TTY: do not update atime/mtime on read/write
[pandora-kernel.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100 #include <asm/system.h>
101
102 #include <linux/kbd_kern.h>
103 #include <linux/vt_kern.h>
104 #include <linux/selection.h>
105
106 #include <linux/kmod.h>
107 #include <linux/nsproxy.h>
108
109 #undef TTY_DEBUG_HANGUP
110
111 #define TTY_PARANOIA_CHECK 1
112 #define CHECK_TTY_COUNT 1
113
114 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
115         .c_iflag = ICRNL | IXON,
116         .c_oflag = OPOST | ONLCR,
117         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
118         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
119                    ECHOCTL | ECHOKE | IEXTEN,
120         .c_cc = INIT_C_CC,
121         .c_ispeed = 38400,
122         .c_ospeed = 38400
123 };
124
125 EXPORT_SYMBOL(tty_std_termios);
126
127 /* This list gets poked at by procfs and various bits of boot up code. This
128    could do with some rationalisation such as pulling the tty proc function
129    into this file */
130
131 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
132
133 /* Mutex to protect creating and releasing a tty. This is shared with
134    vt.c for deeply disgusting hack reasons */
135 DEFINE_MUTEX(tty_mutex);
136 EXPORT_SYMBOL(tty_mutex);
137
138 /* Spinlock to protect the tty->tty_files list */
139 DEFINE_SPINLOCK(tty_files_lock);
140
141 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
142 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
143 ssize_t redirected_tty_write(struct file *, const char __user *,
144                                                         size_t, loff_t *);
145 static unsigned int tty_poll(struct file *, poll_table *);
146 static int tty_open(struct inode *, struct file *);
147 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
148 #ifdef CONFIG_COMPAT
149 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
150                                 unsigned long arg);
151 #else
152 #define tty_compat_ioctl NULL
153 #endif
154 static int __tty_fasync(int fd, struct file *filp, int on);
155 static int tty_fasync(int fd, struct file *filp, int on);
156 static void release_tty(struct tty_struct *tty, int idx);
157 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
159
160 /**
161  *      alloc_tty_struct        -       allocate a tty object
162  *
163  *      Return a new empty tty structure. The data fields have not
164  *      been initialized in any way but has been zeroed
165  *
166  *      Locking: none
167  */
168
169 struct tty_struct *alloc_tty_struct(void)
170 {
171         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
172 }
173
174 /**
175  *      free_tty_struct         -       free a disused tty
176  *      @tty: tty struct to free
177  *
178  *      Free the write buffers, tty queue and tty memory itself.
179  *
180  *      Locking: none. Must be called after tty is definitely unused
181  */
182
183 void free_tty_struct(struct tty_struct *tty)
184 {
185         if (tty->dev)
186                 put_device(tty->dev);
187         kfree(tty->write_buf);
188         tty_buffer_free_all(tty);
189         kfree(tty);
190 }
191
192 static inline struct tty_struct *file_tty(struct file *file)
193 {
194         return ((struct tty_file_private *)file->private_data)->tty;
195 }
196
197 int tty_alloc_file(struct file *file)
198 {
199         struct tty_file_private *priv;
200
201         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
202         if (!priv)
203                 return -ENOMEM;
204
205         file->private_data = priv;
206
207         return 0;
208 }
209
210 /* Associate a new file with the tty structure */
211 void tty_add_file(struct tty_struct *tty, struct file *file)
212 {
213         struct tty_file_private *priv = file->private_data;
214
215         priv->tty = tty;
216         priv->file = file;
217
218         spin_lock(&tty_files_lock);
219         list_add(&priv->list, &tty->tty_files);
220         spin_unlock(&tty_files_lock);
221 }
222
223 /**
224  * tty_free_file - free file->private_data
225  *
226  * This shall be used only for fail path handling when tty_add_file was not
227  * called yet.
228  */
229 void tty_free_file(struct file *file)
230 {
231         struct tty_file_private *priv = file->private_data;
232
233         file->private_data = NULL;
234         kfree(priv);
235 }
236
237 /* Delete file from its tty */
238 void tty_del_file(struct file *file)
239 {
240         struct tty_file_private *priv = file->private_data;
241
242         spin_lock(&tty_files_lock);
243         list_del(&priv->list);
244         spin_unlock(&tty_files_lock);
245         tty_free_file(file);
246 }
247
248
249 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
250
251 /**
252  *      tty_name        -       return tty naming
253  *      @tty: tty structure
254  *      @buf: buffer for output
255  *
256  *      Convert a tty structure into a name. The name reflects the kernel
257  *      naming policy and if udev is in use may not reflect user space
258  *
259  *      Locking: none
260  */
261
262 char *tty_name(struct tty_struct *tty, char *buf)
263 {
264         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
265                 strcpy(buf, "NULL tty");
266         else
267                 strcpy(buf, tty->name);
268         return buf;
269 }
270
271 EXPORT_SYMBOL(tty_name);
272
273 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
274                               const char *routine)
275 {
276 #ifdef TTY_PARANOIA_CHECK
277         if (!tty) {
278                 printk(KERN_WARNING
279                         "null TTY for (%d:%d) in %s\n",
280                         imajor(inode), iminor(inode), routine);
281                 return 1;
282         }
283         if (tty->magic != TTY_MAGIC) {
284                 printk(KERN_WARNING
285                         "bad magic number for tty struct (%d:%d) in %s\n",
286                         imajor(inode), iminor(inode), routine);
287                 return 1;
288         }
289 #endif
290         return 0;
291 }
292
293 static int check_tty_count(struct tty_struct *tty, const char *routine)
294 {
295 #ifdef CHECK_TTY_COUNT
296         struct list_head *p;
297         int count = 0;
298
299         spin_lock(&tty_files_lock);
300         list_for_each(p, &tty->tty_files) {
301                 count++;
302         }
303         spin_unlock(&tty_files_lock);
304         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
305             tty->driver->subtype == PTY_TYPE_SLAVE &&
306             tty->link && tty->link->count)
307                 count++;
308         if (tty->count != count) {
309                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
310                                     "!= #fd's(%d) in %s\n",
311                        tty->name, tty->count, count, routine);
312                 return count;
313         }
314 #endif
315         return 0;
316 }
317
318 /**
319  *      get_tty_driver          -       find device of a tty
320  *      @dev_t: device identifier
321  *      @index: returns the index of the tty
322  *
323  *      This routine returns a tty driver structure, given a device number
324  *      and also passes back the index number.
325  *
326  *      Locking: caller must hold tty_mutex
327  */
328
329 static struct tty_driver *get_tty_driver(dev_t device, int *index)
330 {
331         struct tty_driver *p;
332
333         list_for_each_entry(p, &tty_drivers, tty_drivers) {
334                 dev_t base = MKDEV(p->major, p->minor_start);
335                 if (device < base || device >= base + p->num)
336                         continue;
337                 *index = device - base;
338                 return tty_driver_kref_get(p);
339         }
340         return NULL;
341 }
342
343 #ifdef CONFIG_CONSOLE_POLL
344
345 /**
346  *      tty_find_polling_driver -       find device of a polled tty
347  *      @name: name string to match
348  *      @line: pointer to resulting tty line nr
349  *
350  *      This routine returns a tty driver structure, given a name
351  *      and the condition that the tty driver is capable of polled
352  *      operation.
353  */
354 struct tty_driver *tty_find_polling_driver(char *name, int *line)
355 {
356         struct tty_driver *p, *res = NULL;
357         int tty_line = 0;
358         int len;
359         char *str, *stp;
360
361         for (str = name; *str; str++)
362                 if ((*str >= '0' && *str <= '9') || *str == ',')
363                         break;
364         if (!*str)
365                 return NULL;
366
367         len = str - name;
368         tty_line = simple_strtoul(str, &str, 10);
369
370         mutex_lock(&tty_mutex);
371         /* Search through the tty devices to look for a match */
372         list_for_each_entry(p, &tty_drivers, tty_drivers) {
373                 if (strncmp(name, p->name, len) != 0)
374                         continue;
375                 stp = str;
376                 if (*stp == ',')
377                         stp++;
378                 if (*stp == '\0')
379                         stp = NULL;
380
381                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
382                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
383                         res = tty_driver_kref_get(p);
384                         *line = tty_line;
385                         break;
386                 }
387         }
388         mutex_unlock(&tty_mutex);
389
390         return res;
391 }
392 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
393 #endif
394
395 /**
396  *      tty_check_change        -       check for POSIX terminal changes
397  *      @tty: tty to check
398  *
399  *      If we try to write to, or set the state of, a terminal and we're
400  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
401  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
402  *
403  *      Locking: ctrl_lock
404  */
405
406 int tty_check_change(struct tty_struct *tty)
407 {
408         unsigned long flags;
409         int ret = 0;
410
411         if (current->signal->tty != tty)
412                 return 0;
413
414         spin_lock_irqsave(&tty->ctrl_lock, flags);
415
416         if (!tty->pgrp) {
417                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
418                 goto out_unlock;
419         }
420         if (task_pgrp(current) == tty->pgrp)
421                 goto out_unlock;
422         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
423         if (is_ignored(SIGTTOU))
424                 goto out;
425         if (is_current_pgrp_orphaned()) {
426                 ret = -EIO;
427                 goto out;
428         }
429         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
430         set_thread_flag(TIF_SIGPENDING);
431         ret = -ERESTARTSYS;
432 out:
433         return ret;
434 out_unlock:
435         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
436         return ret;
437 }
438
439 EXPORT_SYMBOL(tty_check_change);
440
441 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
442                                 size_t count, loff_t *ppos)
443 {
444         return 0;
445 }
446
447 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
448                                  size_t count, loff_t *ppos)
449 {
450         return -EIO;
451 }
452
453 /* No kernel lock held - none needed ;) */
454 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
455 {
456         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
457 }
458
459 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
460                 unsigned long arg)
461 {
462         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
463 }
464
465 static long hung_up_tty_compat_ioctl(struct file *file,
466                                      unsigned int cmd, unsigned long arg)
467 {
468         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
469 }
470
471 static const struct file_operations tty_fops = {
472         .llseek         = no_llseek,
473         .read           = tty_read,
474         .write          = tty_write,
475         .poll           = tty_poll,
476         .unlocked_ioctl = tty_ioctl,
477         .compat_ioctl   = tty_compat_ioctl,
478         .open           = tty_open,
479         .release        = tty_release,
480         .fasync         = tty_fasync,
481 };
482
483 static const struct file_operations console_fops = {
484         .llseek         = no_llseek,
485         .read           = tty_read,
486         .write          = redirected_tty_write,
487         .poll           = tty_poll,
488         .unlocked_ioctl = tty_ioctl,
489         .compat_ioctl   = tty_compat_ioctl,
490         .open           = tty_open,
491         .release        = tty_release,
492         .fasync         = tty_fasync,
493 };
494
495 static const struct file_operations hung_up_tty_fops = {
496         .llseek         = no_llseek,
497         .read           = hung_up_tty_read,
498         .write          = hung_up_tty_write,
499         .poll           = hung_up_tty_poll,
500         .unlocked_ioctl = hung_up_tty_ioctl,
501         .compat_ioctl   = hung_up_tty_compat_ioctl,
502         .release        = tty_release,
503 };
504
505 static DEFINE_SPINLOCK(redirect_lock);
506 static struct file *redirect;
507
508 /**
509  *      tty_wakeup      -       request more data
510  *      @tty: terminal
511  *
512  *      Internal and external helper for wakeups of tty. This function
513  *      informs the line discipline if present that the driver is ready
514  *      to receive more output data.
515  */
516
517 void tty_wakeup(struct tty_struct *tty)
518 {
519         struct tty_ldisc *ld;
520
521         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
522                 ld = tty_ldisc_ref(tty);
523                 if (ld) {
524                         if (ld->ops->write_wakeup)
525                                 ld->ops->write_wakeup(tty);
526                         tty_ldisc_deref(ld);
527                 }
528         }
529         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
530 }
531
532 EXPORT_SYMBOL_GPL(tty_wakeup);
533
534 /**
535  *      __tty_hangup            -       actual handler for hangup events
536  *      @work: tty device
537  *
538  *      This can be called by the "eventd" kernel thread.  That is process
539  *      synchronous but doesn't hold any locks, so we need to make sure we
540  *      have the appropriate locks for what we're doing.
541  *
542  *      The hangup event clears any pending redirections onto the hung up
543  *      device. It ensures future writes will error and it does the needed
544  *      line discipline hangup and signal delivery. The tty object itself
545  *      remains intact.
546  *
547  *      Locking:
548  *              BTM
549  *                redirect lock for undoing redirection
550  *                file list lock for manipulating list of ttys
551  *                tty_ldisc_lock from called functions
552  *                termios_mutex resetting termios data
553  *                tasklist_lock to walk task list for hangup event
554  *                  ->siglock to protect ->signal/->sighand
555  */
556 void __tty_hangup(struct tty_struct *tty)
557 {
558         struct file *cons_filp = NULL;
559         struct file *filp, *f = NULL;
560         struct task_struct *p;
561         struct tty_file_private *priv;
562         int    closecount = 0, n;
563         unsigned long flags;
564         int refs = 0;
565
566         if (!tty)
567                 return;
568
569
570         spin_lock(&redirect_lock);
571         if (redirect && file_tty(redirect) == tty) {
572                 f = redirect;
573                 redirect = NULL;
574         }
575         spin_unlock(&redirect_lock);
576
577         tty_lock();
578
579         /* some functions below drop BTM, so we need this bit */
580         set_bit(TTY_HUPPING, &tty->flags);
581
582         /* inuse_filps is protected by the single tty lock,
583            this really needs to change if we want to flush the
584            workqueue with the lock held */
585         check_tty_count(tty, "tty_hangup");
586
587         spin_lock(&tty_files_lock);
588         /* This breaks for file handles being sent over AF_UNIX sockets ? */
589         list_for_each_entry(priv, &tty->tty_files, list) {
590                 filp = priv->file;
591                 if (filp->f_op->write == redirected_tty_write)
592                         cons_filp = filp;
593                 if (filp->f_op->write != tty_write)
594                         continue;
595                 closecount++;
596                 __tty_fasync(-1, filp, 0);      /* can't block */
597                 filp->f_op = &hung_up_tty_fops;
598         }
599         spin_unlock(&tty_files_lock);
600
601         /*
602          * it drops BTM and thus races with reopen
603          * we protect the race by TTY_HUPPING
604          */
605         tty_ldisc_hangup(tty);
606
607         read_lock(&tasklist_lock);
608         if (tty->session) {
609                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
610                         spin_lock_irq(&p->sighand->siglock);
611                         if (p->signal->tty == tty) {
612                                 p->signal->tty = NULL;
613                                 /* We defer the dereferences outside fo
614                                    the tasklist lock */
615                                 refs++;
616                         }
617                         if (!p->signal->leader) {
618                                 spin_unlock_irq(&p->sighand->siglock);
619                                 continue;
620                         }
621                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
622                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
623                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
624                         spin_lock_irqsave(&tty->ctrl_lock, flags);
625                         if (tty->pgrp)
626                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
627                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
628                         spin_unlock_irq(&p->sighand->siglock);
629                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
630         }
631         read_unlock(&tasklist_lock);
632
633         spin_lock_irqsave(&tty->ctrl_lock, flags);
634         clear_bit(TTY_THROTTLED, &tty->flags);
635         clear_bit(TTY_PUSH, &tty->flags);
636         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
637         put_pid(tty->session);
638         put_pid(tty->pgrp);
639         tty->session = NULL;
640         tty->pgrp = NULL;
641         tty->ctrl_status = 0;
642         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
643
644         /* Account for the p->signal references we killed */
645         while (refs--)
646                 tty_kref_put(tty);
647
648         /*
649          * If one of the devices matches a console pointer, we
650          * cannot just call hangup() because that will cause
651          * tty->count and state->count to go out of sync.
652          * So we just call close() the right number of times.
653          */
654         if (cons_filp) {
655                 if (tty->ops->close)
656                         for (n = 0; n < closecount; n++)
657                                 tty->ops->close(tty, cons_filp);
658         } else if (tty->ops->hangup)
659                 (tty->ops->hangup)(tty);
660         /*
661          * We don't want to have driver/ldisc interactions beyond
662          * the ones we did here. The driver layer expects no
663          * calls after ->hangup() from the ldisc side. However we
664          * can't yet guarantee all that.
665          */
666         set_bit(TTY_HUPPED, &tty->flags);
667         clear_bit(TTY_HUPPING, &tty->flags);
668         tty_ldisc_enable(tty);
669
670         tty_unlock();
671
672         if (f)
673                 fput(f);
674 }
675
676 static void do_tty_hangup(struct work_struct *work)
677 {
678         struct tty_struct *tty =
679                 container_of(work, struct tty_struct, hangup_work);
680
681         __tty_hangup(tty);
682 }
683
684 /**
685  *      tty_hangup              -       trigger a hangup event
686  *      @tty: tty to hangup
687  *
688  *      A carrier loss (virtual or otherwise) has occurred on this like
689  *      schedule a hangup sequence to run after this event.
690  */
691
692 void tty_hangup(struct tty_struct *tty)
693 {
694 #ifdef TTY_DEBUG_HANGUP
695         char    buf[64];
696         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
697 #endif
698         schedule_work(&tty->hangup_work);
699 }
700
701 EXPORT_SYMBOL(tty_hangup);
702
703 /**
704  *      tty_vhangup             -       process vhangup
705  *      @tty: tty to hangup
706  *
707  *      The user has asked via system call for the terminal to be hung up.
708  *      We do this synchronously so that when the syscall returns the process
709  *      is complete. That guarantee is necessary for security reasons.
710  */
711
712 void tty_vhangup(struct tty_struct *tty)
713 {
714 #ifdef TTY_DEBUG_HANGUP
715         char    buf[64];
716
717         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
718 #endif
719         __tty_hangup(tty);
720 }
721
722 EXPORT_SYMBOL(tty_vhangup);
723
724
725 /**
726  *      tty_vhangup_self        -       process vhangup for own ctty
727  *
728  *      Perform a vhangup on the current controlling tty
729  */
730
731 void tty_vhangup_self(void)
732 {
733         struct tty_struct *tty;
734
735         tty = get_current_tty();
736         if (tty) {
737                 tty_vhangup(tty);
738                 tty_kref_put(tty);
739         }
740 }
741
742 /**
743  *      tty_hung_up_p           -       was tty hung up
744  *      @filp: file pointer of tty
745  *
746  *      Return true if the tty has been subject to a vhangup or a carrier
747  *      loss
748  */
749
750 int tty_hung_up_p(struct file *filp)
751 {
752         return (filp->f_op == &hung_up_tty_fops);
753 }
754
755 EXPORT_SYMBOL(tty_hung_up_p);
756
757 static void session_clear_tty(struct pid *session)
758 {
759         struct task_struct *p;
760         do_each_pid_task(session, PIDTYPE_SID, p) {
761                 proc_clear_tty(p);
762         } while_each_pid_task(session, PIDTYPE_SID, p);
763 }
764
765 /**
766  *      disassociate_ctty       -       disconnect controlling tty
767  *      @on_exit: true if exiting so need to "hang up" the session
768  *
769  *      This function is typically called only by the session leader, when
770  *      it wants to disassociate itself from its controlling tty.
771  *
772  *      It performs the following functions:
773  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
774  *      (2)  Clears the tty from being controlling the session
775  *      (3)  Clears the controlling tty for all processes in the
776  *              session group.
777  *
778  *      The argument on_exit is set to 1 if called when a process is
779  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
780  *
781  *      Locking:
782  *              BTM is taken for hysterical raisins, and held when
783  *                called from no_tty().
784  *                tty_mutex is taken to protect tty
785  *                ->siglock is taken to protect ->signal/->sighand
786  *                tasklist_lock is taken to walk process list for sessions
787  *                  ->siglock is taken to protect ->signal/->sighand
788  */
789
790 void disassociate_ctty(int on_exit)
791 {
792         struct tty_struct *tty;
793         struct pid *tty_pgrp = NULL;
794
795         if (!current->signal->leader)
796                 return;
797
798         tty = get_current_tty();
799         if (tty) {
800                 tty_pgrp = get_pid(tty->pgrp);
801                 if (on_exit) {
802                         if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
803                                 tty_vhangup(tty);
804                 }
805                 tty_kref_put(tty);
806         } else if (on_exit) {
807                 struct pid *old_pgrp;
808                 spin_lock_irq(&current->sighand->siglock);
809                 old_pgrp = current->signal->tty_old_pgrp;
810                 current->signal->tty_old_pgrp = NULL;
811                 spin_unlock_irq(&current->sighand->siglock);
812                 if (old_pgrp) {
813                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
814                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
815                         put_pid(old_pgrp);
816                 }
817                 return;
818         }
819         if (tty_pgrp) {
820                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
821                 if (!on_exit)
822                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
823                 put_pid(tty_pgrp);
824         }
825
826         spin_lock_irq(&current->sighand->siglock);
827         put_pid(current->signal->tty_old_pgrp);
828         current->signal->tty_old_pgrp = NULL;
829         spin_unlock_irq(&current->sighand->siglock);
830
831         tty = get_current_tty();
832         if (tty) {
833                 unsigned long flags;
834                 spin_lock_irqsave(&tty->ctrl_lock, flags);
835                 put_pid(tty->session);
836                 put_pid(tty->pgrp);
837                 tty->session = NULL;
838                 tty->pgrp = NULL;
839                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
840                 tty_kref_put(tty);
841         } else {
842 #ifdef TTY_DEBUG_HANGUP
843                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
844                        " = NULL", tty);
845 #endif
846         }
847
848         /* Now clear signal->tty under the lock */
849         read_lock(&tasklist_lock);
850         session_clear_tty(task_session(current));
851         read_unlock(&tasklist_lock);
852 }
853
854 /**
855  *
856  *      no_tty  - Ensure the current process does not have a controlling tty
857  */
858 void no_tty(void)
859 {
860         struct task_struct *tsk = current;
861         tty_lock();
862         disassociate_ctty(0);
863         tty_unlock();
864         proc_clear_tty(tsk);
865 }
866
867
868 /**
869  *      stop_tty        -       propagate flow control
870  *      @tty: tty to stop
871  *
872  *      Perform flow control to the driver. For PTY/TTY pairs we
873  *      must also propagate the TIOCKPKT status. May be called
874  *      on an already stopped device and will not re-call the driver
875  *      method.
876  *
877  *      This functionality is used by both the line disciplines for
878  *      halting incoming flow and by the driver. It may therefore be
879  *      called from any context, may be under the tty atomic_write_lock
880  *      but not always.
881  *
882  *      Locking:
883  *              Uses the tty control lock internally
884  */
885
886 void stop_tty(struct tty_struct *tty)
887 {
888         unsigned long flags;
889         spin_lock_irqsave(&tty->ctrl_lock, flags);
890         if (tty->stopped) {
891                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
892                 return;
893         }
894         tty->stopped = 1;
895         if (tty->link && tty->link->packet) {
896                 tty->ctrl_status &= ~TIOCPKT_START;
897                 tty->ctrl_status |= TIOCPKT_STOP;
898                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
899         }
900         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
901         if (tty->ops->stop)
902                 (tty->ops->stop)(tty);
903 }
904
905 EXPORT_SYMBOL(stop_tty);
906
907 /**
908  *      start_tty       -       propagate flow control
909  *      @tty: tty to start
910  *
911  *      Start a tty that has been stopped if at all possible. Perform
912  *      any necessary wakeups and propagate the TIOCPKT status. If this
913  *      is the tty was previous stopped and is being started then the
914  *      driver start method is invoked and the line discipline woken.
915  *
916  *      Locking:
917  *              ctrl_lock
918  */
919
920 void start_tty(struct tty_struct *tty)
921 {
922         unsigned long flags;
923         spin_lock_irqsave(&tty->ctrl_lock, flags);
924         if (!tty->stopped || tty->flow_stopped) {
925                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
926                 return;
927         }
928         tty->stopped = 0;
929         if (tty->link && tty->link->packet) {
930                 tty->ctrl_status &= ~TIOCPKT_STOP;
931                 tty->ctrl_status |= TIOCPKT_START;
932                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
933         }
934         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
935         if (tty->ops->start)
936                 (tty->ops->start)(tty);
937         /* If we have a running line discipline it may need kicking */
938         tty_wakeup(tty);
939 }
940
941 EXPORT_SYMBOL(start_tty);
942
943 /**
944  *      tty_read        -       read method for tty device files
945  *      @file: pointer to tty file
946  *      @buf: user buffer
947  *      @count: size of user buffer
948  *      @ppos: unused
949  *
950  *      Perform the read system call function on this terminal device. Checks
951  *      for hung up devices before calling the line discipline method.
952  *
953  *      Locking:
954  *              Locks the line discipline internally while needed. Multiple
955  *      read calls may be outstanding in parallel.
956  */
957
958 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
959                         loff_t *ppos)
960 {
961         int i;
962         struct inode *inode = file->f_path.dentry->d_inode;
963         struct tty_struct *tty = file_tty(file);
964         struct tty_ldisc *ld;
965
966         if (tty_paranoia_check(tty, inode, "tty_read"))
967                 return -EIO;
968         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
969                 return -EIO;
970
971         /* We want to wait for the line discipline to sort out in this
972            situation */
973         ld = tty_ldisc_ref_wait(tty);
974         if (ld->ops->read)
975                 i = (ld->ops->read)(tty, file, buf, count);
976         else
977                 i = -EIO;
978         tty_ldisc_deref(ld);
979
980         return i;
981 }
982
983 void tty_write_unlock(struct tty_struct *tty)
984         __releases(&tty->atomic_write_lock)
985 {
986         mutex_unlock(&tty->atomic_write_lock);
987         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
988 }
989
990 int tty_write_lock(struct tty_struct *tty, int ndelay)
991         __acquires(&tty->atomic_write_lock)
992 {
993         if (!mutex_trylock(&tty->atomic_write_lock)) {
994                 if (ndelay)
995                         return -EAGAIN;
996                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
997                         return -ERESTARTSYS;
998         }
999         return 0;
1000 }
1001
1002 /*
1003  * Split writes up in sane blocksizes to avoid
1004  * denial-of-service type attacks
1005  */
1006 static inline ssize_t do_tty_write(
1007         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1008         struct tty_struct *tty,
1009         struct file *file,
1010         const char __user *buf,
1011         size_t count)
1012 {
1013         ssize_t ret, written = 0;
1014         unsigned int chunk;
1015
1016         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1017         if (ret < 0)
1018                 return ret;
1019
1020         /*
1021          * We chunk up writes into a temporary buffer. This
1022          * simplifies low-level drivers immensely, since they
1023          * don't have locking issues and user mode accesses.
1024          *
1025          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1026          * big chunk-size..
1027          *
1028          * The default chunk-size is 2kB, because the NTTY
1029          * layer has problems with bigger chunks. It will
1030          * claim to be able to handle more characters than
1031          * it actually does.
1032          *
1033          * FIXME: This can probably go away now except that 64K chunks
1034          * are too likely to fail unless switched to vmalloc...
1035          */
1036         chunk = 2048;
1037         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1038                 chunk = 65536;
1039         if (count < chunk)
1040                 chunk = count;
1041
1042         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1043         if (tty->write_cnt < chunk) {
1044                 unsigned char *buf_chunk;
1045
1046                 if (chunk < 1024)
1047                         chunk = 1024;
1048
1049                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1050                 if (!buf_chunk) {
1051                         ret = -ENOMEM;
1052                         goto out;
1053                 }
1054                 kfree(tty->write_buf);
1055                 tty->write_cnt = chunk;
1056                 tty->write_buf = buf_chunk;
1057         }
1058
1059         /* Do the write .. */
1060         for (;;) {
1061                 size_t size = count;
1062                 if (size > chunk)
1063                         size = chunk;
1064                 ret = -EFAULT;
1065                 if (copy_from_user(tty->write_buf, buf, size))
1066                         break;
1067                 ret = write(tty, file, tty->write_buf, size);
1068                 if (ret <= 0)
1069                         break;
1070                 written += ret;
1071                 buf += ret;
1072                 count -= ret;
1073                 if (!count)
1074                         break;
1075                 ret = -ERESTARTSYS;
1076                 if (signal_pending(current))
1077                         break;
1078                 cond_resched();
1079         }
1080         if (written)
1081                 ret = written;
1082 out:
1083         tty_write_unlock(tty);
1084         return ret;
1085 }
1086
1087 /**
1088  * tty_write_message - write a message to a certain tty, not just the console.
1089  * @tty: the destination tty_struct
1090  * @msg: the message to write
1091  *
1092  * This is used for messages that need to be redirected to a specific tty.
1093  * We don't put it into the syslog queue right now maybe in the future if
1094  * really needed.
1095  *
1096  * We must still hold the BTM and test the CLOSING flag for the moment.
1097  */
1098
1099 void tty_write_message(struct tty_struct *tty, char *msg)
1100 {
1101         if (tty) {
1102                 mutex_lock(&tty->atomic_write_lock);
1103                 tty_lock();
1104                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1105                         tty_unlock();
1106                         tty->ops->write(tty, msg, strlen(msg));
1107                 } else
1108                         tty_unlock();
1109                 tty_write_unlock(tty);
1110         }
1111         return;
1112 }
1113
1114
1115 /**
1116  *      tty_write               -       write method for tty device file
1117  *      @file: tty file pointer
1118  *      @buf: user data to write
1119  *      @count: bytes to write
1120  *      @ppos: unused
1121  *
1122  *      Write data to a tty device via the line discipline.
1123  *
1124  *      Locking:
1125  *              Locks the line discipline as required
1126  *              Writes to the tty driver are serialized by the atomic_write_lock
1127  *      and are then processed in chunks to the device. The line discipline
1128  *      write method will not be invoked in parallel for each device.
1129  */
1130
1131 static ssize_t tty_write(struct file *file, const char __user *buf,
1132                                                 size_t count, loff_t *ppos)
1133 {
1134         struct inode *inode = file->f_path.dentry->d_inode;
1135         struct tty_struct *tty = file_tty(file);
1136         struct tty_ldisc *ld;
1137         ssize_t ret;
1138
1139         if (tty_paranoia_check(tty, inode, "tty_write"))
1140                 return -EIO;
1141         if (!tty || !tty->ops->write ||
1142                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1143                         return -EIO;
1144         /* Short term debug to catch buggy drivers */
1145         if (tty->ops->write_room == NULL)
1146                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1147                         tty->driver->name);
1148         ld = tty_ldisc_ref_wait(tty);
1149         if (!ld->ops->write)
1150                 ret = -EIO;
1151         else
1152                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1153         tty_ldisc_deref(ld);
1154         return ret;
1155 }
1156
1157 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1158                                                 size_t count, loff_t *ppos)
1159 {
1160         struct file *p = NULL;
1161
1162         spin_lock(&redirect_lock);
1163         if (redirect) {
1164                 get_file(redirect);
1165                 p = redirect;
1166         }
1167         spin_unlock(&redirect_lock);
1168
1169         if (p) {
1170                 ssize_t res;
1171                 res = vfs_write(p, buf, count, &p->f_pos);
1172                 fput(p);
1173                 return res;
1174         }
1175         return tty_write(file, buf, count, ppos);
1176 }
1177
1178 static char ptychar[] = "pqrstuvwxyzabcde";
1179
1180 /**
1181  *      pty_line_name   -       generate name for a pty
1182  *      @driver: the tty driver in use
1183  *      @index: the minor number
1184  *      @p: output buffer of at least 6 bytes
1185  *
1186  *      Generate a name from a driver reference and write it to the output
1187  *      buffer.
1188  *
1189  *      Locking: None
1190  */
1191 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1192 {
1193         int i = index + driver->name_base;
1194         /* ->name is initialized to "ttyp", but "tty" is expected */
1195         sprintf(p, "%s%c%x",
1196                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1197                 ptychar[i >> 4 & 0xf], i & 0xf);
1198 }
1199
1200 /**
1201  *      tty_line_name   -       generate name for a tty
1202  *      @driver: the tty driver in use
1203  *      @index: the minor number
1204  *      @p: output buffer of at least 7 bytes
1205  *
1206  *      Generate a name from a driver reference and write it to the output
1207  *      buffer.
1208  *
1209  *      Locking: None
1210  */
1211 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1212 {
1213         sprintf(p, "%s%d", driver->name, index + driver->name_base);
1214 }
1215
1216 /**
1217  *      tty_driver_lookup_tty() - find an existing tty, if any
1218  *      @driver: the driver for the tty
1219  *      @idx:    the minor number
1220  *
1221  *      Return the tty, if found or ERR_PTR() otherwise.
1222  *
1223  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1224  *      be held until the 'fast-open' is also done. Will change once we
1225  *      have refcounting in the driver and per driver locking
1226  */
1227 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1228                 struct inode *inode, int idx)
1229 {
1230         struct tty_struct *tty;
1231
1232         if (driver->ops->lookup)
1233                 return driver->ops->lookup(driver, inode, idx);
1234
1235         tty = driver->ttys[idx];
1236         return tty;
1237 }
1238
1239 /**
1240  *      tty_init_termios        -  helper for termios setup
1241  *      @tty: the tty to set up
1242  *
1243  *      Initialise the termios structures for this tty. Thus runs under
1244  *      the tty_mutex currently so we can be relaxed about ordering.
1245  */
1246
1247 int tty_init_termios(struct tty_struct *tty)
1248 {
1249         struct ktermios *tp;
1250         int idx = tty->index;
1251
1252         tp = tty->driver->termios[idx];
1253         if (tp == NULL) {
1254                 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1255                 if (tp == NULL)
1256                         return -ENOMEM;
1257                 memcpy(tp, &tty->driver->init_termios,
1258                                                 sizeof(struct ktermios));
1259                 tty->driver->termios[idx] = tp;
1260         }
1261         tty->termios = tp;
1262         tty->termios_locked = tp + 1;
1263
1264         /* Compatibility until drivers always set this */
1265         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1266         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1267         return 0;
1268 }
1269 EXPORT_SYMBOL_GPL(tty_init_termios);
1270
1271 /**
1272  *      tty_driver_install_tty() - install a tty entry in the driver
1273  *      @driver: the driver for the tty
1274  *      @tty: the tty
1275  *
1276  *      Install a tty object into the driver tables. The tty->index field
1277  *      will be set by the time this is called. This method is responsible
1278  *      for ensuring any need additional structures are allocated and
1279  *      configured.
1280  *
1281  *      Locking: tty_mutex for now
1282  */
1283 static int tty_driver_install_tty(struct tty_driver *driver,
1284                                                 struct tty_struct *tty)
1285 {
1286         int idx = tty->index;
1287         int ret;
1288
1289         if (driver->ops->install) {
1290                 ret = driver->ops->install(driver, tty);
1291                 return ret;
1292         }
1293
1294         if (tty_init_termios(tty) == 0) {
1295                 tty_driver_kref_get(driver);
1296                 tty->count++;
1297                 driver->ttys[idx] = tty;
1298                 return 0;
1299         }
1300         return -ENOMEM;
1301 }
1302
1303 /**
1304  *      tty_driver_remove_tty() - remove a tty from the driver tables
1305  *      @driver: the driver for the tty
1306  *      @idx:    the minor number
1307  *
1308  *      Remvoe a tty object from the driver tables. The tty->index field
1309  *      will be set by the time this is called.
1310  *
1311  *      Locking: tty_mutex for now
1312  */
1313 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1314 {
1315         if (driver->ops->remove)
1316                 driver->ops->remove(driver, tty);
1317         else
1318                 driver->ttys[tty->index] = NULL;
1319 }
1320
1321 /*
1322  *      tty_reopen()    - fast re-open of an open tty
1323  *      @tty    - the tty to open
1324  *
1325  *      Return 0 on success, -errno on error.
1326  *
1327  *      Locking: tty_mutex must be held from the time the tty was found
1328  *               till this open completes.
1329  */
1330 static int tty_reopen(struct tty_struct *tty)
1331 {
1332         struct tty_driver *driver = tty->driver;
1333
1334         if (test_bit(TTY_CLOSING, &tty->flags) ||
1335                         test_bit(TTY_HUPPING, &tty->flags) ||
1336                         test_bit(TTY_LDISC_CHANGING, &tty->flags))
1337                 return -EIO;
1338
1339         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1340             driver->subtype == PTY_TYPE_MASTER) {
1341                 /*
1342                  * special case for PTY masters: only one open permitted,
1343                  * and the slave side open count is incremented as well.
1344                  */
1345                 if (tty->count)
1346                         return -EIO;
1347
1348                 tty->link->count++;
1349         }
1350         tty->count++;
1351         tty->driver = driver; /* N.B. why do this every time?? */
1352
1353         mutex_lock(&tty->ldisc_mutex);
1354         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1355         mutex_unlock(&tty->ldisc_mutex);
1356
1357         return 0;
1358 }
1359
1360 /**
1361  *      tty_init_dev            -       initialise a tty device
1362  *      @driver: tty driver we are opening a device on
1363  *      @idx: device index
1364  *      @ret_tty: returned tty structure
1365  *      @first_ok: ok to open a new device (used by ptmx)
1366  *
1367  *      Prepare a tty device. This may not be a "new" clean device but
1368  *      could also be an active device. The pty drivers require special
1369  *      handling because of this.
1370  *
1371  *      Locking:
1372  *              The function is called under the tty_mutex, which
1373  *      protects us from the tty struct or driver itself going away.
1374  *
1375  *      On exit the tty device has the line discipline attached and
1376  *      a reference count of 1. If a pair was created for pty/tty use
1377  *      and the other was a pty master then it too has a reference count of 1.
1378  *
1379  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1380  * failed open.  The new code protects the open with a mutex, so it's
1381  * really quite straightforward.  The mutex locking can probably be
1382  * relaxed for the (most common) case of reopening a tty.
1383  */
1384
1385 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1386                                                                 int first_ok)
1387 {
1388         struct tty_struct *tty;
1389         int retval;
1390
1391         /* Check if pty master is being opened multiple times */
1392         if (driver->subtype == PTY_TYPE_MASTER &&
1393                 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1394                 return ERR_PTR(-EIO);
1395         }
1396
1397         /*
1398          * First time open is complex, especially for PTY devices.
1399          * This code guarantees that either everything succeeds and the
1400          * TTY is ready for operation, or else the table slots are vacated
1401          * and the allocated memory released.  (Except that the termios
1402          * and locked termios may be retained.)
1403          */
1404
1405         if (!try_module_get(driver->owner))
1406                 return ERR_PTR(-ENODEV);
1407
1408         tty = alloc_tty_struct();
1409         if (!tty) {
1410                 retval = -ENOMEM;
1411                 goto err_module_put;
1412         }
1413         initialize_tty_struct(tty, driver, idx);
1414
1415         retval = tty_driver_install_tty(driver, tty);
1416         if (retval < 0)
1417                 goto err_deinit_tty;
1418
1419         /*
1420          * Structures all installed ... call the ldisc open routines.
1421          * If we fail here just call release_tty to clean up.  No need
1422          * to decrement the use counts, as release_tty doesn't care.
1423          */
1424         retval = tty_ldisc_setup(tty, tty->link);
1425         if (retval)
1426                 goto err_release_tty;
1427         return tty;
1428
1429 err_deinit_tty:
1430         deinitialize_tty_struct(tty);
1431         free_tty_struct(tty);
1432 err_module_put:
1433         module_put(driver->owner);
1434         return ERR_PTR(retval);
1435
1436         /* call the tty release_tty routine to clean out this slot */
1437 err_release_tty:
1438         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1439                                  "clearing slot %d\n", idx);
1440         release_tty(tty, idx);
1441         return ERR_PTR(retval);
1442 }
1443
1444 void tty_free_termios(struct tty_struct *tty)
1445 {
1446         struct ktermios *tp;
1447         int idx = tty->index;
1448         /* Kill this flag and push into drivers for locking etc */
1449         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1450                 /* FIXME: Locking on ->termios array */
1451                 tp = tty->termios;
1452                 tty->driver->termios[idx] = NULL;
1453                 kfree(tp);
1454         }
1455 }
1456 EXPORT_SYMBOL(tty_free_termios);
1457
1458 void tty_shutdown(struct tty_struct *tty)
1459 {
1460         tty_driver_remove_tty(tty->driver, tty);
1461         tty_free_termios(tty);
1462 }
1463 EXPORT_SYMBOL(tty_shutdown);
1464
1465 /**
1466  *      release_one_tty         -       release tty structure memory
1467  *      @kref: kref of tty we are obliterating
1468  *
1469  *      Releases memory associated with a tty structure, and clears out the
1470  *      driver table slots. This function is called when a device is no longer
1471  *      in use. It also gets called when setup of a device fails.
1472  *
1473  *      Locking:
1474  *              tty_mutex - sometimes only
1475  *              takes the file list lock internally when working on the list
1476  *      of ttys that the driver keeps.
1477  *
1478  *      This method gets called from a work queue so that the driver private
1479  *      cleanup ops can sleep (needed for USB at least)
1480  */
1481 static void release_one_tty(struct work_struct *work)
1482 {
1483         struct tty_struct *tty =
1484                 container_of(work, struct tty_struct, hangup_work);
1485         struct tty_driver *driver = tty->driver;
1486
1487         if (tty->ops->cleanup)
1488                 tty->ops->cleanup(tty);
1489
1490         tty->magic = 0;
1491         tty_driver_kref_put(driver);
1492         module_put(driver->owner);
1493
1494         spin_lock(&tty_files_lock);
1495         list_del_init(&tty->tty_files);
1496         spin_unlock(&tty_files_lock);
1497
1498         put_pid(tty->pgrp);
1499         put_pid(tty->session);
1500         free_tty_struct(tty);
1501 }
1502
1503 static void queue_release_one_tty(struct kref *kref)
1504 {
1505         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1506
1507         if (tty->ops->shutdown)
1508                 tty->ops->shutdown(tty);
1509         else
1510                 tty_shutdown(tty);
1511
1512         /* The hangup queue is now free so we can reuse it rather than
1513            waste a chunk of memory for each port */
1514         INIT_WORK(&tty->hangup_work, release_one_tty);
1515         schedule_work(&tty->hangup_work);
1516 }
1517
1518 /**
1519  *      tty_kref_put            -       release a tty kref
1520  *      @tty: tty device
1521  *
1522  *      Release a reference to a tty device and if need be let the kref
1523  *      layer destruct the object for us
1524  */
1525
1526 void tty_kref_put(struct tty_struct *tty)
1527 {
1528         if (tty)
1529                 kref_put(&tty->kref, queue_release_one_tty);
1530 }
1531 EXPORT_SYMBOL(tty_kref_put);
1532
1533 /**
1534  *      release_tty             -       release tty structure memory
1535  *
1536  *      Release both @tty and a possible linked partner (think pty pair),
1537  *      and decrement the refcount of the backing module.
1538  *
1539  *      Locking:
1540  *              tty_mutex - sometimes only
1541  *              takes the file list lock internally when working on the list
1542  *      of ttys that the driver keeps.
1543  *              FIXME: should we require tty_mutex is held here ??
1544  *
1545  */
1546 static void release_tty(struct tty_struct *tty, int idx)
1547 {
1548         /* This should always be true but check for the moment */
1549         WARN_ON(tty->index != idx);
1550
1551         if (tty->link)
1552                 tty_kref_put(tty->link);
1553         tty_kref_put(tty);
1554 }
1555
1556 /**
1557  *      tty_release             -       vfs callback for close
1558  *      @inode: inode of tty
1559  *      @filp: file pointer for handle to tty
1560  *
1561  *      Called the last time each file handle is closed that references
1562  *      this tty. There may however be several such references.
1563  *
1564  *      Locking:
1565  *              Takes bkl. See tty_release_dev
1566  *
1567  * Even releasing the tty structures is a tricky business.. We have
1568  * to be very careful that the structures are all released at the
1569  * same time, as interrupts might otherwise get the wrong pointers.
1570  *
1571  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1572  * lead to double frees or releasing memory still in use.
1573  */
1574
1575 int tty_release(struct inode *inode, struct file *filp)
1576 {
1577         struct tty_struct *tty = file_tty(filp);
1578         struct tty_struct *o_tty;
1579         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1580         int     devpts;
1581         int     idx;
1582         char    buf[64];
1583
1584         if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1585                 return 0;
1586
1587         tty_lock();
1588         check_tty_count(tty, "tty_release_dev");
1589
1590         __tty_fasync(-1, filp, 0);
1591
1592         idx = tty->index;
1593         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1594                       tty->driver->subtype == PTY_TYPE_MASTER);
1595         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1596         o_tty = tty->link;
1597
1598 #ifdef TTY_PARANOIA_CHECK
1599         if (idx < 0 || idx >= tty->driver->num) {
1600                 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1601                                   "free (%s)\n", tty->name);
1602                 tty_unlock();
1603                 return 0;
1604         }
1605         if (!devpts) {
1606                 if (tty != tty->driver->ttys[idx]) {
1607                         tty_unlock();
1608                         printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1609                                "for (%s)\n", idx, tty->name);
1610                         return 0;
1611                 }
1612                 if (tty->termios != tty->driver->termios[idx]) {
1613                         tty_unlock();
1614                         printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1615                                "for (%s)\n",
1616                                idx, tty->name);
1617                         return 0;
1618                 }
1619         }
1620 #endif
1621
1622 #ifdef TTY_DEBUG_HANGUP
1623         printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1624                tty_name(tty, buf), tty->count);
1625 #endif
1626
1627 #ifdef TTY_PARANOIA_CHECK
1628         if (tty->driver->other &&
1629              !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1630                 if (o_tty != tty->driver->other->ttys[idx]) {
1631                         tty_unlock();
1632                         printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1633                                           "not o_tty for (%s)\n",
1634                                idx, tty->name);
1635                         return 0 ;
1636                 }
1637                 if (o_tty->termios != tty->driver->other->termios[idx]) {
1638                         tty_unlock();
1639                         printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1640                                           "not o_termios for (%s)\n",
1641                                idx, tty->name);
1642                         return 0;
1643                 }
1644                 if (o_tty->link != tty) {
1645                         tty_unlock();
1646                         printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1647                         return 0;
1648                 }
1649         }
1650 #endif
1651         if (tty->ops->close)
1652                 tty->ops->close(tty, filp);
1653
1654         tty_unlock();
1655         /*
1656          * Sanity check: if tty->count is going to zero, there shouldn't be
1657          * any waiters on tty->read_wait or tty->write_wait.  We test the
1658          * wait queues and kick everyone out _before_ actually starting to
1659          * close.  This ensures that we won't block while releasing the tty
1660          * structure.
1661          *
1662          * The test for the o_tty closing is necessary, since the master and
1663          * slave sides may close in any order.  If the slave side closes out
1664          * first, its count will be one, since the master side holds an open.
1665          * Thus this test wouldn't be triggered at the time the slave closes,
1666          * so we do it now.
1667          *
1668          * Note that it's possible for the tty to be opened again while we're
1669          * flushing out waiters.  By recalculating the closing flags before
1670          * each iteration we avoid any problems.
1671          */
1672         while (1) {
1673                 /* Guard against races with tty->count changes elsewhere and
1674                    opens on /dev/tty */
1675
1676                 mutex_lock(&tty_mutex);
1677                 tty_lock();
1678                 tty_closing = tty->count <= 1;
1679                 o_tty_closing = o_tty &&
1680                         (o_tty->count <= (pty_master ? 1 : 0));
1681                 do_sleep = 0;
1682
1683                 if (tty_closing) {
1684                         if (waitqueue_active(&tty->read_wait)) {
1685                                 wake_up_poll(&tty->read_wait, POLLIN);
1686                                 do_sleep++;
1687                         }
1688                         if (waitqueue_active(&tty->write_wait)) {
1689                                 wake_up_poll(&tty->write_wait, POLLOUT);
1690                                 do_sleep++;
1691                         }
1692                 }
1693                 if (o_tty_closing) {
1694                         if (waitqueue_active(&o_tty->read_wait)) {
1695                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1696                                 do_sleep++;
1697                         }
1698                         if (waitqueue_active(&o_tty->write_wait)) {
1699                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1700                                 do_sleep++;
1701                         }
1702                 }
1703                 if (!do_sleep)
1704                         break;
1705
1706                 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1707                                     "active!\n", tty_name(tty, buf));
1708                 tty_unlock();
1709                 mutex_unlock(&tty_mutex);
1710                 schedule();
1711         }
1712
1713         /*
1714          * The closing flags are now consistent with the open counts on
1715          * both sides, and we've completed the last operation that could
1716          * block, so it's safe to proceed with closing.
1717          */
1718         if (pty_master) {
1719                 if (--o_tty->count < 0) {
1720                         printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1721                                             "(%d) for %s\n",
1722                                o_tty->count, tty_name(o_tty, buf));
1723                         o_tty->count = 0;
1724                 }
1725         }
1726         if (--tty->count < 0) {
1727                 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1728                        tty->count, tty_name(tty, buf));
1729                 tty->count = 0;
1730         }
1731
1732         /*
1733          * We've decremented tty->count, so we need to remove this file
1734          * descriptor off the tty->tty_files list; this serves two
1735          * purposes:
1736          *  - check_tty_count sees the correct number of file descriptors
1737          *    associated with this tty.
1738          *  - do_tty_hangup no longer sees this file descriptor as
1739          *    something that needs to be handled for hangups.
1740          */
1741         tty_del_file(filp);
1742
1743         /*
1744          * Perform some housekeeping before deciding whether to return.
1745          *
1746          * Set the TTY_CLOSING flag if this was the last open.  In the
1747          * case of a pty we may have to wait around for the other side
1748          * to close, and TTY_CLOSING makes sure we can't be reopened.
1749          */
1750         if (tty_closing)
1751                 set_bit(TTY_CLOSING, &tty->flags);
1752         if (o_tty_closing)
1753                 set_bit(TTY_CLOSING, &o_tty->flags);
1754
1755         /*
1756          * If _either_ side is closing, make sure there aren't any
1757          * processes that still think tty or o_tty is their controlling
1758          * tty.
1759          */
1760         if (tty_closing || o_tty_closing) {
1761                 read_lock(&tasklist_lock);
1762                 session_clear_tty(tty->session);
1763                 if (o_tty)
1764                         session_clear_tty(o_tty->session);
1765                 read_unlock(&tasklist_lock);
1766         }
1767
1768         mutex_unlock(&tty_mutex);
1769
1770         /* check whether both sides are closing ... */
1771         if (!tty_closing || (o_tty && !o_tty_closing)) {
1772                 tty_unlock();
1773                 return 0;
1774         }
1775
1776 #ifdef TTY_DEBUG_HANGUP
1777         printk(KERN_DEBUG "freeing tty structure...");
1778 #endif
1779         /*
1780          * Ask the line discipline code to release its structures
1781          */
1782         tty_ldisc_release(tty, o_tty);
1783         /*
1784          * The release_tty function takes care of the details of clearing
1785          * the slots and preserving the termios structure.
1786          */
1787         release_tty(tty, idx);
1788
1789         /* Make this pty number available for reallocation */
1790         if (devpts)
1791                 devpts_kill_index(inode, idx);
1792         tty_unlock();
1793         return 0;
1794 }
1795
1796 /**
1797  *      tty_open                -       open a tty device
1798  *      @inode: inode of device file
1799  *      @filp: file pointer to tty
1800  *
1801  *      tty_open and tty_release keep up the tty count that contains the
1802  *      number of opens done on a tty. We cannot use the inode-count, as
1803  *      different inodes might point to the same tty.
1804  *
1805  *      Open-counting is needed for pty masters, as well as for keeping
1806  *      track of serial lines: DTR is dropped when the last close happens.
1807  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1808  *
1809  *      The termios state of a pty is reset on first open so that
1810  *      settings don't persist across reuse.
1811  *
1812  *      Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1813  *               tty->count should protect the rest.
1814  *               ->siglock protects ->signal/->sighand
1815  */
1816
1817 static int tty_open(struct inode *inode, struct file *filp)
1818 {
1819         struct tty_struct *tty = NULL;
1820         int noctty, retval;
1821         struct tty_driver *driver;
1822         int index;
1823         dev_t device = inode->i_rdev;
1824         unsigned saved_flags = filp->f_flags;
1825
1826         nonseekable_open(inode, filp);
1827
1828 retry_open:
1829         retval = tty_alloc_file(filp);
1830         if (retval)
1831                 return -ENOMEM;
1832
1833         noctty = filp->f_flags & O_NOCTTY;
1834         index  = -1;
1835         retval = 0;
1836
1837         mutex_lock(&tty_mutex);
1838         tty_lock();
1839
1840         if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1841                 tty = get_current_tty();
1842                 if (!tty) {
1843                         tty_unlock();
1844                         mutex_unlock(&tty_mutex);
1845                         tty_free_file(filp);
1846                         return -ENXIO;
1847                 }
1848                 driver = tty_driver_kref_get(tty->driver);
1849                 index = tty->index;
1850                 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1851                 /* noctty = 1; */
1852                 /* FIXME: Should we take a driver reference ? */
1853                 tty_kref_put(tty);
1854                 goto got_driver;
1855         }
1856 #ifdef CONFIG_VT
1857         if (device == MKDEV(TTY_MAJOR, 0)) {
1858                 extern struct tty_driver *console_driver;
1859                 driver = tty_driver_kref_get(console_driver);
1860                 index = fg_console;
1861                 noctty = 1;
1862                 goto got_driver;
1863         }
1864 #endif
1865         if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1866                 struct tty_driver *console_driver = console_device(&index);
1867                 if (console_driver) {
1868                         driver = tty_driver_kref_get(console_driver);
1869                         if (driver) {
1870                                 /* Don't let /dev/console block */
1871                                 filp->f_flags |= O_NONBLOCK;
1872                                 noctty = 1;
1873                                 goto got_driver;
1874                         }
1875                 }
1876                 tty_unlock();
1877                 mutex_unlock(&tty_mutex);
1878                 tty_free_file(filp);
1879                 return -ENODEV;
1880         }
1881
1882         driver = get_tty_driver(device, &index);
1883         if (!driver) {
1884                 tty_unlock();
1885                 mutex_unlock(&tty_mutex);
1886                 tty_free_file(filp);
1887                 return -ENODEV;
1888         }
1889 got_driver:
1890         if (!tty) {
1891                 /* check whether we're reopening an existing tty */
1892                 tty = tty_driver_lookup_tty(driver, inode, index);
1893
1894                 if (IS_ERR(tty)) {
1895                         tty_unlock();
1896                         mutex_unlock(&tty_mutex);
1897                         tty_driver_kref_put(driver);
1898                         tty_free_file(filp);
1899                         return PTR_ERR(tty);
1900                 }
1901         }
1902
1903         if (tty) {
1904                 retval = tty_reopen(tty);
1905                 if (retval)
1906                         tty = ERR_PTR(retval);
1907         } else
1908                 tty = tty_init_dev(driver, index, 0);
1909
1910         mutex_unlock(&tty_mutex);
1911         tty_driver_kref_put(driver);
1912         if (IS_ERR(tty)) {
1913                 tty_unlock();
1914                 tty_free_file(filp);
1915                 return PTR_ERR(tty);
1916         }
1917
1918         tty_add_file(tty, filp);
1919
1920         check_tty_count(tty, "tty_open");
1921         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1922             tty->driver->subtype == PTY_TYPE_MASTER)
1923                 noctty = 1;
1924 #ifdef TTY_DEBUG_HANGUP
1925         printk(KERN_DEBUG "opening %s...", tty->name);
1926 #endif
1927         if (tty->ops->open)
1928                 retval = tty->ops->open(tty, filp);
1929         else
1930                 retval = -ENODEV;
1931         filp->f_flags = saved_flags;
1932
1933         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1934                                                 !capable(CAP_SYS_ADMIN))
1935                 retval = -EBUSY;
1936
1937         if (retval) {
1938 #ifdef TTY_DEBUG_HANGUP
1939                 printk(KERN_DEBUG "error %d in opening %s...", retval,
1940                        tty->name);
1941 #endif
1942                 tty_unlock(); /* need to call tty_release without BTM */
1943                 tty_release(inode, filp);
1944                 if (retval != -ERESTARTSYS)
1945                         return retval;
1946
1947                 if (signal_pending(current))
1948                         return retval;
1949
1950                 schedule();
1951                 /*
1952                  * Need to reset f_op in case a hangup happened.
1953                  */
1954                 tty_lock();
1955                 if (filp->f_op == &hung_up_tty_fops)
1956                         filp->f_op = &tty_fops;
1957                 tty_unlock();
1958                 goto retry_open;
1959         }
1960         tty_unlock();
1961
1962
1963         mutex_lock(&tty_mutex);
1964         tty_lock();
1965         spin_lock_irq(&current->sighand->siglock);
1966         if (!noctty &&
1967             current->signal->leader &&
1968             !current->signal->tty &&
1969             tty->session == NULL)
1970                 __proc_set_tty(current, tty);
1971         spin_unlock_irq(&current->sighand->siglock);
1972         tty_unlock();
1973         mutex_unlock(&tty_mutex);
1974         return 0;
1975 }
1976
1977
1978
1979 /**
1980  *      tty_poll        -       check tty status
1981  *      @filp: file being polled
1982  *      @wait: poll wait structures to update
1983  *
1984  *      Call the line discipline polling method to obtain the poll
1985  *      status of the device.
1986  *
1987  *      Locking: locks called line discipline but ldisc poll method
1988  *      may be re-entered freely by other callers.
1989  */
1990
1991 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1992 {
1993         struct tty_struct *tty = file_tty(filp);
1994         struct tty_ldisc *ld;
1995         int ret = 0;
1996
1997         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1998                 return 0;
1999
2000         ld = tty_ldisc_ref_wait(tty);
2001         if (ld->ops->poll)
2002                 ret = (ld->ops->poll)(tty, filp, wait);
2003         tty_ldisc_deref(ld);
2004         return ret;
2005 }
2006
2007 static int __tty_fasync(int fd, struct file *filp, int on)
2008 {
2009         struct tty_struct *tty = file_tty(filp);
2010         unsigned long flags;
2011         int retval = 0;
2012
2013         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2014                 goto out;
2015
2016         retval = fasync_helper(fd, filp, on, &tty->fasync);
2017         if (retval <= 0)
2018                 goto out;
2019
2020         if (on) {
2021                 enum pid_type type;
2022                 struct pid *pid;
2023                 if (!waitqueue_active(&tty->read_wait))
2024                         tty->minimum_to_wake = 1;
2025                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2026                 if (tty->pgrp) {
2027                         pid = tty->pgrp;
2028                         type = PIDTYPE_PGID;
2029                 } else {
2030                         pid = task_pid(current);
2031                         type = PIDTYPE_PID;
2032                 }
2033                 get_pid(pid);
2034                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2035                 retval = __f_setown(filp, pid, type, 0);
2036                 put_pid(pid);
2037                 if (retval)
2038                         goto out;
2039         } else {
2040                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2041                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2042         }
2043         retval = 0;
2044 out:
2045         return retval;
2046 }
2047
2048 static int tty_fasync(int fd, struct file *filp, int on)
2049 {
2050         int retval;
2051         tty_lock();
2052         retval = __tty_fasync(fd, filp, on);
2053         tty_unlock();
2054         return retval;
2055 }
2056
2057 /**
2058  *      tiocsti                 -       fake input character
2059  *      @tty: tty to fake input into
2060  *      @p: pointer to character
2061  *
2062  *      Fake input to a tty device. Does the necessary locking and
2063  *      input management.
2064  *
2065  *      FIXME: does not honour flow control ??
2066  *
2067  *      Locking:
2068  *              Called functions take tty_ldisc_lock
2069  *              current->signal->tty check is safe without locks
2070  *
2071  *      FIXME: may race normal receive processing
2072  */
2073
2074 static int tiocsti(struct tty_struct *tty, char __user *p)
2075 {
2076         char ch, mbz = 0;
2077         struct tty_ldisc *ld;
2078
2079         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2080                 return -EPERM;
2081         if (get_user(ch, p))
2082                 return -EFAULT;
2083         tty_audit_tiocsti(tty, ch);
2084         ld = tty_ldisc_ref_wait(tty);
2085         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2086         tty_ldisc_deref(ld);
2087         return 0;
2088 }
2089
2090 /**
2091  *      tiocgwinsz              -       implement window query ioctl
2092  *      @tty; tty
2093  *      @arg: user buffer for result
2094  *
2095  *      Copies the kernel idea of the window size into the user buffer.
2096  *
2097  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2098  *              is consistent.
2099  */
2100
2101 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2102 {
2103         int err;
2104
2105         mutex_lock(&tty->termios_mutex);
2106         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2107         mutex_unlock(&tty->termios_mutex);
2108
2109         return err ? -EFAULT: 0;
2110 }
2111
2112 /**
2113  *      tty_do_resize           -       resize event
2114  *      @tty: tty being resized
2115  *      @rows: rows (character)
2116  *      @cols: cols (character)
2117  *
2118  *      Update the termios variables and send the necessary signals to
2119  *      peform a terminal resize correctly
2120  */
2121
2122 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2123 {
2124         struct pid *pgrp;
2125         unsigned long flags;
2126
2127         /* Lock the tty */
2128         mutex_lock(&tty->termios_mutex);
2129         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2130                 goto done;
2131         /* Get the PID values and reference them so we can
2132            avoid holding the tty ctrl lock while sending signals */
2133         spin_lock_irqsave(&tty->ctrl_lock, flags);
2134         pgrp = get_pid(tty->pgrp);
2135         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2136
2137         if (pgrp)
2138                 kill_pgrp(pgrp, SIGWINCH, 1);
2139         put_pid(pgrp);
2140
2141         tty->winsize = *ws;
2142 done:
2143         mutex_unlock(&tty->termios_mutex);
2144         return 0;
2145 }
2146
2147 /**
2148  *      tiocswinsz              -       implement window size set ioctl
2149  *      @tty; tty side of tty
2150  *      @arg: user buffer for result
2151  *
2152  *      Copies the user idea of the window size to the kernel. Traditionally
2153  *      this is just advisory information but for the Linux console it
2154  *      actually has driver level meaning and triggers a VC resize.
2155  *
2156  *      Locking:
2157  *              Driver dependent. The default do_resize method takes the
2158  *      tty termios mutex and ctrl_lock. The console takes its own lock
2159  *      then calls into the default method.
2160  */
2161
2162 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2163 {
2164         struct winsize tmp_ws;
2165         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2166                 return -EFAULT;
2167
2168         if (tty->ops->resize)
2169                 return tty->ops->resize(tty, &tmp_ws);
2170         else
2171                 return tty_do_resize(tty, &tmp_ws);
2172 }
2173
2174 /**
2175  *      tioccons        -       allow admin to move logical console
2176  *      @file: the file to become console
2177  *
2178  *      Allow the administrator to move the redirected console device
2179  *
2180  *      Locking: uses redirect_lock to guard the redirect information
2181  */
2182
2183 static int tioccons(struct file *file)
2184 {
2185         if (!capable(CAP_SYS_ADMIN))
2186                 return -EPERM;
2187         if (file->f_op->write == redirected_tty_write) {
2188                 struct file *f;
2189                 spin_lock(&redirect_lock);
2190                 f = redirect;
2191                 redirect = NULL;
2192                 spin_unlock(&redirect_lock);
2193                 if (f)
2194                         fput(f);
2195                 return 0;
2196         }
2197         spin_lock(&redirect_lock);
2198         if (redirect) {
2199                 spin_unlock(&redirect_lock);
2200                 return -EBUSY;
2201         }
2202         get_file(file);
2203         redirect = file;
2204         spin_unlock(&redirect_lock);
2205         return 0;
2206 }
2207
2208 /**
2209  *      fionbio         -       non blocking ioctl
2210  *      @file: file to set blocking value
2211  *      @p: user parameter
2212  *
2213  *      Historical tty interfaces had a blocking control ioctl before
2214  *      the generic functionality existed. This piece of history is preserved
2215  *      in the expected tty API of posix OS's.
2216  *
2217  *      Locking: none, the open file handle ensures it won't go away.
2218  */
2219
2220 static int fionbio(struct file *file, int __user *p)
2221 {
2222         int nonblock;
2223
2224         if (get_user(nonblock, p))
2225                 return -EFAULT;
2226
2227         spin_lock(&file->f_lock);
2228         if (nonblock)
2229                 file->f_flags |= O_NONBLOCK;
2230         else
2231                 file->f_flags &= ~O_NONBLOCK;
2232         spin_unlock(&file->f_lock);
2233         return 0;
2234 }
2235
2236 /**
2237  *      tiocsctty       -       set controlling tty
2238  *      @tty: tty structure
2239  *      @arg: user argument
2240  *
2241  *      This ioctl is used to manage job control. It permits a session
2242  *      leader to set this tty as the controlling tty for the session.
2243  *
2244  *      Locking:
2245  *              Takes tty_mutex() to protect tty instance
2246  *              Takes tasklist_lock internally to walk sessions
2247  *              Takes ->siglock() when updating signal->tty
2248  */
2249
2250 static int tiocsctty(struct tty_struct *tty, int arg)
2251 {
2252         int ret = 0;
2253         if (current->signal->leader && (task_session(current) == tty->session))
2254                 return ret;
2255
2256         mutex_lock(&tty_mutex);
2257         /*
2258          * The process must be a session leader and
2259          * not have a controlling tty already.
2260          */
2261         if (!current->signal->leader || current->signal->tty) {
2262                 ret = -EPERM;
2263                 goto unlock;
2264         }
2265
2266         if (tty->session) {
2267                 /*
2268                  * This tty is already the controlling
2269                  * tty for another session group!
2270                  */
2271                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2272                         /*
2273                          * Steal it away
2274                          */
2275                         read_lock(&tasklist_lock);
2276                         session_clear_tty(tty->session);
2277                         read_unlock(&tasklist_lock);
2278                 } else {
2279                         ret = -EPERM;
2280                         goto unlock;
2281                 }
2282         }
2283         proc_set_tty(current, tty);
2284 unlock:
2285         mutex_unlock(&tty_mutex);
2286         return ret;
2287 }
2288
2289 /**
2290  *      tty_get_pgrp    -       return a ref counted pgrp pid
2291  *      @tty: tty to read
2292  *
2293  *      Returns a refcounted instance of the pid struct for the process
2294  *      group controlling the tty.
2295  */
2296
2297 struct pid *tty_get_pgrp(struct tty_struct *tty)
2298 {
2299         unsigned long flags;
2300         struct pid *pgrp;
2301
2302         spin_lock_irqsave(&tty->ctrl_lock, flags);
2303         pgrp = get_pid(tty->pgrp);
2304         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2305
2306         return pgrp;
2307 }
2308 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2309
2310 /**
2311  *      tiocgpgrp               -       get process group
2312  *      @tty: tty passed by user
2313  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2314  *      @p: returned pid
2315  *
2316  *      Obtain the process group of the tty. If there is no process group
2317  *      return an error.
2318  *
2319  *      Locking: none. Reference to current->signal->tty is safe.
2320  */
2321
2322 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2323 {
2324         struct pid *pid;
2325         int ret;
2326         /*
2327          * (tty == real_tty) is a cheap way of
2328          * testing if the tty is NOT a master pty.
2329          */
2330         if (tty == real_tty && current->signal->tty != real_tty)
2331                 return -ENOTTY;
2332         pid = tty_get_pgrp(real_tty);
2333         ret =  put_user(pid_vnr(pid), p);
2334         put_pid(pid);
2335         return ret;
2336 }
2337
2338 /**
2339  *      tiocspgrp               -       attempt to set process group
2340  *      @tty: tty passed by user
2341  *      @real_tty: tty side device matching tty passed by user
2342  *      @p: pid pointer
2343  *
2344  *      Set the process group of the tty to the session passed. Only
2345  *      permitted where the tty session is our session.
2346  *
2347  *      Locking: RCU, ctrl lock
2348  */
2349
2350 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2351 {
2352         struct pid *pgrp;
2353         pid_t pgrp_nr;
2354         int retval = tty_check_change(real_tty);
2355         unsigned long flags;
2356
2357         if (retval == -EIO)
2358                 return -ENOTTY;
2359         if (retval)
2360                 return retval;
2361         if (!current->signal->tty ||
2362             (current->signal->tty != real_tty) ||
2363             (real_tty->session != task_session(current)))
2364                 return -ENOTTY;
2365         if (get_user(pgrp_nr, p))
2366                 return -EFAULT;
2367         if (pgrp_nr < 0)
2368                 return -EINVAL;
2369         rcu_read_lock();
2370         pgrp = find_vpid(pgrp_nr);
2371         retval = -ESRCH;
2372         if (!pgrp)
2373                 goto out_unlock;
2374         retval = -EPERM;
2375         if (session_of_pgrp(pgrp) != task_session(current))
2376                 goto out_unlock;
2377         retval = 0;
2378         spin_lock_irqsave(&tty->ctrl_lock, flags);
2379         put_pid(real_tty->pgrp);
2380         real_tty->pgrp = get_pid(pgrp);
2381         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2382 out_unlock:
2383         rcu_read_unlock();
2384         return retval;
2385 }
2386
2387 /**
2388  *      tiocgsid                -       get session id
2389  *      @tty: tty passed by user
2390  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2391  *      @p: pointer to returned session id
2392  *
2393  *      Obtain the session id of the tty. If there is no session
2394  *      return an error.
2395  *
2396  *      Locking: none. Reference to current->signal->tty is safe.
2397  */
2398
2399 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2400 {
2401         /*
2402          * (tty == real_tty) is a cheap way of
2403          * testing if the tty is NOT a master pty.
2404         */
2405         if (tty == real_tty && current->signal->tty != real_tty)
2406                 return -ENOTTY;
2407         if (!real_tty->session)
2408                 return -ENOTTY;
2409         return put_user(pid_vnr(real_tty->session), p);
2410 }
2411
2412 /**
2413  *      tiocsetd        -       set line discipline
2414  *      @tty: tty device
2415  *      @p: pointer to user data
2416  *
2417  *      Set the line discipline according to user request.
2418  *
2419  *      Locking: see tty_set_ldisc, this function is just a helper
2420  */
2421
2422 static int tiocsetd(struct tty_struct *tty, int __user *p)
2423 {
2424         int ldisc;
2425         int ret;
2426
2427         if (get_user(ldisc, p))
2428                 return -EFAULT;
2429
2430         ret = tty_set_ldisc(tty, ldisc);
2431
2432         return ret;
2433 }
2434
2435 /**
2436  *      send_break      -       performed time break
2437  *      @tty: device to break on
2438  *      @duration: timeout in mS
2439  *
2440  *      Perform a timed break on hardware that lacks its own driver level
2441  *      timed break functionality.
2442  *
2443  *      Locking:
2444  *              atomic_write_lock serializes
2445  *
2446  */
2447
2448 static int send_break(struct tty_struct *tty, unsigned int duration)
2449 {
2450         int retval;
2451
2452         if (tty->ops->break_ctl == NULL)
2453                 return 0;
2454
2455         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2456                 retval = tty->ops->break_ctl(tty, duration);
2457         else {
2458                 /* Do the work ourselves */
2459                 if (tty_write_lock(tty, 0) < 0)
2460                         return -EINTR;
2461                 retval = tty->ops->break_ctl(tty, -1);
2462                 if (retval)
2463                         goto out;
2464                 if (!signal_pending(current))
2465                         msleep_interruptible(duration);
2466                 retval = tty->ops->break_ctl(tty, 0);
2467 out:
2468                 tty_write_unlock(tty);
2469                 if (signal_pending(current))
2470                         retval = -EINTR;
2471         }
2472         return retval;
2473 }
2474
2475 /**
2476  *      tty_tiocmget            -       get modem status
2477  *      @tty: tty device
2478  *      @file: user file pointer
2479  *      @p: pointer to result
2480  *
2481  *      Obtain the modem status bits from the tty driver if the feature
2482  *      is supported. Return -EINVAL if it is not available.
2483  *
2484  *      Locking: none (up to the driver)
2485  */
2486
2487 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2488 {
2489         int retval = -EINVAL;
2490
2491         if (tty->ops->tiocmget) {
2492                 retval = tty->ops->tiocmget(tty);
2493
2494                 if (retval >= 0)
2495                         retval = put_user(retval, p);
2496         }
2497         return retval;
2498 }
2499
2500 /**
2501  *      tty_tiocmset            -       set modem status
2502  *      @tty: tty device
2503  *      @cmd: command - clear bits, set bits or set all
2504  *      @p: pointer to desired bits
2505  *
2506  *      Set the modem status bits from the tty driver if the feature
2507  *      is supported. Return -EINVAL if it is not available.
2508  *
2509  *      Locking: none (up to the driver)
2510  */
2511
2512 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2513              unsigned __user *p)
2514 {
2515         int retval;
2516         unsigned int set, clear, val;
2517
2518         if (tty->ops->tiocmset == NULL)
2519                 return -EINVAL;
2520
2521         retval = get_user(val, p);
2522         if (retval)
2523                 return retval;
2524         set = clear = 0;
2525         switch (cmd) {
2526         case TIOCMBIS:
2527                 set = val;
2528                 break;
2529         case TIOCMBIC:
2530                 clear = val;
2531                 break;
2532         case TIOCMSET:
2533                 set = val;
2534                 clear = ~val;
2535                 break;
2536         }
2537         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2538         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2539         return tty->ops->tiocmset(tty, set, clear);
2540 }
2541
2542 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2543 {
2544         int retval = -EINVAL;
2545         struct serial_icounter_struct icount;
2546         memset(&icount, 0, sizeof(icount));
2547         if (tty->ops->get_icount)
2548                 retval = tty->ops->get_icount(tty, &icount);
2549         if (retval != 0)
2550                 return retval;
2551         if (copy_to_user(arg, &icount, sizeof(icount)))
2552                 return -EFAULT;
2553         return 0;
2554 }
2555
2556 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2557 {
2558         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2559             tty->driver->subtype == PTY_TYPE_MASTER)
2560                 tty = tty->link;
2561         return tty;
2562 }
2563 EXPORT_SYMBOL(tty_pair_get_tty);
2564
2565 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2566 {
2567         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2568             tty->driver->subtype == PTY_TYPE_MASTER)
2569             return tty;
2570         return tty->link;
2571 }
2572 EXPORT_SYMBOL(tty_pair_get_pty);
2573
2574 /*
2575  * Split this up, as gcc can choke on it otherwise..
2576  */
2577 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2578 {
2579         struct tty_struct *tty = file_tty(file);
2580         struct tty_struct *real_tty;
2581         void __user *p = (void __user *)arg;
2582         int retval;
2583         struct tty_ldisc *ld;
2584         struct inode *inode = file->f_dentry->d_inode;
2585
2586         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2587                 return -EINVAL;
2588
2589         real_tty = tty_pair_get_tty(tty);
2590
2591         /*
2592          * Factor out some common prep work
2593          */
2594         switch (cmd) {
2595         case TIOCSETD:
2596         case TIOCSBRK:
2597         case TIOCCBRK:
2598         case TCSBRK:
2599         case TCSBRKP:
2600                 retval = tty_check_change(tty);
2601                 if (retval)
2602                         return retval;
2603                 if (cmd != TIOCCBRK) {
2604                         tty_wait_until_sent(tty, 0);
2605                         if (signal_pending(current))
2606                                 return -EINTR;
2607                 }
2608                 break;
2609         }
2610
2611         /*
2612          *      Now do the stuff.
2613          */
2614         switch (cmd) {
2615         case TIOCSTI:
2616                 return tiocsti(tty, p);
2617         case TIOCGWINSZ:
2618                 return tiocgwinsz(real_tty, p);
2619         case TIOCSWINSZ:
2620                 return tiocswinsz(real_tty, p);
2621         case TIOCCONS:
2622                 return real_tty != tty ? -EINVAL : tioccons(file);
2623         case FIONBIO:
2624                 return fionbio(file, p);
2625         case TIOCEXCL:
2626                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2627                 return 0;
2628         case TIOCNXCL:
2629                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2630                 return 0;
2631         case TIOCNOTTY:
2632                 if (current->signal->tty != tty)
2633                         return -ENOTTY;
2634                 no_tty();
2635                 return 0;
2636         case TIOCSCTTY:
2637                 return tiocsctty(tty, arg);
2638         case TIOCGPGRP:
2639                 return tiocgpgrp(tty, real_tty, p);
2640         case TIOCSPGRP:
2641                 return tiocspgrp(tty, real_tty, p);
2642         case TIOCGSID:
2643                 return tiocgsid(tty, real_tty, p);
2644         case TIOCGETD:
2645                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2646         case TIOCSETD:
2647                 return tiocsetd(tty, p);
2648         case TIOCVHANGUP:
2649                 if (!capable(CAP_SYS_ADMIN))
2650                         return -EPERM;
2651                 tty_vhangup(tty);
2652                 return 0;
2653         case TIOCGDEV:
2654         {
2655                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2656                 return put_user(ret, (unsigned int __user *)p);
2657         }
2658         /*
2659          * Break handling
2660          */
2661         case TIOCSBRK:  /* Turn break on, unconditionally */
2662                 if (tty->ops->break_ctl)
2663                         return tty->ops->break_ctl(tty, -1);
2664                 return 0;
2665         case TIOCCBRK:  /* Turn break off, unconditionally */
2666                 if (tty->ops->break_ctl)
2667                         return tty->ops->break_ctl(tty, 0);
2668                 return 0;
2669         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2670                 /* non-zero arg means wait for all output data
2671                  * to be sent (performed above) but don't send break.
2672                  * This is used by the tcdrain() termios function.
2673                  */
2674                 if (!arg)
2675                         return send_break(tty, 250);
2676                 return 0;
2677         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2678                 return send_break(tty, arg ? arg*100 : 250);
2679
2680         case TIOCMGET:
2681                 return tty_tiocmget(tty, p);
2682         case TIOCMSET:
2683         case TIOCMBIC:
2684         case TIOCMBIS:
2685                 return tty_tiocmset(tty, cmd, p);
2686         case TIOCGICOUNT:
2687                 retval = tty_tiocgicount(tty, p);
2688                 /* For the moment allow fall through to the old method */
2689                 if (retval != -EINVAL)
2690                         return retval;
2691                 break;
2692         case TCFLSH:
2693                 switch (arg) {
2694                 case TCIFLUSH:
2695                 case TCIOFLUSH:
2696                 /* flush tty buffer and allow ldisc to process ioctl */
2697                         tty_buffer_flush(tty);
2698                         break;
2699                 }
2700                 break;
2701         }
2702         if (tty->ops->ioctl) {
2703                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2704                 if (retval != -ENOIOCTLCMD)
2705                         return retval;
2706         }
2707         ld = tty_ldisc_ref_wait(tty);
2708         retval = -EINVAL;
2709         if (ld->ops->ioctl) {
2710                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2711                 if (retval == -ENOIOCTLCMD)
2712                         retval = -EINVAL;
2713         }
2714         tty_ldisc_deref(ld);
2715         return retval;
2716 }
2717
2718 #ifdef CONFIG_COMPAT
2719 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2720                                 unsigned long arg)
2721 {
2722         struct inode *inode = file->f_dentry->d_inode;
2723         struct tty_struct *tty = file_tty(file);
2724         struct tty_ldisc *ld;
2725         int retval = -ENOIOCTLCMD;
2726
2727         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2728                 return -EINVAL;
2729
2730         if (tty->ops->compat_ioctl) {
2731                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2732                 if (retval != -ENOIOCTLCMD)
2733                         return retval;
2734         }
2735
2736         ld = tty_ldisc_ref_wait(tty);
2737         if (ld->ops->compat_ioctl)
2738                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2739         else
2740                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2741         tty_ldisc_deref(ld);
2742
2743         return retval;
2744 }
2745 #endif
2746
2747 /*
2748  * This implements the "Secure Attention Key" ---  the idea is to
2749  * prevent trojan horses by killing all processes associated with this
2750  * tty when the user hits the "Secure Attention Key".  Required for
2751  * super-paranoid applications --- see the Orange Book for more details.
2752  *
2753  * This code could be nicer; ideally it should send a HUP, wait a few
2754  * seconds, then send a INT, and then a KILL signal.  But you then
2755  * have to coordinate with the init process, since all processes associated
2756  * with the current tty must be dead before the new getty is allowed
2757  * to spawn.
2758  *
2759  * Now, if it would be correct ;-/ The current code has a nasty hole -
2760  * it doesn't catch files in flight. We may send the descriptor to ourselves
2761  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2762  *
2763  * Nasty bug: do_SAK is being called in interrupt context.  This can
2764  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2765  */
2766 void __do_SAK(struct tty_struct *tty)
2767 {
2768 #ifdef TTY_SOFT_SAK
2769         tty_hangup(tty);
2770 #else
2771         struct task_struct *g, *p;
2772         struct pid *session;
2773         int             i;
2774         struct file     *filp;
2775         struct fdtable *fdt;
2776
2777         if (!tty)
2778                 return;
2779         session = tty->session;
2780
2781         tty_ldisc_flush(tty);
2782
2783         tty_driver_flush_buffer(tty);
2784
2785         read_lock(&tasklist_lock);
2786         /* Kill the entire session */
2787         do_each_pid_task(session, PIDTYPE_SID, p) {
2788                 printk(KERN_NOTICE "SAK: killed process %d"
2789                         " (%s): task_session(p)==tty->session\n",
2790                         task_pid_nr(p), p->comm);
2791                 send_sig(SIGKILL, p, 1);
2792         } while_each_pid_task(session, PIDTYPE_SID, p);
2793         /* Now kill any processes that happen to have the
2794          * tty open.
2795          */
2796         do_each_thread(g, p) {
2797                 if (p->signal->tty == tty) {
2798                         printk(KERN_NOTICE "SAK: killed process %d"
2799                             " (%s): task_session(p)==tty->session\n",
2800                             task_pid_nr(p), p->comm);
2801                         send_sig(SIGKILL, p, 1);
2802                         continue;
2803                 }
2804                 task_lock(p);
2805                 if (p->files) {
2806                         /*
2807                          * We don't take a ref to the file, so we must
2808                          * hold ->file_lock instead.
2809                          */
2810                         spin_lock(&p->files->file_lock);
2811                         fdt = files_fdtable(p->files);
2812                         for (i = 0; i < fdt->max_fds; i++) {
2813                                 filp = fcheck_files(p->files, i);
2814                                 if (!filp)
2815                                         continue;
2816                                 if (filp->f_op->read == tty_read &&
2817                                     file_tty(filp) == tty) {
2818                                         printk(KERN_NOTICE "SAK: killed process %d"
2819                                             " (%s): fd#%d opened to the tty\n",
2820                                             task_pid_nr(p), p->comm, i);
2821                                         force_sig(SIGKILL, p);
2822                                         break;
2823                                 }
2824                         }
2825                         spin_unlock(&p->files->file_lock);
2826                 }
2827                 task_unlock(p);
2828         } while_each_thread(g, p);
2829         read_unlock(&tasklist_lock);
2830 #endif
2831 }
2832
2833 static void do_SAK_work(struct work_struct *work)
2834 {
2835         struct tty_struct *tty =
2836                 container_of(work, struct tty_struct, SAK_work);
2837         __do_SAK(tty);
2838 }
2839
2840 /*
2841  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2842  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2843  * the values which we write to it will be identical to the values which it
2844  * already has. --akpm
2845  */
2846 void do_SAK(struct tty_struct *tty)
2847 {
2848         if (!tty)
2849                 return;
2850         schedule_work(&tty->SAK_work);
2851 }
2852
2853 EXPORT_SYMBOL(do_SAK);
2854
2855 static int dev_match_devt(struct device *dev, void *data)
2856 {
2857         dev_t *devt = data;
2858         return dev->devt == *devt;
2859 }
2860
2861 /* Must put_device() after it's unused! */
2862 static struct device *tty_get_device(struct tty_struct *tty)
2863 {
2864         dev_t devt = tty_devnum(tty);
2865         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2866 }
2867
2868
2869 /**
2870  *      initialize_tty_struct
2871  *      @tty: tty to initialize
2872  *
2873  *      This subroutine initializes a tty structure that has been newly
2874  *      allocated.
2875  *
2876  *      Locking: none - tty in question must not be exposed at this point
2877  */
2878
2879 void initialize_tty_struct(struct tty_struct *tty,
2880                 struct tty_driver *driver, int idx)
2881 {
2882         memset(tty, 0, sizeof(struct tty_struct));
2883         kref_init(&tty->kref);
2884         tty->magic = TTY_MAGIC;
2885         tty_ldisc_init(tty);
2886         tty->session = NULL;
2887         tty->pgrp = NULL;
2888         tty->overrun_time = jiffies;
2889         tty->buf.head = tty->buf.tail = NULL;
2890         tty_buffer_init(tty);
2891         mutex_init(&tty->termios_mutex);
2892         mutex_init(&tty->ldisc_mutex);
2893         init_waitqueue_head(&tty->write_wait);
2894         init_waitqueue_head(&tty->read_wait);
2895         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2896         mutex_init(&tty->atomic_read_lock);
2897         mutex_init(&tty->atomic_write_lock);
2898         mutex_init(&tty->output_lock);
2899         mutex_init(&tty->echo_lock);
2900         spin_lock_init(&tty->read_lock);
2901         spin_lock_init(&tty->ctrl_lock);
2902         INIT_LIST_HEAD(&tty->tty_files);
2903         INIT_WORK(&tty->SAK_work, do_SAK_work);
2904
2905         tty->driver = driver;
2906         tty->ops = driver->ops;
2907         tty->index = idx;
2908         tty_line_name(driver, idx, tty->name);
2909         tty->dev = tty_get_device(tty);
2910 }
2911
2912 /**
2913  *      deinitialize_tty_struct
2914  *      @tty: tty to deinitialize
2915  *
2916  *      This subroutine deinitializes a tty structure that has been newly
2917  *      allocated but tty_release cannot be called on that yet.
2918  *
2919  *      Locking: none - tty in question must not be exposed at this point
2920  */
2921 void deinitialize_tty_struct(struct tty_struct *tty)
2922 {
2923         tty_ldisc_deinit(tty);
2924 }
2925
2926 /**
2927  *      tty_put_char    -       write one character to a tty
2928  *      @tty: tty
2929  *      @ch: character
2930  *
2931  *      Write one byte to the tty using the provided put_char method
2932  *      if present. Returns the number of characters successfully output.
2933  *
2934  *      Note: the specific put_char operation in the driver layer may go
2935  *      away soon. Don't call it directly, use this method
2936  */
2937
2938 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2939 {
2940         if (tty->ops->put_char)
2941                 return tty->ops->put_char(tty, ch);
2942         return tty->ops->write(tty, &ch, 1);
2943 }
2944 EXPORT_SYMBOL_GPL(tty_put_char);
2945
2946 struct class *tty_class;
2947
2948 /**
2949  *      tty_register_device - register a tty device
2950  *      @driver: the tty driver that describes the tty device
2951  *      @index: the index in the tty driver for this tty device
2952  *      @device: a struct device that is associated with this tty device.
2953  *              This field is optional, if there is no known struct device
2954  *              for this tty device it can be set to NULL safely.
2955  *
2956  *      Returns a pointer to the struct device for this tty device
2957  *      (or ERR_PTR(-EFOO) on error).
2958  *
2959  *      This call is required to be made to register an individual tty device
2960  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2961  *      that bit is not set, this function should not be called by a tty
2962  *      driver.
2963  *
2964  *      Locking: ??
2965  */
2966
2967 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2968                                    struct device *device)
2969 {
2970         char name[64];
2971         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2972
2973         if (index >= driver->num) {
2974                 printk(KERN_ERR "Attempt to register invalid tty line number "
2975                        " (%d).\n", index);
2976                 return ERR_PTR(-EINVAL);
2977         }
2978
2979         if (driver->type == TTY_DRIVER_TYPE_PTY)
2980                 pty_line_name(driver, index, name);
2981         else
2982                 tty_line_name(driver, index, name);
2983
2984         return device_create(tty_class, device, dev, NULL, name);
2985 }
2986 EXPORT_SYMBOL(tty_register_device);
2987
2988 /**
2989  *      tty_unregister_device - unregister a tty device
2990  *      @driver: the tty driver that describes the tty device
2991  *      @index: the index in the tty driver for this tty device
2992  *
2993  *      If a tty device is registered with a call to tty_register_device() then
2994  *      this function must be called when the tty device is gone.
2995  *
2996  *      Locking: ??
2997  */
2998
2999 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3000 {
3001         device_destroy(tty_class,
3002                 MKDEV(driver->major, driver->minor_start) + index);
3003 }
3004 EXPORT_SYMBOL(tty_unregister_device);
3005
3006 struct tty_driver *alloc_tty_driver(int lines)
3007 {
3008         struct tty_driver *driver;
3009
3010         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3011         if (driver) {
3012                 kref_init(&driver->kref);
3013                 driver->magic = TTY_DRIVER_MAGIC;
3014                 driver->num = lines;
3015                 /* later we'll move allocation of tables here */
3016         }
3017         return driver;
3018 }
3019 EXPORT_SYMBOL(alloc_tty_driver);
3020
3021 static void destruct_tty_driver(struct kref *kref)
3022 {
3023         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3024         int i;
3025         struct ktermios *tp;
3026         void *p;
3027
3028         if (driver->flags & TTY_DRIVER_INSTALLED) {
3029                 /*
3030                  * Free the termios and termios_locked structures because
3031                  * we don't want to get memory leaks when modular tty
3032                  * drivers are removed from the kernel.
3033                  */
3034                 for (i = 0; i < driver->num; i++) {
3035                         tp = driver->termios[i];
3036                         if (tp) {
3037                                 driver->termios[i] = NULL;
3038                                 kfree(tp);
3039                         }
3040                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3041                                 tty_unregister_device(driver, i);
3042                 }
3043                 p = driver->ttys;
3044                 proc_tty_unregister_driver(driver);
3045                 driver->ttys = NULL;
3046                 driver->termios = NULL;
3047                 kfree(p);
3048                 cdev_del(&driver->cdev);
3049         }
3050         kfree(driver);
3051 }
3052
3053 void tty_driver_kref_put(struct tty_driver *driver)
3054 {
3055         kref_put(&driver->kref, destruct_tty_driver);
3056 }
3057 EXPORT_SYMBOL(tty_driver_kref_put);
3058
3059 void tty_set_operations(struct tty_driver *driver,
3060                         const struct tty_operations *op)
3061 {
3062         driver->ops = op;
3063 };
3064 EXPORT_SYMBOL(tty_set_operations);
3065
3066 void put_tty_driver(struct tty_driver *d)
3067 {
3068         tty_driver_kref_put(d);
3069 }
3070 EXPORT_SYMBOL(put_tty_driver);
3071
3072 /*
3073  * Called by a tty driver to register itself.
3074  */
3075 int tty_register_driver(struct tty_driver *driver)
3076 {
3077         int error;
3078         int i;
3079         dev_t dev;
3080         void **p = NULL;
3081         struct device *d;
3082
3083         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3084                 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3085                 if (!p)
3086                         return -ENOMEM;
3087         }
3088
3089         if (!driver->major) {
3090                 error = alloc_chrdev_region(&dev, driver->minor_start,
3091                                                 driver->num, driver->name);
3092                 if (!error) {
3093                         driver->major = MAJOR(dev);
3094                         driver->minor_start = MINOR(dev);
3095                 }
3096         } else {
3097                 dev = MKDEV(driver->major, driver->minor_start);
3098                 error = register_chrdev_region(dev, driver->num, driver->name);
3099         }
3100         if (error < 0) {
3101                 kfree(p);
3102                 return error;
3103         }
3104
3105         if (p) {
3106                 driver->ttys = (struct tty_struct **)p;
3107                 driver->termios = (struct ktermios **)(p + driver->num);
3108         } else {
3109                 driver->ttys = NULL;
3110                 driver->termios = NULL;
3111         }
3112
3113         cdev_init(&driver->cdev, &tty_fops);
3114         driver->cdev.owner = driver->owner;
3115         error = cdev_add(&driver->cdev, dev, driver->num);
3116         if (error) {
3117                 unregister_chrdev_region(dev, driver->num);
3118                 driver->ttys = NULL;
3119                 driver->termios = NULL;
3120                 kfree(p);
3121                 return error;
3122         }
3123
3124         mutex_lock(&tty_mutex);
3125         list_add(&driver->tty_drivers, &tty_drivers);
3126         mutex_unlock(&tty_mutex);
3127
3128         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3129                 for (i = 0; i < driver->num; i++) {
3130                         d = tty_register_device(driver, i, NULL);
3131                         if (IS_ERR(d)) {
3132                                 error = PTR_ERR(d);
3133                                 goto err;
3134                         }
3135                 }
3136         }
3137         proc_tty_register_driver(driver);
3138         driver->flags |= TTY_DRIVER_INSTALLED;
3139         return 0;
3140
3141 err:
3142         for (i--; i >= 0; i--)
3143                 tty_unregister_device(driver, i);
3144
3145         mutex_lock(&tty_mutex);
3146         list_del(&driver->tty_drivers);
3147         mutex_unlock(&tty_mutex);
3148
3149         unregister_chrdev_region(dev, driver->num);
3150         driver->ttys = NULL;
3151         driver->termios = NULL;
3152         kfree(p);
3153         return error;
3154 }
3155
3156 EXPORT_SYMBOL(tty_register_driver);
3157
3158 /*
3159  * Called by a tty driver to unregister itself.
3160  */
3161 int tty_unregister_driver(struct tty_driver *driver)
3162 {
3163 #if 0
3164         /* FIXME */
3165         if (driver->refcount)
3166                 return -EBUSY;
3167 #endif
3168         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3169                                 driver->num);
3170         mutex_lock(&tty_mutex);
3171         list_del(&driver->tty_drivers);
3172         mutex_unlock(&tty_mutex);
3173         return 0;
3174 }
3175
3176 EXPORT_SYMBOL(tty_unregister_driver);
3177
3178 dev_t tty_devnum(struct tty_struct *tty)
3179 {
3180         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3181 }
3182 EXPORT_SYMBOL(tty_devnum);
3183
3184 void proc_clear_tty(struct task_struct *p)
3185 {
3186         unsigned long flags;
3187         struct tty_struct *tty;
3188         spin_lock_irqsave(&p->sighand->siglock, flags);
3189         tty = p->signal->tty;
3190         p->signal->tty = NULL;
3191         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3192         tty_kref_put(tty);
3193 }
3194
3195 /* Called under the sighand lock */
3196
3197 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3198 {
3199         if (tty) {
3200                 unsigned long flags;
3201                 /* We should not have a session or pgrp to put here but.... */
3202                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3203                 put_pid(tty->session);
3204                 put_pid(tty->pgrp);
3205                 tty->pgrp = get_pid(task_pgrp(tsk));
3206                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3207                 tty->session = get_pid(task_session(tsk));
3208                 if (tsk->signal->tty) {
3209                         printk(KERN_DEBUG "tty not NULL!!\n");
3210                         tty_kref_put(tsk->signal->tty);
3211                 }
3212         }
3213         put_pid(tsk->signal->tty_old_pgrp);
3214         tsk->signal->tty = tty_kref_get(tty);
3215         tsk->signal->tty_old_pgrp = NULL;
3216 }
3217
3218 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3219 {
3220         spin_lock_irq(&tsk->sighand->siglock);
3221         __proc_set_tty(tsk, tty);
3222         spin_unlock_irq(&tsk->sighand->siglock);
3223 }
3224
3225 struct tty_struct *get_current_tty(void)
3226 {
3227         struct tty_struct *tty;
3228         unsigned long flags;
3229
3230         spin_lock_irqsave(&current->sighand->siglock, flags);
3231         tty = tty_kref_get(current->signal->tty);
3232         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3233         return tty;
3234 }
3235 EXPORT_SYMBOL_GPL(get_current_tty);
3236
3237 void tty_default_fops(struct file_operations *fops)
3238 {
3239         *fops = tty_fops;
3240 }
3241
3242 /*
3243  * Initialize the console device. This is called *early*, so
3244  * we can't necessarily depend on lots of kernel help here.
3245  * Just do some early initializations, and do the complex setup
3246  * later.
3247  */
3248 void __init console_init(void)
3249 {
3250         initcall_t *call;
3251
3252         /* Setup the default TTY line discipline. */
3253         tty_ldisc_begin();
3254
3255         /*
3256          * set up the console device so that later boot sequences can
3257          * inform about problems etc..
3258          */
3259         call = __con_initcall_start;
3260         while (call < __con_initcall_end) {
3261                 (*call)();
3262                 call++;
3263         }
3264 }
3265
3266 static char *tty_devnode(struct device *dev, mode_t *mode)
3267 {
3268         if (!mode)
3269                 return NULL;
3270         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3271             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3272                 *mode = 0666;
3273         return NULL;
3274 }
3275
3276 static int __init tty_class_init(void)
3277 {
3278         tty_class = class_create(THIS_MODULE, "tty");
3279         if (IS_ERR(tty_class))
3280                 return PTR_ERR(tty_class);
3281         tty_class->devnode = tty_devnode;
3282         return 0;
3283 }
3284
3285 postcore_initcall(tty_class_init);
3286
3287 /* 3/2004 jmc: why do these devices exist? */
3288 static struct cdev tty_cdev, console_cdev;
3289
3290 static ssize_t show_cons_active(struct device *dev,
3291                                 struct device_attribute *attr, char *buf)
3292 {
3293         struct console *cs[16];
3294         int i = 0;
3295         struct console *c;
3296         ssize_t count = 0;
3297
3298         console_lock();
3299         for_each_console(c) {
3300                 if (!c->device)
3301                         continue;
3302                 if (!c->write)
3303                         continue;
3304                 if ((c->flags & CON_ENABLED) == 0)
3305                         continue;
3306                 cs[i++] = c;
3307                 if (i >= ARRAY_SIZE(cs))
3308                         break;
3309         }
3310         while (i--)
3311                 count += sprintf(buf + count, "%s%d%c",
3312                                  cs[i]->name, cs[i]->index, i ? ' ':'\n');
3313         console_unlock();
3314
3315         return count;
3316 }
3317 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3318
3319 static struct device *consdev;
3320
3321 void console_sysfs_notify(void)
3322 {
3323         if (consdev)
3324                 sysfs_notify(&consdev->kobj, NULL, "active");
3325 }
3326
3327 /*
3328  * Ok, now we can initialize the rest of the tty devices and can count
3329  * on memory allocations, interrupts etc..
3330  */
3331 int __init tty_init(void)
3332 {
3333         cdev_init(&tty_cdev, &tty_fops);
3334         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3335             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3336                 panic("Couldn't register /dev/tty driver\n");
3337         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3338
3339         cdev_init(&console_cdev, &console_fops);
3340         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3341             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3342                 panic("Couldn't register /dev/console driver\n");
3343         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3344                               "console");
3345         if (IS_ERR(consdev))
3346                 consdev = NULL;
3347         else
3348                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3349
3350 #ifdef CONFIG_VT
3351         vty_init(&console_fops);
3352 #endif
3353         return 0;
3354 }
3355