Merge branch 'for-linus' of git://git.kernel.dk/linux-block
[pandora-kernel.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29
30 #include "xhci.h"
31
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
34
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42  * handshake - spin reading hc until handshake completes or fails
43  * @ptr: address of hc register to be read
44  * @mask: bits to look at in result of read
45  * @done: value of those bits when handshake succeeds
46  * @usec: timeout in microseconds
47  *
48  * Returns negative errno, or zero on success
49  *
50  * Success happens when the "mask" bits have the specified value (hardware
51  * handshake done).  There are two failure modes:  "usec" have passed (major
52  * hardware flakeout), or the register reads as all-ones (hardware removed).
53  */
54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55                       u32 mask, u32 done, int usec)
56 {
57         u32     result;
58
59         do {
60                 result = xhci_readl(xhci, ptr);
61                 if (result == ~(u32)0)          /* card removed */
62                         return -ENODEV;
63                 result &= mask;
64                 if (result == done)
65                         return 0;
66                 udelay(1);
67                 usec--;
68         } while (usec > 0);
69         return -ETIMEDOUT;
70 }
71
72 /*
73  * Disable interrupts and begin the xHCI halting process.
74  */
75 void xhci_quiesce(struct xhci_hcd *xhci)
76 {
77         u32 halted;
78         u32 cmd;
79         u32 mask;
80
81         mask = ~(XHCI_IRQS);
82         halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83         if (!halted)
84                 mask &= ~CMD_RUN;
85
86         cmd = xhci_readl(xhci, &xhci->op_regs->command);
87         cmd &= mask;
88         xhci_writel(xhci, cmd, &xhci->op_regs->command);
89 }
90
91 /*
92  * Force HC into halt state.
93  *
94  * Disable any IRQs and clear the run/stop bit.
95  * HC will complete any current and actively pipelined transactions, and
96  * should halt within 16 ms of the run/stop bit being cleared.
97  * Read HC Halted bit in the status register to see when the HC is finished.
98  */
99 int xhci_halt(struct xhci_hcd *xhci)
100 {
101         int ret;
102         xhci_dbg(xhci, "// Halt the HC\n");
103         xhci_quiesce(xhci);
104
105         ret = handshake(xhci, &xhci->op_regs->status,
106                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107         if (!ret)
108                 xhci->xhc_state |= XHCI_STATE_HALTED;
109         return ret;
110 }
111
112 /*
113  * Set the run bit and wait for the host to be running.
114  */
115 static int xhci_start(struct xhci_hcd *xhci)
116 {
117         u32 temp;
118         int ret;
119
120         temp = xhci_readl(xhci, &xhci->op_regs->command);
121         temp |= (CMD_RUN);
122         xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
123                         temp);
124         xhci_writel(xhci, temp, &xhci->op_regs->command);
125
126         /*
127          * Wait for the HCHalted Status bit to be 0 to indicate the host is
128          * running.
129          */
130         ret = handshake(xhci, &xhci->op_regs->status,
131                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
132         if (ret == -ETIMEDOUT)
133                 xhci_err(xhci, "Host took too long to start, "
134                                 "waited %u microseconds.\n",
135                                 XHCI_MAX_HALT_USEC);
136         if (!ret)
137                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
138         return ret;
139 }
140
141 /*
142  * Reset a halted HC.
143  *
144  * This resets pipelines, timers, counters, state machines, etc.
145  * Transactions will be terminated immediately, and operational registers
146  * will be set to their defaults.
147  */
148 int xhci_reset(struct xhci_hcd *xhci)
149 {
150         u32 command;
151         u32 state;
152         int ret;
153
154         state = xhci_readl(xhci, &xhci->op_regs->status);
155         if ((state & STS_HALT) == 0) {
156                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
157                 return 0;
158         }
159
160         xhci_dbg(xhci, "// Reset the HC\n");
161         command = xhci_readl(xhci, &xhci->op_regs->command);
162         command |= CMD_RESET;
163         xhci_writel(xhci, command, &xhci->op_regs->command);
164
165         ret = handshake(xhci, &xhci->op_regs->command,
166                         CMD_RESET, 0, 250 * 1000);
167         if (ret)
168                 return ret;
169
170         xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
171         /*
172          * xHCI cannot write to any doorbells or operational registers other
173          * than status until the "Controller Not Ready" flag is cleared.
174          */
175         return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
176 }
177
178 /*
179  * Free IRQs
180  * free all IRQs request
181  */
182 static void xhci_free_irq(struct xhci_hcd *xhci)
183 {
184         int i;
185         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
186
187         /* return if using legacy interrupt */
188         if (xhci_to_hcd(xhci)->irq >= 0)
189                 return;
190
191         if (xhci->msix_entries) {
192                 for (i = 0; i < xhci->msix_count; i++)
193                         if (xhci->msix_entries[i].vector)
194                                 free_irq(xhci->msix_entries[i].vector,
195                                                 xhci_to_hcd(xhci));
196         } else if (pdev->irq >= 0)
197                 free_irq(pdev->irq, xhci_to_hcd(xhci));
198
199         return;
200 }
201
202 /*
203  * Set up MSI
204  */
205 static int xhci_setup_msi(struct xhci_hcd *xhci)
206 {
207         int ret;
208         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
209
210         ret = pci_enable_msi(pdev);
211         if (ret) {
212                 xhci_err(xhci, "failed to allocate MSI entry\n");
213                 return ret;
214         }
215
216         ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
217                                 0, "xhci_hcd", xhci_to_hcd(xhci));
218         if (ret) {
219                 xhci_err(xhci, "disable MSI interrupt\n");
220                 pci_disable_msi(pdev);
221         }
222
223         return ret;
224 }
225
226 /*
227  * Set up MSI-X
228  */
229 static int xhci_setup_msix(struct xhci_hcd *xhci)
230 {
231         int i, ret = 0;
232         struct usb_hcd *hcd = xhci_to_hcd(xhci);
233         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
234
235         /*
236          * calculate number of msi-x vectors supported.
237          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
238          *   with max number of interrupters based on the xhci HCSPARAMS1.
239          * - num_online_cpus: maximum msi-x vectors per CPUs core.
240          *   Add additional 1 vector to ensure always available interrupt.
241          */
242         xhci->msix_count = min(num_online_cpus() + 1,
243                                 HCS_MAX_INTRS(xhci->hcs_params1));
244
245         xhci->msix_entries =
246                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
247                                 GFP_KERNEL);
248         if (!xhci->msix_entries) {
249                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
250                 return -ENOMEM;
251         }
252
253         for (i = 0; i < xhci->msix_count; i++) {
254                 xhci->msix_entries[i].entry = i;
255                 xhci->msix_entries[i].vector = 0;
256         }
257
258         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
259         if (ret) {
260                 xhci_err(xhci, "Failed to enable MSI-X\n");
261                 goto free_entries;
262         }
263
264         for (i = 0; i < xhci->msix_count; i++) {
265                 ret = request_irq(xhci->msix_entries[i].vector,
266                                 (irq_handler_t)xhci_msi_irq,
267                                 0, "xhci_hcd", xhci_to_hcd(xhci));
268                 if (ret)
269                         goto disable_msix;
270         }
271
272         hcd->msix_enabled = 1;
273         return ret;
274
275 disable_msix:
276         xhci_err(xhci, "disable MSI-X interrupt\n");
277         xhci_free_irq(xhci);
278         pci_disable_msix(pdev);
279 free_entries:
280         kfree(xhci->msix_entries);
281         xhci->msix_entries = NULL;
282         return ret;
283 }
284
285 /* Free any IRQs and disable MSI-X */
286 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
287 {
288         struct usb_hcd *hcd = xhci_to_hcd(xhci);
289         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
290
291         xhci_free_irq(xhci);
292
293         if (xhci->msix_entries) {
294                 pci_disable_msix(pdev);
295                 kfree(xhci->msix_entries);
296                 xhci->msix_entries = NULL;
297         } else {
298                 pci_disable_msi(pdev);
299         }
300
301         hcd->msix_enabled = 0;
302         return;
303 }
304
305 /*
306  * Initialize memory for HCD and xHC (one-time init).
307  *
308  * Program the PAGESIZE register, initialize the device context array, create
309  * device contexts (?), set up a command ring segment (or two?), create event
310  * ring (one for now).
311  */
312 int xhci_init(struct usb_hcd *hcd)
313 {
314         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
315         int retval = 0;
316
317         xhci_dbg(xhci, "xhci_init\n");
318         spin_lock_init(&xhci->lock);
319         if (link_quirk) {
320                 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
321                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
322         } else {
323                 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
324         }
325         retval = xhci_mem_init(xhci, GFP_KERNEL);
326         xhci_dbg(xhci, "Finished xhci_init\n");
327
328         return retval;
329 }
330
331 /*-------------------------------------------------------------------------*/
332
333
334 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
335 static void xhci_event_ring_work(unsigned long arg)
336 {
337         unsigned long flags;
338         int temp;
339         u64 temp_64;
340         struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
341         int i, j;
342
343         xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
344
345         spin_lock_irqsave(&xhci->lock, flags);
346         temp = xhci_readl(xhci, &xhci->op_regs->status);
347         xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
348         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
349                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
350                 xhci_dbg(xhci, "HW died, polling stopped.\n");
351                 spin_unlock_irqrestore(&xhci->lock, flags);
352                 return;
353         }
354
355         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
356         xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
357         xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
358         xhci->error_bitmask = 0;
359         xhci_dbg(xhci, "Event ring:\n");
360         xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
361         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
362         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
363         temp_64 &= ~ERST_PTR_MASK;
364         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
365         xhci_dbg(xhci, "Command ring:\n");
366         xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
367         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
368         xhci_dbg_cmd_ptrs(xhci);
369         for (i = 0; i < MAX_HC_SLOTS; ++i) {
370                 if (!xhci->devs[i])
371                         continue;
372                 for (j = 0; j < 31; ++j) {
373                         xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
374                 }
375         }
376         spin_unlock_irqrestore(&xhci->lock, flags);
377
378         if (!xhci->zombie)
379                 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
380         else
381                 xhci_dbg(xhci, "Quit polling the event ring.\n");
382 }
383 #endif
384
385 static int xhci_run_finished(struct xhci_hcd *xhci)
386 {
387         if (xhci_start(xhci)) {
388                 xhci_halt(xhci);
389                 return -ENODEV;
390         }
391         xhci->shared_hcd->state = HC_STATE_RUNNING;
392
393         if (xhci->quirks & XHCI_NEC_HOST)
394                 xhci_ring_cmd_db(xhci);
395
396         xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
397         return 0;
398 }
399
400 /*
401  * Start the HC after it was halted.
402  *
403  * This function is called by the USB core when the HC driver is added.
404  * Its opposite is xhci_stop().
405  *
406  * xhci_init() must be called once before this function can be called.
407  * Reset the HC, enable device slot contexts, program DCBAAP, and
408  * set command ring pointer and event ring pointer.
409  *
410  * Setup MSI-X vectors and enable interrupts.
411  */
412 int xhci_run(struct usb_hcd *hcd)
413 {
414         u32 temp;
415         u64 temp_64;
416         u32 ret;
417         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
418         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
419
420         /* Start the xHCI host controller running only after the USB 2.0 roothub
421          * is setup.
422          */
423
424         hcd->uses_new_polling = 1;
425         if (!usb_hcd_is_primary_hcd(hcd))
426                 return xhci_run_finished(xhci);
427
428         xhci_dbg(xhci, "xhci_run\n");
429         /* unregister the legacy interrupt */
430         if (hcd->irq)
431                 free_irq(hcd->irq, hcd);
432         hcd->irq = -1;
433
434         /* Some Fresco Logic host controllers advertise MSI, but fail to
435          * generate interrupts.  Don't even try to enable MSI.
436          */
437         if (xhci->quirks & XHCI_BROKEN_MSI)
438                 goto legacy_irq;
439
440         ret = xhci_setup_msix(xhci);
441         if (ret)
442                 /* fall back to msi*/
443                 ret = xhci_setup_msi(xhci);
444
445         if (ret) {
446 legacy_irq:
447                 /* fall back to legacy interrupt*/
448                 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
449                                         hcd->irq_descr, hcd);
450                 if (ret) {
451                         xhci_err(xhci, "request interrupt %d failed\n",
452                                         pdev->irq);
453                         return ret;
454                 }
455                 hcd->irq = pdev->irq;
456         }
457
458 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
459         init_timer(&xhci->event_ring_timer);
460         xhci->event_ring_timer.data = (unsigned long) xhci;
461         xhci->event_ring_timer.function = xhci_event_ring_work;
462         /* Poll the event ring */
463         xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
464         xhci->zombie = 0;
465         xhci_dbg(xhci, "Setting event ring polling timer\n");
466         add_timer(&xhci->event_ring_timer);
467 #endif
468
469         xhci_dbg(xhci, "Command ring memory map follows:\n");
470         xhci_debug_ring(xhci, xhci->cmd_ring);
471         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
472         xhci_dbg_cmd_ptrs(xhci);
473
474         xhci_dbg(xhci, "ERST memory map follows:\n");
475         xhci_dbg_erst(xhci, &xhci->erst);
476         xhci_dbg(xhci, "Event ring:\n");
477         xhci_debug_ring(xhci, xhci->event_ring);
478         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
479         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
480         temp_64 &= ~ERST_PTR_MASK;
481         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
482
483         xhci_dbg(xhci, "// Set the interrupt modulation register\n");
484         temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
485         temp &= ~ER_IRQ_INTERVAL_MASK;
486         temp |= (u32) 160;
487         xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
488
489         /* Set the HCD state before we enable the irqs */
490         temp = xhci_readl(xhci, &xhci->op_regs->command);
491         temp |= (CMD_EIE);
492         xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
493                         temp);
494         xhci_writel(xhci, temp, &xhci->op_regs->command);
495
496         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
497         xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
498                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
499         xhci_writel(xhci, ER_IRQ_ENABLE(temp),
500                         &xhci->ir_set->irq_pending);
501         xhci_print_ir_set(xhci, 0);
502
503         if (xhci->quirks & XHCI_NEC_HOST)
504                 xhci_queue_vendor_command(xhci, 0, 0, 0,
505                                 TRB_TYPE(TRB_NEC_GET_FW));
506
507         xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
508         return 0;
509 }
510
511 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
512 {
513         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
514
515         spin_lock_irq(&xhci->lock);
516         xhci_halt(xhci);
517
518         /* The shared_hcd is going to be deallocated shortly (the USB core only
519          * calls this function when allocation fails in usb_add_hcd(), or
520          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
521          */
522         xhci->shared_hcd = NULL;
523         spin_unlock_irq(&xhci->lock);
524 }
525
526 /*
527  * Stop xHCI driver.
528  *
529  * This function is called by the USB core when the HC driver is removed.
530  * Its opposite is xhci_run().
531  *
532  * Disable device contexts, disable IRQs, and quiesce the HC.
533  * Reset the HC, finish any completed transactions, and cleanup memory.
534  */
535 void xhci_stop(struct usb_hcd *hcd)
536 {
537         u32 temp;
538         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
539
540         if (!usb_hcd_is_primary_hcd(hcd)) {
541                 xhci_only_stop_hcd(xhci->shared_hcd);
542                 return;
543         }
544
545         spin_lock_irq(&xhci->lock);
546         /* Make sure the xHC is halted for a USB3 roothub
547          * (xhci_stop() could be called as part of failed init).
548          */
549         xhci_halt(xhci);
550         xhci_reset(xhci);
551         spin_unlock_irq(&xhci->lock);
552
553         xhci_cleanup_msix(xhci);
554
555 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
556         /* Tell the event ring poll function not to reschedule */
557         xhci->zombie = 1;
558         del_timer_sync(&xhci->event_ring_timer);
559 #endif
560
561         if (xhci->quirks & XHCI_AMD_PLL_FIX)
562                 usb_amd_dev_put();
563
564         xhci_dbg(xhci, "// Disabling event ring interrupts\n");
565         temp = xhci_readl(xhci, &xhci->op_regs->status);
566         xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
567         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
568         xhci_writel(xhci, ER_IRQ_DISABLE(temp),
569                         &xhci->ir_set->irq_pending);
570         xhci_print_ir_set(xhci, 0);
571
572         xhci_dbg(xhci, "cleaning up memory\n");
573         xhci_mem_cleanup(xhci);
574         xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
575                     xhci_readl(xhci, &xhci->op_regs->status));
576 }
577
578 /*
579  * Shutdown HC (not bus-specific)
580  *
581  * This is called when the machine is rebooting or halting.  We assume that the
582  * machine will be powered off, and the HC's internal state will be reset.
583  * Don't bother to free memory.
584  *
585  * This will only ever be called with the main usb_hcd (the USB3 roothub).
586  */
587 void xhci_shutdown(struct usb_hcd *hcd)
588 {
589         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
590
591         spin_lock_irq(&xhci->lock);
592         xhci_halt(xhci);
593         spin_unlock_irq(&xhci->lock);
594
595         xhci_cleanup_msix(xhci);
596
597         xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
598                     xhci_readl(xhci, &xhci->op_regs->status));
599 }
600
601 #ifdef CONFIG_PM
602 static void xhci_save_registers(struct xhci_hcd *xhci)
603 {
604         xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
605         xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
606         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
607         xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
608         xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
609         xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
610         xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
611         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
612         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
613 }
614
615 static void xhci_restore_registers(struct xhci_hcd *xhci)
616 {
617         xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
618         xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
619         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
620         xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
621         xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
622         xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
623         xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
624         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
625 }
626
627 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
628 {
629         u64     val_64;
630
631         /* step 2: initialize command ring buffer */
632         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
633         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
634                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
635                                       xhci->cmd_ring->dequeue) &
636                  (u64) ~CMD_RING_RSVD_BITS) |
637                 xhci->cmd_ring->cycle_state;
638         xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
639                         (long unsigned long) val_64);
640         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
641 }
642
643 /*
644  * The whole command ring must be cleared to zero when we suspend the host.
645  *
646  * The host doesn't save the command ring pointer in the suspend well, so we
647  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
648  * aligned, because of the reserved bits in the command ring dequeue pointer
649  * register.  Therefore, we can't just set the dequeue pointer back in the
650  * middle of the ring (TRBs are 16-byte aligned).
651  */
652 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
653 {
654         struct xhci_ring *ring;
655         struct xhci_segment *seg;
656
657         ring = xhci->cmd_ring;
658         seg = ring->deq_seg;
659         do {
660                 memset(seg->trbs, 0, SEGMENT_SIZE);
661                 seg = seg->next;
662         } while (seg != ring->deq_seg);
663
664         /* Reset the software enqueue and dequeue pointers */
665         ring->deq_seg = ring->first_seg;
666         ring->dequeue = ring->first_seg->trbs;
667         ring->enq_seg = ring->deq_seg;
668         ring->enqueue = ring->dequeue;
669
670         /*
671          * Ring is now zeroed, so the HW should look for change of ownership
672          * when the cycle bit is set to 1.
673          */
674         ring->cycle_state = 1;
675
676         /*
677          * Reset the hardware dequeue pointer.
678          * Yes, this will need to be re-written after resume, but we're paranoid
679          * and want to make sure the hardware doesn't access bogus memory
680          * because, say, the BIOS or an SMI started the host without changing
681          * the command ring pointers.
682          */
683         xhci_set_cmd_ring_deq(xhci);
684 }
685
686 /*
687  * Stop HC (not bus-specific)
688  *
689  * This is called when the machine transition into S3/S4 mode.
690  *
691  */
692 int xhci_suspend(struct xhci_hcd *xhci)
693 {
694         int                     rc = 0;
695         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
696         u32                     command;
697         int                     i;
698
699         spin_lock_irq(&xhci->lock);
700         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
701         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
702         /* step 1: stop endpoint */
703         /* skipped assuming that port suspend has done */
704
705         /* step 2: clear Run/Stop bit */
706         command = xhci_readl(xhci, &xhci->op_regs->command);
707         command &= ~CMD_RUN;
708         xhci_writel(xhci, command, &xhci->op_regs->command);
709         if (handshake(xhci, &xhci->op_regs->status,
710                       STS_HALT, STS_HALT, 100*100)) {
711                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
712                 spin_unlock_irq(&xhci->lock);
713                 return -ETIMEDOUT;
714         }
715         xhci_clear_command_ring(xhci);
716
717         /* step 3: save registers */
718         xhci_save_registers(xhci);
719
720         /* step 4: set CSS flag */
721         command = xhci_readl(xhci, &xhci->op_regs->command);
722         command |= CMD_CSS;
723         xhci_writel(xhci, command, &xhci->op_regs->command);
724         if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) {
725                 xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n");
726                 spin_unlock_irq(&xhci->lock);
727                 return -ETIMEDOUT;
728         }
729         spin_unlock_irq(&xhci->lock);
730
731         /* step 5: remove core well power */
732         /* synchronize irq when using MSI-X */
733         if (xhci->msix_entries) {
734                 for (i = 0; i < xhci->msix_count; i++)
735                         synchronize_irq(xhci->msix_entries[i].vector);
736         }
737
738         return rc;
739 }
740
741 /*
742  * start xHC (not bus-specific)
743  *
744  * This is called when the machine transition from S3/S4 mode.
745  *
746  */
747 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
748 {
749         u32                     command, temp = 0;
750         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
751         struct usb_hcd          *secondary_hcd;
752         int                     retval;
753
754         /* Wait a bit if either of the roothubs need to settle from the
755          * transition into bus suspend.
756          */
757         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
758                         time_before(jiffies,
759                                 xhci->bus_state[1].next_statechange))
760                 msleep(100);
761
762         spin_lock_irq(&xhci->lock);
763         if (xhci->quirks & XHCI_RESET_ON_RESUME)
764                 hibernated = true;
765
766         if (!hibernated) {
767                 /* step 1: restore register */
768                 xhci_restore_registers(xhci);
769                 /* step 2: initialize command ring buffer */
770                 xhci_set_cmd_ring_deq(xhci);
771                 /* step 3: restore state and start state*/
772                 /* step 3: set CRS flag */
773                 command = xhci_readl(xhci, &xhci->op_regs->command);
774                 command |= CMD_CRS;
775                 xhci_writel(xhci, command, &xhci->op_regs->command);
776                 if (handshake(xhci, &xhci->op_regs->status,
777                               STS_RESTORE, 0, 10*100)) {
778                         xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n");
779                         spin_unlock_irq(&xhci->lock);
780                         return -ETIMEDOUT;
781                 }
782                 temp = xhci_readl(xhci, &xhci->op_regs->status);
783         }
784
785         /* If restore operation fails, re-initialize the HC during resume */
786         if ((temp & STS_SRE) || hibernated) {
787                 /* Let the USB core know _both_ roothubs lost power. */
788                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
789                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
790
791                 xhci_dbg(xhci, "Stop HCD\n");
792                 xhci_halt(xhci);
793                 xhci_reset(xhci);
794                 spin_unlock_irq(&xhci->lock);
795                 xhci_cleanup_msix(xhci);
796
797 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
798                 /* Tell the event ring poll function not to reschedule */
799                 xhci->zombie = 1;
800                 del_timer_sync(&xhci->event_ring_timer);
801 #endif
802
803                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
804                 temp = xhci_readl(xhci, &xhci->op_regs->status);
805                 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
806                 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
807                 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
808                                 &xhci->ir_set->irq_pending);
809                 xhci_print_ir_set(xhci, 0);
810
811                 xhci_dbg(xhci, "cleaning up memory\n");
812                 xhci_mem_cleanup(xhci);
813                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
814                             xhci_readl(xhci, &xhci->op_regs->status));
815
816                 /* USB core calls the PCI reinit and start functions twice:
817                  * first with the primary HCD, and then with the secondary HCD.
818                  * If we don't do the same, the host will never be started.
819                  */
820                 if (!usb_hcd_is_primary_hcd(hcd))
821                         secondary_hcd = hcd;
822                 else
823                         secondary_hcd = xhci->shared_hcd;
824
825                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
826                 retval = xhci_init(hcd->primary_hcd);
827                 if (retval)
828                         return retval;
829                 xhci_dbg(xhci, "Start the primary HCD\n");
830                 retval = xhci_run(hcd->primary_hcd);
831                 if (retval)
832                         goto failed_restart;
833
834                 xhci_dbg(xhci, "Start the secondary HCD\n");
835                 retval = xhci_run(secondary_hcd);
836                 if (!retval) {
837                         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
838                         set_bit(HCD_FLAG_HW_ACCESSIBLE,
839                                         &xhci->shared_hcd->flags);
840                 }
841 failed_restart:
842                 hcd->state = HC_STATE_SUSPENDED;
843                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
844                 return retval;
845         }
846
847         /* step 4: set Run/Stop bit */
848         command = xhci_readl(xhci, &xhci->op_regs->command);
849         command |= CMD_RUN;
850         xhci_writel(xhci, command, &xhci->op_regs->command);
851         handshake(xhci, &xhci->op_regs->status, STS_HALT,
852                   0, 250 * 1000);
853
854         /* step 5: walk topology and initialize portsc,
855          * portpmsc and portli
856          */
857         /* this is done in bus_resume */
858
859         /* step 6: restart each of the previously
860          * Running endpoints by ringing their doorbells
861          */
862
863         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
864         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
865
866         spin_unlock_irq(&xhci->lock);
867         return 0;
868 }
869 #endif  /* CONFIG_PM */
870
871 /*-------------------------------------------------------------------------*/
872
873 /**
874  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
875  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
876  * value to right shift 1 for the bitmask.
877  *
878  * Index  = (epnum * 2) + direction - 1,
879  * where direction = 0 for OUT, 1 for IN.
880  * For control endpoints, the IN index is used (OUT index is unused), so
881  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
882  */
883 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
884 {
885         unsigned int index;
886         if (usb_endpoint_xfer_control(desc))
887                 index = (unsigned int) (usb_endpoint_num(desc)*2);
888         else
889                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
890                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
891         return index;
892 }
893
894 /* Find the flag for this endpoint (for use in the control context).  Use the
895  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
896  * bit 1, etc.
897  */
898 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
899 {
900         return 1 << (xhci_get_endpoint_index(desc) + 1);
901 }
902
903 /* Find the flag for this endpoint (for use in the control context).  Use the
904  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
905  * bit 1, etc.
906  */
907 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
908 {
909         return 1 << (ep_index + 1);
910 }
911
912 /* Compute the last valid endpoint context index.  Basically, this is the
913  * endpoint index plus one.  For slot contexts with more than valid endpoint,
914  * we find the most significant bit set in the added contexts flags.
915  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
916  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
917  */
918 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
919 {
920         return fls(added_ctxs) - 1;
921 }
922
923 /* Returns 1 if the arguments are OK;
924  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
925  */
926 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
927                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
928                 const char *func) {
929         struct xhci_hcd *xhci;
930         struct xhci_virt_device *virt_dev;
931
932         if (!hcd || (check_ep && !ep) || !udev) {
933                 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
934                                 func);
935                 return -EINVAL;
936         }
937         if (!udev->parent) {
938                 printk(KERN_DEBUG "xHCI %s called for root hub\n",
939                                 func);
940                 return 0;
941         }
942
943         xhci = hcd_to_xhci(hcd);
944         if (xhci->xhc_state & XHCI_STATE_HALTED)
945                 return -ENODEV;
946
947         if (check_virt_dev) {
948                 if (!udev->slot_id || !xhci->devs
949                         || !xhci->devs[udev->slot_id]) {
950                         printk(KERN_DEBUG "xHCI %s called with unaddressed "
951                                                 "device\n", func);
952                         return -EINVAL;
953                 }
954
955                 virt_dev = xhci->devs[udev->slot_id];
956                 if (virt_dev->udev != udev) {
957                         printk(KERN_DEBUG "xHCI %s called with udev and "
958                                           "virt_dev does not match\n", func);
959                         return -EINVAL;
960                 }
961         }
962
963         return 1;
964 }
965
966 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
967                 struct usb_device *udev, struct xhci_command *command,
968                 bool ctx_change, bool must_succeed);
969
970 /*
971  * Full speed devices may have a max packet size greater than 8 bytes, but the
972  * USB core doesn't know that until it reads the first 8 bytes of the
973  * descriptor.  If the usb_device's max packet size changes after that point,
974  * we need to issue an evaluate context command and wait on it.
975  */
976 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
977                 unsigned int ep_index, struct urb *urb)
978 {
979         struct xhci_container_ctx *in_ctx;
980         struct xhci_container_ctx *out_ctx;
981         struct xhci_input_control_ctx *ctrl_ctx;
982         struct xhci_ep_ctx *ep_ctx;
983         int max_packet_size;
984         int hw_max_packet_size;
985         int ret = 0;
986
987         out_ctx = xhci->devs[slot_id]->out_ctx;
988         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
989         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
990         max_packet_size = le16_to_cpu(urb->dev->ep0.desc.wMaxPacketSize);
991         if (hw_max_packet_size != max_packet_size) {
992                 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
993                 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
994                                 max_packet_size);
995                 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
996                                 hw_max_packet_size);
997                 xhci_dbg(xhci, "Issuing evaluate context command.\n");
998
999                 /* Set up the modified control endpoint 0 */
1000                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1001                                 xhci->devs[slot_id]->out_ctx, ep_index);
1002                 in_ctx = xhci->devs[slot_id]->in_ctx;
1003                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1004                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1005                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1006
1007                 /* Set up the input context flags for the command */
1008                 /* FIXME: This won't work if a non-default control endpoint
1009                  * changes max packet sizes.
1010                  */
1011                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1012                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1013                 ctrl_ctx->drop_flags = 0;
1014
1015                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1016                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1017                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1018                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1019
1020                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1021                                 true, false);
1022
1023                 /* Clean up the input context for later use by bandwidth
1024                  * functions.
1025                  */
1026                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1027         }
1028         return ret;
1029 }
1030
1031 /*
1032  * non-error returns are a promise to giveback() the urb later
1033  * we drop ownership so next owner (or urb unlink) can get it
1034  */
1035 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1036 {
1037         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1038         unsigned long flags;
1039         int ret = 0;
1040         unsigned int slot_id, ep_index;
1041         struct urb_priv *urb_priv;
1042         int size, i;
1043
1044         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1045                                         true, true, __func__) <= 0)
1046                 return -EINVAL;
1047
1048         slot_id = urb->dev->slot_id;
1049         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1050
1051         if (!HCD_HW_ACCESSIBLE(hcd)) {
1052                 if (!in_interrupt())
1053                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1054                 ret = -ESHUTDOWN;
1055                 goto exit;
1056         }
1057
1058         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1059                 size = urb->number_of_packets;
1060         else
1061                 size = 1;
1062
1063         urb_priv = kzalloc(sizeof(struct urb_priv) +
1064                                   size * sizeof(struct xhci_td *), mem_flags);
1065         if (!urb_priv)
1066                 return -ENOMEM;
1067
1068         for (i = 0; i < size; i++) {
1069                 urb_priv->td[i] = kzalloc(sizeof(struct xhci_td), mem_flags);
1070                 if (!urb_priv->td[i]) {
1071                         urb_priv->length = i;
1072                         xhci_urb_free_priv(xhci, urb_priv);
1073                         return -ENOMEM;
1074                 }
1075         }
1076
1077         urb_priv->length = size;
1078         urb_priv->td_cnt = 0;
1079         urb->hcpriv = urb_priv;
1080
1081         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1082                 /* Check to see if the max packet size for the default control
1083                  * endpoint changed during FS device enumeration
1084                  */
1085                 if (urb->dev->speed == USB_SPEED_FULL) {
1086                         ret = xhci_check_maxpacket(xhci, slot_id,
1087                                         ep_index, urb);
1088                         if (ret < 0) {
1089                                 xhci_urb_free_priv(xhci, urb_priv);
1090                                 urb->hcpriv = NULL;
1091                                 return ret;
1092                         }
1093                 }
1094
1095                 /* We have a spinlock and interrupts disabled, so we must pass
1096                  * atomic context to this function, which may allocate memory.
1097                  */
1098                 spin_lock_irqsave(&xhci->lock, flags);
1099                 if (xhci->xhc_state & XHCI_STATE_DYING)
1100                         goto dying;
1101                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1102                                 slot_id, ep_index);
1103                 if (ret)
1104                         goto free_priv;
1105                 spin_unlock_irqrestore(&xhci->lock, flags);
1106         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1107                 spin_lock_irqsave(&xhci->lock, flags);
1108                 if (xhci->xhc_state & XHCI_STATE_DYING)
1109                         goto dying;
1110                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1111                                 EP_GETTING_STREAMS) {
1112                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1113                                         "is transitioning to using streams.\n");
1114                         ret = -EINVAL;
1115                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1116                                 EP_GETTING_NO_STREAMS) {
1117                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1118                                         "is transitioning to "
1119                                         "not having streams.\n");
1120                         ret = -EINVAL;
1121                 } else {
1122                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1123                                         slot_id, ep_index);
1124                 }
1125                 if (ret)
1126                         goto free_priv;
1127                 spin_unlock_irqrestore(&xhci->lock, flags);
1128         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1129                 spin_lock_irqsave(&xhci->lock, flags);
1130                 if (xhci->xhc_state & XHCI_STATE_DYING)
1131                         goto dying;
1132                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1133                                 slot_id, ep_index);
1134                 if (ret)
1135                         goto free_priv;
1136                 spin_unlock_irqrestore(&xhci->lock, flags);
1137         } else {
1138                 spin_lock_irqsave(&xhci->lock, flags);
1139                 if (xhci->xhc_state & XHCI_STATE_DYING)
1140                         goto dying;
1141                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1142                                 slot_id, ep_index);
1143                 if (ret)
1144                         goto free_priv;
1145                 spin_unlock_irqrestore(&xhci->lock, flags);
1146         }
1147 exit:
1148         return ret;
1149 dying:
1150         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1151                         "non-responsive xHCI host.\n",
1152                         urb->ep->desc.bEndpointAddress, urb);
1153         ret = -ESHUTDOWN;
1154 free_priv:
1155         xhci_urb_free_priv(xhci, urb_priv);
1156         urb->hcpriv = NULL;
1157         spin_unlock_irqrestore(&xhci->lock, flags);
1158         return ret;
1159 }
1160
1161 /* Get the right ring for the given URB.
1162  * If the endpoint supports streams, boundary check the URB's stream ID.
1163  * If the endpoint doesn't support streams, return the singular endpoint ring.
1164  */
1165 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1166                 struct urb *urb)
1167 {
1168         unsigned int slot_id;
1169         unsigned int ep_index;
1170         unsigned int stream_id;
1171         struct xhci_virt_ep *ep;
1172
1173         slot_id = urb->dev->slot_id;
1174         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1175         stream_id = urb->stream_id;
1176         ep = &xhci->devs[slot_id]->eps[ep_index];
1177         /* Common case: no streams */
1178         if (!(ep->ep_state & EP_HAS_STREAMS))
1179                 return ep->ring;
1180
1181         if (stream_id == 0) {
1182                 xhci_warn(xhci,
1183                                 "WARN: Slot ID %u, ep index %u has streams, "
1184                                 "but URB has no stream ID.\n",
1185                                 slot_id, ep_index);
1186                 return NULL;
1187         }
1188
1189         if (stream_id < ep->stream_info->num_streams)
1190                 return ep->stream_info->stream_rings[stream_id];
1191
1192         xhci_warn(xhci,
1193                         "WARN: Slot ID %u, ep index %u has "
1194                         "stream IDs 1 to %u allocated, "
1195                         "but stream ID %u is requested.\n",
1196                         slot_id, ep_index,
1197                         ep->stream_info->num_streams - 1,
1198                         stream_id);
1199         return NULL;
1200 }
1201
1202 /*
1203  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1204  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1205  * should pick up where it left off in the TD, unless a Set Transfer Ring
1206  * Dequeue Pointer is issued.
1207  *
1208  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1209  * the ring.  Since the ring is a contiguous structure, they can't be physically
1210  * removed.  Instead, there are two options:
1211  *
1212  *  1) If the HC is in the middle of processing the URB to be canceled, we
1213  *     simply move the ring's dequeue pointer past those TRBs using the Set
1214  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1215  *     when drivers timeout on the last submitted URB and attempt to cancel.
1216  *
1217  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1218  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1219  *     HC will need to invalidate the any TRBs it has cached after the stop
1220  *     endpoint command, as noted in the xHCI 0.95 errata.
1221  *
1222  *  3) The TD may have completed by the time the Stop Endpoint Command
1223  *     completes, so software needs to handle that case too.
1224  *
1225  * This function should protect against the TD enqueueing code ringing the
1226  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1227  * It also needs to account for multiple cancellations on happening at the same
1228  * time for the same endpoint.
1229  *
1230  * Note that this function can be called in any context, or so says
1231  * usb_hcd_unlink_urb()
1232  */
1233 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1234 {
1235         unsigned long flags;
1236         int ret, i;
1237         u32 temp;
1238         struct xhci_hcd *xhci;
1239         struct urb_priv *urb_priv;
1240         struct xhci_td *td;
1241         unsigned int ep_index;
1242         struct xhci_ring *ep_ring;
1243         struct xhci_virt_ep *ep;
1244
1245         xhci = hcd_to_xhci(hcd);
1246         spin_lock_irqsave(&xhci->lock, flags);
1247         /* Make sure the URB hasn't completed or been unlinked already */
1248         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1249         if (ret || !urb->hcpriv)
1250                 goto done;
1251         temp = xhci_readl(xhci, &xhci->op_regs->status);
1252         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1253                 xhci_dbg(xhci, "HW died, freeing TD.\n");
1254                 urb_priv = urb->hcpriv;
1255                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1256                         td = urb_priv->td[i];
1257                         if (!list_empty(&td->td_list))
1258                                 list_del_init(&td->td_list);
1259                         if (!list_empty(&td->cancelled_td_list))
1260                                 list_del_init(&td->cancelled_td_list);
1261                 }
1262
1263                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1264                 spin_unlock_irqrestore(&xhci->lock, flags);
1265                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1266                 xhci_urb_free_priv(xhci, urb_priv);
1267                 return ret;
1268         }
1269         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1270                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1271                 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1272                                 "non-responsive xHCI host.\n",
1273                                 urb->ep->desc.bEndpointAddress, urb);
1274                 /* Let the stop endpoint command watchdog timer (which set this
1275                  * state) finish cleaning up the endpoint TD lists.  We must
1276                  * have caught it in the middle of dropping a lock and giving
1277                  * back an URB.
1278                  */
1279                 goto done;
1280         }
1281
1282         xhci_dbg(xhci, "Cancel URB %p\n", urb);
1283         xhci_dbg(xhci, "Event ring:\n");
1284         xhci_debug_ring(xhci, xhci->event_ring);
1285         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1286         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1287         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1288         if (!ep_ring) {
1289                 ret = -EINVAL;
1290                 goto done;
1291         }
1292
1293         xhci_dbg(xhci, "Endpoint ring:\n");
1294         xhci_debug_ring(xhci, ep_ring);
1295
1296         urb_priv = urb->hcpriv;
1297
1298         for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1299                 td = urb_priv->td[i];
1300                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1301         }
1302
1303         /* Queue a stop endpoint command, but only if this is
1304          * the first cancellation to be handled.
1305          */
1306         if (!(ep->ep_state & EP_HALT_PENDING)) {
1307                 ep->ep_state |= EP_HALT_PENDING;
1308                 ep->stop_cmds_pending++;
1309                 ep->stop_cmd_timer.expires = jiffies +
1310                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1311                 add_timer(&ep->stop_cmd_timer);
1312                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1313                 xhci_ring_cmd_db(xhci);
1314         }
1315 done:
1316         spin_unlock_irqrestore(&xhci->lock, flags);
1317         return ret;
1318 }
1319
1320 /* Drop an endpoint from a new bandwidth configuration for this device.
1321  * Only one call to this function is allowed per endpoint before
1322  * check_bandwidth() or reset_bandwidth() must be called.
1323  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1324  * add the endpoint to the schedule with possibly new parameters denoted by a
1325  * different endpoint descriptor in usb_host_endpoint.
1326  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1327  * not allowed.
1328  *
1329  * The USB core will not allow URBs to be queued to an endpoint that is being
1330  * disabled, so there's no need for mutual exclusion to protect
1331  * the xhci->devs[slot_id] structure.
1332  */
1333 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1334                 struct usb_host_endpoint *ep)
1335 {
1336         struct xhci_hcd *xhci;
1337         struct xhci_container_ctx *in_ctx, *out_ctx;
1338         struct xhci_input_control_ctx *ctrl_ctx;
1339         struct xhci_slot_ctx *slot_ctx;
1340         unsigned int last_ctx;
1341         unsigned int ep_index;
1342         struct xhci_ep_ctx *ep_ctx;
1343         u32 drop_flag;
1344         u32 new_add_flags, new_drop_flags, new_slot_info;
1345         int ret;
1346
1347         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1348         if (ret <= 0)
1349                 return ret;
1350         xhci = hcd_to_xhci(hcd);
1351         if (xhci->xhc_state & XHCI_STATE_DYING)
1352                 return -ENODEV;
1353
1354         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1355         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1356         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1357                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1358                                 __func__, drop_flag);
1359                 return 0;
1360         }
1361
1362         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1363         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1364         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1365         ep_index = xhci_get_endpoint_index(&ep->desc);
1366         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1367         /* If the HC already knows the endpoint is disabled,
1368          * or the HCD has noted it is disabled, ignore this request
1369          */
1370         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1371              cpu_to_le32(EP_STATE_DISABLED)) ||
1372             le32_to_cpu(ctrl_ctx->drop_flags) &
1373             xhci_get_endpoint_flag(&ep->desc)) {
1374                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1375                                 __func__, ep);
1376                 return 0;
1377         }
1378
1379         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1380         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1381
1382         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1383         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1384
1385         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1386         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1387         /* Update the last valid endpoint context, if we deleted the last one */
1388         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1389             LAST_CTX(last_ctx)) {
1390                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1391                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1392         }
1393         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1394
1395         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1396
1397         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1398                         (unsigned int) ep->desc.bEndpointAddress,
1399                         udev->slot_id,
1400                         (unsigned int) new_drop_flags,
1401                         (unsigned int) new_add_flags,
1402                         (unsigned int) new_slot_info);
1403         return 0;
1404 }
1405
1406 /* Add an endpoint to a new possible bandwidth configuration for this device.
1407  * Only one call to this function is allowed per endpoint before
1408  * check_bandwidth() or reset_bandwidth() must be called.
1409  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1410  * add the endpoint to the schedule with possibly new parameters denoted by a
1411  * different endpoint descriptor in usb_host_endpoint.
1412  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1413  * not allowed.
1414  *
1415  * The USB core will not allow URBs to be queued to an endpoint until the
1416  * configuration or alt setting is installed in the device, so there's no need
1417  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1418  */
1419 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1420                 struct usb_host_endpoint *ep)
1421 {
1422         struct xhci_hcd *xhci;
1423         struct xhci_container_ctx *in_ctx, *out_ctx;
1424         unsigned int ep_index;
1425         struct xhci_ep_ctx *ep_ctx;
1426         struct xhci_slot_ctx *slot_ctx;
1427         struct xhci_input_control_ctx *ctrl_ctx;
1428         u32 added_ctxs;
1429         unsigned int last_ctx;
1430         u32 new_add_flags, new_drop_flags, new_slot_info;
1431         struct xhci_virt_device *virt_dev;
1432         int ret = 0;
1433
1434         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1435         if (ret <= 0) {
1436                 /* So we won't queue a reset ep command for a root hub */
1437                 ep->hcpriv = NULL;
1438                 return ret;
1439         }
1440         xhci = hcd_to_xhci(hcd);
1441         if (xhci->xhc_state & XHCI_STATE_DYING)
1442                 return -ENODEV;
1443
1444         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1445         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1446         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1447                 /* FIXME when we have to issue an evaluate endpoint command to
1448                  * deal with ep0 max packet size changing once we get the
1449                  * descriptors
1450                  */
1451                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1452                                 __func__, added_ctxs);
1453                 return 0;
1454         }
1455
1456         virt_dev = xhci->devs[udev->slot_id];
1457         in_ctx = virt_dev->in_ctx;
1458         out_ctx = virt_dev->out_ctx;
1459         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1460         ep_index = xhci_get_endpoint_index(&ep->desc);
1461         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1462
1463         /* If this endpoint is already in use, and the upper layers are trying
1464          * to add it again without dropping it, reject the addition.
1465          */
1466         if (virt_dev->eps[ep_index].ring &&
1467                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1468                                 xhci_get_endpoint_flag(&ep->desc))) {
1469                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1470                                 "without dropping it.\n",
1471                                 (unsigned int) ep->desc.bEndpointAddress);
1472                 return -EINVAL;
1473         }
1474
1475         /* If the HCD has already noted the endpoint is enabled,
1476          * ignore this request.
1477          */
1478         if (le32_to_cpu(ctrl_ctx->add_flags) &
1479             xhci_get_endpoint_flag(&ep->desc)) {
1480                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1481                                 __func__, ep);
1482                 return 0;
1483         }
1484
1485         /*
1486          * Configuration and alternate setting changes must be done in
1487          * process context, not interrupt context (or so documenation
1488          * for usb_set_interface() and usb_set_configuration() claim).
1489          */
1490         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1491                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1492                                 __func__, ep->desc.bEndpointAddress);
1493                 return -ENOMEM;
1494         }
1495
1496         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1497         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1498
1499         /* If xhci_endpoint_disable() was called for this endpoint, but the
1500          * xHC hasn't been notified yet through the check_bandwidth() call,
1501          * this re-adds a new state for the endpoint from the new endpoint
1502          * descriptors.  We must drop and re-add this endpoint, so we leave the
1503          * drop flags alone.
1504          */
1505         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1506
1507         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1508         /* Update the last valid endpoint context, if we just added one past */
1509         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1510             LAST_CTX(last_ctx)) {
1511                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1512                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1513         }
1514         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1515
1516         /* Store the usb_device pointer for later use */
1517         ep->hcpriv = udev;
1518
1519         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1520                         (unsigned int) ep->desc.bEndpointAddress,
1521                         udev->slot_id,
1522                         (unsigned int) new_drop_flags,
1523                         (unsigned int) new_add_flags,
1524                         (unsigned int) new_slot_info);
1525         return 0;
1526 }
1527
1528 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1529 {
1530         struct xhci_input_control_ctx *ctrl_ctx;
1531         struct xhci_ep_ctx *ep_ctx;
1532         struct xhci_slot_ctx *slot_ctx;
1533         int i;
1534
1535         /* When a device's add flag and drop flag are zero, any subsequent
1536          * configure endpoint command will leave that endpoint's state
1537          * untouched.  Make sure we don't leave any old state in the input
1538          * endpoint contexts.
1539          */
1540         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1541         ctrl_ctx->drop_flags = 0;
1542         ctrl_ctx->add_flags = 0;
1543         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1544         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1545         /* Endpoint 0 is always valid */
1546         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1547         for (i = 1; i < 31; ++i) {
1548                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1549                 ep_ctx->ep_info = 0;
1550                 ep_ctx->ep_info2 = 0;
1551                 ep_ctx->deq = 0;
1552                 ep_ctx->tx_info = 0;
1553         }
1554 }
1555
1556 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1557                 struct usb_device *udev, u32 *cmd_status)
1558 {
1559         int ret;
1560
1561         switch (*cmd_status) {
1562         case COMP_ENOMEM:
1563                 dev_warn(&udev->dev, "Not enough host controller resources "
1564                                 "for new device state.\n");
1565                 ret = -ENOMEM;
1566                 /* FIXME: can we allocate more resources for the HC? */
1567                 break;
1568         case COMP_BW_ERR:
1569                 dev_warn(&udev->dev, "Not enough bandwidth "
1570                                 "for new device state.\n");
1571                 ret = -ENOSPC;
1572                 /* FIXME: can we go back to the old state? */
1573                 break;
1574         case COMP_TRB_ERR:
1575                 /* the HCD set up something wrong */
1576                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1577                                 "add flag = 1, "
1578                                 "and endpoint is not disabled.\n");
1579                 ret = -EINVAL;
1580                 break;
1581         case COMP_DEV_ERR:
1582                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1583                                 "configure command.\n");
1584                 ret = -ENODEV;
1585                 break;
1586         case COMP_SUCCESS:
1587                 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1588                 ret = 0;
1589                 break;
1590         default:
1591                 xhci_err(xhci, "ERROR: unexpected command completion "
1592                                 "code 0x%x.\n", *cmd_status);
1593                 ret = -EINVAL;
1594                 break;
1595         }
1596         return ret;
1597 }
1598
1599 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1600                 struct usb_device *udev, u32 *cmd_status)
1601 {
1602         int ret;
1603         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1604
1605         switch (*cmd_status) {
1606         case COMP_EINVAL:
1607                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1608                                 "context command.\n");
1609                 ret = -EINVAL;
1610                 break;
1611         case COMP_EBADSLT:
1612                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1613                                 "evaluate context command.\n");
1614         case COMP_CTX_STATE:
1615                 dev_warn(&udev->dev, "WARN: invalid context state for "
1616                                 "evaluate context command.\n");
1617                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1618                 ret = -EINVAL;
1619                 break;
1620         case COMP_DEV_ERR:
1621                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1622                                 "context command.\n");
1623                 ret = -ENODEV;
1624                 break;
1625         case COMP_MEL_ERR:
1626                 /* Max Exit Latency too large error */
1627                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1628                 ret = -EINVAL;
1629                 break;
1630         case COMP_SUCCESS:
1631                 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1632                 ret = 0;
1633                 break;
1634         default:
1635                 xhci_err(xhci, "ERROR: unexpected command completion "
1636                                 "code 0x%x.\n", *cmd_status);
1637                 ret = -EINVAL;
1638                 break;
1639         }
1640         return ret;
1641 }
1642
1643 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1644                 struct xhci_container_ctx *in_ctx)
1645 {
1646         struct xhci_input_control_ctx *ctrl_ctx;
1647         u32 valid_add_flags;
1648         u32 valid_drop_flags;
1649
1650         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1651         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1652          * (bit 1).  The default control endpoint is added during the Address
1653          * Device command and is never removed until the slot is disabled.
1654          */
1655         valid_add_flags = ctrl_ctx->add_flags >> 2;
1656         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1657
1658         /* Use hweight32 to count the number of ones in the add flags, or
1659          * number of endpoints added.  Don't count endpoints that are changed
1660          * (both added and dropped).
1661          */
1662         return hweight32(valid_add_flags) -
1663                 hweight32(valid_add_flags & valid_drop_flags);
1664 }
1665
1666 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1667                 struct xhci_container_ctx *in_ctx)
1668 {
1669         struct xhci_input_control_ctx *ctrl_ctx;
1670         u32 valid_add_flags;
1671         u32 valid_drop_flags;
1672
1673         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1674         valid_add_flags = ctrl_ctx->add_flags >> 2;
1675         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1676
1677         return hweight32(valid_drop_flags) -
1678                 hweight32(valid_add_flags & valid_drop_flags);
1679 }
1680
1681 /*
1682  * We need to reserve the new number of endpoints before the configure endpoint
1683  * command completes.  We can't subtract the dropped endpoints from the number
1684  * of active endpoints until the command completes because we can oversubscribe
1685  * the host in this case:
1686  *
1687  *  - the first configure endpoint command drops more endpoints than it adds
1688  *  - a second configure endpoint command that adds more endpoints is queued
1689  *  - the first configure endpoint command fails, so the config is unchanged
1690  *  - the second command may succeed, even though there isn't enough resources
1691  *
1692  * Must be called with xhci->lock held.
1693  */
1694 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1695                 struct xhci_container_ctx *in_ctx)
1696 {
1697         u32 added_eps;
1698
1699         added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1700         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1701                 xhci_dbg(xhci, "Not enough ep ctxs: "
1702                                 "%u active, need to add %u, limit is %u.\n",
1703                                 xhci->num_active_eps, added_eps,
1704                                 xhci->limit_active_eps);
1705                 return -ENOMEM;
1706         }
1707         xhci->num_active_eps += added_eps;
1708         xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1709                         xhci->num_active_eps);
1710         return 0;
1711 }
1712
1713 /*
1714  * The configure endpoint was failed by the xHC for some other reason, so we
1715  * need to revert the resources that failed configuration would have used.
1716  *
1717  * Must be called with xhci->lock held.
1718  */
1719 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1720                 struct xhci_container_ctx *in_ctx)
1721 {
1722         u32 num_failed_eps;
1723
1724         num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1725         xhci->num_active_eps -= num_failed_eps;
1726         xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1727                         num_failed_eps,
1728                         xhci->num_active_eps);
1729 }
1730
1731 /*
1732  * Now that the command has completed, clean up the active endpoint count by
1733  * subtracting out the endpoints that were dropped (but not changed).
1734  *
1735  * Must be called with xhci->lock held.
1736  */
1737 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1738                 struct xhci_container_ctx *in_ctx)
1739 {
1740         u32 num_dropped_eps;
1741
1742         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1743         xhci->num_active_eps -= num_dropped_eps;
1744         if (num_dropped_eps)
1745                 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1746                                 num_dropped_eps,
1747                                 xhci->num_active_eps);
1748 }
1749
1750 /* Issue a configure endpoint command or evaluate context command
1751  * and wait for it to finish.
1752  */
1753 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1754                 struct usb_device *udev,
1755                 struct xhci_command *command,
1756                 bool ctx_change, bool must_succeed)
1757 {
1758         int ret;
1759         int timeleft;
1760         unsigned long flags;
1761         struct xhci_container_ctx *in_ctx;
1762         struct completion *cmd_completion;
1763         u32 *cmd_status;
1764         struct xhci_virt_device *virt_dev;
1765
1766         spin_lock_irqsave(&xhci->lock, flags);
1767         virt_dev = xhci->devs[udev->slot_id];
1768         if (command) {
1769                 in_ctx = command->in_ctx;
1770                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
1771                                 xhci_reserve_host_resources(xhci, in_ctx)) {
1772                         spin_unlock_irqrestore(&xhci->lock, flags);
1773                         xhci_warn(xhci, "Not enough host resources, "
1774                                         "active endpoint contexts = %u\n",
1775                                         xhci->num_active_eps);
1776                         return -ENOMEM;
1777                 }
1778
1779                 cmd_completion = command->completion;
1780                 cmd_status = &command->status;
1781                 command->command_trb = xhci->cmd_ring->enqueue;
1782
1783                 /* Enqueue pointer can be left pointing to the link TRB,
1784                  * we must handle that
1785                  */
1786                 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
1787                         command->command_trb =
1788                                 xhci->cmd_ring->enq_seg->next->trbs;
1789
1790                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
1791         } else {
1792                 in_ctx = virt_dev->in_ctx;
1793                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
1794                                 xhci_reserve_host_resources(xhci, in_ctx)) {
1795                         spin_unlock_irqrestore(&xhci->lock, flags);
1796                         xhci_warn(xhci, "Not enough host resources, "
1797                                         "active endpoint contexts = %u\n",
1798                                         xhci->num_active_eps);
1799                         return -ENOMEM;
1800                 }
1801                 cmd_completion = &virt_dev->cmd_completion;
1802                 cmd_status = &virt_dev->cmd_status;
1803         }
1804         init_completion(cmd_completion);
1805
1806         if (!ctx_change)
1807                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
1808                                 udev->slot_id, must_succeed);
1809         else
1810                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
1811                                 udev->slot_id);
1812         if (ret < 0) {
1813                 if (command)
1814                         list_del(&command->cmd_list);
1815                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
1816                         xhci_free_host_resources(xhci, in_ctx);
1817                 spin_unlock_irqrestore(&xhci->lock, flags);
1818                 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
1819                 return -ENOMEM;
1820         }
1821         xhci_ring_cmd_db(xhci);
1822         spin_unlock_irqrestore(&xhci->lock, flags);
1823
1824         /* Wait for the configure endpoint command to complete */
1825         timeleft = wait_for_completion_interruptible_timeout(
1826                         cmd_completion,
1827                         USB_CTRL_SET_TIMEOUT);
1828         if (timeleft <= 0) {
1829                 xhci_warn(xhci, "%s while waiting for %s command\n",
1830                                 timeleft == 0 ? "Timeout" : "Signal",
1831                                 ctx_change == 0 ?
1832                                         "configure endpoint" :
1833                                         "evaluate context");
1834                 /* FIXME cancel the configure endpoint command */
1835                 return -ETIME;
1836         }
1837
1838         if (!ctx_change)
1839                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
1840         else
1841                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
1842
1843         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
1844                 spin_lock_irqsave(&xhci->lock, flags);
1845                 /* If the command failed, remove the reserved resources.
1846                  * Otherwise, clean up the estimate to include dropped eps.
1847                  */
1848                 if (ret)
1849                         xhci_free_host_resources(xhci, in_ctx);
1850                 else
1851                         xhci_finish_resource_reservation(xhci, in_ctx);
1852                 spin_unlock_irqrestore(&xhci->lock, flags);
1853         }
1854         return ret;
1855 }
1856
1857 /* Called after one or more calls to xhci_add_endpoint() or
1858  * xhci_drop_endpoint().  If this call fails, the USB core is expected
1859  * to call xhci_reset_bandwidth().
1860  *
1861  * Since we are in the middle of changing either configuration or
1862  * installing a new alt setting, the USB core won't allow URBs to be
1863  * enqueued for any endpoint on the old config or interface.  Nothing
1864  * else should be touching the xhci->devs[slot_id] structure, so we
1865  * don't need to take the xhci->lock for manipulating that.
1866  */
1867 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1868 {
1869         int i;
1870         int ret = 0;
1871         struct xhci_hcd *xhci;
1872         struct xhci_virt_device *virt_dev;
1873         struct xhci_input_control_ctx *ctrl_ctx;
1874         struct xhci_slot_ctx *slot_ctx;
1875
1876         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
1877         if (ret <= 0)
1878                 return ret;
1879         xhci = hcd_to_xhci(hcd);
1880         if (xhci->xhc_state & XHCI_STATE_DYING)
1881                 return -ENODEV;
1882
1883         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1884         virt_dev = xhci->devs[udev->slot_id];
1885
1886         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
1887         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1888         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
1889         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
1890         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
1891         xhci_dbg(xhci, "New Input Control Context:\n");
1892         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1893         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
1894                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
1895
1896         ret = xhci_configure_endpoint(xhci, udev, NULL,
1897                         false, false);
1898         if (ret) {
1899                 /* Callee should call reset_bandwidth() */
1900                 return ret;
1901         }
1902
1903         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
1904         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
1905                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
1906
1907         /* Free any rings that were dropped, but not changed. */
1908         for (i = 1; i < 31; ++i) {
1909                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
1910                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
1911                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
1912         }
1913         xhci_zero_in_ctx(xhci, virt_dev);
1914         /*
1915          * Install any rings for completely new endpoints or changed endpoints,
1916          * and free or cache any old rings from changed endpoints.
1917          */
1918         for (i = 1; i < 31; ++i) {
1919                 if (!virt_dev->eps[i].new_ring)
1920                         continue;
1921                 /* Only cache or free the old ring if it exists.
1922                  * It may not if this is the first add of an endpoint.
1923                  */
1924                 if (virt_dev->eps[i].ring) {
1925                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
1926                 }
1927                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
1928                 virt_dev->eps[i].new_ring = NULL;
1929         }
1930
1931         return ret;
1932 }
1933
1934 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1935 {
1936         struct xhci_hcd *xhci;
1937         struct xhci_virt_device *virt_dev;
1938         int i, ret;
1939
1940         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
1941         if (ret <= 0)
1942                 return;
1943         xhci = hcd_to_xhci(hcd);
1944
1945         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1946         virt_dev = xhci->devs[udev->slot_id];
1947         /* Free any rings allocated for added endpoints */
1948         for (i = 0; i < 31; ++i) {
1949                 if (virt_dev->eps[i].new_ring) {
1950                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
1951                         virt_dev->eps[i].new_ring = NULL;
1952                 }
1953         }
1954         xhci_zero_in_ctx(xhci, virt_dev);
1955 }
1956
1957 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
1958                 struct xhci_container_ctx *in_ctx,
1959                 struct xhci_container_ctx *out_ctx,
1960                 u32 add_flags, u32 drop_flags)
1961 {
1962         struct xhci_input_control_ctx *ctrl_ctx;
1963         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1964         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
1965         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
1966         xhci_slot_copy(xhci, in_ctx, out_ctx);
1967         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
1968
1969         xhci_dbg(xhci, "Input Context:\n");
1970         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
1971 }
1972
1973 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
1974                 unsigned int slot_id, unsigned int ep_index,
1975                 struct xhci_dequeue_state *deq_state)
1976 {
1977         struct xhci_container_ctx *in_ctx;
1978         struct xhci_ep_ctx *ep_ctx;
1979         u32 added_ctxs;
1980         dma_addr_t addr;
1981
1982         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1983                         xhci->devs[slot_id]->out_ctx, ep_index);
1984         in_ctx = xhci->devs[slot_id]->in_ctx;
1985         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1986         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
1987                         deq_state->new_deq_ptr);
1988         if (addr == 0) {
1989                 xhci_warn(xhci, "WARN Cannot submit config ep after "
1990                                 "reset ep command\n");
1991                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
1992                                 deq_state->new_deq_seg,
1993                                 deq_state->new_deq_ptr);
1994                 return;
1995         }
1996         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
1997
1998         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
1999         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2000                         xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2001 }
2002
2003 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2004                 struct usb_device *udev, unsigned int ep_index)
2005 {
2006         struct xhci_dequeue_state deq_state;
2007         struct xhci_virt_ep *ep;
2008
2009         xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2010         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2011         /* We need to move the HW's dequeue pointer past this TD,
2012          * or it will attempt to resend it on the next doorbell ring.
2013          */
2014         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2015                         ep_index, ep->stopped_stream, ep->stopped_td,
2016                         &deq_state);
2017
2018         /* HW with the reset endpoint quirk will use the saved dequeue state to
2019          * issue a configure endpoint command later.
2020          */
2021         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2022                 xhci_dbg(xhci, "Queueing new dequeue state\n");
2023                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2024                                 ep_index, ep->stopped_stream, &deq_state);
2025         } else {
2026                 /* Better hope no one uses the input context between now and the
2027                  * reset endpoint completion!
2028                  * XXX: No idea how this hardware will react when stream rings
2029                  * are enabled.
2030                  */
2031                 xhci_dbg(xhci, "Setting up input context for "
2032                                 "configure endpoint command\n");
2033                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2034                                 ep_index, &deq_state);
2035         }
2036 }
2037
2038 /* Deal with stalled endpoints.  The core should have sent the control message
2039  * to clear the halt condition.  However, we need to make the xHCI hardware
2040  * reset its sequence number, since a device will expect a sequence number of
2041  * zero after the halt condition is cleared.
2042  * Context: in_interrupt
2043  */
2044 void xhci_endpoint_reset(struct usb_hcd *hcd,
2045                 struct usb_host_endpoint *ep)
2046 {
2047         struct xhci_hcd *xhci;
2048         struct usb_device *udev;
2049         unsigned int ep_index;
2050         unsigned long flags;
2051         int ret;
2052         struct xhci_virt_ep *virt_ep;
2053
2054         xhci = hcd_to_xhci(hcd);
2055         udev = (struct usb_device *) ep->hcpriv;
2056         /* Called with a root hub endpoint (or an endpoint that wasn't added
2057          * with xhci_add_endpoint()
2058          */
2059         if (!ep->hcpriv)
2060                 return;
2061         ep_index = xhci_get_endpoint_index(&ep->desc);
2062         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2063         if (!virt_ep->stopped_td) {
2064                 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2065                                 ep->desc.bEndpointAddress);
2066                 return;
2067         }
2068         if (usb_endpoint_xfer_control(&ep->desc)) {
2069                 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2070                 return;
2071         }
2072
2073         xhci_dbg(xhci, "Queueing reset endpoint command\n");
2074         spin_lock_irqsave(&xhci->lock, flags);
2075         ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2076         /*
2077          * Can't change the ring dequeue pointer until it's transitioned to the
2078          * stopped state, which is only upon a successful reset endpoint
2079          * command.  Better hope that last command worked!
2080          */
2081         if (!ret) {
2082                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2083                 kfree(virt_ep->stopped_td);
2084                 xhci_ring_cmd_db(xhci);
2085         }
2086         virt_ep->stopped_td = NULL;
2087         virt_ep->stopped_trb = NULL;
2088         virt_ep->stopped_stream = 0;
2089         spin_unlock_irqrestore(&xhci->lock, flags);
2090
2091         if (ret)
2092                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2093 }
2094
2095 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2096                 struct usb_device *udev, struct usb_host_endpoint *ep,
2097                 unsigned int slot_id)
2098 {
2099         int ret;
2100         unsigned int ep_index;
2101         unsigned int ep_state;
2102
2103         if (!ep)
2104                 return -EINVAL;
2105         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2106         if (ret <= 0)
2107                 return -EINVAL;
2108         if (ep->ss_ep_comp.bmAttributes == 0) {
2109                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2110                                 " descriptor for ep 0x%x does not support streams\n",
2111                                 ep->desc.bEndpointAddress);
2112                 return -EINVAL;
2113         }
2114
2115         ep_index = xhci_get_endpoint_index(&ep->desc);
2116         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2117         if (ep_state & EP_HAS_STREAMS ||
2118                         ep_state & EP_GETTING_STREAMS) {
2119                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2120                                 "already has streams set up.\n",
2121                                 ep->desc.bEndpointAddress);
2122                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2123                                 "dynamic stream context array reallocation.\n");
2124                 return -EINVAL;
2125         }
2126         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2127                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2128                                 "endpoint 0x%x; URBs are pending.\n",
2129                                 ep->desc.bEndpointAddress);
2130                 return -EINVAL;
2131         }
2132         return 0;
2133 }
2134
2135 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2136                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2137 {
2138         unsigned int max_streams;
2139
2140         /* The stream context array size must be a power of two */
2141         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2142         /*
2143          * Find out how many primary stream array entries the host controller
2144          * supports.  Later we may use secondary stream arrays (similar to 2nd
2145          * level page entries), but that's an optional feature for xHCI host
2146          * controllers. xHCs must support at least 4 stream IDs.
2147          */
2148         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2149         if (*num_stream_ctxs > max_streams) {
2150                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2151                                 max_streams);
2152                 *num_stream_ctxs = max_streams;
2153                 *num_streams = max_streams;
2154         }
2155 }
2156
2157 /* Returns an error code if one of the endpoint already has streams.
2158  * This does not change any data structures, it only checks and gathers
2159  * information.
2160  */
2161 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2162                 struct usb_device *udev,
2163                 struct usb_host_endpoint **eps, unsigned int num_eps,
2164                 unsigned int *num_streams, u32 *changed_ep_bitmask)
2165 {
2166         unsigned int max_streams;
2167         unsigned int endpoint_flag;
2168         int i;
2169         int ret;
2170
2171         for (i = 0; i < num_eps; i++) {
2172                 ret = xhci_check_streams_endpoint(xhci, udev,
2173                                 eps[i], udev->slot_id);
2174                 if (ret < 0)
2175                         return ret;
2176
2177                 max_streams = USB_SS_MAX_STREAMS(
2178                                 eps[i]->ss_ep_comp.bmAttributes);
2179                 if (max_streams < (*num_streams - 1)) {
2180                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2181                                         eps[i]->desc.bEndpointAddress,
2182                                         max_streams);
2183                         *num_streams = max_streams+1;
2184                 }
2185
2186                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2187                 if (*changed_ep_bitmask & endpoint_flag)
2188                         return -EINVAL;
2189                 *changed_ep_bitmask |= endpoint_flag;
2190         }
2191         return 0;
2192 }
2193
2194 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2195                 struct usb_device *udev,
2196                 struct usb_host_endpoint **eps, unsigned int num_eps)
2197 {
2198         u32 changed_ep_bitmask = 0;
2199         unsigned int slot_id;
2200         unsigned int ep_index;
2201         unsigned int ep_state;
2202         int i;
2203
2204         slot_id = udev->slot_id;
2205         if (!xhci->devs[slot_id])
2206                 return 0;
2207
2208         for (i = 0; i < num_eps; i++) {
2209                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2210                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2211                 /* Are streams already being freed for the endpoint? */
2212                 if (ep_state & EP_GETTING_NO_STREAMS) {
2213                         xhci_warn(xhci, "WARN Can't disable streams for "
2214                                         "endpoint 0x%x\n, "
2215                                         "streams are being disabled already.",
2216                                         eps[i]->desc.bEndpointAddress);
2217                         return 0;
2218                 }
2219                 /* Are there actually any streams to free? */
2220                 if (!(ep_state & EP_HAS_STREAMS) &&
2221                                 !(ep_state & EP_GETTING_STREAMS)) {
2222                         xhci_warn(xhci, "WARN Can't disable streams for "
2223                                         "endpoint 0x%x\n, "
2224                                         "streams are already disabled!",
2225                                         eps[i]->desc.bEndpointAddress);
2226                         xhci_warn(xhci, "WARN xhci_free_streams() called "
2227                                         "with non-streams endpoint\n");
2228                         return 0;
2229                 }
2230                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2231         }
2232         return changed_ep_bitmask;
2233 }
2234
2235 /*
2236  * The USB device drivers use this function (though the HCD interface in USB
2237  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
2238  * coordinate mass storage command queueing across multiple endpoints (basically
2239  * a stream ID == a task ID).
2240  *
2241  * Setting up streams involves allocating the same size stream context array
2242  * for each endpoint and issuing a configure endpoint command for all endpoints.
2243  *
2244  * Don't allow the call to succeed if one endpoint only supports one stream
2245  * (which means it doesn't support streams at all).
2246  *
2247  * Drivers may get less stream IDs than they asked for, if the host controller
2248  * hardware or endpoints claim they can't support the number of requested
2249  * stream IDs.
2250  */
2251 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
2252                 struct usb_host_endpoint **eps, unsigned int num_eps,
2253                 unsigned int num_streams, gfp_t mem_flags)
2254 {
2255         int i, ret;
2256         struct xhci_hcd *xhci;
2257         struct xhci_virt_device *vdev;
2258         struct xhci_command *config_cmd;
2259         unsigned int ep_index;
2260         unsigned int num_stream_ctxs;
2261         unsigned long flags;
2262         u32 changed_ep_bitmask = 0;
2263
2264         if (!eps)
2265                 return -EINVAL;
2266
2267         /* Add one to the number of streams requested to account for
2268          * stream 0 that is reserved for xHCI usage.
2269          */
2270         num_streams += 1;
2271         xhci = hcd_to_xhci(hcd);
2272         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2273                         num_streams);
2274
2275         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2276         if (!config_cmd) {
2277                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2278                 return -ENOMEM;
2279         }
2280
2281         /* Check to make sure all endpoints are not already configured for
2282          * streams.  While we're at it, find the maximum number of streams that
2283          * all the endpoints will support and check for duplicate endpoints.
2284          */
2285         spin_lock_irqsave(&xhci->lock, flags);
2286         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2287                         num_eps, &num_streams, &changed_ep_bitmask);
2288         if (ret < 0) {
2289                 xhci_free_command(xhci, config_cmd);
2290                 spin_unlock_irqrestore(&xhci->lock, flags);
2291                 return ret;
2292         }
2293         if (num_streams <= 1) {
2294                 xhci_warn(xhci, "WARN: endpoints can't handle "
2295                                 "more than one stream.\n");
2296                 xhci_free_command(xhci, config_cmd);
2297                 spin_unlock_irqrestore(&xhci->lock, flags);
2298                 return -EINVAL;
2299         }
2300         vdev = xhci->devs[udev->slot_id];
2301         /* Mark each endpoint as being in transition, so
2302          * xhci_urb_enqueue() will reject all URBs.
2303          */
2304         for (i = 0; i < num_eps; i++) {
2305                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2306                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2307         }
2308         spin_unlock_irqrestore(&xhci->lock, flags);
2309
2310         /* Setup internal data structures and allocate HW data structures for
2311          * streams (but don't install the HW structures in the input context
2312          * until we're sure all memory allocation succeeded).
2313          */
2314         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2315         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2316                         num_stream_ctxs, num_streams);
2317
2318         for (i = 0; i < num_eps; i++) {
2319                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2320                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2321                                 num_stream_ctxs,
2322                                 num_streams, mem_flags);
2323                 if (!vdev->eps[ep_index].stream_info)
2324                         goto cleanup;
2325                 /* Set maxPstreams in endpoint context and update deq ptr to
2326                  * point to stream context array. FIXME
2327                  */
2328         }
2329
2330         /* Set up the input context for a configure endpoint command. */
2331         for (i = 0; i < num_eps; i++) {
2332                 struct xhci_ep_ctx *ep_ctx;
2333
2334                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2335                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2336
2337                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2338                                 vdev->out_ctx, ep_index);
2339                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2340                                 vdev->eps[ep_index].stream_info);
2341         }
2342         /* Tell the HW to drop its old copy of the endpoint context info
2343          * and add the updated copy from the input context.
2344          */
2345         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2346                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2347
2348         /* Issue and wait for the configure endpoint command */
2349         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2350                         false, false);
2351
2352         /* xHC rejected the configure endpoint command for some reason, so we
2353          * leave the old ring intact and free our internal streams data
2354          * structure.
2355          */
2356         if (ret < 0)
2357                 goto cleanup;
2358
2359         spin_lock_irqsave(&xhci->lock, flags);
2360         for (i = 0; i < num_eps; i++) {
2361                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2362                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2363                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
2364                          udev->slot_id, ep_index);
2365                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
2366         }
2367         xhci_free_command(xhci, config_cmd);
2368         spin_unlock_irqrestore(&xhci->lock, flags);
2369
2370         /* Subtract 1 for stream 0, which drivers can't use */
2371         return num_streams - 1;
2372
2373 cleanup:
2374         /* If it didn't work, free the streams! */
2375         for (i = 0; i < num_eps; i++) {
2376                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2377                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2378                 vdev->eps[ep_index].stream_info = NULL;
2379                 /* FIXME Unset maxPstreams in endpoint context and
2380                  * update deq ptr to point to normal string ring.
2381                  */
2382                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2383                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2384                 xhci_endpoint_zero(xhci, vdev, eps[i]);
2385         }
2386         xhci_free_command(xhci, config_cmd);
2387         return -ENOMEM;
2388 }
2389
2390 /* Transition the endpoint from using streams to being a "normal" endpoint
2391  * without streams.
2392  *
2393  * Modify the endpoint context state, submit a configure endpoint command,
2394  * and free all endpoint rings for streams if that completes successfully.
2395  */
2396 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
2397                 struct usb_host_endpoint **eps, unsigned int num_eps,
2398                 gfp_t mem_flags)
2399 {
2400         int i, ret;
2401         struct xhci_hcd *xhci;
2402         struct xhci_virt_device *vdev;
2403         struct xhci_command *command;
2404         unsigned int ep_index;
2405         unsigned long flags;
2406         u32 changed_ep_bitmask;
2407
2408         xhci = hcd_to_xhci(hcd);
2409         vdev = xhci->devs[udev->slot_id];
2410
2411         /* Set up a configure endpoint command to remove the streams rings */
2412         spin_lock_irqsave(&xhci->lock, flags);
2413         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
2414                         udev, eps, num_eps);
2415         if (changed_ep_bitmask == 0) {
2416                 spin_unlock_irqrestore(&xhci->lock, flags);
2417                 return -EINVAL;
2418         }
2419
2420         /* Use the xhci_command structure from the first endpoint.  We may have
2421          * allocated too many, but the driver may call xhci_free_streams() for
2422          * each endpoint it grouped into one call to xhci_alloc_streams().
2423          */
2424         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
2425         command = vdev->eps[ep_index].stream_info->free_streams_command;
2426         for (i = 0; i < num_eps; i++) {
2427                 struct xhci_ep_ctx *ep_ctx;
2428
2429                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2430                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
2431                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
2432                         EP_GETTING_NO_STREAMS;
2433
2434                 xhci_endpoint_copy(xhci, command->in_ctx,
2435                                 vdev->out_ctx, ep_index);
2436                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
2437                                 &vdev->eps[ep_index]);
2438         }
2439         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
2440                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2441         spin_unlock_irqrestore(&xhci->lock, flags);
2442
2443         /* Issue and wait for the configure endpoint command,
2444          * which must succeed.
2445          */
2446         ret = xhci_configure_endpoint(xhci, udev, command,
2447                         false, true);
2448
2449         /* xHC rejected the configure endpoint command for some reason, so we
2450          * leave the streams rings intact.
2451          */
2452         if (ret < 0)
2453                 return ret;
2454
2455         spin_lock_irqsave(&xhci->lock, flags);
2456         for (i = 0; i < num_eps; i++) {
2457                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2458                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2459                 vdev->eps[ep_index].stream_info = NULL;
2460                 /* FIXME Unset maxPstreams in endpoint context and
2461                  * update deq ptr to point to normal string ring.
2462                  */
2463                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
2464                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2465         }
2466         spin_unlock_irqrestore(&xhci->lock, flags);
2467
2468         return 0;
2469 }
2470
2471 /*
2472  * Deletes endpoint resources for endpoints that were active before a Reset
2473  * Device command, or a Disable Slot command.  The Reset Device command leaves
2474  * the control endpoint intact, whereas the Disable Slot command deletes it.
2475  *
2476  * Must be called with xhci->lock held.
2477  */
2478 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
2479         struct xhci_virt_device *virt_dev, bool drop_control_ep)
2480 {
2481         int i;
2482         unsigned int num_dropped_eps = 0;
2483         unsigned int drop_flags = 0;
2484
2485         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
2486                 if (virt_dev->eps[i].ring) {
2487                         drop_flags |= 1 << i;
2488                         num_dropped_eps++;
2489                 }
2490         }
2491         xhci->num_active_eps -= num_dropped_eps;
2492         if (num_dropped_eps)
2493                 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
2494                                 "%u now active.\n",
2495                                 num_dropped_eps, drop_flags,
2496                                 xhci->num_active_eps);
2497 }
2498
2499 /*
2500  * This submits a Reset Device Command, which will set the device state to 0,
2501  * set the device address to 0, and disable all the endpoints except the default
2502  * control endpoint.  The USB core should come back and call
2503  * xhci_address_device(), and then re-set up the configuration.  If this is
2504  * called because of a usb_reset_and_verify_device(), then the old alternate
2505  * settings will be re-installed through the normal bandwidth allocation
2506  * functions.
2507  *
2508  * Wait for the Reset Device command to finish.  Remove all structures
2509  * associated with the endpoints that were disabled.  Clear the input device
2510  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
2511  *
2512  * If the virt_dev to be reset does not exist or does not match the udev,
2513  * it means the device is lost, possibly due to the xHC restore error and
2514  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
2515  * re-allocate the device.
2516  */
2517 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
2518 {
2519         int ret, i;
2520         unsigned long flags;
2521         struct xhci_hcd *xhci;
2522         unsigned int slot_id;
2523         struct xhci_virt_device *virt_dev;
2524         struct xhci_command *reset_device_cmd;
2525         int timeleft;
2526         int last_freed_endpoint;
2527         struct xhci_slot_ctx *slot_ctx;
2528
2529         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
2530         if (ret <= 0)
2531                 return ret;
2532         xhci = hcd_to_xhci(hcd);
2533         slot_id = udev->slot_id;
2534         virt_dev = xhci->devs[slot_id];
2535         if (!virt_dev) {
2536                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
2537                                 "not exist. Re-allocate the device\n", slot_id);
2538                 ret = xhci_alloc_dev(hcd, udev);
2539                 if (ret == 1)
2540                         return 0;
2541                 else
2542                         return -EINVAL;
2543         }
2544
2545         if (virt_dev->udev != udev) {
2546                 /* If the virt_dev and the udev does not match, this virt_dev
2547                  * may belong to another udev.
2548                  * Re-allocate the device.
2549                  */
2550                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
2551                                 "not match the udev. Re-allocate the device\n",
2552                                 slot_id);
2553                 ret = xhci_alloc_dev(hcd, udev);
2554                 if (ret == 1)
2555                         return 0;
2556                 else
2557                         return -EINVAL;
2558         }
2559
2560         /* If device is not setup, there is no point in resetting it */
2561         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
2562         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
2563                                                 SLOT_STATE_DISABLED)
2564                 return 0;
2565
2566         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
2567         /* Allocate the command structure that holds the struct completion.
2568          * Assume we're in process context, since the normal device reset
2569          * process has to wait for the device anyway.  Storage devices are
2570          * reset as part of error handling, so use GFP_NOIO instead of
2571          * GFP_KERNEL.
2572          */
2573         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
2574         if (!reset_device_cmd) {
2575                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
2576                 return -ENOMEM;
2577         }
2578
2579         /* Attempt to submit the Reset Device command to the command ring */
2580         spin_lock_irqsave(&xhci->lock, flags);
2581         reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
2582
2583         /* Enqueue pointer can be left pointing to the link TRB,
2584          * we must handle that
2585          */
2586         if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
2587                 reset_device_cmd->command_trb =
2588                         xhci->cmd_ring->enq_seg->next->trbs;
2589
2590         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
2591         ret = xhci_queue_reset_device(xhci, slot_id);
2592         if (ret) {
2593                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2594                 list_del(&reset_device_cmd->cmd_list);
2595                 spin_unlock_irqrestore(&xhci->lock, flags);
2596                 goto command_cleanup;
2597         }
2598         xhci_ring_cmd_db(xhci);
2599         spin_unlock_irqrestore(&xhci->lock, flags);
2600
2601         /* Wait for the Reset Device command to finish */
2602         timeleft = wait_for_completion_interruptible_timeout(
2603                         reset_device_cmd->completion,
2604                         USB_CTRL_SET_TIMEOUT);
2605         if (timeleft <= 0) {
2606                 xhci_warn(xhci, "%s while waiting for reset device command\n",
2607                                 timeleft == 0 ? "Timeout" : "Signal");
2608                 spin_lock_irqsave(&xhci->lock, flags);
2609                 /* The timeout might have raced with the event ring handler, so
2610                  * only delete from the list if the item isn't poisoned.
2611                  */
2612                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
2613                         list_del(&reset_device_cmd->cmd_list);
2614                 spin_unlock_irqrestore(&xhci->lock, flags);
2615                 ret = -ETIME;
2616                 goto command_cleanup;
2617         }
2618
2619         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
2620          * unless we tried to reset a slot ID that wasn't enabled,
2621          * or the device wasn't in the addressed or configured state.
2622          */
2623         ret = reset_device_cmd->status;
2624         switch (ret) {
2625         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
2626         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
2627                 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
2628                                 slot_id,
2629                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
2630                 xhci_info(xhci, "Not freeing device rings.\n");
2631                 /* Don't treat this as an error.  May change my mind later. */
2632                 ret = 0;
2633                 goto command_cleanup;
2634         case COMP_SUCCESS:
2635                 xhci_dbg(xhci, "Successful reset device command.\n");
2636                 break;
2637         default:
2638                 if (xhci_is_vendor_info_code(xhci, ret))
2639                         break;
2640                 xhci_warn(xhci, "Unknown completion code %u for "
2641                                 "reset device command.\n", ret);
2642                 ret = -EINVAL;
2643                 goto command_cleanup;
2644         }
2645
2646         /* Free up host controller endpoint resources */
2647         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2648                 spin_lock_irqsave(&xhci->lock, flags);
2649                 /* Don't delete the default control endpoint resources */
2650                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
2651                 spin_unlock_irqrestore(&xhci->lock, flags);
2652         }
2653
2654         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
2655         last_freed_endpoint = 1;
2656         for (i = 1; i < 31; ++i) {
2657                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
2658
2659                 if (ep->ep_state & EP_HAS_STREAMS) {
2660                         xhci_free_stream_info(xhci, ep->stream_info);
2661                         ep->stream_info = NULL;
2662                         ep->ep_state &= ~EP_HAS_STREAMS;
2663                 }
2664
2665                 if (ep->ring) {
2666                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2667                         last_freed_endpoint = i;
2668                 }
2669         }
2670         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
2671         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
2672         ret = 0;
2673
2674 command_cleanup:
2675         xhci_free_command(xhci, reset_device_cmd);
2676         return ret;
2677 }
2678
2679 /*
2680  * At this point, the struct usb_device is about to go away, the device has
2681  * disconnected, and all traffic has been stopped and the endpoints have been
2682  * disabled.  Free any HC data structures associated with that device.
2683  */
2684 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
2685 {
2686         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2687         struct xhci_virt_device *virt_dev;
2688         unsigned long flags;
2689         u32 state;
2690         int i, ret;
2691
2692         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2693         /* If the host is halted due to driver unload, we still need to free the
2694          * device.
2695          */
2696         if (ret <= 0 && ret != -ENODEV)
2697                 return;
2698
2699         virt_dev = xhci->devs[udev->slot_id];
2700
2701         /* Stop any wayward timer functions (which may grab the lock) */
2702         for (i = 0; i < 31; ++i) {
2703                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
2704                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
2705         }
2706
2707         spin_lock_irqsave(&xhci->lock, flags);
2708         /* Don't disable the slot if the host controller is dead. */
2709         state = xhci_readl(xhci, &xhci->op_regs->status);
2710         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
2711                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
2712                 xhci_free_virt_device(xhci, udev->slot_id);
2713                 spin_unlock_irqrestore(&xhci->lock, flags);
2714                 return;
2715         }
2716
2717         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
2718                 spin_unlock_irqrestore(&xhci->lock, flags);
2719                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2720                 return;
2721         }
2722         xhci_ring_cmd_db(xhci);
2723         spin_unlock_irqrestore(&xhci->lock, flags);
2724         /*
2725          * Event command completion handler will free any data structures
2726          * associated with the slot.  XXX Can free sleep?
2727          */
2728 }
2729
2730 /*
2731  * Checks if we have enough host controller resources for the default control
2732  * endpoint.
2733  *
2734  * Must be called with xhci->lock held.
2735  */
2736 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
2737 {
2738         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
2739                 xhci_dbg(xhci, "Not enough ep ctxs: "
2740                                 "%u active, need to add 1, limit is %u.\n",
2741                                 xhci->num_active_eps, xhci->limit_active_eps);
2742                 return -ENOMEM;
2743         }
2744         xhci->num_active_eps += 1;
2745         xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
2746                         xhci->num_active_eps);
2747         return 0;
2748 }
2749
2750
2751 /*
2752  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
2753  * timed out, or allocating memory failed.  Returns 1 on success.
2754  */
2755 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
2756 {
2757         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2758         unsigned long flags;
2759         int timeleft;
2760         int ret;
2761
2762         spin_lock_irqsave(&xhci->lock, flags);
2763         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
2764         if (ret) {
2765                 spin_unlock_irqrestore(&xhci->lock, flags);
2766                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2767                 return 0;
2768         }
2769         xhci_ring_cmd_db(xhci);
2770         spin_unlock_irqrestore(&xhci->lock, flags);
2771
2772         /* XXX: how much time for xHC slot assignment? */
2773         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2774                         USB_CTRL_SET_TIMEOUT);
2775         if (timeleft <= 0) {
2776                 xhci_warn(xhci, "%s while waiting for a slot\n",
2777                                 timeleft == 0 ? "Timeout" : "Signal");
2778                 /* FIXME cancel the enable slot request */
2779                 return 0;
2780         }
2781
2782         if (!xhci->slot_id) {
2783                 xhci_err(xhci, "Error while assigning device slot ID\n");
2784                 return 0;
2785         }
2786
2787         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2788                 spin_lock_irqsave(&xhci->lock, flags);
2789                 ret = xhci_reserve_host_control_ep_resources(xhci);
2790                 if (ret) {
2791                         spin_unlock_irqrestore(&xhci->lock, flags);
2792                         xhci_warn(xhci, "Not enough host resources, "
2793                                         "active endpoint contexts = %u\n",
2794                                         xhci->num_active_eps);
2795                         goto disable_slot;
2796                 }
2797                 spin_unlock_irqrestore(&xhci->lock, flags);
2798         }
2799         /* Use GFP_NOIO, since this function can be called from
2800          * xhci_discover_or_reset_device(), which may be called as part of
2801          * mass storage driver error handling.
2802          */
2803         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
2804                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
2805                 goto disable_slot;
2806         }
2807         udev->slot_id = xhci->slot_id;
2808         /* Is this a LS or FS device under a HS hub? */
2809         /* Hub or peripherial? */
2810         return 1;
2811
2812 disable_slot:
2813         /* Disable slot, if we can do it without mem alloc */
2814         spin_lock_irqsave(&xhci->lock, flags);
2815         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
2816                 xhci_ring_cmd_db(xhci);
2817         spin_unlock_irqrestore(&xhci->lock, flags);
2818         return 0;
2819 }
2820
2821 /*
2822  * Issue an Address Device command (which will issue a SetAddress request to
2823  * the device).
2824  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
2825  * we should only issue and wait on one address command at the same time.
2826  *
2827  * We add one to the device address issued by the hardware because the USB core
2828  * uses address 1 for the root hubs (even though they're not really devices).
2829  */
2830 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
2831 {
2832         unsigned long flags;
2833         int timeleft;
2834         struct xhci_virt_device *virt_dev;
2835         int ret = 0;
2836         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2837         struct xhci_slot_ctx *slot_ctx;
2838         struct xhci_input_control_ctx *ctrl_ctx;
2839         u64 temp_64;
2840
2841         if (!udev->slot_id) {
2842                 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
2843                 return -EINVAL;
2844         }
2845
2846         virt_dev = xhci->devs[udev->slot_id];
2847
2848         if (WARN_ON(!virt_dev)) {
2849                 /*
2850                  * In plug/unplug torture test with an NEC controller,
2851                  * a zero-dereference was observed once due to virt_dev = 0.
2852                  * Print useful debug rather than crash if it is observed again!
2853                  */
2854                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
2855                         udev->slot_id);
2856                 return -EINVAL;
2857         }
2858
2859         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2860         /*
2861          * If this is the first Set Address since device plug-in or
2862          * virt_device realloaction after a resume with an xHCI power loss,
2863          * then set up the slot context.
2864          */
2865         if (!slot_ctx->dev_info)
2866                 xhci_setup_addressable_virt_dev(xhci, udev);
2867         /* Otherwise, update the control endpoint ring enqueue pointer. */
2868         else
2869                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
2870         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2871         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
2872
2873         spin_lock_irqsave(&xhci->lock, flags);
2874         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
2875                                         udev->slot_id);
2876         if (ret) {
2877                 spin_unlock_irqrestore(&xhci->lock, flags);
2878                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2879                 return ret;
2880         }
2881         xhci_ring_cmd_db(xhci);
2882         spin_unlock_irqrestore(&xhci->lock, flags);
2883
2884         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
2885         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2886                         USB_CTRL_SET_TIMEOUT);
2887         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
2888          * the SetAddress() "recovery interval" required by USB and aborting the
2889          * command on a timeout.
2890          */
2891         if (timeleft <= 0) {
2892                 xhci_warn(xhci, "%s while waiting for a slot\n",
2893                                 timeleft == 0 ? "Timeout" : "Signal");
2894                 /* FIXME cancel the address device command */
2895                 return -ETIME;
2896         }
2897
2898         switch (virt_dev->cmd_status) {
2899         case COMP_CTX_STATE:
2900         case COMP_EBADSLT:
2901                 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
2902                                 udev->slot_id);
2903                 ret = -EINVAL;
2904                 break;
2905         case COMP_TX_ERR:
2906                 dev_warn(&udev->dev, "Device not responding to set address.\n");
2907                 ret = -EPROTO;
2908                 break;
2909         case COMP_DEV_ERR:
2910                 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
2911                                 "device command.\n");
2912                 ret = -ENODEV;
2913                 break;
2914         case COMP_SUCCESS:
2915                 xhci_dbg(xhci, "Successful Address Device command\n");
2916                 break;
2917         default:
2918                 xhci_err(xhci, "ERROR: unexpected command completion "
2919                                 "code 0x%x.\n", virt_dev->cmd_status);
2920                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2921                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2922                 ret = -EINVAL;
2923                 break;
2924         }
2925         if (ret) {
2926                 return ret;
2927         }
2928         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
2929         xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
2930         xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
2931                  udev->slot_id,
2932                  &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
2933                  (unsigned long long)
2934                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
2935         xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
2936                         (unsigned long long)virt_dev->out_ctx->dma);
2937         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2938         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
2939         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2940         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2941         /*
2942          * USB core uses address 1 for the roothubs, so we add one to the
2943          * address given back to us by the HC.
2944          */
2945         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
2946         /* Use kernel assigned address for devices; store xHC assigned
2947          * address locally. */
2948         virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
2949                 + 1;
2950         /* Zero the input context control for later use */
2951         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2952         ctrl_ctx->add_flags = 0;
2953         ctrl_ctx->drop_flags = 0;
2954
2955         xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
2956
2957         return 0;
2958 }
2959
2960 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
2961  * internal data structures for the device.
2962  */
2963 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
2964                         struct usb_tt *tt, gfp_t mem_flags)
2965 {
2966         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2967         struct xhci_virt_device *vdev;
2968         struct xhci_command *config_cmd;
2969         struct xhci_input_control_ctx *ctrl_ctx;
2970         struct xhci_slot_ctx *slot_ctx;
2971         unsigned long flags;
2972         unsigned think_time;
2973         int ret;
2974
2975         /* Ignore root hubs */
2976         if (!hdev->parent)
2977                 return 0;
2978
2979         vdev = xhci->devs[hdev->slot_id];
2980         if (!vdev) {
2981                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
2982                 return -EINVAL;
2983         }
2984         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2985         if (!config_cmd) {
2986                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2987                 return -ENOMEM;
2988         }
2989
2990         spin_lock_irqsave(&xhci->lock, flags);
2991         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
2992         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
2993         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2994         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
2995         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
2996         if (tt->multi)
2997                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
2998         if (xhci->hci_version > 0x95) {
2999                 xhci_dbg(xhci, "xHCI version %x needs hub "
3000                                 "TT think time and number of ports\n",
3001                                 (unsigned int) xhci->hci_version);
3002                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
3003                 /* Set TT think time - convert from ns to FS bit times.
3004                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
3005                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
3006                  *
3007                  * xHCI 1.0: this field shall be 0 if the device is not a
3008                  * High-spped hub.
3009                  */
3010                 think_time = tt->think_time;
3011                 if (think_time != 0)
3012                         think_time = (think_time / 666) - 1;
3013                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
3014                         slot_ctx->tt_info |=
3015                                 cpu_to_le32(TT_THINK_TIME(think_time));
3016         } else {
3017                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
3018                                 "TT think time or number of ports\n",
3019                                 (unsigned int) xhci->hci_version);
3020         }
3021         slot_ctx->dev_state = 0;
3022         spin_unlock_irqrestore(&xhci->lock, flags);
3023
3024         xhci_dbg(xhci, "Set up %s for hub device.\n",
3025                         (xhci->hci_version > 0x95) ?
3026                         "configure endpoint" : "evaluate context");
3027         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
3028         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
3029
3030         /* Issue and wait for the configure endpoint or
3031          * evaluate context command.
3032          */
3033         if (xhci->hci_version > 0x95)
3034                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3035                                 false, false);
3036         else
3037                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3038                                 true, false);
3039
3040         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
3041         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
3042
3043         xhci_free_command(xhci, config_cmd);
3044         return ret;
3045 }
3046
3047 int xhci_get_frame(struct usb_hcd *hcd)
3048 {
3049         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3050         /* EHCI mods by the periodic size.  Why? */
3051         return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
3052 }
3053
3054 MODULE_DESCRIPTION(DRIVER_DESC);
3055 MODULE_AUTHOR(DRIVER_AUTHOR);
3056 MODULE_LICENSE("GPL");
3057
3058 static int __init xhci_hcd_init(void)
3059 {
3060 #ifdef CONFIG_PCI
3061         int retval = 0;
3062
3063         retval = xhci_register_pci();
3064
3065         if (retval < 0) {
3066                 printk(KERN_DEBUG "Problem registering PCI driver.");
3067                 return retval;
3068         }
3069 #endif
3070         /*
3071          * Check the compiler generated sizes of structures that must be laid
3072          * out in specific ways for hardware access.
3073          */
3074         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
3075         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
3076         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
3077         /* xhci_device_control has eight fields, and also
3078          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
3079          */
3080         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
3081         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
3082         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
3083         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
3084         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
3085         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
3086         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
3087         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
3088         return 0;
3089 }
3090 module_init(xhci_hcd_init);
3091
3092 static void __exit xhci_hcd_cleanup(void)
3093 {
3094 #ifdef CONFIG_PCI
3095         xhci_unregister_pci();
3096 #endif
3097 }
3098 module_exit(xhci_hcd_cleanup);