Merge branch 'stable-3.2' into pandora-3.2
[pandora-kernel.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100 #include <asm/system.h>
101
102 #include <linux/kbd_kern.h>
103 #include <linux/vt_kern.h>
104 #include <linux/selection.h>
105
106 #include <linux/kmod.h>
107 #include <linux/nsproxy.h>
108
109 #undef TTY_DEBUG_HANGUP
110
111 #define TTY_PARANOIA_CHECK 1
112 #define CHECK_TTY_COUNT 1
113
114 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
115         .c_iflag = ICRNL | IXON,
116         .c_oflag = OPOST | ONLCR,
117         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
118         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
119                    ECHOCTL | ECHOKE | IEXTEN,
120         .c_cc = INIT_C_CC,
121         .c_ispeed = 38400,
122         .c_ospeed = 38400
123 };
124
125 EXPORT_SYMBOL(tty_std_termios);
126
127 /* This list gets poked at by procfs and various bits of boot up code. This
128    could do with some rationalisation such as pulling the tty proc function
129    into this file */
130
131 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
132
133 /* Mutex to protect creating and releasing a tty. This is shared with
134    vt.c for deeply disgusting hack reasons */
135 DEFINE_MUTEX(tty_mutex);
136 EXPORT_SYMBOL(tty_mutex);
137
138 /* Spinlock to protect the tty->tty_files list */
139 DEFINE_SPINLOCK(tty_files_lock);
140
141 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
142 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
143 ssize_t redirected_tty_write(struct file *, const char __user *,
144                                                         size_t, loff_t *);
145 static unsigned int tty_poll(struct file *, poll_table *);
146 static int tty_open(struct inode *, struct file *);
147 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
148 #ifdef CONFIG_COMPAT
149 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
150                                 unsigned long arg);
151 #else
152 #define tty_compat_ioctl NULL
153 #endif
154 static int __tty_fasync(int fd, struct file *filp, int on);
155 static int tty_fasync(int fd, struct file *filp, int on);
156 static void release_tty(struct tty_struct *tty, int idx);
157 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
159
160 /**
161  *      alloc_tty_struct        -       allocate a tty object
162  *
163  *      Return a new empty tty structure. The data fields have not
164  *      been initialized in any way but has been zeroed
165  *
166  *      Locking: none
167  */
168
169 struct tty_struct *alloc_tty_struct(void)
170 {
171         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
172 }
173
174 /**
175  *      free_tty_struct         -       free a disused tty
176  *      @tty: tty struct to free
177  *
178  *      Free the write buffers, tty queue and tty memory itself.
179  *
180  *      Locking: none. Must be called after tty is definitely unused
181  */
182
183 void free_tty_struct(struct tty_struct *tty)
184 {
185         if (tty->dev)
186                 put_device(tty->dev);
187         kfree(tty->write_buf);
188         tty_buffer_free_all(tty);
189         kfree(tty);
190 }
191
192 static inline struct tty_struct *file_tty(struct file *file)
193 {
194         return ((struct tty_file_private *)file->private_data)->tty;
195 }
196
197 int tty_alloc_file(struct file *file)
198 {
199         struct tty_file_private *priv;
200
201         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
202         if (!priv)
203                 return -ENOMEM;
204
205         file->private_data = priv;
206
207         return 0;
208 }
209
210 /* Associate a new file with the tty structure */
211 void tty_add_file(struct tty_struct *tty, struct file *file)
212 {
213         struct tty_file_private *priv = file->private_data;
214
215         priv->tty = tty;
216         priv->file = file;
217
218         spin_lock(&tty_files_lock);
219         list_add(&priv->list, &tty->tty_files);
220         spin_unlock(&tty_files_lock);
221 }
222
223 /**
224  * tty_free_file - free file->private_data
225  *
226  * This shall be used only for fail path handling when tty_add_file was not
227  * called yet.
228  */
229 void tty_free_file(struct file *file)
230 {
231         struct tty_file_private *priv = file->private_data;
232
233         file->private_data = NULL;
234         kfree(priv);
235 }
236
237 /* Delete file from its tty */
238 void tty_del_file(struct file *file)
239 {
240         struct tty_file_private *priv = file->private_data;
241
242         spin_lock(&tty_files_lock);
243         list_del(&priv->list);
244         spin_unlock(&tty_files_lock);
245         tty_free_file(file);
246 }
247
248
249 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
250
251 /**
252  *      tty_name        -       return tty naming
253  *      @tty: tty structure
254  *      @buf: buffer for output
255  *
256  *      Convert a tty structure into a name. The name reflects the kernel
257  *      naming policy and if udev is in use may not reflect user space
258  *
259  *      Locking: none
260  */
261
262 char *tty_name(struct tty_struct *tty, char *buf)
263 {
264         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
265                 strcpy(buf, "NULL tty");
266         else
267                 strcpy(buf, tty->name);
268         return buf;
269 }
270
271 EXPORT_SYMBOL(tty_name);
272
273 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
274                               const char *routine)
275 {
276 #ifdef TTY_PARANOIA_CHECK
277         if (!tty) {
278                 printk(KERN_WARNING
279                         "null TTY for (%d:%d) in %s\n",
280                         imajor(inode), iminor(inode), routine);
281                 return 1;
282         }
283         if (tty->magic != TTY_MAGIC) {
284                 printk(KERN_WARNING
285                         "bad magic number for tty struct (%d:%d) in %s\n",
286                         imajor(inode), iminor(inode), routine);
287                 return 1;
288         }
289 #endif
290         return 0;
291 }
292
293 static int check_tty_count(struct tty_struct *tty, const char *routine)
294 {
295 #ifdef CHECK_TTY_COUNT
296         struct list_head *p;
297         int count = 0;
298
299         spin_lock(&tty_files_lock);
300         list_for_each(p, &tty->tty_files) {
301                 count++;
302         }
303         spin_unlock(&tty_files_lock);
304         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
305             tty->driver->subtype == PTY_TYPE_SLAVE &&
306             tty->link && tty->link->count)
307                 count++;
308         if (tty->count != count) {
309                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
310                                     "!= #fd's(%d) in %s\n",
311                        tty->name, tty->count, count, routine);
312                 return count;
313         }
314 #endif
315         return 0;
316 }
317
318 /**
319  *      get_tty_driver          -       find device of a tty
320  *      @dev_t: device identifier
321  *      @index: returns the index of the tty
322  *
323  *      This routine returns a tty driver structure, given a device number
324  *      and also passes back the index number.
325  *
326  *      Locking: caller must hold tty_mutex
327  */
328
329 static struct tty_driver *get_tty_driver(dev_t device, int *index)
330 {
331         struct tty_driver *p;
332
333         list_for_each_entry(p, &tty_drivers, tty_drivers) {
334                 dev_t base = MKDEV(p->major, p->minor_start);
335                 if (device < base || device >= base + p->num)
336                         continue;
337                 *index = device - base;
338                 return tty_driver_kref_get(p);
339         }
340         return NULL;
341 }
342
343 #ifdef CONFIG_CONSOLE_POLL
344
345 /**
346  *      tty_find_polling_driver -       find device of a polled tty
347  *      @name: name string to match
348  *      @line: pointer to resulting tty line nr
349  *
350  *      This routine returns a tty driver structure, given a name
351  *      and the condition that the tty driver is capable of polled
352  *      operation.
353  */
354 struct tty_driver *tty_find_polling_driver(char *name, int *line)
355 {
356         struct tty_driver *p, *res = NULL;
357         int tty_line = 0;
358         int len;
359         char *str, *stp;
360
361         for (str = name; *str; str++)
362                 if ((*str >= '0' && *str <= '9') || *str == ',')
363                         break;
364         if (!*str)
365                 return NULL;
366
367         len = str - name;
368         tty_line = simple_strtoul(str, &str, 10);
369
370         mutex_lock(&tty_mutex);
371         /* Search through the tty devices to look for a match */
372         list_for_each_entry(p, &tty_drivers, tty_drivers) {
373                 if (strncmp(name, p->name, len) != 0)
374                         continue;
375                 stp = str;
376                 if (*stp == ',')
377                         stp++;
378                 if (*stp == '\0')
379                         stp = NULL;
380
381                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
382                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
383                         res = tty_driver_kref_get(p);
384                         *line = tty_line;
385                         break;
386                 }
387         }
388         mutex_unlock(&tty_mutex);
389
390         return res;
391 }
392 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
393 #endif
394
395 /**
396  *      tty_check_change        -       check for POSIX terminal changes
397  *      @tty: tty to check
398  *
399  *      If we try to write to, or set the state of, a terminal and we're
400  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
401  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
402  *
403  *      Locking: ctrl_lock
404  */
405
406 int tty_check_change(struct tty_struct *tty)
407 {
408         unsigned long flags;
409         int ret = 0;
410
411         if (current->signal->tty != tty)
412                 return 0;
413
414         spin_lock_irqsave(&tty->ctrl_lock, flags);
415
416         if (!tty->pgrp) {
417                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
418                 goto out_unlock;
419         }
420         if (task_pgrp(current) == tty->pgrp)
421                 goto out_unlock;
422         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
423         if (is_ignored(SIGTTOU))
424                 goto out;
425         if (is_current_pgrp_orphaned()) {
426                 ret = -EIO;
427                 goto out;
428         }
429         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
430         set_thread_flag(TIF_SIGPENDING);
431         ret = -ERESTARTSYS;
432 out:
433         return ret;
434 out_unlock:
435         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
436         return ret;
437 }
438
439 EXPORT_SYMBOL(tty_check_change);
440
441 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
442                                 size_t count, loff_t *ppos)
443 {
444         return 0;
445 }
446
447 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
448                                  size_t count, loff_t *ppos)
449 {
450         return -EIO;
451 }
452
453 /* No kernel lock held - none needed ;) */
454 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
455 {
456         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
457 }
458
459 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
460                 unsigned long arg)
461 {
462         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
463 }
464
465 static long hung_up_tty_compat_ioctl(struct file *file,
466                                      unsigned int cmd, unsigned long arg)
467 {
468         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
469 }
470
471 static const struct file_operations tty_fops = {
472         .llseek         = no_llseek,
473         .read           = tty_read,
474         .write          = tty_write,
475         .poll           = tty_poll,
476         .unlocked_ioctl = tty_ioctl,
477         .compat_ioctl   = tty_compat_ioctl,
478         .open           = tty_open,
479         .release        = tty_release,
480         .fasync         = tty_fasync,
481 };
482
483 static const struct file_operations console_fops = {
484         .llseek         = no_llseek,
485         .read           = tty_read,
486         .write          = redirected_tty_write,
487         .poll           = tty_poll,
488         .unlocked_ioctl = tty_ioctl,
489         .compat_ioctl   = tty_compat_ioctl,
490         .open           = tty_open,
491         .release        = tty_release,
492         .fasync         = tty_fasync,
493 };
494
495 static const struct file_operations hung_up_tty_fops = {
496         .llseek         = no_llseek,
497         .read           = hung_up_tty_read,
498         .write          = hung_up_tty_write,
499         .poll           = hung_up_tty_poll,
500         .unlocked_ioctl = hung_up_tty_ioctl,
501         .compat_ioctl   = hung_up_tty_compat_ioctl,
502         .release        = tty_release,
503 };
504
505 static DEFINE_SPINLOCK(redirect_lock);
506 static struct file *redirect;
507
508 /**
509  *      tty_wakeup      -       request more data
510  *      @tty: terminal
511  *
512  *      Internal and external helper for wakeups of tty. This function
513  *      informs the line discipline if present that the driver is ready
514  *      to receive more output data.
515  */
516
517 void tty_wakeup(struct tty_struct *tty)
518 {
519         struct tty_ldisc *ld;
520
521         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
522                 ld = tty_ldisc_ref(tty);
523                 if (ld) {
524                         if (ld->ops->write_wakeup)
525                                 ld->ops->write_wakeup(tty);
526                         tty_ldisc_deref(ld);
527                 }
528         }
529         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
530 }
531
532 EXPORT_SYMBOL_GPL(tty_wakeup);
533
534 /**
535  *      __tty_hangup            -       actual handler for hangup events
536  *      @work: tty device
537  *
538  *      This can be called by the "eventd" kernel thread.  That is process
539  *      synchronous but doesn't hold any locks, so we need to make sure we
540  *      have the appropriate locks for what we're doing.
541  *
542  *      The hangup event clears any pending redirections onto the hung up
543  *      device. It ensures future writes will error and it does the needed
544  *      line discipline hangup and signal delivery. The tty object itself
545  *      remains intact.
546  *
547  *      Locking:
548  *              BTM
549  *                redirect lock for undoing redirection
550  *                file list lock for manipulating list of ttys
551  *                tty_ldisc_lock from called functions
552  *                termios_mutex resetting termios data
553  *                tasklist_lock to walk task list for hangup event
554  *                  ->siglock to protect ->signal/->sighand
555  */
556 void __tty_hangup(struct tty_struct *tty)
557 {
558         struct file *cons_filp = NULL;
559         struct file *filp, *f = NULL;
560         struct task_struct *p;
561         struct tty_file_private *priv;
562         int    closecount = 0, n;
563         unsigned long flags;
564         int refs = 0;
565
566         if (!tty)
567                 return;
568
569
570         spin_lock(&redirect_lock);
571         if (redirect && file_tty(redirect) == tty) {
572                 f = redirect;
573                 redirect = NULL;
574         }
575         spin_unlock(&redirect_lock);
576
577         tty_lock();
578
579         /* some functions below drop BTM, so we need this bit */
580         set_bit(TTY_HUPPING, &tty->flags);
581
582         /* inuse_filps is protected by the single tty lock,
583            this really needs to change if we want to flush the
584            workqueue with the lock held */
585         check_tty_count(tty, "tty_hangup");
586
587         spin_lock(&tty_files_lock);
588         /* This breaks for file handles being sent over AF_UNIX sockets ? */
589         list_for_each_entry(priv, &tty->tty_files, list) {
590                 filp = priv->file;
591                 if (filp->f_op->write == redirected_tty_write)
592                         cons_filp = filp;
593                 if (filp->f_op->write != tty_write)
594                         continue;
595                 closecount++;
596                 __tty_fasync(-1, filp, 0);      /* can't block */
597                 filp->f_op = &hung_up_tty_fops;
598         }
599         spin_unlock(&tty_files_lock);
600
601         /*
602          * it drops BTM and thus races with reopen
603          * we protect the race by TTY_HUPPING
604          */
605         tty_ldisc_hangup(tty);
606
607         read_lock(&tasklist_lock);
608         if (tty->session) {
609                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
610                         spin_lock_irq(&p->sighand->siglock);
611                         if (p->signal->tty == tty) {
612                                 p->signal->tty = NULL;
613                                 /* We defer the dereferences outside fo
614                                    the tasklist lock */
615                                 refs++;
616                         }
617                         if (!p->signal->leader) {
618                                 spin_unlock_irq(&p->sighand->siglock);
619                                 continue;
620                         }
621                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
622                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
623                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
624                         spin_lock_irqsave(&tty->ctrl_lock, flags);
625                         if (tty->pgrp)
626                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
627                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
628                         spin_unlock_irq(&p->sighand->siglock);
629                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
630         }
631         read_unlock(&tasklist_lock);
632
633         spin_lock_irqsave(&tty->ctrl_lock, flags);
634         clear_bit(TTY_THROTTLED, &tty->flags);
635         clear_bit(TTY_PUSH, &tty->flags);
636         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
637         put_pid(tty->session);
638         put_pid(tty->pgrp);
639         tty->session = NULL;
640         tty->pgrp = NULL;
641         tty->ctrl_status = 0;
642         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
643
644         /* Account for the p->signal references we killed */
645         while (refs--)
646                 tty_kref_put(tty);
647
648         /*
649          * If one of the devices matches a console pointer, we
650          * cannot just call hangup() because that will cause
651          * tty->count and state->count to go out of sync.
652          * So we just call close() the right number of times.
653          */
654         if (cons_filp) {
655                 if (tty->ops->close)
656                         for (n = 0; n < closecount; n++)
657                                 tty->ops->close(tty, cons_filp);
658         } else if (tty->ops->hangup)
659                 (tty->ops->hangup)(tty);
660         /*
661          * We don't want to have driver/ldisc interactions beyond
662          * the ones we did here. The driver layer expects no
663          * calls after ->hangup() from the ldisc side. However we
664          * can't yet guarantee all that.
665          */
666         set_bit(TTY_HUPPED, &tty->flags);
667         clear_bit(TTY_HUPPING, &tty->flags);
668         tty_ldisc_enable(tty);
669
670         tty_unlock();
671
672         if (f)
673                 fput(f);
674 }
675
676 static void do_tty_hangup(struct work_struct *work)
677 {
678         struct tty_struct *tty =
679                 container_of(work, struct tty_struct, hangup_work);
680
681         __tty_hangup(tty);
682 }
683
684 /**
685  *      tty_hangup              -       trigger a hangup event
686  *      @tty: tty to hangup
687  *
688  *      A carrier loss (virtual or otherwise) has occurred on this like
689  *      schedule a hangup sequence to run after this event.
690  */
691
692 void tty_hangup(struct tty_struct *tty)
693 {
694 #ifdef TTY_DEBUG_HANGUP
695         char    buf[64];
696         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
697 #endif
698         schedule_work(&tty->hangup_work);
699 }
700
701 EXPORT_SYMBOL(tty_hangup);
702
703 /**
704  *      tty_vhangup             -       process vhangup
705  *      @tty: tty to hangup
706  *
707  *      The user has asked via system call for the terminal to be hung up.
708  *      We do this synchronously so that when the syscall returns the process
709  *      is complete. That guarantee is necessary for security reasons.
710  */
711
712 void tty_vhangup(struct tty_struct *tty)
713 {
714 #ifdef TTY_DEBUG_HANGUP
715         char    buf[64];
716
717         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
718 #endif
719         __tty_hangup(tty);
720 }
721
722 EXPORT_SYMBOL(tty_vhangup);
723
724
725 /**
726  *      tty_vhangup_self        -       process vhangup for own ctty
727  *
728  *      Perform a vhangup on the current controlling tty
729  */
730
731 void tty_vhangup_self(void)
732 {
733         struct tty_struct *tty;
734
735         tty = get_current_tty();
736         if (tty) {
737                 tty_vhangup(tty);
738                 tty_kref_put(tty);
739         }
740 }
741
742 /**
743  *      tty_hung_up_p           -       was tty hung up
744  *      @filp: file pointer of tty
745  *
746  *      Return true if the tty has been subject to a vhangup or a carrier
747  *      loss
748  */
749
750 int tty_hung_up_p(struct file *filp)
751 {
752         return (filp->f_op == &hung_up_tty_fops);
753 }
754
755 EXPORT_SYMBOL(tty_hung_up_p);
756
757 static void session_clear_tty(struct pid *session)
758 {
759         struct task_struct *p;
760         do_each_pid_task(session, PIDTYPE_SID, p) {
761                 proc_clear_tty(p);
762         } while_each_pid_task(session, PIDTYPE_SID, p);
763 }
764
765 /**
766  *      disassociate_ctty       -       disconnect controlling tty
767  *      @on_exit: true if exiting so need to "hang up" the session
768  *
769  *      This function is typically called only by the session leader, when
770  *      it wants to disassociate itself from its controlling tty.
771  *
772  *      It performs the following functions:
773  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
774  *      (2)  Clears the tty from being controlling the session
775  *      (3)  Clears the controlling tty for all processes in the
776  *              session group.
777  *
778  *      The argument on_exit is set to 1 if called when a process is
779  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
780  *
781  *      Locking:
782  *              BTM is taken for hysterical raisins, and held when
783  *                called from no_tty().
784  *                tty_mutex is taken to protect tty
785  *                ->siglock is taken to protect ->signal/->sighand
786  *                tasklist_lock is taken to walk process list for sessions
787  *                  ->siglock is taken to protect ->signal/->sighand
788  */
789
790 void disassociate_ctty(int on_exit)
791 {
792         struct tty_struct *tty;
793         struct pid *tty_pgrp = NULL;
794
795         if (!current->signal->leader)
796                 return;
797
798         tty = get_current_tty();
799         if (tty) {
800                 tty_pgrp = get_pid(tty->pgrp);
801                 if (on_exit) {
802                         if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
803                                 tty_vhangup(tty);
804                 }
805                 tty_kref_put(tty);
806         } else if (on_exit) {
807                 struct pid *old_pgrp;
808                 spin_lock_irq(&current->sighand->siglock);
809                 old_pgrp = current->signal->tty_old_pgrp;
810                 current->signal->tty_old_pgrp = NULL;
811                 spin_unlock_irq(&current->sighand->siglock);
812                 if (old_pgrp) {
813                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
814                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
815                         put_pid(old_pgrp);
816                 }
817                 return;
818         }
819         if (tty_pgrp) {
820                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
821                 if (!on_exit)
822                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
823                 put_pid(tty_pgrp);
824         }
825
826         spin_lock_irq(&current->sighand->siglock);
827         put_pid(current->signal->tty_old_pgrp);
828         current->signal->tty_old_pgrp = NULL;
829         spin_unlock_irq(&current->sighand->siglock);
830
831         tty = get_current_tty();
832         if (tty) {
833                 unsigned long flags;
834                 spin_lock_irqsave(&tty->ctrl_lock, flags);
835                 put_pid(tty->session);
836                 put_pid(tty->pgrp);
837                 tty->session = NULL;
838                 tty->pgrp = NULL;
839                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
840                 tty_kref_put(tty);
841         } else {
842 #ifdef TTY_DEBUG_HANGUP
843                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
844                        " = NULL", tty);
845 #endif
846         }
847
848         /* Now clear signal->tty under the lock */
849         read_lock(&tasklist_lock);
850         session_clear_tty(task_session(current));
851         read_unlock(&tasklist_lock);
852 }
853
854 /**
855  *
856  *      no_tty  - Ensure the current process does not have a controlling tty
857  */
858 void no_tty(void)
859 {
860         struct task_struct *tsk = current;
861         tty_lock();
862         disassociate_ctty(0);
863         tty_unlock();
864         proc_clear_tty(tsk);
865 }
866
867
868 /**
869  *      stop_tty        -       propagate flow control
870  *      @tty: tty to stop
871  *
872  *      Perform flow control to the driver. For PTY/TTY pairs we
873  *      must also propagate the TIOCKPKT status. May be called
874  *      on an already stopped device and will not re-call the driver
875  *      method.
876  *
877  *      This functionality is used by both the line disciplines for
878  *      halting incoming flow and by the driver. It may therefore be
879  *      called from any context, may be under the tty atomic_write_lock
880  *      but not always.
881  *
882  *      Locking:
883  *              Uses the tty control lock internally
884  */
885
886 void stop_tty(struct tty_struct *tty)
887 {
888         unsigned long flags;
889         spin_lock_irqsave(&tty->ctrl_lock, flags);
890         if (tty->stopped) {
891                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
892                 return;
893         }
894         tty->stopped = 1;
895         if (tty->link && tty->link->packet) {
896                 tty->ctrl_status &= ~TIOCPKT_START;
897                 tty->ctrl_status |= TIOCPKT_STOP;
898                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
899         }
900         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
901         if (tty->ops->stop)
902                 (tty->ops->stop)(tty);
903 }
904
905 EXPORT_SYMBOL(stop_tty);
906
907 /**
908  *      start_tty       -       propagate flow control
909  *      @tty: tty to start
910  *
911  *      Start a tty that has been stopped if at all possible. Perform
912  *      any necessary wakeups and propagate the TIOCPKT status. If this
913  *      is the tty was previous stopped and is being started then the
914  *      driver start method is invoked and the line discipline woken.
915  *
916  *      Locking:
917  *              ctrl_lock
918  */
919
920 void start_tty(struct tty_struct *tty)
921 {
922         unsigned long flags;
923         spin_lock_irqsave(&tty->ctrl_lock, flags);
924         if (!tty->stopped || tty->flow_stopped) {
925                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
926                 return;
927         }
928         tty->stopped = 0;
929         if (tty->link && tty->link->packet) {
930                 tty->ctrl_status &= ~TIOCPKT_STOP;
931                 tty->ctrl_status |= TIOCPKT_START;
932                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
933         }
934         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
935         if (tty->ops->start)
936                 (tty->ops->start)(tty);
937         /* If we have a running line discipline it may need kicking */
938         tty_wakeup(tty);
939 }
940
941 EXPORT_SYMBOL(start_tty);
942
943 /* We limit tty time update visibility to every 8 seconds or so. */
944 static void tty_update_time(struct timespec *time)
945 {
946         unsigned long sec = get_seconds() & ~7;
947         if ((long)(sec - time->tv_sec) > 0)
948                 time->tv_sec = sec;
949 }
950
951 /**
952  *      tty_read        -       read method for tty device files
953  *      @file: pointer to tty file
954  *      @buf: user buffer
955  *      @count: size of user buffer
956  *      @ppos: unused
957  *
958  *      Perform the read system call function on this terminal device. Checks
959  *      for hung up devices before calling the line discipline method.
960  *
961  *      Locking:
962  *              Locks the line discipline internally while needed. Multiple
963  *      read calls may be outstanding in parallel.
964  */
965
966 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
967                         loff_t *ppos)
968 {
969         int i;
970         struct inode *inode = file->f_path.dentry->d_inode;
971         struct tty_struct *tty = file_tty(file);
972         struct tty_ldisc *ld;
973
974         if (tty_paranoia_check(tty, inode, "tty_read"))
975                 return -EIO;
976         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
977                 return -EIO;
978
979         /* We want to wait for the line discipline to sort out in this
980            situation */
981         ld = tty_ldisc_ref_wait(tty);
982         if (ld->ops->read)
983                 i = (ld->ops->read)(tty, file, buf, count);
984         else
985                 i = -EIO;
986         tty_ldisc_deref(ld);
987
988         if (i > 0)
989                 tty_update_time(&inode->i_atime);
990
991         return i;
992 }
993
994 void tty_write_unlock(struct tty_struct *tty)
995         __releases(&tty->atomic_write_lock)
996 {
997         mutex_unlock(&tty->atomic_write_lock);
998         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
999 }
1000
1001 int tty_write_lock(struct tty_struct *tty, int ndelay)
1002         __acquires(&tty->atomic_write_lock)
1003 {
1004         if (!mutex_trylock(&tty->atomic_write_lock)) {
1005                 if (ndelay)
1006                         return -EAGAIN;
1007                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1008                         return -ERESTARTSYS;
1009         }
1010         return 0;
1011 }
1012
1013 /*
1014  * Split writes up in sane blocksizes to avoid
1015  * denial-of-service type attacks
1016  */
1017 static inline ssize_t do_tty_write(
1018         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1019         struct tty_struct *tty,
1020         struct file *file,
1021         const char __user *buf,
1022         size_t count)
1023 {
1024         ssize_t ret, written = 0;
1025         unsigned int chunk;
1026
1027         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1028         if (ret < 0)
1029                 return ret;
1030
1031         /*
1032          * We chunk up writes into a temporary buffer. This
1033          * simplifies low-level drivers immensely, since they
1034          * don't have locking issues and user mode accesses.
1035          *
1036          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1037          * big chunk-size..
1038          *
1039          * The default chunk-size is 2kB, because the NTTY
1040          * layer has problems with bigger chunks. It will
1041          * claim to be able to handle more characters than
1042          * it actually does.
1043          *
1044          * FIXME: This can probably go away now except that 64K chunks
1045          * are too likely to fail unless switched to vmalloc...
1046          */
1047         chunk = 2048;
1048         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1049                 chunk = 65536;
1050         if (count < chunk)
1051                 chunk = count;
1052
1053         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1054         if (tty->write_cnt < chunk) {
1055                 unsigned char *buf_chunk;
1056
1057                 if (chunk < 1024)
1058                         chunk = 1024;
1059
1060                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1061                 if (!buf_chunk) {
1062                         ret = -ENOMEM;
1063                         goto out;
1064                 }
1065                 kfree(tty->write_buf);
1066                 tty->write_cnt = chunk;
1067                 tty->write_buf = buf_chunk;
1068         }
1069
1070         /* Do the write .. */
1071         for (;;) {
1072                 size_t size = count;
1073                 if (size > chunk)
1074                         size = chunk;
1075                 ret = -EFAULT;
1076                 if (copy_from_user(tty->write_buf, buf, size))
1077                         break;
1078                 ret = write(tty, file, tty->write_buf, size);
1079                 if (ret <= 0)
1080                         break;
1081                 written += ret;
1082                 buf += ret;
1083                 count -= ret;
1084                 if (!count)
1085                         break;
1086                 ret = -ERESTARTSYS;
1087                 if (signal_pending(current))
1088                         break;
1089                 cond_resched();
1090         }
1091         if (written) {
1092                struct inode *inode = file->f_path.dentry->d_inode;
1093                 tty_update_time(&inode->i_mtime);
1094                 ret = written;
1095         }
1096 out:
1097         tty_write_unlock(tty);
1098         return ret;
1099 }
1100
1101 /**
1102  * tty_write_message - write a message to a certain tty, not just the console.
1103  * @tty: the destination tty_struct
1104  * @msg: the message to write
1105  *
1106  * This is used for messages that need to be redirected to a specific tty.
1107  * We don't put it into the syslog queue right now maybe in the future if
1108  * really needed.
1109  *
1110  * We must still hold the BTM and test the CLOSING flag for the moment.
1111  */
1112
1113 void tty_write_message(struct tty_struct *tty, char *msg)
1114 {
1115         if (tty) {
1116                 mutex_lock(&tty->atomic_write_lock);
1117                 tty_lock();
1118                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1119                         tty_unlock();
1120                         tty->ops->write(tty, msg, strlen(msg));
1121                 } else
1122                         tty_unlock();
1123                 tty_write_unlock(tty);
1124         }
1125         return;
1126 }
1127
1128
1129 /**
1130  *      tty_write               -       write method for tty device file
1131  *      @file: tty file pointer
1132  *      @buf: user data to write
1133  *      @count: bytes to write
1134  *      @ppos: unused
1135  *
1136  *      Write data to a tty device via the line discipline.
1137  *
1138  *      Locking:
1139  *              Locks the line discipline as required
1140  *              Writes to the tty driver are serialized by the atomic_write_lock
1141  *      and are then processed in chunks to the device. The line discipline
1142  *      write method will not be invoked in parallel for each device.
1143  */
1144
1145 static ssize_t tty_write(struct file *file, const char __user *buf,
1146                                                 size_t count, loff_t *ppos)
1147 {
1148         struct inode *inode = file->f_path.dentry->d_inode;
1149         struct tty_struct *tty = file_tty(file);
1150         struct tty_ldisc *ld;
1151         ssize_t ret;
1152
1153         if (tty_paranoia_check(tty, inode, "tty_write"))
1154                 return -EIO;
1155         if (!tty || !tty->ops->write ||
1156                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1157                         return -EIO;
1158         /* Short term debug to catch buggy drivers */
1159         if (tty->ops->write_room == NULL)
1160                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1161                         tty->driver->name);
1162         ld = tty_ldisc_ref_wait(tty);
1163         if (!ld->ops->write)
1164                 ret = -EIO;
1165         else
1166                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1167         tty_ldisc_deref(ld);
1168         return ret;
1169 }
1170
1171 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1172                                                 size_t count, loff_t *ppos)
1173 {
1174         struct file *p = NULL;
1175
1176         spin_lock(&redirect_lock);
1177         if (redirect) {
1178                 get_file(redirect);
1179                 p = redirect;
1180         }
1181         spin_unlock(&redirect_lock);
1182
1183         if (p) {
1184                 ssize_t res;
1185                 res = vfs_write(p, buf, count, &p->f_pos);
1186                 fput(p);
1187                 return res;
1188         }
1189         return tty_write(file, buf, count, ppos);
1190 }
1191
1192 static char ptychar[] = "pqrstuvwxyzabcde";
1193
1194 /**
1195  *      pty_line_name   -       generate name for a pty
1196  *      @driver: the tty driver in use
1197  *      @index: the minor number
1198  *      @p: output buffer of at least 6 bytes
1199  *
1200  *      Generate a name from a driver reference and write it to the output
1201  *      buffer.
1202  *
1203  *      Locking: None
1204  */
1205 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1206 {
1207         int i = index + driver->name_base;
1208         /* ->name is initialized to "ttyp", but "tty" is expected */
1209         sprintf(p, "%s%c%x",
1210                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1211                 ptychar[i >> 4 & 0xf], i & 0xf);
1212 }
1213
1214 /**
1215  *      tty_line_name   -       generate name for a tty
1216  *      @driver: the tty driver in use
1217  *      @index: the minor number
1218  *      @p: output buffer of at least 7 bytes
1219  *
1220  *      Generate a name from a driver reference and write it to the output
1221  *      buffer.
1222  *
1223  *      Locking: None
1224  */
1225 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1226 {
1227         return sprintf(p, "%s%d", driver->name, index + driver->name_base);
1228 }
1229
1230 /**
1231  *      tty_driver_lookup_tty() - find an existing tty, if any
1232  *      @driver: the driver for the tty
1233  *      @idx:    the minor number
1234  *
1235  *      Return the tty, if found or ERR_PTR() otherwise.
1236  *
1237  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1238  *      be held until the 'fast-open' is also done. Will change once we
1239  *      have refcounting in the driver and per driver locking
1240  */
1241 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1242                 struct inode *inode, int idx)
1243 {
1244         struct tty_struct *tty;
1245
1246         if (driver->ops->lookup)
1247                 return driver->ops->lookup(driver, inode, idx);
1248
1249         tty = driver->ttys[idx];
1250         return tty;
1251 }
1252
1253 /**
1254  *      tty_init_termios        -  helper for termios setup
1255  *      @tty: the tty to set up
1256  *
1257  *      Initialise the termios structures for this tty. Thus runs under
1258  *      the tty_mutex currently so we can be relaxed about ordering.
1259  */
1260
1261 int tty_init_termios(struct tty_struct *tty)
1262 {
1263         struct ktermios *tp;
1264         int idx = tty->index;
1265
1266         tp = tty->driver->termios[idx];
1267         if (tp == NULL) {
1268                 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1269                 if (tp == NULL)
1270                         return -ENOMEM;
1271                 memcpy(tp, &tty->driver->init_termios,
1272                                                 sizeof(struct ktermios));
1273                 tty->driver->termios[idx] = tp;
1274         }
1275         tty->termios = tp;
1276         tty->termios_locked = tp + 1;
1277
1278         /* Compatibility until drivers always set this */
1279         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1280         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1281         return 0;
1282 }
1283 EXPORT_SYMBOL_GPL(tty_init_termios);
1284
1285 /**
1286  *      tty_driver_install_tty() - install a tty entry in the driver
1287  *      @driver: the driver for the tty
1288  *      @tty: the tty
1289  *
1290  *      Install a tty object into the driver tables. The tty->index field
1291  *      will be set by the time this is called. This method is responsible
1292  *      for ensuring any need additional structures are allocated and
1293  *      configured.
1294  *
1295  *      Locking: tty_mutex for now
1296  */
1297 static int tty_driver_install_tty(struct tty_driver *driver,
1298                                                 struct tty_struct *tty)
1299 {
1300         int idx = tty->index;
1301         int ret;
1302
1303         if (driver->ops->install) {
1304                 ret = driver->ops->install(driver, tty);
1305                 return ret;
1306         }
1307
1308         if (tty_init_termios(tty) == 0) {
1309                 tty_driver_kref_get(driver);
1310                 tty->count++;
1311                 driver->ttys[idx] = tty;
1312                 return 0;
1313         }
1314         return -ENOMEM;
1315 }
1316
1317 /**
1318  *      tty_driver_remove_tty() - remove a tty from the driver tables
1319  *      @driver: the driver for the tty
1320  *      @idx:    the minor number
1321  *
1322  *      Remvoe a tty object from the driver tables. The tty->index field
1323  *      will be set by the time this is called.
1324  *
1325  *      Locking: tty_mutex for now
1326  */
1327 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1328 {
1329         if (driver->ops->remove)
1330                 driver->ops->remove(driver, tty);
1331         else
1332                 driver->ttys[tty->index] = NULL;
1333 }
1334
1335 /*
1336  *      tty_reopen()    - fast re-open of an open tty
1337  *      @tty    - the tty to open
1338  *
1339  *      Return 0 on success, -errno on error.
1340  *
1341  *      Locking: tty_mutex must be held from the time the tty was found
1342  *               till this open completes.
1343  */
1344 static int tty_reopen(struct tty_struct *tty)
1345 {
1346         struct tty_driver *driver = tty->driver;
1347
1348         if (test_bit(TTY_CLOSING, &tty->flags) ||
1349                         test_bit(TTY_HUPPING, &tty->flags) ||
1350                         test_bit(TTY_LDISC_CHANGING, &tty->flags))
1351                 return -EIO;
1352
1353         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1354             driver->subtype == PTY_TYPE_MASTER) {
1355                 /*
1356                  * special case for PTY masters: only one open permitted,
1357                  * and the slave side open count is incremented as well.
1358                  */
1359                 if (tty->count)
1360                         return -EIO;
1361
1362                 tty->link->count++;
1363         }
1364         tty->count++;
1365         tty->driver = driver; /* N.B. why do this every time?? */
1366
1367         mutex_lock(&tty->ldisc_mutex);
1368         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1369         mutex_unlock(&tty->ldisc_mutex);
1370
1371         return 0;
1372 }
1373
1374 /**
1375  *      tty_init_dev            -       initialise a tty device
1376  *      @driver: tty driver we are opening a device on
1377  *      @idx: device index
1378  *      @ret_tty: returned tty structure
1379  *      @first_ok: ok to open a new device (used by ptmx)
1380  *
1381  *      Prepare a tty device. This may not be a "new" clean device but
1382  *      could also be an active device. The pty drivers require special
1383  *      handling because of this.
1384  *
1385  *      Locking:
1386  *              The function is called under the tty_mutex, which
1387  *      protects us from the tty struct or driver itself going away.
1388  *
1389  *      On exit the tty device has the line discipline attached and
1390  *      a reference count of 1. If a pair was created for pty/tty use
1391  *      and the other was a pty master then it too has a reference count of 1.
1392  *
1393  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1394  * failed open.  The new code protects the open with a mutex, so it's
1395  * really quite straightforward.  The mutex locking can probably be
1396  * relaxed for the (most common) case of reopening a tty.
1397  */
1398
1399 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1400                                                                 int first_ok)
1401 {
1402         struct tty_struct *tty;
1403         int retval;
1404
1405         /* Check if pty master is being opened multiple times */
1406         if (driver->subtype == PTY_TYPE_MASTER &&
1407                 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1408                 return ERR_PTR(-EIO);
1409         }
1410
1411         /*
1412          * First time open is complex, especially for PTY devices.
1413          * This code guarantees that either everything succeeds and the
1414          * TTY is ready for operation, or else the table slots are vacated
1415          * and the allocated memory released.  (Except that the termios
1416          * and locked termios may be retained.)
1417          */
1418
1419         if (!try_module_get(driver->owner))
1420                 return ERR_PTR(-ENODEV);
1421
1422         tty = alloc_tty_struct();
1423         if (!tty) {
1424                 retval = -ENOMEM;
1425                 goto err_module_put;
1426         }
1427         initialize_tty_struct(tty, driver, idx);
1428
1429         retval = tty_driver_install_tty(driver, tty);
1430         if (retval < 0)
1431                 goto err_deinit_tty;
1432
1433         /*
1434          * Structures all installed ... call the ldisc open routines.
1435          * If we fail here just call release_tty to clean up.  No need
1436          * to decrement the use counts, as release_tty doesn't care.
1437          */
1438         retval = tty_ldisc_setup(tty, tty->link);
1439         if (retval)
1440                 goto err_release_tty;
1441         return tty;
1442
1443 err_deinit_tty:
1444         deinitialize_tty_struct(tty);
1445         free_tty_struct(tty);
1446 err_module_put:
1447         module_put(driver->owner);
1448         return ERR_PTR(retval);
1449
1450         /* call the tty release_tty routine to clean out this slot */
1451 err_release_tty:
1452         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1453                                  "clearing slot %d\n", idx);
1454         release_tty(tty, idx);
1455         return ERR_PTR(retval);
1456 }
1457
1458 void tty_free_termios(struct tty_struct *tty)
1459 {
1460         struct ktermios *tp;
1461         int idx = tty->index;
1462         /* Kill this flag and push into drivers for locking etc */
1463         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1464                 /* FIXME: Locking on ->termios array */
1465                 tp = tty->termios;
1466                 tty->driver->termios[idx] = NULL;
1467                 kfree(tp);
1468         }
1469 }
1470 EXPORT_SYMBOL(tty_free_termios);
1471
1472 void tty_shutdown(struct tty_struct *tty)
1473 {
1474         tty_driver_remove_tty(tty->driver, tty);
1475         tty_free_termios(tty);
1476 }
1477 EXPORT_SYMBOL(tty_shutdown);
1478
1479 /**
1480  *      release_one_tty         -       release tty structure memory
1481  *      @kref: kref of tty we are obliterating
1482  *
1483  *      Releases memory associated with a tty structure, and clears out the
1484  *      driver table slots. This function is called when a device is no longer
1485  *      in use. It also gets called when setup of a device fails.
1486  *
1487  *      Locking:
1488  *              tty_mutex - sometimes only
1489  *              takes the file list lock internally when working on the list
1490  *      of ttys that the driver keeps.
1491  *
1492  *      This method gets called from a work queue so that the driver private
1493  *      cleanup ops can sleep (needed for USB at least)
1494  */
1495 static void release_one_tty(struct work_struct *work)
1496 {
1497         struct tty_struct *tty =
1498                 container_of(work, struct tty_struct, hangup_work);
1499         struct tty_driver *driver = tty->driver;
1500
1501         if (tty->ops->cleanup)
1502                 tty->ops->cleanup(tty);
1503
1504         tty->magic = 0;
1505         tty_driver_kref_put(driver);
1506         module_put(driver->owner);
1507
1508         spin_lock(&tty_files_lock);
1509         list_del_init(&tty->tty_files);
1510         spin_unlock(&tty_files_lock);
1511
1512         put_pid(tty->pgrp);
1513         put_pid(tty->session);
1514         free_tty_struct(tty);
1515 }
1516
1517 static void queue_release_one_tty(struct kref *kref)
1518 {
1519         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1520
1521         if (tty->ops->shutdown)
1522                 tty->ops->shutdown(tty);
1523         else
1524                 tty_shutdown(tty);
1525
1526         /* The hangup queue is now free so we can reuse it rather than
1527            waste a chunk of memory for each port */
1528         INIT_WORK(&tty->hangup_work, release_one_tty);
1529         schedule_work(&tty->hangup_work);
1530 }
1531
1532 /**
1533  *      tty_kref_put            -       release a tty kref
1534  *      @tty: tty device
1535  *
1536  *      Release a reference to a tty device and if need be let the kref
1537  *      layer destruct the object for us
1538  */
1539
1540 void tty_kref_put(struct tty_struct *tty)
1541 {
1542         if (tty)
1543                 kref_put(&tty->kref, queue_release_one_tty);
1544 }
1545 EXPORT_SYMBOL(tty_kref_put);
1546
1547 /**
1548  *      release_tty             -       release tty structure memory
1549  *
1550  *      Release both @tty and a possible linked partner (think pty pair),
1551  *      and decrement the refcount of the backing module.
1552  *
1553  *      Locking:
1554  *              tty_mutex - sometimes only
1555  *              takes the file list lock internally when working on the list
1556  *      of ttys that the driver keeps.
1557  *              FIXME: should we require tty_mutex is held here ??
1558  *
1559  */
1560 static void release_tty(struct tty_struct *tty, int idx)
1561 {
1562         /* This should always be true but check for the moment */
1563         WARN_ON(tty->index != idx);
1564
1565         if (tty->link)
1566                 tty_kref_put(tty->link);
1567         tty_kref_put(tty);
1568 }
1569
1570 /**
1571  *      tty_release             -       vfs callback for close
1572  *      @inode: inode of tty
1573  *      @filp: file pointer for handle to tty
1574  *
1575  *      Called the last time each file handle is closed that references
1576  *      this tty. There may however be several such references.
1577  *
1578  *      Locking:
1579  *              Takes bkl. See tty_release_dev
1580  *
1581  * Even releasing the tty structures is a tricky business.. We have
1582  * to be very careful that the structures are all released at the
1583  * same time, as interrupts might otherwise get the wrong pointers.
1584  *
1585  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1586  * lead to double frees or releasing memory still in use.
1587  */
1588
1589 int tty_release(struct inode *inode, struct file *filp)
1590 {
1591         struct tty_struct *tty = file_tty(filp);
1592         struct tty_struct *o_tty;
1593         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1594         int     devpts;
1595         int     idx;
1596         char    buf[64];
1597
1598         if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1599                 return 0;
1600
1601         tty_lock();
1602         check_tty_count(tty, "tty_release_dev");
1603
1604         __tty_fasync(-1, filp, 0);
1605
1606         idx = tty->index;
1607         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1608                       tty->driver->subtype == PTY_TYPE_MASTER);
1609         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1610         o_tty = tty->link;
1611
1612 #ifdef TTY_PARANOIA_CHECK
1613         if (idx < 0 || idx >= tty->driver->num) {
1614                 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1615                                   "free (%s)\n", tty->name);
1616                 tty_unlock();
1617                 return 0;
1618         }
1619         if (!devpts) {
1620                 if (tty != tty->driver->ttys[idx]) {
1621                         tty_unlock();
1622                         printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1623                                "for (%s)\n", idx, tty->name);
1624                         return 0;
1625                 }
1626                 if (tty->termios != tty->driver->termios[idx]) {
1627                         tty_unlock();
1628                         printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1629                                "for (%s)\n",
1630                                idx, tty->name);
1631                         return 0;
1632                 }
1633         }
1634 #endif
1635
1636 #ifdef TTY_DEBUG_HANGUP
1637         printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1638                tty_name(tty, buf), tty->count);
1639 #endif
1640
1641 #ifdef TTY_PARANOIA_CHECK
1642         if (tty->driver->other &&
1643              !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1644                 if (o_tty != tty->driver->other->ttys[idx]) {
1645                         tty_unlock();
1646                         printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1647                                           "not o_tty for (%s)\n",
1648                                idx, tty->name);
1649                         return 0 ;
1650                 }
1651                 if (o_tty->termios != tty->driver->other->termios[idx]) {
1652                         tty_unlock();
1653                         printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1654                                           "not o_termios for (%s)\n",
1655                                idx, tty->name);
1656                         return 0;
1657                 }
1658                 if (o_tty->link != tty) {
1659                         tty_unlock();
1660                         printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1661                         return 0;
1662                 }
1663         }
1664 #endif
1665         if (tty->ops->close)
1666                 tty->ops->close(tty, filp);
1667
1668         tty_unlock();
1669         /*
1670          * Sanity check: if tty->count is going to zero, there shouldn't be
1671          * any waiters on tty->read_wait or tty->write_wait.  We test the
1672          * wait queues and kick everyone out _before_ actually starting to
1673          * close.  This ensures that we won't block while releasing the tty
1674          * structure.
1675          *
1676          * The test for the o_tty closing is necessary, since the master and
1677          * slave sides may close in any order.  If the slave side closes out
1678          * first, its count will be one, since the master side holds an open.
1679          * Thus this test wouldn't be triggered at the time the slave closes,
1680          * so we do it now.
1681          *
1682          * Note that it's possible for the tty to be opened again while we're
1683          * flushing out waiters.  By recalculating the closing flags before
1684          * each iteration we avoid any problems.
1685          */
1686         while (1) {
1687                 /* Guard against races with tty->count changes elsewhere and
1688                    opens on /dev/tty */
1689
1690                 mutex_lock(&tty_mutex);
1691                 tty_lock();
1692                 tty_closing = tty->count <= 1;
1693                 o_tty_closing = o_tty &&
1694                         (o_tty->count <= (pty_master ? 1 : 0));
1695                 do_sleep = 0;
1696
1697                 if (tty_closing) {
1698                         if (waitqueue_active(&tty->read_wait)) {
1699                                 wake_up_poll(&tty->read_wait, POLLIN);
1700                                 do_sleep++;
1701                         }
1702                         if (waitqueue_active(&tty->write_wait)) {
1703                                 wake_up_poll(&tty->write_wait, POLLOUT);
1704                                 do_sleep++;
1705                         }
1706                 }
1707                 if (o_tty_closing) {
1708                         if (waitqueue_active(&o_tty->read_wait)) {
1709                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1710                                 do_sleep++;
1711                         }
1712                         if (waitqueue_active(&o_tty->write_wait)) {
1713                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1714                                 do_sleep++;
1715                         }
1716                 }
1717                 if (!do_sleep)
1718                         break;
1719
1720                 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1721                                     "active!\n", tty_name(tty, buf));
1722                 tty_unlock();
1723                 mutex_unlock(&tty_mutex);
1724                 schedule();
1725         }
1726
1727         /*
1728          * The closing flags are now consistent with the open counts on
1729          * both sides, and we've completed the last operation that could
1730          * block, so it's safe to proceed with closing.
1731          */
1732         if (pty_master) {
1733                 if (--o_tty->count < 0) {
1734                         printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1735                                             "(%d) for %s\n",
1736                                o_tty->count, tty_name(o_tty, buf));
1737                         o_tty->count = 0;
1738                 }
1739         }
1740         if (--tty->count < 0) {
1741                 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1742                        tty->count, tty_name(tty, buf));
1743                 tty->count = 0;
1744         }
1745
1746         /*
1747          * We've decremented tty->count, so we need to remove this file
1748          * descriptor off the tty->tty_files list; this serves two
1749          * purposes:
1750          *  - check_tty_count sees the correct number of file descriptors
1751          *    associated with this tty.
1752          *  - do_tty_hangup no longer sees this file descriptor as
1753          *    something that needs to be handled for hangups.
1754          */
1755         tty_del_file(filp);
1756
1757         /*
1758          * Perform some housekeeping before deciding whether to return.
1759          *
1760          * Set the TTY_CLOSING flag if this was the last open.  In the
1761          * case of a pty we may have to wait around for the other side
1762          * to close, and TTY_CLOSING makes sure we can't be reopened.
1763          */
1764         if (tty_closing)
1765                 set_bit(TTY_CLOSING, &tty->flags);
1766         if (o_tty_closing)
1767                 set_bit(TTY_CLOSING, &o_tty->flags);
1768
1769         /*
1770          * If _either_ side is closing, make sure there aren't any
1771          * processes that still think tty or o_tty is their controlling
1772          * tty.
1773          */
1774         if (tty_closing || o_tty_closing) {
1775                 read_lock(&tasklist_lock);
1776                 session_clear_tty(tty->session);
1777                 if (o_tty)
1778                         session_clear_tty(o_tty->session);
1779                 read_unlock(&tasklist_lock);
1780         }
1781
1782         mutex_unlock(&tty_mutex);
1783
1784         /* check whether both sides are closing ... */
1785         if (!tty_closing || (o_tty && !o_tty_closing)) {
1786                 tty_unlock();
1787                 return 0;
1788         }
1789
1790 #ifdef TTY_DEBUG_HANGUP
1791         printk(KERN_DEBUG "freeing tty structure...");
1792 #endif
1793         /*
1794          * Ask the line discipline code to release its structures
1795          */
1796         tty_ldisc_release(tty, o_tty);
1797         /*
1798          * The release_tty function takes care of the details of clearing
1799          * the slots and preserving the termios structure.
1800          */
1801         release_tty(tty, idx);
1802
1803         /* Make this pty number available for reallocation */
1804         if (devpts)
1805                 devpts_kill_index(inode, idx);
1806         tty_unlock();
1807         return 0;
1808 }
1809
1810 /**
1811  *      tty_open                -       open a tty device
1812  *      @inode: inode of device file
1813  *      @filp: file pointer to tty
1814  *
1815  *      tty_open and tty_release keep up the tty count that contains the
1816  *      number of opens done on a tty. We cannot use the inode-count, as
1817  *      different inodes might point to the same tty.
1818  *
1819  *      Open-counting is needed for pty masters, as well as for keeping
1820  *      track of serial lines: DTR is dropped when the last close happens.
1821  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1822  *
1823  *      The termios state of a pty is reset on first open so that
1824  *      settings don't persist across reuse.
1825  *
1826  *      Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1827  *               tty->count should protect the rest.
1828  *               ->siglock protects ->signal/->sighand
1829  */
1830
1831 static int tty_open(struct inode *inode, struct file *filp)
1832 {
1833         struct tty_struct *tty = NULL;
1834         int noctty, retval;
1835         struct tty_driver *driver;
1836         int index;
1837         dev_t device = inode->i_rdev;
1838         unsigned saved_flags = filp->f_flags;
1839
1840         nonseekable_open(inode, filp);
1841
1842 retry_open:
1843         retval = tty_alloc_file(filp);
1844         if (retval)
1845                 return -ENOMEM;
1846
1847         noctty = filp->f_flags & O_NOCTTY;
1848         index  = -1;
1849         retval = 0;
1850
1851         mutex_lock(&tty_mutex);
1852         tty_lock();
1853
1854         if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1855                 tty = get_current_tty();
1856                 if (!tty) {
1857                         tty_unlock();
1858                         mutex_unlock(&tty_mutex);
1859                         tty_free_file(filp);
1860                         return -ENXIO;
1861                 }
1862                 driver = tty_driver_kref_get(tty->driver);
1863                 index = tty->index;
1864                 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1865                 /* noctty = 1; */
1866                 /* FIXME: Should we take a driver reference ? */
1867                 tty_kref_put(tty);
1868                 goto got_driver;
1869         }
1870 #ifdef CONFIG_VT
1871         if (device == MKDEV(TTY_MAJOR, 0)) {
1872                 extern struct tty_driver *console_driver;
1873                 driver = tty_driver_kref_get(console_driver);
1874                 index = fg_console;
1875                 noctty = 1;
1876                 goto got_driver;
1877         }
1878 #endif
1879         if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1880                 struct tty_driver *console_driver = console_device(&index);
1881                 if (console_driver) {
1882                         driver = tty_driver_kref_get(console_driver);
1883                         if (driver) {
1884                                 /* Don't let /dev/console block */
1885                                 filp->f_flags |= O_NONBLOCK;
1886                                 noctty = 1;
1887                                 goto got_driver;
1888                         }
1889                 }
1890                 tty_unlock();
1891                 mutex_unlock(&tty_mutex);
1892                 tty_free_file(filp);
1893                 return -ENODEV;
1894         }
1895
1896         driver = get_tty_driver(device, &index);
1897         if (!driver) {
1898                 tty_unlock();
1899                 mutex_unlock(&tty_mutex);
1900                 tty_free_file(filp);
1901                 return -ENODEV;
1902         }
1903 got_driver:
1904         if (!tty) {
1905                 /* check whether we're reopening an existing tty */
1906                 tty = tty_driver_lookup_tty(driver, inode, index);
1907
1908                 if (IS_ERR(tty)) {
1909                         tty_unlock();
1910                         mutex_unlock(&tty_mutex);
1911                         tty_driver_kref_put(driver);
1912                         tty_free_file(filp);
1913                         return PTR_ERR(tty);
1914                 }
1915         }
1916
1917         if (tty) {
1918                 retval = tty_reopen(tty);
1919                 if (retval)
1920                         tty = ERR_PTR(retval);
1921         } else
1922                 tty = tty_init_dev(driver, index, 0);
1923
1924         mutex_unlock(&tty_mutex);
1925         tty_driver_kref_put(driver);
1926         if (IS_ERR(tty)) {
1927                 tty_unlock();
1928                 tty_free_file(filp);
1929                 return PTR_ERR(tty);
1930         }
1931
1932         tty_add_file(tty, filp);
1933
1934         check_tty_count(tty, "tty_open");
1935         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1936             tty->driver->subtype == PTY_TYPE_MASTER)
1937                 noctty = 1;
1938 #ifdef TTY_DEBUG_HANGUP
1939         printk(KERN_DEBUG "opening %s...", tty->name);
1940 #endif
1941         if (tty->ops->open)
1942                 retval = tty->ops->open(tty, filp);
1943         else
1944                 retval = -ENODEV;
1945         filp->f_flags = saved_flags;
1946
1947         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1948                                                 !capable(CAP_SYS_ADMIN))
1949                 retval = -EBUSY;
1950
1951         if (retval) {
1952 #ifdef TTY_DEBUG_HANGUP
1953                 printk(KERN_DEBUG "error %d in opening %s...", retval,
1954                        tty->name);
1955 #endif
1956                 tty_unlock(); /* need to call tty_release without BTM */
1957                 tty_release(inode, filp);
1958                 if (retval != -ERESTARTSYS)
1959                         return retval;
1960
1961                 if (signal_pending(current))
1962                         return retval;
1963
1964                 schedule();
1965                 /*
1966                  * Need to reset f_op in case a hangup happened.
1967                  */
1968                 tty_lock();
1969                 if (filp->f_op == &hung_up_tty_fops)
1970                         filp->f_op = &tty_fops;
1971                 tty_unlock();
1972                 goto retry_open;
1973         }
1974         tty_unlock();
1975
1976
1977         mutex_lock(&tty_mutex);
1978         tty_lock();
1979         spin_lock_irq(&current->sighand->siglock);
1980         if (!noctty &&
1981             current->signal->leader &&
1982             !current->signal->tty &&
1983             tty->session == NULL)
1984                 __proc_set_tty(current, tty);
1985         spin_unlock_irq(&current->sighand->siglock);
1986         tty_unlock();
1987         mutex_unlock(&tty_mutex);
1988         return 0;
1989 }
1990
1991
1992
1993 /**
1994  *      tty_poll        -       check tty status
1995  *      @filp: file being polled
1996  *      @wait: poll wait structures to update
1997  *
1998  *      Call the line discipline polling method to obtain the poll
1999  *      status of the device.
2000  *
2001  *      Locking: locks called line discipline but ldisc poll method
2002  *      may be re-entered freely by other callers.
2003  */
2004
2005 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2006 {
2007         struct tty_struct *tty = file_tty(filp);
2008         struct tty_ldisc *ld;
2009         int ret = 0;
2010
2011         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2012                 return 0;
2013
2014         ld = tty_ldisc_ref_wait(tty);
2015         if (ld->ops->poll)
2016                 ret = (ld->ops->poll)(tty, filp, wait);
2017         tty_ldisc_deref(ld);
2018         return ret;
2019 }
2020
2021 static int __tty_fasync(int fd, struct file *filp, int on)
2022 {
2023         struct tty_struct *tty = file_tty(filp);
2024         unsigned long flags;
2025         int retval = 0;
2026
2027         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2028                 goto out;
2029
2030         retval = fasync_helper(fd, filp, on, &tty->fasync);
2031         if (retval <= 0)
2032                 goto out;
2033
2034         if (on) {
2035                 enum pid_type type;
2036                 struct pid *pid;
2037                 if (!waitqueue_active(&tty->read_wait))
2038                         tty->minimum_to_wake = 1;
2039                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2040                 if (tty->pgrp) {
2041                         pid = tty->pgrp;
2042                         type = PIDTYPE_PGID;
2043                 } else {
2044                         pid = task_pid(current);
2045                         type = PIDTYPE_PID;
2046                 }
2047                 get_pid(pid);
2048                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2049                 retval = __f_setown(filp, pid, type, 0);
2050                 put_pid(pid);
2051                 if (retval)
2052                         goto out;
2053         } else {
2054                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2055                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2056         }
2057         retval = 0;
2058 out:
2059         return retval;
2060 }
2061
2062 static int tty_fasync(int fd, struct file *filp, int on)
2063 {
2064         int retval;
2065         tty_lock();
2066         retval = __tty_fasync(fd, filp, on);
2067         tty_unlock();
2068         return retval;
2069 }
2070
2071 /**
2072  *      tiocsti                 -       fake input character
2073  *      @tty: tty to fake input into
2074  *      @p: pointer to character
2075  *
2076  *      Fake input to a tty device. Does the necessary locking and
2077  *      input management.
2078  *
2079  *      FIXME: does not honour flow control ??
2080  *
2081  *      Locking:
2082  *              Called functions take tty_ldisc_lock
2083  *              current->signal->tty check is safe without locks
2084  *
2085  *      FIXME: may race normal receive processing
2086  */
2087
2088 static int tiocsti(struct tty_struct *tty, char __user *p)
2089 {
2090         char ch, mbz = 0;
2091         struct tty_ldisc *ld;
2092
2093         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2094                 return -EPERM;
2095         if (get_user(ch, p))
2096                 return -EFAULT;
2097         tty_audit_tiocsti(tty, ch);
2098         ld = tty_ldisc_ref_wait(tty);
2099         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2100         tty_ldisc_deref(ld);
2101         return 0;
2102 }
2103
2104 /**
2105  *      tiocgwinsz              -       implement window query ioctl
2106  *      @tty; tty
2107  *      @arg: user buffer for result
2108  *
2109  *      Copies the kernel idea of the window size into the user buffer.
2110  *
2111  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2112  *              is consistent.
2113  */
2114
2115 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2116 {
2117         int err;
2118
2119         mutex_lock(&tty->termios_mutex);
2120         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2121         mutex_unlock(&tty->termios_mutex);
2122
2123         return err ? -EFAULT: 0;
2124 }
2125
2126 /**
2127  *      tty_do_resize           -       resize event
2128  *      @tty: tty being resized
2129  *      @rows: rows (character)
2130  *      @cols: cols (character)
2131  *
2132  *      Update the termios variables and send the necessary signals to
2133  *      peform a terminal resize correctly
2134  */
2135
2136 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2137 {
2138         struct pid *pgrp;
2139         unsigned long flags;
2140
2141         /* Lock the tty */
2142         mutex_lock(&tty->termios_mutex);
2143         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2144                 goto done;
2145         /* Get the PID values and reference them so we can
2146            avoid holding the tty ctrl lock while sending signals */
2147         spin_lock_irqsave(&tty->ctrl_lock, flags);
2148         pgrp = get_pid(tty->pgrp);
2149         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2150
2151         if (pgrp)
2152                 kill_pgrp(pgrp, SIGWINCH, 1);
2153         put_pid(pgrp);
2154
2155         tty->winsize = *ws;
2156 done:
2157         mutex_unlock(&tty->termios_mutex);
2158         return 0;
2159 }
2160
2161 /**
2162  *      tiocswinsz              -       implement window size set ioctl
2163  *      @tty; tty side of tty
2164  *      @arg: user buffer for result
2165  *
2166  *      Copies the user idea of the window size to the kernel. Traditionally
2167  *      this is just advisory information but for the Linux console it
2168  *      actually has driver level meaning and triggers a VC resize.
2169  *
2170  *      Locking:
2171  *              Driver dependent. The default do_resize method takes the
2172  *      tty termios mutex and ctrl_lock. The console takes its own lock
2173  *      then calls into the default method.
2174  */
2175
2176 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2177 {
2178         struct winsize tmp_ws;
2179         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2180                 return -EFAULT;
2181
2182         if (tty->ops->resize)
2183                 return tty->ops->resize(tty, &tmp_ws);
2184         else
2185                 return tty_do_resize(tty, &tmp_ws);
2186 }
2187
2188 /**
2189  *      tioccons        -       allow admin to move logical console
2190  *      @file: the file to become console
2191  *
2192  *      Allow the administrator to move the redirected console device
2193  *
2194  *      Locking: uses redirect_lock to guard the redirect information
2195  */
2196
2197 static int tioccons(struct file *file)
2198 {
2199         if (!capable(CAP_SYS_ADMIN))
2200                 return -EPERM;
2201         if (file->f_op->write == redirected_tty_write) {
2202                 struct file *f;
2203                 spin_lock(&redirect_lock);
2204                 f = redirect;
2205                 redirect = NULL;
2206                 spin_unlock(&redirect_lock);
2207                 if (f)
2208                         fput(f);
2209                 return 0;
2210         }
2211         spin_lock(&redirect_lock);
2212         if (redirect) {
2213                 spin_unlock(&redirect_lock);
2214                 return -EBUSY;
2215         }
2216         get_file(file);
2217         redirect = file;
2218         spin_unlock(&redirect_lock);
2219         return 0;
2220 }
2221
2222 /**
2223  *      fionbio         -       non blocking ioctl
2224  *      @file: file to set blocking value
2225  *      @p: user parameter
2226  *
2227  *      Historical tty interfaces had a blocking control ioctl before
2228  *      the generic functionality existed. This piece of history is preserved
2229  *      in the expected tty API of posix OS's.
2230  *
2231  *      Locking: none, the open file handle ensures it won't go away.
2232  */
2233
2234 static int fionbio(struct file *file, int __user *p)
2235 {
2236         int nonblock;
2237
2238         if (get_user(nonblock, p))
2239                 return -EFAULT;
2240
2241         spin_lock(&file->f_lock);
2242         if (nonblock)
2243                 file->f_flags |= O_NONBLOCK;
2244         else
2245                 file->f_flags &= ~O_NONBLOCK;
2246         spin_unlock(&file->f_lock);
2247         return 0;
2248 }
2249
2250 /**
2251  *      tiocsctty       -       set controlling tty
2252  *      @tty: tty structure
2253  *      @arg: user argument
2254  *
2255  *      This ioctl is used to manage job control. It permits a session
2256  *      leader to set this tty as the controlling tty for the session.
2257  *
2258  *      Locking:
2259  *              Takes tty_mutex() to protect tty instance
2260  *              Takes tasklist_lock internally to walk sessions
2261  *              Takes ->siglock() when updating signal->tty
2262  */
2263
2264 static int tiocsctty(struct tty_struct *tty, int arg)
2265 {
2266         int ret = 0;
2267         if (current->signal->leader && (task_session(current) == tty->session))
2268                 return ret;
2269
2270         mutex_lock(&tty_mutex);
2271         /*
2272          * The process must be a session leader and
2273          * not have a controlling tty already.
2274          */
2275         if (!current->signal->leader || current->signal->tty) {
2276                 ret = -EPERM;
2277                 goto unlock;
2278         }
2279
2280         if (tty->session) {
2281                 /*
2282                  * This tty is already the controlling
2283                  * tty for another session group!
2284                  */
2285                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2286                         /*
2287                          * Steal it away
2288                          */
2289                         read_lock(&tasklist_lock);
2290                         session_clear_tty(tty->session);
2291                         read_unlock(&tasklist_lock);
2292                 } else {
2293                         ret = -EPERM;
2294                         goto unlock;
2295                 }
2296         }
2297         proc_set_tty(current, tty);
2298 unlock:
2299         mutex_unlock(&tty_mutex);
2300         return ret;
2301 }
2302
2303 /**
2304  *      tty_get_pgrp    -       return a ref counted pgrp pid
2305  *      @tty: tty to read
2306  *
2307  *      Returns a refcounted instance of the pid struct for the process
2308  *      group controlling the tty.
2309  */
2310
2311 struct pid *tty_get_pgrp(struct tty_struct *tty)
2312 {
2313         unsigned long flags;
2314         struct pid *pgrp;
2315
2316         spin_lock_irqsave(&tty->ctrl_lock, flags);
2317         pgrp = get_pid(tty->pgrp);
2318         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2319
2320         return pgrp;
2321 }
2322 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2323
2324 /**
2325  *      tiocgpgrp               -       get process group
2326  *      @tty: tty passed by user
2327  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2328  *      @p: returned pid
2329  *
2330  *      Obtain the process group of the tty. If there is no process group
2331  *      return an error.
2332  *
2333  *      Locking: none. Reference to current->signal->tty is safe.
2334  */
2335
2336 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2337 {
2338         struct pid *pid;
2339         int ret;
2340         /*
2341          * (tty == real_tty) is a cheap way of
2342          * testing if the tty is NOT a master pty.
2343          */
2344         if (tty == real_tty && current->signal->tty != real_tty)
2345                 return -ENOTTY;
2346         pid = tty_get_pgrp(real_tty);
2347         ret =  put_user(pid_vnr(pid), p);
2348         put_pid(pid);
2349         return ret;
2350 }
2351
2352 /**
2353  *      tiocspgrp               -       attempt to set process group
2354  *      @tty: tty passed by user
2355  *      @real_tty: tty side device matching tty passed by user
2356  *      @p: pid pointer
2357  *
2358  *      Set the process group of the tty to the session passed. Only
2359  *      permitted where the tty session is our session.
2360  *
2361  *      Locking: RCU, ctrl lock
2362  */
2363
2364 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2365 {
2366         struct pid *pgrp;
2367         pid_t pgrp_nr;
2368         int retval = tty_check_change(real_tty);
2369         unsigned long flags;
2370
2371         if (retval == -EIO)
2372                 return -ENOTTY;
2373         if (retval)
2374                 return retval;
2375         if (!current->signal->tty ||
2376             (current->signal->tty != real_tty) ||
2377             (real_tty->session != task_session(current)))
2378                 return -ENOTTY;
2379         if (get_user(pgrp_nr, p))
2380                 return -EFAULT;
2381         if (pgrp_nr < 0)
2382                 return -EINVAL;
2383         rcu_read_lock();
2384         pgrp = find_vpid(pgrp_nr);
2385         retval = -ESRCH;
2386         if (!pgrp)
2387                 goto out_unlock;
2388         retval = -EPERM;
2389         if (session_of_pgrp(pgrp) != task_session(current))
2390                 goto out_unlock;
2391         retval = 0;
2392         spin_lock_irqsave(&tty->ctrl_lock, flags);
2393         put_pid(real_tty->pgrp);
2394         real_tty->pgrp = get_pid(pgrp);
2395         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2396 out_unlock:
2397         rcu_read_unlock();
2398         return retval;
2399 }
2400
2401 /**
2402  *      tiocgsid                -       get session id
2403  *      @tty: tty passed by user
2404  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2405  *      @p: pointer to returned session id
2406  *
2407  *      Obtain the session id of the tty. If there is no session
2408  *      return an error.
2409  *
2410  *      Locking: none. Reference to current->signal->tty is safe.
2411  */
2412
2413 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2414 {
2415         /*
2416          * (tty == real_tty) is a cheap way of
2417          * testing if the tty is NOT a master pty.
2418         */
2419         if (tty == real_tty && current->signal->tty != real_tty)
2420                 return -ENOTTY;
2421         if (!real_tty->session)
2422                 return -ENOTTY;
2423         return put_user(pid_vnr(real_tty->session), p);
2424 }
2425
2426 /**
2427  *      tiocsetd        -       set line discipline
2428  *      @tty: tty device
2429  *      @p: pointer to user data
2430  *
2431  *      Set the line discipline according to user request.
2432  *
2433  *      Locking: see tty_set_ldisc, this function is just a helper
2434  */
2435
2436 static int tiocsetd(struct tty_struct *tty, int __user *p)
2437 {
2438         int ldisc;
2439         int ret;
2440
2441         if (get_user(ldisc, p))
2442                 return -EFAULT;
2443
2444         ret = tty_set_ldisc(tty, ldisc);
2445
2446         return ret;
2447 }
2448
2449 /**
2450  *      send_break      -       performed time break
2451  *      @tty: device to break on
2452  *      @duration: timeout in mS
2453  *
2454  *      Perform a timed break on hardware that lacks its own driver level
2455  *      timed break functionality.
2456  *
2457  *      Locking:
2458  *              atomic_write_lock serializes
2459  *
2460  */
2461
2462 static int send_break(struct tty_struct *tty, unsigned int duration)
2463 {
2464         int retval;
2465
2466         if (tty->ops->break_ctl == NULL)
2467                 return 0;
2468
2469         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2470                 retval = tty->ops->break_ctl(tty, duration);
2471         else {
2472                 /* Do the work ourselves */
2473                 if (tty_write_lock(tty, 0) < 0)
2474                         return -EINTR;
2475                 retval = tty->ops->break_ctl(tty, -1);
2476                 if (retval)
2477                         goto out;
2478                 if (!signal_pending(current))
2479                         msleep_interruptible(duration);
2480                 retval = tty->ops->break_ctl(tty, 0);
2481 out:
2482                 tty_write_unlock(tty);
2483                 if (signal_pending(current))
2484                         retval = -EINTR;
2485         }
2486         return retval;
2487 }
2488
2489 /**
2490  *      tty_tiocmget            -       get modem status
2491  *      @tty: tty device
2492  *      @file: user file pointer
2493  *      @p: pointer to result
2494  *
2495  *      Obtain the modem status bits from the tty driver if the feature
2496  *      is supported. Return -EINVAL if it is not available.
2497  *
2498  *      Locking: none (up to the driver)
2499  */
2500
2501 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2502 {
2503         int retval = -EINVAL;
2504
2505         if (tty->ops->tiocmget) {
2506                 retval = tty->ops->tiocmget(tty);
2507
2508                 if (retval >= 0)
2509                         retval = put_user(retval, p);
2510         }
2511         return retval;
2512 }
2513
2514 /**
2515  *      tty_tiocmset            -       set modem status
2516  *      @tty: tty device
2517  *      @cmd: command - clear bits, set bits or set all
2518  *      @p: pointer to desired bits
2519  *
2520  *      Set the modem status bits from the tty driver if the feature
2521  *      is supported. Return -EINVAL if it is not available.
2522  *
2523  *      Locking: none (up to the driver)
2524  */
2525
2526 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2527              unsigned __user *p)
2528 {
2529         int retval;
2530         unsigned int set, clear, val;
2531
2532         if (tty->ops->tiocmset == NULL)
2533                 return -EINVAL;
2534
2535         retval = get_user(val, p);
2536         if (retval)
2537                 return retval;
2538         set = clear = 0;
2539         switch (cmd) {
2540         case TIOCMBIS:
2541                 set = val;
2542                 break;
2543         case TIOCMBIC:
2544                 clear = val;
2545                 break;
2546         case TIOCMSET:
2547                 set = val;
2548                 clear = ~val;
2549                 break;
2550         }
2551         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2552         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2553         return tty->ops->tiocmset(tty, set, clear);
2554 }
2555
2556 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2557 {
2558         int retval = -EINVAL;
2559         struct serial_icounter_struct icount;
2560         memset(&icount, 0, sizeof(icount));
2561         if (tty->ops->get_icount)
2562                 retval = tty->ops->get_icount(tty, &icount);
2563         if (retval != 0)
2564                 return retval;
2565         if (copy_to_user(arg, &icount, sizeof(icount)))
2566                 return -EFAULT;
2567         return 0;
2568 }
2569
2570 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2571 {
2572         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2573             tty->driver->subtype == PTY_TYPE_MASTER)
2574                 tty = tty->link;
2575         return tty;
2576 }
2577 EXPORT_SYMBOL(tty_pair_get_tty);
2578
2579 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2580 {
2581         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2582             tty->driver->subtype == PTY_TYPE_MASTER)
2583             return tty;
2584         return tty->link;
2585 }
2586 EXPORT_SYMBOL(tty_pair_get_pty);
2587
2588 /*
2589  * Split this up, as gcc can choke on it otherwise..
2590  */
2591 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2592 {
2593         struct tty_struct *tty = file_tty(file);
2594         struct tty_struct *real_tty;
2595         void __user *p = (void __user *)arg;
2596         int retval;
2597         struct tty_ldisc *ld;
2598         struct inode *inode = file->f_dentry->d_inode;
2599
2600         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2601                 return -EINVAL;
2602
2603         real_tty = tty_pair_get_tty(tty);
2604
2605         /*
2606          * Factor out some common prep work
2607          */
2608         switch (cmd) {
2609         case TIOCSETD:
2610         case TIOCSBRK:
2611         case TIOCCBRK:
2612         case TCSBRK:
2613         case TCSBRKP:
2614                 retval = tty_check_change(tty);
2615                 if (retval)
2616                         return retval;
2617                 if (cmd != TIOCCBRK) {
2618                         tty_wait_until_sent(tty, 0);
2619                         if (signal_pending(current))
2620                                 return -EINTR;
2621                 }
2622                 break;
2623         }
2624
2625         /*
2626          *      Now do the stuff.
2627          */
2628         switch (cmd) {
2629         case TIOCSTI:
2630                 return tiocsti(tty, p);
2631         case TIOCGWINSZ:
2632                 return tiocgwinsz(real_tty, p);
2633         case TIOCSWINSZ:
2634                 return tiocswinsz(real_tty, p);
2635         case TIOCCONS:
2636                 return real_tty != tty ? -EINVAL : tioccons(file);
2637         case FIONBIO:
2638                 return fionbio(file, p);
2639         case TIOCEXCL:
2640                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2641                 return 0;
2642         case TIOCNXCL:
2643                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2644                 return 0;
2645         case TIOCNOTTY:
2646                 if (current->signal->tty != tty)
2647                         return -ENOTTY;
2648                 no_tty();
2649                 return 0;
2650         case TIOCSCTTY:
2651                 return tiocsctty(tty, arg);
2652         case TIOCGPGRP:
2653                 return tiocgpgrp(tty, real_tty, p);
2654         case TIOCSPGRP:
2655                 return tiocspgrp(tty, real_tty, p);
2656         case TIOCGSID:
2657                 return tiocgsid(tty, real_tty, p);
2658         case TIOCGETD:
2659                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2660         case TIOCSETD:
2661                 return tiocsetd(tty, p);
2662         case TIOCVHANGUP:
2663                 if (!capable(CAP_SYS_ADMIN))
2664                         return -EPERM;
2665                 tty_vhangup(tty);
2666                 return 0;
2667         case TIOCGDEV:
2668         {
2669                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2670                 return put_user(ret, (unsigned int __user *)p);
2671         }
2672         /*
2673          * Break handling
2674          */
2675         case TIOCSBRK:  /* Turn break on, unconditionally */
2676                 if (tty->ops->break_ctl)
2677                         return tty->ops->break_ctl(tty, -1);
2678                 return 0;
2679         case TIOCCBRK:  /* Turn break off, unconditionally */
2680                 if (tty->ops->break_ctl)
2681                         return tty->ops->break_ctl(tty, 0);
2682                 return 0;
2683         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2684                 /* non-zero arg means wait for all output data
2685                  * to be sent (performed above) but don't send break.
2686                  * This is used by the tcdrain() termios function.
2687                  */
2688                 if (!arg)
2689                         return send_break(tty, 250);
2690                 return 0;
2691         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2692                 return send_break(tty, arg ? arg*100 : 250);
2693
2694         case TIOCMGET:
2695                 return tty_tiocmget(tty, p);
2696         case TIOCMSET:
2697         case TIOCMBIC:
2698         case TIOCMBIS:
2699                 return tty_tiocmset(tty, cmd, p);
2700         case TIOCGICOUNT:
2701                 retval = tty_tiocgicount(tty, p);
2702                 /* For the moment allow fall through to the old method */
2703                 if (retval != -EINVAL)
2704                         return retval;
2705                 break;
2706         case TCFLSH:
2707                 switch (arg) {
2708                 case TCIFLUSH:
2709                 case TCIOFLUSH:
2710                 /* flush tty buffer and allow ldisc to process ioctl */
2711                         tty_buffer_flush(tty);
2712                         break;
2713                 }
2714                 break;
2715         }
2716         if (tty->ops->ioctl) {
2717                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2718                 if (retval != -ENOIOCTLCMD)
2719                         return retval;
2720         }
2721         ld = tty_ldisc_ref_wait(tty);
2722         retval = -EINVAL;
2723         if (ld->ops->ioctl) {
2724                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2725                 if (retval == -ENOIOCTLCMD)
2726                         retval = -EINVAL;
2727         }
2728         tty_ldisc_deref(ld);
2729         return retval;
2730 }
2731
2732 #ifdef CONFIG_COMPAT
2733 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2734                                 unsigned long arg)
2735 {
2736         struct inode *inode = file->f_dentry->d_inode;
2737         struct tty_struct *tty = file_tty(file);
2738         struct tty_ldisc *ld;
2739         int retval = -ENOIOCTLCMD;
2740
2741         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2742                 return -EINVAL;
2743
2744         if (tty->ops->compat_ioctl) {
2745                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2746                 if (retval != -ENOIOCTLCMD)
2747                         return retval;
2748         }
2749
2750         ld = tty_ldisc_ref_wait(tty);
2751         if (ld->ops->compat_ioctl)
2752                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2753         else
2754                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2755         tty_ldisc_deref(ld);
2756
2757         return retval;
2758 }
2759 #endif
2760
2761 /*
2762  * This implements the "Secure Attention Key" ---  the idea is to
2763  * prevent trojan horses by killing all processes associated with this
2764  * tty when the user hits the "Secure Attention Key".  Required for
2765  * super-paranoid applications --- see the Orange Book for more details.
2766  *
2767  * This code could be nicer; ideally it should send a HUP, wait a few
2768  * seconds, then send a INT, and then a KILL signal.  But you then
2769  * have to coordinate with the init process, since all processes associated
2770  * with the current tty must be dead before the new getty is allowed
2771  * to spawn.
2772  *
2773  * Now, if it would be correct ;-/ The current code has a nasty hole -
2774  * it doesn't catch files in flight. We may send the descriptor to ourselves
2775  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2776  *
2777  * Nasty bug: do_SAK is being called in interrupt context.  This can
2778  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2779  */
2780 void __do_SAK(struct tty_struct *tty)
2781 {
2782 #ifdef TTY_SOFT_SAK
2783         tty_hangup(tty);
2784 #else
2785         struct task_struct *g, *p;
2786         struct pid *session;
2787         int             i;
2788         struct file     *filp;
2789         struct fdtable *fdt;
2790
2791         if (!tty)
2792                 return;
2793         session = tty->session;
2794
2795         tty_ldisc_flush(tty);
2796
2797         tty_driver_flush_buffer(tty);
2798
2799         read_lock(&tasklist_lock);
2800         /* Kill the entire session */
2801         do_each_pid_task(session, PIDTYPE_SID, p) {
2802                 printk(KERN_NOTICE "SAK: killed process %d"
2803                         " (%s): task_session(p)==tty->session\n",
2804                         task_pid_nr(p), p->comm);
2805                 send_sig(SIGKILL, p, 1);
2806         } while_each_pid_task(session, PIDTYPE_SID, p);
2807         /* Now kill any processes that happen to have the
2808          * tty open.
2809          */
2810         do_each_thread(g, p) {
2811                 if (p->signal->tty == tty) {
2812                         printk(KERN_NOTICE "SAK: killed process %d"
2813                             " (%s): task_session(p)==tty->session\n",
2814                             task_pid_nr(p), p->comm);
2815                         send_sig(SIGKILL, p, 1);
2816                         continue;
2817                 }
2818                 task_lock(p);
2819                 if (p->files) {
2820                         /*
2821                          * We don't take a ref to the file, so we must
2822                          * hold ->file_lock instead.
2823                          */
2824                         spin_lock(&p->files->file_lock);
2825                         fdt = files_fdtable(p->files);
2826                         for (i = 0; i < fdt->max_fds; i++) {
2827                                 filp = fcheck_files(p->files, i);
2828                                 if (!filp)
2829                                         continue;
2830                                 if (filp->f_op->read == tty_read &&
2831                                     file_tty(filp) == tty) {
2832                                         printk(KERN_NOTICE "SAK: killed process %d"
2833                                             " (%s): fd#%d opened to the tty\n",
2834                                             task_pid_nr(p), p->comm, i);
2835                                         force_sig(SIGKILL, p);
2836                                         break;
2837                                 }
2838                         }
2839                         spin_unlock(&p->files->file_lock);
2840                 }
2841                 task_unlock(p);
2842         } while_each_thread(g, p);
2843         read_unlock(&tasklist_lock);
2844 #endif
2845 }
2846
2847 static void do_SAK_work(struct work_struct *work)
2848 {
2849         struct tty_struct *tty =
2850                 container_of(work, struct tty_struct, SAK_work);
2851         __do_SAK(tty);
2852 }
2853
2854 /*
2855  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2856  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2857  * the values which we write to it will be identical to the values which it
2858  * already has. --akpm
2859  */
2860 void do_SAK(struct tty_struct *tty)
2861 {
2862         if (!tty)
2863                 return;
2864         schedule_work(&tty->SAK_work);
2865 }
2866
2867 EXPORT_SYMBOL(do_SAK);
2868
2869 static int dev_match_devt(struct device *dev, void *data)
2870 {
2871         dev_t *devt = data;
2872         return dev->devt == *devt;
2873 }
2874
2875 /* Must put_device() after it's unused! */
2876 static struct device *tty_get_device(struct tty_struct *tty)
2877 {
2878         dev_t devt = tty_devnum(tty);
2879         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2880 }
2881
2882
2883 /**
2884  *      initialize_tty_struct
2885  *      @tty: tty to initialize
2886  *
2887  *      This subroutine initializes a tty structure that has been newly
2888  *      allocated.
2889  *
2890  *      Locking: none - tty in question must not be exposed at this point
2891  */
2892
2893 void initialize_tty_struct(struct tty_struct *tty,
2894                 struct tty_driver *driver, int idx)
2895 {
2896         memset(tty, 0, sizeof(struct tty_struct));
2897         kref_init(&tty->kref);
2898         tty->magic = TTY_MAGIC;
2899         tty_ldisc_init(tty);
2900         tty->session = NULL;
2901         tty->pgrp = NULL;
2902         tty->overrun_time = jiffies;
2903         tty->buf.head = tty->buf.tail = NULL;
2904         tty_buffer_init(tty);
2905         mutex_init(&tty->termios_mutex);
2906         mutex_init(&tty->ldisc_mutex);
2907         init_waitqueue_head(&tty->write_wait);
2908         init_waitqueue_head(&tty->read_wait);
2909         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2910         mutex_init(&tty->atomic_read_lock);
2911         mutex_init(&tty->atomic_write_lock);
2912         mutex_init(&tty->output_lock);
2913         mutex_init(&tty->echo_lock);
2914         spin_lock_init(&tty->read_lock);
2915         spin_lock_init(&tty->ctrl_lock);
2916         INIT_LIST_HEAD(&tty->tty_files);
2917         INIT_WORK(&tty->SAK_work, do_SAK_work);
2918
2919         tty->driver = driver;
2920         tty->ops = driver->ops;
2921         tty->index = idx;
2922         tty_line_name(driver, idx, tty->name);
2923         tty->dev = tty_get_device(tty);
2924 }
2925
2926 /**
2927  *      deinitialize_tty_struct
2928  *      @tty: tty to deinitialize
2929  *
2930  *      This subroutine deinitializes a tty structure that has been newly
2931  *      allocated but tty_release cannot be called on that yet.
2932  *
2933  *      Locking: none - tty in question must not be exposed at this point
2934  */
2935 void deinitialize_tty_struct(struct tty_struct *tty)
2936 {
2937         tty_ldisc_deinit(tty);
2938 }
2939
2940 /**
2941  *      tty_put_char    -       write one character to a tty
2942  *      @tty: tty
2943  *      @ch: character
2944  *
2945  *      Write one byte to the tty using the provided put_char method
2946  *      if present. Returns the number of characters successfully output.
2947  *
2948  *      Note: the specific put_char operation in the driver layer may go
2949  *      away soon. Don't call it directly, use this method
2950  */
2951
2952 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2953 {
2954         if (tty->ops->put_char)
2955                 return tty->ops->put_char(tty, ch);
2956         return tty->ops->write(tty, &ch, 1);
2957 }
2958 EXPORT_SYMBOL_GPL(tty_put_char);
2959
2960 struct class *tty_class;
2961
2962 /**
2963  *      tty_register_device - register a tty device
2964  *      @driver: the tty driver that describes the tty device
2965  *      @index: the index in the tty driver for this tty device
2966  *      @device: a struct device that is associated with this tty device.
2967  *              This field is optional, if there is no known struct device
2968  *              for this tty device it can be set to NULL safely.
2969  *
2970  *      Returns a pointer to the struct device for this tty device
2971  *      (or ERR_PTR(-EFOO) on error).
2972  *
2973  *      This call is required to be made to register an individual tty device
2974  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2975  *      that bit is not set, this function should not be called by a tty
2976  *      driver.
2977  *
2978  *      Locking: ??
2979  */
2980
2981 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2982                                    struct device *device)
2983 {
2984         char name[64];
2985         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2986
2987         if (index >= driver->num) {
2988                 printk(KERN_ERR "Attempt to register invalid tty line number "
2989                        " (%d).\n", index);
2990                 return ERR_PTR(-EINVAL);
2991         }
2992
2993         if (driver->type == TTY_DRIVER_TYPE_PTY)
2994                 pty_line_name(driver, index, name);
2995         else
2996                 tty_line_name(driver, index, name);
2997
2998         return device_create(tty_class, device, dev, NULL, name);
2999 }
3000 EXPORT_SYMBOL(tty_register_device);
3001
3002 /**
3003  *      tty_unregister_device - unregister a tty device
3004  *      @driver: the tty driver that describes the tty device
3005  *      @index: the index in the tty driver for this tty device
3006  *
3007  *      If a tty device is registered with a call to tty_register_device() then
3008  *      this function must be called when the tty device is gone.
3009  *
3010  *      Locking: ??
3011  */
3012
3013 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3014 {
3015         device_destroy(tty_class,
3016                 MKDEV(driver->major, driver->minor_start) + index);
3017 }
3018 EXPORT_SYMBOL(tty_unregister_device);
3019
3020 struct tty_driver *alloc_tty_driver(int lines)
3021 {
3022         struct tty_driver *driver;
3023
3024         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3025         if (driver) {
3026                 kref_init(&driver->kref);
3027                 driver->magic = TTY_DRIVER_MAGIC;
3028                 driver->num = lines;
3029                 /* later we'll move allocation of tables here */
3030         }
3031         return driver;
3032 }
3033 EXPORT_SYMBOL(alloc_tty_driver);
3034
3035 static void destruct_tty_driver(struct kref *kref)
3036 {
3037         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3038         int i;
3039         struct ktermios *tp;
3040         void *p;
3041
3042         if (driver->flags & TTY_DRIVER_INSTALLED) {
3043                 /*
3044                  * Free the termios and termios_locked structures because
3045                  * we don't want to get memory leaks when modular tty
3046                  * drivers are removed from the kernel.
3047                  */
3048                 for (i = 0; i < driver->num; i++) {
3049                         tp = driver->termios[i];
3050                         if (tp) {
3051                                 driver->termios[i] = NULL;
3052                                 kfree(tp);
3053                         }
3054                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3055                                 tty_unregister_device(driver, i);
3056                 }
3057                 p = driver->ttys;
3058                 proc_tty_unregister_driver(driver);
3059                 driver->ttys = NULL;
3060                 driver->termios = NULL;
3061                 kfree(p);
3062                 cdev_del(&driver->cdev);
3063         }
3064         kfree(driver);
3065 }
3066
3067 void tty_driver_kref_put(struct tty_driver *driver)
3068 {
3069         kref_put(&driver->kref, destruct_tty_driver);
3070 }
3071 EXPORT_SYMBOL(tty_driver_kref_put);
3072
3073 void tty_set_operations(struct tty_driver *driver,
3074                         const struct tty_operations *op)
3075 {
3076         driver->ops = op;
3077 };
3078 EXPORT_SYMBOL(tty_set_operations);
3079
3080 void put_tty_driver(struct tty_driver *d)
3081 {
3082         tty_driver_kref_put(d);
3083 }
3084 EXPORT_SYMBOL(put_tty_driver);
3085
3086 /*
3087  * Called by a tty driver to register itself.
3088  */
3089 int tty_register_driver(struct tty_driver *driver)
3090 {
3091         int error;
3092         int i;
3093         dev_t dev;
3094         void **p = NULL;
3095         struct device *d;
3096
3097         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3098                 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3099                 if (!p)
3100                         return -ENOMEM;
3101         }
3102
3103         if (!driver->major) {
3104                 error = alloc_chrdev_region(&dev, driver->minor_start,
3105                                                 driver->num, driver->name);
3106                 if (!error) {
3107                         driver->major = MAJOR(dev);
3108                         driver->minor_start = MINOR(dev);
3109                 }
3110         } else {
3111                 dev = MKDEV(driver->major, driver->minor_start);
3112                 error = register_chrdev_region(dev, driver->num, driver->name);
3113         }
3114         if (error < 0) {
3115                 kfree(p);
3116                 return error;
3117         }
3118
3119         if (p) {
3120                 driver->ttys = (struct tty_struct **)p;
3121                 driver->termios = (struct ktermios **)(p + driver->num);
3122         } else {
3123                 driver->ttys = NULL;
3124                 driver->termios = NULL;
3125         }
3126
3127         cdev_init(&driver->cdev, &tty_fops);
3128         driver->cdev.owner = driver->owner;
3129         error = cdev_add(&driver->cdev, dev, driver->num);
3130         if (error) {
3131                 unregister_chrdev_region(dev, driver->num);
3132                 driver->ttys = NULL;
3133                 driver->termios = NULL;
3134                 kfree(p);
3135                 return error;
3136         }
3137
3138         mutex_lock(&tty_mutex);
3139         list_add(&driver->tty_drivers, &tty_drivers);
3140         mutex_unlock(&tty_mutex);
3141
3142         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3143                 for (i = 0; i < driver->num; i++) {
3144                         d = tty_register_device(driver, i, NULL);
3145                         if (IS_ERR(d)) {
3146                                 error = PTR_ERR(d);
3147                                 goto err;
3148                         }
3149                 }
3150         }
3151         proc_tty_register_driver(driver);
3152         driver->flags |= TTY_DRIVER_INSTALLED;
3153         return 0;
3154
3155 err:
3156         for (i--; i >= 0; i--)
3157                 tty_unregister_device(driver, i);
3158
3159         mutex_lock(&tty_mutex);
3160         list_del(&driver->tty_drivers);
3161         mutex_unlock(&tty_mutex);
3162
3163         unregister_chrdev_region(dev, driver->num);
3164         driver->ttys = NULL;
3165         driver->termios = NULL;
3166         kfree(p);
3167         return error;
3168 }
3169
3170 EXPORT_SYMBOL(tty_register_driver);
3171
3172 /*
3173  * Called by a tty driver to unregister itself.
3174  */
3175 int tty_unregister_driver(struct tty_driver *driver)
3176 {
3177 #if 0
3178         /* FIXME */
3179         if (driver->refcount)
3180                 return -EBUSY;
3181 #endif
3182         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3183                                 driver->num);
3184         mutex_lock(&tty_mutex);
3185         list_del(&driver->tty_drivers);
3186         mutex_unlock(&tty_mutex);
3187         return 0;
3188 }
3189
3190 EXPORT_SYMBOL(tty_unregister_driver);
3191
3192 dev_t tty_devnum(struct tty_struct *tty)
3193 {
3194         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3195 }
3196 EXPORT_SYMBOL(tty_devnum);
3197
3198 void proc_clear_tty(struct task_struct *p)
3199 {
3200         unsigned long flags;
3201         struct tty_struct *tty;
3202         spin_lock_irqsave(&p->sighand->siglock, flags);
3203         tty = p->signal->tty;
3204         p->signal->tty = NULL;
3205         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3206         tty_kref_put(tty);
3207 }
3208
3209 /* Called under the sighand lock */
3210
3211 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3212 {
3213         if (tty) {
3214                 unsigned long flags;
3215                 /* We should not have a session or pgrp to put here but.... */
3216                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3217                 put_pid(tty->session);
3218                 put_pid(tty->pgrp);
3219                 tty->pgrp = get_pid(task_pgrp(tsk));
3220                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3221                 tty->session = get_pid(task_session(tsk));
3222                 if (tsk->signal->tty) {
3223                         printk(KERN_DEBUG "tty not NULL!!\n");
3224                         tty_kref_put(tsk->signal->tty);
3225                 }
3226         }
3227         put_pid(tsk->signal->tty_old_pgrp);
3228         tsk->signal->tty = tty_kref_get(tty);
3229         tsk->signal->tty_old_pgrp = NULL;
3230 }
3231
3232 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3233 {
3234         spin_lock_irq(&tsk->sighand->siglock);
3235         __proc_set_tty(tsk, tty);
3236         spin_unlock_irq(&tsk->sighand->siglock);
3237 }
3238
3239 struct tty_struct *get_current_tty(void)
3240 {
3241         struct tty_struct *tty;
3242         unsigned long flags;
3243
3244         spin_lock_irqsave(&current->sighand->siglock, flags);
3245         tty = tty_kref_get(current->signal->tty);
3246         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3247         return tty;
3248 }
3249 EXPORT_SYMBOL_GPL(get_current_tty);
3250
3251 void tty_default_fops(struct file_operations *fops)
3252 {
3253         *fops = tty_fops;
3254 }
3255
3256 /*
3257  * Initialize the console device. This is called *early*, so
3258  * we can't necessarily depend on lots of kernel help here.
3259  * Just do some early initializations, and do the complex setup
3260  * later.
3261  */
3262 void __init console_init(void)
3263 {
3264         initcall_t *call;
3265
3266         /* Setup the default TTY line discipline. */
3267         tty_ldisc_begin();
3268
3269         /*
3270          * set up the console device so that later boot sequences can
3271          * inform about problems etc..
3272          */
3273         call = __con_initcall_start;
3274         while (call < __con_initcall_end) {
3275                 (*call)();
3276                 call++;
3277         }
3278 }
3279
3280 static char *tty_devnode(struct device *dev, mode_t *mode)
3281 {
3282         if (!mode)
3283                 return NULL;
3284         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3285             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3286                 *mode = 0666;
3287         return NULL;
3288 }
3289
3290 static int __init tty_class_init(void)
3291 {
3292         tty_class = class_create(THIS_MODULE, "tty");
3293         if (IS_ERR(tty_class))
3294                 return PTR_ERR(tty_class);
3295         tty_class->devnode = tty_devnode;
3296         return 0;
3297 }
3298
3299 postcore_initcall(tty_class_init);
3300
3301 /* 3/2004 jmc: why do these devices exist? */
3302 static struct cdev tty_cdev, console_cdev;
3303
3304 static ssize_t show_cons_active(struct device *dev,
3305                                 struct device_attribute *attr, char *buf)
3306 {
3307         struct console *cs[16];
3308         int i = 0;
3309         struct console *c;
3310         ssize_t count = 0;
3311
3312         console_lock();
3313         for_each_console(c) {
3314                 if (!c->device)
3315                         continue;
3316                 if (!c->write)
3317                         continue;
3318                 if ((c->flags & CON_ENABLED) == 0)
3319                         continue;
3320                 cs[i++] = c;
3321                 if (i >= ARRAY_SIZE(cs))
3322                         break;
3323         }
3324         while (i--) {
3325                 int index = cs[i]->index;
3326                 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3327
3328                 /* don't resolve tty0 as some programs depend on it */
3329                 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3330                         count += tty_line_name(drv, index, buf + count);
3331                 else
3332                         count += sprintf(buf + count, "%s%d",
3333                                          cs[i]->name, cs[i]->index);
3334
3335                 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3336         }
3337         console_unlock();
3338
3339         return count;
3340 }
3341 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3342
3343 static struct device *consdev;
3344
3345 void console_sysfs_notify(void)
3346 {
3347         if (consdev)
3348                 sysfs_notify(&consdev->kobj, NULL, "active");
3349 }
3350
3351 /*
3352  * Ok, now we can initialize the rest of the tty devices and can count
3353  * on memory allocations, interrupts etc..
3354  */
3355 int __init tty_init(void)
3356 {
3357         cdev_init(&tty_cdev, &tty_fops);
3358         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3359             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3360                 panic("Couldn't register /dev/tty driver\n");
3361         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3362
3363         cdev_init(&console_cdev, &console_fops);
3364         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3365             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3366                 panic("Couldn't register /dev/console driver\n");
3367         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3368                               "console");
3369         if (IS_ERR(consdev))
3370                 consdev = NULL;
3371         else
3372                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3373
3374 #ifdef CONFIG_VT
3375         vty_init(&console_fops);
3376 #endif
3377         return 0;
3378 }
3379