Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux
[pandora-kernel.git] / drivers / usb / host / xhci-mem.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27
28 #include "xhci.h"
29
30 /*
31  * Allocates a generic ring segment from the ring pool, sets the dma address,
32  * initializes the segment to zero, and sets the private next pointer to NULL.
33  *
34  * Section 4.11.1.1:
35  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36  */
37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
38 {
39         struct xhci_segment *seg;
40         dma_addr_t      dma;
41
42         seg = kzalloc(sizeof *seg, flags);
43         if (!seg)
44                 return NULL;
45         xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
46
47         seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
48         if (!seg->trbs) {
49                 kfree(seg);
50                 return NULL;
51         }
52         xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
53                         seg->trbs, (unsigned long long)dma);
54
55         memset(seg->trbs, 0, SEGMENT_SIZE);
56         seg->dma = dma;
57         seg->next = NULL;
58
59         return seg;
60 }
61
62 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
63 {
64         if (seg->trbs) {
65                 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
66                                 seg->trbs, (unsigned long long)seg->dma);
67                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
68                 seg->trbs = NULL;
69         }
70         xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
71         kfree(seg);
72 }
73
74 /*
75  * Make the prev segment point to the next segment.
76  *
77  * Change the last TRB in the prev segment to be a Link TRB which points to the
78  * DMA address of the next segment.  The caller needs to set any Link TRB
79  * related flags, such as End TRB, Toggle Cycle, and no snoop.
80  */
81 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
82                 struct xhci_segment *next, bool link_trbs, bool isoc)
83 {
84         u32 val;
85
86         if (!prev || !next)
87                 return;
88         prev->next = next;
89         if (link_trbs) {
90                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
91                         cpu_to_le64(next->dma);
92
93                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
94                 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
95                 val &= ~TRB_TYPE_BITMASK;
96                 val |= TRB_TYPE(TRB_LINK);
97                 /* Always set the chain bit with 0.95 hardware */
98                 /* Set chain bit for isoc rings on AMD 0.96 host */
99                 if (xhci_link_trb_quirk(xhci) ||
100                                 (isoc && (xhci->quirks & XHCI_AMD_0x96_HOST)))
101                         val |= TRB_CHAIN;
102                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
103         }
104         xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
105                         (unsigned long long)prev->dma,
106                         (unsigned long long)next->dma);
107 }
108
109 /* XXX: Do we need the hcd structure in all these functions? */
110 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
111 {
112         struct xhci_segment *seg;
113         struct xhci_segment *first_seg;
114
115         if (!ring)
116                 return;
117         if (ring->first_seg) {
118                 first_seg = ring->first_seg;
119                 seg = first_seg->next;
120                 xhci_dbg(xhci, "Freeing ring at %p\n", ring);
121                 while (seg != first_seg) {
122                         struct xhci_segment *next = seg->next;
123                         xhci_segment_free(xhci, seg);
124                         seg = next;
125                 }
126                 xhci_segment_free(xhci, first_seg);
127                 ring->first_seg = NULL;
128         }
129         kfree(ring);
130 }
131
132 static void xhci_initialize_ring_info(struct xhci_ring *ring)
133 {
134         /* The ring is empty, so the enqueue pointer == dequeue pointer */
135         ring->enqueue = ring->first_seg->trbs;
136         ring->enq_seg = ring->first_seg;
137         ring->dequeue = ring->enqueue;
138         ring->deq_seg = ring->first_seg;
139         /* The ring is initialized to 0. The producer must write 1 to the cycle
140          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
141          * compare CCS to the cycle bit to check ownership, so CCS = 1.
142          */
143         ring->cycle_state = 1;
144         /* Not necessary for new rings, but needed for re-initialized rings */
145         ring->enq_updates = 0;
146         ring->deq_updates = 0;
147 }
148
149 /**
150  * Create a new ring with zero or more segments.
151  *
152  * Link each segment together into a ring.
153  * Set the end flag and the cycle toggle bit on the last segment.
154  * See section 4.9.1 and figures 15 and 16.
155  */
156 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
157                 unsigned int num_segs, bool link_trbs, bool isoc, gfp_t flags)
158 {
159         struct xhci_ring        *ring;
160         struct xhci_segment     *prev;
161
162         ring = kzalloc(sizeof *(ring), flags);
163         xhci_dbg(xhci, "Allocating ring at %p\n", ring);
164         if (!ring)
165                 return NULL;
166
167         INIT_LIST_HEAD(&ring->td_list);
168         if (num_segs == 0)
169                 return ring;
170
171         ring->first_seg = xhci_segment_alloc(xhci, flags);
172         if (!ring->first_seg)
173                 goto fail;
174         num_segs--;
175
176         prev = ring->first_seg;
177         while (num_segs > 0) {
178                 struct xhci_segment     *next;
179
180                 next = xhci_segment_alloc(xhci, flags);
181                 if (!next)
182                         goto fail;
183                 xhci_link_segments(xhci, prev, next, link_trbs, isoc);
184
185                 prev = next;
186                 num_segs--;
187         }
188         xhci_link_segments(xhci, prev, ring->first_seg, link_trbs, isoc);
189
190         if (link_trbs) {
191                 /* See section 4.9.2.1 and 6.4.4.1 */
192                 prev->trbs[TRBS_PER_SEGMENT-1].link.control |=
193                         cpu_to_le32(LINK_TOGGLE);
194                 xhci_dbg(xhci, "Wrote link toggle flag to"
195                                 " segment %p (virtual), 0x%llx (DMA)\n",
196                                 prev, (unsigned long long)prev->dma);
197         }
198         xhci_initialize_ring_info(ring);
199         return ring;
200
201 fail:
202         xhci_ring_free(xhci, ring);
203         return NULL;
204 }
205
206 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
207                 struct xhci_virt_device *virt_dev,
208                 unsigned int ep_index)
209 {
210         int rings_cached;
211
212         rings_cached = virt_dev->num_rings_cached;
213         if (rings_cached < XHCI_MAX_RINGS_CACHED) {
214                 virt_dev->ring_cache[rings_cached] =
215                         virt_dev->eps[ep_index].ring;
216                 virt_dev->num_rings_cached++;
217                 xhci_dbg(xhci, "Cached old ring, "
218                                 "%d ring%s cached\n",
219                                 virt_dev->num_rings_cached,
220                                 (virt_dev->num_rings_cached > 1) ? "s" : "");
221         } else {
222                 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
223                 xhci_dbg(xhci, "Ring cache full (%d rings), "
224                                 "freeing ring\n",
225                                 virt_dev->num_rings_cached);
226         }
227         virt_dev->eps[ep_index].ring = NULL;
228 }
229
230 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
231  * pointers to the beginning of the ring.
232  */
233 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
234                 struct xhci_ring *ring, bool isoc)
235 {
236         struct xhci_segment     *seg = ring->first_seg;
237         do {
238                 memset(seg->trbs, 0,
239                                 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
240                 /* All endpoint rings have link TRBs */
241                 xhci_link_segments(xhci, seg, seg->next, 1, isoc);
242                 seg = seg->next;
243         } while (seg != ring->first_seg);
244         xhci_initialize_ring_info(ring);
245         /* td list should be empty since all URBs have been cancelled,
246          * but just in case...
247          */
248         INIT_LIST_HEAD(&ring->td_list);
249 }
250
251 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
252
253 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
254                                                     int type, gfp_t flags)
255 {
256         struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
257         if (!ctx)
258                 return NULL;
259
260         BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
261         ctx->type = type;
262         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
263         if (type == XHCI_CTX_TYPE_INPUT)
264                 ctx->size += CTX_SIZE(xhci->hcc_params);
265
266         ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
267         memset(ctx->bytes, 0, ctx->size);
268         return ctx;
269 }
270
271 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
272                              struct xhci_container_ctx *ctx)
273 {
274         if (!ctx)
275                 return;
276         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
277         kfree(ctx);
278 }
279
280 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
281                                               struct xhci_container_ctx *ctx)
282 {
283         BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
284         return (struct xhci_input_control_ctx *)ctx->bytes;
285 }
286
287 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
288                                         struct xhci_container_ctx *ctx)
289 {
290         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
291                 return (struct xhci_slot_ctx *)ctx->bytes;
292
293         return (struct xhci_slot_ctx *)
294                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
295 }
296
297 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
298                                     struct xhci_container_ctx *ctx,
299                                     unsigned int ep_index)
300 {
301         /* increment ep index by offset of start of ep ctx array */
302         ep_index++;
303         if (ctx->type == XHCI_CTX_TYPE_INPUT)
304                 ep_index++;
305
306         return (struct xhci_ep_ctx *)
307                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
308 }
309
310
311 /***************** Streams structures manipulation *************************/
312
313 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
314                 unsigned int num_stream_ctxs,
315                 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
316 {
317         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
318
319         if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
320                 dma_free_coherent(&pdev->dev,
321                                 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
322                                 stream_ctx, dma);
323         else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
324                 return dma_pool_free(xhci->small_streams_pool,
325                                 stream_ctx, dma);
326         else
327                 return dma_pool_free(xhci->medium_streams_pool,
328                                 stream_ctx, dma);
329 }
330
331 /*
332  * The stream context array for each endpoint with bulk streams enabled can
333  * vary in size, based on:
334  *  - how many streams the endpoint supports,
335  *  - the maximum primary stream array size the host controller supports,
336  *  - and how many streams the device driver asks for.
337  *
338  * The stream context array must be a power of 2, and can be as small as
339  * 64 bytes or as large as 1MB.
340  */
341 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
342                 unsigned int num_stream_ctxs, dma_addr_t *dma,
343                 gfp_t mem_flags)
344 {
345         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
346
347         if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
348                 return dma_alloc_coherent(&pdev->dev,
349                                 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
350                                 dma, mem_flags);
351         else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
352                 return dma_pool_alloc(xhci->small_streams_pool,
353                                 mem_flags, dma);
354         else
355                 return dma_pool_alloc(xhci->medium_streams_pool,
356                                 mem_flags, dma);
357 }
358
359 struct xhci_ring *xhci_dma_to_transfer_ring(
360                 struct xhci_virt_ep *ep,
361                 u64 address)
362 {
363         if (ep->ep_state & EP_HAS_STREAMS)
364                 return radix_tree_lookup(&ep->stream_info->trb_address_map,
365                                 address >> SEGMENT_SHIFT);
366         return ep->ring;
367 }
368
369 /* Only use this when you know stream_info is valid */
370 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
371 static struct xhci_ring *dma_to_stream_ring(
372                 struct xhci_stream_info *stream_info,
373                 u64 address)
374 {
375         return radix_tree_lookup(&stream_info->trb_address_map,
376                         address >> SEGMENT_SHIFT);
377 }
378 #endif  /* CONFIG_USB_XHCI_HCD_DEBUGGING */
379
380 struct xhci_ring *xhci_stream_id_to_ring(
381                 struct xhci_virt_device *dev,
382                 unsigned int ep_index,
383                 unsigned int stream_id)
384 {
385         struct xhci_virt_ep *ep = &dev->eps[ep_index];
386
387         if (stream_id == 0)
388                 return ep->ring;
389         if (!ep->stream_info)
390                 return NULL;
391
392         if (stream_id > ep->stream_info->num_streams)
393                 return NULL;
394         return ep->stream_info->stream_rings[stream_id];
395 }
396
397 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
398 static int xhci_test_radix_tree(struct xhci_hcd *xhci,
399                 unsigned int num_streams,
400                 struct xhci_stream_info *stream_info)
401 {
402         u32 cur_stream;
403         struct xhci_ring *cur_ring;
404         u64 addr;
405
406         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
407                 struct xhci_ring *mapped_ring;
408                 int trb_size = sizeof(union xhci_trb);
409
410                 cur_ring = stream_info->stream_rings[cur_stream];
411                 for (addr = cur_ring->first_seg->dma;
412                                 addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
413                                 addr += trb_size) {
414                         mapped_ring = dma_to_stream_ring(stream_info, addr);
415                         if (cur_ring != mapped_ring) {
416                                 xhci_warn(xhci, "WARN: DMA address 0x%08llx "
417                                                 "didn't map to stream ID %u; "
418                                                 "mapped to ring %p\n",
419                                                 (unsigned long long) addr,
420                                                 cur_stream,
421                                                 mapped_ring);
422                                 return -EINVAL;
423                         }
424                 }
425                 /* One TRB after the end of the ring segment shouldn't return a
426                  * pointer to the current ring (although it may be a part of a
427                  * different ring).
428                  */
429                 mapped_ring = dma_to_stream_ring(stream_info, addr);
430                 if (mapped_ring != cur_ring) {
431                         /* One TRB before should also fail */
432                         addr = cur_ring->first_seg->dma - trb_size;
433                         mapped_ring = dma_to_stream_ring(stream_info, addr);
434                 }
435                 if (mapped_ring == cur_ring) {
436                         xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
437                                         "mapped to valid stream ID %u; "
438                                         "mapped ring = %p\n",
439                                         (unsigned long long) addr,
440                                         cur_stream,
441                                         mapped_ring);
442                         return -EINVAL;
443                 }
444         }
445         return 0;
446 }
447 #endif  /* CONFIG_USB_XHCI_HCD_DEBUGGING */
448
449 /*
450  * Change an endpoint's internal structure so it supports stream IDs.  The
451  * number of requested streams includes stream 0, which cannot be used by device
452  * drivers.
453  *
454  * The number of stream contexts in the stream context array may be bigger than
455  * the number of streams the driver wants to use.  This is because the number of
456  * stream context array entries must be a power of two.
457  *
458  * We need a radix tree for mapping physical addresses of TRBs to which stream
459  * ID they belong to.  We need to do this because the host controller won't tell
460  * us which stream ring the TRB came from.  We could store the stream ID in an
461  * event data TRB, but that doesn't help us for the cancellation case, since the
462  * endpoint may stop before it reaches that event data TRB.
463  *
464  * The radix tree maps the upper portion of the TRB DMA address to a ring
465  * segment that has the same upper portion of DMA addresses.  For example, say I
466  * have segments of size 1KB, that are always 64-byte aligned.  A segment may
467  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
468  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
469  * pass the radix tree a key to get the right stream ID:
470  *
471  *      0x10c90fff >> 10 = 0x43243
472  *      0x10c912c0 >> 10 = 0x43244
473  *      0x10c91400 >> 10 = 0x43245
474  *
475  * Obviously, only those TRBs with DMA addresses that are within the segment
476  * will make the radix tree return the stream ID for that ring.
477  *
478  * Caveats for the radix tree:
479  *
480  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
481  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
482  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
483  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
484  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
485  * extended systems (where the DMA address can be bigger than 32-bits),
486  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
487  */
488 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
489                 unsigned int num_stream_ctxs,
490                 unsigned int num_streams, gfp_t mem_flags)
491 {
492         struct xhci_stream_info *stream_info;
493         u32 cur_stream;
494         struct xhci_ring *cur_ring;
495         unsigned long key;
496         u64 addr;
497         int ret;
498
499         xhci_dbg(xhci, "Allocating %u streams and %u "
500                         "stream context array entries.\n",
501                         num_streams, num_stream_ctxs);
502         if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
503                 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
504                 return NULL;
505         }
506         xhci->cmd_ring_reserved_trbs++;
507
508         stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
509         if (!stream_info)
510                 goto cleanup_trbs;
511
512         stream_info->num_streams = num_streams;
513         stream_info->num_stream_ctxs = num_stream_ctxs;
514
515         /* Initialize the array of virtual pointers to stream rings. */
516         stream_info->stream_rings = kzalloc(
517                         sizeof(struct xhci_ring *)*num_streams,
518                         mem_flags);
519         if (!stream_info->stream_rings)
520                 goto cleanup_info;
521
522         /* Initialize the array of DMA addresses for stream rings for the HW. */
523         stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
524                         num_stream_ctxs, &stream_info->ctx_array_dma,
525                         mem_flags);
526         if (!stream_info->stream_ctx_array)
527                 goto cleanup_ctx;
528         memset(stream_info->stream_ctx_array, 0,
529                         sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
530
531         /* Allocate everything needed to free the stream rings later */
532         stream_info->free_streams_command =
533                 xhci_alloc_command(xhci, true, true, mem_flags);
534         if (!stream_info->free_streams_command)
535                 goto cleanup_ctx;
536
537         INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
538
539         /* Allocate rings for all the streams that the driver will use,
540          * and add their segment DMA addresses to the radix tree.
541          * Stream 0 is reserved.
542          */
543         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
544                 stream_info->stream_rings[cur_stream] =
545                         xhci_ring_alloc(xhci, 1, true, false, mem_flags);
546                 cur_ring = stream_info->stream_rings[cur_stream];
547                 if (!cur_ring)
548                         goto cleanup_rings;
549                 cur_ring->stream_id = cur_stream;
550                 /* Set deq ptr, cycle bit, and stream context type */
551                 addr = cur_ring->first_seg->dma |
552                         SCT_FOR_CTX(SCT_PRI_TR) |
553                         cur_ring->cycle_state;
554                 stream_info->stream_ctx_array[cur_stream].stream_ring =
555                         cpu_to_le64(addr);
556                 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
557                                 cur_stream, (unsigned long long) addr);
558
559                 key = (unsigned long)
560                         (cur_ring->first_seg->dma >> SEGMENT_SHIFT);
561                 ret = radix_tree_insert(&stream_info->trb_address_map,
562                                 key, cur_ring);
563                 if (ret) {
564                         xhci_ring_free(xhci, cur_ring);
565                         stream_info->stream_rings[cur_stream] = NULL;
566                         goto cleanup_rings;
567                 }
568         }
569         /* Leave the other unused stream ring pointers in the stream context
570          * array initialized to zero.  This will cause the xHC to give us an
571          * error if the device asks for a stream ID we don't have setup (if it
572          * was any other way, the host controller would assume the ring is
573          * "empty" and wait forever for data to be queued to that stream ID).
574          */
575 #if XHCI_DEBUG
576         /* Do a little test on the radix tree to make sure it returns the
577          * correct values.
578          */
579         if (xhci_test_radix_tree(xhci, num_streams, stream_info))
580                 goto cleanup_rings;
581 #endif
582
583         return stream_info;
584
585 cleanup_rings:
586         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
587                 cur_ring = stream_info->stream_rings[cur_stream];
588                 if (cur_ring) {
589                         addr = cur_ring->first_seg->dma;
590                         radix_tree_delete(&stream_info->trb_address_map,
591                                         addr >> SEGMENT_SHIFT);
592                         xhci_ring_free(xhci, cur_ring);
593                         stream_info->stream_rings[cur_stream] = NULL;
594                 }
595         }
596         xhci_free_command(xhci, stream_info->free_streams_command);
597 cleanup_ctx:
598         kfree(stream_info->stream_rings);
599 cleanup_info:
600         kfree(stream_info);
601 cleanup_trbs:
602         xhci->cmd_ring_reserved_trbs--;
603         return NULL;
604 }
605 /*
606  * Sets the MaxPStreams field and the Linear Stream Array field.
607  * Sets the dequeue pointer to the stream context array.
608  */
609 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
610                 struct xhci_ep_ctx *ep_ctx,
611                 struct xhci_stream_info *stream_info)
612 {
613         u32 max_primary_streams;
614         /* MaxPStreams is the number of stream context array entries, not the
615          * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
616          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
617          */
618         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
619         xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
620                         1 << (max_primary_streams + 1));
621         ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
622         ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
623                                        | EP_HAS_LSA);
624         ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
625 }
626
627 /*
628  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
629  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
630  * not at the beginning of the ring).
631  */
632 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
633                 struct xhci_ep_ctx *ep_ctx,
634                 struct xhci_virt_ep *ep)
635 {
636         dma_addr_t addr;
637         ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
638         addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
639         ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
640 }
641
642 /* Frees all stream contexts associated with the endpoint,
643  *
644  * Caller should fix the endpoint context streams fields.
645  */
646 void xhci_free_stream_info(struct xhci_hcd *xhci,
647                 struct xhci_stream_info *stream_info)
648 {
649         int cur_stream;
650         struct xhci_ring *cur_ring;
651         dma_addr_t addr;
652
653         if (!stream_info)
654                 return;
655
656         for (cur_stream = 1; cur_stream < stream_info->num_streams;
657                         cur_stream++) {
658                 cur_ring = stream_info->stream_rings[cur_stream];
659                 if (cur_ring) {
660                         addr = cur_ring->first_seg->dma;
661                         radix_tree_delete(&stream_info->trb_address_map,
662                                         addr >> SEGMENT_SHIFT);
663                         xhci_ring_free(xhci, cur_ring);
664                         stream_info->stream_rings[cur_stream] = NULL;
665                 }
666         }
667         xhci_free_command(xhci, stream_info->free_streams_command);
668         xhci->cmd_ring_reserved_trbs--;
669         if (stream_info->stream_ctx_array)
670                 xhci_free_stream_ctx(xhci,
671                                 stream_info->num_stream_ctxs,
672                                 stream_info->stream_ctx_array,
673                                 stream_info->ctx_array_dma);
674
675         if (stream_info)
676                 kfree(stream_info->stream_rings);
677         kfree(stream_info);
678 }
679
680
681 /***************** Device context manipulation *************************/
682
683 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
684                 struct xhci_virt_ep *ep)
685 {
686         init_timer(&ep->stop_cmd_timer);
687         ep->stop_cmd_timer.data = (unsigned long) ep;
688         ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
689         ep->xhci = xhci;
690 }
691
692 static void xhci_free_tt_info(struct xhci_hcd *xhci,
693                 struct xhci_virt_device *virt_dev,
694                 int slot_id)
695 {
696         struct list_head *tt;
697         struct list_head *tt_list_head;
698         struct list_head *tt_next;
699         struct xhci_tt_bw_info *tt_info;
700
701         /* If the device never made it past the Set Address stage,
702          * it may not have the real_port set correctly.
703          */
704         if (virt_dev->real_port == 0 ||
705                         virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
706                 xhci_dbg(xhci, "Bad real port.\n");
707                 return;
708         }
709
710         tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
711         if (list_empty(tt_list_head))
712                 return;
713
714         list_for_each(tt, tt_list_head) {
715                 tt_info = list_entry(tt, struct xhci_tt_bw_info, tt_list);
716                 if (tt_info->slot_id == slot_id)
717                         break;
718         }
719         /* Cautionary measure in case the hub was disconnected before we
720          * stored the TT information.
721          */
722         if (tt_info->slot_id != slot_id)
723                 return;
724
725         tt_next = tt->next;
726         tt_info = list_entry(tt, struct xhci_tt_bw_info,
727                         tt_list);
728         /* Multi-TT hubs will have more than one entry */
729         do {
730                 list_del(tt);
731                 kfree(tt_info);
732                 tt = tt_next;
733                 if (list_empty(tt_list_head))
734                         break;
735                 tt_next = tt->next;
736                 tt_info = list_entry(tt, struct xhci_tt_bw_info,
737                                 tt_list);
738         } while (tt_info->slot_id == slot_id);
739 }
740
741 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
742                 struct xhci_virt_device *virt_dev,
743                 struct usb_device *hdev,
744                 struct usb_tt *tt, gfp_t mem_flags)
745 {
746         struct xhci_tt_bw_info          *tt_info;
747         unsigned int                    num_ports;
748         int                             i, j;
749
750         if (!tt->multi)
751                 num_ports = 1;
752         else
753                 num_ports = hdev->maxchild;
754
755         for (i = 0; i < num_ports; i++, tt_info++) {
756                 struct xhci_interval_bw_table *bw_table;
757
758                 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
759                 if (!tt_info)
760                         goto free_tts;
761                 INIT_LIST_HEAD(&tt_info->tt_list);
762                 list_add(&tt_info->tt_list,
763                                 &xhci->rh_bw[virt_dev->real_port - 1].tts);
764                 tt_info->slot_id = virt_dev->udev->slot_id;
765                 if (tt->multi)
766                         tt_info->ttport = i+1;
767                 bw_table = &tt_info->bw_table;
768                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
769                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
770         }
771         return 0;
772
773 free_tts:
774         xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
775         return -ENOMEM;
776 }
777
778
779 /* All the xhci_tds in the ring's TD list should be freed at this point.
780  * Should be called with xhci->lock held if there is any chance the TT lists
781  * will be manipulated by the configure endpoint, allocate device, or update
782  * hub functions while this function is removing the TT entries from the list.
783  */
784 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
785 {
786         struct xhci_virt_device *dev;
787         int i;
788         int old_active_eps = 0;
789
790         /* Slot ID 0 is reserved */
791         if (slot_id == 0 || !xhci->devs[slot_id])
792                 return;
793
794         dev = xhci->devs[slot_id];
795         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
796         if (!dev)
797                 return;
798
799         if (dev->tt_info)
800                 old_active_eps = dev->tt_info->active_eps;
801
802         for (i = 0; i < 31; ++i) {
803                 if (dev->eps[i].ring)
804                         xhci_ring_free(xhci, dev->eps[i].ring);
805                 if (dev->eps[i].stream_info)
806                         xhci_free_stream_info(xhci,
807                                         dev->eps[i].stream_info);
808                 /* Endpoints on the TT/root port lists should have been removed
809                  * when usb_disable_device() was called for the device.
810                  * We can't drop them anyway, because the udev might have gone
811                  * away by this point, and we can't tell what speed it was.
812                  */
813                 if (!list_empty(&dev->eps[i].bw_endpoint_list))
814                         xhci_warn(xhci, "Slot %u endpoint %u "
815                                         "not removed from BW list!\n",
816                                         slot_id, i);
817         }
818         /* If this is a hub, free the TT(s) from the TT list */
819         xhci_free_tt_info(xhci, dev, slot_id);
820         /* If necessary, update the number of active TTs on this root port */
821         xhci_update_tt_active_eps(xhci, dev, old_active_eps);
822
823         if (dev->ring_cache) {
824                 for (i = 0; i < dev->num_rings_cached; i++)
825                         xhci_ring_free(xhci, dev->ring_cache[i]);
826                 kfree(dev->ring_cache);
827         }
828
829         if (dev->in_ctx)
830                 xhci_free_container_ctx(xhci, dev->in_ctx);
831         if (dev->out_ctx)
832                 xhci_free_container_ctx(xhci, dev->out_ctx);
833
834         kfree(xhci->devs[slot_id]);
835         xhci->devs[slot_id] = NULL;
836 }
837
838 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
839                 struct usb_device *udev, gfp_t flags)
840 {
841         struct xhci_virt_device *dev;
842         int i;
843
844         /* Slot ID 0 is reserved */
845         if (slot_id == 0 || xhci->devs[slot_id]) {
846                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
847                 return 0;
848         }
849
850         xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
851         if (!xhci->devs[slot_id])
852                 return 0;
853         dev = xhci->devs[slot_id];
854
855         /* Allocate the (output) device context that will be used in the HC. */
856         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
857         if (!dev->out_ctx)
858                 goto fail;
859
860         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
861                         (unsigned long long)dev->out_ctx->dma);
862
863         /* Allocate the (input) device context for address device command */
864         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
865         if (!dev->in_ctx)
866                 goto fail;
867
868         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
869                         (unsigned long long)dev->in_ctx->dma);
870
871         /* Initialize the cancellation list and watchdog timers for each ep */
872         for (i = 0; i < 31; i++) {
873                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
874                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
875                 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
876         }
877
878         /* Allocate endpoint 0 ring */
879         dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, false, flags);
880         if (!dev->eps[0].ring)
881                 goto fail;
882
883         /* Allocate pointers to the ring cache */
884         dev->ring_cache = kzalloc(
885                         sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
886                         flags);
887         if (!dev->ring_cache)
888                 goto fail;
889         dev->num_rings_cached = 0;
890
891         init_completion(&dev->cmd_completion);
892         INIT_LIST_HEAD(&dev->cmd_list);
893         dev->udev = udev;
894
895         /* Point to output device context in dcbaa. */
896         xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
897         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
898                  slot_id,
899                  &xhci->dcbaa->dev_context_ptrs[slot_id],
900                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
901
902         return 1;
903 fail:
904         xhci_free_virt_device(xhci, slot_id);
905         return 0;
906 }
907
908 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
909                 struct usb_device *udev)
910 {
911         struct xhci_virt_device *virt_dev;
912         struct xhci_ep_ctx      *ep0_ctx;
913         struct xhci_ring        *ep_ring;
914
915         virt_dev = xhci->devs[udev->slot_id];
916         ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
917         ep_ring = virt_dev->eps[0].ring;
918         /*
919          * FIXME we don't keep track of the dequeue pointer very well after a
920          * Set TR dequeue pointer, so we're setting the dequeue pointer of the
921          * host to our enqueue pointer.  This should only be called after a
922          * configured device has reset, so all control transfers should have
923          * been completed or cancelled before the reset.
924          */
925         ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
926                                                         ep_ring->enqueue)
927                                    | ep_ring->cycle_state);
928 }
929
930 /*
931  * The xHCI roothub may have ports of differing speeds in any order in the port
932  * status registers.  xhci->port_array provides an array of the port speed for
933  * each offset into the port status registers.
934  *
935  * The xHCI hardware wants to know the roothub port number that the USB device
936  * is attached to (or the roothub port its ancestor hub is attached to).  All we
937  * know is the index of that port under either the USB 2.0 or the USB 3.0
938  * roothub, but that doesn't give us the real index into the HW port status
939  * registers.  Scan through the xHCI roothub port array, looking for the Nth
940  * entry of the correct port speed.  Return the port number of that entry.
941  */
942 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
943                 struct usb_device *udev)
944 {
945         struct usb_device *top_dev;
946         unsigned int num_similar_speed_ports;
947         unsigned int faked_port_num;
948         int i;
949
950         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
951                         top_dev = top_dev->parent)
952                 /* Found device below root hub */;
953         faked_port_num = top_dev->portnum;
954         for (i = 0, num_similar_speed_ports = 0;
955                         i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
956                 u8 port_speed = xhci->port_array[i];
957
958                 /*
959                  * Skip ports that don't have known speeds, or have duplicate
960                  * Extended Capabilities port speed entries.
961                  */
962                 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
963                         continue;
964
965                 /*
966                  * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
967                  * 1.1 ports are under the USB 2.0 hub.  If the port speed
968                  * matches the device speed, it's a similar speed port.
969                  */
970                 if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
971                         num_similar_speed_ports++;
972                 if (num_similar_speed_ports == faked_port_num)
973                         /* Roothub ports are numbered from 1 to N */
974                         return i+1;
975         }
976         return 0;
977 }
978
979 /* Setup an xHCI virtual device for a Set Address command */
980 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
981 {
982         struct xhci_virt_device *dev;
983         struct xhci_ep_ctx      *ep0_ctx;
984         struct xhci_slot_ctx    *slot_ctx;
985         u32                     port_num;
986         struct usb_device *top_dev;
987
988         dev = xhci->devs[udev->slot_id];
989         /* Slot ID 0 is reserved */
990         if (udev->slot_id == 0 || !dev) {
991                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
992                                 udev->slot_id);
993                 return -EINVAL;
994         }
995         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
996         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
997
998         /* 3) Only the control endpoint is valid - one endpoint context */
999         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1000         switch (udev->speed) {
1001         case USB_SPEED_SUPER:
1002                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1003                 break;
1004         case USB_SPEED_HIGH:
1005                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1006                 break;
1007         case USB_SPEED_FULL:
1008                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1009                 break;
1010         case USB_SPEED_LOW:
1011                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1012                 break;
1013         case USB_SPEED_WIRELESS:
1014                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1015                 return -EINVAL;
1016                 break;
1017         default:
1018                 /* Speed was set earlier, this shouldn't happen. */
1019                 BUG();
1020         }
1021         /* Find the root hub port this device is under */
1022         port_num = xhci_find_real_port_number(xhci, udev);
1023         if (!port_num)
1024                 return -EINVAL;
1025         slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1026         /* Set the port number in the virtual_device to the faked port number */
1027         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1028                         top_dev = top_dev->parent)
1029                 /* Found device below root hub */;
1030         dev->fake_port = top_dev->portnum;
1031         dev->real_port = port_num;
1032         xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1033         xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1034
1035         /* Find the right bandwidth table that this device will be a part of.
1036          * If this is a full speed device attached directly to a root port (or a
1037          * decendent of one), it counts as a primary bandwidth domain, not a
1038          * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1039          * will never be created for the HS root hub.
1040          */
1041         if (!udev->tt || !udev->tt->hub->parent) {
1042                 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1043         } else {
1044                 struct xhci_root_port_bw_info *rh_bw;
1045                 struct xhci_tt_bw_info *tt_bw;
1046
1047                 rh_bw = &xhci->rh_bw[port_num - 1];
1048                 /* Find the right TT. */
1049                 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1050                         if (tt_bw->slot_id != udev->tt->hub->slot_id)
1051                                 continue;
1052
1053                         if (!dev->udev->tt->multi ||
1054                                         (udev->tt->multi &&
1055                                          tt_bw->ttport == dev->udev->ttport)) {
1056                                 dev->bw_table = &tt_bw->bw_table;
1057                                 dev->tt_info = tt_bw;
1058                                 break;
1059                         }
1060                 }
1061                 if (!dev->tt_info)
1062                         xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1063         }
1064
1065         /* Is this a LS/FS device under an external HS hub? */
1066         if (udev->tt && udev->tt->hub->parent) {
1067                 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1068                                                 (udev->ttport << 8));
1069                 if (udev->tt->multi)
1070                         slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1071         }
1072         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1073         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1074
1075         /* Step 4 - ring already allocated */
1076         /* Step 5 */
1077         ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1078         /*
1079          * XXX: Not sure about wireless USB devices.
1080          */
1081         switch (udev->speed) {
1082         case USB_SPEED_SUPER:
1083                 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
1084                 break;
1085         case USB_SPEED_HIGH:
1086         /* USB core guesses at a 64-byte max packet first for FS devices */
1087         case USB_SPEED_FULL:
1088                 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
1089                 break;
1090         case USB_SPEED_LOW:
1091                 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
1092                 break;
1093         case USB_SPEED_WIRELESS:
1094                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1095                 return -EINVAL;
1096                 break;
1097         default:
1098                 /* New speed? */
1099                 BUG();
1100         }
1101         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1102         ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
1103
1104         ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1105                                    dev->eps[0].ring->cycle_state);
1106
1107         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1108
1109         return 0;
1110 }
1111
1112 /*
1113  * Convert interval expressed as 2^(bInterval - 1) == interval into
1114  * straight exponent value 2^n == interval.
1115  *
1116  */
1117 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1118                 struct usb_host_endpoint *ep)
1119 {
1120         unsigned int interval;
1121
1122         interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1123         if (interval != ep->desc.bInterval - 1)
1124                 dev_warn(&udev->dev,
1125                          "ep %#x - rounding interval to %d %sframes\n",
1126                          ep->desc.bEndpointAddress,
1127                          1 << interval,
1128                          udev->speed == USB_SPEED_FULL ? "" : "micro");
1129
1130         if (udev->speed == USB_SPEED_FULL) {
1131                 /*
1132                  * Full speed isoc endpoints specify interval in frames,
1133                  * not microframes. We are using microframes everywhere,
1134                  * so adjust accordingly.
1135                  */
1136                 interval += 3;  /* 1 frame = 2^3 uframes */
1137         }
1138
1139         return interval;
1140 }
1141
1142 /*
1143  * Convert bInterval expressed in frames (in 1-255 range) to exponent of
1144  * microframes, rounded down to nearest power of 2.
1145  */
1146 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1147                 struct usb_host_endpoint *ep)
1148 {
1149         unsigned int interval;
1150
1151         interval = fls(8 * ep->desc.bInterval) - 1;
1152         interval = clamp_val(interval, 3, 10);
1153         if ((1 << interval) != 8 * ep->desc.bInterval)
1154                 dev_warn(&udev->dev,
1155                          "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1156                          ep->desc.bEndpointAddress,
1157                          1 << interval,
1158                          8 * ep->desc.bInterval);
1159
1160         return interval;
1161 }
1162
1163 /* Return the polling or NAK interval.
1164  *
1165  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1166  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1167  *
1168  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1169  * is set to 0.
1170  */
1171 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1172                 struct usb_host_endpoint *ep)
1173 {
1174         unsigned int interval = 0;
1175
1176         switch (udev->speed) {
1177         case USB_SPEED_HIGH:
1178                 /* Max NAK rate */
1179                 if (usb_endpoint_xfer_control(&ep->desc) ||
1180                     usb_endpoint_xfer_bulk(&ep->desc)) {
1181                         interval = ep->desc.bInterval;
1182                         break;
1183                 }
1184                 /* Fall through - SS and HS isoc/int have same decoding */
1185
1186         case USB_SPEED_SUPER:
1187                 if (usb_endpoint_xfer_int(&ep->desc) ||
1188                     usb_endpoint_xfer_isoc(&ep->desc)) {
1189                         interval = xhci_parse_exponent_interval(udev, ep);
1190                 }
1191                 break;
1192
1193         case USB_SPEED_FULL:
1194                 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1195                         interval = xhci_parse_exponent_interval(udev, ep);
1196                         break;
1197                 }
1198                 /*
1199                  * Fall through for interrupt endpoint interval decoding
1200                  * since it uses the same rules as low speed interrupt
1201                  * endpoints.
1202                  */
1203
1204         case USB_SPEED_LOW:
1205                 if (usb_endpoint_xfer_int(&ep->desc) ||
1206                     usb_endpoint_xfer_isoc(&ep->desc)) {
1207
1208                         interval = xhci_parse_frame_interval(udev, ep);
1209                 }
1210                 break;
1211
1212         default:
1213                 BUG();
1214         }
1215         return EP_INTERVAL(interval);
1216 }
1217
1218 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1219  * High speed endpoint descriptors can define "the number of additional
1220  * transaction opportunities per microframe", but that goes in the Max Burst
1221  * endpoint context field.
1222  */
1223 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1224                 struct usb_host_endpoint *ep)
1225 {
1226         if (udev->speed != USB_SPEED_SUPER ||
1227                         !usb_endpoint_xfer_isoc(&ep->desc))
1228                 return 0;
1229         return ep->ss_ep_comp.bmAttributes;
1230 }
1231
1232 static u32 xhci_get_endpoint_type(struct usb_device *udev,
1233                 struct usb_host_endpoint *ep)
1234 {
1235         int in;
1236         u32 type;
1237
1238         in = usb_endpoint_dir_in(&ep->desc);
1239         if (usb_endpoint_xfer_control(&ep->desc)) {
1240                 type = EP_TYPE(CTRL_EP);
1241         } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1242                 if (in)
1243                         type = EP_TYPE(BULK_IN_EP);
1244                 else
1245                         type = EP_TYPE(BULK_OUT_EP);
1246         } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1247                 if (in)
1248                         type = EP_TYPE(ISOC_IN_EP);
1249                 else
1250                         type = EP_TYPE(ISOC_OUT_EP);
1251         } else if (usb_endpoint_xfer_int(&ep->desc)) {
1252                 if (in)
1253                         type = EP_TYPE(INT_IN_EP);
1254                 else
1255                         type = EP_TYPE(INT_OUT_EP);
1256         } else {
1257                 BUG();
1258         }
1259         return type;
1260 }
1261
1262 /* Return the maximum endpoint service interval time (ESIT) payload.
1263  * Basically, this is the maxpacket size, multiplied by the burst size
1264  * and mult size.
1265  */
1266 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1267                 struct usb_device *udev,
1268                 struct usb_host_endpoint *ep)
1269 {
1270         int max_burst;
1271         int max_packet;
1272
1273         /* Only applies for interrupt or isochronous endpoints */
1274         if (usb_endpoint_xfer_control(&ep->desc) ||
1275                         usb_endpoint_xfer_bulk(&ep->desc))
1276                 return 0;
1277
1278         if (udev->speed == USB_SPEED_SUPER)
1279                 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1280
1281         max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1282         max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1283         /* A 0 in max burst means 1 transfer per ESIT */
1284         return max_packet * (max_burst + 1);
1285 }
1286
1287 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1288  * Drivers will have to call usb_alloc_streams() to do that.
1289  */
1290 int xhci_endpoint_init(struct xhci_hcd *xhci,
1291                 struct xhci_virt_device *virt_dev,
1292                 struct usb_device *udev,
1293                 struct usb_host_endpoint *ep,
1294                 gfp_t mem_flags)
1295 {
1296         unsigned int ep_index;
1297         struct xhci_ep_ctx *ep_ctx;
1298         struct xhci_ring *ep_ring;
1299         unsigned int max_packet;
1300         unsigned int max_burst;
1301         u32 max_esit_payload;
1302
1303         ep_index = xhci_get_endpoint_index(&ep->desc);
1304         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1305
1306         /* Set up the endpoint ring */
1307         /*
1308          * Isochronous endpoint ring needs bigger size because one isoc URB
1309          * carries multiple packets and it will insert multiple tds to the
1310          * ring.
1311          * This should be replaced with dynamic ring resizing in the future.
1312          */
1313         if (usb_endpoint_xfer_isoc(&ep->desc))
1314                 virt_dev->eps[ep_index].new_ring =
1315                         xhci_ring_alloc(xhci, 8, true, true, mem_flags);
1316         else
1317                 virt_dev->eps[ep_index].new_ring =
1318                         xhci_ring_alloc(xhci, 1, true, false, mem_flags);
1319         if (!virt_dev->eps[ep_index].new_ring) {
1320                 /* Attempt to use the ring cache */
1321                 if (virt_dev->num_rings_cached == 0)
1322                         return -ENOMEM;
1323                 virt_dev->eps[ep_index].new_ring =
1324                         virt_dev->ring_cache[virt_dev->num_rings_cached];
1325                 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1326                 virt_dev->num_rings_cached--;
1327                 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1328                         usb_endpoint_xfer_isoc(&ep->desc) ? true : false);
1329         }
1330         virt_dev->eps[ep_index].skip = false;
1331         ep_ring = virt_dev->eps[ep_index].new_ring;
1332         ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1333
1334         ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1335                                       | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1336
1337         /* FIXME dig Mult and streams info out of ep companion desc */
1338
1339         /* Allow 3 retries for everything but isoc;
1340          * CErr shall be set to 0 for Isoch endpoints.
1341          */
1342         if (!usb_endpoint_xfer_isoc(&ep->desc))
1343                 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
1344         else
1345                 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
1346
1347         ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
1348
1349         /* Set the max packet size and max burst */
1350         switch (udev->speed) {
1351         case USB_SPEED_SUPER:
1352                 max_packet = usb_endpoint_maxp(&ep->desc);
1353                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1354                 /* dig out max burst from ep companion desc */
1355                 max_packet = ep->ss_ep_comp.bMaxBurst;
1356                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
1357                 break;
1358         case USB_SPEED_HIGH:
1359                 /* bits 11:12 specify the number of additional transaction
1360                  * opportunities per microframe (USB 2.0, section 9.6.6)
1361                  */
1362                 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1363                                 usb_endpoint_xfer_int(&ep->desc)) {
1364                         max_burst = (usb_endpoint_maxp(&ep->desc)
1365                                      & 0x1800) >> 11;
1366                         ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
1367                 }
1368                 /* Fall through */
1369         case USB_SPEED_FULL:
1370         case USB_SPEED_LOW:
1371                 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1372                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1373                 break;
1374         default:
1375                 BUG();
1376         }
1377         max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1378         ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1379
1380         /*
1381          * XXX no idea how to calculate the average TRB buffer length for bulk
1382          * endpoints, as the driver gives us no clue how big each scatter gather
1383          * list entry (or buffer) is going to be.
1384          *
1385          * For isochronous and interrupt endpoints, we set it to the max
1386          * available, until we have new API in the USB core to allow drivers to
1387          * declare how much bandwidth they actually need.
1388          *
1389          * Normally, it would be calculated by taking the total of the buffer
1390          * lengths in the TD and then dividing by the number of TRBs in a TD,
1391          * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1392          * use Event Data TRBs, and we don't chain in a link TRB on short
1393          * transfers, we're basically dividing by 1.
1394          *
1395          * xHCI 1.0 specification indicates that the Average TRB Length should
1396          * be set to 8 for control endpoints.
1397          */
1398         if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1399                 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1400         else
1401                 ep_ctx->tx_info |=
1402                          cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1403
1404         /* FIXME Debug endpoint context */
1405         return 0;
1406 }
1407
1408 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1409                 struct xhci_virt_device *virt_dev,
1410                 struct usb_host_endpoint *ep)
1411 {
1412         unsigned int ep_index;
1413         struct xhci_ep_ctx *ep_ctx;
1414
1415         ep_index = xhci_get_endpoint_index(&ep->desc);
1416         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1417
1418         ep_ctx->ep_info = 0;
1419         ep_ctx->ep_info2 = 0;
1420         ep_ctx->deq = 0;
1421         ep_ctx->tx_info = 0;
1422         /* Don't free the endpoint ring until the set interface or configuration
1423          * request succeeds.
1424          */
1425 }
1426
1427 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1428 {
1429         bw_info->ep_interval = 0;
1430         bw_info->mult = 0;
1431         bw_info->num_packets = 0;
1432         bw_info->max_packet_size = 0;
1433         bw_info->type = 0;
1434         bw_info->max_esit_payload = 0;
1435 }
1436
1437 void xhci_update_bw_info(struct xhci_hcd *xhci,
1438                 struct xhci_container_ctx *in_ctx,
1439                 struct xhci_input_control_ctx *ctrl_ctx,
1440                 struct xhci_virt_device *virt_dev)
1441 {
1442         struct xhci_bw_info *bw_info;
1443         struct xhci_ep_ctx *ep_ctx;
1444         unsigned int ep_type;
1445         int i;
1446
1447         for (i = 1; i < 31; ++i) {
1448                 bw_info = &virt_dev->eps[i].bw_info;
1449
1450                 /* We can't tell what endpoint type is being dropped, but
1451                  * unconditionally clearing the bandwidth info for non-periodic
1452                  * endpoints should be harmless because the info will never be
1453                  * set in the first place.
1454                  */
1455                 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1456                         /* Dropped endpoint */
1457                         xhci_clear_endpoint_bw_info(bw_info);
1458                         continue;
1459                 }
1460
1461                 if (EP_IS_ADDED(ctrl_ctx, i)) {
1462                         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1463                         ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1464
1465                         /* Ignore non-periodic endpoints */
1466                         if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1467                                         ep_type != ISOC_IN_EP &&
1468                                         ep_type != INT_IN_EP)
1469                                 continue;
1470
1471                         /* Added or changed endpoint */
1472                         bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1473                                         le32_to_cpu(ep_ctx->ep_info));
1474                         /* Number of packets and mult are zero-based in the
1475                          * input context, but we want one-based for the
1476                          * interval table.
1477                          */
1478                         bw_info->mult = CTX_TO_EP_MULT(
1479                                         le32_to_cpu(ep_ctx->ep_info)) + 1;
1480                         bw_info->num_packets = CTX_TO_MAX_BURST(
1481                                         le32_to_cpu(ep_ctx->ep_info2)) + 1;
1482                         bw_info->max_packet_size = MAX_PACKET_DECODED(
1483                                         le32_to_cpu(ep_ctx->ep_info2));
1484                         bw_info->type = ep_type;
1485                         bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1486                                         le32_to_cpu(ep_ctx->tx_info));
1487                 }
1488         }
1489 }
1490
1491 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1492  * Useful when you want to change one particular aspect of the endpoint and then
1493  * issue a configure endpoint command.
1494  */
1495 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1496                 struct xhci_container_ctx *in_ctx,
1497                 struct xhci_container_ctx *out_ctx,
1498                 unsigned int ep_index)
1499 {
1500         struct xhci_ep_ctx *out_ep_ctx;
1501         struct xhci_ep_ctx *in_ep_ctx;
1502
1503         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1504         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1505
1506         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1507         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1508         in_ep_ctx->deq = out_ep_ctx->deq;
1509         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1510 }
1511
1512 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1513  * Useful when you want to change one particular aspect of the endpoint and then
1514  * issue a configure endpoint command.  Only the context entries field matters,
1515  * but we'll copy the whole thing anyway.
1516  */
1517 void xhci_slot_copy(struct xhci_hcd *xhci,
1518                 struct xhci_container_ctx *in_ctx,
1519                 struct xhci_container_ctx *out_ctx)
1520 {
1521         struct xhci_slot_ctx *in_slot_ctx;
1522         struct xhci_slot_ctx *out_slot_ctx;
1523
1524         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1525         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1526
1527         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1528         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1529         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1530         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1531 }
1532
1533 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1534 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1535 {
1536         int i;
1537         struct device *dev = xhci_to_hcd(xhci)->self.controller;
1538         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1539
1540         xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1541
1542         if (!num_sp)
1543                 return 0;
1544
1545         xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1546         if (!xhci->scratchpad)
1547                 goto fail_sp;
1548
1549         xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1550                                      num_sp * sizeof(u64),
1551                                      &xhci->scratchpad->sp_dma, flags);
1552         if (!xhci->scratchpad->sp_array)
1553                 goto fail_sp2;
1554
1555         xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1556         if (!xhci->scratchpad->sp_buffers)
1557                 goto fail_sp3;
1558
1559         xhci->scratchpad->sp_dma_buffers =
1560                 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1561
1562         if (!xhci->scratchpad->sp_dma_buffers)
1563                 goto fail_sp4;
1564
1565         xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1566         for (i = 0; i < num_sp; i++) {
1567                 dma_addr_t dma;
1568                 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1569                                 flags);
1570                 if (!buf)
1571                         goto fail_sp5;
1572
1573                 xhci->scratchpad->sp_array[i] = dma;
1574                 xhci->scratchpad->sp_buffers[i] = buf;
1575                 xhci->scratchpad->sp_dma_buffers[i] = dma;
1576         }
1577
1578         return 0;
1579
1580  fail_sp5:
1581         for (i = i - 1; i >= 0; i--) {
1582                 dma_free_coherent(dev, xhci->page_size,
1583                                     xhci->scratchpad->sp_buffers[i],
1584                                     xhci->scratchpad->sp_dma_buffers[i]);
1585         }
1586         kfree(xhci->scratchpad->sp_dma_buffers);
1587
1588  fail_sp4:
1589         kfree(xhci->scratchpad->sp_buffers);
1590
1591  fail_sp3:
1592         dma_free_coherent(dev, num_sp * sizeof(u64),
1593                             xhci->scratchpad->sp_array,
1594                             xhci->scratchpad->sp_dma);
1595
1596  fail_sp2:
1597         kfree(xhci->scratchpad);
1598         xhci->scratchpad = NULL;
1599
1600  fail_sp:
1601         return -ENOMEM;
1602 }
1603
1604 static void scratchpad_free(struct xhci_hcd *xhci)
1605 {
1606         int num_sp;
1607         int i;
1608         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1609
1610         if (!xhci->scratchpad)
1611                 return;
1612
1613         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1614
1615         for (i = 0; i < num_sp; i++) {
1616                 dma_free_coherent(&pdev->dev, xhci->page_size,
1617                                     xhci->scratchpad->sp_buffers[i],
1618                                     xhci->scratchpad->sp_dma_buffers[i]);
1619         }
1620         kfree(xhci->scratchpad->sp_dma_buffers);
1621         kfree(xhci->scratchpad->sp_buffers);
1622         dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
1623                             xhci->scratchpad->sp_array,
1624                             xhci->scratchpad->sp_dma);
1625         kfree(xhci->scratchpad);
1626         xhci->scratchpad = NULL;
1627 }
1628
1629 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1630                 bool allocate_in_ctx, bool allocate_completion,
1631                 gfp_t mem_flags)
1632 {
1633         struct xhci_command *command;
1634
1635         command = kzalloc(sizeof(*command), mem_flags);
1636         if (!command)
1637                 return NULL;
1638
1639         if (allocate_in_ctx) {
1640                 command->in_ctx =
1641                         xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1642                                         mem_flags);
1643                 if (!command->in_ctx) {
1644                         kfree(command);
1645                         return NULL;
1646                 }
1647         }
1648
1649         if (allocate_completion) {
1650                 command->completion =
1651                         kzalloc(sizeof(struct completion), mem_flags);
1652                 if (!command->completion) {
1653                         xhci_free_container_ctx(xhci, command->in_ctx);
1654                         kfree(command);
1655                         return NULL;
1656                 }
1657                 init_completion(command->completion);
1658         }
1659
1660         command->status = 0;
1661         INIT_LIST_HEAD(&command->cmd_list);
1662         return command;
1663 }
1664
1665 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1666 {
1667         if (urb_priv) {
1668                 kfree(urb_priv->td[0]);
1669                 kfree(urb_priv);
1670         }
1671 }
1672
1673 void xhci_free_command(struct xhci_hcd *xhci,
1674                 struct xhci_command *command)
1675 {
1676         xhci_free_container_ctx(xhci,
1677                         command->in_ctx);
1678         kfree(command->completion);
1679         kfree(command);
1680 }
1681
1682 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1683 {
1684         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1685         struct dev_info *dev_info, *next;
1686         unsigned long   flags;
1687         int size;
1688         int i;
1689
1690         /* Free the Event Ring Segment Table and the actual Event Ring */
1691         if (xhci->ir_set) {
1692                 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
1693                 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
1694                 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
1695         }
1696         size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1697         if (xhci->erst.entries)
1698                 dma_free_coherent(&pdev->dev, size,
1699                                 xhci->erst.entries, xhci->erst.erst_dma_addr);
1700         xhci->erst.entries = NULL;
1701         xhci_dbg(xhci, "Freed ERST\n");
1702         if (xhci->event_ring)
1703                 xhci_ring_free(xhci, xhci->event_ring);
1704         xhci->event_ring = NULL;
1705         xhci_dbg(xhci, "Freed event ring\n");
1706
1707         xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
1708         if (xhci->cmd_ring)
1709                 xhci_ring_free(xhci, xhci->cmd_ring);
1710         xhci->cmd_ring = NULL;
1711         xhci_dbg(xhci, "Freed command ring\n");
1712
1713         for (i = 1; i < MAX_HC_SLOTS; ++i)
1714                 xhci_free_virt_device(xhci, i);
1715
1716         if (xhci->segment_pool)
1717                 dma_pool_destroy(xhci->segment_pool);
1718         xhci->segment_pool = NULL;
1719         xhci_dbg(xhci, "Freed segment pool\n");
1720
1721         if (xhci->device_pool)
1722                 dma_pool_destroy(xhci->device_pool);
1723         xhci->device_pool = NULL;
1724         xhci_dbg(xhci, "Freed device context pool\n");
1725
1726         if (xhci->small_streams_pool)
1727                 dma_pool_destroy(xhci->small_streams_pool);
1728         xhci->small_streams_pool = NULL;
1729         xhci_dbg(xhci, "Freed small stream array pool\n");
1730
1731         if (xhci->medium_streams_pool)
1732                 dma_pool_destroy(xhci->medium_streams_pool);
1733         xhci->medium_streams_pool = NULL;
1734         xhci_dbg(xhci, "Freed medium stream array pool\n");
1735
1736         xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
1737         if (xhci->dcbaa)
1738                 dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
1739                                 xhci->dcbaa, xhci->dcbaa->dma);
1740         xhci->dcbaa = NULL;
1741
1742         scratchpad_free(xhci);
1743
1744         spin_lock_irqsave(&xhci->lock, flags);
1745         list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
1746                 list_del(&dev_info->list);
1747                 kfree(dev_info);
1748         }
1749         spin_unlock_irqrestore(&xhci->lock, flags);
1750
1751         xhci->num_usb2_ports = 0;
1752         xhci->num_usb3_ports = 0;
1753         kfree(xhci->usb2_ports);
1754         kfree(xhci->usb3_ports);
1755         kfree(xhci->port_array);
1756         kfree(xhci->rh_bw);
1757
1758         xhci->page_size = 0;
1759         xhci->page_shift = 0;
1760         xhci->bus_state[0].bus_suspended = 0;
1761         xhci->bus_state[1].bus_suspended = 0;
1762 }
1763
1764 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1765                 struct xhci_segment *input_seg,
1766                 union xhci_trb *start_trb,
1767                 union xhci_trb *end_trb,
1768                 dma_addr_t input_dma,
1769                 struct xhci_segment *result_seg,
1770                 char *test_name, int test_number)
1771 {
1772         unsigned long long start_dma;
1773         unsigned long long end_dma;
1774         struct xhci_segment *seg;
1775
1776         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1777         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1778
1779         seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1780         if (seg != result_seg) {
1781                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1782                                 test_name, test_number);
1783                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1784                                 "input DMA 0x%llx\n",
1785                                 input_seg,
1786                                 (unsigned long long) input_dma);
1787                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1788                                 "ending TRB %p (0x%llx DMA)\n",
1789                                 start_trb, start_dma,
1790                                 end_trb, end_dma);
1791                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1792                                 result_seg, seg);
1793                 return -1;
1794         }
1795         return 0;
1796 }
1797
1798 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1799 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1800 {
1801         struct {
1802                 dma_addr_t              input_dma;
1803                 struct xhci_segment     *result_seg;
1804         } simple_test_vector [] = {
1805                 /* A zeroed DMA field should fail */
1806                 { 0, NULL },
1807                 /* One TRB before the ring start should fail */
1808                 { xhci->event_ring->first_seg->dma - 16, NULL },
1809                 /* One byte before the ring start should fail */
1810                 { xhci->event_ring->first_seg->dma - 1, NULL },
1811                 /* Starting TRB should succeed */
1812                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1813                 /* Ending TRB should succeed */
1814                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1815                         xhci->event_ring->first_seg },
1816                 /* One byte after the ring end should fail */
1817                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1818                 /* One TRB after the ring end should fail */
1819                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1820                 /* An address of all ones should fail */
1821                 { (dma_addr_t) (~0), NULL },
1822         };
1823         struct {
1824                 struct xhci_segment     *input_seg;
1825                 union xhci_trb          *start_trb;
1826                 union xhci_trb          *end_trb;
1827                 dma_addr_t              input_dma;
1828                 struct xhci_segment     *result_seg;
1829         } complex_test_vector [] = {
1830                 /* Test feeding a valid DMA address from a different ring */
1831                 {       .input_seg = xhci->event_ring->first_seg,
1832                         .start_trb = xhci->event_ring->first_seg->trbs,
1833                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1834                         .input_dma = xhci->cmd_ring->first_seg->dma,
1835                         .result_seg = NULL,
1836                 },
1837                 /* Test feeding a valid end TRB from a different ring */
1838                 {       .input_seg = xhci->event_ring->first_seg,
1839                         .start_trb = xhci->event_ring->first_seg->trbs,
1840                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1841                         .input_dma = xhci->cmd_ring->first_seg->dma,
1842                         .result_seg = NULL,
1843                 },
1844                 /* Test feeding a valid start and end TRB from a different ring */
1845                 {       .input_seg = xhci->event_ring->first_seg,
1846                         .start_trb = xhci->cmd_ring->first_seg->trbs,
1847                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1848                         .input_dma = xhci->cmd_ring->first_seg->dma,
1849                         .result_seg = NULL,
1850                 },
1851                 /* TRB in this ring, but after this TD */
1852                 {       .input_seg = xhci->event_ring->first_seg,
1853                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
1854                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
1855                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1856                         .result_seg = NULL,
1857                 },
1858                 /* TRB in this ring, but before this TD */
1859                 {       .input_seg = xhci->event_ring->first_seg,
1860                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
1861                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
1862                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1863                         .result_seg = NULL,
1864                 },
1865                 /* TRB in this ring, but after this wrapped TD */
1866                 {       .input_seg = xhci->event_ring->first_seg,
1867                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1868                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1869                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1870                         .result_seg = NULL,
1871                 },
1872                 /* TRB in this ring, but before this wrapped TD */
1873                 {       .input_seg = xhci->event_ring->first_seg,
1874                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1875                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1876                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1877                         .result_seg = NULL,
1878                 },
1879                 /* TRB not in this ring, and we have a wrapped TD */
1880                 {       .input_seg = xhci->event_ring->first_seg,
1881                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1882                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1883                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1884                         .result_seg = NULL,
1885                 },
1886         };
1887
1888         unsigned int num_tests;
1889         int i, ret;
1890
1891         num_tests = ARRAY_SIZE(simple_test_vector);
1892         for (i = 0; i < num_tests; i++) {
1893                 ret = xhci_test_trb_in_td(xhci,
1894                                 xhci->event_ring->first_seg,
1895                                 xhci->event_ring->first_seg->trbs,
1896                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1897                                 simple_test_vector[i].input_dma,
1898                                 simple_test_vector[i].result_seg,
1899                                 "Simple", i);
1900                 if (ret < 0)
1901                         return ret;
1902         }
1903
1904         num_tests = ARRAY_SIZE(complex_test_vector);
1905         for (i = 0; i < num_tests; i++) {
1906                 ret = xhci_test_trb_in_td(xhci,
1907                                 complex_test_vector[i].input_seg,
1908                                 complex_test_vector[i].start_trb,
1909                                 complex_test_vector[i].end_trb,
1910                                 complex_test_vector[i].input_dma,
1911                                 complex_test_vector[i].result_seg,
1912                                 "Complex", i);
1913                 if (ret < 0)
1914                         return ret;
1915         }
1916         xhci_dbg(xhci, "TRB math tests passed.\n");
1917         return 0;
1918 }
1919
1920 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1921 {
1922         u64 temp;
1923         dma_addr_t deq;
1924
1925         deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1926                         xhci->event_ring->dequeue);
1927         if (deq == 0 && !in_interrupt())
1928                 xhci_warn(xhci, "WARN something wrong with SW event ring "
1929                                 "dequeue ptr.\n");
1930         /* Update HC event ring dequeue pointer */
1931         temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1932         temp &= ERST_PTR_MASK;
1933         /* Don't clear the EHB bit (which is RW1C) because
1934          * there might be more events to service.
1935          */
1936         temp &= ~ERST_EHB;
1937         xhci_dbg(xhci, "// Write event ring dequeue pointer, "
1938                         "preserving EHB bit\n");
1939         xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1940                         &xhci->ir_set->erst_dequeue);
1941 }
1942
1943 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1944                 __le32 __iomem *addr, u8 major_revision)
1945 {
1946         u32 temp, port_offset, port_count;
1947         int i;
1948
1949         if (major_revision > 0x03) {
1950                 xhci_warn(xhci, "Ignoring unknown port speed, "
1951                                 "Ext Cap %p, revision = 0x%x\n",
1952                                 addr, major_revision);
1953                 /* Ignoring port protocol we can't understand. FIXME */
1954                 return;
1955         }
1956
1957         /* Port offset and count in the third dword, see section 7.2 */
1958         temp = xhci_readl(xhci, addr + 2);
1959         port_offset = XHCI_EXT_PORT_OFF(temp);
1960         port_count = XHCI_EXT_PORT_COUNT(temp);
1961         xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
1962                         "count = %u, revision = 0x%x\n",
1963                         addr, port_offset, port_count, major_revision);
1964         /* Port count includes the current port offset */
1965         if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
1966                 /* WTF? "Valid values are â€˜1’ to MaxPorts" */
1967                 return;
1968
1969         /* Check the host's USB2 LPM capability */
1970         if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
1971                         (temp & XHCI_L1C)) {
1972                 xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n");
1973                 xhci->sw_lpm_support = 1;
1974         }
1975
1976         if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
1977                 xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n");
1978                 xhci->sw_lpm_support = 1;
1979                 if (temp & XHCI_HLC) {
1980                         xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n");
1981                         xhci->hw_lpm_support = 1;
1982                 }
1983         }
1984
1985         port_offset--;
1986         for (i = port_offset; i < (port_offset + port_count); i++) {
1987                 /* Duplicate entry.  Ignore the port if the revisions differ. */
1988                 if (xhci->port_array[i] != 0) {
1989                         xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
1990                                         " port %u\n", addr, i);
1991                         xhci_warn(xhci, "Port was marked as USB %u, "
1992                                         "duplicated as USB %u\n",
1993                                         xhci->port_array[i], major_revision);
1994                         /* Only adjust the roothub port counts if we haven't
1995                          * found a similar duplicate.
1996                          */
1997                         if (xhci->port_array[i] != major_revision &&
1998                                 xhci->port_array[i] != DUPLICATE_ENTRY) {
1999                                 if (xhci->port_array[i] == 0x03)
2000                                         xhci->num_usb3_ports--;
2001                                 else
2002                                         xhci->num_usb2_ports--;
2003                                 xhci->port_array[i] = DUPLICATE_ENTRY;
2004                         }
2005                         /* FIXME: Should we disable the port? */
2006                         continue;
2007                 }
2008                 xhci->port_array[i] = major_revision;
2009                 if (major_revision == 0x03)
2010                         xhci->num_usb3_ports++;
2011                 else
2012                         xhci->num_usb2_ports++;
2013         }
2014         /* FIXME: Should we disable ports not in the Extended Capabilities? */
2015 }
2016
2017 /*
2018  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2019  * specify what speeds each port is supposed to be.  We can't count on the port
2020  * speed bits in the PORTSC register being correct until a device is connected,
2021  * but we need to set up the two fake roothubs with the correct number of USB
2022  * 3.0 and USB 2.0 ports at host controller initialization time.
2023  */
2024 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2025 {
2026         __le32 __iomem *addr;
2027         u32 offset;
2028         unsigned int num_ports;
2029         int i, j, port_index;
2030
2031         addr = &xhci->cap_regs->hcc_params;
2032         offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
2033         if (offset == 0) {
2034                 xhci_err(xhci, "No Extended Capability registers, "
2035                                 "unable to set up roothub.\n");
2036                 return -ENODEV;
2037         }
2038
2039         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2040         xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2041         if (!xhci->port_array)
2042                 return -ENOMEM;
2043
2044         xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2045         if (!xhci->rh_bw)
2046                 return -ENOMEM;
2047         for (i = 0; i < num_ports; i++) {
2048                 struct xhci_interval_bw_table *bw_table;
2049
2050                 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2051                 bw_table = &xhci->rh_bw[i].bw_table;
2052                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2053                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2054         }
2055
2056         /*
2057          * For whatever reason, the first capability offset is from the
2058          * capability register base, not from the HCCPARAMS register.
2059          * See section 5.3.6 for offset calculation.
2060          */
2061         addr = &xhci->cap_regs->hc_capbase + offset;
2062         while (1) {
2063                 u32 cap_id;
2064
2065                 cap_id = xhci_readl(xhci, addr);
2066                 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2067                         xhci_add_in_port(xhci, num_ports, addr,
2068                                         (u8) XHCI_EXT_PORT_MAJOR(cap_id));
2069                 offset = XHCI_EXT_CAPS_NEXT(cap_id);
2070                 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2071                                 == num_ports)
2072                         break;
2073                 /*
2074                  * Once you're into the Extended Capabilities, the offset is
2075                  * always relative to the register holding the offset.
2076                  */
2077                 addr += offset;
2078         }
2079
2080         if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2081                 xhci_warn(xhci, "No ports on the roothubs?\n");
2082                 return -ENODEV;
2083         }
2084         xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
2085                         xhci->num_usb2_ports, xhci->num_usb3_ports);
2086
2087         /* Place limits on the number of roothub ports so that the hub
2088          * descriptors aren't longer than the USB core will allocate.
2089          */
2090         if (xhci->num_usb3_ports > 15) {
2091                 xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
2092                 xhci->num_usb3_ports = 15;
2093         }
2094         if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2095                 xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
2096                                 USB_MAXCHILDREN);
2097                 xhci->num_usb2_ports = USB_MAXCHILDREN;
2098         }
2099
2100         /*
2101          * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2102          * Not sure how the USB core will handle a hub with no ports...
2103          */
2104         if (xhci->num_usb2_ports) {
2105                 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2106                                 xhci->num_usb2_ports, flags);
2107                 if (!xhci->usb2_ports)
2108                         return -ENOMEM;
2109
2110                 port_index = 0;
2111                 for (i = 0; i < num_ports; i++) {
2112                         if (xhci->port_array[i] == 0x03 ||
2113                                         xhci->port_array[i] == 0 ||
2114                                         xhci->port_array[i] == DUPLICATE_ENTRY)
2115                                 continue;
2116
2117                         xhci->usb2_ports[port_index] =
2118                                 &xhci->op_regs->port_status_base +
2119                                 NUM_PORT_REGS*i;
2120                         xhci_dbg(xhci, "USB 2.0 port at index %u, "
2121                                         "addr = %p\n", i,
2122                                         xhci->usb2_ports[port_index]);
2123                         port_index++;
2124                         if (port_index == xhci->num_usb2_ports)
2125                                 break;
2126                 }
2127         }
2128         if (xhci->num_usb3_ports) {
2129                 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2130                                 xhci->num_usb3_ports, flags);
2131                 if (!xhci->usb3_ports)
2132                         return -ENOMEM;
2133
2134                 port_index = 0;
2135                 for (i = 0; i < num_ports; i++)
2136                         if (xhci->port_array[i] == 0x03) {
2137                                 xhci->usb3_ports[port_index] =
2138                                         &xhci->op_regs->port_status_base +
2139                                         NUM_PORT_REGS*i;
2140                                 xhci_dbg(xhci, "USB 3.0 port at index %u, "
2141                                                 "addr = %p\n", i,
2142                                                 xhci->usb3_ports[port_index]);
2143                                 port_index++;
2144                                 if (port_index == xhci->num_usb3_ports)
2145                                         break;
2146                         }
2147         }
2148         return 0;
2149 }
2150
2151 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2152 {
2153         dma_addr_t      dma;
2154         struct device   *dev = xhci_to_hcd(xhci)->self.controller;
2155         unsigned int    val, val2;
2156         u64             val_64;
2157         struct xhci_segment     *seg;
2158         u32 page_size;
2159         int i;
2160
2161         page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
2162         xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
2163         for (i = 0; i < 16; i++) {
2164                 if ((0x1 & page_size) != 0)
2165                         break;
2166                 page_size = page_size >> 1;
2167         }
2168         if (i < 16)
2169                 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
2170         else
2171                 xhci_warn(xhci, "WARN: no supported page size\n");
2172         /* Use 4K pages, since that's common and the minimum the HC supports */
2173         xhci->page_shift = 12;
2174         xhci->page_size = 1 << xhci->page_shift;
2175         xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
2176
2177         /*
2178          * Program the Number of Device Slots Enabled field in the CONFIG
2179          * register with the max value of slots the HC can handle.
2180          */
2181         val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
2182         xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
2183                         (unsigned int) val);
2184         val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
2185         val |= (val2 & ~HCS_SLOTS_MASK);
2186         xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
2187                         (unsigned int) val);
2188         xhci_writel(xhci, val, &xhci->op_regs->config_reg);
2189
2190         /*
2191          * Section 5.4.8 - doorbell array must be
2192          * "physically contiguous and 64-byte (cache line) aligned".
2193          */
2194         xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2195                         GFP_KERNEL);
2196         if (!xhci->dcbaa)
2197                 goto fail;
2198         memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2199         xhci->dcbaa->dma = dma;
2200         xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
2201                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2202         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2203
2204         /*
2205          * Initialize the ring segment pool.  The ring must be a contiguous
2206          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2207          * however, the command ring segment needs 64-byte aligned segments,
2208          * so we pick the greater alignment need.
2209          */
2210         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2211                         SEGMENT_SIZE, 64, xhci->page_size);
2212
2213         /* See Table 46 and Note on Figure 55 */
2214         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2215                         2112, 64, xhci->page_size);
2216         if (!xhci->segment_pool || !xhci->device_pool)
2217                 goto fail;
2218
2219         /* Linear stream context arrays don't have any boundary restrictions,
2220          * and only need to be 16-byte aligned.
2221          */
2222         xhci->small_streams_pool =
2223                 dma_pool_create("xHCI 256 byte stream ctx arrays",
2224                         dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2225         xhci->medium_streams_pool =
2226                 dma_pool_create("xHCI 1KB stream ctx arrays",
2227                         dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2228         /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2229          * will be allocated with dma_alloc_coherent()
2230          */
2231
2232         if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2233                 goto fail;
2234
2235         /* Set up the command ring to have one segments for now. */
2236         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, false, flags);
2237         if (!xhci->cmd_ring)
2238                 goto fail;
2239         xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2240         xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2241                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
2242
2243         /* Set the address in the Command Ring Control register */
2244         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2245         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2246                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2247                 xhci->cmd_ring->cycle_state;
2248         xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2249         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2250         xhci_dbg_cmd_ptrs(xhci);
2251
2252         val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2253         val &= DBOFF_MASK;
2254         xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2255                         " from cap regs base addr\n", val);
2256         xhci->dba = (void __iomem *) xhci->cap_regs + val;
2257         xhci_dbg_regs(xhci);
2258         xhci_print_run_regs(xhci);
2259         /* Set ir_set to interrupt register set 0 */
2260         xhci->ir_set = &xhci->run_regs->ir_set[0];
2261
2262         /*
2263          * Event ring setup: Allocate a normal ring, but also setup
2264          * the event ring segment table (ERST).  Section 4.9.3.
2265          */
2266         xhci_dbg(xhci, "// Allocating event ring\n");
2267         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, false,
2268                                                 flags);
2269         if (!xhci->event_ring)
2270                 goto fail;
2271         if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2272                 goto fail;
2273
2274         xhci->erst.entries = dma_alloc_coherent(dev,
2275                         sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2276                         GFP_KERNEL);
2277         if (!xhci->erst.entries)
2278                 goto fail;
2279         xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2280                         (unsigned long long)dma);
2281
2282         memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2283         xhci->erst.num_entries = ERST_NUM_SEGS;
2284         xhci->erst.erst_dma_addr = dma;
2285         xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2286                         xhci->erst.num_entries,
2287                         xhci->erst.entries,
2288                         (unsigned long long)xhci->erst.erst_dma_addr);
2289
2290         /* set ring base address and size for each segment table entry */
2291         for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2292                 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2293                 entry->seg_addr = cpu_to_le64(seg->dma);
2294                 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2295                 entry->rsvd = 0;
2296                 seg = seg->next;
2297         }
2298
2299         /* set ERST count with the number of entries in the segment table */
2300         val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2301         val &= ERST_SIZE_MASK;
2302         val |= ERST_NUM_SEGS;
2303         xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2304                         val);
2305         xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2306
2307         xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2308         /* set the segment table base address */
2309         xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2310                         (unsigned long long)xhci->erst.erst_dma_addr);
2311         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2312         val_64 &= ERST_PTR_MASK;
2313         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2314         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2315
2316         /* Set the event ring dequeue address */
2317         xhci_set_hc_event_deq(xhci);
2318         xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2319         xhci_print_ir_set(xhci, 0);
2320
2321         /*
2322          * XXX: Might need to set the Interrupter Moderation Register to
2323          * something other than the default (~1ms minimum between interrupts).
2324          * See section 5.5.1.2.
2325          */
2326         init_completion(&xhci->addr_dev);
2327         for (i = 0; i < MAX_HC_SLOTS; ++i)
2328                 xhci->devs[i] = NULL;
2329         for (i = 0; i < USB_MAXCHILDREN; ++i) {
2330                 xhci->bus_state[0].resume_done[i] = 0;
2331                 xhci->bus_state[1].resume_done[i] = 0;
2332         }
2333
2334         if (scratchpad_alloc(xhci, flags))
2335                 goto fail;
2336         if (xhci_setup_port_arrays(xhci, flags))
2337                 goto fail;
2338
2339         INIT_LIST_HEAD(&xhci->lpm_failed_devs);
2340
2341         return 0;
2342
2343 fail:
2344         xhci_warn(xhci, "Couldn't initialize memory\n");
2345         xhci_mem_cleanup(xhci);
2346         return -ENOMEM;
2347 }