 free_priv:
1436         xhci_urb_free_priv(xhci, urb_priv);
1437         urb->hcpriv = NULL;
1438         spin_unlock_irqrestore(&xhci->lock, flags);
1439         return ret;
1440 }
1441
1442 /* Get the right ring for the given URB.
1443  * If the endpoint supports streams, boundary check the URB's stream ID.
1444  * If the endpoint doesn't support streams, return the singular endpoint ring.
1445  */
1446 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1447                 struct urb *urb)
1448 {
1449         unsigned int slot_id;
1450         unsigned int ep_index;
1451         unsigned int stream_id;
1452         struct xhci_virt_ep *ep;
1453
1454         slot_id = urb->dev->slot_id;
1455         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1456         stream_id = urb->stream_id;
1457         ep = &xhci->devs[slot_id]->eps[ep_index];
1458         /* Common case: no streams */
1459         if (!(ep->ep_state & EP_HAS_STREAMS))
1460                 return ep->ring;
1461
1462         if (stream_id == 0) {
1463                 xhci_warn(xhci,
1464                                 "WARN: Slot ID %u, ep index %u has streams, "
1465                                 "but URB has no stream ID.\n",
1466                                 slot_id, ep_index);
1467                 return NULL;
1468         }
1469
1470         if (stream_id < ep->stream_info->num_streams)
1471                 return ep->stream_info->stream_rings[stream_id];
1472
1473         xhci_warn(xhci,
1474                         "WARN: Slot ID %u, ep index %u has "
1475                         "stream IDs 1 to %u allocated, "
1476                         "but stream ID %u is requested.\n",
1477                         slot_id, ep_index,
1478                         ep->stream_info->num_streams - 1,
1479                         stream_id);
1480         return NULL;
1481 }
1482
1483 /*
1484  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1485  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1486  * should pick up where it left off in the TD, unless a Set Transfer Ring
1487  * Dequeue Pointer is issued.
1488  *
1489  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1490  * the ring.  Since the ring is a contiguous structure, they can't be physically
1491  * removed.  Instead, there are two options:
1492  *
1493  *  1) If the HC is in the middle of processing the URB to be canceled, we
1494  *     simply move the ring's dequeue pointer past those TRBs using the Set
1495  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1496  *     when drivers timeout on the last submitted URB and attempt to cancel.
1497  *
1498  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1499  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1500  *     HC will need to invalidate the any TRBs it has cached after the stop
1501  *     endpoint command, as noted in the xHCI 0.95 errata.
1502  *
1503  *  3) The TD may have completed by the time the Stop Endpoint Command
1504  *     completes, so software needs to handle that case too.
1505  *
1506  * This function should protect against the TD enqueueing code ringing the
1507  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1508  * It also needs to account for multiple cancellations on happening at the same
1509  * time for the same endpoint.
1510  *
1511  * Note that this function can be called in any context, or so says
1512  * usb_hcd_unlink_urb()
1513  */
1514 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1515 {
1516         unsigned long flags;
1517         int ret, i;
1518         u32 temp;
1519         struct xhci_hcd *xhci;
1520         struct urb_priv *urb_priv;
1521         struct xhci_td *td;
1522         unsigned int ep_index;
1523         struct xhci_ring *ep_ring;
1524         struct xhci_virt_ep *ep;
1525
1526         xhci = hcd_to_xhci(hcd);
1527         spin_lock_irqsave(&xhci->lock, flags);
1528         /* Make sure the URB hasn't completed or been unlinked already */
1529         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1530         if (ret || !urb->hcpriv)
1531                 goto done;
1532         temp = xhci_readl(xhci, &xhci->op_regs->status);
1533         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1534                 xhci_dbg(xhci, "HW died, freeing TD.\n");
1535                 urb_priv = urb->hcpriv;
1536                 for (i = urb_priv->td_cnt;
1537                      i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1538                      i++) {
1539                         td = urb_priv->td[i];
1540                         if (!list_empty(&td->td_list))
1541                                 list_del_init(&td->td_list);
1542                         if (!list_empty(&td->cancelled_td_list))
1543                                 list_del_init(&td->cancelled_td_list);
1544                 }
1545
1546                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1547                 spin_unlock_irqrestore(&xhci->lock, flags);
1548                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1549                 xhci_urb_free_priv(xhci, urb_priv);
1550                 return ret;
1551         }
1552         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1553                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1554                 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1555                                 "non-responsive xHCI host.\n",
1556                                 urb->ep->desc.bEndpointAddress, urb);
1557                 /* Let the stop endpoint command watchdog timer (which set this
1558                  * state) finish cleaning up the endpoint TD lists.  We must
1559                  * have caught it in the middle of dropping a lock and giving
1560                  * back an URB.
1561                  */
1562                 goto done;
1563         }
1564
1565         xhci_dbg(xhci, "Cancel URB %p\n", urb);
1566         xhci_dbg(xhci, "Event ring:\n");
1567         xhci_debug_ring(xhci, xhci->event_ring);
1568         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1569         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1570         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1571         if (!ep_ring) {
1572                 ret = -EINVAL;
1573                 goto done;
1574         }
1575
1576         xhci_dbg(xhci, "Endpoint ring:\n");
1577         xhci_debug_ring(xhci, ep_ring);
1578
1579         urb_priv = urb->hcpriv;
1580
1581         for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1582                 td = urb_priv->td[i];
1583                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1584         }
1585
1586         /* Queue a stop endpoint command, but only if this is
1587          * the first cancellation to be handled.
1588          */
1589         if (!(ep->ep_state & EP_HALT_PENDING)) {
1590                 ep->ep_state |= EP_HALT_PENDING;
1591                 ep->stop_cmds_pending++;
1592                 ep->stop_cmd_timer.expires = jiffies +
1593                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1594                 add_timer(&ep->stop_cmd_timer);
1595                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1596                 xhci_ring_cmd_db(xhci);
1597         }
1598 done:
1599         spin_unlock_irqrestore(&xhci->lock, flags);
1600         return ret;
1601 }
1602
1603 /* Drop an endpoint from a new bandwidth configuration for this device.
1604  * Only one call to this function is allowed per endpoint before
1605  * check_bandwidth() or reset_bandwidth() must be called.
1606  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1607  * add the endpoint to the schedule with possibly new parameters denoted by a
1608  * different endpoint descriptor in usb_host_endpoint.
1609  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1610  * not allowed.
1611  *
1612  * The USB core will not allow URBs to be queued to an endpoint that is being
1613  * disabled, so there's no need for mutual exclusion to protect
1614  * the xhci->devs[slot_id] structure.
1615  */
1616 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1617                 struct usb_host_endpoint *ep)
1618 {
1619         struct xhci_hcd *xhci;
1620         struct xhci_container_ctx *in_ctx, *out_ctx;
1621         struct xhci_input_control_ctx *ctrl_ctx;
1622         struct xhci_slot_ctx *slot_ctx;
1623         unsigned int last_ctx;
1624         unsigned int ep_index;
1625         struct xhci_ep_ctx *ep_ctx;
1626         u32 drop_flag;
1627         u32 new_add_flags, new_drop_flags, new_slot_info;
1628         int ret;
1629
1630         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1631         if (ret <= 0)
1632                 return ret;
1633         xhci = hcd_to_xhci(hcd);
1634         if (xhci->xhc_state & XHCI_STATE_DYING)
1635                 return -ENODEV;
1636
1637         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1638         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1639         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1640                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1641                                 __func__, drop_flag);
1642                 return 0;
1643         }
1644
1645         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1646         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1647         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1648         ep_index = xhci_get_endpoint_index(&ep->desc);
1649         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1650         /* If the HC already knows the endpoint is disabled,
1651          * or the HCD has noted it is disabled, ignore this request
1652          */
1653         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1654              cpu_to_le32(EP_STATE_DISABLED)) ||
1655             le32_to_cpu(ctrl_ctx->drop_flags) &
1656             xhci_get_endpoint_flag(&ep->desc)) {
1657                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1658                                 __func__, ep);
1659                 return 0;
1660         }
1661
1662         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1663         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1664
1665         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1666         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1667
1668         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1669         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1670         /* Update the last valid endpoint context, if we deleted the last one */
1671         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1672             LAST_CTX(last_ctx)) {
1673                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1674                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1675         }
1676         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1677
1678         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1679
1680         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1681                         (unsigned int) ep->desc.bEndpointAddress,
1682                         udev->slot_id,
1683                         (unsigned int) new_drop_flags,
1684                         (unsigned int) new_add_flags,
1685                         (unsigned int) new_slot_info);
1686         return 0;
1687 }
1688
1689 /* Add an endpoint to a new possible bandwidth configuration for this device.
1690  * Only one call to this function is allowed per endpoint before
1691  * check_bandwidth() or reset_bandwidth() must be called.
1692  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1693  * add the endpoint to the schedule with possibly new parameters denoted by a
1694  * different endpoint descriptor in usb_host_endpoint.
1695  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1696  * not allowed.
1697  *
1698  * The USB core will not allow URBs to be queued to an endpoint until the
1699  * configuration or alt setting is installed in the device, so there's no need
1700  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1701  */
1702 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1703                 struct usb_host_endpoint *ep)
1704 {
1705         struct xhci_hcd *xhci;
1706         struct xhci_container_ctx *in_ctx, *out_ctx;
1707         unsigned int ep_index;
1708         struct xhci_ep_ctx *ep_ctx;
1709         struct xhci_slot_ctx *slot_ctx;
1710         struct xhci_input_control_ctx *ctrl_ctx;
1711         u32 added_ctxs;
1712         unsigned int last_ctx;
1713         u32 new_add_flags, new_drop_flags, new_slot_info;
1714         struct xhci_virt_device *virt_dev;
1715         int ret = 0;
1716
1717         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1718         if (ret <= 0) {
1719                 /* So we won't queue a reset ep command for a root hub */
1720                 ep->hcpriv = NULL;
1721                 return ret;
1722         }
1723         xhci = hcd_to_xhci(hcd);
1724         if (xhci->xhc_state & XHCI_STATE_DYING)
1725                 return -ENODEV;
1726
1727         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1728         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1729         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1730                 /* FIXME when we have to issue an evaluate endpoint command to
1731                  * deal with ep0 max packet size changing once we get the
1732                  * descriptors
1733                  */
1734                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1735                                 __func__, added_ctxs);
1736                 return 0;
1737         }
1738
1739         virt_dev = xhci->devs[udev->slot_id];
1740         in_ctx = virt_dev->in_ctx;
1741         out_ctx = virt_dev->out_ctx;
1742         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1743         ep_index = xhci_get_endpoint_index(&ep->desc);
1744         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1745
1746         /* If this endpoint is already in use, and the upper layers are trying
1747          * to add it again without dropping it, reject the addition.
1748          */
1749         if (virt_dev->eps[ep_index].ring &&
1750                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1751                                 xhci_get_endpoint_flag(&ep->desc))) {
1752                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1753                                 "without dropping it.\n",
1754                                 (unsigned int) ep->desc.bEndpointAddress);
1755                 return -EINVAL;
1756         }
1757
1758         /* If the HCD has already noted the endpoint is enabled,
1759          * ignore this request.
1760          */
1761         if (le32_to_cpu(ctrl_ctx->add_flags) &
1762             xhci_get_endpoint_flag(&ep->desc)) {
1763                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1764                                 __func__, ep);
1765                 return 0;
1766         }
1767
1768         /*
1769          * Configuration and alternate setting changes must be done in
1770          * process context, not interrupt context (or so documenation
1771          * for usb_set_interface() and usb_set_configuration() claim).
1772          */
1773         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1774                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1775                                 __func__, ep->desc.bEndpointAddress);
1776                 return -ENOMEM;
1777         }
1778
1779         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1780         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1781
1782         /* If xhci_endpoint_disable() was called for this endpoint, but the
1783          * xHC hasn't been notified yet through the check_bandwidth() call,
1784          * this re-adds a new state for the endpoint from the new endpoint
1785          * descriptors.  We must drop and re-add this endpoint, so we leave the
1786          * drop flags alone.
1787          */
1788         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1789
1790         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1791         /* Update the last valid endpoint context, if we just added one past */
1792         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1793             LAST_CTX(last_ctx)) {
1794                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1795                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1796         }
1797         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1798
1799         /* Store the usb_device pointer for later use */
1800         ep->hcpriv = udev;
1801
1802         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1803                         (unsigned int) ep->desc.bEndpointAddress,
1804                         udev->slot_id,
1805                         (unsigned int) new_drop_flags,
1806                         (unsigned int) new_add_flags,
1807                         (unsigned int) new_slot_info);
1808         return 0;
1809 }
1810
1811 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1812 {
1813         struct xhci_input_control_ctx *ctrl_ctx;
1814         struct xhci_ep_ctx *ep_ctx;
1815         struct xhci_slot_ctx *slot_ctx;
1816         int i;
1817
1818         /* When a device's add flag and drop flag are zero, any subsequent
1819          * configure endpoint command will leave that endpoint's state
1820          * untouched.  Make sure we don't leave any old state in the input
1821          * endpoint contexts.
1822          */
1823         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1824         ctrl_ctx->drop_flags = 0;
1825         ctrl_ctx->add_flags = 0;
1826         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1827         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1828         /* Endpoint 0 is always valid */
1829         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1830         for (i = 1; i < 31; ++i) {
1831                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1832                 ep_ctx->ep_info = 0;
1833                 ep_ctx->ep_info2 = 0;
1834                 ep_ctx->deq = 0;
1835                 ep_ctx->tx_info = 0;
1836         }
1837 }
1838
1839 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1840                 struct usb_device *udev, u32 *cmd_status)
1841 {
1842         int ret;
1843
1844         switch (*cmd_status) {
1845         case COMP_ENOMEM:
1846                 dev_warn(&udev->dev, "Not enough host controller resources "
1847                                 "for new device state.\n");
1848                 ret = -ENOMEM;
1849                 /* FIXME: can we allocate more resources for the HC? */
1850                 break;
1851         case COMP_BW_ERR:
1852         case COMP_2ND_BW_ERR:
1853                 dev_warn(&udev->dev, "Not enough bandwidth "
1854                                 "for new device state.\n");
1855                 ret = -ENOSPC;
1856                 /* FIXME: can we go back to the old state? */
1857                 break;
1858         case COMP_TRB_ERR:
1859                 /* the HCD set up something wrong */
1860                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1861                                 "add flag = 1, "
1862                                 "and endpoint is not disabled.\n");
1863                 ret = -EINVAL;
1864                 break;
1865         case COMP_DEV_ERR:
1866                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1867                                 "configure command.\n");
1868                 ret = -ENODEV;
1869                 break;
1870         case COMP_SUCCESS:
1871                 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1872                 ret = 0;
1873                 break;
1874         default:
1875                 xhci_err(xhci, "ERROR: unexpected command completion "
1876                                 "code 0x%x.\n", *cmd_status);
1877                 ret = -EINVAL;
1878                 break;
1879         }
1880         return ret;
1881 }
1882
1883 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1884                 struct usb_device *udev, u32 *cmd_status)
1885 {
1886         int ret;
1887         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1888
1889         switch (*cmd_status) {
1890         case COMP_EINVAL:
1891                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1892                                 "context command.\n");
1893                 ret = -EINVAL;
1894                 break;
1895         case COMP_EBADSLT:
1896                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1897                                 "evaluate context command.\n");
1898         case COMP_CTX_STATE:
1899                 dev_warn(&udev->dev, "WARN: invalid context state for "
1900                                 "evaluate context command.\n");
1901                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1902                 ret = -EINVAL;
1903                 break;
1904         case COMP_DEV_ERR:
1905                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1906                                 "context command.\n");
1907                 ret = -ENODEV;
1908                 break;
1909         case COMP_MEL_ERR:
1910                 /* Max Exit Latency too large error */
1911                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1912                 ret = -EINVAL;
1913                 break;
1914         case COMP_SUCCESS:
1915                 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1916                 ret = 0;
1917                 break;
1918         default:
1919                 xhci_err(xhci, "ERROR: unexpected command completion "
1920                                 "code 0x%x.\n", *cmd_status);
1921                 ret = -EINVAL;
1922                 break;
1923         }
1924         return ret;
1925 }
1926
1927 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1928                 struct xhci_container_ctx *in_ctx)
1929 {
1930         struct xhci_input_control_ctx *ctrl_ctx;
1931         u32 valid_add_flags;
1932         u32 valid_drop_flags;
1933
1934         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1935         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1936          * (bit 1).  The default control endpoint is added during the Address
1937          * Device command and is never removed until the slot is disabled.
1938          */
1939         valid_add_flags = ctrl_ctx->add_flags >> 2;
1940         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1941
1942         /* Use hweight32 to count the number of ones in the add flags, or
1943          * number of endpoints added.  Don't count endpoints that are changed
1944          * (both added and dropped).
1945          */
1946         return hweight32(valid_add_flags) -
1947                 hweight32(valid_add_flags & valid_drop_flags);
1948 }
1949
1950 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1951                 struct xhci_container_ctx *in_ctx)
1952 {
1953         struct xhci_input_control_ctx *ctrl_ctx;
1954         u32 valid_add_flags;
1955         u32 valid_drop_flags;
1956
1957         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1958         valid_add_flags = ctrl_ctx->add_flags >> 2;
1959         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1960
1961         return hweight32(valid_drop_flags) -
1962                 hweight32(valid_add_flags & valid_drop_flags);
1963 }
1964
1965 /*
1966  * We need to reserve the new number of endpoints before the configure endpoint
1967  * command completes.  We can't subtract the dropped endpoints from the number
1968  * of active endpoints until the command completes because we can oversubscribe
1969  * the host in this case:
1970  *
1971  *  - the first configure endpoint command drops more endpoints than it adds
1972  *  - a second configure endpoint command that adds more endpoints is queued
1973  *  - the first configure endpoint command fails, so the config is unchanged
1974  *  - the second command may succeed, even though there isn't enough resources
1975  *
1976  * Must be called with xhci->lock held.
1977  */
1978 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1979                 struct xhci_container_ctx *in_ctx)
1980 {
1981         u32 added_eps;
1982
1983         added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1984         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1985                 xhci_dbg(xhci, "Not enough ep ctxs: "
1986                                 "%u active, need to add %u, limit is %u.\n",
1987                                 xhci->num_active_eps, added_eps,
1988                                 xhci->limit_active_eps);
1989                 return -ENOMEM;
1990         }
1991         xhci->num_active_eps += added_eps;
1992         xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1993                         xhci->num_active_eps);
1994         return 0;
1995 }
1996
1997 /*
1998  * The configure endpoint was failed by the xHC for some other reason, so we
1999  * need to revert the resources that failed configuration would have used.
2000  *
2001  * Must be called with xhci->lock held.
2002  */
2003 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2004                 struct xhci_container_ctx *in_ctx)
2005 {
2006         u32 num_failed_eps;
2007
2008         num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
2009         xhci->num_active_eps -= num_failed_eps;
2010         xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
2011                         num_failed_eps,
2012                         xhci->num_active_eps);
2013 }
2014
2015 /*
2016  * Now that the command has completed, clean up the active endpoint count by
2017  * subtracting out the endpoints that were dropped (but not changed).
2018  *
2019  * Must be called with xhci->lock held.
2020  */
2021 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2022                 struct xhci_container_ctx *in_ctx)
2023 {
2024         u32 num_dropped_eps;
2025
2026         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
2027         xhci->num_active_eps -= num_dropped_eps;
2028         if (num_dropped_eps)
2029                 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
2030                                 num_dropped_eps,
2031                                 xhci->num_active_eps);
2032 }
2033
2034 unsigned int xhci_get_block_size(struct usb_device *udev)
2035 {
2036         switch (udev->speed) {
2037         case USB_SPEED_LOW:
2038         case USB_SPEED_FULL:
2039                 return FS_BLOCK;
2040         case USB_SPEED_HIGH:
2041                 return HS_BLOCK;
2042         case USB_SPEED_SUPER:
2043                 return SS_BLOCK;
2044         case USB_SPEED_UNKNOWN:
2045         case USB_SPEED_WIRELESS:
2046         default:
2047                 /* Should never happen */
2048                 return 1;
2049         }
2050 }
2051
2052 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2053 {
2054         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2055                 return LS_OVERHEAD;
2056         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2057                 return FS_OVERHEAD;
2058         return HS_OVERHEAD;
2059 }
2060
2061 /* If we are changing a LS/FS device under a HS hub,
2062  * make sure (if we are activating a new TT) that the HS bus has enough
2063  * bandwidth for this new TT.
2064  */
2065 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2066                 struct xhci_virt_device *virt_dev,
2067                 int old_active_eps)
2068 {
2069         struct xhci_interval_bw_table *bw_table;
2070         struct xhci_tt_bw_info *tt_info;
2071
2072         /* Find the bandwidth table for the root port this TT is attached to. */
2073         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2074         tt_info = virt_dev->tt_info;
2075         /* If this TT already had active endpoints, the bandwidth for this TT
2076          * has already been added.  Removing all periodic endpoints (and thus
2077          * making the TT enactive) will only decrease the bandwidth used.
2078          */
2079         if (old_active_eps)
2080                 return 0;
2081         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2082                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2083                         return -ENOMEM;
2084                 return 0;
2085         }
2086         /* Not sure why we would have no new active endpoints...
2087          *
2088          * Maybe because of an Evaluate Context change for a hub update or a
2089          * control endpoint 0 max packet size change?
2090          * FIXME: skip the bandwidth calculation in that case.
2091          */
2092         return 0;
2093 }
2094
2095 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2096                 struct xhci_virt_device *virt_dev)
2097 {
2098         unsigned int bw_reserved;
2099
2100         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2101         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2102                 return -ENOMEM;
2103
2104         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2105         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2106                 return -ENOMEM;
2107
2108         return 0;
2109 }
2110
2111 /*
2112  * This algorithm is a very conservative estimate of the worst-case scheduling
2113  * scenario for any one interval.  The hardware dynamically schedules the
2114  * packets, so we can't tell which microframe could be the limiting factor in
2115  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2116  *
2117  * Obviously, we can't solve an NP complete problem to find the minimum worst
2118  * case scenario.  Instead, we come up with an estimate that is no less than
2119  * the worst case bandwidth used for any one microframe, but may be an
2120  * over-estimate.
2121  *
2122  * We walk the requirements for each endpoint by interval, starting with the
2123  * smallest interval, and place packets in the schedule where there is only one
2124  * possible way to schedule packets for that interval.  In order to simplify
2125  * this algorithm, we record the largest max packet size for each interval, and
2126  * assume all packets will be that size.
2127  *
2128  * For interval 0, we obviously must schedule all packets for each interval.
2129  * The bandwidth for interval 0 is just the amount of data to be transmitted
2130  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2131  * the number of packets).
2132  *
2133  * For interval 1, we have two possible microframes to schedule those packets
2134  * in.  For this algorithm, if we can schedule the same number of packets for
2135  * each possible scheduling opportunity (each microframe), we will do so.  The
2136  * remaining number of packets will be saved to be transmitted in the gaps in
2137  * the next interval's scheduling sequence.
2138  *
2139  * As we move those remaining packets to be scheduled with interval 2 packets,
2140  * we have to double the number of remaining packets to transmit.  This is
2141  * because the intervals are actually powers of 2, and we would be transmitting
2142  * the previous interval's packets twice in this interval.  We also have to be
2143  * sure that when we look at the largest max packet size for this interval, we
2144  * also look at the largest max packet size for the remaining packets and take
2145  * the greater of the two.
2146  *
2147  * The algorithm continues to evenly distribute packets in each scheduling
2148  * opportunity, and push the remaining packets out, until we get to the last
2149  * interval.  Then those packets and their associated overhead are just added
2150  * to the bandwidth used.
2151  */
2152 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2153                 struct xhci_virt_device *virt_dev,
2154                 int old_active_eps)
2155 {
2156         unsigned int bw_reserved;
2157         unsigned int max_bandwidth;
2158         unsigned int bw_used;
2159         unsigned int block_size;
2160         struct xhci_interval_bw_table *bw_table;
2161         unsigned int packet_size = 0;
2162         unsigned int overhead = 0;
2163         unsigned int packets_transmitted = 0;
2164         unsigned int packets_remaining = 0;
2165         unsigned int i;
2166
2167         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2168                 return xhci_check_ss_bw(xhci, virt_dev);
2169
2170         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2171                 max_bandwidth = HS_BW_LIMIT;
2172                 /* Convert percent of bus BW reserved to blocks reserved */
2173                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2174         } else {
2175                 max_bandwidth = FS_BW_LIMIT;
2176                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2177         }
2178
2179         bw_table = virt_dev->bw_table;
2180         /* We need to translate the max packet size and max ESIT payloads into
2181          * the units the hardware uses.
2182          */
2183         block_size = xhci_get_block_size(virt_dev->udev);
2184
2185         /* If we are manipulating a LS/FS device under a HS hub, double check
2186          * that the HS bus has enough bandwidth if we are activing a new TT.
2187          */
2188         if (virt_dev->tt_info) {
2189                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2190                                 virt_dev->real_port);
2191                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2192                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2193                                         "newly activated TT.\n");
2194                         return -ENOMEM;
2195                 }
2196                 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2197                                 virt_dev->tt_info->slot_id,
2198                                 virt_dev->tt_info->ttport);
2199         } else {
2200                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2201                                 virt_dev->real_port);
2202         }
2203
2204         /* Add in how much bandwidth will be used for interval zero, or the
2205          * rounded max ESIT payload + number of packets * largest overhead.
2206          */
2207         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2208                 bw_table->interval_bw[0].num_packets *
2209                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2210
2211         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2212                 unsigned int bw_added;
2213                 unsigned int largest_mps;
2214                 unsigned int interval_overhead;
2215
2216                 /*
2217                  * How many packets could we transmit in this interval?
2218                  * If packets didn't fit in the previous interval, we will need
2219                  * to transmit that many packets twice within this interval.
2220                  */
2221                 packets_remaining = 2 * packets_remaining +
2222                         bw_table->interval_bw[i].num_packets;
2223
2224                 /* Find the largest max packet size of this or the previous
2225                  * interval.
2226                  */
2227                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2228                         largest_mps = 0;
2229                 else {
2230                         struct xhci_virt_ep *virt_ep;
2231                         struct list_head *ep_entry;
2232
2233                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2234                         virt_ep = list_entry(ep_entry,
2235                                         struct xhci_virt_ep, bw_endpoint_list);
2236                         /* Convert to blocks, rounding up */
2237                         largest_mps = DIV_ROUND_UP(
2238                                         virt_ep->bw_info.max_packet_size,
2239                                         block_size);
2240                 }
2241                 if (largest_mps > packet_size)
2242                         packet_size = largest_mps;
2243
2244                 /* Use the larger overhead of this or the previous interval. */
2245                 interval_overhead = xhci_get_largest_overhead(
2246                                 &bw_table->interval_bw[i]);
2247                 if (interval_overhead > overhead)
2248                         overhead = interval_overhead;
2249
2250                 /* How many packets can we evenly distribute across
2251                  * (1 << (i + 1)) possible scheduling opportunities?
2252                  */
2253                 packets_transmitted = packets_remaining >> (i + 1);
2254
2255                 /* Add in the bandwidth used for those scheduled packets */
2256                 bw_added = packets_transmitted * (overhead + packet_size);
2257
2258                 /* How many packets do we have remaining to transmit? */
2259                 packets_remaining = packets_remaining % (1 << (i + 1));
2260
2261                 /* What largest max packet size should those packets have? */
2262                 /* If we've transmitted all packets, don't carry over the
2263                  * largest packet size.
2264                  */
2265                 if (packets_remaining == 0) {
2266                         packet_size = 0;
2267                         overhead = 0;
2268                 } else if (packets_transmitted > 0) {
2269                         /* Otherwise if we do have remaining packets, and we've
2270                          * scheduled some packets in this interval, take the
2271                          * largest max packet size from endpoints with this
2272                          * interval.
2273                          */
2274                         packet_size = largest_mps;
2275                         overhead = interval_overhead;
2276                 }
2277                 /* Otherwise carry over packet_size and overhead from the last
2278                  * time we had a remainder.
2279                  */
2280                 bw_used += bw_added;
2281                 if (bw_used > max_bandwidth) {
2282                         xhci_warn(xhci, "Not enough bandwidth. "
2283                                         "Proposed: %u, Max: %u\n",
2284                                 bw_used, max_bandwidth);
2285                         return -ENOMEM;
2286                 }
2287         }
2288         /*
2289          * Ok, we know we have some packets left over after even-handedly
2290          * scheduling interval 15.  We don't know which microframes they will
2291          * fit into, so we over-schedule and say they will be scheduled every
2292          * microframe.
2293          */
2294         if (packets_remaining > 0)
2295                 bw_used += overhead + packet_size;
2296
2297         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2298                 unsigned int port_index = virt_dev->real_port - 1;
2299
2300                 /* OK, we're manipulating a HS device attached to a
2301                  * root port bandwidth domain.  Include the number of active TTs
2302                  * in the bandwidth used.
2303                  */
2304                 bw_used += TT_HS_OVERHEAD *
2305                         xhci->rh_bw[port_index].num_active_tts;
2306         }
2307
2308         xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2309                 "Available: %u " "percent\n",
2310                 bw_used, max_bandwidth, bw_reserved,
2311                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2312                 max_bandwidth);
2313
2314         bw_used += bw_reserved;
2315         if (bw_used > max_bandwidth) {
2316                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2317                                 bw_used, max_bandwidth);
2318                 return -ENOMEM;
2319         }
2320
2321         bw_table->bw_used = bw_used;
2322         return 0;
2323 }
2324
2325 static bool xhci_is_async_ep(unsigned int ep_type)
2326 {
2327         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2328                                         ep_type != ISOC_IN_EP &&
2329                                         ep_type != INT_IN_EP);
2330 }
2331
2332 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2333 {
2334         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2335 }
2336
2337 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2338 {
2339         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2340
2341         if (ep_bw->ep_interval == 0)
2342                 return SS_OVERHEAD_BURST +
2343                         (ep_bw->mult * ep_bw->num_packets *
2344                                         (SS_OVERHEAD + mps));
2345         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2346                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2347                                 1 << ep_bw->ep_interval);
2348
2349 }
2350
2351 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2352                 struct xhci_bw_info *ep_bw,
2353                 struct xhci_interval_bw_table *bw_table,
2354                 struct usb_device *udev,
2355                 struct xhci_virt_ep *virt_ep,
2356                 struct xhci_tt_bw_info *tt_info)
2357 {
2358         struct xhci_interval_bw *interval_bw;
2359         int normalized_interval;
2360
2361         if (xhci_is_async_ep(ep_bw->type))
2362                 return;
2363
2364         if (udev->speed == USB_SPEED_SUPER) {
2365                 if (xhci_is_sync_in_ep(ep_bw->type))
2366                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2367                                 xhci_get_ss_bw_consumed(ep_bw);
2368                 else
2369                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2370                                 xhci_get_ss_bw_consumed(ep_bw);
2371                 return;
2372         }
2373
2374         /* SuperSpeed endpoints never get added to intervals in the table, so
2375          * this check is only valid for HS/FS/LS devices.
2376          */
2377         if (list_empty(&virt_ep->bw_endpoint_list))
2378                 return;
2379         /* For LS/FS devices, we need to translate the interval expressed in
2380          * microframes to frames.
2381          */
2382         if (udev->speed == USB_SPEED_HIGH)
2383                 normalized_interval = ep_bw->ep_interval;
2384         else
2385                 normalized_interval = ep_bw->ep_interval - 3;
2386
2387         if (normalized_interval == 0)
2388                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2389         interval_bw = &bw_table->interval_bw[normalized_interval];
2390         interval_bw->num_packets -= ep_bw->num_packets;
2391         switch (udev->speed) {
2392         case USB_SPEED_LOW:
2393                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2394                 break;
2395         case USB_SPEED_FULL:
2396                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2397                 break;
2398         case USB_SPEED_HIGH:
2399                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2400                 break;
2401         case USB_SPEED_SUPER:
2402         case USB_SPEED_UNKNOWN:
2403         case USB_SPEED_WIRELESS:
2404                 /* Should never happen because only LS/FS/HS endpoints will get
2405                  * added to the endpoint list.
2406                  */
2407                 return;
2408         }
2409         if (tt_info)
2410                 tt_info->active_eps -= 1;
2411         list_del_init(&virt_ep->bw_endpoint_list);
2412 }
2413
2414 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2415                 struct xhci_bw_info *ep_bw,
2416                 struct xhci_interval_bw_table *bw_table,
2417                 struct usb_device *udev,
2418                 struct xhci_virt_ep *virt_ep,
2419                 struct xhci_tt_bw_info *tt_info)
2420 {
2421         struct xhci_interval_bw *interval_bw;
2422         struct xhci_virt_ep *smaller_ep;
2423         int normalized_interval;
2424
2425         if (xhci_is_async_ep(ep_bw->type))
2426                 return;
2427
2428         if (udev->speed == USB_SPEED_SUPER) {
2429                 if (xhci_is_sync_in_ep(ep_bw->type))
2430                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2431                                 xhci_get_ss_bw_consumed(ep_bw);
2432                 else
2433                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2434                                 xhci_get_ss_bw_consumed(ep_bw);
2435                 return;
2436         }
2437
2438         /* For LS/FS devices, we need to translate the interval expressed in
2439          * microframes to frames.
2440          */
2441         if (udev->speed == USB_SPEED_HIGH)
2442                 normalized_interval = ep_bw->ep_interval;
2443         else
2444                 normalized_interval = ep_bw->ep_interval - 3;
2445
2446         if (normalized_interval == 0)
2447                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2448         interval_bw = &bw_table->interval_bw[normalized_interval];
2449         interval_bw->num_packets += ep_bw->num_packets;
2450         switch (udev->speed) {
2451         case USB_SPEED_LOW:
2452                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2453                 break;
2454         case USB_SPEED_FULL:
2455                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2456                 break;
2457         case USB_SPEED_HIGH:
2458                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2459                 break;
2460         case USB_SPEED_SUPER:
2461         case USB_SPEED_UNKNOWN:
2462         case USB_SPEED_WIRELESS:
2463                 /* Should never happen because only LS/FS/HS endpoints will get
2464                  * added to the endpoint list.
2465                  */
2466                 return;
2467         }
2468
2469         if (tt_info)
2470                 tt_info->active_eps += 1;
2471         /* Insert the endpoint into the list, largest max packet size first. */
2472         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2473                         bw_endpoint_list) {
2474                 if (ep_bw->max_packet_size >=
2475                                 smaller_ep->bw_info.max_packet_size) {
2476                         /* Add the new ep before the smaller endpoint */
2477                         list_add_tail(&virt_ep->bw_endpoint_list,
2478                                         &smaller_ep->bw_endpoint_list);
2479                         return;
2480                 }
2481         }
2482         /* Add the new endpoint at the end of the list. */
2483         list_add_tail(&virt_ep->bw_endpoint_list,
2484                         &interval_bw->endpoints);
2485 }
2486
2487 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2488                 struct xhci_virt_device *virt_dev,
2489                 int old_active_eps)
2490 {
2491         struct xhci_root_port_bw_info *rh_bw_info;
2492         if (!virt_dev->tt_info)
2493                 return;
2494
2495         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2496         if (old_active_eps == 0 &&
2497                                 virt_dev->tt_info->active_eps != 0) {
2498                 rh_bw_info->num_active_tts += 1;
2499                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2500         } else if (old_active_eps != 0 &&
2501                                 virt_dev->tt_info->active_eps == 0) {
2502                 rh_bw_info->num_active_tts -= 1;
2503                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2504         }
2505 }
2506
2507 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2508                 struct xhci_virt_device *virt_dev,
2509                 struct xhci_container_ctx *in_ctx)
2510 {
2511         struct xhci_bw_info ep_bw_info[31];
2512         int i;
2513         struct xhci_input_control_ctx *ctrl_ctx;
2514         int old_active_eps = 0;
2515
2516         if (virt_dev->tt_info)
2517                 old_active_eps = virt_dev->tt_info->active_eps;
2518
2519         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2520
2521         for (i = 0; i < 31; i++) {
2522                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2523                         continue;
2524
2525                 /* Make a copy of the BW info in case we need to revert this */
2526                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2527                                 sizeof(ep_bw_info[i]));
2528                 /* Drop the endpoint from the interval table if the endpoint is
2529                  * being dropped or changed.
2530                  */
2531                 if (EP_IS_DROPPED(ctrl_ctx, i))
2532                         xhci_drop_ep_from_interval_table(xhci,
2533                                         &virt_dev->eps[i].bw_info,
2534                                         virt_dev->bw_table,
2535                                         virt_dev->udev,
2536                                         &virt_dev->eps[i],
2537                                         virt_dev->tt_info);
2538         }
2539         /* Overwrite the information stored in the endpoints' bw_info */
2540         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2541         for (i = 0; i < 31; i++) {
2542                 /* Add any changed or added endpoints to the interval table */
2543                 if (EP_IS_ADDED(ctrl_ctx, i))
2544                         xhci_add_ep_to_interval_table(xhci,
2545                                         &virt_dev->eps[i].bw_info,
2546                                         virt_dev->bw_table,
2547                                         virt_dev->udev,
2548                                         &virt_dev->eps[i],
2549                                         virt_dev->tt_info);
2550         }
2551
2552         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2553                 /* Ok, this fits in the bandwidth we have.
2554                  * Update the number of active TTs.
2555                  */
2556                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2557                 return 0;
2558         }
2559
2560         /* We don't have enough bandwidth for this, revert the stored info. */
2561         for (i = 0; i < 31; i++) {
2562                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2563                         continue;
2564
2565                 /* Drop the new copies of any added or changed endpoints from
2566                  * the interval table.
2567                  */
2568                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2569                         xhci_drop_ep_from_interval_table(xhci,
2570                                         &virt_dev->eps[i].bw_info,
2571                                         virt_dev->bw_table,
2572                                         virt_dev->udev,
2573                                         &virt_dev->eps[i],
2574                                         virt_dev->tt_info);
2575                 }
2576                 /* Revert the endpoint back to its old information */
2577                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2578                                 sizeof(ep_bw_info[i]));
2579                 /* Add any changed or dropped endpoints back into the table */
2580                 if (EP_IS_DROPPED(ctrl_ctx, i))
2581                         xhci_add_ep_to_interval_table(xhci,
2582                                         &virt_dev->eps[i].bw_info,
2583                                         virt_dev->bw_table,
2584                                         virt_dev->udev,
2585                                         &virt_dev->eps[i],
2586                                         virt_dev->tt_info);
2587         }
2588         return -ENOMEM;
2589 }
2590
2591
2592 /* Issue a configure endpoint command or evaluate context command
2593  * and wait for it to finish.
2594  */
2595 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2596                 struct usb_device *udev,
2597                 struct xhci_command *command,
2598                 bool ctx_change, bool must_succeed)
2599 {
2600         int ret;
2601         int timeleft;
2602         unsigned long flags;
2603         struct xhci_container_ctx *in_ctx;
2604         struct completion *cmd_completion;
2605         u32 *cmd_status;
2606         struct xhci_virt_device *virt_dev;
2607         union xhci_trb *cmd_trb;
2608
2609         spin_lock_irqsave(&xhci->lock, flags);
2610         virt_dev = xhci->devs[udev->slot_id];
2611
2612         if (command)
2613                 in_ctx = command->in_ctx;
2614         else
2615                 in_ctx = virt_dev->in_ctx;
2616
2617         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2618                         xhci_reserve_host_resources(xhci, in_ctx)) {
2619                 spin_unlock_irqrestore(&xhci->lock, flags);
2620                 xhci_warn(xhci, "Not enough host resources, "
2621                                 "active endpoint contexts = %u\n",
2622                                 xhci->num_active_eps);
2623                 return -ENOMEM;
2624         }
2625         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2626                         xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2627                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2628                         xhci_free_host_resources(xhci, in_ctx);
2629                 spin_unlock_irqrestore(&xhci->lock, flags);
2630                 xhci_warn(xhci, "Not enough bandwidth\n");
2631                 return -ENOMEM;
2632         }
2633
2634         if (command) {
2635                 cmd_completion = command->completion;
2636                 cmd_status = &command->status;
2637                 command->command_trb = xhci->cmd_ring->enqueue;
2638
2639                 /* Enqueue pointer can be left pointing to the link TRB,
2640                  * we must handle that
2641                  */
2642                 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2643                         command->command_trb =
2644                                 xhci->cmd_ring->enq_seg->next->trbs;
2645
2646                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2647         } else {
2648                 cmd_completion = &virt_dev->cmd_completion;
2649                 cmd_status = &virt_dev->cmd_status;
2650         }
2651         init_completion(cmd_completion);
2652
2653         cmd_trb = xhci->cmd_ring->dequeue;
2654         if (!ctx_change)
2655                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2656                                 udev->slot_id, must_succeed);
2657         else
2658                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2659                                 udev->slot_id);
2660         if (ret < 0) {
2661                 if (command)
2662                         list_del(&command->cmd_list);
2663                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2664                         xhci_free_host_resources(xhci, in_ctx);
2665                 spin_unlock_irqrestore(&xhci->lock, flags);
2666                 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2667                 return -ENOMEM;
2668         }
2669         xhci_ring_cmd_db(xhci);
2670         spin_unlock_irqrestore(&xhci->lock, flags);
2671
2672         /* Wait for the configure endpoint command to complete */
2673         timeleft = wait_for_completion_interruptible_timeout(
2674                         cmd_completion,
2675                         XHCI_CMD_DEFAULT_TIMEOUT);
2676         if (timeleft <= 0) {
2677                 xhci_warn(xhci, "%s while waiting for %s command\n",
2678                                 timeleft == 0 ? "Timeout" : "Signal",
2679                                 ctx_change == 0 ?
2680                                         "configure endpoint" :
2681                                         "evaluate context");
2682                 /* cancel the configure endpoint command */
2683                 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2684                 if (ret < 0)
2685                         return ret;
2686                 return -ETIME;
2687         }
2688
2689         if (!ctx_change)
2690                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2691         else
2692                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2693
2694         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2695                 spin_lock_irqsave(&xhci->lock, flags);
2696                 /* If the command failed, remove the reserved resources.
2697                  * Otherwise, clean up the estimate to include dropped eps.
2698                  */
2699                 if (ret)
2700                         xhci_free_host_resources(xhci, in_ctx);
2701                 else
2702                         xhci_finish_resource_reservation(xhci, in_ctx);
2703                 spin_unlock_irqrestore(&xhci->lock, flags);
2704         }
2705         return ret;
2706 }
2707
2708 /* Called after one or more calls to xhci_add_endpoint() or
2709  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2710  * to call xhci_reset_bandwidth().
2711  *
2712  * Since we are in the middle of changing either configuration or
2713  * installing a new alt setting, the USB core won't allow URBs to be
2714  * enqueued for any endpoint on the old config or interface.  Nothing
2715  * else should be touching the xhci->devs[slot_id] structure, so we
2716  * don't need to take the xhci->lock for manipulating that.
2717  */
2718 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2719 {
2720         int i;
2721         int ret = 0;
2722         struct xhci_hcd *xhci;
2723         struct xhci_virt_device *virt_dev;
2724         struct xhci_input_control_ctx *ctrl_ctx;
2725         struct xhci_slot_ctx *slot_ctx;
2726
2727         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2728         if (ret <= 0)
2729                 return ret;
2730         xhci = hcd_to_xhci(hcd);
2731         if (xhci->xhc_state & XHCI_STATE_DYING)
2732                 return -ENODEV;
2733
2734         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2735         virt_dev = xhci->devs[udev->slot_id];
2736
2737         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2738         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2739         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2740         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2741         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2742
2743         /* Don't issue the command if there's no endpoints to update. */
2744         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2745                         ctrl_ctx->drop_flags == 0)
2746                 return 0;
2747
2748         xhci_dbg(xhci, "New Input Control Context:\n");
2749         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2750         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2751                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2752
2753         ret = xhci_configure_endpoint(xhci, udev, NULL,
2754                         false, false);
2755         if (ret) {
2756                 /* Callee should call reset_bandwidth() */
2757                 return ret;
2758         }
2759
2760         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2761         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2762                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2763
2764         /* Free any rings that were dropped, but not changed. */
2765         for (i = 1; i < 31; ++i) {
2766                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2767                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2768                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2769         }
2770         xhci_zero_in_ctx(xhci, virt_dev);
2771         /*
2772          * Install any rings for completely new endpoints or changed endpoints,
2773          * and free or cache any old rings from changed endpoints.
2774          */
2775         for (i = 1; i < 31; ++i) {
2776                 if (!virt_dev->eps[i].new_ring)
2777                         continue;
2778                 /* Only cache or free the old ring if it exists.
2779                  * It may not if this is the first add of an endpoint.
2780                  */
2781                 if (virt_dev->eps[i].ring) {
2782                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2783                 }
2784                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2785                 virt_dev->eps[i].new_ring = NULL;
2786         }
2787
2788         return ret;
2789 }
2790
2791 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2792 {
2793         struct xhci_hcd *xhci;
2794         struct xhci_virt_device *virt_dev;
2795         int i, ret;
2796
2797         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2798         if (ret <= 0)
2799                 return;
2800         xhci = hcd_to_xhci(hcd);
2801
2802         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2803         virt_dev = xhci->devs[udev->slot_id];
2804         /* Free any rings allocated for added endpoints */
2805         for (i = 0; i < 31; ++i) {
2806                 if (virt_dev->eps[i].new_ring) {
2807                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2808                         virt_dev->eps[i].new_ring = NULL;
2809                 }
2810         }
2811         xhci_zero_in_ctx(xhci, virt_dev);
2812 }
2813
2814 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2815                 struct xhci_container_ctx *in_ctx,
2816                 struct xhci_container_ctx *out_ctx,
2817                 u32 add_flags, u32 drop_flags)
2818 {
2819         struct xhci_input_control_ctx *ctrl_ctx;
2820         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2821         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2822         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2823         xhci_slot_copy(xhci, in_ctx, out_ctx);
2824         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2825
2826         xhci_dbg(xhci, "Input Context:\n");
2827         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2828 }
2829
2830 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2831                 unsigned int slot_id, unsigned int ep_index,
2832                 struct xhci_dequeue_state *deq_state)
2833 {
2834         struct xhci_container_ctx *in_ctx;
2835         struct xhci_ep_ctx *ep_ctx;
2836         u32 added_ctxs;
2837         dma_addr_t addr;
2838
2839         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2840                         xhci->devs[slot_id]->out_ctx, ep_index);
2841         in_ctx = xhci->devs[slot_id]->in_ctx;
2842         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2843         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2844                         deq_state->new_deq_ptr);
2845         if (addr == 0) {
2846                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2847                                 "reset ep command\n");
2848                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2849                                 deq_state->new_deq_seg,
2850                                 deq_state->new_deq_ptr);
2851                 return;
2852         }
2853         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2854
2855         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2856         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2857                         xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2858 }
2859
2860 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2861                 struct usb_device *udev, unsigned int ep_index)
2862 {
2863         struct xhci_dequeue_state deq_state;
2864         struct xhci_virt_ep *ep;
2865
2866         xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2867         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2868         /* We need to move the HW's dequeue pointer past this TD,
2869          * or it will attempt to resend it on the next doorbell ring.
2870          */
2871         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2872                         ep_index, ep->stopped_stream, ep->stopped_td,
2873                         &deq_state);
2874
2875         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2876                 return;
2877
2878         /* HW with the reset endpoint quirk will use the saved dequeue state to
2879          * issue a configure endpoint command later.
2880          */
2881         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2882                 xhci_dbg(xhci, "Queueing new dequeue state\n");
2883                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2884                                 ep_index, ep->stopped_stream, &deq_state);
2885         } else {
2886                 /* Better hope no one uses the input context between now and the
2887                  * reset endpoint completion!
2888                  * XXX: No idea how this hardware will react when stream rings
2889                  * are enabled.
2890                  */
2891                 xhci_dbg(xhci, "Setting up input context for "
2892                                 "configure endpoint command\n");
2893                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2894                                 ep_index, &deq_state);
2895         }
2896 }
2897
2898 /* Called when clearing halted device. The core should have sent the control
2899  * message to clear the device halt condition. The host side of the halt should
2900  * already be cleared with a reset endpoint command issued when the STALL tx
2901  * event was received.
2902  *
2903  * Context: in_interrupt
2904  */
2905
2906 void xhci_endpoint_reset(struct usb_hcd *hcd,
2907                 struct usb_host_endpoint *ep)
2908 {
2909         struct xhci_hcd *xhci;
2910
2911         xhci = hcd_to_xhci(hcd);
2912
2913         /*
2914          * We might need to implement the config ep cmd in xhci 4.8.1 note:
2915          * The Reset Endpoint Command may only be issued to endpoints in the
2916          * Halted state. If software wishes reset the Data Toggle or Sequence
2917          * Number of an endpoint that isn't in the Halted state, then software
2918          * may issue a Configure Endpoint Command with the Drop and Add bits set
2919          * for the target endpoint. that is in the Stopped state.
2920          */
2921
2922         /* For now just print debug to follow the situation */
2923         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2924                  ep->desc.bEndpointAddress);
2925 }
2926
2927 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2928                 struct usb_device *udev, struct usb_host_endpoint *ep,
2929                 unsigned int slot_id)
2930 {
2931         int ret;
2932         unsigned int ep_index;
2933         unsigned int ep_state;
2934
2935         if (!ep)
2936                 return -EINVAL;
2937         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2938         if (ret <= 0)
2939                 return -EINVAL;
2940         if (ep->ss_ep_comp.bmAttributes == 0) {
2941                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2942                                 " descriptor for ep 0x%x does not support streams\n",
2943                                 ep->desc.bEndpointAddress);
2944                 return -EINVAL;
2945         }
2946
2947         ep_index = xhci_get_endpoint_index(&ep->desc);
2948         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2949         if (ep_state & EP_HAS_STREAMS ||
2950                         ep_state & EP_GETTING_STREAMS) {
2951                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2952                                 "already has streams set up.\n",
2953                                 ep->desc.bEndpointAddress);
2954                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2955                                 "dynamic stream context array reallocation.\n");
2956                 return -EINVAL;
2957         }
2958         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2959                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2960                                 "endpoint 0x%x; URBs are pending.\n",
2961                                 ep->desc.bEndpointAddress);
2962                 return -EINVAL;
2963         }
2964         return 0;
2965 }
2966
2967 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2968                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2969 {
2970         unsigned int max_streams;
2971
2972         /* The stream context array size must be a power of two */
2973         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2974         /*
2975          * Find out how many primary stream array entries the host controller
2976          * supports.  Later we may use secondary stream arrays (similar to 2nd
2977          * level page entries), but that's an optional feature for xHCI host
2978          * controllers. xHCs must support at least 4 stream IDs.
2979          */
2980         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2981         if (*num_stream_ctxs > max_streams) {
2982                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2983                                 max_streams);
2984                 *num_stream_ctxs = max_streams;
2985                 *num_streams = max_streams;
2986         }
2987 }
2988
2989 /* Returns an error code if one of the endpoint already has streams.
2990  * This does not change any data structures, it only checks and gathers
2991  * information.
2992  */
2993 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2994                 struct usb_device *udev,
2995                 struct usb_host_endpoint **eps, unsigned int num_eps,
2996                 unsigned int *num_streams, u32 *changed_ep_bitmask)
2997 {
2998         unsigned int max_streams;
2999         unsigned int endpoint_flag;
3000         int i;
3001         int ret;
3002
3003         for (i = 0; i < num_eps; i++) {
3004                 ret = xhci_check_streams_endpoint(xhci, udev,
3005                                 eps[i], udev->slot_id);
3006                 if (ret < 0)
3007                         return ret;
3008
3009                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3010                 if (max_streams < (*num_streams - 1)) {
3011                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3012                                         eps[i]->desc.bEndpointAddress,
3013                                         max_streams);
3014                         *num_streams = max_streams+1;
3015                 }
3016
3017                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3018                 if (*changed_ep_bitmask & endpoint_flag)
3019                         return -EINVAL;
3020                 *changed_ep_bitmask |= endpoint_flag;
3021         }
3022         return 0;
3023 }
3024
3025 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3026                 struct usb_device *udev,
3027                 struct usb_host_endpoint **eps, unsigned int num_eps)
3028 {
3029         u32 changed_ep_bitmask = 0;
3030         unsigned int slot_id;
3031         unsigned int ep_index;
3032         unsigned int ep_state;
3033         int i;
3034
3035         slot_id = udev->slot_id;
3036         if (!xhci->devs[slot_id])
3037                 return 0;
3038
3039         for (i = 0; i < num_eps; i++) {
3040                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3041                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3042                 /* Are streams already being freed for the endpoint? */
3043                 if (ep_state & EP_GETTING_NO_STREAMS) {
3044                         xhci_warn(xhci, "WARN Can't disable streams for "
3045                                         "endpoint 0x%x\n, "
3046                                         "streams are being disabled already.",
3047                                         eps[i]->desc.bEndpointAddress);
3048                         return 0;
3049                 }
3050                 /* Are there actually any streams to free? */
3051                 if (!(ep_state & EP_HAS_STREAMS) &&
3052                                 !(ep_state & EP_GETTING_STREAMS)) {
3053                         xhci_warn(xhci, "WARN Can't disable streams for "
3054                                         "endpoint 0x%x\n, "
3055                                         "streams are already disabled!",
3056                                         eps[i]->desc.bEndpointAddress);
3057                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3058                                         "with non-streams endpoint\n");
3059                         return 0;
3060                 }
3061                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3062         }
3063         return changed_ep_bitmask;
3064 }
3065
3066 /*
3067  * The USB device drivers use this function (though the HCD interface in USB
3068  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3069  * coordinate mass storage command queueing across multiple endpoints (basically
3070  * a stream ID == a task ID).
3071  *
3072  * Setting up streams involves allocating the same size stream context array
3073  * for each endpoint and issuing a configure endpoint command for all endpoints.
3074  *
3075  * Don't allow the call to succeed if one endpoint only supports one stream
3076  * (which means it doesn't support streams at all).
3077  *
3078  * Drivers may get less stream IDs than they asked for, if the host controller
3079  * hardware or endpoints claim they can't support the number of requested
3080  * stream IDs.
3081  */
3082 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3083                 struct usb_host_endpoint **eps, unsigned int num_eps,
3084                 unsigned int num_streams, gfp_t mem_flags)
3085 {
3086         int i, ret;
3087         struct xhci_hcd *xhci;
3088         struct xhci_virt_device *vdev;
3089         struct xhci_command *config_cmd;
3090         unsigned int ep_index;
3091         unsigned int num_stream_ctxs;
3092         unsigned long flags;
3093         u32 changed_ep_bitmask = 0;
3094
3095         if (!eps)
3096                 return -EINVAL;
3097
3098         /* Add one to the number of streams requested to account for
3099          * stream 0 that is reserved for xHCI usage.
3100          */
3101         num_streams += 1;
3102         xhci = hcd_to_xhci(hcd);
3103         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3104                         num_streams);
3105
3106         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3107         if (!config_cmd) {
3108                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3109                 return -ENOMEM;
3110         }
3111
3112         /* Check to make sure all endpoints are not already configured for
3113          * streams.  While we're at it, find the maximum number of streams that
3114          * all the endpoints will support and check for duplicate endpoints.
3115          */
3116         spin_lock_irqsave(&xhci->lock, flags);
3117         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3118                         num_eps, &num_streams, &changed_ep_bitmask);
3119         if (ret < 0) {
3120                 xhci_free_command(xhci, config_cmd);
3121                 spin_unlock_irqrestore(&xhci->lock, flags);
3122                 return ret;
3123         }
3124         if (num_streams <= 1) {
3125                 xhci_warn(xhci, "WARN: endpoints can't handle "
3126                                 "more than one stream.\n");
3127                 xhci_free_command(xhci, config_cmd);
3128                 spin_unlock_irqrestore(&xhci->lock, flags);
3129                 return -EINVAL;
3130         }
3131         vdev = xhci->devs[udev->slot_id];
3132         /* Mark each endpoint as being in transition, so
3133          * xhci_urb_enqueue() will reject all URBs.
3134          */
3135         for (i = 0; i < num_eps; i++) {
3136                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3137                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3138         }
3139         spin_unlock_irqrestore(&xhci->lock, flags);
3140
3141         /* Setup internal data structures and allocate HW data structures for
3142          * streams (but don't install the HW structures in the input context
3143          * until we're sure all memory allocation succeeded).
3144          */
3145         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3146         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3147                         num_stream_ctxs, num_streams);
3148
3149         for (i = 0; i < num_eps; i++) {
3150                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3151                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3152                                 num_stream_ctxs,
3153                                 num_streams, mem_flags);
3154                 if (!vdev->eps[ep_index].stream_info)
3155                         goto cleanup;
3156                 /* Set maxPstreams in endpoint context and update deq ptr to
3157                  * point to stream context array. FIXME
3158                  */
3159         }
3160
3161         /* Set up the input context for a configure endpoint command. */
3162         for (i = 0; i < num_eps; i++) {
3163                 struct xhci_ep_ctx *ep_ctx;
3164
3165                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3166                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3167
3168                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3169                                 vdev->out_ctx, ep_index);
3170                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3171                                 vdev->eps[ep_index].stream_info);
3172         }
3173         /* Tell the HW to drop its old copy of the endpoint context info
3174          * and add the updated copy from the input context.
3175          */
3176         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3177                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3178
3179         /* Issue and wait for the configure endpoint command */
3180         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3181                         false, false);
3182
3183         /* xHC rejected the configure endpoint command for some reason, so we
3184          * leave the old ring intact and free our internal streams data
3185          * structure.
3186          */
3187         if (ret < 0)
3188                 goto cleanup;
3189
3190         spin_lock_irqsave(&xhci->lock, flags);
3191         for (i = 0; i < num_eps; i++) {
3192                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3193                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3194                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3195                          udev->slot_id, ep_index);
3196                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3197         }
3198         xhci_free_command(xhci, config_cmd);
3199         spin_unlock_irqrestore(&xhci->lock, flags);
3200
3201         /* Subtract 1 for stream 0, which drivers can't use */
3202         return num_streams - 1;
3203
3204 cleanup:
3205         /* If it didn't work, free the streams! */
3206         for (i = 0; i < num_eps; i++) {
3207                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3208                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3209                 vdev->eps[ep_index].stream_info = NULL;
3210                 /* FIXME Unset maxPstreams in endpoint context and
3211                  * update deq ptr to point to normal string ring.
3212                  */
3213                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3214                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3215                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3216         }
3217         xhci_free_command(xhci, config_cmd);
3218         return -ENOMEM;
3219 }
3220
3221 /* Transition the endpoint from using streams to being a "normal" endpoint
3222  * without streams.
3223  *
3224  * Modify the endpoint context state, submit a configure endpoint command,
3225  * and free all endpoint rings for streams if that completes successfully.
3226  */
3227 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3228                 struct usb_host_endpoint **eps, unsigned int num_eps,
3229                 gfp_t mem_flags)
3230 {
3231         int i, ret;
3232         struct xhci_hcd *xhci;
3233         struct xhci_virt_device *vdev;
3234         struct xhci_command *command;
3235         unsigned int ep_index;
3236         unsigned long flags;
3237         u32 changed_ep_bitmask;
3238
3239         xhci = hcd_to_xhci(hcd);
3240         vdev = xhci->devs[udev->slot_id];
3241
3242         /* Set up a configure endpoint command to remove the streams rings */
3243         spin_lock_irqsave(&xhci->lock, flags);
3244         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3245                         udev, eps, num_eps);
3246         if (changed_ep_bitmask == 0) {
3247                 spin_unlock_irqrestore(&xhci->lock, flags);
3248                 return -EINVAL;
3249         }
3250
3251         /* Use the xhci_command structure from the first endpoint.  We may have
3252          * allocated too many, but the driver may call xhci_free_streams() for
3253          * each endpoint it grouped into one call to xhci_alloc_streams().
3254          */
3255         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3256         command = vdev->eps[ep_index].stream_info->free_streams_command;
3257         for (i = 0; i < num_eps; i++) {
3258                 struct xhci_ep_ctx *ep_ctx;
3259
3260                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3261                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3262                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3263                         EP_GETTING_NO_STREAMS;
3264
3265                 xhci_endpoint_copy(xhci, command->in_ctx,
3266                                 vdev->out_ctx, ep_index);
3267                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3268                                 &vdev->eps[ep_index]);
3269         }
3270         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3271                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3272         spin_unlock_irqrestore(&xhci->lock, flags);
3273
3274         /* Issue and wait for the configure endpoint command,
3275          * which must succeed.
3276          */
3277         ret = xhci_configure_endpoint(xhci, udev, command,
3278                         false, true);
3279
3280         /* xHC rejected the configure endpoint command for some reason, so we
3281          * leave the streams rings intact.
3282          */
3283         if (ret < 0)
3284                 return ret;
3285
3286         spin_lock_irqsave(&xhci->lock, flags);
3287         for (i = 0; i < num_eps; i++) {
3288                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3289                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3290                 vdev->eps[ep_index].stream_info = NULL;
3291                 /* FIXME Unset maxPstreams in endpoint context and
3292                  * update deq ptr to point to normal string ring.
3293                  */
3294                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3295                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3296         }
3297         spin_unlock_irqrestore(&xhci->lock, flags);
3298
3299         return 0;
3300 }
3301
3302 /*
3303  * Deletes endpoint resources for endpoints that were active before a Reset
3304  * Device command, or a Disable Slot command.  The Reset Device command leaves
3305  * the control endpoint intact, whereas the Disable Slot command deletes it.
3306  *
3307  * Must be called with xhci->lock held.
3308  */
3309 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3310         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3311 {
3312         int i;
3313         unsigned int num_dropped_eps = 0;
3314         unsigned int drop_flags = 0;
3315
3316         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3317                 if (virt_dev->eps[i].ring) {
3318                         drop_flags |= 1 << i;
3319                         num_dropped_eps++;
3320                 }
3321         }
3322         xhci->num_active_eps -= num_dropped_eps;
3323         if (num_dropped_eps)
3324                 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3325                                 "%u now active.\n",
3326                                 num_dropped_eps, drop_flags,
3327                                 xhci->num_active_eps);
3328 }
3329
3330 /*
3331  * This submits a Reset Device Command, which will set the device state to 0,
3332  * set the device address to 0, and disable all the endpoints except the default
3333  * control endpoint.  The USB core should come back and call
3334  * xhci_address_device(), and then re-set up the configuration.  If this is
3335  * called because of a usb_reset_and_verify_device(), then the old alternate
3336  * settings will be re-installed through the normal bandwidth allocation
3337  * functions.
3338  *
3339  * Wait for the Reset Device command to finish.  Remove all structures
3340  * associated with the endpoints that were disabled.  Clear the input device
3341  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3342  *
3343  * If the virt_dev to be reset does not exist or does not match the udev,
3344  * it means the device is lost, possibly due to the xHC restore error and
3345  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3346  * re-allocate the device.
3347  */
3348 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3349 {
3350         int ret, i;
3351         unsigned long flags;
3352         struct xhci_hcd *xhci;
3353         unsigned int slot_id;
3354         struct xhci_virt_device *virt_dev;
3355         struct xhci_command *reset_device_cmd;
3356         int timeleft;
3357         int last_freed_endpoint;
3358         struct xhci_slot_ctx *slot_ctx;
3359         int old_active_eps = 0;
3360
3361         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3362         if (ret <= 0)
3363                 return ret;
3364         xhci = hcd_to_xhci(hcd);
3365         slot_id = udev->slot_id;
3366         virt_dev = xhci->devs[slot_id];
3367         if (!virt_dev) {
3368                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3369                                 "not exist. Re-allocate the device\n", slot_id);
3370                 ret = xhci_alloc_dev(hcd, udev);
3371                 if (ret == 1)
3372                         return 0;
3373                 else
3374                         return -EINVAL;
3375         }
3376
3377         if (virt_dev->tt_info)
3378                 old_active_eps = virt_dev->tt_info->active_eps;
3379
3380         if (virt_dev->udev != udev) {
3381                 /* If the virt_dev and the udev does not match, this virt_dev
3382                  * may belong to another udev.
3383                  * Re-allocate the device.
3384                  */
3385                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3386                                 "not match the udev. Re-allocate the device\n",
3387                                 slot_id);
3388                 ret = xhci_alloc_dev(hcd, udev);
3389                 if (ret == 1)
3390                         return 0;
3391                 else
3392                         return -EINVAL;
3393         }
3394
3395         /* If device is not setup, there is no point in resetting it */
3396         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3397         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3398                                                 SLOT_STATE_DISABLED)
3399                 return 0;
3400
3401         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3402         /* Allocate the command structure that holds the struct completion.
3403          * Assume we're in process context, since the normal device reset
3404          * process has to wait for the device anyway.  Storage devices are
3405          * reset as part of error handling, so use GFP_NOIO instead of
3406          * GFP_KERNEL.
3407          */
3408         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3409         if (!reset_device_cmd) {
3410                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3411                 return -ENOMEM;
3412         }
3413
3414         /* Attempt to submit the Reset Device command to the command ring */
3415         spin_lock_irqsave(&xhci->lock, flags);
3416         reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3417
3418         /* Enqueue pointer can be left pointing to the link TRB,
3419          * we must handle that
3420          */
3421         if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3422                 reset_device_cmd->command_trb =
3423                         xhci->cmd_ring->enq_seg->next->trbs;
3424
3425         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3426         ret = xhci_queue_reset_device(xhci, slot_id);
3427         if (ret) {
3428                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3429                 list_del(&reset_device_cmd->cmd_list);
3430                 spin_unlock_irqrestore(&xhci->lock, flags);
3431                 goto command_cleanup;
3432         }
3433         xhci_ring_cmd_db(xhci);
3434         spin_unlock_irqrestore(&xhci->lock, flags);
3435
3436         /* Wait for the Reset Device command to finish */
3437         timeleft = wait_for_completion_interruptible_timeout(
3438                         reset_device_cmd->completion,
3439                         USB_CTRL_SET_TIMEOUT);
3440         if (timeleft <= 0) {
3441                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3442                                 timeleft == 0 ? "Timeout" : "Signal");
3443                 spin_lock_irqsave(&xhci->lock, flags);
3444                 /* The timeout might have raced with the event ring handler, so
3445                  * only delete from the list if the item isn't poisoned.
3446                  */
3447                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3448                         list_del(&reset_device_cmd->cmd_list);
3449                 spin_unlock_irqrestore(&xhci->lock, flags);
3450                 ret = -ETIME;
3451                 goto command_cleanup;
3452         }
3453
3454         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3455          * unless we tried to reset a slot ID that wasn't enabled,
3456          * or the device wasn't in the addressed or configured state.
3457          */
3458         ret = reset_device_cmd->status;
3459         switch (ret) {
3460         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3461         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3462                 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3463                                 slot_id,
3464                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3465                 xhci_info(xhci, "Not freeing device rings.\n");
3466                 /* Don't treat this as an error.  May change my mind later. */
3467                 ret = 0;
3468                 goto command_cleanup;
3469         case COMP_SUCCESS:
3470                 xhci_dbg(xhci, "Successful reset device command.\n");
3471                 break;
3472         default:
3473                 if (xhci_is_vendor_info_code(xhci, ret))
3474                         break;
3475                 xhci_warn(xhci, "Unknown completion code %u for "
3476                                 "reset device command.\n", ret);
3477                 ret = -EINVAL;
3478                 goto command_cleanup;
3479         }
3480
3481         /* Free up host controller endpoint resources */
3482         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3483                 spin_lock_irqsave(&xhci->lock, flags);
3484                 /* Don't delete the default control endpoint resources */
3485                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3486                 spin_unlock_irqrestore(&xhci->lock, flags);
3487         }
3488
3489         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3490         last_freed_endpoint = 1;
3491         for (i = 1; i < 31; ++i) {
3492                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3493
3494                 if (ep->ep_state & EP_HAS_STREAMS) {
3495                         xhci_free_stream_info(xhci, ep->stream_info);
3496                         ep->stream_info = NULL;
3497                         ep->ep_state &= ~EP_HAS_STREAMS;
3498                 }
3499
3500                 if (ep->ring) {
3501                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3502                         last_freed_endpoint = i;
3503                 }
3504                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3505                         xhci_drop_ep_from_interval_table(xhci,
3506                                         &virt_dev->eps[i].bw_info,
3507                                         virt_dev->bw_table,
3508                                         udev,
3509                                         &virt_dev->eps[i],
3510                                         virt_dev->tt_info);
3511                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3512         }
3513         /* If necessary, update the number of active TTs on this root port */
3514         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3515
3516         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3517         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3518         ret = 0;
3519
3520 command_cleanup:
3521         xhci_free_command(xhci, reset_device_cmd);
3522         return ret;
3523 }
3524
3525 /*
3526  * At this point, the struct usb_device is about to go away, the device has
3527  * disconnected, and all traffic has been stopped and the endpoints have been
3528  * disabled.  Free any HC data structures associated with that device.
3529  */
3530 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3531 {
3532         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3533         struct xhci_virt_device *virt_dev;
3534         struct device *dev = hcd->self.controller;
3535         unsigned long flags;
3536         u32 state;
3537         int i, ret;
3538
3539 #ifndef CONFIG_USB_DEFAULT_PERSIST
3540         /*
3541          * We called pm_runtime_get_noresume when the device was attached.
3542          * Decrement the counter here to allow controller to runtime suspend
3543          * if no devices remain.
3544          */
3545         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3546                 pm_runtime_put_noidle(dev);
3547 #endif
3548
3549         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3550         /* If the host is halted due to driver unload, we still need to free the
3551          * device.
3552          */
3553         if (ret <= 0 && ret != -ENODEV)
3554                 return;
3555
3556         virt_dev = xhci->devs[udev->slot_id];
3557
3558         /* Stop any wayward timer functions (which may grab the lock) */
3559         for (i = 0; i < 31; ++i) {
3560                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3561                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3562         }
3563
3564         if (udev->usb2_hw_lpm_enabled) {
3565                 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3566                 udev->usb2_hw_lpm_enabled = 0;
3567         }
3568
3569         spin_lock_irqsave(&xhci->lock, flags);
3570         /* Don't disable the slot if the host controller is dead. */
3571         state = xhci_readl(xhci, &xhci->op_regs->status);
3572         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3573                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3574                 xhci_free_virt_device(xhci, udev->slot_id);
3575                 spin_unlock_irqrestore(&xhci->lock, flags);
3576                 return;
3577         }
3578
3579         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3580                 spin_unlock_irqrestore(&xhci->lock, flags);
3581                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3582                 return;
3583         }
3584         xhci_ring_cmd_db(xhci);
3585         spin_unlock_irqrestore(&xhci->lock, flags);
3586         /*
3587          * Event command completion handler will free any data structures
3588          * associated with the slot.  XXX Can free sleep?
3589          */
3590 }
3591
3592 /*
3593  * Checks if we have enough host controller resources for the default control
3594  * endpoint.
3595  *
3596  * Must be called with xhci->lock held.
3597  */
3598 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3599 {
3600         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3601                 xhci_dbg(xhci, "Not enough ep ctxs: "
3602                                 "%u active, need to add 1, limit is %u.\n",
3603                                 xhci->num_active_eps, xhci->limit_active_eps);
3604                 return -ENOMEM;
3605         }
3606         xhci->num_active_eps += 1;
3607         xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3608                         xhci->num_active_eps);
3609         return 0;
3610 }
3611
3612
3613 /*
3614  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3615  * timed out, or allocating memory failed.  Returns 1 on success.
3616  */
3617 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3618 {
3619         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3620         struct device *dev = hcd->self.controller;
3621         unsigned long flags;
3622         int timeleft;
3623         int ret;
3624         union xhci_trb *cmd_trb;
3625
3626         spin_lock_irqsave(&xhci->lock, flags);
3627         cmd_trb = xhci->cmd_ring->dequeue;
3628         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3629         if (ret) {
3630                 spin_unlock_irqrestore(&xhci->lock, flags);
3631                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3632                 return 0;
3633         }
3634         xhci_ring_cmd_db(xhci);
3635         spin_unlock_irqrestore(&xhci->lock, flags);
3636
3637         /* XXX: how much time for xHC slot assignment? */
3638         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3639                         XHCI_CMD_DEFAULT_TIMEOUT);
3640         if (timeleft <= 0) {
3641                 xhci_warn(xhci, "%s while waiting for a slot\n",
3642                                 timeleft == 0 ? "Timeout" : "Signal");
3643                 /* cancel the enable slot request */
3644                 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3645         }
3646
3647         if (!xhci->slot_id) {
3648                 xhci_err(xhci, "Error while assigning device slot ID\n");
3649                 return 0;
3650         }
3651
3652         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3653                 spin_lock_irqsave(&xhci->lock, flags);
3654                 ret = xhci_reserve_host_control_ep_resources(xhci);
3655                 if (ret) {
3656                         spin_unlock_irqrestore(&xhci->lock, flags);
3657                         xhci_warn(xhci, "Not enough host resources, "
3658                                         "active endpoint contexts = %u\n",
3659                                         xhci->num_active_eps);
3660                         goto disable_slot;
3661                 }
3662                 spin_unlock_irqrestore(&xhci->lock, flags);
3663         }
3664         /* Use GFP_NOIO, since this function can be called from
3665          * xhci_discover_or_reset_device(), which may be called as part of
3666          * mass storage driver error handling.
3667          */
3668         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3669                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3670                 goto disable_slot;
3671         }
3672         udev->slot_id = xhci->slot_id;
3673
3674 #ifndef CONFIG_USB_DEFAULT_PERSIST
3675         /*
3676          * If resetting upon resume, we can't put the controller into runtime
3677          * suspend if there is a device attached.
3678          */
3679         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3680                 pm_runtime_get_noresume(dev);
3681 #endif
3682
3683         /* Is this a LS or FS device under a HS hub? */
3684         /* Hub or peripherial? */
3685         return 1;
3686
3687 disable_slot:
3688         /* Disable slot, if we can do it without mem alloc */
3689         spin_lock_irqsave(&xhci->lock, flags);
3690         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3691                 xhci_ring_cmd_db(xhci);
3692         spin_unlock_irqrestore(&xhci->lock, flags);
3693         return 0;
3694 }
3695
3696 /*
3697  * Issue an Address Device command (which will issue a SetAddress request to
3698  * the device).
3699  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3700  * we should only issue and wait on one address command at the same time.
3701  *
3702  * We add one to the device address issued by the hardware because the USB core
3703  * uses address 1 for the root hubs (even though they're not really devices).
3704  */
3705 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3706 {
3707         unsigned long flags;
3708         int timeleft;
3709         struct xhci_virt_device *virt_dev;
3710         int ret = 0;
3711         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3712         struct xhci_slot_ctx *slot_ctx;
3713         struct xhci_input_control_ctx *ctrl_ctx;
3714         u64 temp_64;
3715         union xhci_trb *cmd_trb;
3716
3717         if (!udev->slot_id) {
3718                 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3719                 return -EINVAL;
3720         }
3721
3722         virt_dev = xhci->devs[udev->slot_id];
3723
3724         if (WARN_ON(!virt_dev)) {
3725                 /*
3726                  * In plug/unplug torture test with an NEC controller,
3727                  * a zero-dereference was observed once due to virt_dev = 0.
3728                  * Print useful debug rather than crash if it is observed again!
3729                  */
3730                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3731                         udev->slot_id);
3732                 return -EINVAL;
3733         }
3734
3735         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3736         /*
3737          * If this is the first Set Address since device plug-in or
3738          * virt_device realloaction after a resume with an xHCI power loss,
3739          * then set up the slot context.
3740          */
3741         if (!slot_ctx->dev_info)
3742                 xhci_setup_addressable_virt_dev(xhci, udev);
3743         /* Otherwise, update the control endpoint ring enqueue pointer. */
3744         else
3745                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3746         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3747         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3748         ctrl_ctx->drop_flags = 0;
3749
3750         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3751         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3752
3753         spin_lock_irqsave(&xhci->lock, flags);
3754         cmd_trb = xhci->cmd_ring->dequeue;
3755         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3756                                         udev->slot_id);
3757         if (ret) {
3758                 spin_unlock_irqrestore(&xhci->lock, flags);
3759                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3760                 return ret;
3761         }
3762         xhci_ring_cmd_db(xhci);
3763         spin_unlock_irqrestore(&xhci->lock, flags);
3764
3765         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3766         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3767                         XHCI_CMD_DEFAULT_TIMEOUT);
3768         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3769          * the SetAddress() "recovery interval" required by USB and aborting the
3770          * command on a timeout.
3771          */
3772         if (timeleft <= 0) {
3773                 xhci_warn(xhci, "%s while waiting for address device command\n",
3774                                 timeleft == 0 ? "Timeout" : "Signal");
3775                 /* cancel the address device command */
3776                 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3777                 if (ret < 0)
3778                         return ret;
3779                 return -ETIME;
3780         }
3781
3782         switch (virt_dev->cmd_status) {
3783         case COMP_CTX_STATE:
3784         case COMP_EBADSLT:
3785                 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3786                                 udev->slot_id);
3787                 ret = -EINVAL;
3788                 break;
3789         case COMP_TX_ERR:
3790                 dev_warn(&udev->dev, "Device not responding to set address.\n");
3791                 ret = -EPROTO;
3792                 break;
3793         case COMP_DEV_ERR:
3794                 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3795                                 "device command.\n");
3796                 ret = -ENODEV;
3797                 break;
3798         case COMP_SUCCESS:
3799                 xhci_dbg(xhci, "Successful Address Device command\n");
3800                 break;
3801         default:
3802                 xhci_err(xhci, "ERROR: unexpected command completion "
3803                                 "code 0x%x.\n", virt_dev->cmd_status);
3804                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3805                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3806                 ret = -EINVAL;
3807                 break;
3808         }
3809         if (ret) {
3810                 return ret;
3811         }
3812         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3813         xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3814         xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3815                  udev->slot_id,
3816                  &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3817                  (unsigned long long)
3818                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3819         xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3820                         (unsigned long long)virt_dev->out_ctx->dma);
3821         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3822         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3823         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3824         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3825         /*
3826          * USB core uses address 1 for the roothubs, so we add one to the
3827          * address given back to us by the HC.
3828          */
3829         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3830         /* Use kernel assigned address for devices; store xHC assigned
3831          * address locally. */
3832         virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3833                 + 1;
3834         /* Zero the input context control for later use */
3835         ctrl_ctx->add_flags = 0;
3836         ctrl_ctx->drop_flags = 0;
3837
3838         xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3839
3840         return 0;
3841 }
3842
3843 #ifdef CONFIG_USB_SUSPEND
3844
3845 /* BESL to HIRD Encoding array for USB2 LPM */
3846 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3847         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3848
3849 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3850 static int xhci_calculate_hird_besl(int u2del, bool use_besl)
3851 {
3852         int hird;
3853
3854         if (use_besl) {
3855                 for (hird = 0; hird < 16; hird++) {
3856                         if (xhci_besl_encoding[hird] >= u2del)
3857                                 break;
3858                 }
3859         } else {
3860                 if (u2del <= 50)
3861                         hird = 0;
3862                 else
3863                         hird = (u2del - 51) / 75 + 1;
3864
3865                 if (hird > 15)
3866                         hird = 15;
3867         }
3868
3869         return hird;
3870 }
3871
3872 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3873                                         struct usb_device *udev)
3874 {
3875         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3876         struct dev_info *dev_info;
3877         __le32 __iomem  **port_array;
3878         __le32 __iomem  *addr, *pm_addr;
3879         u32             temp, dev_id;
3880         unsigned int    port_num;
3881         unsigned long   flags;
3882         int             u2del, hird;
3883         int             ret;
3884
3885         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3886                         !udev->lpm_capable)
3887                 return -EINVAL;
3888
3889         /* we only support lpm for non-hub device connected to root hub yet */
3890         if (!udev->parent || udev->parent->parent ||
3891                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3892                 return -EINVAL;
3893
3894         spin_lock_irqsave(&xhci->lock, flags);
3895
3896         /* Look for devices in lpm_failed_devs list */
3897         dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3898                         le16_to_cpu(udev->descriptor.idProduct);
3899         list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3900                 if (dev_info->dev_id == dev_id) {
3901                         ret = -EINVAL;
3902                         goto finish;
3903                 }
3904         }
3905
3906         port_array = xhci->usb2_ports;
3907         port_num = udev->portnum - 1;
3908
3909         if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3910                 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3911                 ret = -EINVAL;
3912                 goto finish;
3913         }
3914
3915         /*
3916          * Test USB 2.0 software LPM.
3917          * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3918          * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3919          * in the June 2011 errata release.
3920          */
3921         xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3922         /*
3923          * Set L1 Device Slot and HIRD/BESL.
3924          * Check device's USB 2.0 extension descriptor to determine whether
3925          * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3926          */
3927         pm_addr = port_array[port_num] + 1;
3928         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3929         if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2))
3930                 hird = xhci_calculate_hird_besl(u2del, 1);
3931         else
3932                 hird = xhci_calculate_hird_besl(u2del, 0);
3933
3934         temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3935         xhci_writel(xhci, temp, pm_addr);
3936
3937         /* Set port link state to U2(L1) */
3938         addr = port_array[port_num];
3939         xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3940
3941         /* wait for ACK */
3942         spin_unlock_irqrestore(&xhci->lock, flags);
3943         msleep(10);
3944         spin_lock_irqsave(&xhci->lock, flags);
3945
3946         /* Check L1 Status */
3947         ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3948         if (ret != -ETIMEDOUT) {
3949                 /* enter L1 successfully */
3950                 temp = xhci_readl(xhci, addr);
3951                 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3952                                 port_num, temp);
3953                 ret = 0;
3954         } else {
3955                 temp = xhci_readl(xhci, pm_addr);
3956                 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3957                                 port_num, temp & PORT_L1S_MASK);
3958                 ret = -EINVAL;
3959         }
3960
3961         /* Resume the port */
3962         xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3963
3964         spin_unlock_irqrestore(&xhci->lock, flags);
3965         msleep(10);
3966         spin_lock_irqsave(&xhci->lock, flags);
3967
3968         /* Clear PLC */
3969         xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3970
3971         /* Check PORTSC to make sure the device is in the right state */
3972         if (!ret) {
3973                 temp = xhci_readl(xhci, addr);
3974                 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3975                 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3976                                 (temp & PORT_PLS_MASK) != XDEV_U0) {
3977                         xhci_dbg(xhci, "port L1 resume fail\n");
3978                         ret = -EINVAL;
3979                 }
3980         }
3981
3982         if (ret) {
3983                 /* Insert dev to lpm_failed_devs list */
3984                 xhci_warn(xhci, "device LPM test failed, may disconnect and "
3985                                 "re-enumerate\n");
3986                 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3987                 if (!dev_info) {
3988                         ret = -ENOMEM;
3989                         goto finish;
3990                 }
3991                 dev_info->dev_id = dev_id;
3992                 INIT_LIST_HEAD(&dev_info->list);
3993                 list_add(&dev_info->list, &xhci->lpm_failed_devs);
3994         } else {
3995                 xhci_ring_device(xhci, udev->slot_id);
3996         }
3997
3998 finish:
3999         spin_unlock_irqrestore(&xhci->lock, flags);
4000         return ret;
4001 }
4002
4003 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4004                         struct usb_device *udev, int enable)
4005 {
4006         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4007         __le32 __iomem  **port_array;
4008         __le32 __iomem  *pm_addr;
4009         u32             temp;
4010         unsigned int    port_num;
4011         unsigned long   flags;
4012         int             u2del, hird;
4013
4014         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4015                         !udev->lpm_capable)
4016                 return -EPERM;
4017
4018         if (!udev->parent || udev->parent->parent ||
4019                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4020                 return -EPERM;
4021
4022         if (udev->usb2_hw_lpm_capable != 1)
4023                 return -EPERM;
4024
4025         spin_lock_irqsave(&xhci->lock, flags);
4026
4027         port_array = xhci->usb2_ports;
4028         port_num = udev->portnum - 1;
4029         pm_addr = port_array[port_num] + 1;
4030         temp = xhci_readl(xhci, pm_addr);
4031
4032         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4033                         enable ? "enable" : "disable", port_num);
4034
4035         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4036         if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2))
4037                 hird = xhci_calculate_hird_besl(u2del, 1);
4038         else
4039                 hird = xhci_calculate_hird_besl(u2del, 0);
4040
4041         if (enable) {
4042                 temp &= ~PORT_HIRD_MASK;
4043                 temp |= PORT_HIRD(hird) | PORT_RWE;
4044                 xhci_writel(xhci, temp, pm_addr);
4045                 temp = xhci_readl(xhci, pm_addr);
4046                 temp |= PORT_HLE;
4047                 xhci_writel(xhci, temp, pm_addr);
4048         } else {
4049                 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
4050                 xhci_writel(xhci, temp, pm_addr);
4051         }
4052
4053         spin_unlock_irqrestore(&xhci->lock, flags);
4054         return 0;
4055 }
4056
4057 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4058 {
4059         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4060         int             ret;
4061
4062         ret = xhci_usb2_software_lpm_test(hcd, udev);
4063         if (!ret) {
4064                 xhci_dbg(xhci, "software LPM test succeed\n");
4065                 if (xhci->hw_lpm_support == 1) {
4066                         udev->usb2_hw_lpm_capable = 1;
4067                         ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
4068                         if (!ret)
4069                                 udev->usb2_hw_lpm_enabled = 1;
4070                 }
4071         }
4072
4073         return 0;
4074 }
4075
4076 #else
4077
4078 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4079                                 struct usb_device *udev, int enable)
4080 {
4081         return 0;
4082 }
4083
4084 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4085 {
4086         return 0;
4087 }
4088
4089 #endif /* CONFIG_USB_SUSPEND */
4090
4091 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4092  * internal data structures for the device.
4093  */
4094 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4095                         struct usb_tt *tt, gfp_t mem_flags)
4096 {
4097         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4098         struct xhci_virt_device *vdev;
4099         struct xhci_command *config_cmd;
4100         struct xhci_input_control_ctx *ctrl_ctx;
4101         struct xhci_slot_ctx *slot_ctx;
4102         unsigned long flags;
4103         unsigned think_time;
4104         int ret;
4105
4106         /* Ignore root hubs */
4107         if (!hdev->parent)
4108                 return 0;
4109
4110         vdev = xhci->devs[hdev->slot_id];
4111         if (!vdev) {
4112                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4113                 return -EINVAL;
4114         }
4115         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4116         if (!config_cmd) {
4117                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4118                 return -ENOMEM;
4119         }
4120
4121         spin_lock_irqsave(&xhci->lock, flags);
4122         if (hdev->speed == USB_SPEED_HIGH &&
4123                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4124                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4125                 xhci_free_command(xhci, config_cmd);
4126                 spin_unlock_irqrestore(&xhci->lock, flags);
4127                 return -ENOMEM;
4128         }
4129
4130         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4131         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4132         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4133         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4134         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4135         /*
4136          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4137          * but it may be already set to 1 when setup an xHCI virtual
4138          * device, so clear it anyway.
4139          */
4140         if (tt->multi)
4141                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4142         else if (hdev->speed == USB_SPEED_FULL)
4143                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4144
4145         if (xhci->hci_version > 0x95) {
4146                 xhci_dbg(xhci, "xHCI version %x needs hub "
4147                                 "TT think time and number of ports\n",
4148                                 (unsigned int) xhci->hci_version);
4149                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4150                 /* Set TT think time - convert from ns to FS bit times.
4151                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4152                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4153                  *
4154                  * xHCI 1.0: this field shall be 0 if the device is not a
4155                  * High-spped hub.
4156                  */
4157                 think_time = tt->think_time;
4158                 if (think_time != 0)
4159                         think_time = (think_time / 666) - 1;
4160                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4161                         slot_ctx->tt_info |=
4162                                 cpu_to_le32(TT_THINK_TIME(think_time));
4163         } else {
4164                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4165                                 "TT think time or number of ports\n",
4166                                 (unsigned int) xhci->hci_version);
4167         }
4168         slot_ctx->dev_state = 0;
4169         spin_unlock_irqrestore(&xhci->lock, flags);
4170
4171         xhci_dbg(xhci, "Set up %s for hub device.\n",
4172                         (xhci->hci_version > 0x95) ?
4173                         "configure endpoint" : "evaluate context");
4174         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4175         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4176
4177         /* Issue and wait for the configure endpoint or
4178          * evaluate context command.
4179          */
4180         if (xhci->hci_version > 0x95)
4181                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4182                                 false, false);
4183         else
4184                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4185                                 true, false);
4186
4187         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4188         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4189
4190         xhci_free_command(xhci, config_cmd);
4191         return ret;
4192 }
4193
4194 int xhci_get_frame(struct usb_hcd *hcd)
4195 {
4196         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4197         /* EHCI mods by the periodic size.  Why? */
4198         return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4199 }
4200
4201 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4202 {
4203         struct xhci_hcd         *xhci;
4204         struct device           *dev = hcd->self.controller;
4205         int                     retval;
4206         u32                     temp;
4207
4208         hcd->self.sg_tablesize = TRBS_PER_SEGMENT - 2;
4209
4210         if (usb_hcd_is_primary_hcd(hcd)) {
4211                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4212                 if (!xhci)
4213                         return -ENOMEM;
4214                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4215                 xhci->main_hcd = hcd;
4216                 /* Mark the first roothub as being USB 2.0.
4217                  * The xHCI driver will register the USB 3.0 roothub.
4218                  */
4219                 hcd->speed = HCD_USB2;
4220                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4221                 /*
4222                  * USB 2.0 roothub under xHCI has an integrated TT,
4223                  * (rate matching hub) as opposed to having an OHCI/UHCI
4224                  * companion controller.
4225                  */
4226                 hcd->has_tt = 1;
4227         } else {
4228                 /* xHCI private pointer was set in xhci_pci_probe for the second
4229                  * registered roothub.
4230                  */
4231                 xhci = hcd_to_xhci(hcd);
4232                 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4233                 if (HCC_64BIT_ADDR(temp)) {
4234                         xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4235                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4236                 } else {
4237                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4238                 }
4239                 return 0;
4240         }
4241
4242         xhci->cap_regs = hcd->regs;
4243         xhci->op_regs = hcd->regs +
4244                 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4245         xhci->run_regs = hcd->regs +
4246                 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4247         /* Cache read-only capability registers */
4248         xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4249         xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4250         xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4251         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4252         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4253         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4254         xhci_print_registers(xhci);
4255
4256         get_quirks(dev, xhci);
4257
4258         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4259          * success event after a short transfer. This quirk will ignore such
4260          * spurious event.
4261          */
4262         if (xhci->hci_version > 0x96)
4263                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4264
4265         /* Make sure the HC is halted. */
4266         retval = xhci_halt(xhci);
4267         if (retval)
4268                 goto error;
4269
4270         xhci_dbg(xhci, "Resetting HCD\n");
4271         /* Reset the internal HC memory state and registers. */
4272         retval = xhci_reset(xhci);
4273         if (retval)
4274                 goto error;
4275         xhci_dbg(xhci, "Reset complete\n");
4276
4277         temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4278         if (HCC_64BIT_ADDR(temp)) {
4279                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4280                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4281         } else {
4282                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4283         }
4284
4285         xhci_dbg(xhci, "Calling HCD init\n");
4286         /* Initialize HCD and host controller data structures. */
4287         retval = xhci_init(hcd);
4288         if (retval)
4289                 goto error;
4290         xhci_dbg(xhci, "Called HCD init\n");
4291         return 0;
4292 error:
4293         kfree(xhci);
4294         return retval;
4295 }
4296
4297 MODULE_DESCRIPTION(DRIVER_DESC);
4298 MODULE_AUTHOR(DRIVER_AUTHOR);
4299 MODULE_LICENSE("GPL");
4300
4301 static int __init xhci_hcd_init(void)
4302 {
4303         int retval;
4304
4305         if (usb_disabled())
4306                 return -ENODEV;
4307
4308         retval = xhci_register_pci();
4309         if (retval < 0) {
4310                 printk(KERN_DEBUG "Problem registering PCI driver.");
4311                 return retval;
4312         }
4313         /*
4314          * Check the compiler generated sizes of structures that must be laid
4315          * out in specific ways for hardware access.
4316          */
4317         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4318         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4319         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4320         /* xhci_device_control has eight fields, and also
4321          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4322          */
4323         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4324         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4325         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4326         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4327         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4328         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4329         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4330         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4331         return 0;
4332 }
4333 module_init(xhci_hcd_init);
4334
4335 static void __exit xhci_hcd_cleanup(void)
4336 {
4337         xhci_unregister_pci();
4338 }
4339 module_exit(xhci_hcd_cleanup);