Merge branch 'drm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied...
[pandora-kernel.git] / drivers / usb / gadget / pch_udc.c
1 /*
2  * Copyright (C) 2010 OKI SEMICONDUCTOR CO., LTD.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; version 2 of the License.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307, USA.
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/errno.h>
23 #include <linux/list.h>
24 #include <linux/interrupt.h>
25 #include <linux/usb/ch9.h>
26 #include <linux/usb/gadget.h>
27
28 /* Address offset of Registers */
29 #define UDC_EP_REG_SHIFT        0x20    /* Offset to next EP */
30
31 #define UDC_EPCTL_ADDR          0x00    /* Endpoint control */
32 #define UDC_EPSTS_ADDR          0x04    /* Endpoint status */
33 #define UDC_BUFIN_FRAMENUM_ADDR 0x08    /* buffer size in / frame number out */
34 #define UDC_BUFOUT_MAXPKT_ADDR  0x0C    /* buffer size out / maxpkt in */
35 #define UDC_SUBPTR_ADDR         0x10    /* setup buffer pointer */
36 #define UDC_DESPTR_ADDR         0x14    /* Data descriptor pointer */
37 #define UDC_CONFIRM_ADDR        0x18    /* Write/Read confirmation */
38
39 #define UDC_DEVCFG_ADDR         0x400   /* Device configuration */
40 #define UDC_DEVCTL_ADDR         0x404   /* Device control */
41 #define UDC_DEVSTS_ADDR         0x408   /* Device status */
42 #define UDC_DEVIRQSTS_ADDR      0x40C   /* Device irq status */
43 #define UDC_DEVIRQMSK_ADDR      0x410   /* Device irq mask */
44 #define UDC_EPIRQSTS_ADDR       0x414   /* Endpoint irq status */
45 #define UDC_EPIRQMSK_ADDR       0x418   /* Endpoint irq mask */
46 #define UDC_DEVLPM_ADDR         0x41C   /* LPM control / status */
47 #define UDC_CSR_BUSY_ADDR       0x4f0   /* UDC_CSR_BUSY Status register */
48 #define UDC_SRST_ADDR           0x4fc   /* SOFT RESET register */
49 #define UDC_CSR_ADDR            0x500   /* USB_DEVICE endpoint register */
50
51 /* Endpoint control register */
52 /* Bit position */
53 #define UDC_EPCTL_MRXFLUSH              (1 << 12)
54 #define UDC_EPCTL_RRDY                  (1 << 9)
55 #define UDC_EPCTL_CNAK                  (1 << 8)
56 #define UDC_EPCTL_SNAK                  (1 << 7)
57 #define UDC_EPCTL_NAK                   (1 << 6)
58 #define UDC_EPCTL_P                     (1 << 3)
59 #define UDC_EPCTL_F                     (1 << 1)
60 #define UDC_EPCTL_S                     (1 << 0)
61 #define UDC_EPCTL_ET_SHIFT              4
62 /* Mask patern */
63 #define UDC_EPCTL_ET_MASK               0x00000030
64 /* Value for ET field */
65 #define UDC_EPCTL_ET_CONTROL            0
66 #define UDC_EPCTL_ET_ISO                1
67 #define UDC_EPCTL_ET_BULK               2
68 #define UDC_EPCTL_ET_INTERRUPT          3
69
70 /* Endpoint status register */
71 /* Bit position */
72 #define UDC_EPSTS_XFERDONE              (1 << 27)
73 #define UDC_EPSTS_RSS                   (1 << 26)
74 #define UDC_EPSTS_RCS                   (1 << 25)
75 #define UDC_EPSTS_TXEMPTY               (1 << 24)
76 #define UDC_EPSTS_TDC                   (1 << 10)
77 #define UDC_EPSTS_HE                    (1 << 9)
78 #define UDC_EPSTS_MRXFIFO_EMP           (1 << 8)
79 #define UDC_EPSTS_BNA                   (1 << 7)
80 #define UDC_EPSTS_IN                    (1 << 6)
81 #define UDC_EPSTS_OUT_SHIFT             4
82 /* Mask patern */
83 #define UDC_EPSTS_OUT_MASK              0x00000030
84 #define UDC_EPSTS_ALL_CLR_MASK          0x1F0006F0
85 /* Value for OUT field */
86 #define UDC_EPSTS_OUT_SETUP             2
87 #define UDC_EPSTS_OUT_DATA              1
88
89 /* Device configuration register */
90 /* Bit position */
91 #define UDC_DEVCFG_CSR_PRG              (1 << 17)
92 #define UDC_DEVCFG_SP                   (1 << 3)
93 /* SPD Valee */
94 #define UDC_DEVCFG_SPD_HS               0x0
95 #define UDC_DEVCFG_SPD_FS               0x1
96 #define UDC_DEVCFG_SPD_LS               0x2
97
98 /* Device control register */
99 /* Bit position */
100 #define UDC_DEVCTL_THLEN_SHIFT          24
101 #define UDC_DEVCTL_BRLEN_SHIFT          16
102 #define UDC_DEVCTL_CSR_DONE             (1 << 13)
103 #define UDC_DEVCTL_SD                   (1 << 10)
104 #define UDC_DEVCTL_MODE                 (1 << 9)
105 #define UDC_DEVCTL_BREN                 (1 << 8)
106 #define UDC_DEVCTL_THE                  (1 << 7)
107 #define UDC_DEVCTL_DU                   (1 << 4)
108 #define UDC_DEVCTL_TDE                  (1 << 3)
109 #define UDC_DEVCTL_RDE                  (1 << 2)
110 #define UDC_DEVCTL_RES                  (1 << 0)
111
112 /* Device status register */
113 /* Bit position */
114 #define UDC_DEVSTS_TS_SHIFT             18
115 #define UDC_DEVSTS_ENUM_SPEED_SHIFT     13
116 #define UDC_DEVSTS_ALT_SHIFT            8
117 #define UDC_DEVSTS_INTF_SHIFT           4
118 #define UDC_DEVSTS_CFG_SHIFT            0
119 /* Mask patern */
120 #define UDC_DEVSTS_TS_MASK              0xfffc0000
121 #define UDC_DEVSTS_ENUM_SPEED_MASK      0x00006000
122 #define UDC_DEVSTS_ALT_MASK             0x00000f00
123 #define UDC_DEVSTS_INTF_MASK            0x000000f0
124 #define UDC_DEVSTS_CFG_MASK             0x0000000f
125 /* value for maximum speed for SPEED field */
126 #define UDC_DEVSTS_ENUM_SPEED_FULL      1
127 #define UDC_DEVSTS_ENUM_SPEED_HIGH      0
128 #define UDC_DEVSTS_ENUM_SPEED_LOW       2
129 #define UDC_DEVSTS_ENUM_SPEED_FULLX     3
130
131 /* Device irq register */
132 /* Bit position */
133 #define UDC_DEVINT_RWKP                 (1 << 7)
134 #define UDC_DEVINT_ENUM                 (1 << 6)
135 #define UDC_DEVINT_SOF                  (1 << 5)
136 #define UDC_DEVINT_US                   (1 << 4)
137 #define UDC_DEVINT_UR                   (1 << 3)
138 #define UDC_DEVINT_ES                   (1 << 2)
139 #define UDC_DEVINT_SI                   (1 << 1)
140 #define UDC_DEVINT_SC                   (1 << 0)
141 /* Mask patern */
142 #define UDC_DEVINT_MSK                  0x7f
143
144 /* Endpoint irq register */
145 /* Bit position */
146 #define UDC_EPINT_IN_SHIFT              0
147 #define UDC_EPINT_OUT_SHIFT             16
148 #define UDC_EPINT_IN_EP0                (1 << 0)
149 #define UDC_EPINT_OUT_EP0               (1 << 16)
150 /* Mask patern */
151 #define UDC_EPINT_MSK_DISABLE_ALL       0xffffffff
152
153 /* UDC_CSR_BUSY Status register */
154 /* Bit position */
155 #define UDC_CSR_BUSY                    (1 << 0)
156
157 /* SOFT RESET register */
158 /* Bit position */
159 #define UDC_PSRST                       (1 << 1)
160 #define UDC_SRST                        (1 << 0)
161
162 /* USB_DEVICE endpoint register */
163 /* Bit position */
164 #define UDC_CSR_NE_NUM_SHIFT            0
165 #define UDC_CSR_NE_DIR_SHIFT            4
166 #define UDC_CSR_NE_TYPE_SHIFT           5
167 #define UDC_CSR_NE_CFG_SHIFT            7
168 #define UDC_CSR_NE_INTF_SHIFT           11
169 #define UDC_CSR_NE_ALT_SHIFT            15
170 #define UDC_CSR_NE_MAX_PKT_SHIFT        19
171 /* Mask patern */
172 #define UDC_CSR_NE_NUM_MASK             0x0000000f
173 #define UDC_CSR_NE_DIR_MASK             0x00000010
174 #define UDC_CSR_NE_TYPE_MASK            0x00000060
175 #define UDC_CSR_NE_CFG_MASK             0x00000780
176 #define UDC_CSR_NE_INTF_MASK            0x00007800
177 #define UDC_CSR_NE_ALT_MASK             0x00078000
178 #define UDC_CSR_NE_MAX_PKT_MASK         0x3ff80000
179
180 #define PCH_UDC_CSR(ep) (UDC_CSR_ADDR + ep*4)
181 #define PCH_UDC_EPINT(in, num)\
182                 (1 << (num + (in ? UDC_EPINT_IN_SHIFT : UDC_EPINT_OUT_SHIFT)))
183
184 /* Index of endpoint */
185 #define UDC_EP0IN_IDX           0
186 #define UDC_EP0OUT_IDX          1
187 #define UDC_EPIN_IDX(ep)        (ep * 2)
188 #define UDC_EPOUT_IDX(ep)       (ep * 2 + 1)
189 #define PCH_UDC_EP0             0
190 #define PCH_UDC_EP1             1
191 #define PCH_UDC_EP2             2
192 #define PCH_UDC_EP3             3
193
194 /* Number of endpoint */
195 #define PCH_UDC_EP_NUM          32      /* Total number of EPs (16 IN,16 OUT) */
196 #define PCH_UDC_USED_EP_NUM     4       /* EP number of EP's really used */
197 /* Length Value */
198 #define PCH_UDC_BRLEN           0x0F    /* Burst length */
199 #define PCH_UDC_THLEN           0x1F    /* Threshold length */
200 /* Value of EP Buffer Size */
201 #define UDC_EP0IN_BUFF_SIZE     16
202 #define UDC_EPIN_BUFF_SIZE      256
203 #define UDC_EP0OUT_BUFF_SIZE    16
204 #define UDC_EPOUT_BUFF_SIZE     256
205 /* Value of EP maximum packet size */
206 #define UDC_EP0IN_MAX_PKT_SIZE  64
207 #define UDC_EP0OUT_MAX_PKT_SIZE 64
208 #define UDC_BULK_MAX_PKT_SIZE   512
209
210 /* DMA */
211 #define DMA_DIR_RX              1       /* DMA for data receive */
212 #define DMA_DIR_TX              2       /* DMA for data transmit */
213 #define DMA_ADDR_INVALID        (~(dma_addr_t)0)
214 #define UDC_DMA_MAXPACKET       65536   /* maximum packet size for DMA */
215
216 /**
217  * struct pch_udc_data_dma_desc - Structure to hold DMA descriptor information
218  *                                for data
219  * @status:             Status quadlet
220  * @reserved:           Reserved
221  * @dataptr:            Buffer descriptor
222  * @next:               Next descriptor
223  */
224 struct pch_udc_data_dma_desc {
225         u32 status;
226         u32 reserved;
227         u32 dataptr;
228         u32 next;
229 };
230
231 /**
232  * struct pch_udc_stp_dma_desc - Structure to hold DMA descriptor information
233  *                               for control data
234  * @status:     Status
235  * @reserved:   Reserved
236  * @data12:     First setup word
237  * @data34:     Second setup word
238  */
239 struct pch_udc_stp_dma_desc {
240         u32 status;
241         u32 reserved;
242         struct usb_ctrlrequest request;
243 } __attribute((packed));
244
245 /* DMA status definitions */
246 /* Buffer status */
247 #define PCH_UDC_BUFF_STS        0xC0000000
248 #define PCH_UDC_BS_HST_RDY      0x00000000
249 #define PCH_UDC_BS_DMA_BSY      0x40000000
250 #define PCH_UDC_BS_DMA_DONE     0x80000000
251 #define PCH_UDC_BS_HST_BSY      0xC0000000
252 /*  Rx/Tx Status */
253 #define PCH_UDC_RXTX_STS        0x30000000
254 #define PCH_UDC_RTS_SUCC        0x00000000
255 #define PCH_UDC_RTS_DESERR      0x10000000
256 #define PCH_UDC_RTS_BUFERR      0x30000000
257 /* Last Descriptor Indication */
258 #define PCH_UDC_DMA_LAST        0x08000000
259 /* Number of Rx/Tx Bytes Mask */
260 #define PCH_UDC_RXTX_BYTES      0x0000ffff
261
262 /**
263  * struct pch_udc_cfg_data - Structure to hold current configuration
264  *                           and interface information
265  * @cur_cfg:    current configuration in use
266  * @cur_intf:   current interface in use
267  * @cur_alt:    current alt interface in use
268  */
269 struct pch_udc_cfg_data {
270         u16 cur_cfg;
271         u16 cur_intf;
272         u16 cur_alt;
273 };
274
275 /**
276  * struct pch_udc_ep - Structure holding a PCH USB device Endpoint information
277  * @ep:                 embedded ep request
278  * @td_stp_phys:        for setup request
279  * @td_data_phys:       for data request
280  * @td_stp:             for setup request
281  * @td_data:            for data request
282  * @dev:                reference to device struct
283  * @offset_addr:        offset address of ep register
284  * @desc:               for this ep
285  * @queue:              queue for requests
286  * @num:                endpoint number
287  * @in:                 endpoint is IN
288  * @halted:             endpoint halted?
289  * @epsts:              Endpoint status
290  */
291 struct pch_udc_ep {
292         struct usb_ep                   ep;
293         dma_addr_t                      td_stp_phys;
294         dma_addr_t                      td_data_phys;
295         struct pch_udc_stp_dma_desc     *td_stp;
296         struct pch_udc_data_dma_desc    *td_data;
297         struct pch_udc_dev              *dev;
298         unsigned long                   offset_addr;
299         const struct usb_endpoint_descriptor    *desc;
300         struct list_head                queue;
301         unsigned                        num:5,
302                                         in:1,
303                                         halted:1;
304         unsigned long                   epsts;
305 };
306
307 /**
308  * struct pch_udc_dev - Structure holding complete information
309  *                      of the PCH USB device
310  * @gadget:             gadget driver data
311  * @driver:             reference to gadget driver bound
312  * @pdev:               reference to the PCI device
313  * @ep:                 array of endpoints
314  * @lock:               protects all state
315  * @active:             enabled the PCI device
316  * @stall:              stall requested
317  * @prot_stall:         protcol stall requested
318  * @irq_registered:     irq registered with system
319  * @mem_region:         device memory mapped
320  * @registered:         driver regsitered with system
321  * @suspended:          driver in suspended state
322  * @connected:          gadget driver associated
323  * @set_cfg_not_acked:  pending acknowledgement 4 setup
324  * @waiting_zlp_ack:    pending acknowledgement 4 ZLP
325  * @data_requests:      DMA pool for data requests
326  * @stp_requests:       DMA pool for setup requests
327  * @dma_addr:           DMA pool for received
328  * @ep0out_buf:         Buffer for DMA
329  * @setup_data:         Received setup data
330  * @phys_addr:          of device memory
331  * @base_addr:          for mapped device memory
332  * @irq:                IRQ line for the device
333  * @cfg_data:           current cfg, intf, and alt in use
334  */
335 struct pch_udc_dev {
336         struct usb_gadget               gadget;
337         struct usb_gadget_driver        *driver;
338         struct pci_dev                  *pdev;
339         struct pch_udc_ep               ep[PCH_UDC_EP_NUM];
340         spinlock_t                      lock; /* protects all state */
341         unsigned        active:1,
342                         stall:1,
343                         prot_stall:1,
344                         irq_registered:1,
345                         mem_region:1,
346                         registered:1,
347                         suspended:1,
348                         connected:1,
349                         set_cfg_not_acked:1,
350                         waiting_zlp_ack:1;
351         struct pci_pool         *data_requests;
352         struct pci_pool         *stp_requests;
353         dma_addr_t                      dma_addr;
354         void                            *ep0out_buf;
355         struct usb_ctrlrequest          setup_data;
356         unsigned long                   phys_addr;
357         void __iomem                    *base_addr;
358         unsigned                        irq;
359         struct pch_udc_cfg_data cfg_data;
360 };
361
362 #define PCH_UDC_PCI_BAR                 1
363 #define PCI_DEVICE_ID_INTEL_EG20T_UDC   0x8808
364 #define PCI_VENDOR_ID_ROHM              0x10DB
365 #define PCI_DEVICE_ID_ML7213_IOH_UDC    0x801D
366
367 static const char       ep0_string[] = "ep0in";
368 static DEFINE_SPINLOCK(udc_stall_spinlock);     /* stall spin lock */
369 struct pch_udc_dev *pch_udc;            /* pointer to device object */
370 static int speed_fs;
371 module_param_named(speed_fs, speed_fs, bool, S_IRUGO);
372 MODULE_PARM_DESC(speed_fs, "true for Full speed operation");
373
374 /**
375  * struct pch_udc_request - Structure holding a PCH USB device request packet
376  * @req:                embedded ep request
377  * @td_data_phys:       phys. address
378  * @td_data:            first dma desc. of chain
379  * @td_data_last:       last dma desc. of chain
380  * @queue:              associated queue
381  * @dma_going:          DMA in progress for request
382  * @dma_mapped:         DMA memory mapped for request
383  * @dma_done:           DMA completed for request
384  * @chain_len:          chain length
385  * @buf:                Buffer memory for align adjustment
386  * @dma:                DMA memory for align adjustment
387  */
388 struct pch_udc_request {
389         struct usb_request              req;
390         dma_addr_t                      td_data_phys;
391         struct pch_udc_data_dma_desc    *td_data;
392         struct pch_udc_data_dma_desc    *td_data_last;
393         struct list_head                queue;
394         unsigned                        dma_going:1,
395                                         dma_mapped:1,
396                                         dma_done:1;
397         unsigned                        chain_len;
398         void                            *buf;
399         dma_addr_t                      dma;
400 };
401
402 static inline u32 pch_udc_readl(struct pch_udc_dev *dev, unsigned long reg)
403 {
404         return ioread32(dev->base_addr + reg);
405 }
406
407 static inline void pch_udc_writel(struct pch_udc_dev *dev,
408                                     unsigned long val, unsigned long reg)
409 {
410         iowrite32(val, dev->base_addr + reg);
411 }
412
413 static inline void pch_udc_bit_set(struct pch_udc_dev *dev,
414                                      unsigned long reg,
415                                      unsigned long bitmask)
416 {
417         pch_udc_writel(dev, pch_udc_readl(dev, reg) | bitmask, reg);
418 }
419
420 static inline void pch_udc_bit_clr(struct pch_udc_dev *dev,
421                                      unsigned long reg,
422                                      unsigned long bitmask)
423 {
424         pch_udc_writel(dev, pch_udc_readl(dev, reg) & ~(bitmask), reg);
425 }
426
427 static inline u32 pch_udc_ep_readl(struct pch_udc_ep *ep, unsigned long reg)
428 {
429         return ioread32(ep->dev->base_addr + ep->offset_addr + reg);
430 }
431
432 static inline void pch_udc_ep_writel(struct pch_udc_ep *ep,
433                                     unsigned long val, unsigned long reg)
434 {
435         iowrite32(val, ep->dev->base_addr + ep->offset_addr + reg);
436 }
437
438 static inline void pch_udc_ep_bit_set(struct pch_udc_ep *ep,
439                                      unsigned long reg,
440                                      unsigned long bitmask)
441 {
442         pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) | bitmask, reg);
443 }
444
445 static inline void pch_udc_ep_bit_clr(struct pch_udc_ep *ep,
446                                      unsigned long reg,
447                                      unsigned long bitmask)
448 {
449         pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) & ~(bitmask), reg);
450 }
451
452 /**
453  * pch_udc_csr_busy() - Wait till idle.
454  * @dev:        Reference to pch_udc_dev structure
455  */
456 static void pch_udc_csr_busy(struct pch_udc_dev *dev)
457 {
458         unsigned int count = 200;
459
460         /* Wait till idle */
461         while ((pch_udc_readl(dev, UDC_CSR_BUSY_ADDR) & UDC_CSR_BUSY)
462                 && --count)
463                 cpu_relax();
464         if (!count)
465                 dev_err(&dev->pdev->dev, "%s: wait error\n", __func__);
466 }
467
468 /**
469  * pch_udc_write_csr() - Write the command and status registers.
470  * @dev:        Reference to pch_udc_dev structure
471  * @val:        value to be written to CSR register
472  * @addr:       address of CSR register
473  */
474 static void pch_udc_write_csr(struct pch_udc_dev *dev, unsigned long val,
475                                unsigned int ep)
476 {
477         unsigned long reg = PCH_UDC_CSR(ep);
478
479         pch_udc_csr_busy(dev);          /* Wait till idle */
480         pch_udc_writel(dev, val, reg);
481         pch_udc_csr_busy(dev);          /* Wait till idle */
482 }
483
484 /**
485  * pch_udc_read_csr() - Read the command and status registers.
486  * @dev:        Reference to pch_udc_dev structure
487  * @addr:       address of CSR register
488  *
489  * Return codes:        content of CSR register
490  */
491 static u32 pch_udc_read_csr(struct pch_udc_dev *dev, unsigned int ep)
492 {
493         unsigned long reg = PCH_UDC_CSR(ep);
494
495         pch_udc_csr_busy(dev);          /* Wait till idle */
496         pch_udc_readl(dev, reg);        /* Dummy read */
497         pch_udc_csr_busy(dev);          /* Wait till idle */
498         return pch_udc_readl(dev, reg);
499 }
500
501 /**
502  * pch_udc_rmt_wakeup() - Initiate for remote wakeup
503  * @dev:        Reference to pch_udc_dev structure
504  */
505 static inline void pch_udc_rmt_wakeup(struct pch_udc_dev *dev)
506 {
507         pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
508         mdelay(1);
509         pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
510 }
511
512 /**
513  * pch_udc_get_frame() - Get the current frame from device status register
514  * @dev:        Reference to pch_udc_dev structure
515  * Retern       current frame
516  */
517 static inline int pch_udc_get_frame(struct pch_udc_dev *dev)
518 {
519         u32 frame = pch_udc_readl(dev, UDC_DEVSTS_ADDR);
520         return (frame & UDC_DEVSTS_TS_MASK) >> UDC_DEVSTS_TS_SHIFT;
521 }
522
523 /**
524  * pch_udc_clear_selfpowered() - Clear the self power control
525  * @dev:        Reference to pch_udc_regs structure
526  */
527 static inline void pch_udc_clear_selfpowered(struct pch_udc_dev *dev)
528 {
529         pch_udc_bit_clr(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
530 }
531
532 /**
533  * pch_udc_set_selfpowered() - Set the self power control
534  * @dev:        Reference to pch_udc_regs structure
535  */
536 static inline void pch_udc_set_selfpowered(struct pch_udc_dev *dev)
537 {
538         pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
539 }
540
541 /**
542  * pch_udc_set_disconnect() - Set the disconnect status.
543  * @dev:        Reference to pch_udc_regs structure
544  */
545 static inline void pch_udc_set_disconnect(struct pch_udc_dev *dev)
546 {
547         pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
548 }
549
550 /**
551  * pch_udc_clear_disconnect() - Clear the disconnect status.
552  * @dev:        Reference to pch_udc_regs structure
553  */
554 static void pch_udc_clear_disconnect(struct pch_udc_dev *dev)
555 {
556         /* Clear the disconnect */
557         pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
558         pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
559         mdelay(1);
560         /* Resume USB signalling */
561         pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
562 }
563
564 /**
565  * pch_udc_vbus_session() - set or clearr the disconnect status.
566  * @dev:        Reference to pch_udc_regs structure
567  * @is_active:  Parameter specifying the action
568  *                0:   indicating VBUS power is ending
569  *                !0:  indicating VBUS power is starting
570  */
571 static inline void pch_udc_vbus_session(struct pch_udc_dev *dev,
572                                           int is_active)
573 {
574         if (is_active)
575                 pch_udc_clear_disconnect(dev);
576         else
577                 pch_udc_set_disconnect(dev);
578 }
579
580 /**
581  * pch_udc_ep_set_stall() - Set the stall of endpoint
582  * @ep:         Reference to structure of type pch_udc_ep_regs
583  */
584 static void pch_udc_ep_set_stall(struct pch_udc_ep *ep)
585 {
586         if (ep->in) {
587                 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
588                 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
589         } else {
590                 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
591         }
592 }
593
594 /**
595  * pch_udc_ep_clear_stall() - Clear the stall of endpoint
596  * @ep:         Reference to structure of type pch_udc_ep_regs
597  */
598 static inline void pch_udc_ep_clear_stall(struct pch_udc_ep *ep)
599 {
600         /* Clear the stall */
601         pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
602         /* Clear NAK by writing CNAK */
603         pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
604 }
605
606 /**
607  * pch_udc_ep_set_trfr_type() - Set the transfer type of endpoint
608  * @ep:         Reference to structure of type pch_udc_ep_regs
609  * @type:       Type of endpoint
610  */
611 static inline void pch_udc_ep_set_trfr_type(struct pch_udc_ep *ep,
612                                         u8 type)
613 {
614         pch_udc_ep_writel(ep, ((type << UDC_EPCTL_ET_SHIFT) &
615                                 UDC_EPCTL_ET_MASK), UDC_EPCTL_ADDR);
616 }
617
618 /**
619  * pch_udc_ep_set_bufsz() - Set the maximum packet size for the endpoint
620  * @ep:         Reference to structure of type pch_udc_ep_regs
621  * @buf_size:   The buffer word size
622  */
623 static void pch_udc_ep_set_bufsz(struct pch_udc_ep *ep,
624                                                  u32 buf_size, u32 ep_in)
625 {
626         u32 data;
627         if (ep_in) {
628                 data = pch_udc_ep_readl(ep, UDC_BUFIN_FRAMENUM_ADDR);
629                 data = (data & 0xffff0000) | (buf_size & 0xffff);
630                 pch_udc_ep_writel(ep, data, UDC_BUFIN_FRAMENUM_ADDR);
631         } else {
632                 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
633                 data = (buf_size << 16) | (data & 0xffff);
634                 pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
635         }
636 }
637
638 /**
639  * pch_udc_ep_set_maxpkt() - Set the Max packet size for the endpoint
640  * @ep:         Reference to structure of type pch_udc_ep_regs
641  * @pkt_size:   The packet byte size
642  */
643 static void pch_udc_ep_set_maxpkt(struct pch_udc_ep *ep, u32 pkt_size)
644 {
645         u32 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
646         data = (data & 0xffff0000) | (pkt_size & 0xffff);
647         pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
648 }
649
650 /**
651  * pch_udc_ep_set_subptr() - Set the Setup buffer pointer for the endpoint
652  * @ep:         Reference to structure of type pch_udc_ep_regs
653  * @addr:       Address of the register
654  */
655 static inline void pch_udc_ep_set_subptr(struct pch_udc_ep *ep, u32 addr)
656 {
657         pch_udc_ep_writel(ep, addr, UDC_SUBPTR_ADDR);
658 }
659
660 /**
661  * pch_udc_ep_set_ddptr() - Set the Data descriptor pointer for the endpoint
662  * @ep:         Reference to structure of type pch_udc_ep_regs
663  * @addr:       Address of the register
664  */
665 static inline void pch_udc_ep_set_ddptr(struct pch_udc_ep *ep, u32 addr)
666 {
667         pch_udc_ep_writel(ep, addr, UDC_DESPTR_ADDR);
668 }
669
670 /**
671  * pch_udc_ep_set_pd() - Set the poll demand bit for the endpoint
672  * @ep:         Reference to structure of type pch_udc_ep_regs
673  */
674 static inline void pch_udc_ep_set_pd(struct pch_udc_ep *ep)
675 {
676         pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_P);
677 }
678
679 /**
680  * pch_udc_ep_set_rrdy() - Set the receive ready bit for the endpoint
681  * @ep:         Reference to structure of type pch_udc_ep_regs
682  */
683 static inline void pch_udc_ep_set_rrdy(struct pch_udc_ep *ep)
684 {
685         pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
686 }
687
688 /**
689  * pch_udc_ep_clear_rrdy() - Clear the receive ready bit for the endpoint
690  * @ep:         Reference to structure of type pch_udc_ep_regs
691  */
692 static inline void pch_udc_ep_clear_rrdy(struct pch_udc_ep *ep)
693 {
694         pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
695 }
696
697 /**
698  * pch_udc_set_dma() - Set the 'TDE' or RDE bit of device control
699  *                      register depending on the direction specified
700  * @dev:        Reference to structure of type pch_udc_regs
701  * @dir:        whether Tx or Rx
702  *                DMA_DIR_RX: Receive
703  *                DMA_DIR_TX: Transmit
704  */
705 static inline void pch_udc_set_dma(struct pch_udc_dev *dev, int dir)
706 {
707         if (dir == DMA_DIR_RX)
708                 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
709         else if (dir == DMA_DIR_TX)
710                 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
711 }
712
713 /**
714  * pch_udc_clear_dma() - Clear the 'TDE' or RDE bit of device control
715  *                               register depending on the direction specified
716  * @dev:        Reference to structure of type pch_udc_regs
717  * @dir:        Whether Tx or Rx
718  *                DMA_DIR_RX: Receive
719  *                DMA_DIR_TX: Transmit
720  */
721 static inline void pch_udc_clear_dma(struct pch_udc_dev *dev, int dir)
722 {
723         if (dir == DMA_DIR_RX)
724                 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
725         else if (dir == DMA_DIR_TX)
726                 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
727 }
728
729 /**
730  * pch_udc_set_csr_done() - Set the device control register
731  *                              CSR done field (bit 13)
732  * @dev:        reference to structure of type pch_udc_regs
733  */
734 static inline void pch_udc_set_csr_done(struct pch_udc_dev *dev)
735 {
736         pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_CSR_DONE);
737 }
738
739 /**
740  * pch_udc_disable_interrupts() - Disables the specified interrupts
741  * @dev:        Reference to structure of type pch_udc_regs
742  * @mask:       Mask to disable interrupts
743  */
744 static inline void pch_udc_disable_interrupts(struct pch_udc_dev *dev,
745                                             u32 mask)
746 {
747         pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, mask);
748 }
749
750 /**
751  * pch_udc_enable_interrupts() - Enable the specified interrupts
752  * @dev:        Reference to structure of type pch_udc_regs
753  * @mask:       Mask to enable interrupts
754  */
755 static inline void pch_udc_enable_interrupts(struct pch_udc_dev *dev,
756                                            u32 mask)
757 {
758         pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, mask);
759 }
760
761 /**
762  * pch_udc_disable_ep_interrupts() - Disable endpoint interrupts
763  * @dev:        Reference to structure of type pch_udc_regs
764  * @mask:       Mask to disable interrupts
765  */
766 static inline void pch_udc_disable_ep_interrupts(struct pch_udc_dev *dev,
767                                                 u32 mask)
768 {
769         pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, mask);
770 }
771
772 /**
773  * pch_udc_enable_ep_interrupts() - Enable endpoint interrupts
774  * @dev:        Reference to structure of type pch_udc_regs
775  * @mask:       Mask to enable interrupts
776  */
777 static inline void pch_udc_enable_ep_interrupts(struct pch_udc_dev *dev,
778                                               u32 mask)
779 {
780         pch_udc_bit_clr(dev, UDC_EPIRQMSK_ADDR, mask);
781 }
782
783 /**
784  * pch_udc_read_device_interrupts() - Read the device interrupts
785  * @dev:        Reference to structure of type pch_udc_regs
786  * Retern       The device interrupts
787  */
788 static inline u32 pch_udc_read_device_interrupts(struct pch_udc_dev *dev)
789 {
790         return pch_udc_readl(dev, UDC_DEVIRQSTS_ADDR);
791 }
792
793 /**
794  * pch_udc_write_device_interrupts() - Write device interrupts
795  * @dev:        Reference to structure of type pch_udc_regs
796  * @val:        The value to be written to interrupt register
797  */
798 static inline void pch_udc_write_device_interrupts(struct pch_udc_dev *dev,
799                                                      u32 val)
800 {
801         pch_udc_writel(dev, val, UDC_DEVIRQSTS_ADDR);
802 }
803
804 /**
805  * pch_udc_read_ep_interrupts() - Read the endpoint interrupts
806  * @dev:        Reference to structure of type pch_udc_regs
807  * Retern       The endpoint interrupt
808  */
809 static inline u32 pch_udc_read_ep_interrupts(struct pch_udc_dev *dev)
810 {
811         return pch_udc_readl(dev, UDC_EPIRQSTS_ADDR);
812 }
813
814 /**
815  * pch_udc_write_ep_interrupts() - Clear endpoint interupts
816  * @dev:        Reference to structure of type pch_udc_regs
817  * @val:        The value to be written to interrupt register
818  */
819 static inline void pch_udc_write_ep_interrupts(struct pch_udc_dev *dev,
820                                              u32 val)
821 {
822         pch_udc_writel(dev, val, UDC_EPIRQSTS_ADDR);
823 }
824
825 /**
826  * pch_udc_read_device_status() - Read the device status
827  * @dev:        Reference to structure of type pch_udc_regs
828  * Retern       The device status
829  */
830 static inline u32 pch_udc_read_device_status(struct pch_udc_dev *dev)
831 {
832         return pch_udc_readl(dev, UDC_DEVSTS_ADDR);
833 }
834
835 /**
836  * pch_udc_read_ep_control() - Read the endpoint control
837  * @ep:         Reference to structure of type pch_udc_ep_regs
838  * Retern       The endpoint control register value
839  */
840 static inline u32 pch_udc_read_ep_control(struct pch_udc_ep *ep)
841 {
842         return pch_udc_ep_readl(ep, UDC_EPCTL_ADDR);
843 }
844
845 /**
846  * pch_udc_clear_ep_control() - Clear the endpoint control register
847  * @ep:         Reference to structure of type pch_udc_ep_regs
848  * Retern       The endpoint control register value
849  */
850 static inline void pch_udc_clear_ep_control(struct pch_udc_ep *ep)
851 {
852         return pch_udc_ep_writel(ep, 0, UDC_EPCTL_ADDR);
853 }
854
855 /**
856  * pch_udc_read_ep_status() - Read the endpoint status
857  * @ep:         Reference to structure of type pch_udc_ep_regs
858  * Retern       The endpoint status
859  */
860 static inline u32 pch_udc_read_ep_status(struct pch_udc_ep *ep)
861 {
862         return pch_udc_ep_readl(ep, UDC_EPSTS_ADDR);
863 }
864
865 /**
866  * pch_udc_clear_ep_status() - Clear the endpoint status
867  * @ep:         Reference to structure of type pch_udc_ep_regs
868  * @stat:       Endpoint status
869  */
870 static inline void pch_udc_clear_ep_status(struct pch_udc_ep *ep,
871                                          u32 stat)
872 {
873         return pch_udc_ep_writel(ep, stat, UDC_EPSTS_ADDR);
874 }
875
876 /**
877  * pch_udc_ep_set_nak() - Set the bit 7 (SNAK field)
878  *                              of the endpoint control register
879  * @ep:         Reference to structure of type pch_udc_ep_regs
880  */
881 static inline void pch_udc_ep_set_nak(struct pch_udc_ep *ep)
882 {
883         pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_SNAK);
884 }
885
886 /**
887  * pch_udc_ep_clear_nak() - Set the bit 8 (CNAK field)
888  *                              of the endpoint control register
889  * @ep:         reference to structure of type pch_udc_ep_regs
890  */
891 static void pch_udc_ep_clear_nak(struct pch_udc_ep *ep)
892 {
893         unsigned int loopcnt = 0;
894         struct pch_udc_dev *dev = ep->dev;
895
896         if (!(pch_udc_ep_readl(ep, UDC_EPCTL_ADDR) & UDC_EPCTL_NAK))
897                 return;
898         if (!ep->in) {
899                 loopcnt = 10000;
900                 while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) &&
901                         --loopcnt)
902                         udelay(5);
903                 if (!loopcnt)
904                         dev_err(&dev->pdev->dev, "%s: RxFIFO not Empty\n",
905                                 __func__);
906         }
907         loopcnt = 10000;
908         while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_NAK) && --loopcnt) {
909                 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
910                 udelay(5);
911         }
912         if (!loopcnt)
913                 dev_err(&dev->pdev->dev, "%s: Clear NAK not set for ep%d%s\n",
914                         __func__, ep->num, (ep->in ? "in" : "out"));
915 }
916
917 /**
918  * pch_udc_ep_fifo_flush() - Flush the endpoint fifo
919  * @ep: reference to structure of type pch_udc_ep_regs
920  * @dir:        direction of endpoint
921  *                0:  endpoint is OUT
922  *                !0: endpoint is IN
923  */
924 static void pch_udc_ep_fifo_flush(struct pch_udc_ep *ep, int dir)
925 {
926         if (dir) {      /* IN ep */
927                 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
928                 return;
929         }
930 }
931
932 /**
933  * pch_udc_ep_enable() - This api enables endpoint
934  * @regs:       Reference to structure pch_udc_ep_regs
935  * @desc:       endpoint descriptor
936  */
937 static void pch_udc_ep_enable(struct pch_udc_ep *ep,
938                                struct pch_udc_cfg_data *cfg,
939                                const struct usb_endpoint_descriptor *desc)
940 {
941         u32 val = 0;
942         u32 buff_size = 0;
943
944         pch_udc_ep_set_trfr_type(ep, desc->bmAttributes);
945         if (ep->in)
946                 buff_size = UDC_EPIN_BUFF_SIZE;
947         else
948                 buff_size = UDC_EPOUT_BUFF_SIZE;
949         pch_udc_ep_set_bufsz(ep, buff_size, ep->in);
950         pch_udc_ep_set_maxpkt(ep, le16_to_cpu(desc->wMaxPacketSize));
951         pch_udc_ep_set_nak(ep);
952         pch_udc_ep_fifo_flush(ep, ep->in);
953         /* Configure the endpoint */
954         val = ep->num << UDC_CSR_NE_NUM_SHIFT | ep->in << UDC_CSR_NE_DIR_SHIFT |
955               ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) <<
956                 UDC_CSR_NE_TYPE_SHIFT) |
957               (cfg->cur_cfg << UDC_CSR_NE_CFG_SHIFT) |
958               (cfg->cur_intf << UDC_CSR_NE_INTF_SHIFT) |
959               (cfg->cur_alt << UDC_CSR_NE_ALT_SHIFT) |
960               le16_to_cpu(desc->wMaxPacketSize) << UDC_CSR_NE_MAX_PKT_SHIFT;
961
962         if (ep->in)
963                 pch_udc_write_csr(ep->dev, val, UDC_EPIN_IDX(ep->num));
964         else
965                 pch_udc_write_csr(ep->dev, val, UDC_EPOUT_IDX(ep->num));
966 }
967
968 /**
969  * pch_udc_ep_disable() - This api disables endpoint
970  * @regs:       Reference to structure pch_udc_ep_regs
971  */
972 static void pch_udc_ep_disable(struct pch_udc_ep *ep)
973 {
974         if (ep->in) {
975                 /* flush the fifo */
976                 pch_udc_ep_writel(ep, UDC_EPCTL_F, UDC_EPCTL_ADDR);
977                 /* set NAK */
978                 pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
979                 pch_udc_ep_bit_set(ep, UDC_EPSTS_ADDR, UDC_EPSTS_IN);
980         } else {
981                 /* set NAK */
982                 pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
983         }
984         /* reset desc pointer */
985         pch_udc_ep_writel(ep, 0, UDC_DESPTR_ADDR);
986 }
987
988 /**
989  * pch_udc_wait_ep_stall() - Wait EP stall.
990  * @dev:        Reference to pch_udc_dev structure
991  */
992 static void pch_udc_wait_ep_stall(struct pch_udc_ep *ep)
993 {
994         unsigned int count = 10000;
995
996         /* Wait till idle */
997         while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_S) && --count)
998                 udelay(5);
999         if (!count)
1000                 dev_err(&ep->dev->pdev->dev, "%s: wait error\n", __func__);
1001 }
1002
1003 /**
1004  * pch_udc_init() - This API initializes usb device controller
1005  * @dev:        Rreference to pch_udc_regs structure
1006  */
1007 static void pch_udc_init(struct pch_udc_dev *dev)
1008 {
1009         if (NULL == dev) {
1010                 pr_err("%s: Invalid address\n", __func__);
1011                 return;
1012         }
1013         /* Soft Reset and Reset PHY */
1014         pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
1015         pch_udc_writel(dev, UDC_SRST | UDC_PSRST, UDC_SRST_ADDR);
1016         mdelay(1);
1017         pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
1018         pch_udc_writel(dev, 0x00, UDC_SRST_ADDR);
1019         mdelay(1);
1020         /* mask and clear all device interrupts */
1021         pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
1022         pch_udc_bit_set(dev, UDC_DEVIRQSTS_ADDR, UDC_DEVINT_MSK);
1023
1024         /* mask and clear all ep interrupts */
1025         pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1026         pch_udc_bit_set(dev, UDC_EPIRQSTS_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1027
1028         /* enable dynamic CSR programmingi, self powered and device speed */
1029         if (speed_fs)
1030                 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
1031                                 UDC_DEVCFG_SP | UDC_DEVCFG_SPD_FS);
1032         else /* defaul high speed */
1033                 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
1034                                 UDC_DEVCFG_SP | UDC_DEVCFG_SPD_HS);
1035         pch_udc_bit_set(dev, UDC_DEVCTL_ADDR,
1036                         (PCH_UDC_THLEN << UDC_DEVCTL_THLEN_SHIFT) |
1037                         (PCH_UDC_BRLEN << UDC_DEVCTL_BRLEN_SHIFT) |
1038                         UDC_DEVCTL_MODE | UDC_DEVCTL_BREN |
1039                         UDC_DEVCTL_THE);
1040 }
1041
1042 /**
1043  * pch_udc_exit() - This API exit usb device controller
1044  * @dev:        Reference to pch_udc_regs structure
1045  */
1046 static void pch_udc_exit(struct pch_udc_dev *dev)
1047 {
1048         /* mask all device interrupts */
1049         pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
1050         /* mask all ep interrupts */
1051         pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1052         /* put device in disconnected state */
1053         pch_udc_set_disconnect(dev);
1054 }
1055
1056 /**
1057  * pch_udc_pcd_get_frame() - This API is invoked to get the current frame number
1058  * @gadget:     Reference to the gadget driver
1059  *
1060  * Return codes:
1061  *      0:              Success
1062  *      -EINVAL:        If the gadget passed is NULL
1063  */
1064 static int pch_udc_pcd_get_frame(struct usb_gadget *gadget)
1065 {
1066         struct pch_udc_dev      *dev;
1067
1068         if (!gadget)
1069                 return -EINVAL;
1070         dev = container_of(gadget, struct pch_udc_dev, gadget);
1071         return pch_udc_get_frame(dev);
1072 }
1073
1074 /**
1075  * pch_udc_pcd_wakeup() - This API is invoked to initiate a remote wakeup
1076  * @gadget:     Reference to the gadget driver
1077  *
1078  * Return codes:
1079  *      0:              Success
1080  *      -EINVAL:        If the gadget passed is NULL
1081  */
1082 static int pch_udc_pcd_wakeup(struct usb_gadget *gadget)
1083 {
1084         struct pch_udc_dev      *dev;
1085         unsigned long           flags;
1086
1087         if (!gadget)
1088                 return -EINVAL;
1089         dev = container_of(gadget, struct pch_udc_dev, gadget);
1090         spin_lock_irqsave(&dev->lock, flags);
1091         pch_udc_rmt_wakeup(dev);
1092         spin_unlock_irqrestore(&dev->lock, flags);
1093         return 0;
1094 }
1095
1096 /**
1097  * pch_udc_pcd_selfpowered() - This API is invoked to specify whether the device
1098  *                              is self powered or not
1099  * @gadget:     Reference to the gadget driver
1100  * @value:      Specifies self powered or not
1101  *
1102  * Return codes:
1103  *      0:              Success
1104  *      -EINVAL:        If the gadget passed is NULL
1105  */
1106 static int pch_udc_pcd_selfpowered(struct usb_gadget *gadget, int value)
1107 {
1108         struct pch_udc_dev      *dev;
1109
1110         if (!gadget)
1111                 return -EINVAL;
1112         dev = container_of(gadget, struct pch_udc_dev, gadget);
1113         if (value)
1114                 pch_udc_set_selfpowered(dev);
1115         else
1116                 pch_udc_clear_selfpowered(dev);
1117         return 0;
1118 }
1119
1120 /**
1121  * pch_udc_pcd_pullup() - This API is invoked to make the device
1122  *                              visible/invisible to the host
1123  * @gadget:     Reference to the gadget driver
1124  * @is_on:      Specifies whether the pull up is made active or inactive
1125  *
1126  * Return codes:
1127  *      0:              Success
1128  *      -EINVAL:        If the gadget passed is NULL
1129  */
1130 static int pch_udc_pcd_pullup(struct usb_gadget *gadget, int is_on)
1131 {
1132         struct pch_udc_dev      *dev;
1133
1134         if (!gadget)
1135                 return -EINVAL;
1136         dev = container_of(gadget, struct pch_udc_dev, gadget);
1137         pch_udc_vbus_session(dev, is_on);
1138         return 0;
1139 }
1140
1141 /**
1142  * pch_udc_pcd_vbus_session() - This API is used by a driver for an external
1143  *                              transceiver (or GPIO) that
1144  *                              detects a VBUS power session starting/ending
1145  * @gadget:     Reference to the gadget driver
1146  * @is_active:  specifies whether the session is starting or ending
1147  *
1148  * Return codes:
1149  *      0:              Success
1150  *      -EINVAL:        If the gadget passed is NULL
1151  */
1152 static int pch_udc_pcd_vbus_session(struct usb_gadget *gadget, int is_active)
1153 {
1154         struct pch_udc_dev      *dev;
1155
1156         if (!gadget)
1157                 return -EINVAL;
1158         dev = container_of(gadget, struct pch_udc_dev, gadget);
1159         pch_udc_vbus_session(dev, is_active);
1160         return 0;
1161 }
1162
1163 /**
1164  * pch_udc_pcd_vbus_draw() - This API is used by gadget drivers during
1165  *                              SET_CONFIGURATION calls to
1166  *                              specify how much power the device can consume
1167  * @gadget:     Reference to the gadget driver
1168  * @mA:         specifies the current limit in 2mA unit
1169  *
1170  * Return codes:
1171  *      -EINVAL:        If the gadget passed is NULL
1172  *      -EOPNOTSUPP:
1173  */
1174 static int pch_udc_pcd_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
1175 {
1176         return -EOPNOTSUPP;
1177 }
1178
1179 static const struct usb_gadget_ops pch_udc_ops = {
1180         .get_frame = pch_udc_pcd_get_frame,
1181         .wakeup = pch_udc_pcd_wakeup,
1182         .set_selfpowered = pch_udc_pcd_selfpowered,
1183         .pullup = pch_udc_pcd_pullup,
1184         .vbus_session = pch_udc_pcd_vbus_session,
1185         .vbus_draw = pch_udc_pcd_vbus_draw,
1186 };
1187
1188 /**
1189  * complete_req() - This API is invoked from the driver when processing
1190  *                      of a request is complete
1191  * @ep:         Reference to the endpoint structure
1192  * @req:        Reference to the request structure
1193  * @status:     Indicates the success/failure of completion
1194  */
1195 static void complete_req(struct pch_udc_ep *ep, struct pch_udc_request *req,
1196                                                                  int status)
1197 {
1198         struct pch_udc_dev      *dev;
1199         unsigned halted = ep->halted;
1200
1201         list_del_init(&req->queue);
1202
1203         /* set new status if pending */
1204         if (req->req.status == -EINPROGRESS)
1205                 req->req.status = status;
1206         else
1207                 status = req->req.status;
1208
1209         dev = ep->dev;
1210         if (req->dma_mapped) {
1211                 if (req->dma == DMA_ADDR_INVALID) {
1212                         if (ep->in)
1213                                 dma_unmap_single(&dev->pdev->dev, req->req.dma,
1214                                                  req->req.length,
1215                                                  DMA_TO_DEVICE);
1216                         else
1217                                 dma_unmap_single(&dev->pdev->dev, req->req.dma,
1218                                                  req->req.length,
1219                                                  DMA_FROM_DEVICE);
1220                         req->req.dma = DMA_ADDR_INVALID;
1221                 } else {
1222                         if (ep->in)
1223                                 dma_unmap_single(&dev->pdev->dev, req->dma,
1224                                                  req->req.length,
1225                                                  DMA_TO_DEVICE);
1226                         else {
1227                                 dma_unmap_single(&dev->pdev->dev, req->dma,
1228                                                  req->req.length,
1229                                                  DMA_FROM_DEVICE);
1230                                 memcpy(req->req.buf, req->buf, req->req.length);
1231                         }
1232                         kfree(req->buf);
1233                         req->dma = DMA_ADDR_INVALID;
1234                 }
1235                 req->dma_mapped = 0;
1236         }
1237         ep->halted = 1;
1238         spin_unlock(&dev->lock);
1239         if (!ep->in)
1240                 pch_udc_ep_clear_rrdy(ep);
1241         req->req.complete(&ep->ep, &req->req);
1242         spin_lock(&dev->lock);
1243         ep->halted = halted;
1244 }
1245
1246 /**
1247  * empty_req_queue() - This API empties the request queue of an endpoint
1248  * @ep:         Reference to the endpoint structure
1249  */
1250 static void empty_req_queue(struct pch_udc_ep *ep)
1251 {
1252         struct pch_udc_request  *req;
1253
1254         ep->halted = 1;
1255         while (!list_empty(&ep->queue)) {
1256                 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1257                 complete_req(ep, req, -ESHUTDOWN);      /* Remove from list */
1258         }
1259 }
1260
1261 /**
1262  * pch_udc_free_dma_chain() - This function frees the DMA chain created
1263  *                              for the request
1264  * @dev         Reference to the driver structure
1265  * @req         Reference to the request to be freed
1266  *
1267  * Return codes:
1268  *      0: Success
1269  */
1270 static void pch_udc_free_dma_chain(struct pch_udc_dev *dev,
1271                                    struct pch_udc_request *req)
1272 {
1273         struct pch_udc_data_dma_desc *td = req->td_data;
1274         unsigned i = req->chain_len;
1275
1276         dma_addr_t addr2;
1277         dma_addr_t addr = (dma_addr_t)td->next;
1278         td->next = 0x00;
1279         for (; i > 1; --i) {
1280                 /* do not free first desc., will be done by free for request */
1281                 td = phys_to_virt(addr);
1282                 addr2 = (dma_addr_t)td->next;
1283                 pci_pool_free(dev->data_requests, td, addr);
1284                 td->next = 0x00;
1285                 addr = addr2;
1286         }
1287         req->chain_len = 1;
1288 }
1289
1290 /**
1291  * pch_udc_create_dma_chain() - This function creates or reinitializes
1292  *                              a DMA chain
1293  * @ep:         Reference to the endpoint structure
1294  * @req:        Reference to the request
1295  * @buf_len:    The buffer length
1296  * @gfp_flags:  Flags to be used while mapping the data buffer
1297  *
1298  * Return codes:
1299  *      0:              success,
1300  *      -ENOMEM:        pci_pool_alloc invocation fails
1301  */
1302 static int pch_udc_create_dma_chain(struct pch_udc_ep *ep,
1303                                     struct pch_udc_request *req,
1304                                     unsigned long buf_len,
1305                                     gfp_t gfp_flags)
1306 {
1307         struct pch_udc_data_dma_desc *td = req->td_data, *last;
1308         unsigned long bytes = req->req.length, i = 0;
1309         dma_addr_t dma_addr;
1310         unsigned len = 1;
1311
1312         if (req->chain_len > 1)
1313                 pch_udc_free_dma_chain(ep->dev, req);
1314
1315         if (req->dma == DMA_ADDR_INVALID)
1316                 td->dataptr = req->req.dma;
1317         else
1318                 td->dataptr = req->dma;
1319
1320         td->status = PCH_UDC_BS_HST_BSY;
1321         for (; ; bytes -= buf_len, ++len) {
1322                 td->status = PCH_UDC_BS_HST_BSY | min(buf_len, bytes);
1323                 if (bytes <= buf_len)
1324                         break;
1325                 last = td;
1326                 td = pci_pool_alloc(ep->dev->data_requests, gfp_flags,
1327                                     &dma_addr);
1328                 if (!td)
1329                         goto nomem;
1330                 i += buf_len;
1331                 td->dataptr = req->td_data->dataptr + i;
1332                 last->next = dma_addr;
1333         }
1334
1335         req->td_data_last = td;
1336         td->status |= PCH_UDC_DMA_LAST;
1337         td->next = req->td_data_phys;
1338         req->chain_len = len;
1339         return 0;
1340
1341 nomem:
1342         if (len > 1) {
1343                 req->chain_len = len;
1344                 pch_udc_free_dma_chain(ep->dev, req);
1345         }
1346         req->chain_len = 1;
1347         return -ENOMEM;
1348 }
1349
1350 /**
1351  * prepare_dma() - This function creates and initializes the DMA chain
1352  *                      for the request
1353  * @ep:         Reference to the endpoint structure
1354  * @req:        Reference to the request
1355  * @gfp:        Flag to be used while mapping the data buffer
1356  *
1357  * Return codes:
1358  *      0:              Success
1359  *      Other 0:        linux error number on failure
1360  */
1361 static int prepare_dma(struct pch_udc_ep *ep, struct pch_udc_request *req,
1362                           gfp_t gfp)
1363 {
1364         int     retval;
1365
1366         /* Allocate and create a DMA chain */
1367         retval = pch_udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
1368         if (retval) {
1369                 pr_err("%s: could not create DMA chain:%d\n", __func__, retval);
1370                 return retval;
1371         }
1372         if (ep->in)
1373                 req->td_data->status = (req->td_data->status &
1374                                 ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_RDY;
1375         return 0;
1376 }
1377
1378 /**
1379  * process_zlp() - This function process zero length packets
1380  *                      from the gadget driver
1381  * @ep:         Reference to the endpoint structure
1382  * @req:        Reference to the request
1383  */
1384 static void process_zlp(struct pch_udc_ep *ep, struct pch_udc_request *req)
1385 {
1386         struct pch_udc_dev      *dev = ep->dev;
1387
1388         /* IN zlp's are handled by hardware */
1389         complete_req(ep, req, 0);
1390
1391         /* if set_config or set_intf is waiting for ack by zlp
1392          * then set CSR_DONE
1393          */
1394         if (dev->set_cfg_not_acked) {
1395                 pch_udc_set_csr_done(dev);
1396                 dev->set_cfg_not_acked = 0;
1397         }
1398         /* setup command is ACK'ed now by zlp */
1399         if (!dev->stall && dev->waiting_zlp_ack) {
1400                 pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
1401                 dev->waiting_zlp_ack = 0;
1402         }
1403 }
1404
1405 /**
1406  * pch_udc_start_rxrequest() - This function starts the receive requirement.
1407  * @ep:         Reference to the endpoint structure
1408  * @req:        Reference to the request structure
1409  */
1410 static void pch_udc_start_rxrequest(struct pch_udc_ep *ep,
1411                                          struct pch_udc_request *req)
1412 {
1413         struct pch_udc_data_dma_desc *td_data;
1414
1415         pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
1416         td_data = req->td_data;
1417         /* Set the status bits for all descriptors */
1418         while (1) {
1419                 td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
1420                                     PCH_UDC_BS_HST_RDY;
1421                 if ((td_data->status & PCH_UDC_DMA_LAST) ==  PCH_UDC_DMA_LAST)
1422                         break;
1423                 td_data = phys_to_virt(td_data->next);
1424         }
1425         /* Write the descriptor pointer */
1426         pch_udc_ep_set_ddptr(ep, req->td_data_phys);
1427         req->dma_going = 1;
1428         pch_udc_enable_ep_interrupts(ep->dev, UDC_EPINT_OUT_EP0 << ep->num);
1429         pch_udc_set_dma(ep->dev, DMA_DIR_RX);
1430         pch_udc_ep_clear_nak(ep);
1431         pch_udc_ep_set_rrdy(ep);
1432 }
1433
1434 /**
1435  * pch_udc_pcd_ep_enable() - This API enables the endpoint. It is called
1436  *                              from gadget driver
1437  * @usbep:      Reference to the USB endpoint structure
1438  * @desc:       Reference to the USB endpoint descriptor structure
1439  *
1440  * Return codes:
1441  *      0:              Success
1442  *      -EINVAL:
1443  *      -ESHUTDOWN:
1444  */
1445 static int pch_udc_pcd_ep_enable(struct usb_ep *usbep,
1446                                     const struct usb_endpoint_descriptor *desc)
1447 {
1448         struct pch_udc_ep       *ep;
1449         struct pch_udc_dev      *dev;
1450         unsigned long           iflags;
1451
1452         if (!usbep || (usbep->name == ep0_string) || !desc ||
1453             (desc->bDescriptorType != USB_DT_ENDPOINT) || !desc->wMaxPacketSize)
1454                 return -EINVAL;
1455
1456         ep = container_of(usbep, struct pch_udc_ep, ep);
1457         dev = ep->dev;
1458         if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
1459                 return -ESHUTDOWN;
1460         spin_lock_irqsave(&dev->lock, iflags);
1461         ep->desc = desc;
1462         ep->halted = 0;
1463         pch_udc_ep_enable(ep, &ep->dev->cfg_data, desc);
1464         ep->ep.maxpacket = le16_to_cpu(desc->wMaxPacketSize);
1465         pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1466         spin_unlock_irqrestore(&dev->lock, iflags);
1467         return 0;
1468 }
1469
1470 /**
1471  * pch_udc_pcd_ep_disable() - This API disables endpoint and is called
1472  *                              from gadget driver
1473  * @usbep       Reference to the USB endpoint structure
1474  *
1475  * Return codes:
1476  *      0:              Success
1477  *      -EINVAL:
1478  */
1479 static int pch_udc_pcd_ep_disable(struct usb_ep *usbep)
1480 {
1481         struct pch_udc_ep       *ep;
1482         struct pch_udc_dev      *dev;
1483         unsigned long   iflags;
1484
1485         if (!usbep)
1486                 return -EINVAL;
1487
1488         ep = container_of(usbep, struct pch_udc_ep, ep);
1489         dev = ep->dev;
1490         if ((usbep->name == ep0_string) || !ep->desc)
1491                 return -EINVAL;
1492
1493         spin_lock_irqsave(&ep->dev->lock, iflags);
1494         empty_req_queue(ep);
1495         ep->halted = 1;
1496         pch_udc_ep_disable(ep);
1497         pch_udc_disable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1498         ep->desc = NULL;
1499         INIT_LIST_HEAD(&ep->queue);
1500         spin_unlock_irqrestore(&ep->dev->lock, iflags);
1501         return 0;
1502 }
1503
1504 /**
1505  * pch_udc_alloc_request() - This function allocates request structure.
1506  *                              It is called by gadget driver
1507  * @usbep:      Reference to the USB endpoint structure
1508  * @gfp:        Flag to be used while allocating memory
1509  *
1510  * Return codes:
1511  *      NULL:                   Failure
1512  *      Allocated address:      Success
1513  */
1514 static struct usb_request *pch_udc_alloc_request(struct usb_ep *usbep,
1515                                                   gfp_t gfp)
1516 {
1517         struct pch_udc_request          *req;
1518         struct pch_udc_ep               *ep;
1519         struct pch_udc_data_dma_desc    *dma_desc;
1520         struct pch_udc_dev              *dev;
1521
1522         if (!usbep)
1523                 return NULL;
1524         ep = container_of(usbep, struct pch_udc_ep, ep);
1525         dev = ep->dev;
1526         req = kzalloc(sizeof *req, gfp);
1527         if (!req)
1528                 return NULL;
1529         req->req.dma = DMA_ADDR_INVALID;
1530         req->dma = DMA_ADDR_INVALID;
1531         INIT_LIST_HEAD(&req->queue);
1532         if (!ep->dev->dma_addr)
1533                 return &req->req;
1534         /* ep0 in requests are allocated from data pool here */
1535         dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
1536                                   &req->td_data_phys);
1537         if (NULL == dma_desc) {
1538                 kfree(req);
1539                 return NULL;
1540         }
1541         /* prevent from using desc. - set HOST BUSY */
1542         dma_desc->status |= PCH_UDC_BS_HST_BSY;
1543         dma_desc->dataptr = __constant_cpu_to_le32(DMA_ADDR_INVALID);
1544         req->td_data = dma_desc;
1545         req->td_data_last = dma_desc;
1546         req->chain_len = 1;
1547         return &req->req;
1548 }
1549
1550 /**
1551  * pch_udc_free_request() - This function frees request structure.
1552  *                              It is called by gadget driver
1553  * @usbep:      Reference to the USB endpoint structure
1554  * @usbreq:     Reference to the USB request
1555  */
1556 static void pch_udc_free_request(struct usb_ep *usbep,
1557                                   struct usb_request *usbreq)
1558 {
1559         struct pch_udc_ep       *ep;
1560         struct pch_udc_request  *req;
1561         struct pch_udc_dev      *dev;
1562
1563         if (!usbep || !usbreq)
1564                 return;
1565         ep = container_of(usbep, struct pch_udc_ep, ep);
1566         req = container_of(usbreq, struct pch_udc_request, req);
1567         dev = ep->dev;
1568         if (!list_empty(&req->queue))
1569                 dev_err(&dev->pdev->dev, "%s: %s req=0x%p queue not empty\n",
1570                         __func__, usbep->name, req);
1571         if (req->td_data != NULL) {
1572                 if (req->chain_len > 1)
1573                         pch_udc_free_dma_chain(ep->dev, req);
1574                 pci_pool_free(ep->dev->data_requests, req->td_data,
1575                               req->td_data_phys);
1576         }
1577         kfree(req);
1578 }
1579
1580 /**
1581  * pch_udc_pcd_queue() - This function queues a request packet. It is called
1582  *                      by gadget driver
1583  * @usbep:      Reference to the USB endpoint structure
1584  * @usbreq:     Reference to the USB request
1585  * @gfp:        Flag to be used while mapping the data buffer
1586  *
1587  * Return codes:
1588  *      0:                      Success
1589  *      linux error number:     Failure
1590  */
1591 static int pch_udc_pcd_queue(struct usb_ep *usbep, struct usb_request *usbreq,
1592                                                                  gfp_t gfp)
1593 {
1594         int retval = 0;
1595         struct pch_udc_ep       *ep;
1596         struct pch_udc_dev      *dev;
1597         struct pch_udc_request  *req;
1598         unsigned long   iflags;
1599
1600         if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf)
1601                 return -EINVAL;
1602         ep = container_of(usbep, struct pch_udc_ep, ep);
1603         dev = ep->dev;
1604         if (!ep->desc && ep->num)
1605                 return -EINVAL;
1606         req = container_of(usbreq, struct pch_udc_request, req);
1607         if (!list_empty(&req->queue))
1608                 return -EINVAL;
1609         if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
1610                 return -ESHUTDOWN;
1611         spin_lock_irqsave(&dev->lock, iflags);
1612         /* map the buffer for dma */
1613         if (usbreq->length &&
1614             ((usbreq->dma == DMA_ADDR_INVALID) || !usbreq->dma)) {
1615                 if (!((unsigned long)(usbreq->buf) & 0x03)) {
1616                         if (ep->in)
1617                                 usbreq->dma = dma_map_single(&dev->pdev->dev,
1618                                                              usbreq->buf,
1619                                                              usbreq->length,
1620                                                              DMA_TO_DEVICE);
1621                         else
1622                                 usbreq->dma = dma_map_single(&dev->pdev->dev,
1623                                                              usbreq->buf,
1624                                                              usbreq->length,
1625                                                              DMA_FROM_DEVICE);
1626                 } else {
1627                         req->buf = kzalloc(usbreq->length, GFP_ATOMIC);
1628                         if (!req->buf) {
1629                                 retval = -ENOMEM;
1630                                 goto probe_end;
1631                         }
1632                         if (ep->in) {
1633                                 memcpy(req->buf, usbreq->buf, usbreq->length);
1634                                 req->dma = dma_map_single(&dev->pdev->dev,
1635                                                           req->buf,
1636                                                           usbreq->length,
1637                                                           DMA_TO_DEVICE);
1638                         } else
1639                                 req->dma = dma_map_single(&dev->pdev->dev,
1640                                                           req->buf,
1641                                                           usbreq->length,
1642                                                           DMA_FROM_DEVICE);
1643                 }
1644                 req->dma_mapped = 1;
1645         }
1646         if (usbreq->length > 0) {
1647                 retval = prepare_dma(ep, req, GFP_ATOMIC);
1648                 if (retval)
1649                         goto probe_end;
1650         }
1651         usbreq->actual = 0;
1652         usbreq->status = -EINPROGRESS;
1653         req->dma_done = 0;
1654         if (list_empty(&ep->queue) && !ep->halted) {
1655                 /* no pending transfer, so start this req */
1656                 if (!usbreq->length) {
1657                         process_zlp(ep, req);
1658                         retval = 0;
1659                         goto probe_end;
1660                 }
1661                 if (!ep->in) {
1662                         pch_udc_start_rxrequest(ep, req);
1663                 } else {
1664                         /*
1665                         * For IN trfr the descriptors will be programmed and
1666                         * P bit will be set when
1667                         * we get an IN token
1668                         */
1669                         pch_udc_wait_ep_stall(ep);
1670                         pch_udc_ep_clear_nak(ep);
1671                         pch_udc_enable_ep_interrupts(ep->dev, (1 << ep->num));
1672                 }
1673         }
1674         /* Now add this request to the ep's pending requests */
1675         if (req != NULL)
1676                 list_add_tail(&req->queue, &ep->queue);
1677
1678 probe_end:
1679         spin_unlock_irqrestore(&dev->lock, iflags);
1680         return retval;
1681 }
1682
1683 /**
1684  * pch_udc_pcd_dequeue() - This function de-queues a request packet.
1685  *                              It is called by gadget driver
1686  * @usbep:      Reference to the USB endpoint structure
1687  * @usbreq:     Reference to the USB request
1688  *
1689  * Return codes:
1690  *      0:                      Success
1691  *      linux error number:     Failure
1692  */
1693 static int pch_udc_pcd_dequeue(struct usb_ep *usbep,
1694                                 struct usb_request *usbreq)
1695 {
1696         struct pch_udc_ep       *ep;
1697         struct pch_udc_request  *req;
1698         struct pch_udc_dev      *dev;
1699         unsigned long           flags;
1700         int ret = -EINVAL;
1701
1702         ep = container_of(usbep, struct pch_udc_ep, ep);
1703         dev = ep->dev;
1704         if (!usbep || !usbreq || (!ep->desc && ep->num))
1705                 return ret;
1706         req = container_of(usbreq, struct pch_udc_request, req);
1707         spin_lock_irqsave(&ep->dev->lock, flags);
1708         /* make sure it's still queued on this endpoint */
1709         list_for_each_entry(req, &ep->queue, queue) {
1710                 if (&req->req == usbreq) {
1711                         pch_udc_ep_set_nak(ep);
1712                         if (!list_empty(&req->queue))
1713                                 complete_req(ep, req, -ECONNRESET);
1714                         ret = 0;
1715                         break;
1716                 }
1717         }
1718         spin_unlock_irqrestore(&ep->dev->lock, flags);
1719         return ret;
1720 }
1721
1722 /**
1723  * pch_udc_pcd_set_halt() - This function Sets or clear the endpoint halt
1724  *                          feature
1725  * @usbep:      Reference to the USB endpoint structure
1726  * @halt:       Specifies whether to set or clear the feature
1727  *
1728  * Return codes:
1729  *      0:                      Success
1730  *      linux error number:     Failure
1731  */
1732 static int pch_udc_pcd_set_halt(struct usb_ep *usbep, int halt)
1733 {
1734         struct pch_udc_ep       *ep;
1735         struct pch_udc_dev      *dev;
1736         unsigned long iflags;
1737         int ret;
1738
1739         if (!usbep)
1740                 return -EINVAL;
1741         ep = container_of(usbep, struct pch_udc_ep, ep);
1742         dev = ep->dev;
1743         if (!ep->desc && !ep->num)
1744                 return -EINVAL;
1745         if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
1746                 return -ESHUTDOWN;
1747         spin_lock_irqsave(&udc_stall_spinlock, iflags);
1748         if (list_empty(&ep->queue)) {
1749                 if (halt) {
1750                         if (ep->num == PCH_UDC_EP0)
1751                                 ep->dev->stall = 1;
1752                         pch_udc_ep_set_stall(ep);
1753                         pch_udc_enable_ep_interrupts(ep->dev,
1754                                                      PCH_UDC_EPINT(ep->in,
1755                                                                    ep->num));
1756                 } else {
1757                         pch_udc_ep_clear_stall(ep);
1758                 }
1759                 ret = 0;
1760         } else {
1761                 ret = -EAGAIN;
1762         }
1763         spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1764         return ret;
1765 }
1766
1767 /**
1768  * pch_udc_pcd_set_wedge() - This function Sets or clear the endpoint
1769  *                              halt feature
1770  * @usbep:      Reference to the USB endpoint structure
1771  * @halt:       Specifies whether to set or clear the feature
1772  *
1773  * Return codes:
1774  *      0:                      Success
1775  *      linux error number:     Failure
1776  */
1777 static int pch_udc_pcd_set_wedge(struct usb_ep *usbep)
1778 {
1779         struct pch_udc_ep       *ep;
1780         struct pch_udc_dev      *dev;
1781         unsigned long iflags;
1782         int ret;
1783
1784         if (!usbep)
1785                 return -EINVAL;
1786         ep = container_of(usbep, struct pch_udc_ep, ep);
1787         dev = ep->dev;
1788         if (!ep->desc && !ep->num)
1789                 return -EINVAL;
1790         if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
1791                 return -ESHUTDOWN;
1792         spin_lock_irqsave(&udc_stall_spinlock, iflags);
1793         if (!list_empty(&ep->queue)) {
1794                 ret = -EAGAIN;
1795         } else {
1796                 if (ep->num == PCH_UDC_EP0)
1797                         ep->dev->stall = 1;
1798                 pch_udc_ep_set_stall(ep);
1799                 pch_udc_enable_ep_interrupts(ep->dev,
1800                                              PCH_UDC_EPINT(ep->in, ep->num));
1801                 ep->dev->prot_stall = 1;
1802                 ret = 0;
1803         }
1804         spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1805         return ret;
1806 }
1807
1808 /**
1809  * pch_udc_pcd_fifo_flush() - This function Flush the FIFO of specified endpoint
1810  * @usbep:      Reference to the USB endpoint structure
1811  */
1812 static void pch_udc_pcd_fifo_flush(struct usb_ep *usbep)
1813 {
1814         struct pch_udc_ep  *ep;
1815
1816         if (!usbep)
1817                 return;
1818
1819         ep = container_of(usbep, struct pch_udc_ep, ep);
1820         if (ep->desc || !ep->num)
1821                 pch_udc_ep_fifo_flush(ep, ep->in);
1822 }
1823
1824 static const struct usb_ep_ops pch_udc_ep_ops = {
1825         .enable         = pch_udc_pcd_ep_enable,
1826         .disable        = pch_udc_pcd_ep_disable,
1827         .alloc_request  = pch_udc_alloc_request,
1828         .free_request   = pch_udc_free_request,
1829         .queue          = pch_udc_pcd_queue,
1830         .dequeue        = pch_udc_pcd_dequeue,
1831         .set_halt       = pch_udc_pcd_set_halt,
1832         .set_wedge      = pch_udc_pcd_set_wedge,
1833         .fifo_status    = NULL,
1834         .fifo_flush     = pch_udc_pcd_fifo_flush,
1835 };
1836
1837 /**
1838  * pch_udc_init_setup_buff() - This function initializes the SETUP buffer
1839  * @td_stp:     Reference to the SETP buffer structure
1840  */
1841 static void pch_udc_init_setup_buff(struct pch_udc_stp_dma_desc *td_stp)
1842 {
1843         static u32      pky_marker;
1844
1845         if (!td_stp)
1846                 return;
1847         td_stp->reserved = ++pky_marker;
1848         memset(&td_stp->request, 0xFF, sizeof td_stp->request);
1849         td_stp->status = PCH_UDC_BS_HST_RDY;
1850 }
1851
1852 /**
1853  * pch_udc_start_next_txrequest() - This function starts
1854  *                                      the next transmission requirement
1855  * @ep: Reference to the endpoint structure
1856  */
1857 static void pch_udc_start_next_txrequest(struct pch_udc_ep *ep)
1858 {
1859         struct pch_udc_request *req;
1860         struct pch_udc_data_dma_desc *td_data;
1861
1862         if (pch_udc_read_ep_control(ep) & UDC_EPCTL_P)
1863                 return;
1864
1865         if (list_empty(&ep->queue))
1866                 return;
1867
1868         /* next request */
1869         req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1870         if (req->dma_going)
1871                 return;
1872         if (!req->td_data)
1873                 return;
1874         pch_udc_wait_ep_stall(ep);
1875         req->dma_going = 1;
1876         pch_udc_ep_set_ddptr(ep, 0);
1877         td_data = req->td_data;
1878         while (1) {
1879                 td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
1880                                    PCH_UDC_BS_HST_RDY;
1881                 if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
1882                         break;
1883                 td_data = phys_to_virt(td_data->next);
1884         }
1885         pch_udc_ep_set_ddptr(ep, req->td_data_phys);
1886         pch_udc_set_dma(ep->dev, DMA_DIR_TX);
1887         pch_udc_ep_set_pd(ep);
1888         pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1889         pch_udc_ep_clear_nak(ep);
1890 }
1891
1892 /**
1893  * pch_udc_complete_transfer() - This function completes a transfer
1894  * @ep:         Reference to the endpoint structure
1895  */
1896 static void pch_udc_complete_transfer(struct pch_udc_ep *ep)
1897 {
1898         struct pch_udc_request *req;
1899         struct pch_udc_dev *dev = ep->dev;
1900
1901         if (list_empty(&ep->queue))
1902                 return;
1903         req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1904         if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
1905             PCH_UDC_BS_DMA_DONE)
1906                 return;
1907         if ((req->td_data_last->status & PCH_UDC_RXTX_STS) !=
1908              PCH_UDC_RTS_SUCC) {
1909                 dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) "
1910                         "epstatus=0x%08x\n",
1911                        (req->td_data_last->status & PCH_UDC_RXTX_STS),
1912                        (int)(ep->epsts));
1913                 return;
1914         }
1915
1916         req->req.actual = req->req.length;
1917         req->td_data_last->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
1918         req->td_data->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
1919         complete_req(ep, req, 0);
1920         req->dma_going = 0;
1921         if (!list_empty(&ep->queue)) {
1922                 pch_udc_wait_ep_stall(ep);
1923                 pch_udc_ep_clear_nak(ep);
1924                 pch_udc_enable_ep_interrupts(ep->dev,
1925                                              PCH_UDC_EPINT(ep->in, ep->num));
1926         } else {
1927                 pch_udc_disable_ep_interrupts(ep->dev,
1928                                               PCH_UDC_EPINT(ep->in, ep->num));
1929         }
1930 }
1931
1932 /**
1933  * pch_udc_complete_receiver() - This function completes a receiver
1934  * @ep:         Reference to the endpoint structure
1935  */
1936 static void pch_udc_complete_receiver(struct pch_udc_ep *ep)
1937 {
1938         struct pch_udc_request *req;
1939         struct pch_udc_dev *dev = ep->dev;
1940         unsigned int count;
1941         struct pch_udc_data_dma_desc *td;
1942         dma_addr_t addr;
1943
1944         if (list_empty(&ep->queue))
1945                 return;
1946         /* next request */
1947         req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1948         pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
1949         pch_udc_ep_set_ddptr(ep, 0);
1950         if ((req->td_data_last->status & PCH_UDC_BUFF_STS) ==
1951             PCH_UDC_BS_DMA_DONE)
1952                 td = req->td_data_last;
1953         else
1954                 td = req->td_data;
1955
1956         while (1) {
1957                 if ((td->status & PCH_UDC_RXTX_STS) != PCH_UDC_RTS_SUCC) {
1958                         dev_err(&dev->pdev->dev, "Invalid RXTX status=0x%08x "
1959                                 "epstatus=0x%08x\n",
1960                                 (req->td_data->status & PCH_UDC_RXTX_STS),
1961                                 (int)(ep->epsts));
1962                         return;
1963                 }
1964                 if ((td->status & PCH_UDC_BUFF_STS) == PCH_UDC_BS_DMA_DONE)
1965                         if (td->status | PCH_UDC_DMA_LAST) {
1966                                 count = td->status & PCH_UDC_RXTX_BYTES;
1967                                 break;
1968                         }
1969                 if (td == req->td_data_last) {
1970                         dev_err(&dev->pdev->dev, "Not complete RX descriptor");
1971                         return;
1972                 }
1973                 addr = (dma_addr_t)td->next;
1974                 td = phys_to_virt(addr);
1975         }
1976         /* on 64k packets the RXBYTES field is zero */
1977         if (!count && (req->req.length == UDC_DMA_MAXPACKET))
1978                 count = UDC_DMA_MAXPACKET;
1979         req->td_data->status |= PCH_UDC_DMA_LAST;
1980         td->status |= PCH_UDC_BS_HST_BSY;
1981
1982         req->dma_going = 0;
1983         req->req.actual = count;
1984         complete_req(ep, req, 0);
1985         /* If there is a new/failed requests try that now */
1986         if (!list_empty(&ep->queue)) {
1987                 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1988                 pch_udc_start_rxrequest(ep, req);
1989         }
1990 }
1991
1992 /**
1993  * pch_udc_svc_data_in() - This function process endpoint interrupts
1994  *                              for IN endpoints
1995  * @dev:        Reference to the device structure
1996  * @ep_num:     Endpoint that generated the interrupt
1997  */
1998 static void pch_udc_svc_data_in(struct pch_udc_dev *dev, int ep_num)
1999 {
2000         u32     epsts;
2001         struct pch_udc_ep       *ep;
2002
2003         ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
2004         epsts = ep->epsts;
2005         ep->epsts = 0;
2006
2007         if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA  | UDC_EPSTS_HE |
2008                        UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
2009                        UDC_EPSTS_RSS | UDC_EPSTS_XFERDONE)))
2010                 return;
2011         if ((epsts & UDC_EPSTS_BNA))
2012                 return;
2013         if (epsts & UDC_EPSTS_HE)
2014                 return;
2015         if (epsts & UDC_EPSTS_RSS) {
2016                 pch_udc_ep_set_stall(ep);
2017                 pch_udc_enable_ep_interrupts(ep->dev,
2018                                              PCH_UDC_EPINT(ep->in, ep->num));
2019         }
2020         if (epsts & UDC_EPSTS_RCS) {
2021                 if (!dev->prot_stall) {
2022                         pch_udc_ep_clear_stall(ep);
2023                 } else {
2024                         pch_udc_ep_set_stall(ep);
2025                         pch_udc_enable_ep_interrupts(ep->dev,
2026                                                 PCH_UDC_EPINT(ep->in, ep->num));
2027                 }
2028         }
2029         if (epsts & UDC_EPSTS_TDC)
2030                 pch_udc_complete_transfer(ep);
2031         /* On IN interrupt, provide data if we have any */
2032         if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_RSS) &&
2033             !(epsts & UDC_EPSTS_TDC) && !(epsts & UDC_EPSTS_TXEMPTY))
2034                 pch_udc_start_next_txrequest(ep);
2035 }
2036
2037 /**
2038  * pch_udc_svc_data_out() - Handles interrupts from OUT endpoint
2039  * @dev:        Reference to the device structure
2040  * @ep_num:     Endpoint that generated the interrupt
2041  */
2042 static void pch_udc_svc_data_out(struct pch_udc_dev *dev, int ep_num)
2043 {
2044         u32                     epsts;
2045         struct pch_udc_ep               *ep;
2046         struct pch_udc_request          *req = NULL;
2047
2048         ep = &dev->ep[UDC_EPOUT_IDX(ep_num)];
2049         epsts = ep->epsts;
2050         ep->epsts = 0;
2051
2052         if ((epsts & UDC_EPSTS_BNA) && (!list_empty(&ep->queue))) {
2053                 /* next request */
2054                 req = list_entry(ep->queue.next, struct pch_udc_request,
2055                                  queue);
2056                 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
2057                      PCH_UDC_BS_DMA_DONE) {
2058                         if (!req->dma_going)
2059                                 pch_udc_start_rxrequest(ep, req);
2060                         return;
2061                 }
2062         }
2063         if (epsts & UDC_EPSTS_HE)
2064                 return;
2065         if (epsts & UDC_EPSTS_RSS) {
2066                 pch_udc_ep_set_stall(ep);
2067                 pch_udc_enable_ep_interrupts(ep->dev,
2068                                              PCH_UDC_EPINT(ep->in, ep->num));
2069         }
2070         if (epsts & UDC_EPSTS_RCS) {
2071                 if (!dev->prot_stall) {
2072                         pch_udc_ep_clear_stall(ep);
2073                 } else {
2074                         pch_udc_ep_set_stall(ep);
2075                         pch_udc_enable_ep_interrupts(ep->dev,
2076                                                 PCH_UDC_EPINT(ep->in, ep->num));
2077                 }
2078         }
2079         if (((epsts & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2080             UDC_EPSTS_OUT_DATA) {
2081                 if (ep->dev->prot_stall == 1) {
2082                         pch_udc_ep_set_stall(ep);
2083                         pch_udc_enable_ep_interrupts(ep->dev,
2084                                                 PCH_UDC_EPINT(ep->in, ep->num));
2085                 } else {
2086                         pch_udc_complete_receiver(ep);
2087                 }
2088         }
2089         if (list_empty(&ep->queue))
2090                 pch_udc_set_dma(dev, DMA_DIR_RX);
2091 }
2092
2093 /**
2094  * pch_udc_svc_control_in() - Handle Control IN endpoint interrupts
2095  * @dev:        Reference to the device structure
2096  */
2097 static void pch_udc_svc_control_in(struct pch_udc_dev *dev)
2098 {
2099         u32     epsts;
2100         struct pch_udc_ep       *ep;
2101         struct pch_udc_ep       *ep_out;
2102
2103         ep = &dev->ep[UDC_EP0IN_IDX];
2104         ep_out = &dev->ep[UDC_EP0OUT_IDX];
2105         epsts = ep->epsts;
2106         ep->epsts = 0;
2107
2108         if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
2109                        UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
2110                        UDC_EPSTS_XFERDONE)))
2111                 return;
2112         if ((epsts & UDC_EPSTS_BNA))
2113                 return;
2114         if (epsts & UDC_EPSTS_HE)
2115                 return;
2116         if ((epsts & UDC_EPSTS_TDC) && (!dev->stall)) {
2117                 pch_udc_complete_transfer(ep);
2118                 pch_udc_clear_dma(dev, DMA_DIR_RX);
2119                 ep_out->td_data->status = (ep_out->td_data->status &
2120                                         ~PCH_UDC_BUFF_STS) |
2121                                         PCH_UDC_BS_HST_RDY;
2122                 pch_udc_ep_clear_nak(ep_out);
2123                 pch_udc_set_dma(dev, DMA_DIR_RX);
2124                 pch_udc_ep_set_rrdy(ep_out);
2125         }
2126         /* On IN interrupt, provide data if we have any */
2127         if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_TDC) &&
2128              !(epsts & UDC_EPSTS_TXEMPTY))
2129                 pch_udc_start_next_txrequest(ep);
2130 }
2131
2132 /**
2133  * pch_udc_svc_control_out() - Routine that handle Control
2134  *                                      OUT endpoint interrupts
2135  * @dev:        Reference to the device structure
2136  */
2137 static void pch_udc_svc_control_out(struct pch_udc_dev *dev)
2138 {
2139         u32     stat;
2140         int setup_supported;
2141         struct pch_udc_ep       *ep;
2142
2143         ep = &dev->ep[UDC_EP0OUT_IDX];
2144         stat = ep->epsts;
2145         ep->epsts = 0;
2146
2147         /* If setup data */
2148         if (((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2149             UDC_EPSTS_OUT_SETUP) {
2150                 dev->stall = 0;
2151                 dev->ep[UDC_EP0IN_IDX].halted = 0;
2152                 dev->ep[UDC_EP0OUT_IDX].halted = 0;
2153                 dev->setup_data = ep->td_stp->request;
2154                 pch_udc_init_setup_buff(ep->td_stp);
2155                 pch_udc_clear_dma(dev, DMA_DIR_RX);
2156                 pch_udc_ep_fifo_flush(&(dev->ep[UDC_EP0IN_IDX]),
2157                                       dev->ep[UDC_EP0IN_IDX].in);
2158                 if ((dev->setup_data.bRequestType & USB_DIR_IN))
2159                         dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
2160                 else /* OUT */
2161                         dev->gadget.ep0 = &ep->ep;
2162                 spin_unlock(&dev->lock);
2163                 /* If Mass storage Reset */
2164                 if ((dev->setup_data.bRequestType == 0x21) &&
2165                     (dev->setup_data.bRequest == 0xFF))
2166                         dev->prot_stall = 0;
2167                 /* call gadget with setup data received */
2168                 setup_supported = dev->driver->setup(&dev->gadget,
2169                                                      &dev->setup_data);
2170                 spin_lock(&dev->lock);
2171
2172                 if (dev->setup_data.bRequestType & USB_DIR_IN) {
2173                         ep->td_data->status = (ep->td_data->status &
2174                                                 ~PCH_UDC_BUFF_STS) |
2175                                                 PCH_UDC_BS_HST_RDY;
2176                         pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
2177                 }
2178                 /* ep0 in returns data on IN phase */
2179                 if (setup_supported >= 0 && setup_supported <
2180                                             UDC_EP0IN_MAX_PKT_SIZE) {
2181                         pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
2182                         /* Gadget would have queued a request when
2183                          * we called the setup */
2184                         if (!(dev->setup_data.bRequestType & USB_DIR_IN)) {
2185                                 pch_udc_set_dma(dev, DMA_DIR_RX);
2186                                 pch_udc_ep_clear_nak(ep);
2187                         }
2188                 } else if (setup_supported < 0) {
2189                         /* if unsupported request, then stall */
2190                         pch_udc_ep_set_stall(&(dev->ep[UDC_EP0IN_IDX]));
2191                         pch_udc_enable_ep_interrupts(ep->dev,
2192                                                 PCH_UDC_EPINT(ep->in, ep->num));
2193                         dev->stall = 0;
2194                         pch_udc_set_dma(dev, DMA_DIR_RX);
2195                 } else {
2196                         dev->waiting_zlp_ack = 1;
2197                 }
2198         } else if ((((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2199                      UDC_EPSTS_OUT_DATA) && !dev->stall) {
2200                 pch_udc_clear_dma(dev, DMA_DIR_RX);
2201                 pch_udc_ep_set_ddptr(ep, 0);
2202                 if (!list_empty(&ep->queue)) {
2203                         ep->epsts = stat;
2204                         pch_udc_svc_data_out(dev, PCH_UDC_EP0);
2205                 }
2206                 pch_udc_set_dma(dev, DMA_DIR_RX);
2207         }
2208         pch_udc_ep_set_rrdy(ep);
2209 }
2210
2211
2212 /**
2213  * pch_udc_postsvc_epinters() - This function enables end point interrupts
2214  *                              and clears NAK status
2215  * @dev:        Reference to the device structure
2216  * @ep_num:     End point number
2217  */
2218 static void pch_udc_postsvc_epinters(struct pch_udc_dev *dev, int ep_num)
2219 {
2220         struct pch_udc_ep       *ep;
2221         struct pch_udc_request *req;
2222
2223         ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
2224         if (!list_empty(&ep->queue)) {
2225                 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2226                 pch_udc_enable_ep_interrupts(ep->dev,
2227                                              PCH_UDC_EPINT(ep->in, ep->num));
2228                 pch_udc_ep_clear_nak(ep);
2229         }
2230 }
2231
2232 /**
2233  * pch_udc_read_all_epstatus() - This function read all endpoint status
2234  * @dev:        Reference to the device structure
2235  * @ep_intr:    Status of endpoint interrupt
2236  */
2237 static void pch_udc_read_all_epstatus(struct pch_udc_dev *dev, u32 ep_intr)
2238 {
2239         int i;
2240         struct pch_udc_ep       *ep;
2241
2242         for (i = 0; i < PCH_UDC_USED_EP_NUM; i++) {
2243                 /* IN */
2244                 if (ep_intr & (0x1 << i)) {
2245                         ep = &dev->ep[UDC_EPIN_IDX(i)];
2246                         ep->epsts = pch_udc_read_ep_status(ep);
2247                         pch_udc_clear_ep_status(ep, ep->epsts);
2248                 }
2249                 /* OUT */
2250                 if (ep_intr & (0x10000 << i)) {
2251                         ep = &dev->ep[UDC_EPOUT_IDX(i)];
2252                         ep->epsts = pch_udc_read_ep_status(ep);
2253                         pch_udc_clear_ep_status(ep, ep->epsts);
2254                 }
2255         }
2256 }
2257
2258 /**
2259  * pch_udc_activate_control_ep() - This function enables the control endpoints
2260  *                                      for traffic after a reset
2261  * @dev:        Reference to the device structure
2262  */
2263 static void pch_udc_activate_control_ep(struct pch_udc_dev *dev)
2264 {
2265         struct pch_udc_ep       *ep;
2266         u32 val;
2267
2268         /* Setup the IN endpoint */
2269         ep = &dev->ep[UDC_EP0IN_IDX];
2270         pch_udc_clear_ep_control(ep);
2271         pch_udc_ep_fifo_flush(ep, ep->in);
2272         pch_udc_ep_set_bufsz(ep, UDC_EP0IN_BUFF_SIZE, ep->in);
2273         pch_udc_ep_set_maxpkt(ep, UDC_EP0IN_MAX_PKT_SIZE);
2274         /* Initialize the IN EP Descriptor */
2275         ep->td_data      = NULL;
2276         ep->td_stp       = NULL;
2277         ep->td_data_phys = 0;
2278         ep->td_stp_phys  = 0;
2279
2280         /* Setup the OUT endpoint */
2281         ep = &dev->ep[UDC_EP0OUT_IDX];
2282         pch_udc_clear_ep_control(ep);
2283         pch_udc_ep_fifo_flush(ep, ep->in);
2284         pch_udc_ep_set_bufsz(ep, UDC_EP0OUT_BUFF_SIZE, ep->in);
2285         pch_udc_ep_set_maxpkt(ep, UDC_EP0OUT_MAX_PKT_SIZE);
2286         val = UDC_EP0OUT_MAX_PKT_SIZE << UDC_CSR_NE_MAX_PKT_SHIFT;
2287         pch_udc_write_csr(ep->dev, val, UDC_EP0OUT_IDX);
2288
2289         /* Initialize the SETUP buffer */
2290         pch_udc_init_setup_buff(ep->td_stp);
2291         /* Write the pointer address of dma descriptor */
2292         pch_udc_ep_set_subptr(ep, ep->td_stp_phys);
2293         /* Write the pointer address of Setup descriptor */
2294         pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
2295
2296         /* Initialize the dma descriptor */
2297         ep->td_data->status  = PCH_UDC_DMA_LAST;
2298         ep->td_data->dataptr = dev->dma_addr;
2299         ep->td_data->next    = ep->td_data_phys;
2300
2301         pch_udc_ep_clear_nak(ep);
2302 }
2303
2304
2305 /**
2306  * pch_udc_svc_ur_interrupt() - This function handles a USB reset interrupt
2307  * @dev:        Reference to driver structure
2308  */
2309 static void pch_udc_svc_ur_interrupt(struct pch_udc_dev *dev)
2310 {
2311         struct pch_udc_ep       *ep;
2312         int i;
2313
2314         pch_udc_clear_dma(dev, DMA_DIR_TX);
2315         pch_udc_clear_dma(dev, DMA_DIR_RX);
2316         /* Mask all endpoint interrupts */
2317         pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2318         /* clear all endpoint interrupts */
2319         pch_udc_write_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2320
2321         for (i = 0; i < PCH_UDC_EP_NUM; i++) {
2322                 ep = &dev->ep[i];
2323                 pch_udc_clear_ep_status(ep, UDC_EPSTS_ALL_CLR_MASK);
2324                 pch_udc_clear_ep_control(ep);
2325                 pch_udc_ep_set_ddptr(ep, 0);
2326                 pch_udc_write_csr(ep->dev, 0x00, i);
2327         }
2328         dev->stall = 0;
2329         dev->prot_stall = 0;
2330         dev->waiting_zlp_ack = 0;
2331         dev->set_cfg_not_acked = 0;
2332
2333         /* disable ep to empty req queue. Skip the control EP's */
2334         for (i = 0; i < (PCH_UDC_USED_EP_NUM*2); i++) {
2335                 ep = &dev->ep[i];
2336                 pch_udc_ep_set_nak(ep);
2337                 pch_udc_ep_fifo_flush(ep, ep->in);
2338                 /* Complete request queue */
2339                 empty_req_queue(ep);
2340         }
2341         if (dev->driver && dev->driver->disconnect)
2342                 dev->driver->disconnect(&dev->gadget);
2343 }
2344
2345 /**
2346  * pch_udc_svc_enum_interrupt() - This function handles a USB speed enumeration
2347  *                              done interrupt
2348  * @dev:        Reference to driver structure
2349  */
2350 static void pch_udc_svc_enum_interrupt(struct pch_udc_dev *dev)
2351 {
2352         u32 dev_stat, dev_speed;
2353         u32 speed = USB_SPEED_FULL;
2354
2355         dev_stat = pch_udc_read_device_status(dev);
2356         dev_speed = (dev_stat & UDC_DEVSTS_ENUM_SPEED_MASK) >>
2357                                                  UDC_DEVSTS_ENUM_SPEED_SHIFT;
2358         switch (dev_speed) {
2359         case UDC_DEVSTS_ENUM_SPEED_HIGH:
2360                 speed = USB_SPEED_HIGH;
2361                 break;
2362         case  UDC_DEVSTS_ENUM_SPEED_FULL:
2363                 speed = USB_SPEED_FULL;
2364                 break;
2365         case  UDC_DEVSTS_ENUM_SPEED_LOW:
2366                 speed = USB_SPEED_LOW;
2367                 break;
2368         default:
2369                 BUG();
2370         }
2371         dev->gadget.speed = speed;
2372         pch_udc_activate_control_ep(dev);
2373         pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | UDC_EPINT_OUT_EP0);
2374         pch_udc_set_dma(dev, DMA_DIR_TX);
2375         pch_udc_set_dma(dev, DMA_DIR_RX);
2376         pch_udc_ep_set_rrdy(&(dev->ep[UDC_EP0OUT_IDX]));
2377 }
2378
2379 /**
2380  * pch_udc_svc_intf_interrupt() - This function handles a set interface
2381  *                                interrupt
2382  * @dev:        Reference to driver structure
2383  */
2384 static void pch_udc_svc_intf_interrupt(struct pch_udc_dev *dev)
2385 {
2386         u32 reg, dev_stat = 0;
2387         int i, ret;
2388
2389         dev_stat = pch_udc_read_device_status(dev);
2390         dev->cfg_data.cur_intf = (dev_stat & UDC_DEVSTS_INTF_MASK) >>
2391                                                          UDC_DEVSTS_INTF_SHIFT;
2392         dev->cfg_data.cur_alt = (dev_stat & UDC_DEVSTS_ALT_MASK) >>
2393                                                          UDC_DEVSTS_ALT_SHIFT;
2394         dev->set_cfg_not_acked = 1;
2395         /* Construct the usb request for gadget driver and inform it */
2396         memset(&dev->setup_data, 0 , sizeof dev->setup_data);
2397         dev->setup_data.bRequest = USB_REQ_SET_INTERFACE;
2398         dev->setup_data.bRequestType = USB_RECIP_INTERFACE;
2399         dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_alt);
2400         dev->setup_data.wIndex = cpu_to_le16(dev->cfg_data.cur_intf);
2401         /* programm the Endpoint Cfg registers */
2402         /* Only one end point cfg register */
2403         reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
2404         reg = (reg & ~UDC_CSR_NE_INTF_MASK) |
2405               (dev->cfg_data.cur_intf << UDC_CSR_NE_INTF_SHIFT);
2406         reg = (reg & ~UDC_CSR_NE_ALT_MASK) |
2407               (dev->cfg_data.cur_alt << UDC_CSR_NE_ALT_SHIFT);
2408         pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
2409         for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
2410                 /* clear stall bits */
2411                 pch_udc_ep_clear_stall(&(dev->ep[i]));
2412                 dev->ep[i].halted = 0;
2413         }
2414         dev->stall = 0;
2415         spin_unlock(&dev->lock);
2416         ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
2417         spin_lock(&dev->lock);
2418 }
2419
2420 /**
2421  * pch_udc_svc_cfg_interrupt() - This function handles a set configuration
2422  *                              interrupt
2423  * @dev:        Reference to driver structure
2424  */
2425 static void pch_udc_svc_cfg_interrupt(struct pch_udc_dev *dev)
2426 {
2427         int i, ret;
2428         u32 reg, dev_stat = 0;
2429
2430         dev_stat = pch_udc_read_device_status(dev);
2431         dev->set_cfg_not_acked = 1;
2432         dev->cfg_data.cur_cfg = (dev_stat & UDC_DEVSTS_CFG_MASK) >>
2433                                 UDC_DEVSTS_CFG_SHIFT;
2434         /* make usb request for gadget driver */
2435         memset(&dev->setup_data, 0 , sizeof dev->setup_data);
2436         dev->setup_data.bRequest = USB_REQ_SET_CONFIGURATION;
2437         dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_cfg);
2438         /* program the NE registers */
2439         /* Only one end point cfg register */
2440         reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
2441         reg = (reg & ~UDC_CSR_NE_CFG_MASK) |
2442               (dev->cfg_data.cur_cfg << UDC_CSR_NE_CFG_SHIFT);
2443         pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
2444         for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
2445                 /* clear stall bits */
2446                 pch_udc_ep_clear_stall(&(dev->ep[i]));
2447                 dev->ep[i].halted = 0;
2448         }
2449         dev->stall = 0;
2450
2451         /* call gadget zero with setup data received */
2452         spin_unlock(&dev->lock);
2453         ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
2454         spin_lock(&dev->lock);
2455 }
2456
2457 /**
2458  * pch_udc_dev_isr() - This function services device interrupts
2459  *                      by invoking appropriate routines.
2460  * @dev:        Reference to the device structure
2461  * @dev_intr:   The Device interrupt status.
2462  */
2463 static void pch_udc_dev_isr(struct pch_udc_dev *dev, u32 dev_intr)
2464 {
2465         /* USB Reset Interrupt */
2466         if (dev_intr & UDC_DEVINT_UR)
2467                 pch_udc_svc_ur_interrupt(dev);
2468         /* Enumeration Done Interrupt */
2469         if (dev_intr & UDC_DEVINT_ENUM)
2470                 pch_udc_svc_enum_interrupt(dev);
2471         /* Set Interface Interrupt */
2472         if (dev_intr & UDC_DEVINT_SI)
2473                 pch_udc_svc_intf_interrupt(dev);
2474         /* Set Config Interrupt */
2475         if (dev_intr & UDC_DEVINT_SC)
2476                 pch_udc_svc_cfg_interrupt(dev);
2477         /* USB Suspend interrupt */
2478         if (dev_intr & UDC_DEVINT_US)
2479                 dev_dbg(&dev->pdev->dev, "USB_SUSPEND\n");
2480         /* Clear the SOF interrupt, if enabled */
2481         if (dev_intr & UDC_DEVINT_SOF)
2482                 dev_dbg(&dev->pdev->dev, "SOF\n");
2483         /* ES interrupt, IDLE > 3ms on the USB */
2484         if (dev_intr & UDC_DEVINT_ES)
2485                 dev_dbg(&dev->pdev->dev, "ES\n");
2486         /* RWKP interrupt */
2487         if (dev_intr & UDC_DEVINT_RWKP)
2488                 dev_dbg(&dev->pdev->dev, "RWKP\n");
2489 }
2490
2491 /**
2492  * pch_udc_isr() - This function handles interrupts from the PCH USB Device
2493  * @irq:        Interrupt request number
2494  * @dev:        Reference to the device structure
2495  */
2496 static irqreturn_t pch_udc_isr(int irq, void *pdev)
2497 {
2498         struct pch_udc_dev *dev = (struct pch_udc_dev *) pdev;
2499         u32 dev_intr, ep_intr;
2500         int i;
2501
2502         dev_intr = pch_udc_read_device_interrupts(dev);
2503         ep_intr = pch_udc_read_ep_interrupts(dev);
2504
2505         if (dev_intr)
2506                 /* Clear device interrupts */
2507                 pch_udc_write_device_interrupts(dev, dev_intr);
2508         if (ep_intr)
2509                 /* Clear ep interrupts */
2510                 pch_udc_write_ep_interrupts(dev, ep_intr);
2511         if (!dev_intr && !ep_intr)
2512                 return IRQ_NONE;
2513         spin_lock(&dev->lock);
2514         if (dev_intr)
2515                 pch_udc_dev_isr(dev, dev_intr);
2516         if (ep_intr) {
2517                 pch_udc_read_all_epstatus(dev, ep_intr);
2518                 /* Process Control In interrupts, if present */
2519                 if (ep_intr & UDC_EPINT_IN_EP0) {
2520                         pch_udc_svc_control_in(dev);
2521                         pch_udc_postsvc_epinters(dev, 0);
2522                 }
2523                 /* Process Control Out interrupts, if present */
2524                 if (ep_intr & UDC_EPINT_OUT_EP0)
2525                         pch_udc_svc_control_out(dev);
2526                 /* Process data in end point interrupts */
2527                 for (i = 1; i < PCH_UDC_USED_EP_NUM; i++) {
2528                         if (ep_intr & (1 <<  i)) {
2529                                 pch_udc_svc_data_in(dev, i);
2530                                 pch_udc_postsvc_epinters(dev, i);
2531                         }
2532                 }
2533                 /* Process data out end point interrupts */
2534                 for (i = UDC_EPINT_OUT_SHIFT + 1; i < (UDC_EPINT_OUT_SHIFT +
2535                                                  PCH_UDC_USED_EP_NUM); i++)
2536                         if (ep_intr & (1 <<  i))
2537                                 pch_udc_svc_data_out(dev, i -
2538                                                          UDC_EPINT_OUT_SHIFT);
2539         }
2540         spin_unlock(&dev->lock);
2541         return IRQ_HANDLED;
2542 }
2543
2544 /**
2545  * pch_udc_setup_ep0() - This function enables control endpoint for traffic
2546  * @dev:        Reference to the device structure
2547  */
2548 static void pch_udc_setup_ep0(struct pch_udc_dev *dev)
2549 {
2550         /* enable ep0 interrupts */
2551         pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 |
2552                                                 UDC_EPINT_OUT_EP0);
2553         /* enable device interrupts */
2554         pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
2555                                        UDC_DEVINT_ES | UDC_DEVINT_ENUM |
2556                                        UDC_DEVINT_SI | UDC_DEVINT_SC);
2557 }
2558
2559 /**
2560  * gadget_release() - Free the gadget driver private data
2561  * @pdev        reference to struct pci_dev
2562  */
2563 static void gadget_release(struct device *pdev)
2564 {
2565         struct pch_udc_dev *dev = dev_get_drvdata(pdev);
2566
2567         kfree(dev);
2568 }
2569
2570 /**
2571  * pch_udc_pcd_reinit() - This API initializes the endpoint structures
2572  * @dev:        Reference to the driver structure
2573  */
2574 static void pch_udc_pcd_reinit(struct pch_udc_dev *dev)
2575 {
2576         const char *const ep_string[] = {
2577                 ep0_string, "ep0out", "ep1in", "ep1out", "ep2in", "ep2out",
2578                 "ep3in", "ep3out", "ep4in", "ep4out", "ep5in", "ep5out",
2579                 "ep6in", "ep6out", "ep7in", "ep7out", "ep8in", "ep8out",
2580                 "ep9in", "ep9out", "ep10in", "ep10out", "ep11in", "ep11out",
2581                 "ep12in", "ep12out", "ep13in", "ep13out", "ep14in", "ep14out",
2582                 "ep15in", "ep15out",
2583         };
2584         int i;
2585
2586         dev->gadget.speed = USB_SPEED_UNKNOWN;
2587         INIT_LIST_HEAD(&dev->gadget.ep_list);
2588
2589         /* Initialize the endpoints structures */
2590         memset(dev->ep, 0, sizeof dev->ep);
2591         for (i = 0; i < PCH_UDC_EP_NUM; i++) {
2592                 struct pch_udc_ep *ep = &dev->ep[i];
2593                 ep->dev = dev;
2594                 ep->halted = 1;
2595                 ep->num = i / 2;
2596                 ep->in = ~i & 1;
2597                 ep->ep.name = ep_string[i];
2598                 ep->ep.ops = &pch_udc_ep_ops;
2599                 if (ep->in)
2600                         ep->offset_addr = ep->num * UDC_EP_REG_SHIFT;
2601                 else
2602                         ep->offset_addr = (UDC_EPINT_OUT_SHIFT + ep->num) *
2603                                           UDC_EP_REG_SHIFT;
2604                 /* need to set ep->ep.maxpacket and set Default Configuration?*/
2605                 ep->ep.maxpacket = UDC_BULK_MAX_PKT_SIZE;
2606                 list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
2607                 INIT_LIST_HEAD(&ep->queue);
2608         }
2609         dev->ep[UDC_EP0IN_IDX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
2610         dev->ep[UDC_EP0OUT_IDX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
2611
2612         /* remove ep0 in and out from the list.  They have own pointer */
2613         list_del_init(&dev->ep[UDC_EP0IN_IDX].ep.ep_list);
2614         list_del_init(&dev->ep[UDC_EP0OUT_IDX].ep.ep_list);
2615
2616         dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
2617         INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
2618 }
2619
2620 /**
2621  * pch_udc_pcd_init() - This API initializes the driver structure
2622  * @dev:        Reference to the driver structure
2623  *
2624  * Return codes:
2625  *      0: Success
2626  */
2627 static int pch_udc_pcd_init(struct pch_udc_dev *dev)
2628 {
2629         pch_udc_init(dev);
2630         pch_udc_pcd_reinit(dev);
2631         return 0;
2632 }
2633
2634 /**
2635  * init_dma_pools() - create dma pools during initialization
2636  * @pdev:       reference to struct pci_dev
2637  */
2638 static int init_dma_pools(struct pch_udc_dev *dev)
2639 {
2640         struct pch_udc_stp_dma_desc     *td_stp;
2641         struct pch_udc_data_dma_desc    *td_data;
2642
2643         /* DMA setup */
2644         dev->data_requests = pci_pool_create("data_requests", dev->pdev,
2645                 sizeof(struct pch_udc_data_dma_desc), 0, 0);
2646         if (!dev->data_requests) {
2647                 dev_err(&dev->pdev->dev, "%s: can't get request data pool\n",
2648                         __func__);
2649                 return -ENOMEM;
2650         }
2651
2652         /* dma desc for setup data */
2653         dev->stp_requests = pci_pool_create("setup requests", dev->pdev,
2654                 sizeof(struct pch_udc_stp_dma_desc), 0, 0);
2655         if (!dev->stp_requests) {
2656                 dev_err(&dev->pdev->dev, "%s: can't get setup request pool\n",
2657                         __func__);
2658                 return -ENOMEM;
2659         }
2660         /* setup */
2661         td_stp = pci_pool_alloc(dev->stp_requests, GFP_KERNEL,
2662                                 &dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
2663         if (!td_stp) {
2664                 dev_err(&dev->pdev->dev,
2665                         "%s: can't allocate setup dma descriptor\n", __func__);
2666                 return -ENOMEM;
2667         }
2668         dev->ep[UDC_EP0OUT_IDX].td_stp = td_stp;
2669
2670         /* data: 0 packets !? */
2671         td_data = pci_pool_alloc(dev->data_requests, GFP_KERNEL,
2672                                 &dev->ep[UDC_EP0OUT_IDX].td_data_phys);
2673         if (!td_data) {
2674                 dev_err(&dev->pdev->dev,
2675                         "%s: can't allocate data dma descriptor\n", __func__);
2676                 return -ENOMEM;
2677         }
2678         dev->ep[UDC_EP0OUT_IDX].td_data = td_data;
2679         dev->ep[UDC_EP0IN_IDX].td_stp = NULL;
2680         dev->ep[UDC_EP0IN_IDX].td_stp_phys = 0;
2681         dev->ep[UDC_EP0IN_IDX].td_data = NULL;
2682         dev->ep[UDC_EP0IN_IDX].td_data_phys = 0;
2683
2684         dev->ep0out_buf = kzalloc(UDC_EP0OUT_BUFF_SIZE * 4, GFP_KERNEL);
2685         if (!dev->ep0out_buf)
2686                 return -ENOMEM;
2687         dev->dma_addr = dma_map_single(&dev->pdev->dev, dev->ep0out_buf,
2688                                        UDC_EP0OUT_BUFF_SIZE * 4,
2689                                        DMA_FROM_DEVICE);
2690         return 0;
2691 }
2692
2693 int usb_gadget_probe_driver(struct usb_gadget_driver *driver,
2694         int (*bind)(struct usb_gadget *))
2695 {
2696         struct pch_udc_dev      *dev = pch_udc;
2697         int                     retval;
2698
2699         if (!driver || (driver->speed == USB_SPEED_UNKNOWN) || !bind ||
2700             !driver->setup || !driver->unbind || !driver->disconnect) {
2701                 dev_err(&dev->pdev->dev,
2702                         "%s: invalid driver parameter\n", __func__);
2703                 return -EINVAL;
2704         }
2705
2706         if (!dev)
2707                 return -ENODEV;
2708
2709         if (dev->driver) {
2710                 dev_err(&dev->pdev->dev, "%s: already bound\n", __func__);
2711                 return -EBUSY;
2712         }
2713         driver->driver.bus = NULL;
2714         dev->driver = driver;
2715         dev->gadget.dev.driver = &driver->driver;
2716
2717         /* Invoke the bind routine of the gadget driver */
2718         retval = bind(&dev->gadget);
2719
2720         if (retval) {
2721                 dev_err(&dev->pdev->dev, "%s: binding to %s returning %d\n",
2722                        __func__, driver->driver.name, retval);
2723                 dev->driver = NULL;
2724                 dev->gadget.dev.driver = NULL;
2725                 return retval;
2726         }
2727         /* get ready for ep0 traffic */
2728         pch_udc_setup_ep0(dev);
2729
2730         /* clear SD */
2731         pch_udc_clear_disconnect(dev);
2732
2733         dev->connected = 1;
2734         return 0;
2735 }
2736 EXPORT_SYMBOL(usb_gadget_probe_driver);
2737
2738 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
2739 {
2740         struct pch_udc_dev      *dev = pch_udc;
2741
2742         if (!dev)
2743                 return -ENODEV;
2744
2745         if (!driver || (driver != dev->driver)) {
2746                 dev_err(&dev->pdev->dev,
2747                         "%s: invalid driver parameter\n", __func__);
2748                 return -EINVAL;
2749         }
2750
2751         pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
2752
2753         /* Assures that there are no pending requests with this driver */
2754         driver->disconnect(&dev->gadget);
2755         driver->unbind(&dev->gadget);
2756         dev->gadget.dev.driver = NULL;
2757         dev->driver = NULL;
2758         dev->connected = 0;
2759
2760         /* set SD */
2761         pch_udc_set_disconnect(dev);
2762         return 0;
2763 }
2764 EXPORT_SYMBOL(usb_gadget_unregister_driver);
2765
2766 static void pch_udc_shutdown(struct pci_dev *pdev)
2767 {
2768         struct pch_udc_dev *dev = pci_get_drvdata(pdev);
2769
2770         pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
2771         pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2772
2773         /* disable the pullup so the host will think we're gone */
2774         pch_udc_set_disconnect(dev);
2775 }
2776
2777 static void pch_udc_remove(struct pci_dev *pdev)
2778 {
2779         struct pch_udc_dev      *dev = pci_get_drvdata(pdev);
2780
2781         /* gadget driver must not be registered */
2782         if (dev->driver)
2783                 dev_err(&pdev->dev,
2784                         "%s: gadget driver still bound!!!\n", __func__);
2785         /* dma pool cleanup */
2786         if (dev->data_requests)
2787                 pci_pool_destroy(dev->data_requests);
2788
2789         if (dev->stp_requests) {
2790                 /* cleanup DMA desc's for ep0in */
2791                 if (dev->ep[UDC_EP0OUT_IDX].td_stp) {
2792                         pci_pool_free(dev->stp_requests,
2793                                 dev->ep[UDC_EP0OUT_IDX].td_stp,
2794                                 dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
2795                 }
2796                 if (dev->ep[UDC_EP0OUT_IDX].td_data) {
2797                         pci_pool_free(dev->stp_requests,
2798                                 dev->ep[UDC_EP0OUT_IDX].td_data,
2799                                 dev->ep[UDC_EP0OUT_IDX].td_data_phys);
2800                 }
2801                 pci_pool_destroy(dev->stp_requests);
2802         }
2803
2804         if (dev->dma_addr)
2805                 dma_unmap_single(&dev->pdev->dev, dev->dma_addr,
2806                                  UDC_EP0OUT_BUFF_SIZE * 4, DMA_FROM_DEVICE);
2807         kfree(dev->ep0out_buf);
2808
2809         pch_udc_exit(dev);
2810
2811         if (dev->irq_registered)
2812                 free_irq(pdev->irq, dev);
2813         if (dev->base_addr)
2814                 iounmap(dev->base_addr);
2815         if (dev->mem_region)
2816                 release_mem_region(dev->phys_addr,
2817                                    pci_resource_len(pdev, PCH_UDC_PCI_BAR));
2818         if (dev->active)
2819                 pci_disable_device(pdev);
2820         if (dev->registered)
2821                 device_unregister(&dev->gadget.dev);
2822         kfree(dev);
2823         pci_set_drvdata(pdev, NULL);
2824 }
2825
2826 #ifdef CONFIG_PM
2827 static int pch_udc_suspend(struct pci_dev *pdev, pm_message_t state)
2828 {
2829         struct pch_udc_dev *dev = pci_get_drvdata(pdev);
2830
2831         pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
2832         pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2833
2834         pci_disable_device(pdev);
2835         pci_enable_wake(pdev, PCI_D3hot, 0);
2836
2837         if (pci_save_state(pdev)) {
2838                 dev_err(&pdev->dev,
2839                         "%s: could not save PCI config state\n", __func__);
2840                 return -ENOMEM;
2841         }
2842         pci_set_power_state(pdev, pci_choose_state(pdev, state));
2843         return 0;
2844 }
2845
2846 static int pch_udc_resume(struct pci_dev *pdev)
2847 {
2848         int ret;
2849
2850         pci_set_power_state(pdev, PCI_D0);
2851         pci_restore_state(pdev);
2852         ret = pci_enable_device(pdev);
2853         if (ret) {
2854                 dev_err(&pdev->dev, "%s: pci_enable_device failed\n", __func__);
2855                 return ret;
2856         }
2857         pci_enable_wake(pdev, PCI_D3hot, 0);
2858         return 0;
2859 }
2860 #else
2861 #define pch_udc_suspend NULL
2862 #define pch_udc_resume  NULL
2863 #endif /* CONFIG_PM */
2864
2865 static int pch_udc_probe(struct pci_dev *pdev,
2866                           const struct pci_device_id *id)
2867 {
2868         unsigned long           resource;
2869         unsigned long           len;
2870         int                     retval;
2871         struct pch_udc_dev      *dev;
2872
2873         /* one udc only */
2874         if (pch_udc) {
2875                 pr_err("%s: already probed\n", __func__);
2876                 return -EBUSY;
2877         }
2878         /* init */
2879         dev = kzalloc(sizeof *dev, GFP_KERNEL);
2880         if (!dev) {
2881                 pr_err("%s: no memory for device structure\n", __func__);
2882                 return -ENOMEM;
2883         }
2884         /* pci setup */
2885         if (pci_enable_device(pdev) < 0) {
2886                 kfree(dev);
2887                 pr_err("%s: pci_enable_device failed\n", __func__);
2888                 return -ENODEV;
2889         }
2890         dev->active = 1;
2891         pci_set_drvdata(pdev, dev);
2892
2893         /* PCI resource allocation */
2894         resource = pci_resource_start(pdev, 1);
2895         len = pci_resource_len(pdev, 1);
2896
2897         if (!request_mem_region(resource, len, KBUILD_MODNAME)) {
2898                 dev_err(&pdev->dev, "%s: pci device used already\n", __func__);
2899                 retval = -EBUSY;
2900                 goto finished;
2901         }
2902         dev->phys_addr = resource;
2903         dev->mem_region = 1;
2904
2905         dev->base_addr = ioremap_nocache(resource, len);
2906         if (!dev->base_addr) {
2907                 pr_err("%s: device memory cannot be mapped\n", __func__);
2908                 retval = -ENOMEM;
2909                 goto finished;
2910         }
2911         if (!pdev->irq) {
2912                 dev_err(&pdev->dev, "%s: irq not set\n", __func__);
2913                 retval = -ENODEV;
2914                 goto finished;
2915         }
2916         pch_udc = dev;
2917         /* initialize the hardware */
2918         if (pch_udc_pcd_init(dev))
2919                 goto finished;
2920         if (request_irq(pdev->irq, pch_udc_isr, IRQF_SHARED, KBUILD_MODNAME,
2921                         dev)) {
2922                 dev_err(&pdev->dev, "%s: request_irq(%d) fail\n", __func__,
2923                         pdev->irq);
2924                 retval = -ENODEV;
2925                 goto finished;
2926         }
2927         dev->irq = pdev->irq;
2928         dev->irq_registered = 1;
2929
2930         pci_set_master(pdev);
2931         pci_try_set_mwi(pdev);
2932
2933         /* device struct setup */
2934         spin_lock_init(&dev->lock);
2935         dev->pdev = pdev;
2936         dev->gadget.ops = &pch_udc_ops;
2937
2938         retval = init_dma_pools(dev);
2939         if (retval)
2940                 goto finished;
2941
2942         dev_set_name(&dev->gadget.dev, "gadget");
2943         dev->gadget.dev.parent = &pdev->dev;
2944         dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
2945         dev->gadget.dev.release = gadget_release;
2946         dev->gadget.name = KBUILD_MODNAME;
2947         dev->gadget.is_dualspeed = 1;
2948
2949         retval = device_register(&dev->gadget.dev);
2950         if (retval)
2951                 goto finished;
2952         dev->registered = 1;
2953
2954         /* Put the device in disconnected state till a driver is bound */
2955         pch_udc_set_disconnect(dev);
2956         return 0;
2957
2958 finished:
2959         pch_udc_remove(pdev);
2960         return retval;
2961 }
2962
2963 static DEFINE_PCI_DEVICE_TABLE(pch_udc_pcidev_id) = {
2964         {
2965                 PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EG20T_UDC),
2966                 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
2967                 .class_mask = 0xffffffff,
2968         },
2969         {
2970                 PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7213_IOH_UDC),
2971                 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
2972                 .class_mask = 0xffffffff,
2973         },
2974         { 0 },
2975 };
2976
2977 MODULE_DEVICE_TABLE(pci, pch_udc_pcidev_id);
2978
2979
2980 static struct pci_driver pch_udc_driver = {
2981         .name = KBUILD_MODNAME,
2982         .id_table =     pch_udc_pcidev_id,
2983         .probe =        pch_udc_probe,
2984         .remove =       pch_udc_remove,
2985         .suspend =      pch_udc_suspend,
2986         .resume =       pch_udc_resume,
2987         .shutdown =     pch_udc_shutdown,
2988 };
2989
2990 static int __init pch_udc_pci_init(void)
2991 {
2992         return pci_register_driver(&pch_udc_driver);
2993 }
2994 module_init(pch_udc_pci_init);
2995
2996 static void __exit pch_udc_pci_exit(void)
2997 {
2998         pci_unregister_driver(&pch_udc_driver);
2999 }
3000 module_exit(pch_udc_pci_exit);
3001
3002 MODULE_DESCRIPTION("Intel EG20T USB Device Controller");
3003 MODULE_AUTHOR("OKI SEMICONDUCTOR, <toshiharu-linux@dsn.okisemi.com>");
3004 MODULE_LICENSE("GPL");