Merge branches 'x86-urgent-for-linus' and 'irq-urgent-for-linus' of git://git.kernel...
[pandora-kernel.git] / drivers / usb / host / xhci-mem.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27
28 #include "xhci.h"
29
30 /*
31  * Allocates a generic ring segment from the ring pool, sets the dma address,
32  * initializes the segment to zero, and sets the private next pointer to NULL.
33  *
34  * Section 4.11.1.1:
35  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36  */
37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
38 {
39         struct xhci_segment *seg;
40         dma_addr_t      dma;
41
42         seg = kzalloc(sizeof *seg, flags);
43         if (!seg)
44                 return NULL;
45         xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
46
47         seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
48         if (!seg->trbs) {
49                 kfree(seg);
50                 return NULL;
51         }
52         xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
53                         seg->trbs, (unsigned long long)dma);
54
55         memset(seg->trbs, 0, SEGMENT_SIZE);
56         seg->dma = dma;
57         seg->next = NULL;
58
59         return seg;
60 }
61
62 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
63 {
64         if (!seg)
65                 return;
66         if (seg->trbs) {
67                 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
68                                 seg->trbs, (unsigned long long)seg->dma);
69                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70                 seg->trbs = NULL;
71         }
72         xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
73         kfree(seg);
74 }
75
76 /*
77  * Make the prev segment point to the next segment.
78  *
79  * Change the last TRB in the prev segment to be a Link TRB which points to the
80  * DMA address of the next segment.  The caller needs to set any Link TRB
81  * related flags, such as End TRB, Toggle Cycle, and no snoop.
82  */
83 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
84                 struct xhci_segment *next, bool link_trbs)
85 {
86         u32 val;
87
88         if (!prev || !next)
89                 return;
90         prev->next = next;
91         if (link_trbs) {
92                 prev->trbs[TRBS_PER_SEGMENT-1].link.
93                         segment_ptr = cpu_to_le64(next->dma);
94
95                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
96                 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
97                 val &= ~TRB_TYPE_BITMASK;
98                 val |= TRB_TYPE(TRB_LINK);
99                 /* Always set the chain bit with 0.95 hardware */
100                 if (xhci_link_trb_quirk(xhci))
101                         val |= TRB_CHAIN;
102                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
103         }
104         xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
105                         (unsigned long long)prev->dma,
106                         (unsigned long long)next->dma);
107 }
108
109 /* XXX: Do we need the hcd structure in all these functions? */
110 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
111 {
112         struct xhci_segment *seg;
113         struct xhci_segment *first_seg;
114
115         if (!ring || !ring->first_seg)
116                 return;
117         first_seg = ring->first_seg;
118         seg = first_seg->next;
119         xhci_dbg(xhci, "Freeing ring at %p\n", ring);
120         while (seg != first_seg) {
121                 struct xhci_segment *next = seg->next;
122                 xhci_segment_free(xhci, seg);
123                 seg = next;
124         }
125         xhci_segment_free(xhci, first_seg);
126         ring->first_seg = NULL;
127         kfree(ring);
128 }
129
130 static void xhci_initialize_ring_info(struct xhci_ring *ring)
131 {
132         /* The ring is empty, so the enqueue pointer == dequeue pointer */
133         ring->enqueue = ring->first_seg->trbs;
134         ring->enq_seg = ring->first_seg;
135         ring->dequeue = ring->enqueue;
136         ring->deq_seg = ring->first_seg;
137         /* The ring is initialized to 0. The producer must write 1 to the cycle
138          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
139          * compare CCS to the cycle bit to check ownership, so CCS = 1.
140          */
141         ring->cycle_state = 1;
142         /* Not necessary for new rings, but needed for re-initialized rings */
143         ring->enq_updates = 0;
144         ring->deq_updates = 0;
145 }
146
147 /**
148  * Create a new ring with zero or more segments.
149  *
150  * Link each segment together into a ring.
151  * Set the end flag and the cycle toggle bit on the last segment.
152  * See section 4.9.1 and figures 15 and 16.
153  */
154 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
155                 unsigned int num_segs, bool link_trbs, gfp_t flags)
156 {
157         struct xhci_ring        *ring;
158         struct xhci_segment     *prev;
159
160         ring = kzalloc(sizeof *(ring), flags);
161         xhci_dbg(xhci, "Allocating ring at %p\n", ring);
162         if (!ring)
163                 return NULL;
164
165         INIT_LIST_HEAD(&ring->td_list);
166         if (num_segs == 0)
167                 return ring;
168
169         ring->first_seg = xhci_segment_alloc(xhci, flags);
170         if (!ring->first_seg)
171                 goto fail;
172         num_segs--;
173
174         prev = ring->first_seg;
175         while (num_segs > 0) {
176                 struct xhci_segment     *next;
177
178                 next = xhci_segment_alloc(xhci, flags);
179                 if (!next)
180                         goto fail;
181                 xhci_link_segments(xhci, prev, next, link_trbs);
182
183                 prev = next;
184                 num_segs--;
185         }
186         xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
187
188         if (link_trbs) {
189                 /* See section 4.9.2.1 and 6.4.4.1 */
190                 prev->trbs[TRBS_PER_SEGMENT-1].link.
191                         control |= cpu_to_le32(LINK_TOGGLE);
192                 xhci_dbg(xhci, "Wrote link toggle flag to"
193                                 " segment %p (virtual), 0x%llx (DMA)\n",
194                                 prev, (unsigned long long)prev->dma);
195         }
196         xhci_initialize_ring_info(ring);
197         return ring;
198
199 fail:
200         xhci_ring_free(xhci, ring);
201         return NULL;
202 }
203
204 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
205                 struct xhci_virt_device *virt_dev,
206                 unsigned int ep_index)
207 {
208         int rings_cached;
209
210         rings_cached = virt_dev->num_rings_cached;
211         if (rings_cached < XHCI_MAX_RINGS_CACHED) {
212                 virt_dev->ring_cache[rings_cached] =
213                         virt_dev->eps[ep_index].ring;
214                 virt_dev->num_rings_cached++;
215                 xhci_dbg(xhci, "Cached old ring, "
216                                 "%d ring%s cached\n",
217                                 virt_dev->num_rings_cached,
218                                 (virt_dev->num_rings_cached > 1) ? "s" : "");
219         } else {
220                 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
221                 xhci_dbg(xhci, "Ring cache full (%d rings), "
222                                 "freeing ring\n",
223                                 virt_dev->num_rings_cached);
224         }
225         virt_dev->eps[ep_index].ring = NULL;
226 }
227
228 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
229  * pointers to the beginning of the ring.
230  */
231 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
232                 struct xhci_ring *ring)
233 {
234         struct xhci_segment     *seg = ring->first_seg;
235         do {
236                 memset(seg->trbs, 0,
237                                 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
238                 /* All endpoint rings have link TRBs */
239                 xhci_link_segments(xhci, seg, seg->next, 1);
240                 seg = seg->next;
241         } while (seg != ring->first_seg);
242         xhci_initialize_ring_info(ring);
243         /* td list should be empty since all URBs have been cancelled,
244          * but just in case...
245          */
246         INIT_LIST_HEAD(&ring->td_list);
247 }
248
249 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
250
251 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
252                                                     int type, gfp_t flags)
253 {
254         struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
255         if (!ctx)
256                 return NULL;
257
258         BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
259         ctx->type = type;
260         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
261         if (type == XHCI_CTX_TYPE_INPUT)
262                 ctx->size += CTX_SIZE(xhci->hcc_params);
263
264         ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
265         memset(ctx->bytes, 0, ctx->size);
266         return ctx;
267 }
268
269 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
270                              struct xhci_container_ctx *ctx)
271 {
272         if (!ctx)
273                 return;
274         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
275         kfree(ctx);
276 }
277
278 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
279                                               struct xhci_container_ctx *ctx)
280 {
281         BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
282         return (struct xhci_input_control_ctx *)ctx->bytes;
283 }
284
285 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
286                                         struct xhci_container_ctx *ctx)
287 {
288         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
289                 return (struct xhci_slot_ctx *)ctx->bytes;
290
291         return (struct xhci_slot_ctx *)
292                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
293 }
294
295 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
296                                     struct xhci_container_ctx *ctx,
297                                     unsigned int ep_index)
298 {
299         /* increment ep index by offset of start of ep ctx array */
300         ep_index++;
301         if (ctx->type == XHCI_CTX_TYPE_INPUT)
302                 ep_index++;
303
304         return (struct xhci_ep_ctx *)
305                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
306 }
307
308
309 /***************** Streams structures manipulation *************************/
310
311 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
312                 unsigned int num_stream_ctxs,
313                 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
314 {
315         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
316
317         if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
318                 pci_free_consistent(pdev,
319                                 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
320                                 stream_ctx, dma);
321         else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
322                 return dma_pool_free(xhci->small_streams_pool,
323                                 stream_ctx, dma);
324         else
325                 return dma_pool_free(xhci->medium_streams_pool,
326                                 stream_ctx, dma);
327 }
328
329 /*
330  * The stream context array for each endpoint with bulk streams enabled can
331  * vary in size, based on:
332  *  - how many streams the endpoint supports,
333  *  - the maximum primary stream array size the host controller supports,
334  *  - and how many streams the device driver asks for.
335  *
336  * The stream context array must be a power of 2, and can be as small as
337  * 64 bytes or as large as 1MB.
338  */
339 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
340                 unsigned int num_stream_ctxs, dma_addr_t *dma,
341                 gfp_t mem_flags)
342 {
343         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
344
345         if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
346                 return pci_alloc_consistent(pdev,
347                                 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
348                                 dma);
349         else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
350                 return dma_pool_alloc(xhci->small_streams_pool,
351                                 mem_flags, dma);
352         else
353                 return dma_pool_alloc(xhci->medium_streams_pool,
354                                 mem_flags, dma);
355 }
356
357 struct xhci_ring *xhci_dma_to_transfer_ring(
358                 struct xhci_virt_ep *ep,
359                 u64 address)
360 {
361         if (ep->ep_state & EP_HAS_STREAMS)
362                 return radix_tree_lookup(&ep->stream_info->trb_address_map,
363                                 address >> SEGMENT_SHIFT);
364         return ep->ring;
365 }
366
367 /* Only use this when you know stream_info is valid */
368 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
369 static struct xhci_ring *dma_to_stream_ring(
370                 struct xhci_stream_info *stream_info,
371                 u64 address)
372 {
373         return radix_tree_lookup(&stream_info->trb_address_map,
374                         address >> SEGMENT_SHIFT);
375 }
376 #endif  /* CONFIG_USB_XHCI_HCD_DEBUGGING */
377
378 struct xhci_ring *xhci_stream_id_to_ring(
379                 struct xhci_virt_device *dev,
380                 unsigned int ep_index,
381                 unsigned int stream_id)
382 {
383         struct xhci_virt_ep *ep = &dev->eps[ep_index];
384
385         if (stream_id == 0)
386                 return ep->ring;
387         if (!ep->stream_info)
388                 return NULL;
389
390         if (stream_id > ep->stream_info->num_streams)
391                 return NULL;
392         return ep->stream_info->stream_rings[stream_id];
393 }
394
395 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
396 static int xhci_test_radix_tree(struct xhci_hcd *xhci,
397                 unsigned int num_streams,
398                 struct xhci_stream_info *stream_info)
399 {
400         u32 cur_stream;
401         struct xhci_ring *cur_ring;
402         u64 addr;
403
404         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
405                 struct xhci_ring *mapped_ring;
406                 int trb_size = sizeof(union xhci_trb);
407
408                 cur_ring = stream_info->stream_rings[cur_stream];
409                 for (addr = cur_ring->first_seg->dma;
410                                 addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
411                                 addr += trb_size) {
412                         mapped_ring = dma_to_stream_ring(stream_info, addr);
413                         if (cur_ring != mapped_ring) {
414                                 xhci_warn(xhci, "WARN: DMA address 0x%08llx "
415                                                 "didn't map to stream ID %u; "
416                                                 "mapped to ring %p\n",
417                                                 (unsigned long long) addr,
418                                                 cur_stream,
419                                                 mapped_ring);
420                                 return -EINVAL;
421                         }
422                 }
423                 /* One TRB after the end of the ring segment shouldn't return a
424                  * pointer to the current ring (although it may be a part of a
425                  * different ring).
426                  */
427                 mapped_ring = dma_to_stream_ring(stream_info, addr);
428                 if (mapped_ring != cur_ring) {
429                         /* One TRB before should also fail */
430                         addr = cur_ring->first_seg->dma - trb_size;
431                         mapped_ring = dma_to_stream_ring(stream_info, addr);
432                 }
433                 if (mapped_ring == cur_ring) {
434                         xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
435                                         "mapped to valid stream ID %u; "
436                                         "mapped ring = %p\n",
437                                         (unsigned long long) addr,
438                                         cur_stream,
439                                         mapped_ring);
440                         return -EINVAL;
441                 }
442         }
443         return 0;
444 }
445 #endif  /* CONFIG_USB_XHCI_HCD_DEBUGGING */
446
447 /*
448  * Change an endpoint's internal structure so it supports stream IDs.  The
449  * number of requested streams includes stream 0, which cannot be used by device
450  * drivers.
451  *
452  * The number of stream contexts in the stream context array may be bigger than
453  * the number of streams the driver wants to use.  This is because the number of
454  * stream context array entries must be a power of two.
455  *
456  * We need a radix tree for mapping physical addresses of TRBs to which stream
457  * ID they belong to.  We need to do this because the host controller won't tell
458  * us which stream ring the TRB came from.  We could store the stream ID in an
459  * event data TRB, but that doesn't help us for the cancellation case, since the
460  * endpoint may stop before it reaches that event data TRB.
461  *
462  * The radix tree maps the upper portion of the TRB DMA address to a ring
463  * segment that has the same upper portion of DMA addresses.  For example, say I
464  * have segments of size 1KB, that are always 64-byte aligned.  A segment may
465  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
466  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
467  * pass the radix tree a key to get the right stream ID:
468  *
469  *      0x10c90fff >> 10 = 0x43243
470  *      0x10c912c0 >> 10 = 0x43244
471  *      0x10c91400 >> 10 = 0x43245
472  *
473  * Obviously, only those TRBs with DMA addresses that are within the segment
474  * will make the radix tree return the stream ID for that ring.
475  *
476  * Caveats for the radix tree:
477  *
478  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
479  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
480  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
481  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
482  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
483  * extended systems (where the DMA address can be bigger than 32-bits),
484  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
485  */
486 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
487                 unsigned int num_stream_ctxs,
488                 unsigned int num_streams, gfp_t mem_flags)
489 {
490         struct xhci_stream_info *stream_info;
491         u32 cur_stream;
492         struct xhci_ring *cur_ring;
493         unsigned long key;
494         u64 addr;
495         int ret;
496
497         xhci_dbg(xhci, "Allocating %u streams and %u "
498                         "stream context array entries.\n",
499                         num_streams, num_stream_ctxs);
500         if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
501                 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
502                 return NULL;
503         }
504         xhci->cmd_ring_reserved_trbs++;
505
506         stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
507         if (!stream_info)
508                 goto cleanup_trbs;
509
510         stream_info->num_streams = num_streams;
511         stream_info->num_stream_ctxs = num_stream_ctxs;
512
513         /* Initialize the array of virtual pointers to stream rings. */
514         stream_info->stream_rings = kzalloc(
515                         sizeof(struct xhci_ring *)*num_streams,
516                         mem_flags);
517         if (!stream_info->stream_rings)
518                 goto cleanup_info;
519
520         /* Initialize the array of DMA addresses for stream rings for the HW. */
521         stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
522                         num_stream_ctxs, &stream_info->ctx_array_dma,
523                         mem_flags);
524         if (!stream_info->stream_ctx_array)
525                 goto cleanup_ctx;
526         memset(stream_info->stream_ctx_array, 0,
527                         sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
528
529         /* Allocate everything needed to free the stream rings later */
530         stream_info->free_streams_command =
531                 xhci_alloc_command(xhci, true, true, mem_flags);
532         if (!stream_info->free_streams_command)
533                 goto cleanup_ctx;
534
535         INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
536
537         /* Allocate rings for all the streams that the driver will use,
538          * and add their segment DMA addresses to the radix tree.
539          * Stream 0 is reserved.
540          */
541         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
542                 stream_info->stream_rings[cur_stream] =
543                         xhci_ring_alloc(xhci, 1, true, mem_flags);
544                 cur_ring = stream_info->stream_rings[cur_stream];
545                 if (!cur_ring)
546                         goto cleanup_rings;
547                 cur_ring->stream_id = cur_stream;
548                 /* Set deq ptr, cycle bit, and stream context type */
549                 addr = cur_ring->first_seg->dma |
550                         SCT_FOR_CTX(SCT_PRI_TR) |
551                         cur_ring->cycle_state;
552                 stream_info->stream_ctx_array[cur_stream].
553                         stream_ring = cpu_to_le64(addr);
554                 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
555                                 cur_stream, (unsigned long long) addr);
556
557                 key = (unsigned long)
558                         (cur_ring->first_seg->dma >> SEGMENT_SHIFT);
559                 ret = radix_tree_insert(&stream_info->trb_address_map,
560                                 key, cur_ring);
561                 if (ret) {
562                         xhci_ring_free(xhci, cur_ring);
563                         stream_info->stream_rings[cur_stream] = NULL;
564                         goto cleanup_rings;
565                 }
566         }
567         /* Leave the other unused stream ring pointers in the stream context
568          * array initialized to zero.  This will cause the xHC to give us an
569          * error if the device asks for a stream ID we don't have setup (if it
570          * was any other way, the host controller would assume the ring is
571          * "empty" and wait forever for data to be queued to that stream ID).
572          */
573 #if XHCI_DEBUG
574         /* Do a little test on the radix tree to make sure it returns the
575          * correct values.
576          */
577         if (xhci_test_radix_tree(xhci, num_streams, stream_info))
578                 goto cleanup_rings;
579 #endif
580
581         return stream_info;
582
583 cleanup_rings:
584         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
585                 cur_ring = stream_info->stream_rings[cur_stream];
586                 if (cur_ring) {
587                         addr = cur_ring->first_seg->dma;
588                         radix_tree_delete(&stream_info->trb_address_map,
589                                         addr >> SEGMENT_SHIFT);
590                         xhci_ring_free(xhci, cur_ring);
591                         stream_info->stream_rings[cur_stream] = NULL;
592                 }
593         }
594         xhci_free_command(xhci, stream_info->free_streams_command);
595 cleanup_ctx:
596         kfree(stream_info->stream_rings);
597 cleanup_info:
598         kfree(stream_info);
599 cleanup_trbs:
600         xhci->cmd_ring_reserved_trbs--;
601         return NULL;
602 }
603 /*
604  * Sets the MaxPStreams field and the Linear Stream Array field.
605  * Sets the dequeue pointer to the stream context array.
606  */
607 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
608                 struct xhci_ep_ctx *ep_ctx,
609                 struct xhci_stream_info *stream_info)
610 {
611         u32 max_primary_streams;
612         /* MaxPStreams is the number of stream context array entries, not the
613          * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
614          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
615          */
616         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
617         xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
618                         1 << (max_primary_streams + 1));
619         ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
620         ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
621                                        | EP_HAS_LSA);
622         ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
623 }
624
625 /*
626  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
627  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
628  * not at the beginning of the ring).
629  */
630 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
631                 struct xhci_ep_ctx *ep_ctx,
632                 struct xhci_virt_ep *ep)
633 {
634         dma_addr_t addr;
635         ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
636         addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
637         ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
638 }
639
640 /* Frees all stream contexts associated with the endpoint,
641  *
642  * Caller should fix the endpoint context streams fields.
643  */
644 void xhci_free_stream_info(struct xhci_hcd *xhci,
645                 struct xhci_stream_info *stream_info)
646 {
647         int cur_stream;
648         struct xhci_ring *cur_ring;
649         dma_addr_t addr;
650
651         if (!stream_info)
652                 return;
653
654         for (cur_stream = 1; cur_stream < stream_info->num_streams;
655                         cur_stream++) {
656                 cur_ring = stream_info->stream_rings[cur_stream];
657                 if (cur_ring) {
658                         addr = cur_ring->first_seg->dma;
659                         radix_tree_delete(&stream_info->trb_address_map,
660                                         addr >> SEGMENT_SHIFT);
661                         xhci_ring_free(xhci, cur_ring);
662                         stream_info->stream_rings[cur_stream] = NULL;
663                 }
664         }
665         xhci_free_command(xhci, stream_info->free_streams_command);
666         xhci->cmd_ring_reserved_trbs--;
667         if (stream_info->stream_ctx_array)
668                 xhci_free_stream_ctx(xhci,
669                                 stream_info->num_stream_ctxs,
670                                 stream_info->stream_ctx_array,
671                                 stream_info->ctx_array_dma);
672
673         if (stream_info)
674                 kfree(stream_info->stream_rings);
675         kfree(stream_info);
676 }
677
678
679 /***************** Device context manipulation *************************/
680
681 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
682                 struct xhci_virt_ep *ep)
683 {
684         init_timer(&ep->stop_cmd_timer);
685         ep->stop_cmd_timer.data = (unsigned long) ep;
686         ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
687         ep->xhci = xhci;
688 }
689
690 /* All the xhci_tds in the ring's TD list should be freed at this point */
691 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
692 {
693         struct xhci_virt_device *dev;
694         int i;
695
696         /* Slot ID 0 is reserved */
697         if (slot_id == 0 || !xhci->devs[slot_id])
698                 return;
699
700         dev = xhci->devs[slot_id];
701         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
702         if (!dev)
703                 return;
704
705         for (i = 0; i < 31; ++i) {
706                 if (dev->eps[i].ring)
707                         xhci_ring_free(xhci, dev->eps[i].ring);
708                 if (dev->eps[i].stream_info)
709                         xhci_free_stream_info(xhci,
710                                         dev->eps[i].stream_info);
711         }
712
713         if (dev->ring_cache) {
714                 for (i = 0; i < dev->num_rings_cached; i++)
715                         xhci_ring_free(xhci, dev->ring_cache[i]);
716                 kfree(dev->ring_cache);
717         }
718
719         if (dev->in_ctx)
720                 xhci_free_container_ctx(xhci, dev->in_ctx);
721         if (dev->out_ctx)
722                 xhci_free_container_ctx(xhci, dev->out_ctx);
723
724         kfree(xhci->devs[slot_id]);
725         xhci->devs[slot_id] = NULL;
726 }
727
728 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
729                 struct usb_device *udev, gfp_t flags)
730 {
731         struct xhci_virt_device *dev;
732         int i;
733
734         /* Slot ID 0 is reserved */
735         if (slot_id == 0 || xhci->devs[slot_id]) {
736                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
737                 return 0;
738         }
739
740         xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
741         if (!xhci->devs[slot_id])
742                 return 0;
743         dev = xhci->devs[slot_id];
744
745         /* Allocate the (output) device context that will be used in the HC. */
746         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
747         if (!dev->out_ctx)
748                 goto fail;
749
750         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
751                         (unsigned long long)dev->out_ctx->dma);
752
753         /* Allocate the (input) device context for address device command */
754         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
755         if (!dev->in_ctx)
756                 goto fail;
757
758         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
759                         (unsigned long long)dev->in_ctx->dma);
760
761         /* Initialize the cancellation list and watchdog timers for each ep */
762         for (i = 0; i < 31; i++) {
763                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
764                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
765         }
766
767         /* Allocate endpoint 0 ring */
768         dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
769         if (!dev->eps[0].ring)
770                 goto fail;
771
772         /* Allocate pointers to the ring cache */
773         dev->ring_cache = kzalloc(
774                         sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
775                         flags);
776         if (!dev->ring_cache)
777                 goto fail;
778         dev->num_rings_cached = 0;
779
780         init_completion(&dev->cmd_completion);
781         INIT_LIST_HEAD(&dev->cmd_list);
782         dev->udev = udev;
783
784         /* Point to output device context in dcbaa. */
785         xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
786         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
787                  slot_id,
788                  &xhci->dcbaa->dev_context_ptrs[slot_id],
789                  (unsigned long long) le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
790
791         return 1;
792 fail:
793         xhci_free_virt_device(xhci, slot_id);
794         return 0;
795 }
796
797 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
798                 struct usb_device *udev)
799 {
800         struct xhci_virt_device *virt_dev;
801         struct xhci_ep_ctx      *ep0_ctx;
802         struct xhci_ring        *ep_ring;
803
804         virt_dev = xhci->devs[udev->slot_id];
805         ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
806         ep_ring = virt_dev->eps[0].ring;
807         /*
808          * FIXME we don't keep track of the dequeue pointer very well after a
809          * Set TR dequeue pointer, so we're setting the dequeue pointer of the
810          * host to our enqueue pointer.  This should only be called after a
811          * configured device has reset, so all control transfers should have
812          * been completed or cancelled before the reset.
813          */
814         ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
815                                                         ep_ring->enqueue)
816                                    | ep_ring->cycle_state);
817 }
818
819 /*
820  * The xHCI roothub may have ports of differing speeds in any order in the port
821  * status registers.  xhci->port_array provides an array of the port speed for
822  * each offset into the port status registers.
823  *
824  * The xHCI hardware wants to know the roothub port number that the USB device
825  * is attached to (or the roothub port its ancestor hub is attached to).  All we
826  * know is the index of that port under either the USB 2.0 or the USB 3.0
827  * roothub, but that doesn't give us the real index into the HW port status
828  * registers.  Scan through the xHCI roothub port array, looking for the Nth
829  * entry of the correct port speed.  Return the port number of that entry.
830  */
831 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
832                 struct usb_device *udev)
833 {
834         struct usb_device *top_dev;
835         unsigned int num_similar_speed_ports;
836         unsigned int faked_port_num;
837         int i;
838
839         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
840                         top_dev = top_dev->parent)
841                 /* Found device below root hub */;
842         faked_port_num = top_dev->portnum;
843         for (i = 0, num_similar_speed_ports = 0;
844                         i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
845                 u8 port_speed = xhci->port_array[i];
846
847                 /*
848                  * Skip ports that don't have known speeds, or have duplicate
849                  * Extended Capabilities port speed entries.
850                  */
851                 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
852                         continue;
853
854                 /*
855                  * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
856                  * 1.1 ports are under the USB 2.0 hub.  If the port speed
857                  * matches the device speed, it's a similar speed port.
858                  */
859                 if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
860                         num_similar_speed_ports++;
861                 if (num_similar_speed_ports == faked_port_num)
862                         /* Roothub ports are numbered from 1 to N */
863                         return i+1;
864         }
865         return 0;
866 }
867
868 /* Setup an xHCI virtual device for a Set Address command */
869 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
870 {
871         struct xhci_virt_device *dev;
872         struct xhci_ep_ctx      *ep0_ctx;
873         struct xhci_slot_ctx    *slot_ctx;
874         struct xhci_input_control_ctx *ctrl_ctx;
875         u32                     port_num;
876         struct usb_device *top_dev;
877
878         dev = xhci->devs[udev->slot_id];
879         /* Slot ID 0 is reserved */
880         if (udev->slot_id == 0 || !dev) {
881                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
882                                 udev->slot_id);
883                 return -EINVAL;
884         }
885         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
886         ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
887         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
888
889         /* 2) New slot context and endpoint 0 context are valid*/
890         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
891
892         /* 3) Only the control endpoint is valid - one endpoint context */
893         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | (u32) udev->route);
894         switch (udev->speed) {
895         case USB_SPEED_SUPER:
896                 slot_ctx->dev_info |= cpu_to_le32((u32) SLOT_SPEED_SS);
897                 break;
898         case USB_SPEED_HIGH:
899                 slot_ctx->dev_info |= cpu_to_le32((u32) SLOT_SPEED_HS);
900                 break;
901         case USB_SPEED_FULL:
902                 slot_ctx->dev_info |= cpu_to_le32((u32) SLOT_SPEED_FS);
903                 break;
904         case USB_SPEED_LOW:
905                 slot_ctx->dev_info |= cpu_to_le32((u32) SLOT_SPEED_LS);
906                 break;
907         case USB_SPEED_WIRELESS:
908                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
909                 return -EINVAL;
910                 break;
911         default:
912                 /* Speed was set earlier, this shouldn't happen. */
913                 BUG();
914         }
915         /* Find the root hub port this device is under */
916         port_num = xhci_find_real_port_number(xhci, udev);
917         if (!port_num)
918                 return -EINVAL;
919         slot_ctx->dev_info2 |= cpu_to_le32((u32) ROOT_HUB_PORT(port_num));
920         /* Set the port number in the virtual_device to the faked port number */
921         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
922                         top_dev = top_dev->parent)
923                 /* Found device below root hub */;
924         dev->port = top_dev->portnum;
925         xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
926         xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->port);
927
928         /* Is this a LS/FS device under an external HS hub? */
929         if (udev->tt && udev->tt->hub->parent) {
930                 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
931                                                 (udev->ttport << 8));
932                 if (udev->tt->multi)
933                         slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
934         }
935         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
936         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
937
938         /* Step 4 - ring already allocated */
939         /* Step 5 */
940         ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
941         /*
942          * XXX: Not sure about wireless USB devices.
943          */
944         switch (udev->speed) {
945         case USB_SPEED_SUPER:
946                 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
947                 break;
948         case USB_SPEED_HIGH:
949         /* USB core guesses at a 64-byte max packet first for FS devices */
950         case USB_SPEED_FULL:
951                 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
952                 break;
953         case USB_SPEED_LOW:
954                 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
955                 break;
956         case USB_SPEED_WIRELESS:
957                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
958                 return -EINVAL;
959                 break;
960         default:
961                 /* New speed? */
962                 BUG();
963         }
964         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
965         ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
966
967         ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
968                                    dev->eps[0].ring->cycle_state);
969
970         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
971
972         return 0;
973 }
974
975 /*
976  * Convert interval expressed as 2^(bInterval - 1) == interval into
977  * straight exponent value 2^n == interval.
978  *
979  */
980 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
981                 struct usb_host_endpoint *ep)
982 {
983         unsigned int interval;
984
985         interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
986         if (interval != ep->desc.bInterval - 1)
987                 dev_warn(&udev->dev,
988                          "ep %#x - rounding interval to %d %sframes\n",
989                          ep->desc.bEndpointAddress,
990                          1 << interval,
991                          udev->speed == USB_SPEED_FULL ? "" : "micro");
992
993         if (udev->speed == USB_SPEED_FULL) {
994                 /*
995                  * Full speed isoc endpoints specify interval in frames,
996                  * not microframes. We are using microframes everywhere,
997                  * so adjust accordingly.
998                  */
999                 interval += 3;  /* 1 frame = 2^3 uframes */
1000         }
1001
1002         return interval;
1003 }
1004
1005 /*
1006  * Convert bInterval expressed in frames (in 1-255 range) to exponent of
1007  * microframes, rounded down to nearest power of 2.
1008  */
1009 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1010                 struct usb_host_endpoint *ep)
1011 {
1012         unsigned int interval;
1013
1014         interval = fls(8 * ep->desc.bInterval) - 1;
1015         interval = clamp_val(interval, 3, 10);
1016         if ((1 << interval) != 8 * ep->desc.bInterval)
1017                 dev_warn(&udev->dev,
1018                          "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1019                          ep->desc.bEndpointAddress,
1020                          1 << interval,
1021                          8 * ep->desc.bInterval);
1022
1023         return interval;
1024 }
1025
1026 /* Return the polling or NAK interval.
1027  *
1028  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1029  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1030  *
1031  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1032  * is set to 0.
1033  */
1034 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1035                 struct usb_host_endpoint *ep)
1036 {
1037         unsigned int interval = 0;
1038
1039         switch (udev->speed) {
1040         case USB_SPEED_HIGH:
1041                 /* Max NAK rate */
1042                 if (usb_endpoint_xfer_control(&ep->desc) ||
1043                     usb_endpoint_xfer_bulk(&ep->desc)) {
1044                         interval = ep->desc.bInterval;
1045                         break;
1046                 }
1047                 /* Fall through - SS and HS isoc/int have same decoding */
1048
1049         case USB_SPEED_SUPER:
1050                 if (usb_endpoint_xfer_int(&ep->desc) ||
1051                     usb_endpoint_xfer_isoc(&ep->desc)) {
1052                         interval = xhci_parse_exponent_interval(udev, ep);
1053                 }
1054                 break;
1055
1056         case USB_SPEED_FULL:
1057                 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1058                         interval = xhci_parse_exponent_interval(udev, ep);
1059                         break;
1060                 }
1061                 /*
1062                  * Fall through for interrupt endpoint interval decoding
1063                  * since it uses the same rules as low speed interrupt
1064                  * endpoints.
1065                  */
1066
1067         case USB_SPEED_LOW:
1068                 if (usb_endpoint_xfer_int(&ep->desc) ||
1069                     usb_endpoint_xfer_isoc(&ep->desc)) {
1070
1071                         interval = xhci_parse_frame_interval(udev, ep);
1072                 }
1073                 break;
1074
1075         default:
1076                 BUG();
1077         }
1078         return EP_INTERVAL(interval);
1079 }
1080
1081 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1082  * High speed endpoint descriptors can define "the number of additional
1083  * transaction opportunities per microframe", but that goes in the Max Burst
1084  * endpoint context field.
1085  */
1086 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1087                 struct usb_host_endpoint *ep)
1088 {
1089         if (udev->speed != USB_SPEED_SUPER ||
1090                         !usb_endpoint_xfer_isoc(&ep->desc))
1091                 return 0;
1092         return ep->ss_ep_comp.bmAttributes;
1093 }
1094
1095 static u32 xhci_get_endpoint_type(struct usb_device *udev,
1096                 struct usb_host_endpoint *ep)
1097 {
1098         int in;
1099         u32 type;
1100
1101         in = usb_endpoint_dir_in(&ep->desc);
1102         if (usb_endpoint_xfer_control(&ep->desc)) {
1103                 type = EP_TYPE(CTRL_EP);
1104         } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1105                 if (in)
1106                         type = EP_TYPE(BULK_IN_EP);
1107                 else
1108                         type = EP_TYPE(BULK_OUT_EP);
1109         } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1110                 if (in)
1111                         type = EP_TYPE(ISOC_IN_EP);
1112                 else
1113                         type = EP_TYPE(ISOC_OUT_EP);
1114         } else if (usb_endpoint_xfer_int(&ep->desc)) {
1115                 if (in)
1116                         type = EP_TYPE(INT_IN_EP);
1117                 else
1118                         type = EP_TYPE(INT_OUT_EP);
1119         } else {
1120                 BUG();
1121         }
1122         return type;
1123 }
1124
1125 /* Return the maximum endpoint service interval time (ESIT) payload.
1126  * Basically, this is the maxpacket size, multiplied by the burst size
1127  * and mult size.
1128  */
1129 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1130                 struct usb_device *udev,
1131                 struct usb_host_endpoint *ep)
1132 {
1133         int max_burst;
1134         int max_packet;
1135
1136         /* Only applies for interrupt or isochronous endpoints */
1137         if (usb_endpoint_xfer_control(&ep->desc) ||
1138                         usb_endpoint_xfer_bulk(&ep->desc))
1139                 return 0;
1140
1141         if (udev->speed == USB_SPEED_SUPER)
1142                 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1143
1144         max_packet = GET_MAX_PACKET(le16_to_cpu(ep->desc.wMaxPacketSize));
1145         max_burst = (le16_to_cpu(ep->desc.wMaxPacketSize) & 0x1800) >> 11;
1146         /* A 0 in max burst means 1 transfer per ESIT */
1147         return max_packet * (max_burst + 1);
1148 }
1149
1150 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1151  * Drivers will have to call usb_alloc_streams() to do that.
1152  */
1153 int xhci_endpoint_init(struct xhci_hcd *xhci,
1154                 struct xhci_virt_device *virt_dev,
1155                 struct usb_device *udev,
1156                 struct usb_host_endpoint *ep,
1157                 gfp_t mem_flags)
1158 {
1159         unsigned int ep_index;
1160         struct xhci_ep_ctx *ep_ctx;
1161         struct xhci_ring *ep_ring;
1162         unsigned int max_packet;
1163         unsigned int max_burst;
1164         u32 max_esit_payload;
1165
1166         ep_index = xhci_get_endpoint_index(&ep->desc);
1167         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1168
1169         /* Set up the endpoint ring */
1170         /*
1171          * Isochronous endpoint ring needs bigger size because one isoc URB
1172          * carries multiple packets and it will insert multiple tds to the
1173          * ring.
1174          * This should be replaced with dynamic ring resizing in the future.
1175          */
1176         if (usb_endpoint_xfer_isoc(&ep->desc))
1177                 virt_dev->eps[ep_index].new_ring =
1178                         xhci_ring_alloc(xhci, 8, true, mem_flags);
1179         else
1180                 virt_dev->eps[ep_index].new_ring =
1181                         xhci_ring_alloc(xhci, 1, true, mem_flags);
1182         if (!virt_dev->eps[ep_index].new_ring) {
1183                 /* Attempt to use the ring cache */
1184                 if (virt_dev->num_rings_cached == 0)
1185                         return -ENOMEM;
1186                 virt_dev->eps[ep_index].new_ring =
1187                         virt_dev->ring_cache[virt_dev->num_rings_cached];
1188                 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1189                 virt_dev->num_rings_cached--;
1190                 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
1191         }
1192         virt_dev->eps[ep_index].skip = false;
1193         ep_ring = virt_dev->eps[ep_index].new_ring;
1194         ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1195
1196         ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1197                                       | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1198
1199         /* FIXME dig Mult and streams info out of ep companion desc */
1200
1201         /* Allow 3 retries for everything but isoc;
1202          * CErr shall be set to 0 for Isoch endpoints.
1203          */
1204         if (!usb_endpoint_xfer_isoc(&ep->desc))
1205                 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
1206         else
1207                 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
1208
1209         ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
1210
1211         /* Set the max packet size and max burst */
1212         switch (udev->speed) {
1213         case USB_SPEED_SUPER:
1214                 max_packet = le16_to_cpu(ep->desc.wMaxPacketSize);
1215                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1216                 /* dig out max burst from ep companion desc */
1217                 max_packet = ep->ss_ep_comp.bMaxBurst;
1218                 if (!max_packet)
1219                         xhci_warn(xhci, "WARN no SS endpoint bMaxBurst\n");
1220                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
1221                 break;
1222         case USB_SPEED_HIGH:
1223                 /* bits 11:12 specify the number of additional transaction
1224                  * opportunities per microframe (USB 2.0, section 9.6.6)
1225                  */
1226                 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1227                                 usb_endpoint_xfer_int(&ep->desc)) {
1228                         max_burst = (le16_to_cpu(ep->desc.wMaxPacketSize)
1229                                      & 0x1800) >> 11;
1230                         ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
1231                 }
1232                 /* Fall through */
1233         case USB_SPEED_FULL:
1234         case USB_SPEED_LOW:
1235                 max_packet = GET_MAX_PACKET(le16_to_cpu(ep->desc.wMaxPacketSize));
1236                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1237                 break;
1238         default:
1239                 BUG();
1240         }
1241         max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1242         ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1243
1244         /*
1245          * XXX no idea how to calculate the average TRB buffer length for bulk
1246          * endpoints, as the driver gives us no clue how big each scatter gather
1247          * list entry (or buffer) is going to be.
1248          *
1249          * For isochronous and interrupt endpoints, we set it to the max
1250          * available, until we have new API in the USB core to allow drivers to
1251          * declare how much bandwidth they actually need.
1252          *
1253          * Normally, it would be calculated by taking the total of the buffer
1254          * lengths in the TD and then dividing by the number of TRBs in a TD,
1255          * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1256          * use Event Data TRBs, and we don't chain in a link TRB on short
1257          * transfers, we're basically dividing by 1.
1258          *
1259          * xHCI 1.0 specification indicates that the Average TRB Length should
1260          * be set to 8 for control endpoints.
1261          */
1262         if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1263                 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1264         else
1265                 ep_ctx->tx_info |=
1266                          cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1267
1268         /* FIXME Debug endpoint context */
1269         return 0;
1270 }
1271
1272 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1273                 struct xhci_virt_device *virt_dev,
1274                 struct usb_host_endpoint *ep)
1275 {
1276         unsigned int ep_index;
1277         struct xhci_ep_ctx *ep_ctx;
1278
1279         ep_index = xhci_get_endpoint_index(&ep->desc);
1280         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1281
1282         ep_ctx->ep_info = 0;
1283         ep_ctx->ep_info2 = 0;
1284         ep_ctx->deq = 0;
1285         ep_ctx->tx_info = 0;
1286         /* Don't free the endpoint ring until the set interface or configuration
1287          * request succeeds.
1288          */
1289 }
1290
1291 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1292  * Useful when you want to change one particular aspect of the endpoint and then
1293  * issue a configure endpoint command.
1294  */
1295 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1296                 struct xhci_container_ctx *in_ctx,
1297                 struct xhci_container_ctx *out_ctx,
1298                 unsigned int ep_index)
1299 {
1300         struct xhci_ep_ctx *out_ep_ctx;
1301         struct xhci_ep_ctx *in_ep_ctx;
1302
1303         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1304         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1305
1306         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1307         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1308         in_ep_ctx->deq = out_ep_ctx->deq;
1309         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1310 }
1311
1312 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1313  * Useful when you want to change one particular aspect of the endpoint and then
1314  * issue a configure endpoint command.  Only the context entries field matters,
1315  * but we'll copy the whole thing anyway.
1316  */
1317 void xhci_slot_copy(struct xhci_hcd *xhci,
1318                 struct xhci_container_ctx *in_ctx,
1319                 struct xhci_container_ctx *out_ctx)
1320 {
1321         struct xhci_slot_ctx *in_slot_ctx;
1322         struct xhci_slot_ctx *out_slot_ctx;
1323
1324         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1325         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1326
1327         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1328         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1329         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1330         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1331 }
1332
1333 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1334 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1335 {
1336         int i;
1337         struct device *dev = xhci_to_hcd(xhci)->self.controller;
1338         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1339
1340         xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1341
1342         if (!num_sp)
1343                 return 0;
1344
1345         xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1346         if (!xhci->scratchpad)
1347                 goto fail_sp;
1348
1349         xhci->scratchpad->sp_array =
1350                 pci_alloc_consistent(to_pci_dev(dev),
1351                                      num_sp * sizeof(u64),
1352                                      &xhci->scratchpad->sp_dma);
1353         if (!xhci->scratchpad->sp_array)
1354                 goto fail_sp2;
1355
1356         xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1357         if (!xhci->scratchpad->sp_buffers)
1358                 goto fail_sp3;
1359
1360         xhci->scratchpad->sp_dma_buffers =
1361                 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1362
1363         if (!xhci->scratchpad->sp_dma_buffers)
1364                 goto fail_sp4;
1365
1366         xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1367         for (i = 0; i < num_sp; i++) {
1368                 dma_addr_t dma;
1369                 void *buf = pci_alloc_consistent(to_pci_dev(dev),
1370                                                  xhci->page_size, &dma);
1371                 if (!buf)
1372                         goto fail_sp5;
1373
1374                 xhci->scratchpad->sp_array[i] = dma;
1375                 xhci->scratchpad->sp_buffers[i] = buf;
1376                 xhci->scratchpad->sp_dma_buffers[i] = dma;
1377         }
1378
1379         return 0;
1380
1381  fail_sp5:
1382         for (i = i - 1; i >= 0; i--) {
1383                 pci_free_consistent(to_pci_dev(dev), xhci->page_size,
1384                                     xhci->scratchpad->sp_buffers[i],
1385                                     xhci->scratchpad->sp_dma_buffers[i]);
1386         }
1387         kfree(xhci->scratchpad->sp_dma_buffers);
1388
1389  fail_sp4:
1390         kfree(xhci->scratchpad->sp_buffers);
1391
1392  fail_sp3:
1393         pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
1394                             xhci->scratchpad->sp_array,
1395                             xhci->scratchpad->sp_dma);
1396
1397  fail_sp2:
1398         kfree(xhci->scratchpad);
1399         xhci->scratchpad = NULL;
1400
1401  fail_sp:
1402         return -ENOMEM;
1403 }
1404
1405 static void scratchpad_free(struct xhci_hcd *xhci)
1406 {
1407         int num_sp;
1408         int i;
1409         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1410
1411         if (!xhci->scratchpad)
1412                 return;
1413
1414         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1415
1416         for (i = 0; i < num_sp; i++) {
1417                 pci_free_consistent(pdev, xhci->page_size,
1418                                     xhci->scratchpad->sp_buffers[i],
1419                                     xhci->scratchpad->sp_dma_buffers[i]);
1420         }
1421         kfree(xhci->scratchpad->sp_dma_buffers);
1422         kfree(xhci->scratchpad->sp_buffers);
1423         pci_free_consistent(pdev, num_sp * sizeof(u64),
1424                             xhci->scratchpad->sp_array,
1425                             xhci->scratchpad->sp_dma);
1426         kfree(xhci->scratchpad);
1427         xhci->scratchpad = NULL;
1428 }
1429
1430 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1431                 bool allocate_in_ctx, bool allocate_completion,
1432                 gfp_t mem_flags)
1433 {
1434         struct xhci_command *command;
1435
1436         command = kzalloc(sizeof(*command), mem_flags);
1437         if (!command)
1438                 return NULL;
1439
1440         if (allocate_in_ctx) {
1441                 command->in_ctx =
1442                         xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1443                                         mem_flags);
1444                 if (!command->in_ctx) {
1445                         kfree(command);
1446                         return NULL;
1447                 }
1448         }
1449
1450         if (allocate_completion) {
1451                 command->completion =
1452                         kzalloc(sizeof(struct completion), mem_flags);
1453                 if (!command->completion) {
1454                         xhci_free_container_ctx(xhci, command->in_ctx);
1455                         kfree(command);
1456                         return NULL;
1457                 }
1458                 init_completion(command->completion);
1459         }
1460
1461         command->status = 0;
1462         INIT_LIST_HEAD(&command->cmd_list);
1463         return command;
1464 }
1465
1466 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1467 {
1468         int last;
1469
1470         if (!urb_priv)
1471                 return;
1472
1473         last = urb_priv->length - 1;
1474         if (last >= 0) {
1475                 int     i;
1476                 for (i = 0; i <= last; i++)
1477                         kfree(urb_priv->td[i]);
1478         }
1479         kfree(urb_priv);
1480 }
1481
1482 void xhci_free_command(struct xhci_hcd *xhci,
1483                 struct xhci_command *command)
1484 {
1485         xhci_free_container_ctx(xhci,
1486                         command->in_ctx);
1487         kfree(command->completion);
1488         kfree(command);
1489 }
1490
1491 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1492 {
1493         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1494         int size;
1495         int i;
1496
1497         /* Free the Event Ring Segment Table and the actual Event Ring */
1498         if (xhci->ir_set) {
1499                 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
1500                 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
1501                 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
1502         }
1503         size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1504         if (xhci->erst.entries)
1505                 pci_free_consistent(pdev, size,
1506                                 xhci->erst.entries, xhci->erst.erst_dma_addr);
1507         xhci->erst.entries = NULL;
1508         xhci_dbg(xhci, "Freed ERST\n");
1509         if (xhci->event_ring)
1510                 xhci_ring_free(xhci, xhci->event_ring);
1511         xhci->event_ring = NULL;
1512         xhci_dbg(xhci, "Freed event ring\n");
1513
1514         xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
1515         if (xhci->cmd_ring)
1516                 xhci_ring_free(xhci, xhci->cmd_ring);
1517         xhci->cmd_ring = NULL;
1518         xhci_dbg(xhci, "Freed command ring\n");
1519
1520         for (i = 1; i < MAX_HC_SLOTS; ++i)
1521                 xhci_free_virt_device(xhci, i);
1522
1523         if (xhci->segment_pool)
1524                 dma_pool_destroy(xhci->segment_pool);
1525         xhci->segment_pool = NULL;
1526         xhci_dbg(xhci, "Freed segment pool\n");
1527
1528         if (xhci->device_pool)
1529                 dma_pool_destroy(xhci->device_pool);
1530         xhci->device_pool = NULL;
1531         xhci_dbg(xhci, "Freed device context pool\n");
1532
1533         if (xhci->small_streams_pool)
1534                 dma_pool_destroy(xhci->small_streams_pool);
1535         xhci->small_streams_pool = NULL;
1536         xhci_dbg(xhci, "Freed small stream array pool\n");
1537
1538         if (xhci->medium_streams_pool)
1539                 dma_pool_destroy(xhci->medium_streams_pool);
1540         xhci->medium_streams_pool = NULL;
1541         xhci_dbg(xhci, "Freed medium stream array pool\n");
1542
1543         xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
1544         if (xhci->dcbaa)
1545                 pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
1546                                 xhci->dcbaa, xhci->dcbaa->dma);
1547         xhci->dcbaa = NULL;
1548
1549         scratchpad_free(xhci);
1550
1551         xhci->num_usb2_ports = 0;
1552         xhci->num_usb3_ports = 0;
1553         kfree(xhci->usb2_ports);
1554         kfree(xhci->usb3_ports);
1555         kfree(xhci->port_array);
1556
1557         xhci->page_size = 0;
1558         xhci->page_shift = 0;
1559         xhci->bus_state[0].bus_suspended = 0;
1560         xhci->bus_state[1].bus_suspended = 0;
1561 }
1562
1563 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1564                 struct xhci_segment *input_seg,
1565                 union xhci_trb *start_trb,
1566                 union xhci_trb *end_trb,
1567                 dma_addr_t input_dma,
1568                 struct xhci_segment *result_seg,
1569                 char *test_name, int test_number)
1570 {
1571         unsigned long long start_dma;
1572         unsigned long long end_dma;
1573         struct xhci_segment *seg;
1574
1575         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1576         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1577
1578         seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1579         if (seg != result_seg) {
1580                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1581                                 test_name, test_number);
1582                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1583                                 "input DMA 0x%llx\n",
1584                                 input_seg,
1585                                 (unsigned long long) input_dma);
1586                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1587                                 "ending TRB %p (0x%llx DMA)\n",
1588                                 start_trb, start_dma,
1589                                 end_trb, end_dma);
1590                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1591                                 result_seg, seg);
1592                 return -1;
1593         }
1594         return 0;
1595 }
1596
1597 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1598 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1599 {
1600         struct {
1601                 dma_addr_t              input_dma;
1602                 struct xhci_segment     *result_seg;
1603         } simple_test_vector [] = {
1604                 /* A zeroed DMA field should fail */
1605                 { 0, NULL },
1606                 /* One TRB before the ring start should fail */
1607                 { xhci->event_ring->first_seg->dma - 16, NULL },
1608                 /* One byte before the ring start should fail */
1609                 { xhci->event_ring->first_seg->dma - 1, NULL },
1610                 /* Starting TRB should succeed */
1611                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1612                 /* Ending TRB should succeed */
1613                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1614                         xhci->event_ring->first_seg },
1615                 /* One byte after the ring end should fail */
1616                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1617                 /* One TRB after the ring end should fail */
1618                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1619                 /* An address of all ones should fail */
1620                 { (dma_addr_t) (~0), NULL },
1621         };
1622         struct {
1623                 struct xhci_segment     *input_seg;
1624                 union xhci_trb          *start_trb;
1625                 union xhci_trb          *end_trb;
1626                 dma_addr_t              input_dma;
1627                 struct xhci_segment     *result_seg;
1628         } complex_test_vector [] = {
1629                 /* Test feeding a valid DMA address from a different ring */
1630                 {       .input_seg = xhci->event_ring->first_seg,
1631                         .start_trb = xhci->event_ring->first_seg->trbs,
1632                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1633                         .input_dma = xhci->cmd_ring->first_seg->dma,
1634                         .result_seg = NULL,
1635                 },
1636                 /* Test feeding a valid end TRB from a different ring */
1637                 {       .input_seg = xhci->event_ring->first_seg,
1638                         .start_trb = xhci->event_ring->first_seg->trbs,
1639                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1640                         .input_dma = xhci->cmd_ring->first_seg->dma,
1641                         .result_seg = NULL,
1642                 },
1643                 /* Test feeding a valid start and end TRB from a different ring */
1644                 {       .input_seg = xhci->event_ring->first_seg,
1645                         .start_trb = xhci->cmd_ring->first_seg->trbs,
1646                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1647                         .input_dma = xhci->cmd_ring->first_seg->dma,
1648                         .result_seg = NULL,
1649                 },
1650                 /* TRB in this ring, but after this TD */
1651                 {       .input_seg = xhci->event_ring->first_seg,
1652                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
1653                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
1654                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1655                         .result_seg = NULL,
1656                 },
1657                 /* TRB in this ring, but before this TD */
1658                 {       .input_seg = xhci->event_ring->first_seg,
1659                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
1660                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
1661                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1662                         .result_seg = NULL,
1663                 },
1664                 /* TRB in this ring, but after this wrapped TD */
1665                 {       .input_seg = xhci->event_ring->first_seg,
1666                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1667                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1668                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1669                         .result_seg = NULL,
1670                 },
1671                 /* TRB in this ring, but before this wrapped TD */
1672                 {       .input_seg = xhci->event_ring->first_seg,
1673                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1674                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1675                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1676                         .result_seg = NULL,
1677                 },
1678                 /* TRB not in this ring, and we have a wrapped TD */
1679                 {       .input_seg = xhci->event_ring->first_seg,
1680                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1681                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1682                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1683                         .result_seg = NULL,
1684                 },
1685         };
1686
1687         unsigned int num_tests;
1688         int i, ret;
1689
1690         num_tests = ARRAY_SIZE(simple_test_vector);
1691         for (i = 0; i < num_tests; i++) {
1692                 ret = xhci_test_trb_in_td(xhci,
1693                                 xhci->event_ring->first_seg,
1694                                 xhci->event_ring->first_seg->trbs,
1695                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1696                                 simple_test_vector[i].input_dma,
1697                                 simple_test_vector[i].result_seg,
1698                                 "Simple", i);
1699                 if (ret < 0)
1700                         return ret;
1701         }
1702
1703         num_tests = ARRAY_SIZE(complex_test_vector);
1704         for (i = 0; i < num_tests; i++) {
1705                 ret = xhci_test_trb_in_td(xhci,
1706                                 complex_test_vector[i].input_seg,
1707                                 complex_test_vector[i].start_trb,
1708                                 complex_test_vector[i].end_trb,
1709                                 complex_test_vector[i].input_dma,
1710                                 complex_test_vector[i].result_seg,
1711                                 "Complex", i);
1712                 if (ret < 0)
1713                         return ret;
1714         }
1715         xhci_dbg(xhci, "TRB math tests passed.\n");
1716         return 0;
1717 }
1718
1719 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1720 {
1721         u64 temp;
1722         dma_addr_t deq;
1723
1724         deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1725                         xhci->event_ring->dequeue);
1726         if (deq == 0 && !in_interrupt())
1727                 xhci_warn(xhci, "WARN something wrong with SW event ring "
1728                                 "dequeue ptr.\n");
1729         /* Update HC event ring dequeue pointer */
1730         temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1731         temp &= ERST_PTR_MASK;
1732         /* Don't clear the EHB bit (which is RW1C) because
1733          * there might be more events to service.
1734          */
1735         temp &= ~ERST_EHB;
1736         xhci_dbg(xhci, "// Write event ring dequeue pointer, "
1737                         "preserving EHB bit\n");
1738         xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1739                         &xhci->ir_set->erst_dequeue);
1740 }
1741
1742 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1743                 __le32 __iomem *addr, u8 major_revision)
1744 {
1745         u32 temp, port_offset, port_count;
1746         int i;
1747
1748         if (major_revision > 0x03) {
1749                 xhci_warn(xhci, "Ignoring unknown port speed, "
1750                                 "Ext Cap %p, revision = 0x%x\n",
1751                                 addr, major_revision);
1752                 /* Ignoring port protocol we can't understand. FIXME */
1753                 return;
1754         }
1755
1756         /* Port offset and count in the third dword, see section 7.2 */
1757         temp = xhci_readl(xhci, addr + 2);
1758         port_offset = XHCI_EXT_PORT_OFF(temp);
1759         port_count = XHCI_EXT_PORT_COUNT(temp);
1760         xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
1761                         "count = %u, revision = 0x%x\n",
1762                         addr, port_offset, port_count, major_revision);
1763         /* Port count includes the current port offset */
1764         if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
1765                 /* WTF? "Valid values are â€˜1’ to MaxPorts" */
1766                 return;
1767         port_offset--;
1768         for (i = port_offset; i < (port_offset + port_count); i++) {
1769                 /* Duplicate entry.  Ignore the port if the revisions differ. */
1770                 if (xhci->port_array[i] != 0) {
1771                         xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
1772                                         " port %u\n", addr, i);
1773                         xhci_warn(xhci, "Port was marked as USB %u, "
1774                                         "duplicated as USB %u\n",
1775                                         xhci->port_array[i], major_revision);
1776                         /* Only adjust the roothub port counts if we haven't
1777                          * found a similar duplicate.
1778                          */
1779                         if (xhci->port_array[i] != major_revision &&
1780                                 xhci->port_array[i] != DUPLICATE_ENTRY) {
1781                                 if (xhci->port_array[i] == 0x03)
1782                                         xhci->num_usb3_ports--;
1783                                 else
1784                                         xhci->num_usb2_ports--;
1785                                 xhci->port_array[i] = DUPLICATE_ENTRY;
1786                         }
1787                         /* FIXME: Should we disable the port? */
1788                         continue;
1789                 }
1790                 xhci->port_array[i] = major_revision;
1791                 if (major_revision == 0x03)
1792                         xhci->num_usb3_ports++;
1793                 else
1794                         xhci->num_usb2_ports++;
1795         }
1796         /* FIXME: Should we disable ports not in the Extended Capabilities? */
1797 }
1798
1799 /*
1800  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
1801  * specify what speeds each port is supposed to be.  We can't count on the port
1802  * speed bits in the PORTSC register being correct until a device is connected,
1803  * but we need to set up the two fake roothubs with the correct number of USB
1804  * 3.0 and USB 2.0 ports at host controller initialization time.
1805  */
1806 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
1807 {
1808         __le32 __iomem *addr;
1809         u32 offset;
1810         unsigned int num_ports;
1811         int i, port_index;
1812
1813         addr = &xhci->cap_regs->hcc_params;
1814         offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
1815         if (offset == 0) {
1816                 xhci_err(xhci, "No Extended Capability registers, "
1817                                 "unable to set up roothub.\n");
1818                 return -ENODEV;
1819         }
1820
1821         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1822         xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
1823         if (!xhci->port_array)
1824                 return -ENOMEM;
1825
1826         /*
1827          * For whatever reason, the first capability offset is from the
1828          * capability register base, not from the HCCPARAMS register.
1829          * See section 5.3.6 for offset calculation.
1830          */
1831         addr = &xhci->cap_regs->hc_capbase + offset;
1832         while (1) {
1833                 u32 cap_id;
1834
1835                 cap_id = xhci_readl(xhci, addr);
1836                 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
1837                         xhci_add_in_port(xhci, num_ports, addr,
1838                                         (u8) XHCI_EXT_PORT_MAJOR(cap_id));
1839                 offset = XHCI_EXT_CAPS_NEXT(cap_id);
1840                 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
1841                                 == num_ports)
1842                         break;
1843                 /*
1844                  * Once you're into the Extended Capabilities, the offset is
1845                  * always relative to the register holding the offset.
1846                  */
1847                 addr += offset;
1848         }
1849
1850         if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
1851                 xhci_warn(xhci, "No ports on the roothubs?\n");
1852                 return -ENODEV;
1853         }
1854         xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
1855                         xhci->num_usb2_ports, xhci->num_usb3_ports);
1856
1857         /* Place limits on the number of roothub ports so that the hub
1858          * descriptors aren't longer than the USB core will allocate.
1859          */
1860         if (xhci->num_usb3_ports > 15) {
1861                 xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
1862                 xhci->num_usb3_ports = 15;
1863         }
1864         if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
1865                 xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
1866                                 USB_MAXCHILDREN);
1867                 xhci->num_usb2_ports = USB_MAXCHILDREN;
1868         }
1869
1870         /*
1871          * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
1872          * Not sure how the USB core will handle a hub with no ports...
1873          */
1874         if (xhci->num_usb2_ports) {
1875                 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
1876                                 xhci->num_usb2_ports, flags);
1877                 if (!xhci->usb2_ports)
1878                         return -ENOMEM;
1879
1880                 port_index = 0;
1881                 for (i = 0; i < num_ports; i++) {
1882                         if (xhci->port_array[i] == 0x03 ||
1883                                         xhci->port_array[i] == 0 ||
1884                                         xhci->port_array[i] == DUPLICATE_ENTRY)
1885                                 continue;
1886
1887                         xhci->usb2_ports[port_index] =
1888                                 &xhci->op_regs->port_status_base +
1889                                 NUM_PORT_REGS*i;
1890                         xhci_dbg(xhci, "USB 2.0 port at index %u, "
1891                                         "addr = %p\n", i,
1892                                         xhci->usb2_ports[port_index]);
1893                         port_index++;
1894                         if (port_index == xhci->num_usb2_ports)
1895                                 break;
1896                 }
1897         }
1898         if (xhci->num_usb3_ports) {
1899                 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
1900                                 xhci->num_usb3_ports, flags);
1901                 if (!xhci->usb3_ports)
1902                         return -ENOMEM;
1903
1904                 port_index = 0;
1905                 for (i = 0; i < num_ports; i++)
1906                         if (xhci->port_array[i] == 0x03) {
1907                                 xhci->usb3_ports[port_index] =
1908                                         &xhci->op_regs->port_status_base +
1909                                         NUM_PORT_REGS*i;
1910                                 xhci_dbg(xhci, "USB 3.0 port at index %u, "
1911                                                 "addr = %p\n", i,
1912                                                 xhci->usb3_ports[port_index]);
1913                                 port_index++;
1914                                 if (port_index == xhci->num_usb3_ports)
1915                                         break;
1916                         }
1917         }
1918         return 0;
1919 }
1920
1921 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
1922 {
1923         dma_addr_t      dma;
1924         struct device   *dev = xhci_to_hcd(xhci)->self.controller;
1925         unsigned int    val, val2;
1926         u64             val_64;
1927         struct xhci_segment     *seg;
1928         u32 page_size;
1929         int i;
1930
1931         page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
1932         xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
1933         for (i = 0; i < 16; i++) {
1934                 if ((0x1 & page_size) != 0)
1935                         break;
1936                 page_size = page_size >> 1;
1937         }
1938         if (i < 16)
1939                 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
1940         else
1941                 xhci_warn(xhci, "WARN: no supported page size\n");
1942         /* Use 4K pages, since that's common and the minimum the HC supports */
1943         xhci->page_shift = 12;
1944         xhci->page_size = 1 << xhci->page_shift;
1945         xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
1946
1947         /*
1948          * Program the Number of Device Slots Enabled field in the CONFIG
1949          * register with the max value of slots the HC can handle.
1950          */
1951         val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
1952         xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
1953                         (unsigned int) val);
1954         val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
1955         val |= (val2 & ~HCS_SLOTS_MASK);
1956         xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
1957                         (unsigned int) val);
1958         xhci_writel(xhci, val, &xhci->op_regs->config_reg);
1959
1960         /*
1961          * Section 5.4.8 - doorbell array must be
1962          * "physically contiguous and 64-byte (cache line) aligned".
1963          */
1964         xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
1965                         sizeof(*xhci->dcbaa), &dma);
1966         if (!xhci->dcbaa)
1967                 goto fail;
1968         memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
1969         xhci->dcbaa->dma = dma;
1970         xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
1971                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
1972         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
1973
1974         /*
1975          * Initialize the ring segment pool.  The ring must be a contiguous
1976          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
1977          * however, the command ring segment needs 64-byte aligned segments,
1978          * so we pick the greater alignment need.
1979          */
1980         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
1981                         SEGMENT_SIZE, 64, xhci->page_size);
1982
1983         /* See Table 46 and Note on Figure 55 */
1984         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
1985                         2112, 64, xhci->page_size);
1986         if (!xhci->segment_pool || !xhci->device_pool)
1987                 goto fail;
1988
1989         /* Linear stream context arrays don't have any boundary restrictions,
1990          * and only need to be 16-byte aligned.
1991          */
1992         xhci->small_streams_pool =
1993                 dma_pool_create("xHCI 256 byte stream ctx arrays",
1994                         dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
1995         xhci->medium_streams_pool =
1996                 dma_pool_create("xHCI 1KB stream ctx arrays",
1997                         dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
1998         /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
1999          * will be allocated with pci_alloc_consistent()
2000          */
2001
2002         if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2003                 goto fail;
2004
2005         /* Set up the command ring to have one segments for now. */
2006         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
2007         if (!xhci->cmd_ring)
2008                 goto fail;
2009         xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2010         xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2011                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
2012
2013         /* Set the address in the Command Ring Control register */
2014         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2015         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2016                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2017                 xhci->cmd_ring->cycle_state;
2018         xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2019         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2020         xhci_dbg_cmd_ptrs(xhci);
2021
2022         val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2023         val &= DBOFF_MASK;
2024         xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2025                         " from cap regs base addr\n", val);
2026         xhci->dba = (void __iomem *) xhci->cap_regs + val;
2027         xhci_dbg_regs(xhci);
2028         xhci_print_run_regs(xhci);
2029         /* Set ir_set to interrupt register set 0 */
2030         xhci->ir_set = &xhci->run_regs->ir_set[0];
2031
2032         /*
2033          * Event ring setup: Allocate a normal ring, but also setup
2034          * the event ring segment table (ERST).  Section 4.9.3.
2035          */
2036         xhci_dbg(xhci, "// Allocating event ring\n");
2037         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
2038         if (!xhci->event_ring)
2039                 goto fail;
2040         if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2041                 goto fail;
2042
2043         xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
2044                         sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
2045         if (!xhci->erst.entries)
2046                 goto fail;
2047         xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2048                         (unsigned long long)dma);
2049
2050         memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2051         xhci->erst.num_entries = ERST_NUM_SEGS;
2052         xhci->erst.erst_dma_addr = dma;
2053         xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2054                         xhci->erst.num_entries,
2055                         xhci->erst.entries,
2056                         (unsigned long long)xhci->erst.erst_dma_addr);
2057
2058         /* set ring base address and size for each segment table entry */
2059         for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2060                 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2061                 entry->seg_addr = cpu_to_le64(seg->dma);
2062                 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2063                 entry->rsvd = 0;
2064                 seg = seg->next;
2065         }
2066
2067         /* set ERST count with the number of entries in the segment table */
2068         val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2069         val &= ERST_SIZE_MASK;
2070         val |= ERST_NUM_SEGS;
2071         xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2072                         val);
2073         xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2074
2075         xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2076         /* set the segment table base address */
2077         xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2078                         (unsigned long long)xhci->erst.erst_dma_addr);
2079         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2080         val_64 &= ERST_PTR_MASK;
2081         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2082         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2083
2084         /* Set the event ring dequeue address */
2085         xhci_set_hc_event_deq(xhci);
2086         xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2087         xhci_print_ir_set(xhci, 0);
2088
2089         /*
2090          * XXX: Might need to set the Interrupter Moderation Register to
2091          * something other than the default (~1ms minimum between interrupts).
2092          * See section 5.5.1.2.
2093          */
2094         init_completion(&xhci->addr_dev);
2095         for (i = 0; i < MAX_HC_SLOTS; ++i)
2096                 xhci->devs[i] = NULL;
2097         for (i = 0; i < USB_MAXCHILDREN; ++i) {
2098                 xhci->bus_state[0].resume_done[i] = 0;
2099                 xhci->bus_state[1].resume_done[i] = 0;
2100         }
2101
2102         if (scratchpad_alloc(xhci, flags))
2103                 goto fail;
2104         if (xhci_setup_port_arrays(xhci, flags))
2105                 goto fail;
2106
2107         return 0;
2108
2109 fail:
2110         xhci_warn(xhci, "Couldn't initialize memory\n");
2111         xhci_mem_cleanup(xhci);
2112         return -ENOMEM;
2113 }